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ABSTRACT 

Biometrics are the entire class of technologies and techniques utilized to identify 

the individual by using their physiological or behavioral attributes. The way of human 

walking, the most emergent and unique biometric signature allows automatic gait-based 

person identification. Gait identification task becomes more difficult due to the change of 

appearance by different cofactors (e.g., walking speed, shoe, surface, carrying, view, 

clothing and etc.). The main goal of this thesis is to develop novel methods to address the 

two most frequently happening covariate factors clothing and carrying condition and 

walking speed changes for gait recognition. These cofactors may affect some parts of gait 

while other parts remain unchanged and can be used for recognition. An algorithm is 

proposed to define which parts are more effective and which parts are less effective for 

cofactors like walking speed, clothing, carrying objects etc. It is found that, for clothing 

and carrying conditions the upper part of the body is more affected whereas for walking 

speed changes the lower body part is more affected.  

During the process of finding the effective body parts, the whole body is divided 

into small segments where each segment is a single row in this work. Based on positive 

and negative effect of each segment in terms of recognition rate, we define the whole gait 

into five unequal parts for clothing and carrying conditions. Usually, the dynamic areas 

(e.g., legs, arms swing) are comparatively less affected than static areas (e.g. head, torso) 

for different cofactors in appearance-based gait representation. To give more emphasis on 

dynamic areas and less on static areas, frequency-domain gait entropy termed as EnDFT 

representation is proposed and used as gait features. Experiments are conducted on two 
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comprehensive benchmarking databases: The OU-ISIR Gait Database, the Treadmill 

dataset B with huge clothing variations and CASIA Gait Database, Dataset B with clothing 

and carrying conditions. The proposed method achieved the recognition rate 72.78% for 

OU-ISIR and 77.69% for CASIA gait database at rank-1 and presented better results in 

comparison with other existing gait recognition approaches. 

Walking speed changes is one of the most common cofactors that affects the gait 

signature. The intra-class variations increase due to the changes of walking speed and the 

training data set fails to model the variations. In this thesis, we propose a general feature-

based method to resolve the speed transition problem using the effective body parts and 

discarding the affected body parts. The main contribution of the proposed system is to 

define the body parts and create a look up table to select the most effective parts from 

different speed combinations of the gait and discard the redundant parts to minimize the 

intra-class variations. Like clothing and carrying conditions, six unequal body parts are 

considered for walking speed changes. The OUISIR Treadmill Database A and CASIA 

database C are used to show the effectiveness of the proposed method and achieve state-

of- the-art performances for gait recognitions. The maximum average recognition rate at 

rank-1 is 96% for OUISIR gait database. In case of CASIA database, for gallery normal 

and slow walking speed to probe normal and slow walking speed, our proposed method 

ensures 100% recognition rate. On the other hand, for cross speed gait recognition highest 

97% correct recognition rate is obtained in case of gallery normal to probe slow walking 

speed. 

Finally, we proposed a general framework-based adaptive parts selection method 

using Zernike and Legendre moments for clothing and carrying conditions and speed 
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changes. The proposed method is broadly tested on variety of widely accepted gait 

databases. The experimental results established the robustness of the proposed methods 

and achieved comparatively better CCR at rank-1. 
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 INTRODUCTION 

The ability to identify humans uniquely and to associate personal attributes like 

name, gender, nationality etc. with an individual has important for the human society [1]. 

Humans generally use physical characteristics such as face, walking style, body shape and 

voice along with other contextual information (e.g., clothing, time and location) to 

recognize each other. The characteristics associated with a person carry their personal 

identity. The term biometrics comes from the ancient Greek, where bios means “life” and 

metron is “measure”. Biometrics refers to the entire class of technologies and techniques 

used to identify humans utilizing their intrinsic physical or behavioral characteristics. A 

biometric system measures one or more physical or behavioral characteristics (see in 

Figure 1.1), including face, fingerprint, palm print, voice, iris, ear, retina, gait, signature, 

body odor, hand vein, or the DNA information of a person to identify or verify him 

uniquely.  

High’st queen of state, Great Juno, comes; I know her by her gait. (The Tempest, Act 

4, Scene 1) [2]. Gait is one of several physical and behavioral biometric signatures of a 

person’s that can be used for identifying him/her. Gait refers to a person’s manner of 

walking. Researcher's interest in the study of human gait is now active, challenging and 

spreads in many areas, including biometrics, biomechanics, clinical analysis, surveillance, 

robotics, gender discrimination, age estimation, computer game and character animation 

[3-10]. Gait recognition is capable of identifying person at a distance by inspecting their 

walking style [11, 12].  

CHAPTER 1. 
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Figure 1.1 Different biometric body traits that have been used for person recognition1 

 

Gait recognition is capable of identifying person at a distance by inspecting their 

walking style [11]. It is an interesting modality which can be performed secretively and it 

cannot be disguise or conceal. Gait is one of the few biometric features that can be 

                                                 
1 Image source: Introduction to Biometrics [1] 
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measured from distance without consent, physical contact from the target, collaboration at 

low resolution image sequences [13-16, 17, 18]. Most often, criminals wear dark sun-

glasses, bulky long coat, face masks and hand gloves to override eyes, body shape, face, 

and finger print that may be used for recognition. In such context, gait is the effective and 

useful biometric signature to identify criminals. 

Thanks to the above characteristics, scopes of the gait identification are ranging from 

video-based wide-area surveillance [19, 20, 21] (e.g., finding terrorists or suspects in 

squares, stations, airports, banks, and car parking area) to criminal investigation (e.g., 

authenticating a criminal at a crime scene and a suspect in a street). In addition, potential 

application fields of the video-based gait analysis are ranging from health science (e.g., 

detecting the postural disorder or fallers to be) to sport science (e.g., providing the optimal 

technique strategies in sports training). 

The human gait-based research has been made huge progress over the recent past 

few years. But it faces some limitations due to various factors and creates its research more 

challenging. So, more advanced approaches are thus desired to meet emerging application 

demands. In the real world, as shown in Figure 1.2, there are various factors significantly 

affecting human gait including clothing and carrying condition, walking speeds, shoes, 

elapsed time, walking surfaces, observed views, health states, etc. [3, 15] and make the gait 

recognition as a challenging problem. It is worth mentioning that other biometric methods 

also affected by different factors such as face recognition.  
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Figure 1.2 Variety of covariates significantly affect human gait2 

 

During the past decade many gait recognition techniques have been proposed. 

However, despite the different approaches, the ability to identify an individual 

automatically, reliably and accurately does not meet the demands of the real-world 

applications. The difficulties that face many gait recognition approaches is the intra class 

variations caused by covariate factors that affect the gait adversely. Among the mentioned 

factors, clothing and carrying conditions and walking speed changes have been regarded 

as the most common and challenging problems for gait recognition. In our daily life it is 

                                                 
2 Image Source: Biometric recognition by gait: A survey of modalities and features [2] 
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much common are the variations of clothing and carrying conditions. This is due to people 

usually wears different types of apparel in different season and festival and also carries 

different kinds of bags (side-bag, backpack, etc.) or other things. They do not only occlude 

and alter the appearance of the body shape, but also affect the dynamic pattern of body 

movements. This results a large intra class variation, which greatly affects the performance 

of gait recognition [22]. Therefore, gait recognition techniques robust against clothing and 

carrying status are also of great importance. Like clothing and carrying conditions, speed 

changes is also another most familiar and rigorous factor and frequently happens on 

different situation (e.g. criminals running quickly from crime place). So, speed changes 

alter walking patterns and produce significantly changes in appearance-based gait features 

which results intra class difference and degrades gait recognition performance. Thus, speed 

invariant gait recognition techniques are important for practical applications. In our study, 

the most common and frequently happening challenging factors (i) clothing and carrying 

conditions and (ii) walking speed changes will be addressed. 

1.1 Problem Definitions, Challenges, Motivation and Contribution behind the 

Research 

From the above discussion, the main goal of this thesis is to address the most 

frequently happening covariate factors clothing and carrying condition and walking speed 

change for gait recognition. This section will define the problems due to the covariate 

factors and highlight the relevant challenges. Then, our motivations and contribution to 

approach such problems will be explained. 
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1.1.1 Gait recognition under clothing and carrying condition 

1.1.1.1 Problem definition 

Wearing cloths and carrying bags can be found in many different forms or styles. 

Sample gait images under various clothing and   carrying bag from the OU-ISIR treadmill 

gait database B [23] and CASIA gait database B [24] are shown in Figure 1.3 and Figure 

1.4 respectively. As mentioned above, gaits of a person can be recorded by using different 

clothing or carrying conditions. Consequently, probe gait can possibly be captured under 

an arbitrary clothing or carry bags which does not match any of the gallery dataset. These 

covariate conditions obscure the body shape.  Consequently, they create a confusion 

between the motion of the covariate factor and the gesture of the gait. Thus, it is difficult 

to accurately capture the style and motion of the gait under these conditions. 

1.1.1.2 Challenges 

Variations in clothing alter an individual’s appearance, making the problem of gait 

identification much more difficult [23]. If the type of clothing differs between the gallery 

and a probe, certain parts of the gait silhouettes are occluded or distorted and the ability to 

discriminate subjects decreases with respect to these affected parts [25] and drastically 

reduce the performance of gait recognition [26]. 

In many situations, carrying condition is common (e.g., offices, businesses, 

airports, etc.) which change the gait appearance and the load may also force some body 
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parts to take a different pose than in natural gait [2].  Therefore, due to carrying conditions 

recognition rates can drop and must be taken into consideration. 

Figure 1.3 Sample images of OUISIR treadmill gait database B3 

 

Figure 1.4 Sample images of CASIA-B data set4 

                                                 
3Image Source Institute of Scientific and Industrial Research (ISIR), Osaka University (OU) in [23] 
4Image Source CASIA Gait Database, The Center for Biometrics and Security Research (CBSR) in [24] 
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1.1.1.3 Motivation and Contribution 

Despite of wearing different types of cloths or carrying different types of bags we 

can recognize each other from distance. Our visual system has the capability to extract 

necessary information from the body shape and their walking style for the purpose of 

recognition. If some portion of the body shape are occluded or distorted by the cofactors, 

human visual system can reconstruct the full shape or discard the affected parts to 

determine the identity of that person.  

Recently, several feature extraction and selection techniques have been introduced 

into gait recognition and have shown promising results. The gait signature is composed of 

different body parts. The effects of different cofactors (e.g., clothing, carrying objects, 

viewing angles, surfaces, etc.) do not change all body parts. It may alter some parts of 

whole gait where other parts that are useful for gait identification remained unchanged 

[21]. Our proposed method focuses on features which are less affected by the changes in 

covariate conditions and significantly distinguishable from other features to identify the 

person. 

Generally, for the whole-based methods, significant numbers of training subjects 

are required for representing the variation of full-body gait features, while relatively small 

number of training subjects will cover such variation of part-based gait features due to its 

low dimensionality. With regard to the different gait representation techniques there is still 

a major issue to define the effective body components that influence the gait recognition 

under the effect of different cofactors. Although a variety of part-based techniques [17, 21, 

25, 27, 28] have been proposed, the body parts are defined priory and manually in all the 
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studies. Therefore, they did not provide any insights into the way how to define the whole 

gait as parts and select the less affected parts from the whole human body under the effect 

of different cofactors. 

From our point of view, there are two important ways to improve the recognition 

accuracy in case of different cofactors like clothing, carrying objects, etc.: 

1. Gait features should be represented with the most discriminating information. 

2. For selecting the appropriate parts, more affected and less affected body parts 

should be considered. 

From these observations, for giving more emphasis on dynamic areas and less on 

static areas, the discrete Fourier transformation (DFT) based entropy (EnDFT) gait 

representation is computed from frequency domain gait representation is proposed. Then, 

a robust technique is proposed to define which parts are less affected by cofactors or more 

effective, and which parts are mostly affected or less effective. Based on the experimental 

result, we define the whole gait into five unequal parts. Among the five parts, we select 

three body parts as most effective and two are less effective based on recognition rate. We 

use these three most effective body parts with the entropy-based DFT gait representation 

for gait recognition.  

We also study to select effective parts adaptively by calculating the weights 

depends on the variation of gallery gait and probe gait using Zernike and Legendre 

moments. Experimental results show better performance compared with the others part-

based and whole-based approaches.  
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1.1.2 Gait recognition under walking speed changes 

1.1.2.1 Problem definition 

Walking speed variation is common for people in daily situations and the most 

challenging artifacts out of the different cofactors. Person’s walking speed variations 

severely alters the gait pattern, creates large intra-class difference and reduce the 

recognition rate. The intra-class difference gradually rises by the person’s walking speed 

variation from slower to faster. If the training data set is small, then it fails to model the 

intra-class variations. Therefore, the performance degraded severely of the gait 

identification systems. Sample gait images under various walking speeds from the OU-

ISIR gait database A [29] and CASIA C [30] are shown in Figure 1.5 and Figure 1.6 

respectfully. 

 

Figure 1.5 Sample images of OUISIR treadmill gait database B
5
 

                                                 
5
 Image Source Institute of Scientific and Industrial Research (ISIR), Osaka University (OU) in [29] 

I F ~l ' 5 ~ ~ ! @ --.z C ; 
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Figure 1.6 Sample images of CASIA-B data set6 

1.1.2.2 Challenges 

Due to increase in walking speed, higher the hands swing, increase the step length 

and shorten the gait period [31] that changes the shape of the gait. Various studies have 

shown that walking speed changes can have a very negative impact on recognition rates. 

For example, Bouchrika and Nixon [32] evaluated the effects walking speed on gait 

recognition and achieved the rate for both slow and quick walking was 60% and 50% 

whereas 86% for normal walking leading to the conclusion that dynamic gait features 

changes with speed. Similarly, Kusakunniran et al. [33] achieved an average rate of 96% 

for 1 km/h difference and 68% for 4 km/h difference in gallery-probe speed. 

1.1.2.3 Motivation and Contribution 

In fact, walking speed variation affects some parts of the body (hands, legs, hip, 

knee and ankle) while some parts (head, neck, torso, hip and thigh) are relatively remain 

unaffected. Although the dynamic gait features can be significantly affected by the speed 

changes, the static features can be relatively stable. In this case, the covariate walking speed 

                                                 
6Image Source CASIA Gait Database, The Center for Biometrics and Security Research(CBSR) in [30] 
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has the similar properties with some covariates like clothing and carrying condition, which 

only affect part of the human silhouette [34]. It indicates the possibility of using certain 

clothing and carrying condition invariant gait recognition concept to solve the problems 

caused by different walking speeds. 

In this work, we reduce the effect of walking speed changes which affects the 

dynamic parts of the gait by defining the human gait into six unequal parts and selecting 

the more effective parts using a lookup table-based technique experimentally. We also 

study to select effective parts adaptively by calculating the weights depends on the 

variation of walking speed of gallery gait and probe gait using Zernike and Legendre 

moments. This method minimizes the intra-class variation by selecting less affected parts 

and eliminating the more affected body parts dynamically and thus increase the recognition 

rates considerably. 

At the end, we investigate the strength and effectiveness of our proposed part 

definition and selection approach on OU-ISIR treadmill dataset A [29], OU-ISIR treadmill 

dataset B [23], CASIA gait database B [24] and CASIA C [30] gait database and compare 

the results with the existing methods. 

1.2 Related Works 

A large number of gait recognition techniques have been proposed. Such gait 

recognition techniques can be divided into two broad categories: model-based approaches 

[35-48] and model-free (motion-based or appearance-based) approaches [21, 49-61]. 
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1.2.1 Model-based gait recognition 

The model-based approaches use a priori knowledge on extracting the physical 

structure of the human gait by utilizing some static parameters. More specifically, these 

methods extract the unique gait features such as different body parts shape and motion by 

fitting the human model to input images. The model-based approaches are still difficult to 

estimate and their time complexity is high. Although they are known as view and scale 

invariant. They also require high-quality resolution silhouettes. 

These gait features contain kinematics of leg motion by Fourier analysis [44], static 

shape parameters [36] and gait period with an articulated body model [45], joint angles 

with an articulated body model [46]. Out of the earliest model-based approaches, Cunado 

et al. [38] considered legs as an interlinked pendulum. They used phase-weighted Fourier 

magnitude spectrum for extracting the gait features from the motion of the human leg and 

then fed the features to K-Nearest Neighbor classifier for the recognition. They then use 

the Fourier series to extract the gait features from the motion of the human leg and fed 

them to K-Nearest Neighbor for the classification. Hee et al. [47] constructs a 2D stick 

model based on human anatomical knowledge [62]. Bobick and Johnson [36] divided and 

labeled the gait silhouette into three sections (head, pelvis and foot). They calculated the 

distances among four body part locations (head and foot, head and pelvis, foot and pelvis, 

left and right foot) to extract static body and stride parameters for gait recognition. Zhang 

et al. [63] approached a five-link biped locomotion human model to extract trajectory-

based kinematic components for clothing invariant recognition. They extracted features 

from image sequences using the Metropolis–Hasting method. Finally, Hidden Markov 

Models were trained on the extracted frequency components from these feature trajectories 
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for classification. Bouchrika and Nixon [37] proposed a model-based method to extract 

human joints (vertex positions). The motion of the joints was parameterized using elliptic 

Fourier descriptors. to extract crucial features from human joints. Wang, Tan et al. [64] 

proposed simple and automatic gait recognition algorithm based on compact statistical 

shape descriptors of the human body from spatio-temporal motion pattern. 

