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ABSTRACT 

Most of the natural happenings can be present by nonlinear modeling. The soliton theory is a 

highly effective section of nonlinear sciences that includes soliton, multi-soliton, rational, 

breather line, breather kinky, lump and rogue wave solutions. Such solutions are essential to 

realizing the internal properties of the nonlinear models. This dissertation presents exact 

traveling wave solutions of the three nonlinear models such as the (2+1) Bogoyavlenskii’s 

breaking soliton (BBS) equation, the (2+1)-dimensional Benjamin-Bona-Mahony-Burgers 

(BBMB) equation and the (3+1)-dimensional Sharma–Tasso–Olver-like (STOL) equation by 

applying Hirota bilinear method. By this method, we construct the bilinear form and find the 

interaction solutions of the above three models. We determine the multi-soliton and their 

interaction solutions of the BBS model and STOL model. Various properties of the obtained 

solutions are illustrated clearly with a number of 3D plot, 2D plot, density plot, curve plot and 

contour plot by choosing suitable parametric values via the computational software Maple 18.  
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Chapter One 

Introduction 

1.1. Literature review  

Nonlinear evolution equations (NLEEs) applicable not only the areas of mathematical 

physics, but also other branches of nonlinear science for instance nonlinear optics, fluid 

dynamics, atmospheric, geochemistry, mathematical biology, ecology, chemical kinetics, 

chemical physics, plasma physics, oceanic scientific problems and others [1-20]. Therefore, 

searching for exact travelling wave solutions of NLEEs is a crucial concern for scientists and 

researchers. Soliton solution is a special type of traveling wave solution that is caused by a 

cancellation of nonlinear and dispersive effects in the medium. In mathematics and physics, a 

soliton is a self- reinforcing solitary wave packet that maintains its shape while it propagates 

at a constant velocity. In 1844, the Scottish John John Scott Russell was the first to observe 

the solitary waves [21]. The bulge of water, that he observed and called “great wave of 

translation”, was traveling along the channel of water for a long period of time while still 

retaining its shape. This single-humped wave of the bulge of water is now called solitary 

waves or solitons. The hot topics of solitons are lump, rogue, and breather waves. 

Lump wave is one of the most important parts of solitary waves and has diverse 

properties. This wave is localized in all directions in the space which decays rationally and 

moves with a uniform velocity [22]. In 1977, the simplest lump wave solution was primarily 

reported by Manakov et. al. [23]. Up to now, more and more researcher has paid attention to 

the study of lump wave [24-28]. 

The rogue waves are localized in both time and space. Its amplitudes are at least two 

times higher than those of their surrounding waves, have been observed in the deep ocean. 
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This wave also arises in the fields of the ocean [29], atmospheric dynamics [30], Bose-

Einstein condensates [31] etc.. It is well known that storms and tsunamis caused by typhoons 

can be predicated hours in advance, but the oceanic rogue waves suddenly appear from 

nowhere and disappear without a trace [32]. In 1965, the concept of freak rogue in the ocean 

was first introduced by Draper [33]. In 1983, a rational rogue wave solution was first 

introduced by a British applied mathematician Howell Peregrine [34]. 

Breather waves have been observed to be periodically or quasi-periodically localized 

in the time or space and also can be use to elaborate rogue wave phenomena [35]. In 

accordance with the distribution and propagation direction, breathers can be divided into the 

Akhmediev breathers [36] and Kuznetsov-Ma breathers [37]. Akhmediev breathers are space-

periodic breather solutions, while Kuznetsov-Ma breathers are time-periodic breather 

solutions. 

For investigating the characteristics of solitary waves, there are various reliable and 

effective approaches such as the )/( GG -expansion method [38], the generalized Kudryashov 

method [39], the Hirota bilinear method [40], the )2/)(tan(  -expansion scheme [41], the 

tan-cot method [42], the tanh-coth method [43], the direct algebraic method [44], and others 

[45-70]. 

 Among the previous methods [38-70], the Hirota bilinear method is the best method 

for finding exact traveling wave solutions of the nonlinear model. This method was firstly 

discovered by a Japanese scholar Hirota, in 1971 [40]. This method becomes effective and 

reliable within a short time and used to derive soliton, multi soliton, lump wave, rogue wave, 

breather wave, and exciting localized formation of soliton solutions [71-78]. 
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1.2. The objectives 

The main purpose of this dissertation is to determine multi-solitons, lump, rogue, 

breather waves and their interaction solutions of the nonlinear models the (2+1) 

Bogoyavlenskii’s breaking soliton (BBS) [79], the (2+1)-dimensional Benjamin-Bona-

Mahony-Burgers (BBMB) [80] and the (3+1)-dimensional Sharma–Tasso–Olver-like (STOL) 

[81] equations by applying Hirota bilinear method.  

1.3. The proposal of the dissertation  

The total works of my dissertation are divided into eight chapters. Some review 

methods are included in chapter two, three and four, and then our main method is focused in 

chapter five, six, seven and eight with some applications to nonlinear models.   

The ambition of chapter two [2] is to seek novel exact traveling wave solutions 

together with topological soliton, periodic cusp soliton, periodic bell solutions of the well-

recognized Cahn-Allen model [54, 55, 60] and diffusive predator-prey model [61, 62] via 

MSE method. 

 In chapter three [1], we incorporated optical soliton solutions that clarify the 

physical structures as beat phenomena, oscillating rhythm, oscillation together increasing and 

decreasing rhythm, and oscillation jointly increasing and decreasing rhythm of the 

Lakshmanan-Porsezian-Daniel (LPD) model [16] by using unified method [70].  

In chapter four [5], the generalized Kudryshov method [93, 95] is applied to 

determine exact solitary wave solutions for the time-fractional generalized Hirota–Satsuma 

coupled KdV (HSC KdV) model [82, 83]. Therefore, plentiful exact traveling wave solutions 

are achieved for this model. The succeeding chapters contain our main method with 

applications. 
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In chapter five [6, 7], the (2+1)-dimensional Bogoyavlenskii’s breaking soliton (BBS) 

[79] and the (2+1)-dimensional Benjamin-Bona-Mahony-Burgers (BBMB) models [80] are 

considered and reduced to bilinear form by using the Hirota bilinear scheme. We analytically 

construct the collision of among lump waves, periodic waves, and one-, two-stripe soliton 

solutions. Finally, we graphically present the nature of the collision solutions of the model in 

3D and contour plots. 

In chapter six [3], based on the Hirota bilinear form [40] and a “rational-cos-cosh’’ 

type test function we will study new interaction solutions among the lump, periodic and kinky 

waves for the (3+1)-dimensional Sharma–Tasso–Olver-like (STOL) model [81]. Various 

types of interaction solutions even hybrid lump waves and fission fusion properties of the 

STOL model are also constructed. All dynamic properties of the obtained solutions are plotted 

with 3D and contour plots. 

In chapter seven [4], the multi-soliton solution and their interaction solution of the 

(2+1) dimensional Bogoyavlenskii’s breaking soliton (BBS) equation [79] are investigated by 

applying the Hirota bilinear approach [40]. From this multi-soliton solution, various forms of 

single kinky-lump type breather solitons, double kinky-lump type breather solitons, the 

collision of a kink line soliton with a kinky-type breather soliton, and collision of a pair of 

double kinky-lump breather solitons will be investigated. All the results are depicted by 

enough graphics. 

In chapter eight, the Hirota bilinear integral technique [40] is applied to execute n-

soliton solutions of the (3+1)-dimensional Sharma–Tasso–Olver-like (STOL) model [81]. We 

derive kinky-lump breather, combo line kink and kinky-lump breather, and a pair of kinky-

lump breather wave solutions that degenerate from two-, three- and four-solitons respectively 

with both elastic/non-elastic fusion-fission of solitons. All special properties of these collision 

solutions are illustrated clearly with 3D and contour diagrams by Maple 18. 
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Chapter Two 

Traveling wave solutions for two models by using the MSE Scheme 

Acknowledgement 

In this chapter [2], by employing modified simple equation (MSE) scheme we estimate the 

presence of stable kink soliton and kinky-periodic rogue wave solutions; unstable singular 

kink wave solutions of the biological dynamical models as a Cahn-Allen model and a 

diffusive predator-prey model.  This model frequently occurs in various nonlinear science 

including quantum physics, plasmas and biophysics. We present some novel exact explicit 

solutions of the exponential form of both Cahn-Allen and diffusive predator-prey models with 

some free parametric values. We also derive particular solutions from the explicit solutions 

selecting some definite values of the free parametric values. As a result, kink, singular kink 

and kinky-periodic lump wave surfaces are achieved of the solutions. Lastly, the variety and 

graphic representations of the composition make the models dynamic. Stable and unstable 

situations are explained in detail from the analysis of the profiles.   

2.1. Introduction 

The mathematical representing of happenings in nature can be revealed by differential 

equations. It is well familiar that abundant categories of the physical occurrences in the field 

of fluid dynamics, quantum physics, chemical physics, electricity and plasmas are 

demonstrated by nonlinear models and the existence of solitary waves in nature is frequently. 

However, nonlinear behavior is a challenging due to some minor changes in time-related 

parametric values; it is not comfortable to manage the non-linear representative of the 

organism very quickly. Nonlinearity is responsible for the development of local waves and 
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has the ability to carry energy without wastage which is a very fascinating matter [10, 11]. 

Otherwise, rapidly growing the spread of infection may cause a disaster state in a community. 

