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Abstract

Neurological diseases (NDs) are causing burgeoning burden to the patients, healthcare
sector and the entire society. Hundreds of millions of people are currently affected by
various NDs worldwide and the number is increasing very rapidly. The most frequent
categories include Alzheimer’s disease (AD), Parkinson’s disease (PD), epilepsy, Mul-
tiple sclerosis (MS), stroke and other cerebrovascular disorders, migraine and other
headache, malignant brain tumors such as Glioblastoma multiforme (GBM) etc. De-
spite numerous research initiatives, preventive and therapeutic options for most of
these NDs still remain very limited. Taking AD as an example, fully effective preven-
tive strategies are unavailable till now. Preventive measures usually comprise primary
prevention based on risk reducing by identifying influential factors and secondary pre-
vention through early detection and abatement of the disease at initial stage. But
the inadequate epidemiological knowledge of AD risk factors and absence of early pre-
mortem accurate diagnosis has foiled AD prevention. However, better insight about
the co-occurrence of other neurological complications with AD can yield preventive
and therapeutic advancement. On the other hand, enhanced understanding about the
factors that impacts the response to the treatment could prolong the survival period.
For instance, GBM is such an ND with shorten survival period provided the first line
treatment include brain surgery followed by chemotherapy and radiotherapy.

In this context, research initiatives to mitigate the information gap regarding how
the causative factors affect the cell pathways altered in NDs and their comorbidities can
alleviate the disease burden. Availability of high throughput technologies including mi-
croarray and next-generation sequencing (NGS) of tissue mRNA to analyse large-scale
transcriptomic data have excelled various bioinformatics methodologies as promising
tools in biomedical research field. These approaches include differential gene expression
analysis, protein-protein interactions (PPIs), gene ontology (GO), metabolic pathway
and regulatory factor analysis. Genetic inspection into the transcriptomic data through
these tools yields better insight into the molecular pathogenesis of any health condi-
tion in junction with its causative factors and related complications. In addition to
this, the exponentially increasing amount of accessible biological data has made ma-
chine learning techniques as promising means of discovering hidden genetic knowledge.
In this thesis, we presented bioinformatics and computational frameworks based on
transcriptomic data and machine learning based survival prediction models.

We have done four experiments in this thesis work where three were for AD and
another for GBM. In the first and third experiments, we incorporated a series of bioin-
formatics and computational approaches to inspect the genetic interaction of AD with
various causative factors and neurodegenerative consequences respectively through in-
vestigating the coexisting differentially expressed genes (DEGs), shared molecular path-
ways induced by those DEGs and their protein-protein interactome. In the second
experiment, we investigated brain and blood transcriptomics and the expression quan-
titative trait loci (eQTL) data from the Genotype-Tissue Expression (GTEx) project
to obtain interesting common pathways in those cells as an attempt for blood based
AD biomarkers identification. Finally, we demonstrated some state-of-art machine
learning models with high accuracy to detect the signature genes those are significant
biomarkers of processes involved in the progression and survival of GBM.
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Findings showed significant genetic interactions between AD and the factors of inter-
est signifying how AD incidence and development may be influenced by the risk factors.
Putative links between pathological processes in brain tissue and blood cells in AD were
also obtained that may allow assessment of AD status using blood samples. Moreover,
constitution of functional links between AD and its neurodegenerative comorbidities
have been evidenced by which they affect each others development and progression.
We furthermore identified putative prognostic biomarker and GBM-chemoresistance re-
lated signature genes those may provide new opportunities for therapeutic intervention
and can yield a new understanding of the GBM progression and survival.

In sum, our formulated bioinfomatics and computational framework successfully
revealed key pathological factors, therapeutic targets, biomarkers and the associated
molecular pathways to employ new insight into AD development and progression. Al-
though their utility must be validated through functional studies and clinical investi-
gations, these identifications offered a new window for AD prevention. In addition to
this, the prognostic signature genes predicted by the machine learning models could
be the candidate for further study and the efficiency of the models could be improved
even though they showed satisfactory performance.
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Chapter 1

INTRODUCTION

1.1 Background and Motivations

Neurological diseases (NDs) are the disorders of the central nervous system (CNS) and
the peripheral nervous system. The most prevalent NDs include Alzheimer’s disease
(AD), Parkinson’s disease (PD), epilepsy, Multiple sclerosis (MS), stroke and other
cerebrovascular disorders, migraine and other headache, malignant brain tumors such
as Glioblastoma multiforme (GBM) etc. Usually, most of these NDs fail to be listed
as the most lethal diseases. As a result, they have been neglected by the researchers
and policy makers worldwide for long periods of time. But, the mortality rate alone
can not reflect the seriousness of a disease. Considering only the mortality rate could
underestimate the difficulties of a disease that may be non-fatal but cause substantial
disabilities. If the disability caused by a disorder is also taken into account, several NDs
would emerge as the major causes of suffering. Statistics suggest NDs as the leading
cause of disability and the second leading cause of death worldwide in 2015 [1]. The
latest Global Burden of Disease (GBD) study included AD and other dementias, PD,
MS, epilepsy and headache disorders accounting 3% of the global burden of diseases
and ranked these NDs in the top 50 causes of disability-adjusted life-years (DALYs) [2].
Whereas, AD and PD were listed in the top 15 causes having the most considerable raise
in burden in the period from 1990 to 2010. The global burden of NDs is estimated to in-
crease substantially in low- and middle-income countries (LMICs)[2]. As the number of
the world population as well as the life expectancy are increasing, more people are now
falling into the aged groups where NDs are believed to be more prevalent. Despite of
having notable impact of NDs on global health, understanding about the epidemiology
and knowledge about the causative risk factors and the comorbidities remain minimal,
especially in the LMICs. Again, the patients with NDs usually need sufficient financial
and social attention because of their cognitive, physio-social and physical disabilities
[3]. Thus, the burden caused by the NDs can be expected to be noxious to the poor
population. Moreover, these patients often become victim of human rights violations
as they get stigmatized and discriminated to access proper medical attention. There-
fore, the NDs require significant research attention to improve our knowledge about
the disease mechanism, causative factors and consequences, particularly in LMICs.

AD is the leading or emerging ND while considering the most occurrences, the
maximum number of patients being untreated, and lack of affordable and effective
treatment. AD is the most frequent neurodegenerative disease (NDD) which is consid-
ered to be the current primary cause of dementia, causing most of all dementia cases
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(60% to 80%). Whereas, dementia is the degradation of cognitive skills and intellec-
tual abilities. The initial symptoms of AD include inability to remember recent events
[4]. As the condition progresses, several symptoms including mood swings, lack of
motivation, difficulties with language, self-hatred, behavioral abnormality, and disori-
entation become more prevalent. At later stage, patients become dependant on others,
they withdraw themselves from the family and society [5]. Finally, they lead to death
trough entirely losing bodily functions [6]. Usually the life expectancy after AD diag-
nosis may vary from 3 to 9 years. Currently, AD is listed as sixth among all ages and
third for older people in the leading death causing diseases in the United States [6]. 5.7
million Americans had AD in 2018, and this number is projected to reach 13.8 million
by 2050 [7]. It was a major cause of mortality in 2015, 110,561 deaths from AD were of-
ficially recorded in that year in the United States [7]. The main features of AD include
cognitive deficiency including memory loss and diminished abilities to carry out sim-
ple everyday activities [8], in addition to depression, apathy, hallucinations, delusions
and aggression [9]. Significant AD-related features seen in the central nervous system
include localized accumulations of beta-amyloid (Aβ) protein in plaques in the extra-
cellular space and tau protein tangles inside neurons. It is not clear whether these are
primary causes or pathophysiological responses to AD. But these features can originate
over 20 years before AD cognitive symptoms become clearly evident. The pathogenic
mechanisms that underlie AD initiation and development are very poorly understood,
although a number of genetic and environmental risk factors have been reported to
have association with AD [10]. The apolipoprotein E (APOE4) is evidenced to be
related to AD throughout the world population [11, 12, 13]. APOE4 is considered as a
risk factor for late onset AD, a unfamiliar condition [14]. Genetic studies suggest that
mutations involving the amyloid precursor protein (APP) and the presenilin 1 and pre-
senilin 2 protein (PSEN1/2) related genes give rise to plaques [15]. Nevertheless, the
inheritance of APP or PSEN1/2 mutants is associated with a high probability for AD
development, consistent with an important role for their corresponding proteins [16].
To this day, no disease modifying drugs for AD are available, all the FDA approved
drugs only alleviate the symptoms. Most of the clinical trials for AD-therapeutics are
Aβ-based and they have failed [17]. The current AD research initiative primarily focus
on pathological intervention, causative factor identification for AD prevention, enrich-
ment of knowledge about complications due to AD, formation of early detection and
finally therapeutic strategy and drug development [18]. GBM, on the other hand, is the
commonest and most lethal tumor of human brain [19]. It accounts 15 percent of all
brain tumors still its actual causes and preventing measures are completely unknown
[20, 21]. Not only that, the poor prognosis causes death of most patients within one
year after first diagnosis [22]. In 2016, where approximately 12,120 incidences of GBM
were estimated in the United States, only 5 percent of them survived 5 years [23]. Over
the years, considerable amount of research efforts were made but very little progression
has been possible for longer survival of GBM [24].

1.2 Literature Review

Neurological diseases cause structural, biochemical or electrical anomalies in the brain,
nervous system and spinal cord. These changes provoke a wide range of disabilities
with motor and memory function and associated consequences. Most of the AD-related
pathology occurs in the brain, just like other NDs [25, 26]. Thus the most accurate diag-
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nosis can be performed by examining the brain tissues through microscopic anatomy,
which is known as histology [27]. But, it is immensely challenging to study brain
tissue because these tissue samples have to be collected post-mortem with a high de-
gree of cellular heterogeneity. Hence, there is no definite early pre-mortem diagnosis
for AD aside from cognitive assessments and the use of brain imaging methods that
reveal significant degeneration. The traditional brain imaging approaches include com-
puted tomography (CT) or magnetic resonance imaging (MRI) while the single-photon
emission computed tomography (SPECT) or positron emission tomography (PET) are
adopted in advanced procedures. All these brain imaging based diagnostic methods are
costly and hence are not affordable by all the patients, especially in LMICs. For these
cases, usually the diagnosis is performed by examining medical history of the patients
and their relatives, and observing their behaviors. The most widely used method to
diagnose AD is neuropsychological tests using cognitive test for the evaluation of cog-
nitive degradation [28]. Symptoms of impairments in cognition due to AD emerge only
after significant, unchangeable neural degeneration has occurred. Therefore, neuropsy-
chological tests can diagnose AD at later stages and produce very low accuracy at the
early stages. Hence there is a need for a simple means to detect AD early, before the
indication of cognitive symptoms. An accurate, early diagnostic test for an AD may
enable interventions to be more effective and lead the development of new treatments.
Identifying robust biomarkers for AD in blood samples could potentially achieve these
goals.

In addition to this, better insight about the causative factors, especially the modi-
fiable ones, can yield effective preventive measures to reduce the disease burden. Till
date, the pathogenesis of the AD is not clearly understood, but it is clear that both ge-
netic and environmental factors are likely to be significant causes. Numerous research
initiatives over the years have confirmed the impact of genetic factors in AD develop-
ment. Very few cases of APP mutations [29] and relatively larger cases of PSEN1/2
mutations [30] showed links with AD. Alongside, it is also considered that many more
regulating genes are yet to be identified [31]. Similarities between the pathological al-
teration of AD with those of aging has established AD as an accelerated form of aging
[32]. Age is the most influential risk factor for AD, along with a sedentary lifestyle.
Typically AD develops after the age of 65 years and almost half individuals over 85
years old have AD [33]. Obesity also increases the risk of AD occurrence [34]. Type II
diabetes (T2D), hypertension, smoking and dietary fats can also significantly increase
the risk of developing AD [35, 36, 37]. Meta-analysis of prospective studies suggests
that alcohol consumption in late life yields reduced risk of dementia and hence re-
duces the risk of AD [38]. Most of these studies are either epidemiological or based on
the observation of pathological changes occurred in AD. On the other hand, a num-
ber of genetic studies focused on identifying new susceptible genes using traditional
linkage-based or candidate-gene-based interconnections [39, 40, 41]. But, as a complex
polygenic disorder, genetic association of many of the associated causative factors for
AD are yet to be identified.

Meanwhile, symptoms of various neurodegenerative disorders (NDDs) become ev-
ident at any point during the course of AD development. Moreover, AD and some
other NDDs share similar genetic and environmental risk factors indicating their pos-
sible coexistence. Parkinson’s disease (PD) is the second-most common NDDs after
AD, characterized by the deficiency of striatal dopamine due to the neuronal loss in
the substantia nigra, along with deposition of α-synuclein in neurons [42, 43, 44]. Neu-
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ronal death and neural dysfunction caused by oxidative stress and mitochondrial DNA
(mtDNA) variants are reported to be associated with both AD and PD [45, 46]. Hunt-
ington’s disease (HD) is usually an inherited and autosomal dominant disorder that
causes brain cell damage [47]. Neuropathologic characteristics of PD, HD and AD are
evidenced to be consistent that involves neurotoxins in their pathogenesis [48]. Amy-
otrophic lateral sclerosis (ALS) is a lethal NDD that triggers decay of motor neurons
and eventually the control of the motor system is lost [49]. ALS and dementia share
genetic sensitivity resulting in their co-occurrences [50]. The TNFα-signaling axis and
neuroinflammation, both play a significant role in the pathogenesis of ALS and AD [51].
Spinal Muscular Atrophy (SMA) is mostly an inherited NDD with autosomal recessive
nature. Both HD and SMA are entirely monogenic conditions caused by a mutation
in the huntingtin gene (HTT) [52] and the SMN1 gene [53] respectively. Lewy Body
Disease (LBD) is the primary cause of dementia after AD, particularly in aged groups
[54]. The cognitive impairments resulted in both LBD and AD are directly associated
with the synaptic loss [55, 56]. α-synuclein is found to have a notable influence in the
pathogenesis of LBD and AD [57]. Frontotemporal dementia (FTD) is a focal variety of
dementia associated with the continuous deterioration surrounding the prefrontal and
anterior temporal cortex [58]. FTD and AD patients show identical executive func-
tions which indicate similar abnormalities in the frontal lobes [59]. Multiple sclerosis
(MS) is an inflammatory disease that affects the brain and spinal cord, and results in
intellectual trouble [60]. The central nervous system of MS and AD patients exhibit a
key contribution of the microglia activation [61]. Therefore, the cognition impairment
in AD highly influences the progression and presentation of other NDDs. However,
inadequate understanding of AD and its consequences, that means how these NDDs
and AD influence each other is unknown. Such co-occurrences can be investigated at a
molecular level, for example by identifying genes with altered expression or molecular
pathways that are shared by the NDDs and AD. Previously developed data analysis
methods for disease comorbidity studies include comoR [62], POGO [63], CytoCom
[64], comoRbidity [65] and Comorbidity4j packages [66]. All these methods provide
platform for commorbidity analysis within a disease pair, limiting their scope. How-
ever, the use of gene expression analyses in the study of comorbidity may offer improved
insights into AD disease mechanisms [67]. The availability of huge public transcrip-
tomics resources such as microarray data and bioinformatics tools has enabled us to
perform comorbidity analyses, i.e., identify gene pathways that enable two diseases to
influence each other [68, 69].

Now-a-days, the exponentially increasing amount of accessible biological data has
made machine learning techniques as promising means of discovering hidden genetic
knowledge. However, substantial progression in the study of GBM mechanisms have
found a variety of factors to influence the patient’s prognosis. Age, preoperative qual-
ity and extent of tumor resection are amongst the well-known variables. Although
multiple indicators have been proposed, the need to clinically test the GBM patients
inhibits their effectiveness as predictive biomarkers or something else. To resolve the
shortcomings of existing clinical approaches, the design of prediction using imaging
features generated from the whole tumor could be a desirable solution which is called
multi-parametric MRI. In GBM diagnosis and recovery preparation, it is considered
as a highly useful scanning procedure [70]. This technique has some limitations like
several tissue samples are gathered from spatially distinct subregions within the same
tumor for each patient. The vast majority of biopsy targets are isolated by more than
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1 cm. Although 10% of samples are isolated by 5–10 mm, the effects of possible sam-
ple duplication can be reduced by low regions of interest (ROI) levels [70]. Another
technique named novel radiomic features based on joint intensity matrices (JIMs) are
used to detect the survival time of the GBM patient [71]. During carcinogenesis and
cancer development, gene microarray and high-throughput sequence technologies al-
low the study of gene expression profiles. New predictive biomarkers can be identified
based on the gene’s expression profiles and clinical cases [72]. Chemoresistance (CR),
on the other hand, can be acquired by the aberrant expression pattern of several genes
[73, 74]. These individual genes as well as their interactions can significantly influence
the cancers and CR [75]. Signature genes associated with CR can be successfully iden-
tified by taking advantage of several machine learning models [76, 77]. The biological
processes and signalling pathways mediated by these genes are well influenced by their
genetic interactions with other genes [78]. Thus, the identification of CR-related genes
can advance the therapeutic development and drug-response prediction for GBM.

1.3 Problem Statement

As a chronic, most frequent and irremediable dementia, AD is causing a substantially
increasing burden to the patients, caregivers and the whole society. This is mostly be-
cause, the actual causes of the most AD cases and their consequences are still unknown.
On top of that, there is no effective and accurate early diagnosis of AD. Considering
these information gap about AD, we incorporated bioinformatics approach to have bet-
ter insight about AD and its causative factors as well as its neurodegenerative conse-
quences. We also incorporated the expression quantitative trait loci (eQTL) data from
the Genotype-Tissue Expression (GTEx) project to identify potential AD biomarkers
and molecular pathways of the brain which behave similarly in blood. Besides this,
as an attempt to mitigate the research gap regarding poor prognosis and paucity of
knowledge about CR related genes for GBM, we utilized machine learning method-
ologies to identify prognostic markers and signature genes for GBM-CR to advance
towards prolonged survival.

1.3.1 Causative factors of AD

Prevention of AD at early stage requires proper insight about the disease mechanism
and the factors influencing its occurrence. Although a number of strong causative
factors are known, the actual causes of the most AD cases are poorly understood. Un-
derstanding how these risk factors affect cell pathways that are altered in AD could
identify important causal pathways that could be targeted by therapeutics. In this the-
sis, we proposed a network-based quantitative framework to investigate these factors-
AD association. Here, we considered aging, type II diabetes and several lifestyle factors
that includes smoking, excessive alcohol consumption, obesity, sedentary lifestyle, high
dietary fat and high dietary red meat as influential causative factors of AD.