More recently, Ariyanto and Nixon [48] propose a marionette mass-spring model 

for 3D gait recognition as a more mechanical model. Model-based methods have limited 

efficiency because of the high computational burden on the basis of complex matching and 

searching. These methods also often suffer by model fitting errors. In fact, the study [44] 

reports that high quality gait image sequences are required to achieve a high accuracy. 

1.2.2 Model-free gait recognition 

The model-free methods typically extract features directly from gait sequences and 

usually use silhouette to represent gait without any explicit modeling of human body 

structures. The appearance-based methods usually consider some pre-processing steps such 

as background modeling, foreground-background subtraction, silhouette alignment and 

normalization, feature extraction and classification. Motion-based approaches [65, 66] are 

comparatively insensitive to the quality of gait silhouettes and have the benefit of low 

computational costs compared to model-based approaches. These types of approaches 

outperform the model-based methods in general, which is the main reason why the most of 

the gait recognition approaches adopt the model-free approaches. The model-free 

approaches can be separated as whole-based and part-based. 

 



 15 

1.2.2.1 Whole-based model-free approaches: 

Whole-based methods extract features and match the whole human body without 

any part definition and selection. Tan et al. [54] used six simple projective features to 

describe human gait and compare eight kinds of frieze features to figure out which 

projective directions are important for gait recognition. PCA was applied for gait feature 

dimension reduction and nearest neighbor rule for classification. Abdelkader et al. [67, 68] 

proposed an eigengait similar way as eigenfaces method using units of self-similarity and 

applied PCA to reduce the dimensionality of the feature space and k-nearest neighbor rule 

in the reduced feature space for recognition plots. Cuntoor et al. [69] project the silhouette 

into a width vector and Liu et al. [70] project it into a frieze pattern, namely, combination 

of width and height vectors. Considering the periodic property of gait, a discrete Fourier 

transform (DFT) [71] is computed as pixel-by-pixel amplitude spectra of zero-, one-, and 

two- times frequency elements. Gait recognition using average silhouette is proposed in 

[72]. Han et al. [51] proposed the simplest yet the most prevailing baseline algorithm by 

just averaging the silhouette value pixel-by-pixel over the gait period, known as gait energy 

image (GEI). As a variant of the GEI, a gait entropy image (GEnI) [73] is computed as 

pixel-by-pixel entropy of the GEI so as to focus on dynamic regions. A gait flow image 

(GFI) [74] focuses more directly on the dynamic components, where the optical flow 

lengths observed on the silhouette contour are averaged over the gait period. 

The entropy transformation of gait GEnI from GEI gives more weights in dynamic 

areas and less in static areas [73]. In GEnI, dynamic areas show more uncertainty and thus 

more informative than static areas in gait representation. The DFT representation of gait 

shows better result than GEI for its separated two dynamic higher frequency components 
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[21]. The one- and two-times frequency elements in the DFT hold only the uncertainty 

values of the gait. Therefore, the entropy-based transformation of the DFT clearly separates 

the most uncertainty areas by adding one- and two- times frequency components to the 

GEI. 

1.2.2.2 Part-based model-free approaches 

Part-based approaches initially define the body parts manually or experimentally, 

extract features from the parts and finally select the less affected parts for recognition. 

Various studies on human body components [17, 25, 27, 28] suggest that the combination 

of body parts may increase the recognition accuracy only when it is possible to separate 

the discriminating and over-fitting parts. The first methods that divide the human body into 

components for gait identification is described in [17]. They considered each component 

separately and applied in both person identification and gender classification. Boulgouris 

et al. [27] proposed a component-based gait recognition that considers the unequal 

discrimination ability of each part. In [28], seven gait components are defined. The 

contributions of the components have been studied both individually and in certain 

combinations for both human gait recognition and gender recognition.  

A part-based gait identification method is proposed in [25]. The human body is 

divided into eight parts based on anatomical statistics. This method can reduce the effect 

of different clothing combinations by assigning higher weights to the unaffected body parts 

than the affected areas. Avoiding the least reconstruction error, recently a random subspace 

method (RSM) is proposed [75]. Although the RSM outperforms other classical methods 

[51, 72], it does not guarantee the best accuracy for clothing-invariant gait recognition [76]. 
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The method chooses N eigenvectors randomly from all the eigenvectors for creating L 

random subspaces. 

1.2.3 Gait recognition under clothing and carrying conditions 

The classification rate for the coat is almost the same as normal clothing but the rate 

drastically reduced for trench coat [32]. This happens due to nature of the clothing that 

distract the gait dynamics or occlude the appearance. Matovski et al. [26] claimed that the 

elapsed time with clothing variation between recording the gallery and the probe affect 

recognition rate. They collected data in months 9 and 12 where same subjects wearing 

different types of clothes and performed analysis of different type of clothes over time and 

over few minutes while keeping all other covariates unchanged. They concluded that the 

performance could be affected significantly due to clothes change regardless of elapsed 

time but less significant for similar types of clothes. Guan et al. [75] proposed RSM-based 

robust clothing-invariant method for gait recognition by combining multiple inductive 

biases for classification. Hossain et al. [25] proposed a part-based adaptive weight control 

method for clothing-invariant gait identification. The whole body divided into eight 

different length parts, including four overlapping parts to overcome the difficulties caused 

by different types of clothing and dimension-reduced frequency-domain features were used 

as part-based gait features. They claimed that the larger parts having a higher 

discrimination capability, whereas the smaller parts are more likely to be unaffected by 

variations in clothing. The matching weights were determined for all the 8 parts adaptively 

from the distances between the probe and all the galleries. Islam et al. [77] proposed a 

random window subspace method (RWSM) for clothing invariant gait recognition by 

splitting the gait into very small window chunks. The approaches [25, 75, 77] were all 



 18 

evaluated on large clothing variation OU-ISIR Treadmill database B, which included at 

most 32 combinations of different types of clothing for 68 subjects with 2746 sequences. 

The LDA-based method [51] reduces to some extent the effects of intra-class variations, 

that is, clothing variations, on gait identification. It does not, however, work well when 

clothing variations exceed individual variations. A convolutional neural networks (CNN) 

based method is proposed in [78] for clothing invariant gait recognition. They extracted 

the most discriminative changes of gait features from gait energy image (GEI) as low-level 

input data and evaluated the performance of their proposed method and achieved better 

recognition rate compared with other conventional approaches on the challenging clothing 

invariant dataset OU-ISIR Treadmill B. 

1.2.4 Gait recognition under walking speed change 

Walking speed changes impacts on accuracy across all modalities of gait recognition.  

Walking speed variations is the result of a change of applied average energy or strength 

during walking and alters all the time and spatial based features that makes intra-class 

difference of human gait. The step length, cadence, double limb stance duration, joint 

motion and the joint angles at hip, knee and ankle are significantly changed by walking 

speed [79, 80]. Mason et al. [81] evaluated different ground reaction force (GRF) 

normalization techniques, including one that linearly stretched the GRF profiles to have 

the same duration, which is normally correlated with walking speed. Bouchrika et al. [32] 

evaluated the effects of different covariate conditions in a model-based method and found 

that the recognition rates drop by 35% for walking speed changes.  To reduce the intra-

class difference for speed invariant gait recognition, Kusakunniran et al. [82] suggested 

invariant feature-based methods and speed transformation-based methods. 
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The first methods minimize intra-class differences by speed invariant features 

extraction from gait silhouettes. Kusakunniran et al. [33, 82] proposed a potential method 

Procrustes Shape Analysis (PSA) in handling a large variations of walking speed and cross 

speed gait recognition. In addition, with [33] Kusakunniran et al. [82] developed Higher-

order derivative Shape Configuration (HSC) method to extract features for speed invariant 

cross speed gait identification. They advanced the HSC framework by using Differential 

Composition Model (DCM), which adaptively compute and assign weights to different 

parts of the gait [82]. Compared to Higher-order derivative Shape Configuration, the 

development of Differential Composition Model reduce the intra-class variation and 

delivers significant performance on huge speed changes database. Guan et al. proposed an 

ensemble classifier based on Random Subspace Method (RSM) to deem the unstable 

dynamic feature caused for speed changes [34]. They claimed that proposed framework is 

capable to solve the cross-speed gait identification problems in a cross-mode or fixed-mode 

manner. In this method, they computed eigenvectors and eigenvalues from Gabor-GEI and 

created random subspaces by removing zero eigenvalue eigenvectors. They randomly 

selected the eigenvectors, projected and executed the single experiment for ten times, and 

calculated the mean CCR. However, RSM gained attractive CCR but it does not always 

assurance the best accuracy because the randomness nature of the system and shows more 

time complexity [76]. 

To reduce intra-class difference, the other method is to the transformation of different 

walking speed data to a general speed before classification. Tsuji et al. [83] proposed a 

factorization-based speed transformation model to transform dynamic gait features from 

one speed to another by keeping static features unchanged. The authors claim that the speed 
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changes are nearly the same effect as camera viewpoint changes, Tsuji et al. utilized the 

view transformation idea for walking speed changes gait transformation using singular 

value transformation. The walking speed change mostly affects dynamic body parts like 

arm swing and stride length, so there are some approaches proposed for cross-speed gait 

recognition using dynamic part attenuation technique. Tanawongsuwan and Bobick [84] 

proposed speed normalization procedure, which maps gait features across different speeds 

and improve the recognition performance. They utilized silhouettes at the single-support 

phases (mid-stance) as a part of the gait feature, where the limbs are the most closed and 

are not severely altered as the speed changes. However, the gait recognition performance 

can drop due to temporary posture changes, silhouette segmentation noise and phase 

estimation errors that may easily affected the selected particular key-frame at single-

support phase of a gait cycle. Recently Chi Xu et al. [85] claimed that existing methods 

can alleviate the influence of speed on gait recognition task to some extent but most of the 

methods perform poorly under large speed changes, or suffer from high computational cost, 

which is an important aspect in real-world applications. They proposed a speed-invariant 

and stable gait representation called single-support GEI (SSGEI), which realizes a good 

trade-off between speed invariance and stability by aggregating multiple frames around 

single-support phases. They performed experiments on two publicly available datasets, the 

OU-ISIR Treadmill Dataset A and the CASIA Dataset C and showed that their method 

achieves better accuracies in both identification and verification scenarios with a low 

computational cost. 
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1.3 Gait Databases 

There are a few databases that were used for experimental evaluation of gait 

recognition tasks in the past two decades by many researchers. The most of databases were 

recorded indoors and subjects were different in numbers. In the following section, some 

standard datasets are described. 

1.3.1 NLPR gait database 

The Chinese National Laboratory of Pattern Recognition presented three public 

data-sets namely: CASIA-A [86], CASIA-B [24] and CASIA-C [30]. 

The CASIA gait database A contains 20 subjects. Each subject has captured 12 

video sequences with three viewing angles, namely frontal (900), oblique (450), and lateral 

(00) views. Each subject walked along a straight-line path from left to right and right to 

left. In this way, four videos per subject from each viewing angle were recorded.  These 

sequences captured images with 24-bit full color, 352 x 240 pixels of resolution at 25 

frames per second. 

The CASIA gait database B contains 124 subjects and captured video sequences in 

different clothing conditions (cl), carrying conditions (bg) and normal walking conditions 

(nm) from 11 viewing angles. For each subject and each viewing angle ten video sequences 

were captured including two sequences when wearing a coat, two sequences with carrying 

a bag and six sequences in normal walking (without wearing coat and carrying bag). Figure 

1.2 shows sample images from the CASIA gait database B. 
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The CASIA gait database C contains 153 subjects (130 males and 25 females) under 

different weather, speeds and carrying conditions and captured by an infrared (thermal) 

camera outdoors at night. Ten video sequences were captured for each subject including 

four sequences for normal walking (fn), two sequences for slow walking (fs), two 

sequences for fast walking (fq) and two sequences for normal walking with a bag (fnb). 

The videos were all captured at night by infrared (thermal) cameras. 

1.3.2 OU-ISIR gait database 

The Institute of Scientific and Industrial Research (ISIR), Osaka University (OU) has 

OU-ISIR [23] gait database is meant to aid research efforts in the general area of 

developing, testing and evaluating algorithms for gait-based human identification.  

The OU-ISIR has several gait datasets. OU-ISIR treadmill dataset A [23, 29] covers 

the gait data of 34 subjects from side view. It is captured under nine different speeds with 

speed variation from 2 km/h to 10 km/h at 1 km/h interval. Two video sequences were 

recorded for each subject from each speed. Figure 1.7 shows sample size normalized 

silhouettes from the OU-ISIR gait dataset A. The number of frames recorded for each speed 

of each sequence is listed in Table 1.1. The OU-ISIR gait database, the treadmill dataset B 

[23, 29] with large clothing variations. It includes 68 subjects with at most 32 combinations 

of different types of clothing such as skirt, raincoat, down jacket, long coat, hat, parker, 

muffler, short pants, casual wears, regular pants, half shirt, full shirt etc. and captured 2746 

video sequences. The clothing types are listed in Table 1.2 and the clothing combinations 

that are used for constructing the dataset is in Table 1.3. Figure 1.8 shows the sample 

images of clothing combinations.  
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Figure 1.7 Sample size normalized silhouettes from the OU-ISIR gait dataset A [29] 

 

Table 1.1 Number of frames recorded for each speed of each sequence [29]. 

Speed (km/h) 2 3 4 5 6 7 8 9 10 

No. of frames 420 360 360 420 360 240 240 240 300 

 

Table 1.2 Types of clothing used in dataset B [25] (abbreviation: name). 

RP: Regular Pants 

BP: Baggy Pants 

SP: Short Pants 

Sk: Skirt 

CP: Casual Pants 

HS: Half Shirt 

FS: Full Shirt 

LC: Long Coat 

Pk: Parker 

DJ: Down Jacket 

CW: Casual Wear 

RC: Rain Coat 

Ht: Hat 

Cs: Casquette Cap 

Mf: Muffler  

 

 

 

(a) 2km/h (every 6 frames) ,111111.111111111 
(b) 3 km/h (every 6 frames) JJJllllllllll,11] 
(c) 4 km/h (every 5 frames) ,11111.11.~I.UIJJJ 
(d) 5 km/h (every 4 frames) Olllllll.1.-W.UI-IJ 
(e) 6 km/h (every 4 frames) JDlll,1111111-IJJ 
(0 7 kmfi1 (every 4 frames) m1111m1111~J 
(g)8 km/h (every3 frames) IJJID~~UIIU.J] 
(h) 9km/h (every 3 frames) ,1111U~IJIIDI] 
(i) JO km/h (every 3 frames) ,111n~UJIIIIJ~ 

I I I I I I I I I I 
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Table 1.3 Different clothing combinations [25]. 

# S1 S2 S3 # S1 S2 S3 # S1 S2 # S1 S2 

2 RP HS - 7 RP LC Ht L BP Pk V Sk DJ 

3 RP HS Ht 8 RP LC Cs M BP DJ D CP HS 

4 RP HS Cs C RP DJ Mf N SP HS F CP FS 

9 RP FS - A RP Pk - Z SP FS E CP LC 

X RP FS Ht B RP DJ - P SP Pk G CP Pk 

Y RP FS Cs I BP HS - S Sk HS H CP DJ 

5 RP LC - K BP FS - T Sk FS O CP CW 

6 RP LC Mf J BP LC - U Sk Pk R RC RC 

The OU-ISIR gait database, the treadmill dataset D is composed of gait silhouette 

sequences of 185 subjects from side view with various gait fluctuations among gait cycle. 

The OU-ISIR Gait Large Population Dataset covers gait data of 4007 subjects. It is 

captured under four different viewing angles. 

 

Figure 1.8 Sample clothing combinations [25]. 
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1.3.3 The CMU Mobo gait database 

The CMU Mobo gait database [87] contains 25 subjects from 2 different walking 

speeds, namely slow walking (3.3 km/h) and fast walking (4.5 km/h). The videos were 

captured in an indoor scenario. Each subject was recorded under four walking conditions, 

slow walking, fast walking, slow walking at a certain slope, and slow walking when 

holding a ball. 

1.3.4 USF database 

The USF [88] is a large gait dataset that covers the data of 122 subjects. The gait 

sequences are filmed outdoors under several walking variations: two viewpoints, surface, 

shoes, carrying condition, and time. 

1.3.5 Southampton database 

The Southampton [89] has two gait datasets. The Soton Small dataset covers the 

data of 12 subjects, captured inside track, with a chroma-key green screen backdrop, under 

several walking variations, which are: footwear, clothes and carrying bags, and different 

speeds. The Soton Large database covers the data of 115 subjects, captured outdoors on an 

inside track and on a treadmill under six different views. 

1.3.6 Other gait databases 

There are other gait datasets including the HID-UMD gait databases [90] and the 

MIT Artificial Intelligence Lab data set (MIT AI) [91]. Details of the existing datasets are 

given in Table 1.4. 



 26 

Table 1.4 The existing different gait datasets. 