To tackle the unavailable state or to remain a suitable state, we have to learn the dissimilar 

types of solutions of the dynamical system in a model of Cahn-Allen or any type of predator-

prey model. As in tragedy state waves or to keep emerges location, the height and width of 

population size is very essential. If we resolve the model of dynamical systems of such 

difficulties by applying diverse approaches, we can find the best approach of appreciative 

such potential disasters and then earnings necessary precautions. Thus, the concern becomes 

more challenging and hence decisive solutions are needed. The solutions of the equation have 

a crucial impression on mathematical physics and engineering. Recently, there has been a 

tremendous increased to find the exact solutions of nonlinear models. Various effective 

schemes have been reputed and enriched, such as the bilinear scheme [40], the )2/)(tan(  -

expansion scheme [41], the Darboux transformation scheme [45], the )/( GG -expansion 

scheme [46-47], the exp- ))((  -expansion scheme [48], the extended F-expansion scheme 

[49], the simplest equation scheme [50],  the MSE scheme [51–53], exp-function scheme [54],  

first integral scheme [55] and so on [56-62]. All most all of the above schemes are contingent 

on computational software except the MSE scheme. The MSE scheme is a very effective and 

reliable procedure settled successfully by Vitanov [51] and the reference therein [52-53]. 

The ambition of this chapter is to seek novel exact solutions together with topological soliton, 

periodic cusp soliton, periodic bell solutions of the well-recognized Cahn-Allen model [54, 

55, 60] and diffusive predator-prey model [61, 62] via MSE scheme. 
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2.2. Description of the MSE scheme   

Consider a general form of a nonlinear model as 

,0),,,,,( xxxtxt uuuuuH                      (2.1) 

with real function ),()( txuu   and H  is a polynomial of ),( txu . We present the key steps 

of the scheme as follows:  

Step 1: Let us combine the real variables x  and t  by a combined variable   as 

),(),( utru   ,. wtrP                     (2.2) 

where knjmilP ˆˆˆ   and kzjyixr ˆˆˆ   with real constants ,l ,m ,n  wave amount k  and 

wave velocity w . 

By the above relation the Eq. (2.1) converted to the ordinary differential equation as follows 

 0),,(  uuuG  ,                     (2.3) 

where G  is a polynomial in )(u  and its derivatives. 

Step 2: Consider the trial solution of Eq. (2.3) as  

,
)(
)()(

0

in

i
i S

SAu 






 


 
                                 (2.4) 

with real constants ),....,1,0( niAi   and unknown function )(S . 

Step 3: By balancing the derivative of highest order and nonlinear terms in Eq. (2.3), we can 

find the value of n  in Eq. (2.4). 

Step 4: From Eq. (2.4) and Eq. (2.3), we get a polynomial of ))(/)((  SS   and its derivatives 

and ,))(( iS   ),,2,1,0( ni  , and then equating the coefficients of  ,))(( iS   ),,2,1,0( ni   

equal to zero. This produces gives an algebraic system which can be solved to obtain 

),,,2,1,0( niAi   )(S . Then we can find the solution of the Eq. (2.1). 
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Remark: In comparison the MSE scheme with the simple equation scheme [50], it is seen 

that simple equation scheme depend upon an auxiliary equation (Riccati equation) but MSE 

scheme is independent and can perform directly without help of any auxiliary equation. On 

the other hand, simple equation gives results which are special case of modified equation 

scheme. 

2. 3. Illustrative Examples 

Here, we include two examples to make clear the suitability of the MSE scheme to solve 

nonlinear models declared above. 

2.3.1. Example-1: Traveling wave solution of Cahn-Allen Model 

 Let us consider nonlinear model given as 

uuuu m
xxt  .                   (2.5) 

For 3m , Eq. (2.5) suits to Cahn-Allen model [54, 55, 60]. This model occurs in various 

scientific areas including biophysics, quantum physics and plasmas. To solve this model, we 

use transformation wtkx  , for wave amount k  and wave velocity w . Taking help of this 

transformation, Eq. (2.5) converts to an ordinary differential equation  

032  uuukuw .                  (2.6) 

Balancing 3u  with u   we receive the unknown order of solution as 1n . Hence the trial 

solution Eq. (2.4) takes the form as 

)(
)()( 10 


S
SAAu


 .                   (2.7) 

Now, we can compute the terms:   

2

11 )(
)(

)(
)()( 







 











S
SA

S
SAu ,                  (2.8) 
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3

1211 )(
)(2

)(
)()(3

)(
)()( 







 

















S
SA

S
SSA

S
SAu .                (2.9) 

Putting Eq. (2.7)-Eq. (2.9) in the Eq. (2.6) and equating coefficients of same powers of 
)(
)(




S
S  , 

we gain:  

Coefficient of   :)( 0S  00
3
0  AA ,               (2.10) 

Coefficient of   :)( 1S 0)()()(3)( 111
2
01

2   SASwASAASAk ,          (2.11) 

Coefficient of   :)( 2S     0)(3)()(3)( 22
101

32
1   SAASSAkSwA ,          (2.12) 

Coefficient of   :)( 3S   0)()2( 322
11  SkAA .              (2.13) 

From Eq. (2.10), we achieve ,00 A ,1 1  and from Eq. (2.13) we can receive the values 

01 A  and thus kA 21   and 

)3(
)3()13(3

10
2

10
2
0

2

AAwk
AAwwAk

S
S








.               (2.14) 

Integrating we have  

).
)3(

)3()13(3exp(
10

2
10

2
0

2

1 
AAwk

AAwwAkcS



                 (2.15) 

From Eq. (2.12), we also get, )
)3(

)3()13(3exp(
3

3

10
2

10
2
0

2

10

2
1 

AAwk
AAwwAk

AAw
kcS





 .        (2.16) 

Integrating Eq. (2.16) one time, we have  

2
10

2
10

2
0

2

10
2
0

2

4
1 )

)3(
)3()13(3exp(

)3()13(3
3 c

AAwk
AAwwAk

AAwwAk
kcS 





  .        (2.17) 

Using Eqs. (2.16) and (2.17), we attain to the solution 
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)
)3(

)3()13(3exp(
3

3
10

2
10

2
0

2

10

2
11

0 
AAwk

AAwwAk
AAw

kAcAu






  

                












 2
10

2
10

2
0

2

10
2
0

2

4
1 )

)3(
)3()13(3exp(

)3()13(3
3 c

AAwk
AAwwAk

AAwwAk
kc  ,          (2.18) 

where )
2

3( txk   with kw
2

3
 . Here 1c  and 2c  are arbitrary constants. 

Case-I: For the set kAA 2,0 10  , we get  

22

22

22

4
1

2

22

3
1

)
)

)3exp(
3

3

)
)

)3exp(
23

c
wk

kw
kw

kc
wk

kw

w
kcu












,             (2.19) 

where )
2

3( txk   with kw
2

3
 . 

If we choose 22
1

4

2 3
3

kw
ckc


 , then we arrive to the solution  
















 



 2

2222

2
3tanh1

2
3

wk
kw

wk
kwu ,                   (2.20) 

where )
2

3( txk   with kw
2

3
 . 

If we choose 22
1

4

2 3
3

kw
ckc


 , then we arrive to the solution  
















 



 2

2222

2
3coth1

2
3

wk
kw

wk
kwu ,                           (2.21)  

where )
2

3( txk  . 
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Since 1c  and 2c  are free parameters, for various selections of 1c  and 2c  it provides abundant 

novel exact solutions of the Cahn-Allen model. The achieved solutions from Eq. (2.20) and 

Eq. (2.21) are depicted graphically in Fig-2.1 and Fig-2. 2. 

Fig-2.1: Kink wave of the solution Eq. (2.20) 
with 1k . 

Fig-2.2: Single-kink soliton solution of the 
Eq. (2.21) with 1k . 

Case-II: For the set ,10 A  kA 21  , we get  

22

2

2

4
1

2

2

3
1

)
)23(

))23(6exp(
)23(6

3

)
)23(

))23(6exp(

23
231

c
kwk

kwwk
kwwk

kc
kwk

kwwk

kw
kcu

















,          (2.22) 

for )
2

3( txk   with kw
2

3
 . Here 1c  and 2c  are arbitrary parametric values. 

If we choose 
)23(6

3
2

1
4

2 kwwk
ckc


 , then we attain to the solution as 





























 

)23(
))23(6tanh1

)23(
)}23(6{21

2

22

kwk
kwwk

kwk
kwwku ,          (2.23) 
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where )
2

3( txk   with kw
2

3
 . 

If we choose 
)23(6

3
2

1
4

2 kwwk
ckc


 , then we attain to the solution as 





























 

)23(
))23(6tanh1

)23(
)}23(6{21

2

22

kwk
kwwk

kwk
kwwku ,          (2.24) 

where )
2

3( txk   with kw
2

3
 . 

Since 1c  and 2c  are free parameters, for different selections of 1c  and 2c  it provides abundant 

novel exact solutions of the Cahn-Allen model. The achieved solutions from Eq. (2.23) and 

Eq. (2.24) are similar in diagrams Fig-2.1 and Fig-2.2 respectively. So, we exclude these 

equations for convenience.  

Again with commercial software, we can also get various solutions of the Cahn-Allen model 

(solving from Eqs. (2.11) and (2.12)).  

For the set of solution ,00 A kA 21  , we get )2/exp()( kbaS   . 

Thus arrive to the solution  

b
kk

a

btxu












2
sinh

2
cosh

),(




 with  2/3txk  .           (2.25) 

If we consider )2exp(/ cba  , then Eq. (2.25) reduces to well known solution 















  ctxtxu

2
3

2
1tanh1

2
1),( .             (2.26) 

For the set ,10 A kA 21  , we get )2/exp()( kbaS   . 