1.3.2 Blood based biomarker of AD for early detection

Blood based biomarker can make possible the effective and accurate diagnosis of AD
at early stage. Since most genes are regulated differently in different tissues, we need
to identify genes that are similarly expressed in blood and brain cells. If this proves
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possible, it could enable blood cell transcript profiles to become a window into some
of the pathological changes affecting the brain. In this thesis, we investigated common
transcripts (using microarray data) of brain and blood for altered in AD affected in-
dividuals, to find biomarkers that are expressed under similar genetic control in both
cells using eQTL data. To identify potential biomarkers and molecular pathways of the
brain which behave similarly in blood, we analyzed human genomic and transcriptomic
data and examined the involvement of the genes on pathogenic processes using curated
gold benchmark databases for AD. The primary goal is to discover biomarker signa-
tures in the blood that could help the diagnosis of AD at an early stage and so add
valuable information to our understanding of the molecular mechanisms that underlie
AD.

1.3.3 Neurodegenerative comorbidities of AD

A wide spectrum of comorbidities, including other neurodegenerative diseases, are fre-
quently associated with AD. How AD interacts with those comorbidities can be ex-
amined by analysing gene expression patterns in affected tissues using bioinformatics
tools. In this thesis, we surveyed public data repositories for available gene expression
data on tissue from AD subjects and from people affected by neurodegenerative dis-
eases that are often found as comorbidities of AD. We then utilized large set of gene
expression data, cell-related data and other public resources through an analytical pro-
cess to identify functional disease links. This process incorporated gene set enrichment
analysis and utilized semantic similarity to give proximity measures. We identified
genes with abnormal expressions that were common to AD and its comorbidities, as
well as shared gene ontology terms and molecular pathways.

1.3.4 Prolonged survival of GBM

It is essential to identify the causal genetic targets associated with GBM survival.
Plenty of publicly accessible gene expression and clinical data for GBM patients from
the Gene expression omnibus (GEO) and The Cancer Genome Atlas (TCGA) dataset
can allow us to study patient fatality prediction and thus to identify new GBM biomark-
ers. In this thesis, we applied machine learning and bioinformatics approach to identify
the altered genes associated with the GBM comparing with normal mRNA expression
data from the brain tissues. Besides this, identification of the individual signature
genes associated with the reduced responsiveness to the chemotherapy while treating
GBM can help advancing therapeutic development. In this thesis, we also analyzed
the TCGA data of GBM through machine learning models to identify the signature
genes that influence acquiring chemoresistance in GBM patients.

1.4 Contribution

In this thesis, at first, we formulated bioinformatis methodologies using network-based
approach to identify significant genetic interactions between AD and other related
health factors that may be impacted. Findings suggests significant contribution of
several causal factors to AD development and also reported some signature genes for
therapeutic intervention. Secondly, we employed a transcriptional analysis of AD af-
fected blood and brain tissues, and integrated them with cis-eQTL data. Here, we
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identified new putative links between pathological processes in brain tissue and blood
cells in AD that may allow assessment of AD status using blood samples. After that, we
developed a semantic similarity based methodological pipeline to highlight the factors
and pathways that may constitute functional links between AD and its neurodegener-
ative comorbidities. We then constructed a Cox Proportional Hazard regression-based
prognostic model to determine significant biomarkers that are involved in GBM sur-
vival. Three signature genes were resulted to have significant dominance on the survival
of GBM patients. Finally, we incorporated gradient boosting decision tree (GBDT)
and support vector machine (SVM) to identify CR related signature genes for GBM.
Nineteen candidate signature genes showing notable correlation with GBM-CR were
obtained by the machine learning models.

1.5 Organisation of the Dissertation

The remaining of this thesis is divided into another four chapters. Chapter 2 will in-
troduce the bioinformatics methodologies that can be used to investigate the genetic
association between different health conditions and their causative factors. Chapter 3
will highlight the machine learning models that can be incorporated for survival pre-
diction and signature gene identification. Chapter 4 will discuss the formation and
analysis of our experiments. We have implemented four experiments to identify the ge-
netic link of different causal factors for neurological diseases. The first experiment has
been done to reveal candidate biomarkers that may enhance understanding of mech-
anisms underlying AD and their link to the risk factors. In the later experiment, we
investigated brain and blood transcriptomics and eQTL data to identify interesting
common pathways in those cells. The third experiment aimed to analyse the transcrip-
tome of AD and other neurodegenerative diseases that are common comorbidities. The
final experiment has been carried out to identify signature genes that may have signif-
icant influence on GBM survival and GBM-CR. Finally, conclusions, future directions,
and recommendations are presented in Chapter 5.
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Chapter 2

BIOINFORMATICS APPROACH
FOR GENETIC INTERACTION
IDENTIFICATION

2.1 Introduction

Availability of high throughput technologies to analyse large-scale transcriptomic data
have excelled various bioinformatics methodologies as promising tools in biomedical
research field [79]. The key genetic factors associated with susceptibility to complex
diseases may be unravelled by genome-wide association studies, indeed the usefulness
of this approach has been proven empirically [80]. This type of molecular association
analyzes, which includes differential gene expression determination, protein-protein
interactions (PPIs), gene ontology (GO), metabolic pathway and regulatory factor
analyzes can ascribe gene activity-based relationships among the disease conditions
[81].

2.2 Gene expression analysis

Analyzing oligonucleotide microarray data for gene expression is an effective approach
to identify new molecular determinants of human diseases. In this study, we used
this methodology along with global transcriptome analysis to investigate the gene ex-
pression profiles of the AD with 8 risk factors. To mitigate the problems involving
messenger RNA (mRNA) data comparison using different platforms and experimental
set-ups, we normalized each gene expression data for each disease using the Z-score (or
zero mean) transformation for both disease and control state. Each sample of the gene
expression matrix was normalized using mean and standard deviation. The expression
value of gene i in sample j represented by gij was transformed into Zij by computing

Zij =
gij −mean(gi)

SD(gi)
(2.1)

where SD is the standard deviation. Comparing values of gene expression for various
samples and diseases are made possible by this transformation.

Data were transformed using log2 and unpaired student t-test was performed to
find the best candidate genes (with the greatest difference in expression) for identifying
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DEGs by using threshold values. A threshold for p-value and absolute base two log
fold change (logFC) values were set to at most 0.05 and at least 1.0 respectively.

D is a specific set of diseases and G is a set of dysregulated genes, gene-disease
associations attempt to find whether gene g ∈ G is associated with disease d ∈ D. If
Gi and Gj, the sets of significant dysregulated genes associated with diseases Di and
Dj respectively, then the number of shared dysregulated genes (ngij) associated with
both diseases Di and Dj is as follows [82]:

ngij = N(Gi ∩Gj) (2.2)

Here N(Gi) is the number of dysregulated genes associated with disease Di. The
common neighbours are obtained based on the Jaccard Coefficient method, where the
edge prediction score for the node pair based on the similarity among them is measured
as:

E(i, j) =
N(Gi ∩Gj)

N(Gi ∪Gj)
(2.3)

where G is the set of nodes and E is the set of all edges.

2.3 Protein-Protein Interaction Network Analysis

Proteins exhibit physical contacts with each other in a cell or in a living organism indi-
cating some biochemical events, typically functions as some molecular processes within
a cell, and thereby forms a protein-protein interaction (PPI) network [83]. Such PPI
network for the DEGs can be constructed using STRING. STRING provides knowledge
base about known and estimated PPIs that comprises both physical and functional in-
teractions, where nodes represents genes and edges indicates interconnection between
them. At present, this database includes 24,584,628 proteins from 5,090 organisms
[84]. Proteins with different network characteristics such as having high-degree of
interactions, may have significant role in the cellular responses to a special physiolog-
ical stimulus. Such highly interconnected nodes of the network, known as hub genes,
can be identified using cytoHubba plugin of Cytoscape software [85] with the Degree
topological algorithm [86]. These hub genes produce a highly dense module inside the
interactome that could be of importance in effective drug discovery. We have extracted
such highly concentrated modules by analysing the PPI network by another Cytoscape
plugin, namely Molecular Complex Detection (MCODE) [87].

2.4 Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) is the procedure of identifying differentially
expressed genes (DEGs) in a large set of genes, that may be correlated with disease
phenotypes [88]. It uses a set of statistical methods to group genes considering the
commonality in their expression level, biological process or chromosomal position. This
is done by comparing the expression pattern in disease condition and healthy state.
These genes may be acquired using DNA microarray or next-generation sequencing
(NGS). The genes having a decisive level of expression are picked up as DEGs (both
over and under-expressed).

Gene set enrichment analysis (GSEA) for a set of genes identifies their significant
involvement in a certain molecular pathway or functional category to yield knowledge
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about the biological corollary, position on chromosome, or regulation they share [88].
Such functional categories are defined by gene ontology (GO) terms that are further
categorised as biological process (BP), cellular component (CC) and molecular func-
tions (MF) [89]. Similarly, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database provides functional knowledge regarding the cellular processes for analysing
signalling pathway [90].

2.5 Regulatiory biomolecules identification

Transcription factors (TF) interacts with genes to regulate the gene expression level
by turning it on and off at the transcription level. We utilized JASPAR [91] and
TRANSFAC [92] databases via Enrichr to spot the TF-target gene interactions with
the target DEGs. Similarly, we used the miRTarBase database by Enrichr to col-
lect the microRNA(miRNA)-gene interaction that controls the target gene at the
post-transcriptional stage [93]. Moreover, we used the Drug Signatures Database
(DSigDB)[94] to analyze drug-target over-representation on the same platform for can-
didate drug identification.

2.6 Association of eQTL effects between tissues

Let x̃ be the estimated effect at the top-linked cis-eQTL for a gene between tissues
(e.g. blood and brain). We can calculate x̃ as

x̃ = x+ ε (2.4)

where x is the actual effect and ε is the estimated error. We assume that x and
ε are random variables across the genes between tissues, i.e., x ∼ N(0, var(x)) and
ε ∼ N(0, var(e)). The method is derived from [95] based on eQTL data.

2.7 Semantic Similarity

Semantic similarity is a measure of similarity between terms (DEGs, GO, DO) using
ontologies by estimating a topological closeness [96]. This method uses directed acyclic
graphs (DAGs) to compute the information contented by each terms considering sta-
tistical annotations. The exact position of these terms in the DAG and the connection
with their predecessor terms determines the semantic measure. An ontology term T
can be denoted by the DAGs DAGT = (T,AT , ET ), where AT is a set of ancestor terms
of T and ET is a set of edges connecting the terms in DAGT that represent the semantic
relation. At first, the semantic measure of each term is represented numerically as,{

ST (T ) = 1 t=T
ST (t) = max

{
we ∗ ST (t

′
)|t′ ∈ decendants of (t)

}
t 6= T

(2.5)

Here t is a general term, t
′

a descendant term and we the semantic participation of t
with t

′
. The inclusive semantic measure for T is

SM(T ) =
∑
t∈AT

ST (t) (2.6)
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Now, if DAGX = (X,AX , EX) and DAGY = (Y,AY , EY ) are two terms X and Y
respectively, then their semantic similarity is

sem sim(X, Y ) =

∑
t∈TX∩TY [SX(t) + SY (t)]

SM(X) + SM(Y )
(2.7)

Given two sets of terms T1 =
{
t11, t12, ....t1l

}
and T2 =

{
t21, t22, ....t2m

}
having lengths

l and m respectively, the semantic similarity the term sets T1 and T2 is

sem simBMA(T1, T2) =

∑l
i=1max1≤j≤msem sim(t1i, t2j) +

∑m
j=1max1≤i≤lsem sim(t1i, t2j)

l +m
(2.8)

with i, j indices on T1, T2 terms.
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Chapter 3

MACHINE LEARNING MODELS
FOR SURVIVAL ANALYSIS AND
SIGNATURE GENE
IDENTIFICATION

3.1 Introduction

Survival analysis explores the advantage of machine learning techniques to predict the
occurrence of a disease or death of a patient due to the disease. Machine learning
models that can predict the survival of a patient can be crucial in understanding the
underlying mechanism of a disease progression and mortality. The Cox proportional
hazards model [97] is the most widely used approach for survival prediction, especially
in cancer prognosis. Again, the microarray and next generation sequencing (RNA-seq)
studies have exhibited that gene expression data can be associated with the survival
risk of a patient [98]. This provides an opportunity to utilize the gene expression data
along with clinical features for survival prediction [99, 100]. For CR-related signature
gene identification, we can consider the task as a classical classification problem where
the expression of individual genes can be fed to any machine learning model as features.
Among various machine learning algorithms, the GBDT, an ensemble learning tech-
nique, has been widely applied in genetic research and bioinformatics tasks [101, 102].
Besides this, SVM has also been widely used models applied on high dimensional gene
expression data [103, 104].

3.2 Cox Proportional Hazards Model

For survival analysis, we estimated the expected time period until an event of interest
occurs, such as a death in cancer. We applied the product-limit (PL) estimator as
a survival predictor for this purpose. A log-rank test was used to find out whether
the survival function of patients with and without transformed gene expression has a
statistically significant contrast or not. A Cox Proportional Hazards (CoxPH) regres-
sion model was then constructed for the determination of significant genes. Finally,
we conducted functional analyses for the identified significant genes. Each gene was
categorised as altered or normal classes by comparing the gene expression z-score with
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a threshold value (z < 2). We carried out the survival analysis in three steps. This
included time to the event, the status, i.e., which patients have to be kept for the
analysis, and the event, namely which patients die after initial pathological diagnosis
(IPD). We formulated the censoring criterion for the subject included in the investi-
gation, then the time of incidence for an event. The PL estimator is determined as:

Ŝ(t) =
k∏
i=1

(
1− di

ni

)
(3.1)

where Ŝ(t) is the predicted survival function at a given time t, di is the count for
deaths that occur at ti < t, and ni is the count for patients that remain at ti. For
instance, we implemented log-rank test to identify the statistical significance of genes
whose status of being altered or not have a close relationship with patient survival.
The null hypothesis formulated to test this is as follows:

H0 : Saltered(t) = Snot altered(t)

HA : Saltered(t) 6= Snot altered(t)

The CoxPH regression model is applied to correlate one or more risk factors or trig-
gers or predictors, usually termed as covariates, to survival time by a hazard function
which represents a risk of failure in the model. Therefore, we fit a CoxPH regression
model on the combination of all the selected clinical factors and the DEGs as given
below:

f(t|X) = f0(t)exp(β1x1 + β2x2 + ...+ βnxn)

= f0(t)exp(β
TX) (3.2)

Here f(t|X) is the conditional hazard function at time t given that the vector X is a set
of covariates information, f0(t) is the baseline hazard function at time t, and the vector
β represents the regression coefficients to X. We used the vector β for calculating the
hazard ratio (HR) from the modelled CoxPH to find whether a particular covariate has
an influence on patient survival or not. The HR for a covariate xr is estimated by the
exponential function exp(βr).

3.3 Gradient Boosting Decision Tree

GBDT is an ensemble technique based on the classification and regression tree (CART),
a variation of decision trees. Here, gradient boosting is used to reduce the residual and
consequently the performance is enhanced. For a given set of n known training samples
X = (x1, y1), (x2, y2), ...(xn, yn), the machine learning algorithms usually finds a func-
tion F (x) that estimates the class label y from a set of input features x. The algorithm
formulates the approximation function F̂ to minimize the loss function L(y, F (x)) as:

F̂ = arg min
F

Ex,y[L(y, F (x))] (3.3)

The gradient boosting approximates a weighted sum of M base learners as:

F̂ (x) =
M∑
i=1

wihi(x) (3.4)
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GBDT starts the classification task by constructing an onset model of a constant
function F0(x) and expanding it gradually:

F0(x) = arg min
w

n∑
i=1

L(yi, w), (3.5)

Fm(x) = Fm−1(x) + wmhm(x) (3.6)

The gradient descent function updates the models in each iteration by selecting the pa-
rameter wm using the following equation ensuring that the loss function of the previous
model L(yi, Fm−1(xi)) decreases.

wm = arg min
w

n∑
i=1

L (yi, Fm−1(xi) + whm(xi)) (3.7)

GBDT uses CARTs as its base learner hm(x) having Jm leaves that can be represented
as:

hm(x) =
Jm∑
j=1

bjm1Rjm
(x) (3.8)

In GBDT, the average feature importance of jth feature for all CART (T ) is defined
using the Gini index as

FIj(T ) =
L∑
k=1

∆GiniI(vt = j) (3.9)

Over N number of experiments, the frequency of the jth feature can be formulated as

fj =
N∑
k=1

sign(FI
(k)
j ) (3.10)

where sign(.) has the functional representation

sign(x) =

{
1 x > 0

0 x = 0
(3.11)

3.4 Support Vector Machine

Support vector machine (SVM) is one of the most widely adopted supervised machine
learning algorithm in almost every domain for both binary and multiclass classification.
It is also used in regression task as well as classification task. For any given set of n
known training samples X = (x1, y1), (x2, y2), ...(xn, yn), SVM finds the hyper-plane to
predict the class label of a particular sample x using the decision function

f(x) = sign((w.x) + b) (3.12)

SVM learning can be formulated as a constrained optimization problem for w and ξ as

min
w,b,ξ

1

2
||w||2 + C

n∑
k=1

ξk, k = 1, 2, ..., n (3.13)

s.t.

{
yk(w.xk + b) ≥ 1− ξk, k = 1, 2, ..., n

εi ≥ 0
(3.14)
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The Lagrangian formulation of this SVM problem is

min
a

1

2

n∑
k=1

n∑
l=1

akalykyl(xk.xl)−
n∑
k=1

ak (3.15)

s.t.

{∑n
k=1 akyk = 0

0 ≤ ak ≤ C, k = 1, 2, ..., n
(3.16)

Instead of optimizing over w, b, subject to constraints involving a’s, the Lagrangian
dual problem maximizes the dual variables over a subject to w and b. The solution
satisfies: {

w =
∑n

k=1 akykxk

b = yl −
∑n

k=1 ykak(xk.xl), 0 < ak < C
(3.17)

3.5 Evaluation measures

Various evaluation matrices are used to asses the performance of any machine learning
model. Among them accuracy, precision and area under curve (AUC) are well accepted
indicators in genetic research. If a sample actually belongs to class C1 and it is predicted
as class C1 by the model then it labeled as true positive (TP); however, if the model
predicts it as class C2 then the situation is false positive (FP). On the other hand, if
the sample belongs to class C2 and the model classifies it as class C2, then it is true
negative (TN), and false negative (FN) when it is classified as class C1. Then the
evaluation measures can be defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.18)

Precision =
TP

TP + FP
(3.19)

Recall =
TP

TP + FN
(3.20)

AUC =

∫ 1

x=0

Recall(Specificity−1(x))dx (3.21)

whereSpecificity =
TN

TN + FP
(3.22)
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Chapter 4

IMPLEMENTATION OF
EXPERIMENTS, RESULTS AND
DISCUSSION

4.1 Introduction

In order to reveal the genetic association of various causal factors with the neurological
diseases, we carried out four experiments focusing on AD and GBM. The first exper-
iment investigates the genetic linkage of ageing, type 2 diabetes and various lifestyle
factors on AD development. The second experiment identifies potential biomarkers
and molecular pathways of the brain which behave similarly in blood by analysing
human genomic and transcriptomic data. The third experiment demonstrate how AD
and other NDDs impact each other at the molecular level through a series of bioin-
formatics and computational approaches. Whereas, the final experiment incorporates
machine learning models to identify prognostic markers and CR-related signature genes
to extend survival in GBM.