Dataset Number 

of Subjects 

Number 

of 

Sequences 

Environment Year Walking Variations 

CASIA A [86] 20 240 Outdoor 2001 3 viewing angle 

CASIA B [24] 124 13640 Indoor 2005 Clothing, carrying and 

viewing conditions 

CASIA C [30] 153 1530 Outdoor, thermal 

camera (at night) 

2005 Speed, carrying 

condition 

OU-ISIR A 

[29] 

34 612 Indoor (Treadmill) 2010 9 walking speeds 

conditions 

OU-ISIR B 

[23] 

68 2746  Indoor (Treadmill) 2010 clothing condition  

OU-ISIR D 185  Indoor (Treadmill) 2010 gait fluctuations 

OU-ISIR Gait 

Large 

Population 

Dataset 

4007  Indoor  Different age ranges, 4 

viewing angles  

USF [88] 122 1870 Outdoor 2001 view, surface shoe, 

carrying, time 

conditions 

CMU [87] 25 600 Indoor 2001 view, walking speed, 

carrying, surface 

Soton Small 

[89] 

12  Indoor  Carrying condition, 

clothing, footwear 

(shoe), viewing angles 

Soton Large 

[89] 

115  2128 Indoor (Treadmill 

and 

track), outdoor 

 6 different viewing 

angles 

HID-UMD 1 

[90] 

25 100 Outdoor  4 viewing angles 

HID-UMD 2 

[90] 

55 220 Outdoor  2 viewing angles 

MIT AI 24 194 

Indoor [91] 

24 194   View, time conditions 
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1.4 Thesis Outline 

The rest of the dissertation is organized as follows. 

CHAPTER 2 explains preprocessing, different gait representation technique and 

background knowledge that is used in different proposed methods. 

CHAPTER 3 presents the experimental setup to define the body parts of whole gait 

considering clothing condition. The selection procedure of most effective body parts by 

rejecting most affected parts is established here. 

CHAPTER 4 introduces a novel gait feature representation technique Entropy-

based DFT (EnDFT). EnDFT highlights the dynamic areas of gaits and this is useful for 

clothing and carrying conditions to enhance the recognition performance. 

In CHAPTER 5, The parts definition and look-up table-based parts selection 

procedure for speed changes is presented. The benefits of look-up table for parts selection 

are to select different body parts with speed changes of a probe. 

CHAPTER 6 describes a common frame work for clothing and carrying conditions 

and speed changes. For selecting body parts adaptively, Legendre moments and Zernike 

moments is introduced to calculate the weight of each part and used that weight as 

threshold. If the weight of certain part of a probe is greater than the threshold we discard 

that part otherwise accept for recognition. 

CHAPTER 7 presents the summery of this thesis and express some ideas and extensions 

of current works.  
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 OVERVIEW OF PREPROCESSING, GAIT CYCLE 

ESTIMATION, GAIT REPRESENTATION TECHNIQUES AND 

FUNDAMENTAL KNOWLEDGE   

 This thesis proposes several techniques to address the issues of various walking 

conditions focusing on most challenging clothing and carrying changes and speed 

variations. Thus, many techniques are adopted and adapted accordingly in the proposed 

methods. This chapter explains and discusses about different existing and proposed gait 

representation and background knowledge of these techniques. 

We used the OU-ISIR Gait Database- Treadmill Dataset A, OU-ISIR Gait 

Database- Treadmill Dataset B, CASIA-B and CASIA-C dataset. We have conducted 

several different experiments on these datasets using our proposed model-free methods. 

2.1 Preprocessing 

 To represent the gait features, most of the model-free gait recognition approaches 

use silhouettes. Silhouettes are extracted from each frame of a sequence by background 

subtraction-based graph-cut segmentation [92]. Mathematical morphological operations 

are used on extracted silhouettes to reduce minor segmentation errors and noise 

elimination. Now, background-subtracted silhouette is registered to obtain the spatio-

temporal gait silhouette volume (GSV) [71]. Then, the silhouettes are scaled and 

normalized into a fixed size of 128 × 88 pixels. Size normalized gait silhouettes are shown 

in Figure 2.1 as an example.  

CHAPTER 2. 
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The initial step for matching measure is gait period detection. In our study, the similar 

method normalized autocorrelation (NAC) as that one in [71] is applied to determine gait 

periods of size-normalized silhouettes for the temporal axis on each gait sequence. 

Figure 2.1 Size normalized gait silhouettes [23] 

 

We calculate the normalized autocorrelation (NAC) of a GSV for the temporal axis 

as: 

 
𝐶(𝑁) =  

∑ ∑ 𝑔𝑥,𝑦,𝑛
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(2.1) 

 𝑇(𝑁) = 𝑁𝑡𝑜𝑡𝑎𝑙 − 𝑁 − 1 (2.2) 

 𝑁𝑔𝑎𝑖𝑡 = arg     𝑚𝑎𝑥𝑁∈[𝑁𝑚𝑖𝑛,𝑁𝑚𝑎𝑥] 𝐶(𝑁) (2.3) 

where C(N) is the NAC for an N-frame shift, g(x,y,n) is the silhouette value at position (x,y) 

in the nth frame, and Ntotal is the total number of frames in the GSV. 

2.2 Human Gait Representation Technique 

Several gait representations have been proposed that use the whole number of 

silhouettes in one gait period instead of matching sequences on a frame by frame basis.  
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2.2.1 Gait Energy Image (GEI) 

The spatio-temporal average silhouette over a complete gait cycle is called GEI 

[64]. Examples of GEI’s are shown in Figure 2.2 from three dataset. Most of the 

appearance-based approaches [51, 72, 75, 89, 93] used GEI as input gait features. GEI 

represents both the static (head and body) and dynamic areas (swings of legs and arms) of 

the gait. 

Given the pre-processed binary gait silhouette images ),,( nyxB at time n in a 

sequence, the GEI is defined as: 
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1
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1


=

=
N

n
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N

yxGEI  (2.4) 

where N is the total number of frames in a gait cycle, n is the frame number and x 

and y values in the 2D image coordinates. 

 

 

 

 

 

Figure 2.2 Examples of Gait Energy Images of (a) walking speed changes and (b) clothing 

and carrying conditions. 

 

(a) 

(b) 
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2.2.2 Gait Entropy Image (GEnI) 

In mathematics, entropy is used to measure the uncertainty of problems. While in 

information science, entropy is the average uncertainty of information source. In other 

word, entropy is a measure of irregularity of states such as imbalance, uncertainty like as 

dynamic areas of human gait. If k symbols are generated from the source, then the average 

self- information obtained from k output is: 

 

=

−
J

j

jj aPaPk
1

)(log)(  (2.5) 

where ja are symbols and )( jaP are source symbols probability. The average 

information per source output i.e. entropy is: 

 

=

−=
J

j
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1
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As )(ZH increase means more information is associated with the source and if the 

source symbols are equally probable then the entropy will be the maximum. The intensity 

value of the binary silhouettes for a fixed pixel location as a discrete random variable, the 

entropy of this variable over each gait period can be computed as: 

 

=

−=
1

0

2 ),(log),(),(
j

jj yxPyxPyxH  (2.7) 
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GEnI [21, 73] is extracted by computing entropy directly from GEI using Equation 

(2.7), where ),(1 yxP represent the value from GEI and ),(1),( 10 yxPyxP −= , as are shown 

in Figure 2.3. The GEnI contains dynamic body areas (e.g., leg, arms) which undergo 

consistent relative motion during a gait cycle will lead to high gait entropy value, whereas 

those areas that remain static (e.g., torso) would give rise to low values. 

 

 

 

 

 

Figure 2.3 Examples of Gait Entropy Images of different clothing and carrying conditions. 

 

2.2.3 Discrete Fourier Transform Image (DFT) 

Another popular gait representation technique is the frequency domain gait 

features. The amplitude spectra of the GSV are calculated by DFT analysis based on the 

gait period [21, 71] are shown in Figure 2.4. A DFT ),,( kyxG  and amplitude ),,( kyxA

for the temporal axis are calculated as; 

 

𝐺(𝑥, 𝑦, 𝑘) = ∑ 𝐵(𝑥, 𝑦, 𝑛)𝑒−𝑗𝜔0𝑘𝑛

𝑁−1

𝑛=0

 (2.8) 

√ 
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𝐴(𝑥, 𝑦, 𝑘) =

1

𝑁
|𝐺(𝑥, 𝑦, 𝑘)| (2.9) 

where N is the number of frames in a gait cycle, 0  is a base angular frequency for 

a gait cycle and k is the frequency component. Usually, only 0-2 time’s frequencies are 

considered. Higher frequency elements are removed as noise. Therefore, DFT consists of 

three components where the first component is equivalent to GEI, middle component 

represents the asymmetry of the left and right motion and the last component represents 

the symmetry thereof. 

 

 

 

 

 

 

 

 

Figure 2.4 Examples of Discrete Fourier Transform images (a-d) of different clothing and 

carrying conditions where each of with 0, 1 and 2-times frequency components. 

 

(a) (b) 

(c) (d) 
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2.2.4 DFT Entropy Image (EnDFT) 

Both GEI and DFT include static (e.g. torso) and dynamic (e.g. leg, arms) 

components together. However, it was reported in [73] that they are vulnerable in the 

presence of significance change in appearance due to different covariate condition. GEnI 

usually outperforms GEI, but it produces similar result to the DFT because the last two 

components of DFT represent the most dynamic nature of the gait.  

We propose frequency domain-based entropy gait features EnDFT in [21]. The 

intensity value of the proposed EnDFT is computed using Equation (2.7) from the DFT. 

Where ),(1 yxP is the intensity value of DFT and ),(1),( 10 yxPyxP −= . 

 

 

 

 

 

 

 

 

Figure 2.5 Examples of Entropy-based Discrete Fourier Transform (EnDFT) images (a-d) 

of different clothing and carrying conditions each of with 0, 1 and 2-times frequency 

components. 

(a) (b) 

(c) (d) 
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The main difference between GEnI and EnDFT gait feature is that GEnI is 

calculated from GEI whereas EnDFT is derived from DFT representation.  

The DFT representation of gait shows better result than GEI for its separated two 

dynamic higher frequency components. The one- and two-times frequency elements in the 

DFT hold only the uncertainty values of the gait. Therefore, the entropy-based 

transformation of the DFT clearly separates the most uncertainty areas by adding first- and 

second-times components of the DFT to the GEI. It is visible from Figure 2.5 that proposed 

EnDFT gives more weights into dynamic areas and less near to zero into static areas by 

using all three components of the DFT. It is simple to generate EnDFT directly from DFT 

features just computing the entropy. 

2.3 Subspace Analysis 

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are 

extensively used and well-known subspace learning methods. Direct template matching for 

recognition or identification is sensitive to small silhouette distortions and noise [51, 94]. 

This is due to the dimensionality of the gait feature space is high even after feature 

selection. To overcome this issue, PCA and LDA can be used to project the original gait 

features to a subspace of lower dimensionality for achieving better lower dimensional data 

representation and important optimal discriminant information simultaneously [95]. Their 

fundamental concepts are briefly explained as below.  
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2.3.1 Principal Component Analysis 

Suppose we have N number of M-dimensional gallery gait image template {x1,. . 

.,xn,. . .,xN} belonging to C different classes (subjects), where each template is a column 

vector obtained by concatenating the rows of the corresponding gait image. Let Di,j indicate 

the jth distance signal in class i, each distance signal contain M normalized pixel points 

(dimensionality), the sample number of distance signal in class i is Ni, then the total training 

sample number is, N = N1 + N2 + …. + Nc. 

The training set is 

 𝐷 = ⌊𝐷11, 𝐷12, … , 𝑑1𝑛, 𝑑21, … , 𝑑𝐶𝑁⌋, 𝐷 ∈ 𝑅𝑀×𝑁 (2.10) 

The mean value mD and covariance matrix ∑ are 

 

𝑚𝐷 =  
1

𝑁
∑ ∑ 𝐷𝑖,𝑗

𝑁

𝑗=1

𝐶

𝑖=1

 (2.11) 

 

Σ =
1

𝑁 − 1
∑ ∑(𝐷𝑖𝑗 − 𝑚𝐷)

𝑁

𝑗=1

𝐶

𝑖=1

(𝐷𝑖𝑗 − 𝑚𝐷)𝑇 (2.12) 

where ∑ is real symmetric matrix and ∑ ∈ 𝑅𝑀×𝑁. 

According to singular value decomposition (SVD) theory, the nonzero eigenvalue of M are 

λ1, λ2, …, λM and its corresponding eigenvector are e1, e2, …, eM. The former eigenvectors 

with relatively large eigenvalue have relatively large change in training mode. And higher 

order eigenvector is to indicate relatively little change. Considering with storage and 
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effectiveness of calculation, set a threshold value Ts on accumulated variance curve to 

remove relatively small eigenvalue and corresponding eigenvector. If we select K (K<M) 

biggest eigenvalues and their eigenvector, the eigen mapping matrix EPCA can be formed 

as: 

 𝐸𝑃𝐶𝐴 =  [𝑒1, 𝑒2, … , 𝑒𝐾] (2.13) 

By projecting each distance signal Dij into K-dimensional eigenspace, we get Rij as: 

 𝑅𝑖𝑗 = 𝐸𝑃𝐶𝐴
𝑇 𝐷𝑖𝑗 = [𝑒1, 𝑒2, … , 𝑒𝐾]𝑇𝐷𝑖𝑗 (2.14) 

2.3.2 Linear Discriminant Analysis 

LDA is a feature extraction method in which the optimal projection directions are 

obtained by seeking the extreme of Fisher criterion function. It is expected that the 

projected samples can be achieved the largest between-class scatter and the smallest 

within-class scatter. After projecting D by PCA we get, 𝑅 =

⌊𝑅11, 𝑅12, … , 𝑅1𝑁 , 𝑅21, … , 𝑅𝐶𝑁⌋, 𝑅𝜖𝑅𝐾×𝑁 and its dimension is reduced from M to K. 

Between-class scatter matrix Sb of samples and within-class scatter matrix Sw of 

samples are defined as follows: 

 

𝑆𝑏 =  
1

𝑁
∑ ∑ 𝑁𝑖(𝑅𝑖,𝑗 − 𝑚𝑖)

𝑁

𝑗=1

𝐶

𝑖=1

(𝑅𝑖,𝑗 − 𝑚𝑖)
𝑇 (2.15) -
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𝑆𝑤 =  
1

𝑁
∑ ∑(𝑚𝑖 − 𝑚)

𝑁

𝑗=1

𝐶

𝑖=1

(𝑚𝑖 − 𝑚)𝑇 (2.16) 

where mi is the mean of samples ith class and m is mean of all class. 

Then compute 𝑆𝑤
−1𝑆𝑏to get the matrix for singular value decomposition (SVD) and 

can obtain P (P<K) nonzero eigenvalue λ1, λ2, …, λP and their corresponding eigenvector 

e1, e2, …, eP. The relatively large eigenvalue and their eigenvector have relatively higher 

separability, and higher order eigenvector has comparatively lower separability. By 

selecting first t largest eigenvalues, where t ≤ C-1 and with their eigenvector to construct 

eigen mapping matrix WLDA, which is: 

 𝑊𝐿𝐷𝐴 = [𝑒1 ,𝑒2, … , 𝑒𝑡] (2.17) 

By projecting each sample Ri,j to t-dimensional eigenspace as: 

 𝑃𝑖,𝑗 = 𝑊𝐿𝐷𝐴
𝑇  . 𝑅𝑖,𝑗 = [𝑒1 ,𝑒2, … , 𝑒𝑡]𝑇 . 𝑅𝑖,𝑗 (2.18) 

Put 𝑅𝑖𝑗 = 𝐸𝑃𝐶𝐴
𝑇 𝐷𝑖𝑗 into Equation (2.18) and gets: 

 𝑃𝑖,𝑗 = 𝑊𝐿𝐷𝐴
𝑇  . 𝐸𝑃𝐶𝐴

𝑇 𝐷𝑖𝑗 (2.19) 

where, 𝑃𝑖,𝑗 is a point in the t-dimensional eigenvector and each gait sequence 

appears as a way in eigenspace. It is apparent that PCA enormously reduces the 

dimensionality of sample and optimal class separation after LDA training. 

 

-
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2.4 Orthogonal Moments Computation 

The mathematical concept of moments has been used in different fields ranging from 

physics and statistics to image processing and pattern recognition for many years. Moments 

has been used to extract a set of proper numerical attributes of features from the objects for 

classification in the design of an imagery pattern recognition system. In this research, 

Legendre moments and Zernike moments have been used for effective human body part 

selection for clothing and walking speed invariant gait recognition. 

2.4.1 Legendre Moments 

Legendre moments, were first introduced by Teague [96]. Legendre moments are 

orthogonal moments and were used in several pattern recognition applications [97]. The 

Legendre moments used Legendre polynomials as its basis set [98]. The two-dimensional 

Legendre moments of order (p + q), with an image intensity function f(x, y), are defined 

on the square [-1, 1] × [-1, 1] as: 

 

𝐿𝑝𝑞 =  𝜆𝑝𝑞 ∬ 𝑃𝑝(𝑥)𝑃𝑞(𝑦) 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

1

−1

 (2.20) 

where 𝜆𝑝𝑞  =  
(2𝑝+1)(2𝑞+1)

4
 , p, q = 0, 1, 2, …., ∞, and Pp(x) is the pth order Legendre 

polynomial defined by: 

 

𝑃𝑝(𝑥) =  ∑ 𝛼𝑝𝑘𝑥𝑘 =  
1

2𝑝𝑝!

𝑑𝑝

𝑑𝑥𝑝
(𝑥2 − 1)𝑝

𝑝

𝑘=0

 (2.21) 
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or, 

 

𝑃𝑝(𝑥) =  ∑ {
(−1)

𝑝−𝑘
2 𝑥𝑘(𝑝 + 𝑘)!