Hence arrive to the solution  
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b
kk

a

btxu













2
sinh

2
cosh

1),(


 with  2/3txk  .           (2.27) 

If we consider )2exp(/ cba  , then Eq. (2.27) reduces to well known solution 















  ctxtxu

2
3

2
1tanh1

2
1),( .              (2.28) 

For the set ,10 A kA 21  , we get )2/exp()( kbaS   .  

Hence we attain to the solution 

b
kk

a

btxu












2
sinh

2
cosh

1),(




 with  .2/3txk            (2.29) 

If we consider )2exp(/ cba  , then Eq. (2.26) reduces to well known solution 















  ctxtxu

2
3

2
1tanh1

2
1),(  .             (2.30) 

Since a  and b  are free parameters, for different selections of a  and b  it provides abundant 

novel exact solutions of the Cahn-Allen model. Choosing )2exp(/ cba   we get special 

type solution like Eq. (2.28) and Eq. (2.30), but for other choose a  and b  in different way we 

can get dissimilar type of solutions. Thus Eq. (2.28) and Eq. (2.30) are particular type of our 

solutions. Graphs of the solutions Eq. (2.25), Eq. (2.27) and Eq. (2.29) represent kink type 

wave propagation (like Fig-2.1) for same positive/negative values of the arbitrary constants 

1c  and 2c . But to get single soliton like wave propagation (like Fig-2.2) from the same 

solution, we have to pick opposite values of arbitrary constants 1c  and 2c .  
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2.3.2. Example 2: A diffusive predator-prey model  

In the predator-prey model including any type of natural disaster, the cycle can be reflected as 

a flow that may be periodic or remain unchanged like soliton and may be considered as a 

nonlinear wave phenomenon allied to a large amount of significance in modern biophysics. 

Here, we deliberate a model of two combined nonlinear models relating the spatio-temporal 

kinetics of a predator-prey model [61] 










3

32)1(
vmvkuvvv

uvuuuuu

xxt

xxt




               (2.31) 

with positive constants ,k , m  and  . Research has been done from several angles to find a 

solution to the predator-prey model [61, 62]. For further convenience, to visualize the kinetics 

of the dispersive predator-prey model have expected the relations as m  and 

1/1  k . 

Hence the Eq. (2.31) converted to 










3

32)/1(
vvkuvvv

uvuukuuu

xxt

xxt




              (2.32) 

Analogously, we bring in the variable wtx  , and make the transformation 

)(),( utxu  , to convert Eq. (2.32) as the following form:  











0
0)/1(

3

32

vvkuvvcv
uvuukuucu




              (2.33) 

for  0c . 

To solve the Eq. (2.33), consider the relation /uv   to convert the system to a single 

equation and we finally attain, 
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032  ukuuucu  .                (2.34) 

Balancing 3u  and u   in Eq. (2.34), yields 132  mmm . So Eq. (2.34) has the 

following solution 

)(
)()( 10 





 aau  and 01 a ,               (2.35) 

where 0a  and 1a  are constants and need to be determined. Inserting Eq. (2.35) in Eq. (2.34) 

and equating the coefficient of same powers of   ,)( i  3..,,1,0i  and setting each of them 

is identical to zero; we have an algebraic system as below 

03
00

2
0  aaka  , 

0)()()23()( 1101
2
011     aakaaaawa ,  

     ,0)()3()()(3 22
10

2
111    aakawaa  

   .0)(2 33
11  AA  

From first and last equation of the above algebraic system, we get three types of solutions 

2,0 10  aa  and )4(
2
1 2

0  kka , 21 a  and )4(
2
1 2

0  kka , 

21 a . 

Case1: When we consider 00 a  and 21 a . 

Set-1: For the solution 00 a  and 21 a , we get other parametric values 

)43(
4
2 2  kkw  and .)(

)2(
3
1

21




kw
ecc


  

Using these parametric values in Eq. (35), we can find the solution of the Eq. (32) as follows 
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)sinh(cosh
)2(

3
2

12

2

 



cc

kwcu                (2.36) 

where  tkkx )43(
4
2 2    and .)2(

3
1  kw   

Set-2: For the solution 00 a  and 21 a , we get remaining parametric values 

)43(
4
2 2  kkw  and 




)2(
3
1

21)(
kw

ecc


 . 

Using these parametric values in Eq. (2.35), we can find the solution of the Eq. (2.32) as 

follows 

)sinh(cosh
)2(

3
2

12

2

 



cc

kwcu ,               (2.37) 

where  tkkx )43(
4
2 2    and  )2(

3
1 kw  . 

Case-2: When we consider )4(
2
1 2

0  kka  and 21 a .
 

Set-1: For the solution )4(
2
1 2

0  kka  and 21 a , we get remaining parametric 

values )43(
4
2,

2
1 2  kkkw  and 




)432(
6
2

21

2

)(



kkw

ecc . 

Using these parametric values in Eq. (2.35), we can find the solution of the Eq. (2.32) as 

follows 

)sinh(cosh
)432(

3
1)4(

2
1

12

2
22










cc
kkwc

kku ,            (2.38) 

where  tkkx )43(
4
2 2    or ktx

2
1

  and  )432(
6
2 2  kkw . 
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Set-2: For the solution )4(
2
1 2

0  kka  and 21 a , we get remaining parametric 

values )43(
4
2,

2
1 2  kkkw  and 




)432(
6
2

21

2

)(



kkw

ecc . 

Using these parametric values in Eq. (2.35), we can find the solution of the Eq. (2.32) as 

follows 

)sinh(cosh
)432(

3
1)4(

2
1

12

2
22










cc
kkwc

kku ,            (2.39) 

where  tkkx )43(
4
2 2    or ktx

2
1

  and  )432(
6
2 2  kkw . 

Case-3: When we consider )4(
2
1 2

0  kka  and 21 a . 

Set-1: For the solution )4(
2
1 2

0  kka  and 21 a , we get remaining parametric 

values )43(
4
2,

2
1 2  kkkw  and 




)432(
6
2

21

2

)(



kkw

ecc . 

Using these parametric values in Eq. (2.35), we can find the solution of the Eq. (2.32) as 

follows 

)sinh(cosh
)432(

3
1)4(

2
1

12

2
22










cc
kkwc

kku ,            (2.40) 

where  tkkx )43(
4
2 2    or ktx

2
1

  and  )432(
6
2 2  kkw . 

Set-2: For the solution )4(
2
1 2

0  kka  and 21 a , we get remaining parametric 

values )43(
4
2,

2
1 2  kkkw  and 




)432(
6
2

21

2

)(



kkw

ecc . 
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Using these parametric values in Eq. (2.35), we can find the solution of the Eq. (2.32) as 

follows 

)sinh(cosh
)432(

3
1)4(

2
1

12

2
22










cc
kkwc

kku ,            (2.41) 

where  tkkx )43(
4
2 2    or ktx

2
1

  and  )432(
6
2 2  kkw . 

If we plot Eq. (2.36) with particular choose of the constants such that 042  k , then we 

achieved progress of spaces as kink type that is population density is stable and lies between 

two asymptotic state 0u  to 85.0u  with ,121  wcc 2k  (see Fig 2.3(a)). But if 

we set the constants such that 042  k , then most of the times population are stable 

except some times and periodic (see Fig 2.3(b) with ,121  wcc 1k ). On the other 

hand when 21 corc negative, then density of species unstable and increases unexpectedly (see 

Fig 2.3(c) with ,1,1 21  wcc 2k ). Fig 2.3(d): perspective view of Eq. (2.37) for 

,121  wcc 1k . The other solution gives the same type of situation with similar 

conditions on the parametric values. So we avoid the similar figures again.  
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Fig-2.3(a) Kink wave view of Eq. (2.36) for 
,121  wcc 2k . 

Fig-2.3(b) Kinky-periodic lump wave 
view of Eq. (2.36) for  wcc 21  
,1 1k . 

Fig-2.3(c) Singular-kink soliton view of 
Eq. (2.36) for ,1,1 21  wcc  

2k . 

Fig-2.3(d) Kinky-periodic lump wave 
view of Eq. (2.37) for  wcc 21  
,1 1k . 
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2.4. Comparison 

Here, we compare our solutions with the solutions of other researchers obtained by some 

renowned schemes as exp-function scheme, first integral scheme and Bernoulli sub-equation 

function scheme. The details are included as follows: 

a) Comparison with Exp-function scheme Ref. [54]:  Ugurlu [54] obtained some 

solutions of the Cahn-Allen model via exp-function scheme in which solutions ,8u 9u  are 

identical with our solution Eq. (2.25) when ,1b 0ba   and the other solutions are different 

with their solutions (For more see the Ref. [53]).  

b) Comparison with first integral scheme Ref. [55]:   Tascan and Bekir [55] 

obtained some solutions of the Cahn-Allen model via first integral scheme in which solutions 

Eq. (2.20) are identical with our solutions Eq. (2.25) (when in our study ,1 ba  

2/1k  and in their study 00 c ) and ,8u 9u  are identical with our solutions Eq. (2.25) 

when ,1b 0ba   and the other solutions are different with their solutions. 

c) Comparison with the Bernoulli sub-equation function scheme Ref. [60]: Bulut 

et. al. [60] derived six solutions of Cahn-Allen model and all of these are special case of our 

solutions. When we put Ekcack  2
122 2,,3/2 ; Ekcdck  2

12 2,22,3/2  

and Ekcdck  2
12 2,23,3/2  in our solution (Case-I i.e., Eq. (2.19)) reduces to 

solutions ,1u  4u  and  5u  of Ref. [60] respectively. Similarly, we see that the solutions ,2u  

,3u  6u  are special case of our solution (Case-II i.e., Eq. (2.22)). Our results have more free 

parameters which can be converted to diverse types of dynamical behavior for diverse choices 

of free parameters. 
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In contrast, by employing the MSE scheme in this manuscript we have achieved four 

solutions with simple calculations.  