4.2 Experiment Name: Network-based identifica-

tion of genetic factors in ageing, lifestyle and

type 2 diabetes that influence to the progres-

sion of Alzheimer’s disease

4.2.1 Short summary

The pathogenesis of the AD is not clearly understood, but it is clear that both genetic
and environmental factors are likely to be significant causes. In this experiment, we
have used a network-based analysis to determine the genes that mediate influences
of associated risk factors and disorders for AD progression, including studies of gene
expression profiling, PPI sub-network, gene ontologies and molecular pathways. An
extensive study regarding phylogenetic and pathway analysis was therefore conducted
to reveal such genetic associations in AD. The significance of these genes and pathways
in AD processes were also further validated with gold benchmarking datasets including
Online Mendelian Inheritance in Man (OMIM) and dbGaP gene-disease associations
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databases.

4.2.2 Materials and methods

Data

We analyzed gene expression microarray datasets to identify the alterations of gene
expression with AD. All the datasets used in this study were collected from the
National Center for Biotechnology Information (NCBI) Gene Expression Omnibus
database (https://www.ncbi.nlm.nih.gov/geo/). Ten different datasets were used
for this study, which had, namely those with accession numbers GSE1297, GSE23343,
GSE15524, GSE25941, GSE1786, GSE68231, GSE25220, GSE52553, and GSE4806
[105, 106, 107, 108, 109, 110, 111, 112, 113, 114]. The AD dataset (GSE1297) was ob-
tained by gene expression profiling of hippocampal tissues on 31 Affymetrix U133A mi-
croarrays from nine control subjects and 22 AD patients that varied in disease severity.
The T2D dataset (GSE23343) contains gene expression data using Affymetrix U133A
human gene microarrays from liver biopsies in 10 individuals with and 7 without T2D.
The obesity dataset (GSE15524) was generated using Codelink Uniset 20K human gene
arrays of subcutaneous and omental adipose tissue analyzed by expression profiling 28
tissue samples of obese and lean individuals. The advanced age dataset (GSE25941)
consists of data obtained from Affymetrix Human Genome U133 Plus 2.0 array analysis
of skeletal muscle transcriptomes of 28 different subjects of older (78±1 years old) and
younger (25± 1 years old) individuals. The sedentary lifestyle dataset (GSE1786) was
obtained by expression profiling by Affymetrix Human Genome U133A arrays of from
the quadriceps (vastus lateralis) muscle samples were taken using needle biopsies from
sedentary 67± 2.5 year old males before and after 3 months of aerobic active training.
The high-fat diet (HFD) dataset (GSE68231) is the expression data from Affymetrix
Human Genome U133 Plus 2.0 array analysis of human skeletal muscle from 10 people
before and after 3 days of high fat diet; these people had previously been identified as
highly responsive to the diet, detected by their rapid accumulation of intramyocellular
lipid (IMCL). Similarly the red meat dietary intervention dataset (GSE25220) is an
Agilent-014850 whole human genome microarray data from human colon biopsies of 22
inflammatory bowel patients before and after participating in a high red-meat dietary
intervention. The alcohol consumption dataset (GSE52553) is an Affymetrix human
gene expression array data of Lymphoblastoid cells from 21 alcoholics and 21 control
subjects. The smoking dataset (GSE4806) is an Affymetrix Human Genome U133A
2.0 array gene expression profiles of T-lymphocytes from 3 smokers and 3 non-smokers.

Analytical Approach

We applied an analytical approach to identify the genetic links between the eight risk
factors including T2D and the AD by employing the selected microarray datasets as
shown in Figure 4.1. This quantitative approach first determines DEGs for all the
risk factors and T2D, and then identifies the overlapping DEGs with the AD study.
Further, these common DEGs are used to seek the signaling and ontological pathways
and protein-protein interaction (PPI) networks shared by risk factors and the AD.
Finally, the proposed approach uses the two gold benchmark databases including Online
Mendelian Inheritance in Man (OMIM) and dbGAP to validate the genes and pathways
identified in our study as showing possible diseasome risk.
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Figure 4.1: Block diagram of the applied analytical approach.

4.2.3 Results

Identification of the Differentially Expressed Genes (DEGs)

Differential gene expression analysis identified 484 genes to be differentially expressed
in AD patients compared to healthy subjects where 336 genes were up-regulated and
148 genes were down-regulated. In order to investigate the relationship of the AD
transcriptome with that of the risk factors, we next performed several steps of statistical
analysis for mRNA microarray data for each risk factor. Thus, we selected the most
significant over and under regulated genes for each risk factor and disease. Our analysis
identified a large number of DEGs, namely 958 genes in advanced ageing, 1405 in high
alcohol consumption, 739 in high fat diet (HFD), 381 in obesity, 482 in high dietary red
meat, 800 in sedentary lifestyle, 400 in smoking and 1438 in diabetes type II datasets.
The over- and under- expressed genes identified as in common between AD and other
risk factors and diseases were also detected through a cross-comparative analysis. The
common DEGs of each risk factor are considered to influence to the disease progression.
The findings demonstrated that AD shares a total of 35, 34, 18, 15, 13, 10, 8 and 4
significant DEGs with, T2D, alcoholism, sedentary lifestyle, ageing, HFD, obesity,
smoking, and high dietary red meat datasets respectively. Two diseasome associations
networks centered on AD data were built using Cytoscape to identify statistically
significant associations among these risk factors and diseases. Networks shown in
Figure-4.2 interpret the association among up- regulated genes and down- regulated
genes. Notably, 3 significant genes, HLA-DRB4, IGH and IGHA2 are commonly up-
regulated in AD, T2D, and alcoholism datasets; 2 significant genes IGHD and IGHG1,
were commonly up regulated among the AD, T2D, alcoholism and sedentary lifestyle
datasets. It is noteworthy that a relatively higher number of DEGs were identified as
in common between the AD and T2D datasets, whereas the AD and high dietary red
meat shared only 4 DEGs. Hence, both T2D and alcoholism are found to have the
most influential contribution to AD as they share most DEGs with AD. However, both
sedentary lifestyle and ageing tend to have more impact on AD compared to other
three factors.

Protein-protein interaction (PPI) analysis to identify common sub-networks

The PPI network was constructed using all the distinct 108 (from total 144) DEGs
that were identified as in common between the AD and other risk factors and disease
datasets (Figure-4.3). Each node in the network represents a protein and an edge
indicates the interaction between two proteins. The network was also grouped into 9
clusters representing risk factors and diseases to depict the protein links. It is notable
that KCNJ5 protein belongs to the highest number (3) of clusters indicating that it
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Figure 4.2: Diseasome networks of the AD with type II diabetes, ageing, sedentary
lifestyle, HFD, high dietary red meat, high alcohol consumption, obesity and smoking.
AD forms the center of the networks and other red-colored octagon-shaped nodes repre-
sent categories of factors and or disease. A link is placed between the disorders and the
A) up-regulated genes (sky-blue colored) or b) down-regulated genes (yellow colored)
if the alteration of expression of that gene is associated with the specific disorder.

is the gene most commonly found among the AD, alcoholism, HFD and sedentary
lifestyle datasets and interacts with other proteins from different clusters. In addition
the protein products of PLK4, E2F5, GAD1, VSNL1, and CABP1 belong to two
clusters each and interact with other proteins in the network. For topological analysis,
a simplified PPI network was constructed using Cyto-Hubba plugin to show 10 most
significant hub proteins (Figure-4.4), which are CREBBP, PRKCB, ITGB1, GAD1,
GNB5, PPP3CA, CABP1, SMARCA4, SNAP25 and GRIA1. Table-4.1 summarises
the descriptions and associated risk factors for these proteins. Notably, 4 hub genes
among the 10 are dysregulated due to HFD and 3 genes are dysregulated due to ageing.
But, sedentary lifestyle is found to have no contribution to the hub genes.

Functional enrichment of DEG sets

In order to identify the molecular pathways associated with the AD and predicted links
to the affected pathways, we performed pathway analysis on all the DEGs that were
common among the AD and other risk factors and diseases using the KEGG pathway
database (http://www.genome.jp/kegg/pathway.html) and the web-based gene set
enrichment analysis tool EnrichR [115]. A total of 115 pathways were found to be over-
represented among several groups. Notably, nine significant pathways that are related
to the nervous system were found which are Long-term potentiation (hsa04720), Synap-
tic vesicle cycle (hsa04721), Retrograde endocannabinoid signaling (hsa04723), Gluta-
matergic synapse (hsa04724), Cholinergic synapse (hsa04725), Serotonergic synapse
(hsa04726), GABAergic synapse (hsa04727), Dopaminergic synapse (hsa04728), and
Long-term depression (hsa04730). These pathways along with some other common
pathways found are shown in Table 4.2.
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Figure 4.3: Protein-Protein interaction network for the overlapping DEGs between the
AD and other risk factors and diseases. The clusters indicate the risk factors for which
the DEGs are dysregulated.

We identified over-represented ontological groups by performing gene biological
process ontology enrichment analysis using EnrichR on the commonly dysregulated
genes between the AD and AD risk factors. A total of 215 significant gene ontol-
ogy groups were observed; these included peripheral nervous system neuron develop-
ment (GO:0048935), neurotransmitter transport (GO:0006836), neuromuscular synap-
tic transmission (GO:0007274), peripheral nervous system development (GO:0007422),
negative regulation of neurological system process (GO:0031645), regulation of neuro-
transmitter secretion (GO:0046928), regulation of neuronal synaptic plasticity (GO:0048168),
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Figure 4.4: The simplified PPI network depicting the hub genes. The 10 most signifi-
cant hub genes are marked as red, orange and yellow respectively.

Table 4.1: The 10 most significant hub genes. (Ag = Ageing, T2D = Type II Diabetes,
Ob = Obesity, Sm = Smoking, HFD = High Fat Diet, RM = Red Meat, AC = high
alcohol Consumption, SL = Sedentary Lifestyle.)

Protein Description Associated risk factor
CREBBP CREB Binding Protein Up-regulated for HFD
PRKCB Protein kinase C beta type Down-regulated for T2D,

AC
ITGB1 Integrin beta-1 Down-regulated for HFD
GAD1 Glutamate decarboxylase 1 Down-regulatedfor HFD, Ag
GNB5 Guanine nucleotide-binding protein subunit beta-5 Down-regulated for RM
PPP3CA Serine/threonine-protein phosphatase 2B catalytic

subunit alpha isoform
Down-regulated for Ob

CABP1 Calcium-binding protein 1 Down-regulated for HFD,
AC

SMARCA4 Transcription activator BRG1 Up-regulated for T2D
SNAP25 Synaptosomal-associated protein 25 Down-regulated for Ag
GRIA1 Glutamate receptor 1 Down-regulated for Ag

autonomic nervous system development (GO:0048483), sympathetic nervous system
development (GO:0048485), neuromuscular process controlling balance (GO:0050885),
neuron apoptotic process (GO:0051402), regulation of neurotransmitter transport (GO:0051588)
and neuroepithelial cell differentiation (GO:0060563) (see Table 4.3).

4.2.4 Discussion

In this study, we sought to identify novel molecular mechanisms that may affect AD
and could be made evident by these gene expression associations with that of known
AD risk factors. For this purpose, we conducted analysis in gene expression of AD
patients, molecular key pathways, gene ontologies and PPIs. These analyzes that em-
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Table 4.2: Some significant KEGG pathways that are related to the nervous sys-
tem and common among the AD and other risk factors and diseases. (Ag=Ageing,
T2D=Type II Diabetes, Ob=Obesity, Sm=Smoking, HFD=High Fat Diet, RM=Red
Meat, AC=Alcohol Consumption, SL=Sedentary Lifestyle.)

KEGG
ID

Pathway Genes in pathway Risk
fac./dis.

Adj.P-
val

hsa04720 Long-term potentia-
tion

GRIA1, PRKCB, GRIN1,
CREBBP, PPP3CA

Ag, Ob, T2D,
HFD

5.94E-03

hsa05014 Amyotrophic lateral
sclerosis (ALS)

GRIA1, NEFL, NEFM,
NEFH, PPP3CA

Ag, AC, Ob,
SL

2.80E-04

hsa04728 Dopaminergic synapse KCNJ5, COMT, GNAL,
PRKCB, GNB5

AC, T2D, RM 1.39E-02

hsa05031 Amphetamine addic-
tion

GRIA1, PRKCB, GRIN1,
PPP3CA

Ag, T2D, Ob 6.12E-03

hsa04662 B cell receptor signal-
ing pathway

PRKCB, CD22, PPP3CA T2D, Ob 7.23E-03

hsa04940 Type I T2D mellitus GAD1, PTPRN2 Ag, HFD, SL 2.76E-02
hsa05100 Bacterial invasion of

epithelial cells
ITGB1, MET HFD, Sm 2.69E-02

hsa05140 Leishmaniasis HLA-DRB4, PRKCB,
ITGB1

T2D, HFD 2.70E-04

hsa05146 Amoebiasis GNAL, PRKCB, LAMB1, T2D, Ob 1.32E-02
hsa00250 Alanine, aspar-

tate and glutamate
metabolism

FOLH1, GAD1 Ag, HFD 3.00E-04

hsa04014 Ras signaling pathway PRKCB, RASAL2, GRIN1,
GNB5

T2D, RM 7.22E-03

hsa04310 Wnt signaling path-
way

PRKCB, PPP3CA, WIF1 Ob 2.17E-03

hsa04360 Axon guidance ITGB1, MET Sm 4.96E-02
hsa04370 VEGF signaling path-

way
PRKCB, PPP3CA Ob 3.01E-02

hsa04512 ECM-receptor inter-
action

ITGB1, LAMB1 Ob 4.02E-02

hsa04514 Cell adhesion
molecules (CAMs)

HLA-DRB4, SELE, CD22,
ITGB1

T2D 1.94E-03

hsa04721 Synaptic vesicle cycle SNAP25, SNAP25 Ag, Sm 2.49E-02
hsa04723 Retrograde endo-

cannabinoid signaling
PRKCB, GNB5 RM 2.01E-02

hsa04727 GABAergic synapse PRKCB, GNB5 RM 1.74E-02
hsa04730 Long-term depression GRIA1, PRKCB Ag 2.08E-02

ploy network-based approach can uncover novel relationships between AD and other
susceptibility/risk factors. The findings presented here have not been identified by any
previous studies. We identified several significant genes that may be usefully investi-
gated in other further work, and the hub genes may identify targets for therapeutic
interventions in AD. Besides this, our analysis also identified and characterized a num-
ber of biological functions related to these genes that throw light on processes that lead
to AD.

Our gene expression analysis showed that there are gene expression patterns that
are in common to AD and T2D (35 genes), a total of 34 genes that are dysregulated
in both AD and alcohol consumption, these that lie on pathways that may indicate
an interaction between these two diseases. Datasets from sedentary lifestyle (18 genes)
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Table 4.3: Significant GO ontologies that are related to nervous system, and common
between the AD and other risk factors and diseases. (Ag=Ageing, T2D=Type II Dia-
betes, Ob=Obesity, Sm=Smoking, HFD=High Fat Diet, RM=Red Meat, AC=Alcohol
Consumption, SL=Sedentary Lifestyle.)

GO ID Pathway Genes in
pathway

Risk
fac./
dis.

Adj.P-
val

GO:0045110 Intermediate filament bundle assembly NEFL, NEFM,
NEFH

Ag, AC,
Ob, SL

3.95E-05

GO:0002455;
GO:0006909;
GO:0006911;
GO:0006958;
GO:0050851;
GO:0050853;
GO:0050864;
GO:0050871;
GO:0051251

Humoral immune response mediated by
circulating immunoglobulin; Phagocyto-
sis; Phagocytosis, engulfment; Comple-
ment activation, classical pathway; Anti-
gen receptor-mediated signaling path-
way; B cell receptor signaling pathway;
Regulation of B cell activation; Positive
regulation of B cell activation; Positive
regulation of lymphocyte activation

IGHG3,
IGHM,
IGHG1,
IGHV4-31,
IGHD, IGHA1,
IGHA2

AC,
T2D, SL

5.13E-11

GO:0006836 Neurotransmitter transport SNAP25 Ag, Sm 6.78E-03
GO:0050890 Cognition CHRNA4,

HRH3
SL, Sm 1.63E-02

GO:0050885;
GO:0060563

Neuromuscular process controlling bal-
ance; Neuroepithelial cell differentiation

USH1C Ag 8.22E-03

GO:0046928;
GO:0048168;
GO:0048935;
GO:0051588

Regulation of neurotransmitter secre-
tion; Regulation of neuronal synaptic
plasticity; Peripheral nervous system
neuron development; Regulation of neu-
rotransmitter transport

MCTP1 T2D 1.56E-02

GO:0007274 Neuromuscular synaptic transmission CHRNA4 SL 1.86E-02
GO:0007422 Peripheral nervous system development NFASC Sm 9.16E-03

and ageing (15 genes) similarly showed evidence of linkage with AD through dysreg-
ulated genes. We constructed and analyzed PPI networks to have a better under-
standing of the mechanism that may be important to either causing or worsening AD.
We constructed a PPI network around the DEGs for our study, combining the results
of statistical analyzes with the protein interactome network. For finding central pro-
teins (i.e., hubs), topological analysis strategies were employed. These identified Hubs
proteins may indicate candidate biomarkers for AD, although these would be of little
clinical value (since tissue samples from brain are only available post mortem), they
may help to segregate AD classification into subtypes that may be useful. Alterna-
tively, if blockade of the proteins produced from these genes is may feasibly interfere
with pathogenic processing these may constitute potential drug targets. From the DEG
analysis, 3 up-regulated genes (HLA-DRB4, IGH and IGHA2) and 2 down-regulated
genes (IGHD and IGHG1) were common among T2D, Alcoholism and AD. HLA-DRB4
(major histocompatibility complex, class II, DR beta 4) gene has been identified to be
associated with AD progression in Genome-wide association studies and meta-analyses
[116]. IGH (immunoglobulin heavy locus) is an oxidative modified protein suggesting
that the carbonylated level of this gene as associated with AD [117]. From the PPI
network analysis, it is observed that 10 hub genes (CREBBP, PRKCB, ITGB1, GAD1,
GNB5, PPP3CA, CABP1, SMARCA4, SNAP25 and GRIA1) are involved in the AD.
These genes may be dysregulated due to the actions of the risk factors if they are present
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Table 4.4: Gene-disease association analysis of DEGs of 7 risk factors and type II
diabetes with AD using OMIM and dbGaP databases.