2𝑝𝑘! (
𝑝 − 𝑘

2 ) ! (
𝑝 + 𝑘

2 ) !
} , 𝑝 − 𝑘 = 𝑒𝑣𝑒𝑛

𝑝

𝑘=0

 (2.22) 

The Legendre polynomials have the generating function: 

 1

√1 − 2𝑟𝑥 + 𝑟2
=  ∑ 𝑟𝑝𝑃𝑝(𝑥) ,   𝑟 ≺ 1

∞

𝑝=0

 (2.23) 

By dividing the two parts of the generating function in Equation (2.23), the 

recurrent formula of the Legendre polynomials can be acquired straightforwardly: 

𝑑

𝑑𝑟
(

1

√1 − 2𝑟𝑥 + 𝑟2
) =  

𝑑

𝑑𝑟
(∑ 𝑟𝑝𝑃𝑝(𝑥)

∞

𝑝=0

) 

⇔   
1

√1 − 2𝑟𝑥 + 𝑟2
 ×  

𝑥 − 𝑟

1 − 2𝑟 + 𝑟2
=  ∑ 𝑝𝑟𝑝−1𝑃𝑝(𝑥)

∞

𝑝=0

   

Then we have: 

(𝑥 − 𝑟) ∑ 𝑟𝑝𝑃𝑝(𝑥) = (1 − 2𝑟𝑥 + 𝑟2) ∑ 𝑝𝑟𝑝−1𝑃𝑝(𝑥)

∞

𝑝=0

 

∞

𝑝=0

 

And, the recurrent formula of Legendre polynomials is: 

 

{
𝑃𝑝+1(𝑥) =  

2𝑝 + 1

𝑝 + 1
𝑥𝑃𝑝(𝑥) −

𝑝

𝑝 + 1
𝑃𝑝−1(𝑥)

 𝑃1(𝑥) = 𝑥,   𝑃0(𝑥) = 1                            

 (2.24) 
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The Legendre polynomials are a complete orthogonal basis set on the interval [-1, 1]: 

 
∫ 𝑃𝑝(𝑥)𝑃𝑞(𝑥)𝑑𝑥 =  

2

2𝑝 + 1
𝛿𝑝𝑞

1

−1

 (2.25) 

where, 

𝛿𝑝𝑞 =  {
1            𝑖𝑓 𝑝 = 𝑞
0          𝑖𝑓 𝑝 ≠ 𝑞

 

 is the Kronecker symbol. 

The orthogonal property of Legendre polynomials implies no redundancy or 

overlapping of information between the moments with different orders. This property 

enables the contribution of each moment to be unique and independent from the 

information in an image [96]. 

To compute Legendre moments from a digital image, the integrals in Equation (2.20) are 

replaced by summations and the coordinates of the image must be normalized into [-1, 1]. 

Therefore, the numerical approximate form of Legendre moments, for a discrete image of 

M × N pixels with image intensity function f (x, y), is [99]: 

 

𝐿𝑝𝑞  =  𝜆𝑝𝑞 ∑ ∑ 𝑃𝑝(𝑥𝑖)𝑃𝑞(𝑦𝑗) 𝑓(𝑥𝑖, 𝑦𝑗)

𝑁−1

𝑗=0

𝑀−1

𝑖=0

 (2.26) 

where 𝜆𝑝𝑞  =  
(2𝑝+1)(2𝑞+1)

𝑀×𝑁
 , xi and yj denote the normalized pixel coordinates in the 

range of [-1, 1], which is given by: 
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𝑥𝑖 =  

2𝑖 − (𝑀 − 1)

𝑀 − 1
 , 𝑦𝑗 =  

2𝑖 − (𝑁 − 1)

𝑁 − 1
    (2.27) 

The formula defined in Equation (2.20) is obtained by replacing the integrals in 

Equation (2.26) by summations and by normalizing the pixel coordinates of the image into 

the range of [-1, 1] using Equation (2.27).  

 

Function LegendrePolinomials (x,p) 

px=0; 

for k=0 to p 

 if mod (p-k,2)=0 

                               𝑐 =  
(−1)

𝑝−𝑘
2 𝑥𝑘(𝑝+𝑘)!

2𝑝𝑘!(
𝑝−𝑘

2
)!(

𝑝+𝑘

2
)!

; 

          px=px+c; 

 end if 

end for 

return px; 

 

Function LegendreMoments (p,q) 

L=0; 

for i=0 to (M-1) 

 for j=0 to (N-1) 

  𝑥𝑖 =  
2𝑖−(𝑀−1)

𝑀−1
 ;   𝑦𝑗 =  

2𝑗−(𝑁−1)

𝑁−1
 ;     

  px = LegendrePolinomials (xi, p); 

  py = LegendrePolinomials (yi, q); 

  L = L + f(xi, yj) * px * py; 

 end for 

end for 

return  
𝐿(2𝑝+1)(2𝑞+1)

𝑀×𝑁
; 

 

Figure 2.6 Pseudo code for Legendre Moments Computation [98]. 
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Figure 2.6 shows the pseudo code for computing Legendre moments of order (p + 

q) by equation defined in Equation (2.26) and by using direct method for calculating 

Legendre polynomials [98]. In this work the recurrent formula is used for calculating 

Legendre polynomials in order to increase computation speed. 

2.4.2 Zernike Moments 

Teague [96] introduced the rotationally invariant Zernike moment, which employs 

the complex Zernike polynomials as the moment basis set. Zernike moments show the 

properties with no overlapping or redundancy of information between the moments of an 

image [100].  Zernike moments have been utilized as features set in many researches for 

that properties [101]. The three steps to compute the Zernike moments of an image are 

computation of (i) radial polynomials, (ii) Zernike polynomials, and at last (iii) Zernike 

moments by projecting the image onto the Zernike polynomials [98]. 

The first step to obtain Zernike moments from an image is the computation of radial 

polynomials. The real-valued radial polynomial is defined as: 

 

𝑅𝑝,𝑞(𝑟) =  ∑
(−1)𝑠(𝑝 − 𝑠)! 𝑟𝑝−2𝑠

𝑠! (
𝑝 + |𝑞|

2 − 𝑠) ! (
𝑝 − |𝑞|

2 − 𝑠) !

(𝑝−|𝑞|/2

𝑠=0

 (2.28) 

where 𝑅𝑝,𝑞(𝑟) =  𝑅𝑝,−𝑞(𝑟) and p, q is order and repetition respectively. The order 

is non-negative integer and repetition is integer satisfying p - |q| = even and |q| ≤ p. The 

radial polynomials satisfy the orthogonal properties for the same repetition q. 
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∫ ∫ 𝑅𝑝,𝑞(𝑟, 𝜃)𝑅𝑝′,𝑞(𝑟, 𝜃) 𝑟 𝑑𝑟𝑑𝜃 =  

𝛿𝑝𝑝′

2(𝑝 + 1)

1

0

2𝜋

0

 (2.29) 

The next step is to compute complex-valued 2-D Zernike polynomials within a unit 

circle using radial polynomial as: 

 𝑉𝑝𝑞(𝑥, 𝑦) =  𝑉𝑝𝑞(𝑟 𝑠𝑖𝑛𝜃, 𝑟 𝑐𝑜𝑠𝜃) =  𝑅𝑝,𝑞(𝑟)𝑒𝑗𝑞𝜃 (2.30) 

where 𝑗 = √−1, |𝑟| ≤ 1 is the length of complex-valued functions orthogonal on 

the unit circle x2 + y2 ≤1. 

 

∬ [𝑉𝑛𝑚(𝑥, 𝑦)]∗

𝑥2+𝑦2≤1

 𝑉𝑝𝑞(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =  
𝜋𝛿𝑚𝑝𝛿𝑛𝑞

𝑚 + 1
 (2.31) 

or, in polar coordinates: 

 

∫ ∫[𝑣𝑛𝑚(𝑟, 𝜃)]∗ 𝑉𝑝𝑞(𝑟, 𝜃)𝑟 𝑑𝑟𝑑𝜃 =  
𝜋𝛿𝑚𝑝𝛿𝑛𝑞

𝑚 + 1

1

0

2𝜋

0

 (2.32) 

where the asterisk (*) denotes the complex conjugate. The last step is to compute 

complex Zernike moments of order p with repetition q for an image function f (x; y) as: 

 

𝑍𝑝𝑞 =  
𝑝 + 1

𝜋
 ∬ [𝑉𝑝𝑞(𝑥, 𝑦)]∗ 𝑓(𝑥, 𝑦) 𝑑𝑥𝑑𝑦

𝑥2+𝑦2≤1

 (2.33) 

or, in polar coordinates: 
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𝑍𝑝𝑞 =  
𝑝 + 1

𝜋
 ∫ ∫[𝑉𝑝𝑞(𝑟, 𝜃)]∗ 𝑓(𝑟, 𝜃)𝑟 𝑑𝑟𝑑𝜃

1

0

2𝜋

0

 (2.34) 

To compute Zernike moments from a digital image, the integrals in Equation (2.33) 

and in Equation (2.34) are replaced by summations in addition to the coordinates of the 

image which must be normalized into [0, 1] by a mapping transform. The discrete form of 

the Zernike moments on an image of size M × N is expressed as:  

 
𝑍𝑝𝑞 =  

𝑝 + 1

𝜆
 ∑ ∑[𝑉𝑝𝑞(𝑥, 𝑦)]∗ 𝑓(𝑥, 𝑦) =   

𝑝 + 1

𝜆
 ∑ ∑ 𝑅𝑝𝑞(𝑟𝑥𝑦) 𝑒−𝑗𝑞𝜃𝑥𝑦  𝑓(𝑥, 𝑦) 

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 (2.35) 

where 0 ≤ rxy ≤ 1 and λ is a normalization factor. In the discrete implementation of 

Zernike moments, the normalization factor λ must be the number of pixels located in the 

unit circle by the mapping transformation and corresponds to the area of a unit circle π in 

the continuous domain. The transformed θxy phase and the distance rxy at the pixel of 

coordinates (x, y) are given by: 

 
𝜃𝑥𝑦 =  tan−1 (

(2𝑦 − (𝑁 − 1))/(𝑁 − 1)

(2𝑥 − (𝑀 − 1))/(𝑀 − 1)
) (2.36) 

 

 

𝑟𝑥𝑦 =  √(
2𝑥 − (𝑀 − 1)

𝑀 − 1
)

2

+  (
2𝑦 − (𝑁 − 1)

𝑁 − 1
)

2

 (2.37) 

Most of the computation time of Zernike moments is because of computation of 

radial polynomials. Therefore, researchers have proposed faster methods that reduce the 
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factorial terms by utilizing the recurrence relations on the radial polynomials. Prata et al. 

[94] proposed a recurrence relation that uses radial polynomials of lower order than p as 

follows: 

 
𝑅𝑝𝑞(𝑟) =  

2𝑟𝑝

𝑝 + 𝑞
𝑅(𝑝−1)(𝑞−1)(𝑟) −

𝑝 − 𝑞

𝑝 + 𝑞
𝑅(𝑝−2)𝑞(𝑟) (2.38) 

Function RadialPolinomial (r,p,q) 

radial=0; 

for s=0 to (p-q)/2 

 𝑐 =  
(−1)𝑠(𝑝−𝑠)!

𝑠!(
𝑝+|𝑞|

2
−𝑠)!(

𝑝−|𝑞|

−2
−𝑠)!

; 

 radial=radial + c * rp-2s; 

end for 

return radial; 

 

Function ZernikeMoments (p,q) 

Zr=0; Zi=0; 

for x=0 to (M-1) 

 for y=0 to (N-1) 

   

  𝑟 =  √(
2𝑥−(𝑀−1)

𝑀−1
)

2

+  (
2𝑦−(𝑁−1)

𝑁−1
)

2

; 

 

  𝜃 =  tan−1 (
(2𝑦−(𝑁−1))/(𝑁−1)

(2𝑥−(𝑀−1))/(𝑀−1)
) ; 

  if r ≤ 1 

   radial = RadialPolinomial (r, p, q); 

   𝑍𝑟 = 𝑍𝑟 + 𝑓(𝑥, 𝑦) ∗ 𝑟𝑎𝑑𝑖𝑎𝑙 ∗ cos(𝑞 ∗ 𝜃); 
   𝑍𝑖 = 𝑍𝑖 + 𝑓(𝑥, 𝑦) ∗ 𝑟𝑎𝑑𝑖𝑎𝑙 ∗ sin(𝑞 ∗ 𝜃); 
   count=count + 1; 

  end if 

 end for 

end for 

return  
(𝑝+1)(𝑍𝑟+𝑖∗𝑍𝑖)

𝑐𝑜𝑢𝑛𝑡
; 

 

Figure 2.7 Pseudo code for Zernike Moments Computation [98]. 
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It is quite evident from the precedent equation that we can't compute all cases of p 

and q while computing the radial polynomials. It is not possible to use Prata's equation in 

cases where q = 0 and p = q. Those cases can be obtained by other methods. The direct 

method can be used in cases where q = 0, whereas the equation Rpp (r) = rp is used for p = 

q. The usage of direct method to compute radial polynomials in the case of q = 0 will 

considerably increase the computation time, especially when p is large. Figure 2.7 shows 

the pseudo code for computing Zernike moments of order p and repetition q by equations 

defined in Equation (2.28), (2.36) and (2.37) by using direct method for calculating Zernike 

radial polynomial [98]. 

2.5 Matching Measure 

At first calculate the Euclidean distances between feature vectors for each gallery 

and probe for the subsequences with Ngait frames. There are different methods for matching 

measure. One of the first methods is the mean value of the minimum distances of the 

subsequences. The other second method is the median value of the minimum. Next is the 

minimum value of the minimum. In our case, we use the second method as it can overcome 

some effect of outlier. 

Let p

jx (j=1 to Ngait) and {xk
g}(j=1 to Ngait) be the subsequences for the probe xp and 

gallery xg respectively. The Euclidean distance between probe and gallery is ( )gpsubs x,xd

is the matching measure for the subsequences. 

The median value of the minimum distances of the combinations of subsequences of 

each probe and gallery is defined as: 
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2.6 Conclusion 

In this chapter explains overview of preprocessing, gait period estimation and 

different gait representation techniques and background knowledge that is used in different 

proposed methods in the following chapters of thesis. Out of the different gait 

representations, we proposed the EnDFT to highlight the dynamic areas of gait and useful 

for improving performance with clothing and carrying conditions. It is also explained 

principal component analysis and linear discriminant analysis for gait dimensionality 

reduction. Legendre moments and Zernike moments are used for effective parts selection 

adaptively for different covariate conditions. Matching measure is used for all experiments 

with k-nearest neighbors (k-NN) based classifier. 
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 PART DEFINITION AND EFFECTIVE PART 

SELECTION FOR PART-BASED GAIT IDENTIFICATION 

3.1 Introduction 

Gait identification is more difficult due to various covariate conditions such as 

clothing (changes different body parts on different cloth combination), carrying object 

(hand bag, backpack, briefcase, etc.), walking speed, viewing angle and different shoe-

wearing [25, 65]. The study [102] showed that the results of statistical analysis and/or 

recognition rate are not significantly changed if a subset of the feature is used. So, the 

remaining features are redundant. They found that the upper body part contains the most 

important information for recognition. In another analysis, they suggested the lower body 

part (lower 30%) is significant for recognition. Generally different cofactors can affect 

different body parts and make further difficulties for gait identification. To overcome these 

difficulties, different part-based approaches have been proposed [25, 28, 62, 103]. 

However, there is no systematic study for dividing the body into different parts. Most of 

the techniques involved body parts based on anatomical knowledge some divided in some 

equal parts.  

The main contribution of the proposed system is to define the parts of human gait 

automatically from a training data set depending the effectiveness of the covariate 

condition. The next step to select the most effective parts and discard the redundant part to 

overcome the difficulties arises in various cofactor conditions specifically for clothing and 

carrying conditions. The experimental result shows better performance for gait 

CHAPTER 3. 
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identification. For dividing the body horizontally into different parts, we study the 

contribution of small segment of gait in terms of identification rate in training dataset. The 

smallest segment in this case is a row as a pixel has no effect for horizontal part selection. 

3.2 Pre-processing and Feature Representation 

The pre-processing including gait period estimation for the standard gait recognition 

is explained in Preprocessing section 2.1. The details of different gait feature representation 

techniques GEI, GEnI, DFT and EnDFT, and example images are presented in section 2.2. 

3.3 Matching Measure 

At first calculate the Euclidean distances between feature vectors for each gallery 

and probe for the subsequences with Ngait frames. There are different methods for matching 

measure. One of the first methods is the mean value of the minimum distances of the 

subsequences. The other second method is the median value of the minimum. Next is the 

minimum value of the minimum. In our case, we use the second method as it can overcome 

some effect of outlier. 

Let p

jx (j=1 to Ngait) and {xk
g}(j=1 to Ngait) be the subsequences for the probe xp and 

gallery xg respectively. The Euclidean distance between probe and gallery is ( )gpsubs x,xd

is the matching measure for the subsequences. 

The median value of the minimum distances of the combinations of subsequences of 

each probe and gallery is defined as:  
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3.4 Human Gait Part Definition 

The whole human body is divided into very small segments each of which is 

considered as a single row for part definition. We start from the bottom single row and 

measure rank - 1 recognition rate. Then each immediate upper single row is merged to form 

sub-segments and calculated the recognition rate in each step until the top row is reached. 