2.5. Conclusions 

In this chapter, the MSE scheme has been effectively employed for finding the exact solutions 

and dynamics of the Cahn-Allen model and the dispersive predator-prey model. We presented 

abundant new exact explicit solutions of the exponential form of both Cahn-Allen and 

diffusive predator-prey models with some free parametric values. We derived particular 

solutions from the general exponential function such as stable kink soliton and kinky-periodic 

rogue wave solutions; unstable singular kink wave solutions of both models. We also derive 

particular solutions from the explicit solutions selecting some definite values of the free 

parametric values. Lastly, the variety and graphic representations of the composition make the 

models dynamic. Stable and unstable situations are explained in detail from the analysis of the 

profiles.  By comparing the MSE scheme with different schemes, we can claim that the MSE 

scheme is frank, simple, proficient, and can be applied in numerous nonlinear models. In 

existing schemes, for example, the )/'( GG -expansion scheme, the exp-function scheme and 

the tanh-function scheme, it is essential to employ suggestive calculation software like 

Mathematica or Maple to solve the intricate algebraic equation. No auxiliary equations are 

needed to solve non-linear models by using the MSE scheme. 
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Chapter Three 

Optical soliton polarization with LPD model by unified approach 

Acknowledgement   

In this chapter [1], we present the unified method and use it to integrate the Lakshmanan-

Porsezian-Daniel (LPD) model to retrieve optical solitons in birefringent fibers. We first 

derive ordinary differential form of the model from its partial differential form via a variable 

transformation. Then the unified approach is carried out through computer on the model, by 

Maple-18 software. As outcomes, many new dynamical optical solitons in term of combo -

trigonometric, -hyperbolic and -rational function solutions are added in the literature. The 

derived optical solitons solution exhibits some dynamics as beat phenomena, oscillating 

rhythm, oscillation together increasing and decreasing rhythm, and oscillation jointly 

increasing and decreasing rhythm even achieved a soliton solution which can changes its 

amplitude after a certain times. Besides this, various dynamical properties of the obtained 

solutions are presented graphically.  

3.1. Introduction 

Optical solitons are one of the rising research fields for the development of the 

telecommunication industry. We cannot imagine the operating of optical fiber, email, internet, 

mobile phones and many other communications except the idea of a solitary wave [12-15]. A 

renowned model which is familiar as the LPD model was primarily presented in 1988 [16]. 

Then, this model was extensively employed in various solitary wave propagation including, 

fiber optics. This model can describe the dynamical behavior of soliton transmission into 

optical fibers and photonic-crystal fiber. To express soliton solutions LPD model has been 
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studied by applying various reliable and effective integration algorithms such as Ricati 

equation scheme [63], exp ))((  -expansion scheme [64], trial equation scheme [65] and 

many more [66-69].  

The main purpose of this chapter is to optical solutions that clarify the physical structures as 

beat phenomena, oscillating rhythm, oscillation together increasing and decreasing rhythm, 

and oscillation jointly increasing and decreasing rhythm of the governing model by using a 

new scheme called unified method [70]. The details are demonstrated in the succeeding 

sections of this chapter. 

3.2. Governing model 

The dimensionless of LPD model with Kerr law nonlinearity has the follows form [66, 67]: 

xxxxxxxxxtxxt uuruuqupuuuucbuauiu 2222    

     uusuu xx
42   .                (3.1) 

The Eq. (3.1), the parameters ,a ,b ,c   and s  signifies group velocity dispersion, spatio–

temporal dispersion, coefficient of Kerr law nonlinearity, coefficient of fourth order 

dispersion and two–photon absorption correspondingly. Solitons are possible taking delicate 

balance of dispersion with nonlinear terms. 

For birefringent fibers, the model can be divided into two parts of vector representation. 

Avoiding the properties of 4WM, the above model reduces to [64-65]: 

 uvqupuuvducubuaiu xxxxxxxtxxt )()( 2
1

2
11

2
1

2
111 

  xxxxxx uvuuvuuvsur )()()( 2
1

2
1

2
1

2
1

2
1

2
1   

 uvvuuf )( 4
1

22
1

4
1   .               (3.2) 
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 vuqvpvvudvcvbvaiu xxxxxxxtxxt )()( 2
2

2
22

2
2

2
222 

  xxxxxx vuvvuvvusvr )()()( 2
2

2
2

2
2

2
2

2
2

2
2   

 vuvuvf )( 4
2

22
2

4
2   .               (3.3) 

In Eqs. (3.2), (3.3), jc , jf   for 2,1j  represent the self-phase and  ,jd ,j j  with 2,1j   

stand for the cross-phase modulation effects, respectively. 

3.3. Mathematical analysis 

Consider the following transformation of this coupled system 

),exp()(),( 1  iHtxu                    (3.4)

 ).exp()(),( 2  iHtxv                     (3.5)
 

where 1H  and 2H  are the soliton amplitude components and 

tx                       (3.6) 

is the traveling wave variable with the soliton speed  . The phase component   is as below 

  wtkx .                   (3.7) 

with frequency  k , wave number w  and phase shift  . Inserting Eq. (3.4) and Eq. (3.5) into 

Eq. (3.2) and Eq. (3.3) and sorting out the real and imaginary parts. The real part is 

3242 ))(()( nnnnnnnnnn HrpkcHkkwbkaw  

 
23225 )()())(( nnnnnnnnnnnn HHHHsqkdHf  

 
224 )'()()'()()( nnnnnnnnnnn HHsqHHrpHH 

 
0'')('')('')6( )4(222  nnnnnnnnnnnnnn HHHHHHkba  ,            (3.8) 

and the imaginary part is  

')(2')4)(2( 23
nnnnnnnnn HHpkHkwkbka    

04'2)(')(2 )3(2  nnnnnnnnnn HkHHkHqHHk                (3.9) 
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with ,1n 2   and nn  3 . By the balancing principle, we can write  

nn HH  .                  (3.10) 

From Eq. (3.8) and Eq. (3.10), we can rewrite 

53242 ))(()( nnnnnnnnnnn HJHRhkdcHkkwbkaw  
 

0'''')6()'( )4(222  nnnnnnnnnnnn HHHRHkbaHHL  ,           (3.11) 

where  ,nnnn fJ    ,nnnnn srqph  ,nnnnn srqpL     

 .nnnnnR                            (3.12) 

From Eq. (3.9) and Eq. (3.10) we can rewrite 

  ')(2')4)(2( 23
nnnnnnnnnnn HHqpkHkwkbka    

.04 )3(  nnHk                  (3.13) 

Thus, the third expression of Eq. (3.13) gives 0n . Hence the solutions of the couple 

system Eq. (3.2) and Eq. (3.3), will be presented for the fourth order dispersion omitted. The 

other functions of Eq.(13), yield the following relation 

nnnnnn qp   ,                (3.14) 

and therefore the soliton speed is 

 
kb
kawb

n

nn





1

2
 ,                 (3.15) 

for 
k

bn
1

 . Comparing the values of the soliton velocity Eq. (3.15) gives 

)2)(1()2)(1( 112221 kawbkbkawbkb  .             (3.16) 

Therefore the Eq. (3.11) can be written as 
5322 ))(()( nnnnnnnnnn HJHRhkdcHkwbkaw   

0'''')()'( 22  nnnnnnnnn HHRHbaHHL  .             (3.17) 
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3.4. Application of unified method to LPD model 

Assume trial solution of Eq. (3.17) is 

])()([)(
0

)()(



N

i

in
i

in
in SBSAH  ,                     (3.18)                                                                                            

where ,)(
0

nA  
)(n

iA  and )(n
iB  for Ni ,...,2,1  are real constants and  )(S  satisfies Riccati 

equation: 

lSS  )()(' 2  .                 (3.19) 

Eq. (3.19) has nine solution categories according to three cases: 

Case-01: Hyperbolic functions (when 0l ): 

 

    
  

    
  

     

     

)20.3(

.
2sinh2cosh

2

,
2sinh2cosh

2

,
2sinh

2cosh

,
2sinh

2cosh

22

22








































ElElC
lCl

ElElC
lCl

DElC
EllClDC

DElC
EllClDC

S













 

Case-02: Trigonometric functions (when 0l ): 

 

    
  

    
  

     

     

)21.3(

.
2sin2cos

2

,
2sin2cos

2

,
2sin

2cos

,
2sin

2cos

22

22






































EliElC
liCli

EliElC
liCli

DElC
EllClDC

DElC
EllClDC

S











  

where 0C  and ,D E  are real arbitrary constant. 
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Case-03: Rational function solution (when 0l ) 

 
E

S





 1 .                 (3.22) 

To identify value of  N  in Eq. (3.18), balancing ''2
nn HH  with 5

nH  yields 1N . Eq.(3.18) 

takes the form 

  1)()(
1

)(
0 )()()(   SBSAAH n

i
nn

n .              (3.23) 

Then putting Eq. (3.23) along with Eq. (3.20) into Eq. (3.18) and after some calculations, we 

pose the following sets of solutions  

Set 1: ,0,,0 )(
1

)(
1

)(
0  n

n
nn BMAA  

nnnnnnnnnnnnn aJkbaklJbRLklbLkbaJkw 22223 22(  
 )),122(/()22 222222  nnnnnnnnn kblbbkJalJRLlLl
 22224242424 222( nnnnnnnnnnnnnnn bLlhkbRkbRLkbRhkbLhkc 
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n

nnn
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Using Eq. (3.20), Eq. (3.21), Eq. (3.22) and Eq. (3.4), Eq. (3.5), with the help of the solution 

set-1, we obtain the following eighteen exact solutions of Eq. (3.2) and Eq. (3.3) 