Risk factor/ dis-
ease

Genes Adj.P-val

Ageing PLAG1, HMGA2, DNAH11, CR1, VSNL1, DCHS2, F13A1,
DISC1, SLC28A1

4.34E-02

Alcohol Consumption GNAQ, GNAS, ARNT, APBB2, ADCY2, ADCY1, IGF1R,
MS4A6A, RTN1, ATXN1, PIEZO2, ST3GAL1

4.72E-01

Type II Diabetes AKAP13, HNF4A, HMGA2, BUB1, IGF1R, CR1, DIAPH3,
TENM4, CADPS, NEDD9, NPAS3

4.66E-01

HFD AKAP13, CREBBP, HNF4A, HMGA2, DNAH11, COL22A1,
PIEZO2, RORA, GFRA2, CD33

5.17E-01

Obesity RYR2, RBFOX1, VSNL1, NR2F1, HMGA2 1.94E-01
Red Meat HFE, HMGA2, ADCY2, F13A1 4.41E-01
Sedentary Lifestyle TFAP2A, HSP90AA1, CREB1, THRA, HFE, APOE, TSHR,

RYR2, DIAPH3, DCHS2, DBT, CLU
1.01E-01

Smoking A2M, OPRD1, SMAD1, ACE, BUB1, CNTNAP2 8.45E-02

(Table-4.1), since we have documented association of these factors with AD, but they
may simply be part of pathogenic pathways for AD; if these are indeed the conduits for
influences of the risk factors this would indicate that they are important pathways in
AD. It was notable that the most significantly identified hub protein CREBBP (CREB
binding protein) plays a major role during the evolution of the central nervous system
and alteration of CREBBP activity already clearly implicated in AD progression [118].
Its identification here suggests at least utility of our approach.

We have also analyzed our AD-risk factor genes of interest with OMIM and db-
GaP databases using EnrichR to validate them by examining other evidence for their
involvement in the gene-disease associations. Table-4.4 shows the evidence for these
genes according to the current state of knowledge. These results indicate 8 of the
AD-risk factor genes of interest have known pathogenic involvement.

The hub genes that we have identified mostly have links to brain physiology and
various forms of dementia. CREB-binding protein (CREBBP) is widely expressed and
involved in cAMP signaling in many cell types. Point mutations in this gene involved
in Rubinstein-Taybi syndrome which affects stature, cancer incidence and learning
difficulties associated [119]. CREBBP has been linked to AD in genetic studies [120].
We also previously identified this as a hub gene in AD [121], although that study
did not use any datasets used in the present work. Why such a common signalling
pathway molecule should be important in this disease is unclear, and is a question
around several other hub proteins we identified. However, CREBBP binding partner
CREB has shown associations with neurological problems and affects production of
amyloid-beta [122] which maybe pathogenic in AD. Similarly, PRKCB, which encodes
protein kinase C beta is widely distributed in expression. However, mutations in the
gene have no known association with AD although than one study that the gene is
highly expressed in blood cell of AD patients so may be a disease marker [123]. The
gene is more commonly associated with cancer incidence than neuropathy, although
the closely related gene and signalling protein PRKCA is involved in AD development
[124].

Hub gene ITGB1 is an integrin cell adhesion protein subunit, integrin beta 1. It
is widely expressed, notably in leukocytes and neurones, where it mediates cell-matrix
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interactions, and binds to laminins in brain tissue in a similar way that (AD associated)
amyloid proteins do [125] suggesting that the amyloid may interfere with important
roles of ITGB1 in neuronal guidance. ITGB1 is also highly expressed in the hippocam-
pus and blood cells of AD patients [126] so it may relate to the role of inflammation
in this disease. GAD1 encodes a glutamate decarboxylase enzyme, but methylation of
the gene [127] in brain tissue changes over lifespan and with AD.

GNB5 is a Guanine nucleotide-binding protein subunit involved in guanine activated
protein signaling, including dopamine responses seen in neurons, and mutations in
the gene are associated with a neuropsychiatric disorder that affects cognition [128].
PPP3CA is a catalytic subunit of calcineurin (Serine/threonine-protein phosphatase
2B) involved in NFATc1 and calcium signal cell pathways and is a target of blocking
drugs that suppress the immune system. Splice variants of PPP3CA are associated
with AD onset [129] and the protein has wider functions and association in dementia
[130]. Hub gene CABP1 is a calcium binding protein with no known link to AD but
note that its calcium binding function may intersect with the calcineurin pathways
above.

SMARCA4 is a bromodomain protein transcription activator involved in regulating
the epigenome and port-translational modifications [131], but not known for a role in
brain physiology other than in gliomas [132]. SNAP25 is a synaptosome related protein
[133] involved with many types of neuropathology, including AD. Indeed, levels of this
protein (and others that form protein complexes with it in the neuronal synapse) can
predict cognitive decline in AD patients [134]. Lastly, the GRIA1 gene encodes an
important glutamate receptor (part of the glutaminergic neurotransmitter pathway) in
the central nervous system with links to migraine and schizophrenia [135] and its levels
are altered in brain tissues of AD [136].

Thus in summary, the pathway hub proteins that we have identified in this work
have mostly been shown to play an important role in brain physiology and dementia;
several are being investigated as drug targets. This supports our network approach to
identify genes with an important role in our disease of interest.

4.3 Experiment Name: Systems biology and bioin-

formatics approach to identify gene signatures,

pathways and therapeutic targets of Alzheimer’s

disease

4.3.1 Short Summary

Alzheimer’s disease (AD) develops relentlessly in affected individuals and its occurrence
is increasing. A clinical test to diagnose early-stage AD could be an important means
of enabling interventions to slow its progression. However, available neuroimaging and
cerebrospinal fluid-based diagnoses are very costly. Therefore, detecting AD from blood
transcripts that mirror the expression of brain transcripts in the AD could improve the
diagnosis. To achieve this goal, we employed a transcriptional analysis of affected tis-
sues and integrated them with cis-eQTL data. In this study, we analyzed microarray
gene expression data of brain and blood cells from AD patients and control individ-
uals. Differentially expressed genes (DEGs) common to both brain tissue and blood
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cells were identified. Potential common genes and molecular pathways were identified
using overlapping DEGs through the pathway and gene ontology enrichment analy-
sis. We identified 18 significantly dysregulated genes shared by both brain and blood
cells in AD affected individuals. We validated these candidates as disease-associated
genes using gold-standard benchmarking databases (gene SNP-disease linkage). Signif-
icant molecular pathway and gene ontology indicating AD progression were identified.
This study also identified regulatory factors, including transcription factors (TFs),
microRNAs and candidate drugs. In sum, we identified new putative links between
pathological processes in brain tissue and blood cells in AD that may allow assessment
of AD status using blood samples. Thus, our formulated methodologies demonstrate
the power of gene and gene expression analysis for brain-related pathologies transcrip-
tomics, cis-eQTL, and epigenetics data from brain and blood cells.

4.3.2 Materials and Methods

Dataset

We collected two different gene expression microarray datasets of AD from the Gene
Expression Omnibus of the National Center for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.gov/geo/) with accession numbers GSE18309 (blood) and
GSE1297 (brain) for our study. GSE18309 is an Affymetrix human genome array
data of peripheral blood mononuclear cell (PBMC) transcriptomes from 4 AD patients
and 4 control individuals. The AD dataset (GSE1297) is obtained by gene expression
profiling of hippocampal tissues on 31 separate microarrays from nine control subjects
and 22 AD patients with varying severity [105]. We also studied the eQTL data for
both brain and blood from GTEx Portal database (https://gtexportal.org/home/).

Analytical Approach

In this study, we have employed a systemic and quantitative approach to detect AD
at an early stage by identifying the brain dysregulation in blood. Fig. 4.5 illus-
trates the procedure whereby gene expression microarray data, Genome-Wide Asso-
ciation Studies (GWAS), and expression of quantitative trait loci (eQTL) datasets
are used. In order to identify the significant components of molecular pathways for
AD that are common between the brain and blood, we have performed the gene
over-representation analysis, Gene Ontology (GO) and signaling pathway enrichment
analysis, disease-gene correlations and protein-protein interaction (PPI). This study
also employs biomarker signatures at both transcriptional (mRNAs and miRNAs)
and translational levels (hub proteins and TFs) and candidate drug identification.
The gold benchmark validated datasets dbGaP (https://www.ncbi.nlm.nih.gov/
gap/), DisGeNET [137], GWAS Catalog 2019 (https://www.ebi.ac.uk/gwas/home)
and UK Biobank GWAS v1 (https://www.ukbiobank.ac.uk/tag/gwas/) were included
in our study to validate the principle of our approach.

4.3.3 Results

DEGs analysis of datasets

The DEGs analysis of the brain and blood datasets identified 484 (336 up and 148
down) and 1702 (736 up and 966 down) DEGs, respectively. The overlapping DEGs
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Figure 4.5: A pipeline to identify blood cell-expressed Alzheimer’s disease biomarkers
and pathways that are coordinately expressed in brain tissue.

between brain and blood obtained through the cross comparative analysis are graphi-
cally depicted in Fig. 4.6 and Fig. 4.7. 20 common up-regulated DEGs and 9 common
down-regulated DEGs along with their log fold change (log2FC) and negative loga-
rithmic FDR adjusted p-values are shown in Fig. 4.6 and Fig. 4.7, respectively. The
expression levels of these 29 common DEGs in blood and brain tissues from AD pa-
tients and normal individuals are provided in the supplementary tables (Table S1 and
S2).

Identifying genes expressed in blood cells that mirror those expressed in
brain

We identified genes having similar genetic control of expression in blood and brain cells
incorporating a correlation and meta-analysis approach as explained in the method
section. Very few eQTL databases are available linking gene SNPs to gene expression,
among them we used the GTEx database in this study. Our correlation and meta-
analysis approach identified 673 blood-brain co-expressed genes (BBCG).

Identifying genes in the blood that influence AD development

Utilizing the curated gold-benchmark OMIM database and GWAS catalogues, we iden-
tified the AD-associated genes using their expression patterns (e.g. SNPs). We identi-
fied 18 significant genes for AD which were commonly dysregulated between blood and
brain. These are HSD17B1, GAS5, RPS5, VKORC1, GLE1, WDR1, RPL12, MORN1,
RAD52, SDR39U1, NPHP4, MT1E, SORD, LINC00638, MCM3AP-AS1, GSDMD,
RPS9, and GNL2. However, these genes exhibited no overlap with the common DEGs
in blood and brain indicating a limitation of this study. We further identified regulating
pathways using these potential AD biomarkers.
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Figure 4.6: Identified upregulated DEGs in both brain and blood. A) log fold changes
of the common upregulated significant genes in brain and blood and B) Negative loga-
rithmic FDR adjusted p-values of upregulated significant genes common to brain and
blood.

Identifying pathways in blood cells that mirror in brain

We performed pathway analysis on the common DEGs between blood and brain using
the KEGG pathway database as well as the web-based gene set enrichment analysis tool
EnrichR. A variety of GO terms and pathways were enriched, including 122 biological
processes (BP), 28 molecular functions (MF), 25 cellular components (CC) and 10
KEGG pathways. The top 5 GO terms of BP, MF, CC and significant KEGG pathways
are shown in Table 4.5 and Table 4.6 respectively.

Protein-protein interaction (PPI) analysis to identify functional sub-networks

We constructed the PPI network using the web-based visualization resource STRING
[138] with a medium confidence level (0.4) based on the common disease gene sets.
Markov clustering algorithm was incorporated to cluster the genes in the network.
Malfunction of a protein complex may cause several diseases that can be identified by
the dysfunction of the protein subnetwork. Again, the association of several proteins
in the PPI network reveals the potential association of several genes. Hence, we looked
for sub-networks in the PPI network using the genes engaged in the common pathway
and processes of blood and brain. The resulted PPI shown in Fig. 4.8 confirms the
existence of PPI sub-network in our enriched geneset and hence endorse the availability
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Figure 4.7: Identified downregulated DEGs in both brain and blood. A) log fold
changes of the common downregulated significant genes in brain and blood and B)
Negative logarithmic FDR adjusted p-values of downregulated significant genes com-
mon to brain and blood.

of related functional pathways. A simplified PPI network was constructed using topo-
logical analysis by Cyto-Hubba plugin to show the 10 most significant hub proteins
(Fig. 4.9), which are SST, GAP43, NRXN1, CHRNA4, VSNL1, HGF, WIF1, PAX3,
NFASC and DIMT1.

Identification of Post-transcriptional Regulator

We identified TFs and miRNAs and their targeted DEGs to reveal regulatory biomolecules
that may regulate the expression of DEGs at transcriptional and post-transcriptional
levels (Table 4.7). The analysis revealed significant TFs (RORB, NR2F1, HNF1B,
NKX2-8, NFAT2 and MZF1) and miRNAs (Table 4.8) played significant roles in the
regulation of the DEGs identified this study.

Drug target and candidate drug identification

After manual curation with criteria of adjusted p-value less than 0.05 we identified 29
significant drug targets using the DSigDB database and the top 10 drug target and
candidate drugs are shown in Table 4.9.
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Table 4.5: The top 5 significant GO terms for common DEGs between blood and brain
tissue in AD.

Category GO Terms Pathway Adj.P-
val

Genes

BP

GO:0042254 ribosome biogenesis 4.00E-05 RPS9, RPL12,
RPS5, GNL2

GO:0006614 SRP-dependent cotranslational pro-
tein targeting to membrane

7.00E-05 RPS9, RPL12,
RPS5

GO:0006613 cotranslational protein targeting to
membrane

8.00E-05 RPS9, RPL12,
RPS5

GO:0045047 protein targeting to ER 9.00E-05 RPS9, RPL12,
RPS5

GO:0007399 nervous system development 2.06E-02 NFASC, NRXN1

MF

GO:0019843 rRNA binding 8.00E-06 RPS9, RPL12,
RPS5

GO:0004303 estradiol 17-beta-dehydrogenase ac-
tivity

7.17E-03 HSD17B1

GO:1901612 cardiolipin binding 7.17E-03 GSDMD
GO:1901611 phosphatidylglycerol binding 9.85E-03 GSDMD
GO:0070300 phosphatidic acid binding 1.52E-02 GSDMD

CC

GO:0005840 ribosome 4.00E-05 RPS9, RPL12,
RPS5

GO:0022626 cytosolic ribosome 1.80E-04 RPS9, RPL12,
RPS5

GO:0044445 cytosolic part 3.70E-04 RPS9, RPL12,
RPS5

GO:0022627 cytosolic small ribosomal subunit 9.10E-04 RPS9, RPS5
GO:0015935 small ribosomal subunit 1.06E-03 RPS9, RPS5

Table 4.6: Significant KEGG pathways for common DEGs between blood and brain
tissue in AD.

Terms Pathway Adj.P-
val

Genes

hsa03010 Ribosome 2.30E-04 RPS9, RPL12,
RPS5

hsa00130 Ubiquinone and other terpenoid-quinone biosyn-
thesis

9.85E-03 VKORC1

hsa03440 Homologous recombination 2.57E-02 RAD52
hsa00051 Fructose and mannose metabolism 2.84E-02 SORD
hsa00040 Pentose and glucuronate interconversions 3.19E-02 SORD
hsa04913 Ovarian steroidogenesis 4.41E-02 HSD17B1
hsa04978 Mineral absorption 4.49E-02 MT1E

Table 4.7: Significant transcription factors regulating common DEGs between
blood and brain tissue in AD.

Terms Genes Adj.P-val
RORB GLE1, GSDMD, CITED1, VSNL1, AMFR, TNC, PAX5 1.00E-02
NR2F1 GLE1, GSDMD, CITED1, VSNL1, AMFR, TNC, PAX5 1.21E-02
HNF1B GAP43, SPARC 1.89E-02
NKX2-8 PAX8, VSNL1, ITGB4 2.22E-02
NFAT2 NELL1, PDHA2, GAP43, VSNL1, HGF, SDR39U1, ALDOB 4.04E-02
MZF1 GSDMD, CHRNA4, SST, RPL12, NPHP4, ASB4, PDE9A 4.21E-02
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Table 4.8: Significant MicroRNAs regulating common DEGs between blood
and brain tissue in AD.

Terms Genes Adj.P-val
I-miR-210-3p RAD52, DIMT1, HSD17B1 2.95E-03
I-miR-1237-3p SORD, GPR107, CXCL5 4.70E-03
I-miR-345-5p PAX8, SORD 6.40E-03
I-miR-1248 RPS9, SORD, CXCL5 6.63E-03
I-miR-181b-3p NFASC, ASB4 1.08E-02
I-miR-4648 RPL12, AMFR 1.37E-02
I-miR-4654 RPL12, AMFR 1.44E-02
I-miR-4769-5p RPL12, AMFR 1.52E-02
I-miR-5087 VSNL1, CXCL5 1.63E-02
I-miR-3166 VSNL1, RPS5 1.66E-02
I-miR-484 VKORC1, RAD51B, RPS9, DIMT1, SORD, GNL2 1.73E-02
I-miR-548m PAX5, CXCL5 2.10E-02
I-miR-518e-3p VSNL1 2.32E-02
I-miR-8068 PAX8, VSNL1 2.39E-02
I-miR-4743-3p TNC, GPR107 2.66E-02
I-miR-4756-5p GPR107, PAX5, CXCL5 2.95E-02
I-miR-1321 GPR107, PAX5, CXCL5 2.98E-02
I-miR-4739 GPR107, PAX5, CXCL5 3.06E-02
I-miR-4496 RAD51B, NFASC 3.18E-02
I-miR-1296-5p NFASC, RPS9 3.23E-02
I-miR-518c-3p HSD17B1 3.24E-02
I-miR-302a-5p NRXN1, SORD 3.54E-02
I-miR-3653-3p SPARC, PAX5 3.74E-02
I-miR-216b-5p SORD, CDC42BPA 4.12E-02
I-miR-578 GPR107, CXCL5 4.84E-02
I-miR-200a-3p RPL12, HGF 4.90E-02

Table 4.9: Top 10 significant drug targets identified for common DEGs between blood
and brain tissue in AD.