The training subset of the OU-ISIR Gait Database, the Treadmill Dataset B is divided into 

gallery and probe subset for finding the recognition rate. Gallery subset contains only the 

standard clothing type and probe subset consists with other clothing types. The effect of 

cumulative row-wise recognition rate is shown in  Algorithm 1. 

It is clear from the Algorithm 1 that each row has either positive or negative effect 

in total recognition accuracy. From this observation, we can define the body parts based on 

the positive or negative contributions of the consecutive rows. 

First local minima and maxima are explored from the row-wise recognition rate. The 

local minima correspond to the less effective and maxima corresponds more effective areas 

of the human body. The body areas containing local maxima contributed the most in gait 

recognition while the body areas consisting of local minima have less contribution. 

Therefore, human body can be divided into parts with some consecutive rows containing 

local minima and maxima. In one way, the local minimum and maximum bound the area 

of a part. The part consists of consecutive rows with either positive or negative 

contributions for row-wise recognition. In this case, the body parts can be mixed up with 
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static and dynamic area of the body that reduce the recognition accuracy. Another 

alternative is that the area of a part is bounded by the median between the maximum. The 

part may consist of consecutive rows with positive or negative contributions for row-wise 

recognition. The body parts correspond to the static and dynamic area without combining 

them together. The median balances the distribution between minimum and maximum that 

can reduce the outlier effect for a part. We follow the later technique here. 

We start the curve from top row (maximum here) until a local minimum is found. 

After getting one local minimum, we find out median between maximum and minimum 

and divide the body here. We then search for another local maximum and calculate the 

median of the first minimum and second maximum and divide the body. Similarly, we 

search for every pair of adjacent local maximum and minimum, and divides the body at 

their median. We repeat this process until reaching to the bottom row. If the last minimum 

is the bottom, there is no division of the body. Following the procedure, human body is 

divided into five parts as shown in  Algorithm 1. 

.  

 

 

 

Figure 3.1 Recognition rate for each row merged form bottom to top. 
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The implementation algorithm is given in Algorithm 1. 

Let 𝑓(𝑥) be the function representing the recognition rate in percentages. It can be 

defined as  

𝑓(𝑥) = 𝑓(𝑃𝑘) = % of recognition rate 

where 𝑃𝑘 be sub-segments and k = 1, 2, 3, …, n. 

The local maximum points of the function 𝑓(𝑥) can be written as: 

 

𝜂𝑙 𝑚𝑎𝑥 = {
𝜕𝑓(𝑅)

𝜕𝑅
= 0 𝑎𝑛𝑑 

𝜕2𝑓(𝑅)

𝜕𝑅2
< 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑠𝑎𝑑𝑑𝑙𝑒 𝑝𝑜𝑖𝑛𝑡𝑠)
} (3.2) 

 

Similarly, the local minimum points of the function 𝑓(𝑅) can be written as: 

 

𝜂𝑙 𝑚𝑎𝑥 = {
𝜕𝑓(𝑅)

𝜕𝑅
= 0 𝑎𝑛𝑑 

𝜕2𝑓(𝑅)

𝜕𝑅2
> 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑠𝑎𝑑𝑑𝑙𝑒 𝑝𝑜𝑖𝑛𝑡𝑠)
} (3.3) 
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Algorithm 1 

Algorithm INDEX-OF-MEDIAN takes a series F as input. It maintains three arrays 

LX[], LN[], and M[] to store indices of local maxima, local minima and median found in 

the series F and return M.  

INDEX-OF-MEDIAN(F) 

1. m=1 and n=1 

2. For x=1 to length(F) 

3.     𝐹′(𝑥) = 𝐹(𝑥) − 𝐹(𝑥 − 1) 

4.     𝐹′′(𝑥) = 𝐹′(𝑥) − 𝐹′(𝑥 − 1) 

5.     If 𝐹′(𝑥) = 0 𝑎𝑛𝑑 𝐹′′(𝑥) < 0 

6.         then LX[m]=x and m++ 

7.     Else If 𝐹′(𝑥) = 0 𝑎𝑛𝑑 𝐹′′(𝑥) > 0 

8.         then LN[n]=x and n++ 

9.     Else 

10.         It is a saddle point 

11. End of for loop 

12. M[1]=LN[1] 

13. For j=2 to length(LX)  

14.     M[𝑗] = MEDIAN(𝐹(LX[𝑗 − 1]) + 𝐹(𝐿𝑁[𝑗])) 

15. End of for loop 

16. Return M 

 

3.4.1 Effective Part Selection 

The body parts that include local minimum show negative effect in overall 

recognition rate and the parts that include local maximum have very good positive effect 

in overall recognition rate (the validity of effective parts selection is presented in section 
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4.5.2). Therefore, the parts that include local maximum are selected as effective parts and 

the parts that include local minimum are discarded as redundant parts empirically. Figure 

3.2 shows the three effective parts (EP i) {i = 1, 2, 3} and two less effective body parts 

(LEPj) {j = 1, 2}. 

 

Figure 3.2 Selected Effective and Redundant (blue shaded) Parts. 

3.5 Experiment 

We use clothing invariant dataset to show the performance of the proposed effective 

part-based method although the system can be used in any kind variation like backpacks, 

shows etc. 

3.5.1 Datasets 

For effective part selection, we use OU-ISIR Gait Dataset B [23]. We used a 

training dataset containing 446 sequences of 20 subjects (10 males and 10 females) from 

the gait dataset. The sequences consist of different clothing types ranging from 15 to 28 for 

each subject.  

EP3 

LEP2 

EP2 

LEP1 

EP1 
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For testing, we used a gallery set from the dataset consisting of the standard clothes 

sequences of 48 subjects, excluding the 20 training subjects. The probe set included 856 

sequences for these 48 subjects with other clothes types, excluding the standard clothes. 

3.5.2 Result Analysis

We compare the proposed method with whole-based i.e. effective-parts with 

redundant parts, eight part-based method without weight control and component-based 

method. The result shows Figure 3.3 as CMC curve. The effective parts-based method 

outperforms the other methods with reduced features. 

 

Figure 3.3 Cumulative Matching Curve (CMC) for proposed method. 

3.6 Conclusion 

We study the contributions of very small segment in term recognition rate for 

dividing the body into different parts. Based on local maxima and minima human body is 
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divided into five unequal parts. Then depending on the positive or negative effect three 

parts are selected as effective parts and other two parts discarded as redundant for gait 

recognition. Experimental result shows promising performance in comparison with other 

part-based methods.  
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 EFFECTIVE PART-BASED GAIT 

IDENTIFICATION USING FREQUENCY-DOMAIN GAIT 

ENTROPY FEATURES 

4.1 Introduction 

The aim of this study is to develop robust gait recognition technique which can accept 

huge clothing and carrying changes. Gait identification task becomes more difficult due to 

the change of appearance by different cofactors (e.g., shoe, surface, carrying, view, and 

clothing). The cofactors may affect some parts of gait while other parts remain unchanged 

and can be used for recognition. From our point of view, there are two important ways to 

improve the recognition accuracy in case of different cofactors like clothing, carrying 

objects, etc. are as following: 

1. For selecting the appropriate parts, more affected and less affected body parts 

should be considered.  

2.  Gait features should be represented with the most discriminating 

information. 

From these observations, we propose a robust technique to define which parts are 

more effective or less affected by cofactors and which parts are less effective or mostly 

affected by cofactors like clothing, carrying objects etc. To find out the effective body 

parts, the whole body is divided into small segments where each segment is a single row 

[104]. Based on positive and negative effect of each segment, three most effective parts 

and two less effective parts are defined. Usually, the dynamic areas (e.g., legs, arms swing) 

CHAPTER 4. 
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are comparatively less affected than static areas (e.g., torso) by different cofactors in 

appearance-based gait representation. To give more emphasis on dynamic areas and less 

on static areas, we also propose the DFT based frequency-domain gait entropy termed as 

EnDFT representation which is computed from frequency domain gait representation.   

We use the three most effective body parts with the entropy-based gait representation 

for gait recognition and totally discard the two less effective parts. Experiments are 

conducted on two comprehensive benchmarking databases: The OU-ISIR Gait Database, 

the Treadmill dataset B [23] with clothing variations and CASIA Gait Database, Dataset B 

[24] with clothing and carrying conditions. Experimental results show better performance 

compared with the others part-based and whole-based approaches. 

4.2 Pre-processing and Feature Representation 

The pre-processing including gait period estimation for the standard gait recognition 

is explained in section 2.1. The different gait feature representation techniques GEI, GEnI, 

DFT and EnDFT and example images are presented in section 2.2. 

4.3 Part Definition and Effective Part Selection 

Based on the recognition accuracy of each row of DFT gait features, Rokanujjaman 

et al. [104] defined three effective parts and two less effective parts and preliminary results 

are reported. For part definition and selection, the training subset of the OU-ISIR gait 

database, Treadmill dataset B [23] is used. The effectiveness of the proposed method was 

shown using the same database. The whole procedure of part definition and effective part 

selection is discussed in section 3.4.  
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4.4 Effective Part-based Features Extraction and Classification 

From the five parts of the human body when two parts are discarded dimension of 

the data is automatically reduced. Principal component analysis (PCA) is applied to each 

effective part for further reduction of the dimension. The dimension reduced features are 

used for gait identification. 

4.4.1 Effective part-based dimension reduced gait features 

The dimension of the represented gait features is usually higher than training data. 

The statistical dimension reduced approach such as PCA, linear discriminant analysis 

(LDA) [105] only preserves the features, which contribute the most.  

The part selection method (discussed in section 3.4) defined two less effective body 

parts. These parts may change frequently due to different cofactors, in particular, some 

challenging cofactors such as clothing variations and carrying objects. Discarding these 

two less effective body parts, it is possible to reduce the dimension of the gait features as 

well as increase the recognition performance. The system can reduce 47 % dimension by 

discarding the two less effective body parts as redundant. Therefore, it can be a 

considerable technique for representing the gait features in lower dimensional space.  

Each of these three effective parts is trained individually in the PCA and LDA 

subspace using the proposed EnDFT features to further reduction of the dimension. The 

dimension-reduced gait features are used for part-based gait identification. 
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4.4.2 Effective part-based classification 

Let a probe sequence P with m subsequences Pr {r = 1, .., m} and a gallery sequence 

G with n subsequences Gs {s = 1, ..., n}. The matching measure for the subsequences is 

simply chosen as the Euclidean distance between Pr and Gs (let dsub(Pr, Gs)). First, we 

compute the minimum distances for each of the probe subsequence Pr to a gallery sequence 

G is defined with ith body part as: 

 𝑑𝑖
𝑠𝑢𝑏(𝑃𝑟 , 𝐺) = [𝑑𝑖

𝑠𝑢𝑏(𝑃𝑟 , 𝐺𝑠]
𝑠

𝑚𝑖𝑛
 (4.1) 

Then, we compute the median of the minimum distances for each of the probe 

subsequence Pr as the distance between a probe P and a gallery G sequence is defined as: 

 𝐷𝑖(𝑃, 𝐺) = [𝑑𝑖
𝑠𝑢𝑏(𝑃𝑟 , 𝐺)]

𝑟

𝑚𝑒𝑑𝑖𝑎𝑛
 (4.2) 

4.5 Experimental Result and Discussion 

This section shows experimental results using different datasets. The experimental 

results show the effectiveness of the effective and less effective body parts for human gait 

recognition using proposed EnDFT features. 

4.5.1 Datasets 

We have used two benchmarking gait datasets: the OU-ISIR Gait Database, the 

treadmill dataset B [23] and CASIA Gait Database, dataset B [24] to evaluate the 

performance of the proposed approach against the clothing and carrying object cofactors. 
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4.5.1.1 The OU-ISIR Gait Database, the Treadmill Dataset B 

This dataset was chosen due to its largest clothing variations. Considering one of the 

most challenging cofactors: clothing, recent work [23] created the OU-ISIR Gait Database, 

the Treadmill Dataset B with large clothing variations. It includes 68 subjects with at most 

32 combinations of different types of clothing such as skirt, raincoat, down jacket, long 

coat, hat, parker, muffler, short pants, casual wears, regular pants, half shirt, full shirt etc. 

The whole dataset is divided into three subsets: training set, gallery set and probe set. In 

training set there are 446 sequences of 20 subjects (10 males and 10 females) with the range 

of 15 to 28 different combinations of clothing. The testing set (gallery and probe sets) 

consists of other sequences of the rest 48 subjects excluding the 20 training subjects. 

Gallery set containing only standard clothing type, i.e., regular pant and full shirt of 48 

subjects. Probe set containing 856 sequences of these 48 subjects considering all types of 

different clothing combinations excluding the standard one type. 

4.5.1.2 CASIA Gait Database, Dataset B 

This dataset was chosen due to its subject diversity with multiple sequences with 

clothing and carrying object cofactors. More specifically, this dataset comprises three 

cofactors normal walking sequences, carrying objects (i.e., carrying a bag) and only one 

clothing type (i.e., wear a bulky coat). There are total 124 subjects and each subject contain 

10 walking sequences. Based on the three cofactors the whole dataset is divided into three 

subsets. CASIASetA consists of six normal walking sequences where the subject does not 

carry a bag or wear a bulky coat. CASIASetB consists of two carrying-bag sequences and 

set CASIASetC consists of two wearing-coat sequences. The gallery set is constructed by 
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taking the first four sequences of each subject in CASIASetA (CASIASetA1). The probe 

set is the rest two sequences in CASIASetA (CASIASetA2), two sequences in CASIASetB 

and two sequences in CASIASetC. The gallery set is used as training set for CASIA Gait 

Database, Dataset B. 

Although we notice that the USF HumanID Gait Challenge Dataset [88] is also one 

of well-known benchmarking gait databases, we did not include it in our experiments due 

to smaller clothing variations than those with the OU-ISIR Gait Database, the Treadmill 

Dataset B [23], and the smaller number of sequences per subject per cofactor than that of 

CASIA Gait Database, Dataset B [24]. 

4.5.2 Experimental validation of three effective parts 

The human body is divided into five parts: three effective parts (EP i) {i = 1, 2, 3} 

and two less effective parts (LEPj) {j = 1, 2}. Figure 4.1 shows the recognition rate for 

each individual part separately. The consecutive merging or discarding effect of the 

effective and less effective parts is shown in Figure 4.2.  

It is observed from Figure 4.2 that when each of the three effective parts are 

combined then the recognition rate is increased dramatically and when each of the two less 

effective parts are combined with the other effective parts cumulatively then the 

recognition rate are decreased. Although the recognition rates of some effective parts are 

lower than the less effective parts, the combined performance of effective part is better. 

The reason is that the less effective parts recognize the similar subjects where the effective 

parts can recognize different individual with cofactors. 
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Figure 4.1 Part-wise recognition rate. 

 

 

 

 

 

Figure 4.2 Combining effect of the effective and less effective parts in overall recognition. 

4.5.3 Effective parts on different gait representations 

To show the further effectiveness of the proposed parts definition, we perform 

experiment for different gait representation techniques separately on both the OU-ISIR 

Gait Database, the Treadmill Dataset B and CASIA Gait Database, Dataset B. The 

Cumulative Matching Curve (CMC) of  Figure 4.3  shows the comparison of the whole-

based and the effective part-based recognition rate for different gait representation 
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techniques using the OU-ISIR Gait Database, the Treadmill Dataset B. On the other hand, 

Figure 4.4 shows the CMC curves comparing the whole-based and the effective part-based 

recognition rate for different gait representation techniques using CASIA Gait Database, 

Dataset B. Table I shows the rank - 1 recognition rate for the whole-based and the effective 

part-based methods using all representations. It also shows the reported result of the 

popular methods [24, 51, 65] using the CASIA Gait Database, Dataset B.  

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Comparison of the proposed effective part-based with whole-based methods 

using different gait representations (i.e., GEI, DFT, GEnI and proposed EnDFT) in the 

OU-ISIR Gait Database, the Treadmill Dataset B. 
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Figure 4.4 Comparison of proposed effective part-based with whole based methods using 

the different gait representations (i.e., GEI, DFT, GEnI and Proposed EnDFT) in CASIA 

Gait Database, Dataset B. 

It is obvious that the proposed effective part-based method produces always better 

results than other whole-based methods in all of the reported gait representation techniques 

for the OU-ISIR Gait Database, the Treadmill Dataset B and the whole CASIA Gait 

Database, Dataset B datasets except for the subset of CASIA dataset CASIASet2 (Table 

4.1). 
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Table 4.1 Comparison of proposed effective part-based with whole based methods using 

different gait representation. 

Methods / Datasets OU-ISIR CASIA Set A2 CASIA Set B CASIA Set C 

Yu et al. [24] (%) -- 97.60 52.00 32.70 

Han et al. [51] (%) -- 99.40 60.20 30.00 

Bashir et al. [65] (%) -- 100.00 78.30 44.40 

Whole GEI (%) 55.25 99.04 60.08 30.24 

Whole DFT (%) 58.06 99.04 64.92 32.66 

Whole GEnI (%) 58.87 98.56 80.64 33.47 

Whole proposed EnDFT (%) 62.15 98.56 83.87 39.51 

Proposed Parts+GEI (%) 64.01 98.56 75.00 41.93 

Proposed Parts+DFT (%) 68.49 96.65 79.03 42.74 

Proposed Parts+GEnI (%) 69.62 97.61 83.46 47.17 

Proposed Parts+Proposed EnDFT (%) 72.90 97.61 83.87 51.61 

 

 

4.5.4 Effect of frequency domain gait entropy features 

The proposed frequency domain gait entropy features (EnDFT) are compared with 

three others gait representations GEI, DFT, and GEnI in both the OU-ISIR Gait Database, 

the Treadmill Dataset B and CASIA Gait Database, Dataset B (CASIASetA2, CASIASetB, 

CASIASetC) datasets (Figure 4.5). The EnDFT gait features show much better 
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performance in all datasets except CASIAsetA2. The EnDFT highlights the most 

discriminative dynamic areas while minimizing the effect of the static areas. It was also 

reported in [73] that static areas can be over-fitted when the appearance is significantly 

changed by clothing and carrying cofactors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Whole-based methods comparison using proposed EnDFT representation with 

other existing representations (GEI, GEnI and DFT) in both datasets (the OU-ISIR Gait 

Database, the Treadmill Dataset B and CASIA Gait Database, Dataset B). 