    
     ,exp

2sinh
2cosh

),(
22

11,1 






















 wtkxi

DElC
EllClDC

Mtxu  

    
     ,exp

2sinh
2cosh

),(
22

21,1 






















 wtkxi

DElC
EllClDC

Mtxv  

    
     ,exp

2sinh
2cosh

),(
22

12,1 






















 wtkxi

DElC
EllClDC

Mtxu  

    
     ,exp

2sinh
2cosh

),(
22

22,1 






















 wtkxi

DElC
EllClDC

Mtxv  
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        ,exp
2sinh2cosh

2),( 13,1 














 wtkxi
ElElC

lClMtxu

 

        .exp
2sinh2cosh

2),( 23,1 














 wtkxi
ElElC

lClMtxv

 

        ,exp
2sinh2cosh

2),( 14,1 














 wtkxi
ElElC

lClMtxu

 

        ,exp
2sinh2cosh

2),( 24,1 














 wtkxi
ElElC

lClMtxv

 

    
     ,exp

2sin
2cos

),(
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15,1 






















 wtkxi

DElC
EllClDC

Mtxu  

    
     ,exp

2sin
2cos

),(
22

25,1 






















 wtkxi

DElC
EllClDC

Mtxv  

    
     ,exp

2sin
2cos

),(
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16,1 






















 wtkxi

DElC
EllClDC

Mtxu  

    
     ,exp

2sin
2cos

),(
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26,1 






















 wtkxi

DElC
EllClDC

Mtxv  

        ,exp
2sin2cos
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













 wtkxi
EliElC
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










 wtkxi
EliElC

liCliMtxv  

        ,exp
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











 wtkxi

EliElC
liCliMtxu

 

        ,exp
2sin2cos

2),( 28,1 












 wtkxi

EliElC
liCliMtxv

 

  ,exp1),( 19,1 












 wtkxi
E

Mtxu  
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  ,exp1),( 29,1 






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Using Eq. (3.20), Eq. (3.21), Eq. (3.22) and Eq. (3.4), Eq. (3.5), with the help of the solution 

set-2, we obtain the following eighteen exact solutions of Eq. (3.2) and Eq. (3.3)  

    
  

  ,exp

2sinh
2cosh

),(
22

1
1,2 























 wtkxi

DElC
EllClDC

lMtxu  

    
  

  ,exp

2sinh
2cosh

),(
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




















 wtkxi

DElC
EllClDC

lMtxv  

    
  

  ,exp

2sinh
2cosh

),(
22

1
2,2 























 wtkxi

DElC
EllClDC

lMtxu  

    
  

  ,exp

2sinh
2cosh

),(
222,2 























 wtkxi

DElC
EllClDC

Mltxv  

     
  ,exp

2sinh2cosh
2

),( 1
3,2 



















 wtkxi

ElElC
lCl

lMtxu

 

     
  ,exp

2sinh2cosh
2

),( 2
3,2 



















 wtkxi

ElElC
lCl

lMtxv
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     
  ,exp

2sinh2cosh
2

),( 1
4,2 



















 wtkxi

ElElC
lCl

lMtxu

 

     
  ,exp

2sinh2cosh
2

),( 2
4,2 



















 wtkxi

ElElC
lCl

lMtxv

 

    
  

  ,exp

2sin
2cos

),(
22

1
5,2 























 wtkxi

DElC
EllClDC

lMtxu  

    
  

  ,exp

2sin
2cos

),(
22

2
5,2 























 wtkxi

DElC
EllClDC

lMtxv  

    
  

  ,exp

2sin
2cos

),(
22

1
6,2 























 wtkxi

DElC
EllClDC

lMtxu  

    
  

  ,exp

2sin
2cos

),(
22

2
6,2 























 wtkxi

DElC
EllClDC

lMtxv  

     
  ,exp

2sin2cos
2

),( 1
7,2 



















 wtkxi

EliElC
liCli

lMtxu  

     
  ,exp

2sin2cos
2

),( 2
7,2 



















 wtkxi

EliElC
liCli

lMtxv  

     
  ,exp

2sin2cos
2

),( 1
8,2 

















 wtkxi

EliElC
liCli

lMtxu  

     
  ,exp

2sin2cos
2

),( 2
8,2 

















 wtkxi

EliElC
liCli

lMtxv  
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  ,exp
1

),( 1
9,2 















 wtkxi

E

lMtxu  

  ,exp
1

),( 2
9,2 















 wtkxi

E

lMtxv  

where 
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Using Eq. (3.20), Eq. (3.21), Eq. (3.22) and Eq. (3.4), Eq. (3.5), with the help of the solution 
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where nM  and w  are come from set 3. 

  
Fig-3.1:  Outlook of rogue wave solution 1,1u  for  ,11 J ,11 L ,1E ,20C ,1D

,1l ,11 R ,11 a ,11 b ,2k .0   
For the physical description, it is observed that the solutions ,1,1u ,2,1u ,1,1v ,2,1v ,1,2u ,2,2u

,1,2v ,2,2v ,1,3u ,2,3u ,1,3v 2,3v  provide interaction of soliton and periodic wave degenerate 

rogue type breather optical soliton solutions. In particular, we depicted the graph of 1,1u  in 

Fig. 3.1(a, b).  
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We also depicted 2d plots of the similar results by 1,2u  in Fig 3.2(a, b, c). These 

graphs have different behavior for different conditions on parameter t  as (a) represents 

oscillation with exponentially increasing amplitudes for 0t , (b) represents oscillations with 

exponentially decreasing amplitudes for 1t , and (c) represents oscillations with 

exponentially decreasing amplitudes, then diminishes to zero and then again oscillations with 

exponentially increasing amplitudes 1t . The solutions ,3,1u ,4,1u ,3,1v ,4,1v ,3,2u ,4,2u ,3,2v

,4,2v ,3,3u ,4,3u ,3,3v 4,3v  displayed similar behavior as combo periodic optical solitons and it 

has important properties to amplify or reduce amplitude of waves. This property is very much 

significant in optical communication systems. Particularly, we depicted the solution 3,2u   only 

in Fig. 3.3(a, b). It is shown that when 0
1

2






kb
kawb

n

nn  amplitudes of wave reduces after 

a certain times with a certain height. But when 0
1

2






kb
kawb

n

nn  the reverse phenomena 

are causes as amplitudes of wave amplify after a certain time with a certain height. 

The solutions ,5,1u ,6,1u ,5,1v ,6,1v ,5,2v ,6,2v ,5,3u ,6,3u ,5,3v 6,3v  exhibits double periodic 

optical solution which is depicted by the solutions ,5,1u 6,1u  in Fig. 3.4 and Fig. 3.5 

respectively. The figures have a rhythm of oscillations with sub-harmonic beat i.e. not 

symmetric. The solutions ,7,1u ,8,1u ,7,1v ,8,1v ,7,2u ,8,2u ,7,2v ,8,2v ,7,3u ,8,3u ,7,3v 8,3v  

exhibits double periodic optical solution which is depicted by the solutions  8,1u  in Fig. 3.6. 

The figures have a rhythm of oscillations with harmonic beat i.e. amplitudes are symmetric 

with maximum amplitude. 
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The solutions ,9,1u ,9,1v ,9,2u 9,2v  give the interaction of rational polynomial and 

periodic solitons, where polynomial function maintains it amplitude and exhibits periodic 

waves with increasing and decreasing amplitudes as depicted in Fig 3.7(a, b) for 9,1u . 

 

 
 Fig-3.2: Outlook of rogue type breather optical soliton solutions 1,2u  for  ,11 J ,11 L ,2E

,1C ,1D ,1l ,11 R ,21 a ,11 b ,35k .0  
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Fig-3.3: Outlook of optical solitary wave solution 3,2u  at 0x  for ,11 J ,2.01 L ,1E
,1C ,1D ,1l ,2.41 R ,11 a ,11 b ,2k 1  (a) when 2.41 R (b) when .6.51 R   

 

 
Fig-3.4: Outlook of optical solitary wave solution 5,1u  at 0t  for ,11 J ,11 L ,0E

,3C ,5.3D  ,1l ,11 R ,11 a ,11 b ,25k .0  
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Fig-3.5: Outlook of optical solitary wave solution 6,1u  at 0x for  ,11 J ,11 L ,0E

,3C ,5.3D  ,1l ,11 R ,11 a ,11 b ,25k .0  
 

 

Fig-3.6: Outlook of optical solitary wave solution 8,1u  at 0t for ,11 J ,11 L ,0E ,1.1C
,5.3D ,1l ,11 R ,11 a ,11 b ,25k .0  
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Fig-3.7: Outlook of rogue wave solution 9,1u  at 0t   for ,11 J ,11 L ,0E ,1C

,1D ,0l ,101 R ,11 a ,11 b ,2k .0  
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3.5. Conclusion 

This chapter has been presented the unified method to integrate the LPD model to retrieve 

optical solitons that can be used in birefringent fibers. We have derived optical solitons along 

with some dynamics as beat phenomena, oscillating rhythm, oscillation together increasing 

and decreasing rhythm, and oscillation jointly increasing and decreasing rhythm even 

achieved a soliton solution which can changes its amplitude after a certain times depicted in 

Figs-3.2-3.7. We also exhibits optical rogue wave in Fig-3.1. The results disclosed that the 

unified method is more effective and power tools to obtain optical solitons for nonlinear 

complex models which frequently arises in mathematical physics and engineering branches. 