Drug/Small molecule Adj.p-
val

Genes

Decitabine 2.00E-05 SPARC, PAX8, WIF1, HSD17B1, PAX3
meclofenoxate 2.80E-04 PAX8, ITGB4, NRXN1, SPATA31C2, PAX3, AL-

DOB
AC1NRCGS 4.80E-04 HSD17B1, SORD
Dibenz[a,h] anthracene 8.50E-04 RAD52, ALDOB, MT1E
TERT-BUTYL HYDROPER-
OXIDE

9.40E-04 SPARC, WDR1, VSNL1, ITGB4, DIMT1, SST,
TNC, SORD, NPHP4, GPR107

Imatinib mesylate 9.60E-04 RAD52, HSD17B1, SORD, PAX3
coumarin 1.00E-03 VKORC1, HSD17B1
zalcitabine 1.09E-03 GAP43, VSNL1, PAX8, CHRNA4, NRXN1, HGF,

SPATA31C2, ALDOB
1-METHYLPH ENAN-
THRENE

1.21E-03 ALDOB, MT1E

Quinomycin A 1.21E-03 RAD52, PAX8
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Figure 4.8: Protein-protein interaction (PPI) network of the AD. The nodes indicate
the proteins and the edges indicate the interactions between two proteins. Color indi-
cates MCL analysis clusters of proteins.

Figure 4.9: The simplified PPI network of the common DEGs between blood and
brain AD. The 10 most significant hub proteins are marked as red, orange and yellow
respectively.
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Table 4.10: Gene-disease association analysis of the potential biomarkers in blood cells
for AD using benchmark databases.

Database Disorders Adj.P-
val

Genes

dbGaP Alzheimer Disease 2.04E-01 VSNL1

DisGeNET

Alzheimer Disease, Early On-
set

3.04E-02 VSNL1, AMFR

Alzheimer Disease, Late Onset 2.15E-02 VSNL1, NRXN1, AMFR
Alzheimer’s Disease 1.79E-01 GAP43, VSNL1,

CHRNA4, SST,
HSD17B1, AMFR,
HGF

Alzheimer’s Disease, Focal
Onset

1.70E-02 VSNL1, AMFR

GWAS Catalog 2019 Alzheimer’s disease in APOE
e4+ carriers

4.82E-02 SORD

UK Biobank GWAS v1 Alzheimer’s disease 1.40E-02 NPHP4

4.3.4 Discussion

In the present study, we investigated brain and blood transcriptomics and eQTL data to
identify interesting common pathways in those cells. We first employed global transcrip-
tomic analysis to determine overlapping DEGs in brain tissue and blood cells as well as
potential common pathways. Then we compared these identified pathways with vali-
dated datasets dbGaP, DisGeNET, GWAS Catalog 2019 and UK Biobank GWAS V1
shown in Table 4.10. Finally, the network-based approach using the PPI data demon-
strated significant pathways common in the brain and blood.

Among the hub genes revealed in this study, Somatostatin (SST) is directly asso-
ciated with Aβ peptide in the brain which is the primary influencing AD pathogenesis
[139, 140]. The growth-associated protein 43 (GAP-43) is related to both diagnosis
and neuropathology of AD and thus can be considered as a potential biomarker for AD
[141]. GAP-43 gene causes significant molecular damage that precedes and progresses
AD [142]. NRXN1, a genetic variant of the neurexin gene family has an association with
autism spectrum disorder (ASD) [143] and other variants of this family plays vital role
in AD progression [144]. Single-nucleotide polymorphisms (SNPs) within visinin-like 1
(VSNL1) are evidenced to have strong interconnection with AD cases with psychosis
[145]. Hepatocyte growth factor (HGF) exists at a higher level in neurons as well as
other tissues of the nervous system and in the cerebrospinal fluid of AD cases [146].
Gradual decrease in the expression of WNT inhibitory factor-1 (WIF1) from healthy
people to AD patients results in enhancement of Wnt signaling, reduction of GSK3β
function and Tau phosphorylation [147]. Mutations in paired box-3 (PAX3) usually
causes Waardenburg syndrome [148] and are also associated with AD progression [149].
Neurofascin (NFASC) is rarely found to be associated with AD but its involvement in
synapse formation, plasticity, and stability is evidenced [150].

We also identified TFs and miRNAs having a significant influence on gene expres-
sion at the transcriptional and post-transcriptional level, that implies their role as
potential biomarkers. RAR related orphan receptor B (RORB) is recently manifested
as responsible for the selective vulnerability of neurons in the entorhinal cortex that
characterizes AD [151]. Nuclear receptor subfamily 2 group F member 1 (NR2F1)
dysregulation is responsible for optic atrophy leading intellectual ailment [152]. HNF1
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homeobox B (HNF1B) corresponds to type II diabetes especially in elder people [153].
SNPs in myeloid zinc finger 1 (MZF1) regulating inflammatory response and cholesterol
metabolism employ association with AD [154]. miR-210-3p is reported as a putative
biomarker for AD in [155]. Up-regulation of miR-345-5p is evidenced with AD [156]
whereas miR-345-5p is associated with both major depression and bipolar disorder
[157]. The reported candidate drug component meclofenoxate has been used to en-
hance memory or other cognitive functions in senile dementia and AD [158]. In [159],
a series of novel tacrine-coumarin hybrids were reported as multi-target agents against
AD.

4.4 Experiment Name: System biology and bioin-

formatics pipeline to identify comorbidities risk

association: neurodegenerative disorder case study

4.4.1 Short summary

A wide spectrum of comorbidities, including other neurodegenerative diseases (NDDs),
are frequently associated with AD. How AD interacts with those comorbidities can be
examined by analysing gene expression patterns in affected tissues using bioinformat-
ics tools. We surveyed public data repositories for available gene expression data on
tissue from AD subjects and from people affected by neurodegenerative diseases that
are often found as comorbidities with AD. We then utilized large set of gene expres-
sion data, cell-related data and other public resources through an analytical process to
identify functional disease links. This process incorporated gene set enrichment anal-
ysis and utilized semantic similarity to give proximity measures. We identified genes
with abnormal expressions that were common to AD and its comorbidities, as well as
shared gene ontology terms and molecular pathways. Our methodological pipeline was
implemented in the R platform as an open-source package and available at the fol-
lowing link: https://github.com/unchowdhury/AD_comorbidity. The pipeline was
thus able to identify factors and pathways that may constitute functional links between
AD and these common comorbidities by which they affect each others development and
progression. This pipeline can also be useful to identify key pathological factors and
therapeutic targets for other diseases and disease interactions.

4.4.2 Materials and methods

Dataset

We obtained gene expression datasets from the National Center for Biotechnology In-
formation (NCBI) Gene Expression Omnibus (GEO) and European Bioinformatics
Institute Array Express database. We queried for AD and found 531 datasets, most
of them were disqualified at the start by being very low sample size compared to our
selected cut off sample size 10, duplicate datasets, having inappropriate format or
undesirable experimental set-up, RNAseq datasets, and from organisms other than hu-
man. Thus we selected 8 datasets to be highly relevant to AD and appropriate for our
study. The finally selected gene expression datasets for AD have the accession num-
bers: GSE1297, GSE110226, GSE33000, GSE48350, GSE12685, GSE5281, GSE4229
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and GSE4226. All datasets were generated using central nervous system tissues and
Affymetrix array platforms except GSE4226 and GSE4229 which were MGC arrays of
peripheral blood analyses. GSE1297 is a correlation analysis of hippocampal tissues
from nine control subjects and 22 AD patients with varying severity [105]. GSE110226
compared transcripts of choroid plexus from postmortem tissues of 6 healthy samples
and 7 AD patients, 4 FTD patients and 3 HD patients [160]. GSE33000 analysed post
mortem prefrontal cortex tissues of 310 AD patients, 157 HD patients and 157 non-
demented samples [161]. GSE48350 is the profiling of hippocampus, entorhinal cortex,
superior frontal cortex and post-central gyrus regions in 170 healthy individuals and 80
AD cases [162]. GSE12685 is a comparative study of gene expression for frontal cortex
synaptoneurosomes between 6 normal controls and 8 AD patients [163]. GSE5281 is
obtained by analyzing 16 unaffected and 19 AD affected tissues, specifically 6 central
nervous system tissues: entorhinal cortex, hippocampus, medial temporal gyrus, poste-
rior cingulate, superior frontal gyrus and primary visual cortex cells [164]. GSE4229 is
a study of genetic variations of peripheral blood mononuclear cells from 22 healthy old
people and 18 AD cases using the NIA Human MGC cDNA microarray [165]. GSE4226
compares peripheral blood mononuclear cells obtained from 14 normal elderly control
(NEC) and 14 AD affected subjects [166]. For the study of neurodegenerative comor-
bidity analysis of AD we selected GSE7621, GSE6613, GSE49036 and GSE54536 for
PD; GSE93767, GSE110226 and GSE33000 for HD; GSE833 and GSE107375 for ALS;
GSE27206 for SMA; GSE49036 for LBD; GSE110226, GSE13162 and GSE40378 for
FTD; GSE21942 for MS. GSE7621 is generated by extracting RNA from substantia
nigra tissue of postmortem brain of 9 controls and 16 PD patients and hybridizing on
Affymetrix microarrays [167]. GSE6613 is whole blood expression data analysis from
PD patients and controls [168]. GSE49036 is an overall study of gene expression of
subtantia niagra tissue from PD patients, LBD cases and normal individuals [169].
GSE54536 is obtained through a whole-transcriptome comparison of the peripheral
blood from PD patients with healthy subjects [170]. GSE93767 is a transcriptional
analysis of human-induced pluripotent stem cells (hiPSC) using a CRISPR-Cas9 from
HD cases compared with controls [171]. GSE833 is a gene expression profiling of grey
matter from post mortem spinal cord of ALS patients and controls [172]. GSE107375
is a whole transcriptome expression analysis of the motor cortex from 10 controls
and 30 ALS cases [173]. GSE27206 is the gene expression data evaluation of induced
pluripotent stem cells (iPS cells) for SMA [174]. GSE13162 is obtained through global
expression profiling using a microarray of postmortem brain cells from the frontal cor-
tex, hippocampus, and cerebellum [175]. GSE40378 is a gene expression analysis by an
array of induced pluripotent stem cell models [176]. GSE21942 is a comparison of the
expression level of genes for peripheral blood mononuclear cells between MS patients
and controls [177].

Analytical Approach

At first, the chosen gene expression datasets and their matrix information were down-
loaded and converted to Expression Set class for differential gene expression analysis.
We reviewed the sample records (GSM) manually for sample classification and con-
structed design models (patients, controls). The created design model for AD cases is
AD patient vs healthy individual and patient of neurodegenerative diseases vs healthy
control for other cases. These design models are then filtered using a linear and a
Bayesian method. Using a threshold for p-value and absolute log Fold Change (logFC)
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values to be at most 0.05 and at least 1.0 respectively, DEGs are identified.
We constructed the topGOdata class using the selected genes by specifying the GO

domain and stipulating the annotation to perform the mapping. We then obtained the
filter for GO terms and their associations with the DEGs by employing the Fisher’s
exact test. After that, we performed the semantic similarity comparison among all the
selected diseases considering DEGs, GO terms and DO terms to measure the proximity
for all the chosen datasets. The DO terms used in this study for the corresponding
diseases are AD DOID: 10652, PD DOID: 14330, HD DOID: 12858, ALS DOID: 332,
SMA DOID: 12377, LBD DOID: 12217, FTD DOID: 9255 and MS DOID: 2377. We
then performed the KEGG pathway analysis for the DEGs to find out significant molec-
ular pathways or diseases for AD and its comorbidity datasets. Finally, the statistical
information, genes-GO term associations, DAGs, semantic similarity measures along
with dendrograms for DEGs, GO terms and DO terms are generated as final output.
Furthermore, we generated a gene network using the common DEGs between AD and
its comorbidities, with enlightenment on the pathways/diseases. Figure 4.10 pictures
the block diagram of the analytical process. Various BioConductor 3.4 R packages [178]
were used to develop the analytical approach. We downloaded the selected datasets
from the NCBI GEO and converted the data into form Expression Set class using
GEOquery 2.40.0. GEOquery offers corresponding methods to access various types of
GEO data [179]. Linear Models for Microarray Data (limma) 3.30.8 was used for dif-
ferential gene expression analysis by comparing the transcriptomic profiles of healthy
subjects with that of the patients. Limma provides compact collection of tools to
analyze gene expression microarray data [180]. We filtered the genes using genefilter
1.56 for the threshold values p-value less than 0.05 and absolute logFC greater than 1.
Genefilter offers necessary methods to curate genes obtained in high throughput ex-
periments [181]. We incorporated the topGO 2.26 for the enrichment analysis for GO
and performed the Fisher’s exact test to obtain the topology of the DAG [182]. The
semantic similarity between the selected pathologies were determined for GO terms
and DEGs using GOSemSim 2.0.4 that serves as a quantitative tool for the semantic
comparisons [183]. The semantic similarity for DO terms was evaluated by Disease
Ontology Semantic and Enrichment analysis (DOSE) 3.0.10 [184]. Finally, the KEGG
pathway enrichment analysis was performed using clusterProfiler 3.2.14, which offers
statistical analysis and visualization methods for functional profiles of genes [185]. We
used the GEO file transfer protocol (ftp) call to download GEO datasets instead of
using GEOquery package due to some interaction issues with other used packages.

4.4.3 Results

Statistical Summary and GO Term Trees

The statistics about all the chosen AD studies are mentioned in Table 4.11. The
threshold for p-values is 0.05 and for absolute logFC is 1.0 to obtain the number of
genes shown in 4th, 5th and 6th columns from left. The numbers shown in brackets for
6th column are obtained using 2.0 as threshold values of logFC. Similarly, Table 4.12
summarizes the statistics for the selected neurodegenerative comorbid pathologies of
AD. Table 4.13 shows the synopsis of the selected datasets along with the number of
analyzed DEG.

DAG of GO terms is constructed for each selected pathologies. The graphs manifest
that all the GO terms are not trivial and hence are hidden. Figure4.11 shows such a
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Figure 4.10: Pipeline of the analytical approach.

DAG for the dataset GSE12685 of AD study.

Pathways

The five most significant BP GO terms involved in each AD study are as follows:

i GSE110226: immune system process, regulation of immune system process, posi-
tive regulation of immune system process, nitrogen compound metabolic process,
and transport.

ii GSE12685: adaptive immune response, antimicrobial humoral immune response,
innate immune response, epithelial cell differentiation and extracellular matrix
organisation.

iii GSE1297: immune system process, nitrogen compound metabolic process, cell
communication, system process, and transport.

iv GSE33000: biological process, nitrogen compound metabolic process, signal trans-
duction, cell communication, and transport.

v GSE4226: reproduction, cell activation, regulation of cell growth, response to
active oxygen species and response to the acid chemical.
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Table 4.11: Statistical summary for AD studies. The 3rd, 4th, 5th and 6th columns
represent the count for unfiltered genes, the significant DEGs with threshold for p-
value, adjusted p-value and logFC (numbers in brackets are for logFC with threshold
2). 7th and 8th columns show the count for unfiltered GO terms and filtered GO terms
using Fisher test.

Dataset Tissue source Genes P-
Value

Adj.
P-
Value

LogFC GO
Terms

Fisher
test

GSE110226 Choroid plexus 21003 6002 475 442
(24)

200 11

GSE12685 Frontal cortex
synaptoneurosomes

13907 2986 1 180 (0) 211 26

GSE1297 Hippocampal CA1
Tissue

13907 2830 0 565
(10)

156 9

GSE33000 Prefrontal cortex 19518 16105 15858 0 (0) 201 26
GSE4226 Peripheral blood

mononuclear
6571 457 0 581

(299)
84 21

GSE4229 Peripheral blood
mononuclear

6571 332 0 432
(219)

135 6

GSE48350a Hippocampus 22832 10222 3515 322 (9) 147 14
GSE48350b Entorhinal cortex 22832 7002 645 114 (6) 197 7
GSE48350c Superior frontal cor-

tex
22832 8419 2537 78 (6) 125 6

GSE48350d Post-central gyrus 22832 5416 435 21 (5) 84 4
GSE5281 Entorhinal cortex,

hippocampus, me-
dial temporal gyrus,
posterior cingulate,
superior frontal
gyrus and primary
visual cortex

22832 12726 10699 2306
(35)

113 18

vi GSE4229: biological process, metabolic process, nitrogen compound metabolic
process, cell communication and signal transduction.

vii GSE48350a: biological process, cellular process, nitrogen compound metabolic
process, metabolic process and transport.

viii GSE48350b: nitrogen compound metabolic process, cell communication, system
process, response to stress and transport.

ix GSE48350c: biological process, cellular process, metabolic process, regulation of
biological process and regulation of the cellular process.

x GSE48350d: cell activation, myeloid leukocyte activation, myeloid cell activation
involved in immune response, endothelial cell activation involved in immune re-
sponse, cell activation involved in immune response and immune effector process.
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Table 4.12: Statistical summary for studies of neurodegenerative comorbid diseases of
AD. The 4th, 5th, 6th and 7th columns represent the count for unfiltered genes, the
significant DEGs with threshold for p-value, adjusted p-value and logFC (numbers in
brackets are for logFC with threshold 2). The 8th and 9th columns show the count for
unfiltered GO terms and filtered GO terms using Fisher test.

Dataset Dis. Tissue source Genes P-
Value

Adj.
P-
Value

LogFC GO
Terms

Fisher
test

GSE49036 PD Substantia ni-
gra

22832 6454 67 228 (3) 249 25

GSE6613 PD Whole blood 13907 1991 0 4 (0) 106 6
GSE7621 PD Substantia ni-

gra
22787 4389 1 1672

(55)
102 19

GSE54536 PD Peripheral
blood

20760 8466 5855 4009
(1631)

64 22

GSE110226 HD Choroid plexus 21003 3542 1 313 (12) 76 30
GSE33000 HD Prefrontal cor-

tex
19518 16328 16144 0 (0) 112 14

GSE93767 HD Induced
pluripotent
stem

20053 1245 2 1632
(92)

61 11

GSE49036 LBD Substantia ni-
gra

22832 3651 0 184 (3) 100 19

GSE68605 ALS Motor neurons 22832 2596 7 5768
(343)

404 49

GSE833 ALS Spinal cord 6068 765 19 2555
(931)

343 56

GSE110226 FTD Choroid plexus 21003 5164 0 629 (29) 77 25
GSE13162 FTD Frontal cortex,

hippocampus,
and cerebellum

13907 4771 2099 139 (1) 43 15

GSE40378 FTD Induced
pluripotent
stem

20760 3752 565 21 (2) 43 15

GSE21942 MS Peripheral
blood

22832 9379 5876 524 (62) 84 25

GSE27206 SMA Induced
pluripotent
stem

22832 2117 0 1225
(232)

99 43

xi GSE5281: nitrogen compound metabolic process, response to stress, cellular aro-
matic compound metabolic process, nucleobase-containing compound metabolic
process and transport.