 

(a) Whole-based methods on the OU-ISIR 

Gait Database, the Treadmill Dataset B 
(b) Whole-based methods on CASIASetA2 

(c) Whole-based methods on CASIASetB (d) Whole-based methods on CASIASetC 
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4.5.5 Effective parts with EnDFT feature on clothing complexity 

To find out the complexity of individual clothing of the OU-ISIR Gait Database, the 

Treadmill Dataset B, the training set is divided into two subsets: gallery with standard 

clothing and probe contains the rest clothing types. We compute the recognition rate for all 

clothing types and arrange them in descending order as shown in Figure 4.6. Figure 4.7 

shows the sample images according the sorted clothing types with gallery. 

Figure 4.6 Sorted clothing types according to recognition rate. 

Clothing types that are similar with gallery gives better recognition rate. On the other 

hand, recognition rate decreases for dissimilar clothing types. It is observed in Figure 4.6 

and Figure 4.7, that the recognition rate decreases with increasing the clothing complexity. 

For analyzing the clothing complexity and the effect of the proposed system, we make 

three groups of all the clothing types using k-means clustering techniques. The training 

probe subset is used here. Table 4.2 shows the three clusters with clothing Ids and cluster 

1 to cluster 3 are arranged from simple to complex clothing types. To evaluate the 

performance, we compare the proposed system with the system using whole DFT and 

EnDFT features for the test dataset. Figure 4.8 shows the comparison results. 

 

2YFGDKXZAL43_NP.58l7BTECHUS6JRMV 
Clothing Type ID 
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Table 4.2 Clothing clusters. 

Cluster ID Clothing IDs Percentages of clothing types 

Cluster 1 Y,X,Z 10.00 % 

Cluster 2 2,F,G,D,K,A,L,4,3,N,P, 5,8,I,7,T,E,U,S,6,J,R 73.33 % 

Cluster 3 H,B,M,C,V 16.67 % 

For relatively simple clothing types, whole-based methods are slightly better for 

recognition than the proposed method. However, for complex clothing types in cluster 2 

and cluster 3, the performance of the proposed method is much better than whole-based 

methods. It is noticeable that cluster 1 contains only 10 % of the clothing types and the 

performance of the proposed part-based EnDFT method is increasing with the increases of 

clothing complexity. Thus, it is validated that the proposed features can represent the gait 

with the most discrimination capability and the effective parts selection enhance the 

recognition rate with reduced data. It is also supported by the result shown in Table 4.1 that 

the proposed system outperforms in clothing and carrying conditions for CASIA Gait 

Database, Dataset B [24]. 

4.5.6 Comparisons with other methods 

The performance of the proposed effective parts with EnDFT features based method 

is compared with four widely used whole-based methods [51, 71, 72, 73] and one part-

based methods [25]. The whole-based methods [72] used GEI and [71] used frequency 

domain FFT gait features that are dimension reduced by the PCA. 
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Figure 4.7 Sample clothing images [25] of the OU-ISIR Gait Database, the Treadmill 

Dataset B according to sorted ID and clothing complexity. 
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Figure 4.8 Comparison of cluster-wise recognition rate. 

The LDA based methods [51] and [73] used GEI and GEnI gait features respectively. In 

the LDA based methods, we have used the training set for both datasets in the training stage 

where first the dimensions are reduced by PCA, and then LDA is applied. The part-based 

method [25] defined eight parts: four consecutive parts and four overlapping parts based 

on anatomical statistics on DFT gait features. The performance is evaluated using these 

eight parts without adaptive weighting.  
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Figure 4.9 Comparison with other methods on the OU-ISIR Gait Database, the Treadmill 

Dataset B. 

 

Figure 4.10 Comparison with other method on CASIA Gait Database, Dataset B. 
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4.5.7 Discussion 

The main contribution is to define the effective body parts definition with proposed 

frequency domain-based entropy gait features (EnDFT). The comparison results are shown 

in Figure 4.3 to Figure 4.5. 

The proposed method is always showing better performance for both the OUISIR 

Gait Database, the Treadmill Dataset B and CASIA Gait Database, Dataset B datasets. The 

experimental results are summarized in Table 4.1. The results clearly show that the 

proposed EnDFT based gait features produced better performance in comparison with 

others reported representation techniques. The proposed effective parts definition show 

much better result than whole-based representation on all of the gait representation 

techniques especially for the new proposed gait representation techniques (EnDFT). 

The proposed effective parts definition is very much effective in the presence of 

significant change of appearance due to challenging clothing cofactors on the both datasets. 

One interesting observation is that discarding the two less effective body parts i.e., using 

the three effective body parts with the EnDFT gait features is still give the same result as 

for the whole based representation in presence of carrying-bag conditions for CASIASetB 

dataset. Another observation is that in case of the OU-ISIR Gait Database, the Treadmill 

Dataset B (Figure 4.8) and CASIASetA2 dataset (Table 4.1) where normal clothing are 

used the whole based representation gives slightly better result than effective part-based 

method although the result is comparable. However, in real application, we cannot always 

expect uniform normal clothing. The performance of the proposed part-based EnDFT 

method increases with the increases of the clothing complexity (Figure 4.8). 
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4.6 Conclusion 

We propose the effective part-based gait identification using frequency domain-

based gait entropy features (EnDFT). To find out the effective body parts, we have 

proposed a more robust technique by dividing the whole body into small segments where 

each segment is a single row in this paper. Based on positive and negative effect of each 

segment, three effective parts and two less effective parts are defined. We have also 

investigated different gait representation techniques and the proposed a new frequency 

domain-based gait entropy features EnDFT. The proposed method outperforms other 

classical gait recognition algorithms and representation techniques in both the OU-ISIR 

Gait Database, the Treadmill Dataset B and CASIA Gait Database, Dataset B datasets. 

Since our part definition and effective part selection method is applicable to any types 

of the gait features which are represented as a set of point statistics (e.g., gait flow image 

[74], chrono-gait image [56], Masked-GEI [65]) without any changes. 
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 PART-BASED SPEED INVARIANT HUMAN GAIT 

IDENTIFICATION 

5.1 Introduction 

This chapter proposes a novel method that can reduce the intra-class difference that 

creates by walking speed changes. Gait is an effective behavioral biometric signature to 

recognize a person at a remote with low quality image sequence of non-cooperative person 

by inspecting their walking pattern. Among many cofactors, person’s walking speed 

variations due to different situation is one of the challenging artifacts that alters the gait 

pattern and reduce the recognition rate. The intra-class difference gradually rises by the 

person’s walking speed variation from slower to faster. If the training data set is small, then 

it fails to model the intra-class variations. Therefore, the performance degraded severely of 

the gait identification systems. The situation when some portion of human body affects due 

to speed changes, it is possible to recognize the person by considering the less affected 

body parts by neglecting parts that are more affected.   

Our objective is to design a robust model free approach for the gait recognition 

problem where the gait contaminated with cofactor of large walking speed changes. In this 

work, we reduce the effect of walking speed changes which affects the dynamic parts of 

gait by defining the gaits into six unequal parts and selecting the more effective parts using 

a lookup table dynamically. We minimize the intra-class variation by eliminating the more 

affected body parts depending the speed differences of gallery-probe pair, and thus increase 

the recognition rates.   

CHAPTER 5. 
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Experiments on largest walking speed variation OU-ISIR Treadmill Database A [29] 

and CASIA database C [30] is used to show the robustness, efficiency and performance of 

the proposed method. Our experimental results have also indicated that the proposed 

lookup table based effective part selection method outperforms the state-of-the-arts for 

cross speed gait recognition. 

5.2 Gait speed estimation and representation 

The publicly available popular large speed changes OU-ISIR dataset A [29] is frame 

size of 640 × 480 pixels and captured at 60 frames/second and the CASIA dataset C at 25 

frames/second of 240 × 320 pixels. Most of the literature of appearance-based approaches 

use silhouettes to represent the gait features. The first step is to extract human silhouettes 

by subtracting of earlier modelled background from the video frames. Each silhouette size 

is normalized into fixed size 128 × 88 pixels and registered based on the extracted regions 

height, and centre to find gait silhouette volume (GSV) [63]. We detect gait period Ngait by 

maximizing the autocorrelation from the size normalized and registered silhouettes as 

describe in section 2.1. Gait Energy Image (GEI) feature is used for walking speed 

estimation, part definition and selection because both the non-stationary parts (i.e. hands 

and legs) and stationary parts (head and torso) of the gait are clear in these features.  

5.2.1 Gait Representation 

The detail of Gait Energy Image (GEI) and Discrete Fourier Transform (DFT) gait 

representation is discussed in section 2.2.1. The images of these representation with 

different walking speed from the two datasets are shown in Figure 5.1.  
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(a) 

 

       (b) 

Figure 5.1 GEI representation of different speeds (a) OU-ISIR database A and (b) CASIA 

database C. 

5.2.2 Walking Speed Estimation 

Walking speed estimation of unknown gaits are done by using classifier from the 

training set that contains the different known walking speed of gaits. The unit of walking 

speed is km/h. The total number of silhouettes in a single gait period may vary with speed 

changes.  The average number of silhouettes per gait period and elapsed time is estimated 

from the training set of different speeds is represented in Table 5.1.  The Table 5.1 clearly 

shows that the total number of silhouettes increases with speed changes from faster to 

slower. The CASIA dataset C has recorded at 25 f/s and treadmill dataset OU-ISIR set A 

at 60 f/s. The elapsed time for a gait period is calculated as [82] by utilizing earlier known 

and estimated information of the datasets as:  
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Time =

Nframe/gait period

frame rate
 in second  (5.1) 

The CASIA does not mention any absolute walking speed for their dataset. It 

contains three dissimilar walking speed as fq for quick, fn for normal and fs for slow. By 

using the elapsed time of a gait period and compare with the information estimated for OU-

ISIR dataset, we could find the approximated walking speed of fs, fn and fq are 4 km/h, 5 

km/h and 7 km/h respectively.  

Table 5.1 Estimation of number of frames and elapsed time of a gait period of different 

speeds. 

OU-ISIR Gait Dtatbase A CASIA Gait Database C 

Speed 

(km/h) 

Nframe/gait period Time 

(second) 

Speed  Nframe/gait period Time 

(second) 

2 88 1.47 fs 29 1.16 

3 75 1.25 fn 26 1.04 

4 69 1.15 fq 23 0.90 

5 63 1.05 

6 59 0.98 

7 55 0.92 

 

5.3 Classification 

The gallery set has c subjects or classes and has Ngait sub-sequences of each gait 

sequence. For matching criterion, the Euclidean distance is used. It is assumed that 𝑥𝑘
𝑔

  with 

k=1 to Ngait and 𝑥𝑗
𝑝
 with j=1 to Ngait are the sub-sequences for the gallery xg and the probe 

xp gait sequences. The Euclidean distances 𝑑𝑠𝑢𝑏𝑠(𝑥𝑝, 𝑥𝑔) are computed among probe and 

gallery for Ngait sub-sequences as follows: 

 𝑑𝑠𝑢𝑏𝑠(𝑥𝑝, 𝑥𝑔) = ‖𝑥𝑗
𝑝 − 𝑥𝑘

𝑔
‖ (5.2) 
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As [13], the median value of the minimum distances of the combinations of sub-

sequences of each probe and gallery is defined as: 

 𝑑𝑚𝑒𝑑𝑖𝑎𝑛(𝑥𝑝, 𝑥𝑔) = 𝑚𝑒𝑑𝑖𝑎𝑛𝑗[
𝑚𝑖𝑛

𝑘
{𝑑𝑠𝑢𝑏𝑠(𝑥𝑝, 𝑥𝑔)}] (5.3) 

Then we select the minimum distance for a probe to all c subjects of the gallery as 

follows: 

 𝐷𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑔=1
𝑐 𝑑𝑚𝑒𝑑𝑖𝑎𝑛(𝑥𝑝, 𝑥𝑔) (5.4) 

5.4 Human body Parts Division and Selection 

To reduce intra-class difference and determine the discriminate feature for improving 

the recognition performance we will divide the human body parts [93].  Experimentally 

dividing the human body row wise into several sections, we measure the impact of minor 

section here a single row as recognition rate of the training set. The training set of OU-ISIR 

database A [29] is utilized for human body division horizontally and selection the more 

effective parts. 

5.4.1 Parts Division 

Stepwise recognition rate is measured from the top row of GEI, combine immediate 

next lower single row in each step, and continue the procedure until reach the bottom row. 

The recognition rate in percentage for each step beside the GEI is shown in Figure 5.2. 

From this Figure, some steps the recognition rate increases (positive contribution) and 
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some steps the rate decreases (negative contribution). Considering the states of 

contributions, we can divide the human gait in to some unequal parts. 

 

Figure 5.2 Human gait unequal parts division [93]. 

 

We examine the curve in Figure 5.2, from top row (here local minima) until local 

maxima is obtained. After the first local maxima, we again traverse for next local minima, 

calculate the average among the initial local maxima and local minima and find out the 

position of the average value to divide the body there. Again, search for another local 

maxima, compute the average value with the previous local minima, find out the position 

as before and divide the body there. We will continue this process until we reach the bottom 

of the GEI. After completing the procedure, the human gait is unequally partitioned into 

six different parts (Figure 5.2). The steps of implementation are presented in Algorithm 1. 
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Table 5.2 Different combination of parts (1-6) with cross speed recognition rate within 

bracket (%) [93]. 

  Probe   

Gallery 

 

2km/h 

 

3 km/h 

 

4 km/h 

 

5 km/h 

 

6 km/h 

 

7 km/h 

2 km/h 

1, 2, 3, 4, 5, 

6 (100%) 

1, 2, 3 

(100%) 

1, 2, 3, 5, 6 

(100%) 

1, 2 (100%) 

1, 2, 3 (94.4%) 

1, 2 (94.4%) 

1 (94.4%) 1 (83.3%) 1 (72.2%) 

3 km/h 

1, 2, 3, 5 

(100%) 

1, 2, 3 

(100%) 

1, 2 (100%) 

1, 2, 3, 4, 5, 6 

(100%) 

1, 2 (100%) 

1, 2, 3, 4, 5, 6 

(94.4%) 

1, 2, 3 (94.4%) 

1, 3, 6 (94.4%) 

1, 2 (94.4%) 

1, 2, 5 (83.3%) 

1, 2 (83.3%) 

1 (83.3%) 1 (72.2%) 

4 km/h 

1, 2, 3, 6 

(94.4%) 

1, 2, 3 

(94.4%) 

1, 2 (94.4%) 

1, 3, 6 (83.3%) 

1, 3 (83.3%) 

1, 3, 4, 5, 6 

(94.4%) 

1, 3, 4, 5 

(94.4%) 

1, 3, 4 (94.4%) 

1, 3 (94.4%) 

1, 2, 3 (94.4%) 

 

1 (77.8%) 1 (77.8%) 

5 km/h 

1, 2 (88.9%) 1, 2, 6 (83.3%) 

1, 2 (83.3%) 

1, 2, 3 (100%) 1, 3, 4, 5, 6 

(100%) 

1, 3, 4, 5 

(100%) 

1, 3, 4 (100%) 

1 (88.9%) 

1, 6 (88.9%) 

1 (88.9%) 

6 km/h 

1 (88.9%) 1, 2 (94.4%) 1, 2 (72.2%) 

1 (72.2%) 

1 (100%) 1, 2, 3, 4, 5, 6 

(100%) 

1, 2, 3, 4, 5 

(100%) 

1, 2, 3, 4 

(100%) 

1, 6 

(94.4%) 

1 (94.4%) 

7 km/h 

1 (72.2%) 1, 2, 6 (55.6%) 

1, 2 (55.6%) 

1 (55.6%) 

1 (77.8%) 1 (88.9%) 1, 3, 4 

(94.4%) 

1, 3 (94.4%) 

1, 4 (94.4%) 

1(94.4%) 

1, 3, 4 

(94.4%) 

1, 3 

(94.4%) 

1, 4 

(94.4%) 

1 (94.4%) 

Table 5.3 Parts (1-6) selection lookup table for cross speed gait recognition [93]. 