Future works concerning extension and progress of the unified method to gain more dynamic 

structural solutions or applied in many models in diverse branches of engineering.  
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Chapter Four 

Solitary wave solutions for the time fractional gHSC-KdV model  

Acknowledgement 

In this chapter [5], the generalized Kudryshov method is applied to determine exact solitary 

wave solutions for the time fractional generalized Hirota–Satsuma coupled KdV model. Here, 

fractional derivative is illustrated in the conformable derivative. Therefore, plentiful exact 

traveling wave solutions are achieved for this model, which encourage us to enlarge, a novel 

technique to gain unsteady solutions of autonomous nonlinear evolution models those occurs 

in physical and engineering branches. The obtained traveling wave solutions are expressed in 

terms of the exponential and rational functions. It is effortless to widen that this method is 

powerful and will be applied in further tasks to create advance exclusively innovative 

solutions to other higher-order nonlinear conformable fractional differential model in 

engineering problems. 

4.1. Introduction 

Nearby, great interest in fractional calculus applied in various fields such as electrical 

networks, control theory of dynamics, statistics, electro-chemistry of oxidization, acoustics, 

nonlinear optical fibre, plasma and solid state physics, chemical kinetics and geochemistry 

phenomena, signal processing and data mining can be effectively formed by means of 

nonlinear fractional order differential systems [17-20]. Modeling of a range of physical 

phenomena in terms of nonlinear time fractional evolution equations has played a significant 

factor in numerous efficient applications in the above mentioned fields.  
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The time fractional generalized HSC KdV system is vital nonlinear model occurs in the Toda 

lattice equation, a recognized (1+1) dimension soliton equation. This system can also be 

utilized as the model of interaction of neighboring particles of the same mass in a lattice 

formation with a crystal as well as illustrated basic characteristics of string dynamics in 

constant curvature space [82-85]. 

The more general form of time fractional generalized HSC KdV system can be written as 

follows [82, 83]: 
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                                      (4.1) 

Recently, searching exact solutions of the system Eq. (4.1) was found by renowned 

researchers [84, 85].  Guo et. al. [84] applied the improved fractional sub-equation method to 

construct analytical solutions to the space–time fractional equations arises in fluid mechanics. 

The exact and complex traveling wave solutions to the time fractional generalized Hirota-

Satsuma coupled KdV system are deliberated by Neirameh [85] using the direct algebraic 

method. 

Considerable effort have been paid by many dynamical researchers to investigate exact 

solutions for FDEs such as the impulsive fractional differential equations with different 

boundary conditions [86-88], nonlinear impulsive hybrid boundary value problems involving 

fractional differential equations [89], space–time fractional Burgers equation [90], time 

fractional Burgers equation in fluid flow [91], the fractional coupled viscous Burgers’ 

equation [92], time-fractional KdV equations [93] and so on.  
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The objective of this chapter is to apply the generalized Kudryashov method for finding the 

exact solitary wave solutions of the time fractional generalized HSC KdV system, which take 

part in a key task in mathematical physics. 

This chapter is organized as follows: fundamental properties of conformable fractional 

derivative are presented in section 4.2. The brief description of the generalized Kudryashov 

methods is given in section 4.3.  Then in section 4.4, this method has been applied to establish 

exact solutions for the time fractional general HSC KdV system. The obtained results are 

presented graphically and the relevant physical illustrations are provided in section 4.5. 

Finally, concluding remarks are drawn in section 4.6. 

4.2. Conformable fractional derivative and its properties 

For a function ),0(: , the conformable fractional derivative of   for order   is 

defined [94] as 




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Some important properties of the conformable fractional derivative are as follows: 

)()()(  











t
b

t
aba

t 








 ,  ba, .   






 

 tt
t

)( ,   and  0)( 

 



t
, .const    

)())(())(( 1 tttt
t

 






  . 

4.3. The Method 

Let us assume a general nonlinear evolution equation in x  and t  as 

0,,0...),,,,(  txhhhh xxxt ,                                                                           (4.2) 
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where the function ),( txhh   is unknown and   is a polynomial function with respect to 

some functions or specified variables, which have nonlinear terms and highest order 

derivatives of the unknown function. The key steps of the generalized Kudryashov method are 

as [93, 95]: 

Step 1: Consider the following traveling wave transformation 

),(),( Htxh 



ctx  ,                                                                                    (4.3) 

 where c  is the velocity of the relative wave mode. By using the above transformation the 

nonlinear partial differential equation Eq. (4.3) is reduced to a nonlinear ordinary differential 

equation (ODE): 

0,...),,(  HHH ,                                                                                                 (4.4) 

where the prime denotes the derivative of H  with respect to   and   is a polynomial of 

)(H . 

Step 2: Let us assume that the solution of Eq. (4.4) has the following form: 


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where ia  and jb  are real constants, N  and M  are positive integers such that ,Na 0Mb  

and  )(  satisfies the following ordinary differential equation: 

)()()( 2   .                                                                                               (4.6) 

The general solution of Eq. (4.6) is of the following form: 


Ae


1

1)( ,                                                                                                         (4.7) 

where A  is any arbitrary constant. 
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Step 3: Determine the positive integers N  and M  in Eq. (4.5) by balancing the highest order 

derivative term with the nonlinear term of )(H  in Eq. (4.2) or Eq. (4.4). Moreover, we 

define the degree of )(H  as MNHD ))((  , which gives rise to the degree of other 

expression as ),()())((,)( qMNspMN
d
HdHDqMN

d
HdD s

q

q
p

q

q




  

where ,p ,q s  are integer numbers. 

Thus, we can find the value of N  and M  in Eq. (4.5). 

Step 4: Inserting Eq. (4.5) along with Eq. (4.6) into Eq. (4.4) and collect all terms with the 

same powers of   together. Setting each coefficients of this polynomial   to zero, we obtain 

a system of algebraic equations for ,ia jb  and c .  

Step 5: By inserting the values of parameters gained in previous step and )(  into the Eq. 

(4.5), then the solutions of Eq. (4.2) can be constructed. 

4.4. Applications 

Consider the following traveling wave transformation: 
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,                   (4.8)                                      

where 


 tcx . . 

Inserting Eq. (4.8) into Eq. (4.1) reduced into ordinary differential equations    

02643)( 242242  RccHcHcHHHc                                                   (4.9) 

and 022 23  HcHcH ,                                                                                  (4.10) 

where R  is an integration constant to be evaluated later. 
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Case 1: By balancing the highest order derivative term HH  with the nonlinear term 

4H  in Eq. (4.9) gives 1 MN .  

Setting 1M , we have 2N . Therefore Eq. (4.5) reduces to 


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
10

2
210)(

bb
aaa

H



 .                                                                                         (4.11) 

Inserting Eq. (4.11) along with Eq. (4.6) into Eq. (4.9), we have a polynomial of ,k

,...)2,1,0( k . Equating the coefficients of this polynomial of the same powers of   to zero, 

we obtain a system of equations yields the values for ,R ,c ,0a ,1a ,2a 0b  and 1b . 
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For set 1, the time fractional generalized HSC KdV equations hold the solution as: 
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where 
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For set 2, the time fractional generalized HSC KdV equations hold the solution as: 
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where 
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For set 3, the time fractional generalized HSC KdV equations hold the solution as: 
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   where 

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For set 4, the time fractional generalized HSC KdV equations hold the solution as: 
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For set 5, the time fractional generalized HSC KdV equations hold the solution as: 
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where  





2
tx  . 

Case 2: Balancing HH  with 4H  in equation Eq. (4.10) gives 1 MN . Setting 

1M , we obtain 2N . 

Therefore Eq. (4.5) reduces to 
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Inserting Eq. (4.17) along with Eq. (4.5) into Eq. (4.10), we get a polynomial of ,k

,...)2,1,0( k . Equating the coefficients of this polynomial of the same powers of   to zero, 

we obtain a system of equations yields the values for ,c ,0a ,1a ,2a 0b  and 1b . 
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From some simplification, we see that the set-1 to set-4 gives the same results as in case-1. 

But only set-5 is different which gives solution as 
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where  





2
tx  . 

4.5. Graphical representations  

Ten set of results are achieved in this chapter. All of the results are analyzed and some of 

them depicted in the Figs. 4.1, 4.2. The graphs signify the change of amplitude, shape of wave 

and nature of the solitary waves for each acquired wave solutions in space x at time t. The 

solution ),( txh  of Eq. (4.12) represents bright bell solitary wave (Fig-4.1(a)) for the physical 

parameters ,5.0A 67.0 . The solution both ),( txv  and ),( txw  of Eq. (4.12) represents 

similar kink solitary wave.  Fig-4.1(b) expressed the shape of the kink wave ),( txv  of Eq. 

(4.12) for the physical parameters ,5.0A 67.0 .  

The solutions ),( txh  of Eq. (4.15) represent bright bell solitary wave solutions and all of 

them are similar like to the graph Fig-4.1(a) of ),( txh in Eq. (4.12). We also see that the 

solutions ),,( txv ),.( txw  of Eq. (4.15) represent kink solitary wave solutions and all of them 

are similar like to the graph Fig-4.1(b) of ),( txh in Eq. (4.12). So we omit the similar type of 

figures. 
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(a) 

 
(b) 

Fig-4.1: (a) Represent bright bell solitary wave solution ),( txh  of Eq. (4.12), and (b) Represent kink 
solitary wave solution ),( txv  of Eq. (4.12) for the physical parametric values ,5.0A 67.0 . 

(a) (b) 
Fig-4.2: (a) Represent dark bell solitary wave solution ),( txh  of Eq. (4.13), and (b) Represent kink 

solitary wave solution ),( txv  of Eq. (4.13) for the physical parametric values ,5.0A 5.0 . 