The DEGs comparison between the AD datasets and its neurodegenerative comor-
bidities reveals the following overlapping genes: ACTB, CEACAM8, COX2, DEFA4,
GFAP, MALAT1, RGS1, RPE65, SYT1, S100A8, S100A9, SERPINA3, TNFRSF11B
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Table 4.13: Summary of findings in the steps of the pipeline for the selected pathologies.

Disease Tissue
source

Available
dataset

Selected
dataset

Up
DEGs

Down
DEGs

Alzheimer’s Disease Brain,
blood

531 8 2037 1598

Parkinson’s Disease Brain,
blood

196 4 961 1345

Huntington’s Disease Brain 64 3 315 418
Lewy Body Disease Brain 11 1 57 93
Amyotrophic Lateral
Sclerosis

Brain,
spinal cord

104 2 1563 1666

Frontotemporal Dementia Brain 28 3 447 278
Multiple Sclerosis Blood 124 1 213 317
Spinal Muscular Atrophy Brain 20 1 250 211

GO:0002250
adaptive immune response

0.000102
2 / 78

GO:0002376
immune system process

0.939628
31 / 560

GO:0006950
response to stress

0.655651
42 / 731

GO:0006952
defense response

0.138380
20 / 323

GO:0006955
immune response

0.525933
23 / 385

GO:0006959
humoral immune response

0.000736
3 / 51

GO:0008150
biological_process

1.000000
147 / 2455

GO:0009605
response to external 

stimulus
0.594687
34 / 553

GO:0009607
response to biotic stimulus

0.368587
17 / 274

GO:0009888
tissue development

0.683646
19 / 370

GO:0009987
cellular process

0.943902
144 / 2367

GO:0016043
cellular component 

organization
0.976826
76 / 1127

GO:0019730
antimicrobial humoral 

response
0.293600

1 / 20

GO:0030154
cell differentiation

0.951990
44 / 768

GO:0030198
extracellular matrix 

organisation
0.000550

1 / 62

GO:0030855
epithelial cell differentiation

0.000342
9 / 137

GO:0032502
developmental process

0.990326
73 / 1161

GO:0043062
extracellular structure 

organization
1.000000

1 / 62

GO:0043207
response to external 

biotic stimulus
0.590430
17 / 267

GO:0044419
biological proc. involved

in interspecies interaction 
between organisms

0.669492
27 / 425

GO:0045087
innate immune response

0.000279
9 / 175

GO:0048856
anatomical structure 

development
0.988119
68 / 1085

GO:0048869
cellular development 

process
0.939873
44 / 779

GO:0050896
response to stimulus

0.606037
84 / 1504

GO:0051707
response to other organism

0.661122
17 / 266

GO:0060429
epithelium development

0.631979
11 / 238

GO:0061844
antimicrobial humoral

immune response
0.000266

1 / 10

GO:0071840
cellular component 

organization or biogenesis
0.983754
76 / 1145

GO:0098542
defense response to 

other organism
0.980351
14 / 214

Figure 4.11: Example DAG of GO terms with GSEA on GSE12685 dataset of AD. The
original graph (on the top) and a zoom (on the bottom) are presented. The 5 most
significantly enriched GO terms are indicated by the rectangles and the oval shaped
nodes represent significant GO terms. The red and orange colors indicate the most
significant GO terms. The last two lines inside each node show raw p-value followed
by the number of significant genes and the total number of genes annotated to the
corresponding GO term for the dataset.

and TUBB2A. We built a cluster network for these overlapping DEGs using the online
tool GeneMania [186]. For this we took physical interactions, co-expression, predicted,
co-localization and pathway into consideration. The network shown in Figure-4.12 in-
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Figure 4.12: Cluster network with overlapping DEGs between AD and other selected
pathologies obtained using the online tool GeneMania. Nodes indicate DEGs and links
represent functional associations. The node size indicates the rank of the gene consid-
ering its association with other nodes and width of the edges represent the percentile
contribution of the connecting nodes to a particular functional association.

dicates 32 related genes (nodes) and 183 links between them. The most significant
pathways associated with the chosen pathologies and their percentile contributions
are a structural constituent of the cytoskeleton (7.35%), defense response to a bac-
terium (6.58%), response to fungus (27.27%), response to a bacterium (2.99%), defense
response to other organisms (2.66%), neutrophil chemotaxis (8.33%), neutrophil mi-
gration (8.33%), chemokine production (6.82%), regulation of inflammatory response
(2.84%) and inflammatory response (1.77%).

Semantic Similarity and KEGG Enrichment

The semantic similarity measures for DEGs of the selected disease conditions are rep-
resented in a matrix as shown in Fig 4.13. AD06 GSE33000 is associated with two
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Figure 4.13: Semantic similarity matrix for the differential expressed genes in the
five most significant GO terms. The first two letters of each entry represents the se-
lected pathologies (AD-Alzheimer’s disease, ALS-Amyotrophic lateral sclerosis, FTD-
Frontotemporal dementia, HD-Huntington’s disease, LBD-Lewy body disease, MS-
Multiple sclerosis, PD-Parkinson’s disease).

selected comorbidities: Parkinson’s disease and multiple sclerosis exhibiting the value
of semantic similarity at least 0.7. Considering other evidence from AD11 GSE110226
and AD07 GSE48350a/b, Parkinson’s disease, Huntington’s disease, amyotrophic lat-
eral sclerosis, frontotemporal dementia, multiple sclerosis and spinal muscular atrophy
are closely associated with AD.

Fig 4.14 depicts the semantic similarity matrix for the top five GO terms. No-
tably, all AD datasets except AD05 GSE12685 are similar (semantic similarity value
of 1) to PD01 GSE6613 dataset considering the top five GO terms. In addition, ob-
serving the semantic similarity measure being greater than 0.9, AD05 GSE12685 and
AD06 GSE33000 are well clustered with both amyotrophic lateral sclerosis datasets.
But if we inspect the semantic similarity measure at least 0.8, all Parkinson’s disease,
Huntington’s disease, Lewy body disease, amyotrophic lateral sclerosis, frontotemporal
dementia, multiple sclerosis and spinal muscular atrophy employs significant similarity
with some of the AD datasets.

Fig 4.15 represents the matrix of DO terms using semantic similarity. Surprisingly,
AD exhibited very trivial association with other NDDs considering the DO terms anal-
ysis data. Notable significance was observed between spinal muscular atrophy and
amyotrophic lateral sclerosis (0.67). On the other hand, Parkinson’s disease showed
significant association (0.55) with lewy body disorder.

Fig 4.16 shows the KEGG pathway association with all selected datasets. Resulting
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Figure 4.14: Semantic similarity matrix for the five most significant GO terms. Entry
names are similar as Fig 4.13.

pathways with at least two occurrences among AD datasets are neuroactive ligand-
receptor interaction and malaria. Moreover, recurring pathways common between at
least one AD dataset and other pathologies are Parkinson’s disease, amphetamine
addiction, synaptic vesicle cycle, rheumatoid arthritis, hematopoietic cell lineage, graft-
versus-host disease, Staphylococcus aureus infection and IL-17 signaling pathway.

4.4.4 Discussion

In this work, we introduced an analytical framework of bioinformatics analysis for
AD-comorbidity studies and demonstrated its efficacy for mining information in public
databases. We employed this approach on AD and other NDDs using selected mi-
croarray gene expression data from public databases. We applied GSEA to DEGs that
we identified, and identified related molecular pathways and their association among
selected transcriptomic data using GO and DO. Moreover, we also investigated the
effectiveness of semantic similarity as a proximity measure between the diseases using
selected ontologies. Identification of the interconnection within a set of pathologies
at the molecular level can certainly enrich our insight about the disease mechanism
and eventually promotes the possibility for accurate diagnosis and efficacious remedy
planning. Our approach leverages publicly available gene expression data from mi-
croarray experiments ensuring the possibility of reusing available data. This yields an
opportunity to extract hidden information from previously published and publicly ac-
cessible datasets. Furthermore, we considered data from different sources and also for
different cell types to demonstrate the robustness of the work. Utilization of patient
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Figure 4.15: Semantic similarity matrix for DO terms. Legends are: AD-Alzheimer’s
disease, ALS-Amyotrophic lateral sclerosis, FTD-Frontotemporal dementia, HD-
Huntington’s disease, LBD-Lewy body disease, MS-Multiple sclerosis, PD-Parkinson’s
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Figure 4.16: KEGG pathway enrichment analysis for differentially expressed genes.
Each row represents a KEGG pathway associated with the diseases shown in columns.
The domination of genes in the pathway indicated by the dimension of the circles and
the range of the circles represents the statistical validation for p-value = 0.05.
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omics data is opening new windows for enhancement in clinical decision making in-
cluding disease risk assessment, accurate diagnosis and subtyping, treatment planning
and dose determination [187]. Incorporation of such data into patient care by medical
practitioners through clinical activities such as electronic prescribing of medications
is a serious prospect. In the near future, aspects of both personalized and preventive
medicine will become clinically feasible with potential disease progression assessed by
tracking multiple layers of omics and clinical data from healthy individuals. Our work
provides methodologies for comorbidity analysis and enhanced visualization as an ef-
fective analytical approach that can help professional physicians.

Among the obtained overlapping genes, GFAP has been reported to be associ-
ated with AD [188], ALS [189] and MS [190]. Analyzing the co-occurrence of GO
terms and molecular pathways between AD and its comorbid neurodegenerative dis-
eases several significant terms and pathways were found to be common. Defects of
Oxidative phosphorylation has clear association with AD and PD [191, 192]. Upregu-
lation in cAMP signaling pathway has implication with AD [193]. The association of
neuroactive ligand-receptor interaction with α-synuclein is involved in PD [194]. IL-
17 signaling pathway has been reported to be involved in the pathogenesis of chronic
neuroinflammatory disorder like AD, MS, FTD and HD [195, 196]. The dopaminergic
system contributes in neuromodulation and hence the dopaminergic synapse pathways
evoke the onset and progression of disorders of central nervous system [197]. The gap
junctions connect the cytoplasm of adjacent cells and such interconnections in cen-
tral nervous system cells maintain normal function. Gap junctions are involved in the
pathology of most neurological diseases [198].

We carried out analytical processes for AD and common neurodegenerative comor-
bidities, although this can be employed for any other AD datasets with other comor-
bidities if the datasets contain adequate samples for both diseases affected cases and
healthy controls. We selected the cutoff sample size 10 considering at least five indi-
viduals with active disease state and at least five healthy samples. Our methodology
is implemented in an R programming platform that incorporates several other pack-
ages from the Bioconductor repository, although these can be easily substituted with
another implementation using a different platform. From the methodological point of
view, such approaches have been successfully demonstrated various disease interactions
recently [69, 199]. It’s noteworthy, however, that the dataset selection would have some
qualitative and quantitative effects on the outcomes. The findings documented here
could be enhanced by incorporating more datasets from other sources as well as differ-
ent cell types. Nevertheless, our study has employed a new and innovative analytical
approach for comorbidity analysis of these complex diseases.
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4.5 Experiment Name: Machine learning and bioin-

formatics models to identify prognostic biomarker

and signature genes related to chemoresistance

for glioblastoma multiforme

4.5.1 Short summary

Glioblastoma mulitforme (GBM) is the most progressive and lethal form of malignant
brain tumor. The genetic mutation is the main reason for this fatal disease. Hence-
forth, it is essential to identify the causal genetic targets associated with GBM survival.
Plenty of publicly accessible gene expression and clinical data for GBM patients from
the Gene expression omnibus and the Broad Institute Cancer Genome Atlas (TCGA)
dataset can allow us to study patient fatality prediction and thus to identify new GBM
biomarkers. In this study we applied bioinformatics and network-based approach to
identify the altered genes associated with the GBM comparing with normal mRNA
expression data from the brain tissues. Total of 325 genes were found as differentially
expressed in GBM. Gene set enrichment analysis through protein-protein interaction
(PPI), gene ontology (GO) and KEGG pathways also revealed their significance. We
then applied machine-learning approach incorporating Cox Proportional Hazard mod-
els to the both clinical and RNA-Seq datasets to determine target biomarkers that
affect the survival of the GBM patients. Three genes (PHLDA1, IQGAP and, SPARC)
were identified by using univariate approach that have a significant effect on the GBM
survival. While treating GBM, chemotherapy is commonly used as the first-line treat-
ment. In some cases, chemotherapy follows the tumor surgery starting with or after
the radio therapy to GBM patients. But their progression free survival (PFS) period
can be dramatically decreased by the reduced responsiveness to the therapy, usually
known as chemoresistance (CR). To identify the candidate signature genes in GBM-
chemoresistance (CR), we used the feature importance of Gradient boosting decision
tree (GBDT) on the TCGA data. We further evaluated the significance of the identified
gens by incorporating support vector machine (SVM). Thus, our combined machine
Learning and bioinformatics approach revealed the target signature genes involved in
GBM survival and GBM-CR that could be useful to develop potential drug targets for
the GBM.

4.5.2 Materials and methods

Data

The microarray gene expression datasets for GBM used in this study were collected from
the National Center for Biotechnology Information Gene Expression Omnibus (NCBI-
GEO). The datasets are GSE12657, GSE30563 and GSE50161 [200]. GSE12657 is
generated by profiling the gene expression of various types of gliomas using Affymetrix
microarray. GSE30563 is a comparative study of gene expression data between hu-
man brain tumor (GBM) and normal brain tissues through RNA extraction and hy-
bridization on Affymetrix microarrays. GSE50161 is obtained by gene expression pro-
filing of 130 samples for brain tumor and normal brain tissue using Affymetrix HG-
U133plus2 chips. The clinical data of GBM patients (Glioblastoma Multiforme TCGA,
Provisional-2018) was collected from TCGA website along with the RNA-seq dataset.

University of Rajshahi 46



Genetic link of neurological diseases with risk factors

The dataset contains 606 cases and 67 clinical features. In clinical datasets we consid-
ered some factors such as Sample ID, Race Category, Diagnosis Age, Tumor Disease
Anatomic Site, Patient ID, Primary Tumor Site, Censor Status, Overall Survival in
Months. The TCGA data contains expression of 20,471 genes and the PFS month for
each sample. The dataset includes 111 GBM-CR and 23 GBM-CS (chemosensitive)
subjects. We classified the patients whose PFS are at most 9 months as GBM-CR and
those whose PFS are at least 15 months as GBM-CS class as proposed by Chen, Kexin,
et al. [201].

Analytical Approach

In our present study, we identified most influential genes of GBM survival by analyzing
associated genes with clinical information using Cox’s Proportional Hazard regression
model. For this, at first we identified differential expression genes (DEGs) and mod-
elled their survival function individually to filter out the genes with different expression
levels between altered and normal (non-altered) group. Lastly we employed univariate
Cox’s PH regression model to estimate their significance in GBM survival. We also
integrated protein-protein interaction (PPI) and functional enrichment analysis. In
order to identify the signature genes associated with GBM-CR, we first normalized the
TCGA data using min-max normalization and over-sampled the data using Synthetic
Minority Oversampling Technique (SMOTE) algorithm. The preprocessed 222 sam-
ples (111 GBM-CR and 111 GBM-CS) were then divided into training (156 samples)
and testing (66 samples) samples using holdout method (70%:30%). We used the fea-
ture importance of GBDT modeling to calculate average feature importance over 20
iterations to identify the most significant individual signature genes. The frequency
of individual gene over 20 iterations were calculated using Equation-3.10. The signif-
icance of the selected genes were evaluated using SVM and intense literature review.
Figure 4.17 shows the schematic diagram of the methodology.

 

Microarray Gene 

Expression data 

Common 

DEGs 

PPI 

Analysis 

GO 

Analysis 

Pathway 

Analysis 

mRNA-Seq data 

from TCGA 

Clinical data for 

GBM Patients 

Univariate Cox 

Regression 

Prognostic Biomarker 

Normalization 

Data Pre-processing 

Augmentation 

Oversampling 

GBDT 

Modeling 

Signature 

Gene 

Validation by SVM 

Figure 4.17: Block diagram for the multi-stage methodology of the study.

4.5.3 Result

Differentially Expressed Genes (DEGs) Identification

The three selected microarray datasets were analyzed by comparing normal samples
with GBM cases. We identified 325 overlapping DEGs among three datasets (Fig-
ure 4.18A for up-regulated and 4.18B for downregulated genes). We also compared the
common DEGs with TCGA RNA-seq datasets and found 312 overlapping genes.
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Figure 4.18: Venn diagram showing overlapping a) up-regullated and b) down-regulated
DEGs among three microarray datasets.

Functional Enrichment Analysis

The structural enrichment study of the Biological process (BP) GO and KEGG path-
way was carried out to show the functions and molecular pathway associated with
GBM using 325 common DEGs. Total 20 BP GO terms were found with p < 0.05
and the top 10 GO terms are tabulated in Table 4.14. Table 4.15 shows 13 KEGG
pathways associated with GBM and central nervous system among total 129 significant
pathways (p < 0.05).

Analysis of the PPI network

We constructed the PPI network for the 325 overlapping DEGs. Figure 4.19A depicts
the network where 264 nodes each representing a protein and 1509 edges each indicating
an interaction between each node pair. 11 modules were identified by further analyzing
the PPI network using MCODE and the top 2 modules are shown in Figure 4.19B and
C. 21 genes belong to module 1 while module 2 contains 20 genes. We also used
the CytoHubba for topological analysis of the PPI network and found 10 hub genes
(SNAP25, SYN2, RAB3, SYT1, SLC17A7, VAMP2, STXBP1, UNC13A, BSN, and
DLG4) as shown in Figure 4.19D.

Identification of survival DEGs

In the survival analysis we considered the overlapping 312 DEGs among the GBM
microarray datasets and the TCGA RNA-seq dataset. A predictive model was built
by using Univariate Cox proportional hazards stepwise regression. We observed that
three genes (PHLDA1, IQGAP2 and SPARC) were significant in the patients’ survival
having P < 0.05 as tabulated in Table 4.16. The survival patters of altered and normal
(non-altered) group of these three genes are shown in Figure 4.20. For all the cases,
the altered group is less likely to survive compared to the normal group.

GBM-CR related individual signature gene identification

We constructed GBDT model to generate feature importance for each genes considering
their gene expression data. We carried out 20 experiments and calculated the frequency
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Table 4.14: Top 10 significant Biological process GO terms associated with GBM.