       Probe  
 

Gallery 

 

2 km/h 

 

3 km/h 

 

4 km/h 

 

5 km/h 

 

6 km/h 

 

7 

km/h 

2 km/h 1, 2, 3, 4, 

5, 6 

1, 2, 3, 5 1, 2, 3 1  1  1  

3 km/h 1, 2, 3, 5  1, 2, 3, 4, 

5, 6 

1, 3, 6  1, 2 1 1  

4 km/h 1, 2, 3 1, 3, 6  1, 3, 4, 5, 

6  

1, 2, 3  1  1  

5 km/h 1 1, 2 1, 2, 3  1, 3, 4, 5, 

6 

1  1  

6 km/h 1  1 1 1  1, 2, 3, 4, 

5, 6  

1 

7 km/h 1  1 1  1  1 1, 3, 4  

~ 

~ 
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5.4.2 Effective Parts Selection 

In the previous sub-section describes, the human gait is experimentally segmented 

into six unequal sections depending on the states of contributions of single row. For 

determining the effectiveness of parts in walking speed changes, these partitions are used 

for cross speed recognition on training set. The recognition rate in percentages are 

measured by combining of six parts. From the experiment, we noted that for some 

combinations the recognition rate decreased and increased for some combinations. The 

combinations that shows high recognition rate are listed with percentages of rate within 

bracket in Table 5.2. For some cell in the Table 5.2, the same recognition rate is found for 

several combinations of parts.  It is also found that, for cross speed (like gallery 2 km/h, 

probe 3 km/h, and gallery 3 km/h, probe 2 km/h) different combinations are highest 

recognition rate i.e. more effective. So, we could select more effective sections out of the 

six, only the common parts of the combinations are kept for the cross-speed gait recognition 

task (Table 5.3) by discarding the remaining parts as less effective. The implementation 

steps of parts definition are presented in Algorithm 1. 

5.5 Experiments 

In our experiments, publicly available widely used benchmark datasets the OU-ISIR 

gait database A [29] and CASIA gait database C [30] are used. For human body division 

and selection procedure, huge walking speed variation treadmill OU-ISIR database A is 

used for training. The dataset is a collection of 34 subjects with 8 females and 26 males. It 

also contains a large scale of speed variation from two km/h to seven km/h. In training 

dataset to estimate get period elapsed time, gait parts division and effective part selection; 
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nine persons are selected from the database. The rest other twenty-five persons are used to 

evaluate performance of gait recognition [29]. In the database, for each walking speed two 

video sequences has recorded of each person. The training set of 108 video sequences of 

nine persons with six different speed are utilized from the OU-ISIR database A.  

For the proposed method’s performance evaluation is carried out by 25 subjects with 

a known walking speed as gallery set and for probe set 300 sequences of these 25 subjects 

with six different walking speed are used excluding the nine training subjects.  

Table 5.4 Cross speed recognition rate (%) of the proposed method with GEI on the OU-

ISIR gait database A.  

   Probe 

Gallery 

2 

km/h 

3 

km/h 

4 

km/h 

5 

km/h 

6 

km/h 

7 

km/h 

2 km/h 100 92 94 88 84 74 

3 km/h 92 100 88 92 84 74 

4 km/h 78 100 100 98 94 88 

5 km/h 86 100 96 100 86 84 

6 km/h 74 80 86 94 100 90 

7 km/h 76 72 82 88 94 100 

Table 5.5 Cross speed recognition rate (%) of the proposed method with DFT on the OU-

ISIR gait database A.  

   Probe 

Gallery 

2 

km/h 

3 

km/h 

4 

km/h 

5 

km/h 

6 

km/h 

7 

km/h 

2 km/h 100 94 92 88 86 72 

3 km/h 92 100 90 94 88 72 

4 km/h 88 98 98 98 94 84 

5 km/h 84 96 94 100 94 90 

6 km/h 72 78 86 96 100 90 

7 km/h 72 70 80 90 92 100 

 

 

I~ 

I~ 
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Table 5.6 Cross speed recognition rate (%) of the proposed method with GEI+PCA on the 

OU-ISIR gait database A.  

   Probe 

Gallery 

2 

km/h 

3 

km/h 

4 

km/h 

5 

km/h 

6 

km/h 

7 

km/h 

2 km/h 100 92 94 88 84 74 

3 km/h 94 100 88 92 86 74 

4 km/h 80 100 100 98 96 88 

5 km/h 84 98 96 100 88 84 

6 km/h 76 80 86 94 100 90 

7 km/h 76 72 82 86 92 100 

 

Table 5.7 Cross speed recognition rate (%) of the proposed method with DFT+PCA on the 

OU-ISIR gait database A.  

   Probe 

Gallery 

2 

km/h 

3 

km/h 

4 

km/h 

5 

km/h 

6 

km/h 

7 

km/h 

2 km/h 100 92 92 92 84 72 

3 km/h 94 100 92 96 86 76 

4 km/h 90 100 100 98 94 88 

5 km/h 84 96 96 100 92 86 

6 km/h 78 82 88 98 100 90 

7 km/h 74 72 84 92 94 100 

 

 

Table 5.8 Cross speed recognition rate (%) of the proposed method with GEI+PCA+LDA 

on the OU-ISIR gait database A.  

   Probe 

Gallery 

2 

km/h 

3 

km/h 

4 

km/h 

5 

km/h 

6 

km/h 

7 

km/h 

Average 

2 km/h 100 98 98 92 90 82 93.99 

3 km/h 98 100 98 98 92 86 95.33 

4 km/h 90 100 100 96 90 82 93 

5 km/h 90 100 94 100 96 96 96 

6 km/h 88 90 96 96 100 90 93.33 

7 km/h 88 82 90 94 100 100 92.33 

 

 

 

 

I~ 

I~ 

~ 
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Table 5.9 Cross speed recognition rate (%) of the proposed method with DFT+PCA+LDA 

on the OU-ISIR gait database A.  

   Probe 

Gallery 

2 

km/h 

3 

km/h 

4 

km/h 

5 

km/h 

6 

km/h 

7 

km/h 

2 km/h 100 98 98 90 82 74 

3 km/h 100 100 98 92 94 84 

4 km/h 80 98 100 96 94 84 

5 km/h 88 96 94 100 100 98 

6 km/h 74 82 94 96 98 90 

7 km/h 80 84 84 90 98 100 

 

 

Table 5.10 Cross speed recognition rate (%) without DCM method [74] on the OU-ISIR 

gait database A.  

  Probe 

Gallery 

2 

km/h 

3 

km/h 

4 

km/h 

5 

km/h 

6 

km/h 

7 

km/h 

2 km/h 100 96 84 72 72 72 

3 km/h 100 100 96 80 76 60 

4 km/h 76 96 96 92 92 80 

5 km/h 76 76 96 96 100 96 

6 km/h 64 68 80 96 100 96 

7 km/h 56 68 80 96 100 100 

 

Table 5.11 Cross speed recognition rate (%) with DCM method [74] on the OU-ISIR gait 

database A.  

  Probe 

Gallery 

2 

km/h 

3 

km/h 

4 

km/h 

5 

km/h 

6 

km/h 

7 

km/h 

Average 

2 km/h 100  100 88 80 80 84 88.67 

3 km/h 100  100 100 88 84 80 92 

4 km/h 88  96 100 92 92 84 92 

5 km/h 96  96 96 96 100 96 96.67 

6 km/h 84   84 96 96 100 100 93.33 

7 km/h 84  88 84 96 100 100 92 

 

I~ 

~ 

~ 
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We also evaluate the proposed method with CASIA gait database C [30] that contains 

three different walking speeds, namely slow (fs), normal (fn) and quick (fq) of 153 subjects. 

Out of the 153 subjects, 33 subjects are used for absolute speed estimation as training and 

120 subjects are for testing. We used the same parts division and selection procedure of 

OU-ISIR database A for the CASIA database C to validate our proposed method. All the 

experimental results of different gait representations and methods are listed in Table 5.4 to 

Table 5.11. The recognition rate shows in all the tables are at rank 1.    

5.6 Result and Discussion 

5.6.1 Treadmill OU-ISIR dataset A 

The recognition rate of the proposed part definition and selection method achieves 

promising performance at rank-1 for cross speed gait recognition of OU-ISIR dataset, 

which are listed in Table 5.4 to Table 5.9, and compared with the method without and with 

DCM [82] that are given in Table 5.10 and Table 5.11. 

It is clearly comparable that Table 5.8 (proposed method with GEI+PCA+LDA) 

shows better cross-speed recognition rate than Table 5.11 (with DCM [82]).  The minimum 

average recognition rate of the proposed method is 92.33% whereas it is 82.67% with DCM 

[82]. So, the minimum average recognition rate is about 10% more with proposed method.  

The maximum average rate is 96% for proposed methods which is slightly (0.67%) lower 

than with DCM methods.  
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Figure 5.3 Recognition rate in % of different methods with large speed variation of OU-

ISIR set A. 

 

Figure 5.4 Recognition rate in % of different methods with small speed variation of OU-

ISIR set A. 

The proposed part-based intra-class variation reduction method are also compared 

with Tsuji et al. [29], and Tanwongsuwan et al. [84] for small and large speed variation 

dataset. The comparative performance evaluations are presented in Figure 5.3 and Figure 

5.4. In dataset A slower walkers are selected as gallery and vice versa in Set B. For large 
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speed variation Tanwongsuwan et al. [84] are used 2.5 km/h and 5.8 km/h, and Tsuji et al. 

[29], DCM method [82] and our proposed method are used 2 km/h and 6 km/h as gallery 

and probe. In Figure 5.3, for large speed variations the proposed method’s performance is 

much better than [82], but significantly greater than [29] and [84].  

For small speed variations, Liu et. Al. [52] proposed time normalization method and 

used approximately 1 km/h speed difference with a combination of 3.3 km/h and 4.5 km/h 

speed variation. Similarly, Kusakunniran et al. [82] the DCM method, Tsuji et al. [29] the 

speed transformation model and our proposed part-based method match between 3 km/h 

and 4 km/h. The comparative results are presented in Figure 5.4 and our proposed method 

achieved 100% recognition rate for Set B but for set A it is slightly less than [82]. As a 

whole, the evaluation of performance of our proposed part-based method that reduce intra-

class variation is effective and gives better recognition rate. 

5.6.2 The CASIA gait database C 

The CASIA gait database C [30] is used to validate the proposed method in this 

research. Table 5.12 shows the comparison of gait recognition performance on the CASIA 

gait database C with other existing methods and our proposed part-based method at rank-

1. For gallery normal and slow walking speed to probe normal and slow walking speed, 

our proposed method performs 100% recognition rate.  
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Table 5.12 Comparison of cross speed recognition rate (%) on the CASIA gait database C 

using different methods with GEI representation. 

Gallery, Probe fn, fn fn, fs fn, fq fs, fs fq, fq 

M
et

h
o

d
s 

Unprojective [54] 97 84 88 - - 

WBP [106] 99 86 90 - - 

AEI [58] 88 89 90 - - 

Pseudoshape [107] 98 82 92 - - 

Wavelet packet [108] 93 83 85 - - 

Orthogonal Projections [109] 98 80 80 - - 

NDDP [110] 97 85 74 - - 

Gait curves [111] 91 78 80 - - 

Without DCM [82] 96 87 89 95 91 

With DCM [82] 97 92 93   

The proposed method 100 97 88 100 98 

For cross speed, gallery normal to probe slow walking speed, proposed method gives 

highest 97% correct recognition rate. However, our proposed method shows comparatively 

lower recognition rate for gallery normal and probe quick walking speed. Nevertheless, the 

proposed method achieves comparable performance and some gallery-probe it shows much 

better recognition rate over existing methods. 

5.7 Conclusion 

The proposed part-based speed invariant gait recognition system could manage the 

situation of large intra-class variations created to the huge changes of walking speed. The 

body parts containing dynamic features are greatly affected with speed changes while the 

parts cover static features are less or not affected. The proposed method increases the 

discriminating features by selecting less affected parts (static area) dynamically (using 

lookup table) by discarding more affected body parts (dynamic area) for walking speed 

changes. We can infer from our experimental result that for cross-speed gait recognition, 

the correct recognition rate is higher when the speed changes are smaller in gallery and 

probe, but the recognition rate shrinks gradually with the increasing of walking speed 
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difference. The experimental results are reported in different tables and figures on two 

benchmark databases OU-ISIR treadmill A and CASIA dataset B.   
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 ADAPTIVE PARTS SELECTION FOR PART-

BASED HUMAN IDENTIFICATION CONSIDERING CLOTHING 

AND CARRYING CONDITIONS AND SPEED CHANGES  

6.1 Introduction 

Part-based methods primarily define the parts of human gait manually, 

experimentally [21, 95, 104], into components [17] or based on anatomical statistics [25]. 

After defining the parts, significant features are extracted from the early defined parts or 

select the most effective parts statically or dynamically for gait recognition. The reason to 

select the most effective parts and reject the redundant part to overcome the complications 

arises due to various covariate conditions. Cofactors like, clothing and carrying conditions 

speed changes also affect some region of the body. So, the rejection of the more affected 

body parts can contribute to performance enhancement. 

The main contribution of the proposed system in this chapter is to investigate the 

selection procedure of body parts adaptively and independently for each subject on the 

impacts to the covariate condition on each part. Legendre and Zernike moments based 

adaptive parts selection methods are used in the proposed system. A common framework 

for clothing and carrying condition and speed changes is evaluated with four benchmarking 

gait datasets. The experimental results of the proposed system show comparatively better 

or very similar performance with some previous methods. 

 

CHAPTER 6. 
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6.2 Pre-processing and Feature Representation 

The pre-processing including gait cycle estimation for the standard gait recognition 

is explained in Preprocessing section 2.1. The details of different gait feature representation 

techniques GEI, GEnI, DFT and EnDFT, and example images are presented in section 2.2. 

6.3 Part Definition and Adaptive part selection 

6.3.1 Parts definition 

The whole procedure of part definition for clothing and carrying condition is 

discussed in section 3.4. Based on the recognition accuracy of each row of GEI gait 

representation, Rokanujjaman et al. [104] defined the human gait into five unequal parts. 

Similarly, for speed changes the human body is divided into six unequal parts and 

the procedure is discussed in section 5.4 and this is reported in [93]. 

6.3.2 Adaptive parts selection 

In this research, Legendre moments and Zernike moments has been used for selecting 

effective human body part adaptively in the presence of covariate conditions such as 

clothing and carrying and speed changes gait recognition. The details of Legendre and 

Zernike moments is presented in section 2.4. The whole procedure to adaptively select 

effective parts is presented in Algorithm 2. Legendre moments and Zernike moments are 

invariant to geometric transformations. However, they are not invariant to the covariate 

conditions. 
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Algorithm 2 

Based on Legendre moments and Zernike moments an algorithm WEIGHT-

CALCULATION is written to compute the weight of different sub-parts of probe image. 

Algorithm WEIGHT-CALCULATION takes two sets of images, G = (𝐺1, 𝐺2, … . 𝐺𝑛 ) for 

gallery images and P=(𝑃1) for probe image as inputs. k sub-parts of gallery and probe 

images are used in the algorithm. Parts definition is described in section 3.4 and 5.4. 

The algorithm requires GL[] and GZ[] arrays to hold the Legendre moments and 

Zernike moments for gallery, PL[] and PZ[] arrays to hold the Legendre moments and 

Zernike moments for probe. Each part gallery to gallery Euclidean distances are calculated 

and inserted into EL[] and EZ[] arrays based on Legendre moments and Zernike moments. 

Similarly, Each part probe to gallery Euclidean distances are calculated and inserted into 

DL[] and DZ[] arrays based on Legendre moments and Zernike moments. The procedure 

EUCLIDEAN-DISTANCE returns ordinary Euclidean distance. 

The algorithm maintains AL[] and AZ[] arrays to store average of Euclidean 

distances. It also maintains ML[] and MZ[] arrays to store minimum of Euclidean 

distances. The weight of the probe parts are returned as WL[] and WZ[] arrays from the 

algorithm. The parts with weight 1 are used in probe gait recognition and parts with weight 

0 are rejected as redundant. The following algorithm uses two auxiliary procedures 

LEGENDRE-MOMENTS() and ZERNIKE-MOMENTS(), whose pseudo-codes are given 

in section 2.4.1 and 2.4.2.  
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WEIGHT-CALCULATION(G, P) 

1. n=G.length 

2. For i= 1 to k 

3.     GL[n, i] = LEGENDRE-MOMENTS (p, q, G, n, i) 

4.     GZ[n, i]= ZERNIKE-MOMENTS (p, q, G, n, i) 

►p+q is the order of Legendre moments  

►p is the order and q is the repetition of Zernike moments 

5. End of for loop 

6. c=0  

7. For j=1 to n 

8.     For l = 1 to n 

9.         If j==l 

10.             continue 

11.         c=c+1 

► distance for Legendre moments  

12.         EL[c, k]= EUCLIDEAN-DISTANCE (GL[j,k], GL[l, k])  

► distance for Zernike moments  

13.         EZ[c, k]= EUCLIDEAN-DISTANCE (GZ[j,k], GZ[l,k]) 

14.     End of inner loop 

15. End of outer loop 

16. AL[k]=MEAN(EL[c,k]) 

17. AZ[k]=MEAN(EZ[c,k]) 

18. For i= 1 to k 

19.     PL[i] = LEGENDRE-MOMENTS (p, q, P, i) 

20.     PZ[i]= ZERNIKE-MOMENTS (p, q, P, i]) 

21. End of for loop 

22. For j=1 to n 

23.     DL[j, k]= EUCLIDEAN-DISTANCE(PL[k], GL[j,k]) 

24.     DZ[j, k]= EUCLIDEAN-DISTANCE (PZ[k], GZ[j,k]) 

25. End of for loop 

26. ML[k]=MIN(DL[n,k]) 

27. MZ[k]=MIN(DZ[n,k]) 

28. For j=1 to k 

29.     If ML[j] <= AL[j] 

30.         WL[j]=1 
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31.     Else 

32.         WL[j]=0 

33.     If MZ[j] <= AZ[j] 

34.         WZ[j]=1 

35.     Else 

36.         WZ[j]=0 

37. End of for loop 

38. Return WL and WZ 

 

6.4 Matching Measure 

The method of matching measure used for experiments section in this chapter is 

described in section 4.4.2 and section 5.3. 