 

The solution ),( txh  of Eq. (8.13) represents dark solitary wave (see Fig-4.2(a)) for the 

physical parameters ,5.0A 5.0  in space x at time t. The solution both ),( txv  and 

),( txw  of Eq. (4.13) represents similar singular kink solitary wave.  Fig-4.2(b) expressed the 

shape of the singular kink solitary wave ),( txv  of Eq. (4.13) for the physical parameters

,5.0A 5.0 . The solutions ),( txh  of Eq. (4.14), Eq. (4.16) and Eq. (4.18) represent dark 

bell solitary wave solutions and all of them are similar to the graph Fig-4.2(a) of ),( txh  in 
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Eq. (4.13). We also see that the solutions ),,( txv ),.( txw  of Eq. (4.14) and complex part of 

),,( txv ),.( txw  of Eq. (4.16) and ),,( txv ),.( txw  of Eq. (4.18) represent singular kink solitary 

wave solutions and all of them are similar like to the graph Fig-4.2(b) of ),( txh  in Eq. (4.13). 

So we omit the similar type of figures. Real part of ),,( txv ),.( txw  in Eq. (4.16) and Eq. 

(4.18) gives constant solution that represent in xt -plane. 

4.6. Conclusions  

In this chapter, we have successfully used a mathematical apparatus named the generalized 

Kudryashov method for creating exact solitary wave solutions to the time fractional 

generalized Hirota-Satsuma coupled KdV system. The achieved solitary wave solutions are 

expressed in terms of the exponential and rational functions. The acquired results will serve as 

a very important milestone in the study of interaction of neighboring particles of the same 

mass in a lattice formation with a crystal and long water wave phenomena. We also have 

demonstrated that the generalized Kudryashov method is an effective solvable tool for large 

classes of system of conformable nonlinear fractional differential equations. 
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Chapter Five 

Interaction solutions of the (2+1)-D BBS and BBMB models 

Acknowledgement 

In this chapter [6, 7], the (2+1)-dimensional Bogoyavlenskii’s breaking soliton (BBS) and 

Benjamin-Bona-Mahony-Burgers (BBMB) models are considered and reduced to bilinear 

form by using the Hirota bilinear approach. We analytically construct lump waves and 

collision of lump with periodic waves. We also present collision between lump wave and 

single-, double-kink soliton solutions, and the collision among lump, periodic and single-, 

double-kink soliton solutions of the BBS and BBMB models. In addition, we explain the 

fission properties of the lump and periodic waves, lump, periodic and single soliton, and 

lump, periodic and two solitons. Finally, we graphically present the nature of the collision 

solutions of both models in 3D and contour plots. 

5.1. Introduction 

The soliton theory, which is one of the three sections of nonlinear science, is broadly used in 

various areas of physical science such as fluid mechanics, nonlinear optics, mathematical 

biology, ecology, chemical kinetics, plasma waves and others [1-21]. Various reliable and 

effective approaches have been suggested to address the solitary waves such as the -

expansion method [38], the generalized Kudryashov method [39], the Hirota bilinear method 

[40], the tan-cot method [42], the tanh-coth method [43], the direct algebraic method [44], the 

Darboux transformation method [45] etc. Recently  the combination of quadratic functions 

with the exponential or trigonometric or hyperbolic functions to explain the nature of the 

collision of kink, lump, rogue and periodic waves for produce kinky-lump, kinky-rogue, 

)/( GG
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periodic-lump wave, periodic-rogue waves and kinky-periodic-rogue wave for the NLEEs 

[71-78]. Based on the motivation of the above study we consider the (2+1)-dimensional BBS 

[79] and BBMB [80] models for the study of new dynamic phenomena and the physical 

behavior of different collisions among lump, periodic and soliton solutions. Such structure 

solutions of two models are analyzed by applying the Hirota bilinear method. 

5.2. The bilinear formation of the BBS model 

Consider the (2+1)-dimensional BBS model is as follows [79] 

044  xtxyxxxyxxxy  ,                 (5.1) 

where   is the function of spatial variables yx,  and time variable t . 

Consider the conversion relation as below 

x)(ln
2
3                       (5.2) 

with real function ),,( tyx  to be determined. 

Inserting the relation Eq. (5.2), in Eq. (5.1), then we can write  

0)(ln)(ln)(ln6)(ln)(ln6)(ln  xxtxxyxxxxxxyxxxxy  .                   (5.3) 

Integrating the equation Eq. (5.3) with respect to x , then we have 

0).(ln)(ln6)(ln)(ln  xxxyxxxyxt  .                (5.4) 

By considering the linear terms of Eq. (5.4), we have 

.0)(ln)(ln  xxxyxt                      (5.5) 

By using the bilinear operator D, the Eq. (5.5) can be written as 

0.)( 3  ffDDDD xytx ,                    (5.6) 
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when the D-operator [71] is defined by 

gfDDD n
t

k
y

m
x .)( )],,().,,([)()()( 222111

212121

tyxgtyxf
ttyyxx

nkm






















 . 

Thus Eq. (5.5) reduces to

 033  yxxxxxxyxxyxxyxxxtxt  .                (5.7) 

Clearly if   satisfies Eq. (5.1), then x)(ln
2
3  

 
directly generates the solutions of the 

governing model Eq. (5.1). 

5.3. Lump wave solution of BBS model 

To obtain the lump wave solutions of the BBS model, consider an ansatz of the following 

form  

ltqyqxqtpypxp  2
321

2
321 )()( ,               (5.8) 

where 321321 ,,,,, qqqppp   and l  are free parameters. Setting Eq. (5.8) in Eq. (5.7), we have 

an algebraic system in 321321 ,,,,, qqqppp  and l . By solving this system via Maple 18, we 

have ,033  qp llqqqq
p
qqppp  ,,,, 2211
1

21
211 , then the Eq. (5.8) can be 

written as 

 lyqxqy
p
qqxp  2

21
2

1

21
1 )()( .                (5.9) 
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Fig-5.1: Profiles of the lump solution    Eq. (5.1) for .1211  lqqp  

    By combining Eq. (5.9) and Eq. (5.7) and putting 1211  lqqp , we have the 

solution of Eq. (5.1) as depicted in figure Fig-1. Due to guarantee   is localized in every 

direction, l  have to be considered as a positive constant. In this case, the optimum amplitude 

of the solution   is occurred at the points )0,( 2
1

2
1 qp

l


  with the amplitudes 

l
qp 2

1
2

1

2
3 

 
and 

l
qp 2

1
2

1

2
3 

 . 

5.4. Collision among lumps, periodic waves, and soliton solutions 

5.4.1. Collision between lumps and periodic waves: To study the collision scenarios 

between lump and periodic waves, consider a function constructed by double quadratic form 

and a sinusoidal function 

)cos()()( 321
2

321
2

321 tyxltyxtyx   ,          (5.10)
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where l,,,,,,,,, 321321321   and   are free parameters. Inserting Eq. (5.10) in Eq. 

(5.7), we have an algebraic system in l,,,,,,,,, 321321321   and  . By solving this 

system via Maple 18, we get the following results: 

Case 1: ll  ,,,,,0 111111323232  . 

Case 2: ,,,,0,, 22113133
1

21
211 




 
 

   
ll  ,22 
 
.  

 For case 1, the Eq. (5.10) can be written as
 

)cos()()( 1
2

1
2

1 xlxx   .               (5.11) 

For case 2, the Eq. (5.10) can be written as 

)cos()()( 2
2

21
2

1

21
1 ylyxyx 




  .               (5.12) 

Using Eq. (5.11) and Eq. (5.7) and selecting 1111  l , we have the solution of Eq. 

(5.1) (see Fig-5.2). Fig-5.2 exhibits as a single kinky-lump wave for 1  (see Fig-5.2(a)) 

but it is going to split into double kinky-lump waves even large number of kinky-lump waves 

due to fission of wave for the increase of   (see the Fig-5.2(b-d)) gradually. Beside this, by 

choosing 12211  l  and setting Eq. (5.12) in Eq. (5.7), we have the solution of 

Eq. (5.1) (see Fig-5.3). The solution in case-2 exhibits as a single lump wave for 1  (see 

Fig-5.3(a)) but it is going to split into double lump waves due to fission of lump wave for the 

increase of   (see the Fig-5.3(b-d)) gradually. The energy distribution is symmetric over all 

the periodic lump waves while it travels (see Fig-5.3). 
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(a) 1  (b) 10  (c) 80  (d) 50000  
Fig-5.2: Profiles of the kinky-lump wave degenerate into periodic kinky-lump wave gradually via 

solution   of Eq. (5.1) for 1111  l . 

(a) 1  (b) 8  (c) 16  (d) 17  
Fig-5.3: Profiles of collision solution    of Eq. (5.1) for 12211  l . 

5.4.2. Collision between a lump and a single-kink soliton: To construct the collision of 

lump wave and a single kink soliton, we consider a function constructed by double quadratic 

form and an exponential function 

),exp()()( 321
2

321
2

321 tmymxmltyxtyx             (5.13)  

where lmmm ,,,,,,,,, 321321321   and   are real free constants. Setting Eq. (5.13) into 

the Eq. (5.7), we have an algebraic system in lmmm ,,,,,,,,, 321321321   and  . By 

solving these equations via Maple 18, we get ,0,, 3133
1

21
211  mm






  ,,,, 222211 llmm , then the Eq. (5.13) can be written as 
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)exp()()( 2
2

21
2

1

21
1 xmlyxyx 




  .            (5.14)     

Using Eq. (5.14) and Eq. (5.7) and selecting 10,12211   lm , we have the 

solution of Eq. (5.1) (see Fig-5.4).The Fig-5.4 exhibits the dynamic processes of collision 

between lump waves with a single kink wave solution. We observe that the lump wave is 

downed and consumed by the kink compare with single lump wave Fig-5.1 and flow pattern 

being congested from one side. 