BP GO Term Adj.P-val Genes on the pathway
Anterograde trans-
synaptic signaling

1.99E-13 SNAP25, DOC2A, CPNE6, GRM1, GRM3, GRIN2A,
NPTX1, BSN, GABRD, SCN1B, GABRA2, GABBR2,
GABRA1, SLC12A5, SYT1, GAD2, SYN2, GABRG2,
CACNB2, CACNB3, CACNB4, DLG4, KCNQ2, AMPH,
SCN2B

Chemical synaptic
transmission

2.90E-13 SNAP25, DOC2A, CPNE6, GRM1, GRM3, GRIN2A,
SLC17A7, NPTX1, BSN, GABRD, SCN1B, GABRA2,
GABBR2, GABRA1, UNC13A, SLC12A5, SYT1, GAD2,
SYN2, GABRG2, CACNB2, CACNB3, CACNB4, DLG4,
KCNQ2, AMPH, SCN2B

Regulation of neu-
ronal synaptic plastic-
ity

1.05E-07 CAMK2B, SYNGR1, RAB3A, DLG4, CAMK2A, PPFIA3,
SLC8A2

Positive regulation of
synaptic transmission

1.41E-07 MPP2, GRIN2A, RIMS3, SYT1, CLSTN3, DLG4, PTK2B,
SHANK2, VAMP2, SLC8A2

Regulation of cardiac
conduction

1.41E-07 RYR2, CAV1, ATP1A3, ATP2B3, ATP2B2, CALM3,
ATP1B1, CALM1, CALM2, SLC8A2

Regulated exocytosis 1.53E-07 LGALS3BP, SPARC, PROS1, STXBP1, SERPINE1,
ANXA5, SYNGR3, TUBA4A, SYNGR1, PPP3CB, RIMS3,
TIMP1, CALM1, VAMP2

Positive regulation
of calcium ion trans-
membrane transporter
activity

1.87E-07 RYR2, AKAP6, CALM3, ATP1B1, CALM1, CALM2

Cellular response to
interferon-gamma

4.62E-07 CAMK2B, SYNCRIP, SP100, HLA-DRB4, CAMK2A,
CASP1, CD58, IFI30, GBP2, HLA-G, CAMK2G, CD44

Regulation of den-
dritic spine develop-
ment

6.66E-07 CAMK2B, ARHGAP44, NEURL1, CPEB3, SHANK2,
LZTS3, CDK5R1

Response to calcium
ion

6.73E-07 RYR2, NEUROD2, CLIC4, DMTN, SYT1, CAV1, CALM3,
ADCY1, CALM1, CALM2

of each gene. Applying the frequency threshold as 10 we obtained 19 significant signa-
ture genes. Figure 4.21 shows the frequency of individual genes over 20 experiments.
We validated each gene by modeling SVM classifier and measured evaluation mat-
ices accuracy, precision and AUC. Figure 4.22 depicts the indicators when we increase
the number of individual genes in each iteration. The 19 significant signature genes
showed sufficient classification performance resulting the accuracy, precision and AUC
as 0.9682, 0.9583 and 0.9875, respectively. These 19 selected individual signature genes
are: PSG1, CLLU1OS, RCOR3, HLA-DRB5, DGCR11, SFTPA2, KRT2, WDR72,
COCH, FAM104A, HOXD10, ACHE, OR2B2, TCL1B, CCDC144NL, ULBP2, HELB,
CDK15 and PTPN12.

4.5.4 Discussion

Significant efforts have been made in recent decades to enhance the health performance
of GBM patients. In this study, we found 325 DEGs (99 down-regulated and 226
up-regulated) to be common in three datasets among which 312 were common with
TCGA RNA-seq dataset. Topological analysis of the PPI network using the overlapping
DEGs revealed 10 hub genes (SNAP25, SYN2, RAB3, SYT1, SLC17A7, VAMP2,
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Table 4.15: Significant KEGG pathways associated with GBM and central nervous
system.

KEGG pathway Adj.P-val Genes on the pathway
Long-term potentia-
tion

1.70E-13 PRKCG, CAMK2B, PRKCB, CAMK2A, ADCY1, GRM1,
GRIN1, PPP3CB, GRIN2A, PPP1R1A, CAMK4, CALM3,
CALM1, CAMK2G, CALM2

GABAergic synapse 1.36E-11 NSF, PRKCG, GABRA2, GABBR2, GABRA1, KCNJ6,
SLC12A5, PRKCB, GLS2, GAD2, ADCY1, GNG12,
GABRG2, GNB5, GABRD

Dopaminergic synapse 4.45E-10 PRKCG, CAMK2B, KCNJ6, PRKCB, KCNJ9, CAMK2A,
GNG12, MAPK9, GRIN2A, PPP3CB, KIF5C, CALM3,
GNB5, CALM1, CALM2, CAMK2G, KCNJ3

Synaptic vesicle cycle 3.70E-10 NSF, SNAP25, RAB3A, UNC13A, ATP6V1G2, SYT1,
STXBP1, CPLX2, DNM1, DNM3, SLC17A7, STX1A,
VAMP2

Glutamatergic
synapse

5.15E-10 PRKCG, PRKCB, GLS2, ADCY1, GNG12, GRM1, GRIN1,
GRM3, GRIN2A, PPP3CB, DLG4, SLC17A7, GNB5,
SHANK2, KCNJ3

Retrograde endo-
cannabinoid signaling

1.98E-08 PRKCG, GABRA2, GABRA1, KCNJ6, PRKCB, KCNJ9,
ADCY1, GNG12, GABRG2, GRM1, MAPK9, SLC17A7,
GNB5, GABRD, KCNJ3

Glioma 3.42E-08 PRKCG, CAMK2B, PRKCB, GADD45A, CAMK4,
CAMK2A, PIK3R2, CALM3, CALM1, CAMK2G, CALM2

Cholinergic synapse 3.48E-08 PRKCG, CAMK2B, KCNJ6, PRKCB, CAMK2A, PIK3R2,
ADCY1, GNG12, CAMK4, KCNQ2, GNB5, CAMK2G,
KCNJ3

Pathways in cancer 6.32E-07 ITGB1, CAMK2B, HDAC1, CAMK2A, CXCR4, PIK3R2,
ADCY1, RASGRP1, RELA, MAPK9, FGF9, CAMK2G,
RUNX1T1, PRKCG, WNT10B, JAG1, PRKCB, GADD45A,
GNG12, COL4A2, COL4A1, CALM3, GNB5, CALM1,
CALM2, FGFR2

Neurotrophin signal-
ing pathway

3.90E-06 CAMK2B, MAPK9, CAMK4, ARHGDIB, CAMK2A,
PIK3R2, CALM3, CALM1, CALM2, CAMK2G, RELA

Amyotrophic lateral
sclerosis (ALS)

1.76E-05 PPP3CB, GRIN2A, CASP1, NEFL, NEFM, NEFH, GRIN1

Serotonergic synapse 2.49E-03 PRKCG, KCNJ6, PRKCB, KCNJ9, GNB5, GNG12, KCNJ3
Alzheimer disease 6.99E-03 GRIN2A, PPP3CB, CALM3, APBB1, CALM1, CALM2,

GRIN1, CDK5R1

Table 4.16: Significant KEGG pathways associated with GBM and central nervous
system.

Gene Symbol β HR P-value
PHLDA1 2.0094 7.46 2.00E-04
IQGAP2 1.5891 4.8995 1.50E-03
SPARC 2.4654 11.7683 3.01E-02

STXBP1, UNC13A, BSN, and DLG4) that affect several pathways. We also extracted
2 modules from the network and the genes forming these modules are considered to
have significant influence in GBM progression. We performed GO Biological process
and KEGG pathway analysis to construct molecular function of the common DEGs.
Using a log-rank test for each gene, we used univariate Cox PH ratio analysis on mRNA
expression results to calculate the survival curve using product limit technique, and
determined whether there is any statistically significant difference between the altered
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Figure 4.19: A) Protein-protein interaction network for the common DEGs between
the three GBM datasets. B) Subnetwork1. C) Subnetwork 2. D) 10 hub genes.

and unaltered classes. In univariate, PHLDA1, IQGAP2, and SPARC are identified
four significant genes which are biomarkers of GBM patient. IQGAP2 is a potential
biomarker [202]. Due to research, it is not validated in this paper. The miRNA negative
correlation with strongest IQGAP was subordinated by IQGAP2. In this present study
we saw that the gene was playing vital role in GBM. Shi, Q., et al. showed the reduced
tumor cell survival and invasion with SPARC expression with short interfering RNA
(siRNA) in glioma cells [203]. AKT and two cytoplasmic kinases, focal adhesion kinase
(FAK) and integrin-linked kinase (ILK) are decreased by SPARC siRNA. The SPARC
gene is very dangerous and survival probability is very less (Figure 4.20).

Figure 4.20: Survival pattern comparison of altered and unaltered expression groups
for PHLDA1, IQGAP2, and SPARC.
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Figure 4.21: The frequency of the selected 19 significant signature gene over 20 exper-
iments.

Figure 4.22: The accuracy, precision and AUC indicators while increasing the number
of signature genes in each iteration.
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Chapter 5

CONCLUSION

5.1 Introduction

Numerous research approaches throughout the last century enriched our understand-
ing about the factors that influence different ND progression and reported a significant
number of molecular signatures and therapeutic agents. Still, they could not success-
fully find any preventive measure, early diagnostic procedure, cure or disease-modifying
drug to obstruct or treat these NDs effectively. Besides, inadequate understanding of
NDs and their consequences particularly with other neurodegenerative diseases, that
means how these diseases influence each other is also unknown. On the other hand,
plenty of publicly accessible transcriptomic resources including gene expression data,
and bioinformatics and computational tools opened up new opportunity to identify gene
pathways that enable disease processes or to influence each other. This dissertation
manifests the adaptation of these procurable resources as an attempt of advancement
to early detect, prevent, alleviate or prolong survival for NDs. This thesis demonstrates
four studies, three targeting AD and one focusing GBM. The concluding remarks of
those studies are summarised in Table 5.1.

5.2 Future Work

The gained results in the experiments carried out in this thesis provides better insight
about the implication of several causative factors on the development, progression and
survival of NDs. Consequently, these can lead to improved treatment and diagnosis of
the NDs. Future research directions can be as follows:

i The transcriptomic datasets used in all four experiments are microarray datasets.
But microarray datasets are known to be more vulnerable to error. Next genera-
tion sequence data or even single cell sequence data could be a better choice. In
future, these experiments can be carried out using next generation sequence or
single cell sequence data.

ii After clinical validation, the findings of the experiments can lead to improved
treatment and diagnosis. So, in future, the gained results can be verified via
functional studies.

iii Three experiments were done on AD and one on GBM. In future, similar studies
can be carried out for other NDs.
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iv The experiments, especially the fourth one, enumerates a lot of candidate signa-
ture genes which can be further validated adopting state-of-art methodologies to
cut down the list for better reasoning.

v Alongside the analytical frameworks adopted in the studies, improved machine
learning methodologies can be incorporated for better accuracy or enhanced per-
formance.

Sl.
No.

Experiment
Name

Concluding Remarks

1 Network-
based iden-
tification
of genetic
factors in
ageing,
lifestyle and
type 2 dia-
betes that
influence
to the pro-
gression of
Alzheimer’s
disease

i We identified 484 DEGs from AD brain tissue, of which 27
were also seen in the smoking DEGs gene set. AD data
also showed 21 DEGs in common with T2D, and 12 with
sedentary lifestyle datasets.

ii AD shared less than ten DEGs with the other factors,
but 3 (HLA-DRB4, IGH and IGHA2) were commonly up-
regulated among the AD, T2D and high alcohol consump-
tion datasets; IGHD and IGHG1 were up-regulated among
AD, T2D, alcohol and sedentary lifestyle datasets.

iii Protein-protein interaction networks identified 10 hub
genes: CREBBP, PRKCB, ITGB1, GAD1, GNB5,
PPP3CA, CABP1, SMARCA4, SNAP25 and GRIA1.

iv Shared signaling pathway were identified that could en-
hance our understanding about the mechanisms of AD pro-
gression.

2 Systems
biology
and bioin-
formatics
approach to
identify gene
signatures,
pathways
and ther-
apeutic
targets of
Alzheimer’s
disease

i 20 common up-regulated DEGs and 9 common down-
regulated DEGs were found between blood and brain.

ii 18 significant genes were identified which were com-
monly dysregulated between blood and brain. These are
HSD17B1, GAS5, RPS5, VKORC1, GLE1, WDR1, RPL12,
MORN1, RAD52, SDR39U1, NPHP4, MT1E, SORD,
LINC00638, MCM3AP-AS1, GSDMD, RPS9, and GNL2.

iii 10 hub genes SST, GAP43, NRXN1, CHRNA4, VSNL1,
HGF, WIF1, PAX3, NFASC and DIMT1 were obtained in
PPI analysis.

iv Significant molecular pathway and gene ontology indicating
AD progression were identified.
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3 System bi-
ology and
bioinformat-
ics pipeline
to identify
comorbidi-
ties risk
association:
neurode-
generative
disorder case
study

i We identified genes with abnormal expressions that were
common to AD and its comorbidities, as well as shared
gene ontology terms and molecular pathways.

ii 14 overlapping genes are identified between AD and its
NDD comorbidities as ACTB, CEACAM8, COX2, DEFA4,
GFAP, MALAT1, RGS1, RPE65, SYT1, S100A8, S100A9,
SERPINA3, TNFRSF11B and TUBB2A.

iii The semantic similarity measures for DEGs of the selected
disease identified close association of AD with PD, HD,
ALS, FTD, MS and SMA.

iv AD is highly associated with PD, HD, LBD, ALS, FTD,
MS and SMA considering semantic similarity for top 5 GO
terms.

v Our methodological pipeline was implemented in the R
platform as an open-source package and available at the
following link: https://github.com/unchowdhury/AD_

comorbidity.

4 Machine
learning and
bioinformat-
ics models
to identify
prognostic
biomarker
and signa-
ture genes
related to
chemoresis-
tance for
glioblastoma
multiforme

i Total of 325 genes were found as differentially expressed in
GBM.

ii Gene set enrichment analysis through protein-protein in-
teraction (PPI), gene ontology (GO) and KEGG pathways
also revealed their significance.

iii Three genes (PHLDA1, IQGAP and, SPARC) were iden-
tified by using univariate approach that have a significant
effect on the GB survival.

iv 19 individual signature genes (PSG1, CLLU1OS, RCOR3,
HLA-DRB5, DGCR11, SFTPA2, KRT2, WDR72,
COCH, FAM104A, HOXD10, ACHE, OR2B2, TCL1B,
CCDC144NL, ULBP2, HELB, CDK15 and PTPN12) were
identified having association with GBM-CR.

Table 5.1: Concluding remarks regarding the experiments carried out in this thesis.

University of Rajshahi 55

https://github.com/unchowdhury/AD_comorbidity
https://github.com/unchowdhury/AD_comorbidity


Bibliography

[1] V. L. Feigin, A. A. Abajobir, K. H. Abate, F. Abd-Allah, A. M. Abdulle, S. F.
Abera, G. Y. Abyu, M. B. Ahmed, A. N. Aichour, I. Aichour et al., “Global,
regional, and national burden of neurological disorders during 1990–2015: a sys-
tematic analysis for the global burden of disease study 2015,” The Lancet Neu-
rology, vol. 16, no. 11, pp. 877–897, 2017.

[2] C. J. Murray, T. Vos, R. Lozano, M. Naghavi, A. D. Flaxman, C. Michaud,
M. Ezzati, K. Shibuya, J. A. Salomon, S. Abdalla et al., “Disability-adjusted life
years (dalys) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic
analysis for the global burden of disease study 2010,” The lancet, vol. 380, no.
9859, pp. 2197–2223, 2012.

[3] W. H. Organization, Neurological disorders: public health challenges. World
Health Organization, 2006.

[4] A. Burns and S. Iliffe, “Alzheimer’s disease. bmj 338, b158,” 2009.

[5] “Dementia.” [Online]. Available: https://www.who.int/en/news-room/
fact-sheets/detail/dementia

[6] “Alzheimer’s disease fact sheet.” [Online]. Available: https://www.nia.nih.gov/
health/alzheimers-disease-fact-sheet

[7] A. Association et al., “2018 alzheimer’s disease facts and figures,” Alzheimer’s &
Dementia, vol. 14, no. 3, pp. 367–429, 2018.

[8] J. L. Cummings and G. Cole, “Alzheimer disease,” Jama, vol. 287, no. 18, pp.
2335–2338, 2002.

[9] C. G. Lyketsos, M. C. Carrillo, J. M. Ryan, A. S. Khachaturian, P. Trzepacz,
J. Amatniek, J. Cedarbaum, R. Brashear, and D. S. Miller, “Neuropsychiatric
symptoms in alzheimer’s disease,” 2011.

[10] M. Grundman, M. J. Pontecorvo, S. P. Salloway, P. M. Doraiswamy, A. S.
Fleisher, C. H. Sadowsky, A. K. Nair, A. Siderowf, M. Lu, A. K. Arora et al.,
“Potential impact of amyloid imaging on diagnosis and intended management
in patients with progressive cognitive decline,” Alzheimer Disease & Associated
Disorders, vol. 27, no. 1, pp. 4–15, 2013.

[11] C. M. van Duijn, P. de Knijff, M. Cruts, A. Wehnert, L. M. Havekes, A. Hofman,
and C. Van Broeckhoven, “Apolipoprotein e4 allele in a population–based study
of early–onset alzheimer’s disease,” Nature genetics, vol. 7, no. 1, pp. 74–78, 1994.

56

https://www.who.int/en/news-room/fact-sheets/detail/dementia
https://www.who.int/en/news-room/fact-sheets/detail/dementia
https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet


Genetic link of neurological diseases with risk factors

[12] E. H. Corder, A. M. Saunders, W. J. Strittmatter, D. E. Schmechel, P. C.
Gaskell, G. Small, A. Roses, J. Haines, and M. A. Pericak-Vance, “Gene dose
of apolipoprotein e type 4 allele and the risk of alzheimer’s disease in late onset
families,” Science, vol. 261, no. 5123, pp. 921–923, 1993.

[13] K. Okuizumi, O. Onodera, H. Tanaka, S. Tsuji, K. Seki, Y. Namba, K. Ikeda,
A. M. Saunders, M. A. Pericak-Vance, and A. D. Roses, “Lack of associa-
tion of very low density lipoprotein receptor gene polymorphism with caucasian
alzheimer’s disease,” Annals of Neurology: Official Journal of the American Neu-
rological Association and the Child Neurology Society, vol. 40, no. 2, pp. 251–254,
1996.

[14] A. S. Henderson and A. F. Jorm, “Definition and epidemiology of dementia: a
review,” Dementia, vol. 3, pp. 1–68, 2002.

[15] M. Schreiber, T. D. Bird, and D. W. Tsuang, “Alzheimer’s disease genetics,”
Current Behavioral Neuroscience Reports, vol. 1, no. 4, pp. 191–196, 2014.