6.5 Experiments 

This section shows experimental results using different datasets. The experiments 

carried out in this work to show the effectiveness of the adaptive parts selection for human 

gait recognition using GEI, GEnI, DFT and EnDFT features. 

6.5.1 Datasets 

The details of the datasets used in this study are discussed in this section. The 

following four benchmarking gait datasets with most of the challenging cofactors are used 

in our experiment. 

(i) The OU-ISIR Gait Database, the treadmill dataset A [29] 

(ii) The OU-ISIR Gait Database, the treadmill dataset B [23] 

(iii) The CASIA Gait Database, dataset B [24] 

(iv) The CASIA Gait Database, dataset C [30] 
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6.5.1.1 The datasets containing clothing and carrying cofactors 

The OU-ISIR Gait Database, the Treadmill Dataset B [23] is chosen due to its 

massive variation in clothing cofactors which is one of the most challenging artifacts. The 

dataset is a collection of 68 subjects with at most 32 combinations of different types of 

clothing such as skirt, raincoat, down jacket, long coat, hat, parker, muffler, short pants, 

casual wears, regular pants, half shirt, full shirt etc. This whole dataset is divided into three 

subsets: training set, gallery set and probe set. This training set holding 446 video 

sequences of 20 subjects (10 males and 10 females) with the range of 15 to 28 different 

clothing combinations are used for part definition in training phase. The training dataset is 

not used in validation phase. Other two subsets (gallery and probe) of OU-ISIR dataset B 

are used in testing phase. Gallery set contains only standard clothing type, i.e., regular pant 

and full shirt of 48 subjects. Probe set contains 856 sequences of these 48 subjects 

considering all types of different clothing combinations excluding the standard one. 

The CASIA Gait Database, Dataset B [24] is chosen due to its subject diversity with 

multiple sequences and multiple cofactors. The dataset contains normal walking sequences, 

carrying objects (i.e., carrying a bag) and only one clothing type (i.e., wear a bulky coat). 

The total 124 subjects contributed to the dataset. There are 10 walking sequences with the 

cofactors are captured from each of the subjects. This dataset is used only for validation of 

the proposed method. 

6.5.1.2 The datasets containing speed changes 

The treadmill OU-ISIR database A [29] with a large scale of walking speed variations 

ranging from two km/h to seven km/h is used in this work. This dataset comprises of 34 
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subjects with 8 females and 26 males. In the dataset, considering each walking speed two 

video sequences is captured for each person. In case of OU-ISIR dataset A, 108 video 

sequences of nine persons with six different speeds are used for part division during 

training.  The OU-ISIR dataset A containing video sequences of other 25 persons (out of 

34 persons) are used to evaluate the performance of the proposed approach.  

The CASIA Gait Database, Dataset C [30] is developed on the basis of three different 

walking speeds, namely slow (fs), normal (fn) and quick (fq). The dataset contains 153 

subjects where each subject has 4 normal, 2 slow and 2 quick walking sequences. This 

dataset is used only for validation of our proposed method. 

6.5.2 Result and discussion 

Extensive experiments are carried out on CASIA B and OU-ISIR B database on our 

defined partition system. We have selected body parts adaptively using Legendre and 

Zernike moments-based weight calculation. The results are shown in Figure 6.1 to Figure 

6.8 as a cumulative matching curve (CMC) on different gait representation technique 

without and with linear discriminant analysis (LDA).  

Figure 6.1 shows that GEI in combination with LDA perform better than other 

combinations and achieved 83.02% recognition rate at rank-1. Another combination 

DFT+LDA presents almost similar recognition rate. However, GEI representation shows 

poor recognition rate. In this case, for Dataset CASIA B with clothing and carrying 

cofactors, Legendre moments is used for adaptive parts selection. 
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Figure 6.1 The CMC on CASIA B with clothing and carrying condition for adaptive parts 

selection using Legendre Moments. 

 

The highest recognition rate 74.3% is achieved in Figure 6.2 for EnDFT+LDA. On 

the other hand, the recognition rate of other representation techniques is found decreasing 

gradually. In this case, for Dataset OUISIR B with bulk clothing variations, Legendre 

moments is used for adaptive parts selection. 
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Figure 6.2 The CMC on OUISIR B with clothing and carrying condition for adaptive parts 

selection using Legendre Moments. 

 

Figure 6.3 shows that GEI+LDA perform better than other single and combined 

representations and obtained on average 80.69% recognition rate. Next very close 

recognition rate is provided by DFT+LDA and EnDFT+LDA. However, GEI 

representation shows poor recognition rate. In this case, for Dataset CASIA B with clothing 

and carrying cofactors, Zernike moments is used for adaptive parts selection. 

Figure 6.4 shows that EnDFT+LDA perform better than other single and combined 

representations and obtained on average 71.85% correct recognition rate. However, GEI 

representation shows unfortunate recognition rate. In this case, for Dataset OUISIR B with 

huge clothing variation, Zernike moments is used for adaptive parts selection. 
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Figure 6.3 The CMC on CASIA B with clothing and carrying condition for adaptive parts 

selection using Zernike Moments. 

 

 

Figure 6.4 The CMC on OUISIR with clothing and carrying condition for adaptive parts 

selection using Zernike Moments. 

In Figure 6.5, CMC curve is plotted for different speeds as gallery and all speeds as 

probe. 3km and 4km gallery shows the highest recognition rate and other decreases due to 
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increasing speed difference from gallery to probe. In this case, for Dataset OUISIR A with 

speed changes, Legendre moments is used for adaptive part selection. GEI representation 

with LDA is used for gait recognition.  

 

Figure 6.5 The CMC on OUISIR A with speed changes condition for adaptive parts 

selection using Legendre Moments. 

 

Similarly, for Dataset OUISIR A, Figure 6.6 shows for different speeds as gallery 

and all speeds as probe. 4km and 5km gallery shows the highest recognition rate. GEI 

representation with LDA is used for gait recognition and Zernike moments for adaptive 

part selection.  

Figure 6.7 shows the CMC curve for Dataset CASIA C where Legendre moments is 

used for adaptive part selection. GEI representation with LDA is used for recognition. The 

recognition rate is lowest for gallery slow to probe quick speed and vice versa. The other 

speed combination shows better results.  
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Figure 6.6 The CMC on OUISIR A with speed changes condition for adaptive parts 

selection using Zernike Moments. 

 

 

Figure 6.7 The CMC on CASIA C with speed changes condition for adaptive parts 

selection using Legendre Moments. 

The CMC curve for Dataset CASIA C with GEI representation is shown in Figure 

6.8.  Zernike moments is used for adaptive part selection and LDA is used dimensionality 
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reduction. For fq2fq the recognition rate is 100% and for all other combination, the 

recognition rate is similarly changed as in Figure 6.7.  

 

Figure 6.8 The CMC on CASIA C with speed changes condition for adaptive parts 

selection using Zernike Moments. 

 

The proposed methods are evaluated over four datasets under different covariate 

cofactors. Table 6.1 shows the results for the OUISIR B and CASIA B dataset. The results 

achieved by our method and most of the existing methods are outlined in Table 6.1. The 

comparison is carried out on the basis of different feature extraction methods and part 

selection methods. The method used in [80] performs better than our proposed method. 

However, the proposed method outperforms all the other compared methods achieving 

highest 83.02% recognition rate based on GEI+LDA and Legendre moments for CASIA B 

dataset and 82.24% recognition rate based on DFT+LDA and Legendre moments for the 
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same dataset. In case of another dataset (OUISIR B), best performance (74.30%) is 

obtained so far with respect to the performance of the other existing methods. 

Table 6.1 Comparative results for the OUISIR B and CASIA B dataset. 

Method Part selection 

(Moment-

based) 

Dataset CCR 

(%) 

Method Part 

selection 

Dataset CCR 

(%) 

EnDFT+LDA 

(proposed) 

Legendre  OUISIR B 74.30 Hawas, A.R. [116] - CASIA B 64.1 

DFT+LDA 

(proposed) 

Legendre OUISIR B 68.11 L. Yao et al. [117] - CASIA B 68.01 

EnDFT+LDA 

(proposed) 

Zernike OUISIR B 71.85 

 

Jingran Su et al. 

[118] 

- CASIA B 75.03 

EnDFT 

(proposed) 

Zernike OUISIR B 66.94 

 

Guoheng Huang et 

al. [119] 

- CASIA B 81.50 

GEI+LDA 

(proposed) 

Legendre  CASIA B 83.02 Maryam Bukhari et 

al. [120]  

- CASIA B 90.32 

DFT+LDA 

(proposed) 

Legendre CASIA B 82.24 

 

PCA+LDA+GEI 

[51] 

 OUISIR B 54.32 

GEI+LDA 

(proposed) 

Zernike CASIA B 80.69 Baseline+GEI [72]  OUISIR B 55.26 

DFT+LDA 

(proposed) 

Zernike CASIA B 80.22 

 

PCA+LDA+GEnI 

[73] 

 OUISIR B 57.36 

Bashir et al. 

[65] 

- CASIA B 74.2 Whole DFT [23]  OUISIR B 58.06 

Rokanujjaman, 

M. [21] 

Local maxima 

and minima 

CASIA B 77.69 Part-based [25] 

Without weight 

 OUISIR B 58.06 

Gupta, S.K. 

[115] 

- CASIA B 73.8 Part based EnDFT 

[21] 

Local 

maxima 

and 

minima 

OUISIR B 72.78 

 

Table 6.2 shows the comparison of gait recognition performance on the CASIA C 

gait database with other existing methods and our proposed methods. The results reveal 

that the proposed methods outperform all the competing methods in terms of all the speed 

combinations, except in fn2fs and fn2fq where the methods in [114] perform slightly better 

than the proposed methods. However, the recognition rate for fs2fs, fq2fq, fs2fn, fs2fq, 

fq2fn and fq2fs is not found in [114]. The recognition rate of the proposed method turns to 
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the highest 100% for fn2fn and fq2fq. On the other hand, recognition rate 89.3% and 94.6 

is found for large speed variation (fs2fq and fq2fs).  The recognition rate for other speed 

combinations are also shown in Table 6.2. It should be noted that both Legendre moments 

and Zernike moments based adaptive parts selection approaches show very similar 

performance.   

Table 6.2 Comparison of cross speed recognition rate (%) on the CASIA C gait database 

using different methods. 

              Gallery, Probe 

Methods 

fn2fn fn2fs fn2fq fs2fs fq2fq fs2fn fs2fq fq2fn fq2fs 

Unprojective [54] 97 84 88 - -     

Orthogonal projections 

[109] 

98 80 80 - -     

NDDP [110] 97 85 74 - -     

Gait curves [111] 91 78 80 - -     

Without DCM [82] 96 87 89 95 91     

With DCM [82] 97 92 93       

M. Rokanujjaman et al. 

[112]  

100 97 88 100 98     

AEI+2DLPP [58] 88.9 89.2 90.2       

WBP [106] 99 86.4 89.6       

Orthogonal projection 

[109] 

98 80 80       

HSD [12] 97 86 89       

Wavelet packet [108] 93 83 85       

Pseudo shape [107] 98.4 91.3 93.7       

Gait curves [111] 91 65.4 69.9       

HTI [30] 94 85 88       

SDL [113] 95.4 91.2 92.5       

M. H. Khan et al. [114] 100 99 100       

Proposed GEI+LDA with 

Legendre Moments 

100 97.1 99.2 99.2 100 98.1 89.3 98.1 94.6 

Proposed GEI+LDA with 

Zernike Moments 

100 97.1 99.2 99.2 100 98.4 89.3 98.1 94.6 

Table 6.3 shows the gait recognition performance comparison between our proposed 

method and other existing methods over OUISIR A gait database. All the methods are 

evaluated for 6 different walking speeds. In our previous work [112], highest recognition 

rate 96% is obtained for 5km gallery and for DCM [82] it is 96.67% for 5km gallery. In 

~ 
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our proposed methods, the correct recognition rate is 93.67% and 94% with Legendre 

moment and Zernike moment-based parts selection respectively for 5km gallery. It is 

realized from the table that recognition rate is decreasing for large speed variations from 

gallery to probe and increasing for small speed differences.  

Table 6.3 Average gait recognition performance comparison between our proposed method 

and other existing methods over OUISIR A gait database. 

Methods Gallery Average recognition rate (%) 

Effective part selection [112] 

 

 

2km 93.99 

3km 95.33 

4km 93 

5km 96 

6km 93.33 

7km 92.33 

Without DCM [82] 2km 82.67 

3km 85.33 

4km 88.67 

5km 90 

6km 84 

7km 83.33 

With DCM [82] 2km 88.67 

3km 92 

4km 92 

5km 96.67 

6km 93.33 

7km 92 

Proposed method with 

Legendre moments 
      

 

2km 87 

3km 93.67 

4km 90.67 

5km 93.67 

6km 81.67 

7km 75.33 

Proposed method with Zernike 

moments 

2km 90.33 

3km 93.33 

4km 91 

5km 94 

6km 83 

7km 72.67 
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6.6 Conclusion 

In this thesis human body parts are defined experimentally and selected adaptively 

using Legendre and Zernike moments for the purpose of gait recognition. Having obtained 

different number of body parts, GEI, GEnI, DFT and EnDFT representation is computed 

and exploited as gait features. For speed changes the dynamic parts are responsible for 

intra-class variation and static parts are useful as an invariant feature. So, only the GEI 

representation is used for speed changes dataset because the other representation highlights 

the dynamic body parts and lessen the static parts.  

The proposed parts selection methods are compared with previously published 

methods. The recognition rates of our proposed methods confirm the effectiveness and 

validity over the four comprehensive benchmarking gait datasets under the clothing and 

carrying conditions and speed changes. The proposed methods perform better in most of 

the cases compared with the results of the other recognition methods verified on the 

OUISIR A, OUISIR B, CASIA B and CASIA C gait database. 
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 CONCLUSIONS AND FUTURE WORKS 

7.1 Conclusions 

In this research, the goal is to investigate the novel and robust methods of gait feature 

representation, humans body parts definition and effective body part selection to reduce 

the intra-class variations caused by different covariate conditions. In this thesis, we address 

the most challenging clothing and carrying covariate conditions and walking speed changes 

and have been studied their effects on human gait recognition. 

First, in real life people can dress themselves with different clothing in different 

season and festival. Similarly, they can carry different types of bag for their needs. So, 

human gait can be altered by different clothing and carrying bag these made gait 

recognition more complicated and challenging.  

Second, in practice, people can walk freely in any speed in many situations. So, 

walking speed is a factor to contaminate human gait and affect the recognition rate. 

Walking speed changes can affect different body parts, when speed increases, legs lift up 

higher, stride length becomes lengthier, arms swing faster, and gait cycle is reduced. The 

possible solutions are i) modeling or projecting gaits across different walking speeds; ii) 

finding speed invariant gait features; iii) discarding contaminated body part/parts.  

This thesis has proposed novel and robust gait parts definition and parts selection 

methods and a novel gait representation technique. The summaries and benefits of 

proposed methods are presented in each chapter’s conclusion section. This section 

summarizes them as key concept in brief. 

CHAPTER 7. 
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The method in CHAPTER 3 is proposed for human gait identification considering 

clothing conditions. Here, we proposed the gait partition and parts selection methods. The 

whole gait is partitioned into five unequal parts based on local maxima and local minima 

considering the contribution of each row of GEI as recognition rate. The three parts are 

selected among five parts for gait recognition by rejecting two most affected parts due to 

clothing cofactor. The procedure is described in section 3.4. 

In CHAPTER 4, a novel gait representation technique entropy based DFT (EnDFT) 

is proposed. This feature representation technique is evaluated with two widely used 

database with clothing and carrying conditions. The validation of parts definition and parts 

selection (previous chapter) is done in section 4.5.2.   

The parts definition and look-up table-based parts selection procedure for speed 

changes is proposed in CHAPTER 5. The whole human body is partitioned into six unequal 

parts based on local maxima and local minima considering the contribution of each row of 

GEI as recognition rate. The benefits of look-up table for parts selection are to select 

different body parts with speed changes. 

A common frame work for clothing and carrying conditions and speed changes is 

proposed in CHAPTER 6. For selecting body parts adaptively, we proposed Legendre 

moments and Zernike moments to calculate the weights of each part. The next step is to 

measure the distances for all gallery using the weights and compute the average for each 

part and used as threshold for parts selection. If the weight of certain part of a probe is 

greater than the threshold value, discard that part otherwise accept for gait recognition. 
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7.2 Future works 

We will further investigate on the combination of our effective part selection 

methods and state-of-the-art gait features in future work. Moreover, adaptive fusion of all 

the methods on feature level, score level and decision level will be another future extension 

of this work. In CHAPTER 6, we consider clothing conditions and walking speed changes 

as different datasets with different subjects. So, we have partitioned the gait of the two 

covariate conditions separately but the effective parts are selected adaptively with the same 

algorithm. In real situation these covariate conditions may happen together. To overcome 

the situations and for actual applications it is necessary to consider the covariate conditions 

jointly and it may be another future work. 
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