[16] J. S. Goldman, S. E. Hahn, J. W. Catania, S. Larusse-Eckert, M. B. Butson,
M. Rumbaugh, M. N. Strecker, J. S. Roberts, W. Burke, R. Mayeux et al.,
“Genetic counseling and testing for alzheimer disease: joint practice guidelines
of the american college of medical genetics and the national society of genetic
counselors,” Genetics in Medicine, vol. 13, no. 6, p. 597, 2011.

[17] K. Iqbal, F. Liu, and C.-X. Gong, “Alzheimer disease therapeutics: focus on the
disease and not just plaques and tangles,” Biochemical pharmacology, vol. 88,
no. 4, pp. 631–639, 2014.

[18] “Current research areas of alzheimer’s disease.” [Online]. Available: https:
//alzheimers.com.au/our-work/current-research/

[19] R. M. Young, A. Jamshidi, G. Davis, and J. H. Sherman, “Current trends in the
surgical management and treatment of adult glioblastoma,” Annals of transla-
tional medicine, vol. 3, no. 9, 2015.

[20] C. Wild, B. Stewart, and C. Wild, “World cancer report 2014: World health
organization geneva,” 2014.

[21] O. Gallego, “Nonsurgical treatment of recurrent glioblastoma,” Current oncology,
vol. 22, no. 4, p. e273, 2015.

[22] H. Ohgaki and P. Kleihues, “Genetic pathways to primary and secondary glioblas-
toma,” The American journal of pathology, vol. 170, no. 5, pp. 1445–1453, 2007.

[23] Q. T. Ostrom, H. Gittleman, J. Fulop, M. Liu, R. Blanda, C. Kromer, Y. Wolin-
sky, C. Kruchko, and J. S. Barnholtz-Sloan, “Cbtrus statistical report: primary
brain and central nervous system tumors diagnosed in the united states in 2008-
2012,” Neuro-oncology, vol. 17, no. suppl 4, pp. iv1–iv62, 2015.

[24] B. M. Alexander and T. F. Cloughesy, “Adult glioblastoma,” Journal of Clinical
Oncology, vol. 35, no. 21, pp. 2402–2409, 2017.

University of Rajshahi 57

https://alzheimers.com.au/our-work/current-research/
https://alzheimers.com.au/our-work/current-research/


Genetic link of neurological diseases with risk factors

[25] G. M. McKhann, D. Knopman, H. Chertkow, B. Hyman, C. Jack, C. Kawas,
W. Klunk, W. Koroshetz, J. Manley, R. Mayeux et al., “The diagnosis of demen-
tia due to alzheimer’s disease: recommendations from the national institute on
aging-alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s
disease,” Alzheimers Dement, vol. 7, no. 3, pp. 263–9, 2011.

[26] M. S. Albert, S. T. DeKosky, D. Dickson, B. Dubois, H. H. Feldman, N. C. Fox,
A. Gamst, D. M. Holtzman, W. J. Jagust, R. C. Petersen et al., “The diagnosis
of mild cognitive impairment due to alzheimer’s disease: recommendations from
the national institute on aging-alzheimer’s association workgroups on diagnostic
guidelines for alzheimer’s disease,” Focus, vol. 11, no. 1, pp. 96–106, 2013.

[27] G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, and E. M.
Stadlan, “Clinical diagnosis of alzheimer’s disease: Report of the nincds-adrda
work group* under the auspices of department of health and human services task
force on alzheimer’s disease,” Neurology, vol. 34, no. 7, pp. 939–939, 1984.

[28] F. Pasquier, “Early diagnosis of dementia: neuropsychology,” Journal of neurol-
ogy, vol. 246, no. 1, pp. 6–15, 1999.

[29] M.-C. Chartier-Harlin, F. Crawford, H. Houlden, A. Warren, D. Hughes, L. Fi-
dani, A. Goate, M. Rossor, P. Roques, J. Hardy et al., “Early-onset alzheimer’s
disease caused by mutations at codon 717 of the β-amyloid precursor protein
gene,” Nature, vol. 353, no. 6347, pp. 844–846, 1991.

[30] E. Levy-Lahad, W. Wasco, P. Poorkaj, D. M. Romano, J. Oshima, W. H. Pet-
tingell, C.-e. Yu, P. D. Jondro, S. D. Schmidt, K. Wang et al., “Candidate gene
for the chromosome 1 familial alzheimer’s disease locus,” Science, vol. 269, no.
5226, pp. 973–977, 1995.

[31] S. Sorbi, P. Forleo, A. Tedde, E. Cellini, M. Ciantelli, S. Bagnoli, and B. Nacmias,
“Genetic risk factors in familial alzheimer’s disease,” Mechanisms of ageing and
development, vol. 122, no. 16, pp. 1951–1960, 2001.

[32] B. Reisberg, “Alzheimer’s disease update,” 1985.

[33] J. Lindsay, D. Laurin, R. Verreault, R. Hébert, B. Helliwell, G. B. Hill, and
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[68] E. Del Prete, A. Facchiano, and P. Liò, “Bioinformatics methodologies for coeliac
disease and its comorbidities,” Briefings in bioinformatics, 2018.

[69] M. H. Rahman, S. Peng, X. Hu, C. Chen, S. Uddin, J. M. Quinn, and M. A. Moni,
“Bioinformatics methodologies to identify interactions between type 2 diabetes
and neurological comorbidities,” IEEE Access, vol. 7, pp. 183 948–183 970, 2019.

[70] L. S. Hu, S. Ning, J. M. Eschbacher, N. Gaw, A. C. Dueck, K. A. Smith, P. Nakaji,
J. Plasencia, S. Ranjbar, S. J. Price et al., “Multi-parametric mri and texture
analysis to visualize spatial histologic heterogeneity and tumor extent in glioblas-
toma,” PloS one, vol. 10, no. 11, p. e0141506, 2015.

[71] A. Chaddad, P. Daniel, C. Desrosiers, M. Toews, and B. Abdulkarim, “Novel
radiomic features based on joint intensity matrices for predicting glioblastoma
patient survival time,” IEEE journal of biomedical and health informatics, vol. 23,
no. 2, pp. 795–804, 2018.

[72] S. Shukla, J. R. Evans, R. Malik, F. Y. Feng, S. M. Dhanasekaran, X. Cao,
G. Chen, D. G. Beer, H. Jiang, and A. M. Chinnaiyan, “Development of a rna-
seq based prognostic signature in lung adenocarcinoma,” JNCI: Journal of the
National Cancer Institute, vol. 109, no. 1, 2017.

[73] M. Bredel, “Anticancer drug resistance in primary human brain tumors,” Brain
Research Reviews, vol. 35, no. 2, pp. 161–204, 2001.

[74] P. Lønning and S. Knappskog, “Mapping genetic alterations causing chemoresis-
tance in cancer: identifying the roads by tracking the drivers,” Oncogene, vol. 32,
no. 46, pp. 5315–5330, 2013.

[75] R. Upstill-Goddard, D. Eccles, J. Fliege, and A. Collins, “Machine learning ap-
proaches for the discovery of gene–gene interactions in disease data,” Briefings
in bioinformatics, vol. 14, no. 2, pp. 251–260, 2013.

[76] S. N. Dorman, K. Baranova, J. H. Knoll, B. L. Urquhart, G. Mariani, M. L.
Carcangiu, and P. K. Rogan, “Genomic signatures for paclitaxel and gemcitabine
resistance in breast cancer derived by machine learning,” Molecular oncology,
vol. 10, no. 1, pp. 85–100, 2016.

[77] S. Wani, J. Drahos, M. B. Cook, A. Rastogi, A. Bansal, R. Yen, P. Sharma,
and A. Das, “Comparison of endoscopic therapies and surgical resection in pa-
tients with early esophageal cancer: a population-based study,” Gastrointestinal
endoscopy, vol. 79, no. 2, pp. 224–232, 2014.

University of Rajshahi 61



Genetic link of neurological diseases with risk factors

[78] T. Ideker and N. J. Krogan, “Differential network biology,” Molecular systems
biology, vol. 8, no. 1, p. 565, 2012.

[79] A. Sturn, J. Quackenbush, and Z. Trajanoski, “Genesis: cluster analysis of mi-
croarray data,” Bioinformatics, vol. 18, no. 1, pp. 207–208, 2002.

[80] J. N. Hirschhorn and M. J. Daly, “Genome-wide association studies for common
diseases and complex traits,” Nature reviews genetics, vol. 6, no. 2, p. 95, 2005.

[81] A. Rzhetsky, D. Wajngurt, N. Park, and T. Zheng, “Probing genetic overlap
among complex human phenotypes,” Proceedings of the National Academy of
Sciences, vol. 104, no. 28, pp. 11 694–11 699, 2007.

[82] M. A. Moni and P. Lio’, “Genetic profiling and comorbidities of zika infection,”
The Journal of infectious diseases, vol. 216, no. 6, pp. 703–712, 2017.

[83] J. De Las Rivas and C. Fontanillo, “Protein–protein interactions essentials: key
concepts to building and analyzing interactome networks,” PLoS Comput Biol,
vol. 6, no. 6, p. e1000807, 2010.

[84] D. Szklarczyk, J. H. Morris, H. Cook, M. Kuhn, S. Wyder, M. Simonovic, A. San-
tos, N. T. Doncheva, A. Roth, P. Bork et al., “The string database in 2017:
quality-controlled protein–protein association networks, made broadly accessi-
ble,” Nucleic acids research, p. gkw937, 2016.

[85] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin,
B. Schwikowski, and T. Ideker, “Cytoscape: a software environment for inte-
grated models of biomolecular interaction networks,” Genome research, vol. 13,
no. 11, pp. 2498–2504, 2003.

[86] S.-H. Chen, C.-H. Chin, H.-H. Wu, C.-W. Ho, M.-T. Ko, and C.-Y. Lin, “cyto-
hubba: A cytoscape plug-in for hub object analysis in network biology,” in 20th
International Conference on Genome Informatics, 2009.

[87] G. D. Bader and C. W. Hogue, “An automated method for finding molecular
complexes in large protein interaction networks,” BMC bioinformatics, vol. 4,
no. 1, p. 2, 2003.

[88] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A.
Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander et al., “Gene set
enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles,” Proceedings of the National Academy of Sciences, vol. 102,
no. 43, pp. 15 545–15 550, 2005.

[89] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,
A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig et al., “Gene ontology: tool
for the unification of biology,” Nature genetics, vol. 25, no. 1, pp. 25–29, 2000.

[90] M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, “Kegg: new
perspectives on genomes, pathways, diseases and drugs,” Nucleic acids research,
vol. 45, no. D1, pp. D353–D361, 2017.

University of Rajshahi 62



Genetic link of neurological diseases with risk factors

[91] E. Wingender, P. Dietze, H. Karas, and R. Knüppel, “Transfac: a database on
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C. Muñoz-Garćıa, A. Dangla-Valls, M. Balasa, P. Boya et al., “Altered blood
gene expression of tumor-related genes (prkcb, becn1, and cdkn2a) in alzheimer’s
disease,” Molecular neurobiology, vol. 53, no. 9, pp. 5902–5911, 2016.

[124] S. I. Alfonso, J. A. Callender, B. Hooli, C. E. Antal, K. Mullin, M. A. Sherman,
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Network-based identification of genetic factors in ageing, lifestyle and type 
2 diabetes that influence to the progression of Alzheimer’s disease 
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A B S T R A C T   

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, the causes of which are poorly understood, 
although a number of strong risk factors for AD are known. Understanding how these risk factors affect cell 
pathways that are altered in AD could identify important causal pathways that could be targeted by therapeutics. 
We thus pro- posed network-based quantitative frameworks to investigate these risk factor-AD relation- ships. We 
analyzed gene expression microarray datasets from tissues affected by AD as well as by ageing, high alcohol 
consumption, type II diabetes (T2D), high dietary fat, obesity, high dietary red meat, sedentary lifestyle, and 
smoking. These datasets derived from studies that compared tissues affected by these factors with control tissues 
(not exposed to these factors) to identify differentially expressed genes (DEGs) specific to the risk factors. We 
employed these to develop gene association and diseasome networks based on neighborhood-based bench-
marking and multilayer network topology. We identified 484 DEGs from AD brain tissue, of which 27 were also 
seen in the smoking DEGs gene set. AD data also showed 21 DEGs in common with T2D, and 12 with sedentary 
lifestyle datasets. AD shared less than ten DEGs with the other factors, but 3 (HLA-DRB4, IGH and IGHA2) were 
commonly up-regulated among the AD, T2D and high alcohol consumption datasets. IGHD and IGHG1 were up- 
regulated among AD, T2D, alcohol and sedentary lifestyle datasets. Protein-protein interaction networks iden-
tified 10 hub genes: CREBBP, PRKCB, ITGB1, GAD1, GNB5, PPP3CA, CABP1, SMARCA4, SNAP25 and GRIA1. 
Ontological and pathway analyses identified significant gene ontology and molecular pathways that could 
enhance our understanding of the mechanisms of AD progression by suggesting new therapeutic approaches to 
affect the development of AD. We verified genes from ontological and pathway analyses with gold benchmark 
gene-disease associations databases including Online Mendelian Inheritance in Man (OMIM) and dbGaP. This 
supports our identification of disease associations for the putative AD target genes. These outcomes provide 
further evidence that network-based approaches can generate new insights into AD progression.   

1. Introduction 

Alzheimer’s disease (AD) is the most common form of dementia and 
is characterized by gradual degeneration in memory, cognitive pro-
cesses, language use, and learning capacity [1]. Initial indications begin 
with a reduced ability to retain recent memories, but with progression 
all cognitive functions are inevitably affected, resulting in complete 
dependency for basic daily activities and greatly increased risk of pre-
mature death. At present AD accounts for 60% to 80% of all dementia 

cases and is estimated to affect over 24 million people worldwide. In the 
United States, 93,541 deaths resulting from AD were officially recorded 
in 2014, which is ranked sixth among all causes of death in the United 
States and fifth among all causes of death after 65 years of age [2,3]. The 
premature death rate for AD sufferers increased by 89% in the five years 
up to 2010, whereas death rates associated with other major morbidities 
such as cardiac disease, stroke, breast and prostate cancer, and AIDS all 
declined in that time frame [4–7]. 

The pathogenesis of the AD is not clearly understood, but it is clear 
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A B S T R A C T   

Alzheimer’s disease (AD) develops relentlessly in affected individuals and its occurrence is increasing. A clinical 
test to diagnose early-stage AD could be an important means of enabling interventions to slow its progression. 
However, available neuroimaging and cerebrospinal fluid-based diagnoses are very costly. Therefore, detecting 
AD from blood transcripts that mirror the expression of brain transcripts in the AD could improve the diagnosis. 
To achieve this goal, we employed a transcriptional analysis of affected tissues and integrated them with cis- 
eQTL data. In this study, we analyzed microarray gene expression data of brain and blood cells from AD pa-
tients and control individuals. Differentially expressed genes (DEGs) common to both brain tissue and blood cells 
were identified. Potential common genes and molecular pathways were identified using overlapping DEGs 
through the pathway and gene ontology enrichment analysis. We identified 18 significantly dysregulated genes 
shared by both brain and blood cells in AD affected individuals. We validated these candidates as disease- 
associated genes using gold-standard benchmarking databases (gene SNP-disease linkage). Significant molecu-
lar pathway and gene ontology indicating AD progression were identified. This study also identified regulatory 
factors, including transcription factors (TFs), microRNAs and candidate drugs. In sum, we identified new putative 
links between pathological processes in brain tissue and blood cells in AD that may allow assessment of AD status 
using blood samples. Thus, our formulated methodologies demonstrate the power of gene and gene expression 
analysis for brain-related pathologies transcriptomics, cis-eQTL, and epigenetics data from brain and blood cells.   

1. Introduction 

Alzheimer’s disease (AD) is a chronic, progressive and neurodegen-
erative disease symptomized by gradual degeneration in memory, 
thinking, language, and learning capacity, leading to full-blown de-
mentia [1,2], resulting in complete dependency for basic daily activities, 
and fostering premature death [3,4]. It is an irremediable disease that is 
responsible for 60–80% of all dementia cases and affecting over 24 
million people worldwide. In the United States alone, 93,541 deaths 
from AD were officially recorded in 2014 making AD the sixth-ranked 
cause of death. In addition, it is notable that deaths attributable to AD 
have increased by 89% within five years till 2010, whereas death rates of 
other major diseases like cardiac disease, stroke, breast and prostate 
cancer, and AIDS have declined in the same time frame. Currently, in 
every 66 s one new case of the AD is developed, which is estimated to 

become 2 times faster by 2050, triggering nearly 1 million new cases per 
year [5,6]. 

Numerous research approaches throughout the last century enriched 
our understanding of the factors that influence the AD progression [7–9] 
and reported a significant number of molecular signatures and thera-
peutic agents [10,11]. Still, they could not successfully find any cure or 
disease-modifying drug to treat AD effectively. Most of the AD-related 
pathology occurs in the brain [12,13]. Thus, it is immensely chal-
lenging to study brain tissue because these tissue samples have to be 
collected post-mortem with a high degree of cellular heterogeneity. 
Hence, there is no definite early pre-mortem diagnosis for AD aside from 
cognitive assessments and the use of brain imaging methods that reveal 
significant degeneration. Symptoms of degradation in cognition due to 
AD emerge only after significant, unchangeable neural degeneration has 
occurred, hence there is a need for a simple means to detect AD early, 
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Abstract

Alzheimer’s disease (AD) is the commonest progressive neurodegenerative condition in

humans, and is currently incurable. A wide spectrum of comorbidities, including other neuro-

degenerative diseases, are frequently associated with AD. How AD interacts with those

comorbidities can be examined by analysing gene expression patterns in affected tissues

using bioinformatics tools. We surveyed public data repositories for available gene expres-

sion data on tissue from AD subjects and from people affected by neurodegenerative dis-

eases that are often found as comorbidities with AD. We then utilized large set of gene

expression data, cell-related data and other public resources through an analytical process

to identify functional disease links. This process incorporated gene set enrichment analysis

and utilized semantic similarity to give proximity measures. We identified genes with abnor-

mal expressions that were common to AD and its comorbidities, as well as shared gene

ontology terms and molecular pathways. Our methodological pipeline was implemented in

the R platform as an open-source package and available at the following link: https://github.

com/unchowdhury/AD_comorbidity. The pipeline was thus able to identify factors and path-

ways that may constitute functional links between AD and these common comorbidities by

which they affect each others development and progression. This pipeline can also be use-

ful to identify key pathological factors and therapeutic targets for other diseases and disease

interactions.

Introduction

Alzheimer’s disease (AD) is the most frequent neurodegenerative disease (NDD) which is con-

sidered to be the current primary cause of dementia, causing most of all dementia cases (60%
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