 
Fig-5.4: Profiles of collision lump solution    of Eq. (5.1) for .10,12211   lm  

4.3. Collision between a lump and a double kink soliton: To make the collision of 

lump wave and a two-kink soliton, we assume a function constructed by double quadratic 

form and a cosine hyperbolic function 

 ),cosh()()( 321
2

321
2

321 tyxltyxtyx             (5.15) 

where l,,,,,,,,, 321321321   and   are free parameters. Setting Eq. (5.15) in 

Eq.(5.7), we have a system of algebraic equations in l,,,,,,,,, 321321321   and  . 
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By solving these equations via Maple 18, we obtain 3133
1

21
211 ,, 




   

  ,0 ll  ,,, 222211  , then the Eq. (5.15) can be written as 

)cosh()()( 2
2

21
2

1

21
1 ylyxxx 




  .            (5.16)     

By combining Eq. (5.16) and Eq. (5.7) and setting 10,12211   l  and 

inserting, we have the solution of Eq. (5.1) (see Fig-5.5). The Fig-5.5 exhibits the dynamic 

processes of collision between lump waves with two kink waves. We observe that the lump 

wave is downed and consumed by the kink waves compare with lump wave (see Fig-5.1 and 

Fig-5.4) and flow pattern being congested from two sides. 

 
Fig-5.5: Profiles of collision lump solution    of Eq. (5.1) for 10,12211   l . 

5.4.4. Collision among lump, periodic and a single kink wave: To achieve the collision 

among a lump wave, a periodic and a single kink solution of Eq. (5.1), we assume a function 

constructed by double quadratic form, a cosine and an exponential function 

ltyxtyx  2
321

2
321 )()(               

)exp()cos( 32123211 mymxmtyx   ,            (5.17) 
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where 1321321321321 ,,,,,,,,,,,,,  lmmm  and 2  are real free constants. Setting 

Eq. (5.17) in Eq. (5.7), we have a system of algebraic equations in ,,,,,, 321321 

1321321 ,,,,,,,  lmmm  and 2 . By solving these equations via Maple 18, we have ,11    

,22    ,
1

21
2 

   ,0313133  mm  ,11    ,22    ,22    ,22    

llmm  ,, 2222  , then the Eq. (5.17) can be written as 

)exp()cos()()( 2221
2

21
2

1

21
1 ymylyxyx 




  .          (5.18)     

 
(a) 11   (b) 91   (c) 121   

 

 

 
(d) 151   (e) 161   (f) 171   

Fig-5.6: Profiles of collision solution    of Eq. (5.1) for 2,1 222211   lm . 
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Using Eq. (5.18) and Eq. (5.7) and putting 2,1 222211   lm , we 

achieve the solution of Eq. (5.1) (see Fig-5.6). The Fig-5.6 exhibits the dynamic processes of 

collision among lump waves with single kink and periodic wave solution. We observe that the 

lump wave is downed and consumed by the kink wave compare with lump wave (see Fig-5.1 

and Fig-5.4) and flow pattern being congested from one sides. Besides this, effect of periodic 

function makes the fission phenomena. The solution (see Fig-5.6) exhibits as a single lump 

wave for 11   (see Fig-5.6(a)) but it is going to split into double lump waves with 151   

(see the Fig-5.6(b, c) and Fig-5.6(e, f)). In fact, it is shown that one lump of them goes to 

diminish and another one still unchanged for 171   or more increasing values. 

5.4.5. Collision among lump, periodic and a double kink soliton: To construct the 

collision among a lump wave, a periodic and a two-kink soliton, we assume a function 

constructed by double quadratic form, a cosine and cosine hyperbolic functions 

ltyxtyx  2
321

2
321 )()(   

)cosh()cos( 32123211 tyxtyx   ,            (5.19) 

where 1321321321321 ,,,,,,,,,,,,,  l  and 2  are free parameters. Setting Eq. 

(5.19) into the Eq. (5.7), we have an algebraic system in ,,,,,,,,, 321321321 

1321 ,,,,  l  and 2 . By solving this system via Maple 18, we have ,,
1

21
211 


 

 33  ,,,,,0 221122113131   ll  ,, 2222  , then 

the Eq. (5.19) can be written as 

)cosh()cos()()( 2221
2

21
2

1

21
1 yylyxyx 




  .          (5.20)     
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(a) 11   (b) 51   (c) 101   

 

 

 
(d) 201   (e) 301   (f) 321   

Fig-5.7: Profiles of collision solution   of Eq. (5.1) for 2,1 222211   l . 
 
By using Eq. (5.20) and Eq. (5.7) and putting 2,1 222211   l , then we 

acquire  the solution of Eq. (5.1) (see Fig-5.7). The Fig-5.7 exhibits the dynamic processes of 

collision among lump waves with double kink and a periodic wave solution. We observe that 

the lump wave is downed and consumed by the kink compare with lump wave (see Fig-5.1 

and Fig-5.4) and flow pattern being congested from two sides. Besides this, effect of periodic 

function makes the fission phenomena. The solution Fig-5.7 exhibits as a single lump for 

11   (see Fig-5.7(a)), but it is going to split into double lump with the increase of 1  (see 

the Fig-5.7(b-f)) gradually. 
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5.5. The bilinear structure of the BBMB model 

Consider the (2+1) -dimensional BBMB model is as follows [80] 

,,0)(3 yxxxxxt                   (5.21) 

where   and   are the function of spatial variables yx,  and time variable t . 

We can rewrite the Eq. (5.21) as 

yxxxxxxt   ,0)(3 .               (5.22) 

Consider the conversion relation  

xy)(ln2    and xx)(ln2                  (5.23) 

with real function ),,( tyx  to be determined. 

Through the relation Eq. (5.23), the Eq. (5.22) can be converted to   

,0)(ln)(ln12).(ln)(ln12)(ln2)(ln2  xxxxyxxxxyxxxxyxyt   

xxyxxy )(ln2)(ln2   .                (5.24) 

Integrating first equation of Eq. (5.24) with respect to x , yields 

0).(ln)(ln12)(ln)(ln  xxxyxxxyyt  .              (5.25) 

Now considering the linear terms, we have 

0)(ln)(ln  xxxyyt  .                  (5.26) 

Eq. (5.26) can be converted to the bilinear operator D as follows 

0.)( 3  ffDDDD yxty ,                  (5.27) 

while the D-operator [71] is defined by   

gfDDD n
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k
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Thus Eq. (5.26) reduces to 

 033  yxxxxxxyxxyxxyxxytty  .               (5.28) 

It is clear that if   satisfies Eq. (5.22), then xy)(ln2    and xx)(ln2    directly 

generates the solutions of the governing Eq. (5.21). 

5.6. Lump wave solution of BBMB model  

We now assume the following quadratic function  

ltyxtyx  2
321

2
321 )()(  ,             (5.29) 

where 321321 ,,,,,   and l  are free parameters. Setting Eq. (5.29) in the Eq. (5.28), we 

have a set of algebraic equations in 321321 ,,,,,   and l . By solving these equations via 

Maple 18, we have ll  ,,,0 22113132  , then the Eq. (5.29) can be 

written as       

 lyx  2
2

2
1 )()(  .                (5.30)     

Choosing 121  l  and setting Eq. (5.30) in the Eq. (5.28), we obtain the figure Fig-8 

for the solution of Eq. (5.21). Due to guarantee ,   are localized in every direction, l  have 

to be considered as a positive constant. In this case, the optimum amplitude of the solution   

is occurred at the points )0,0( , )2/,2/(
21 

ll
  with the amplitudes 0, 

l
21 , 

l
21 , 

l
21

 , 
l

21
 . For the potential function  , the optimum amplitudes are occurred at the 

points )0,0( , )0,3(
1
l

  with the amplitudes 
l

2
14

 , 
l2

2
1  and 

l2

2
1 . 
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(a) (b) 
Fig-5.8: Profiles of the lump solution   and   of Eq. (5.21) for .121  l  

5.7. Collision among lumps, periodic waves, and soliton solutions 

5.7.1. Collision of lump and periodic waves: Due to produce collision of lump and 

periodic waves, we assume a function constructed by double quadratic form and a sinusoidal 

function 

)cos()()( 321
2

321
2

321 tyxltyxtyx   ,          (5.31) 

where l,,,,,,,,, 321321321   and   are free parameters. Setting Eq. (5.31) into the 

Eq. (5.28), we have a system of algebraic equations in l,,,,,,,,, 321321321   and 

.  By solving these equations via Maple 18, we get the following results: 

Case 1: ll  ,,,,,0 111111313232  . 

Case 2: ,,,,,0, 2211223133
2

21
1 


    

  ll  ,22  .   
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For case 1, the Eq. (5.31) can be written as   

)cos()()( 2
2

1
2

1 ylxx   .                 (5.32) 

For case 2, the Eq. (5.31) can be written as   

)cos()()( 2
2

21
2

2
2

21 ylyxyx 

  .               (5.33) 

 
(a) 

 
(b) 

Fig-5.9: Profiles of the periodic lump wave solution   and   of Eq. (5.21) for  1111  l . 

Choosing 1111  l  and setting Eq. (5.32) in Eq. (5,28), we have the figures 

Fig-5.9 for the solution of Eq. (5.21).  By choosing 12212  l  and setting Eq. 

(5.33) in Eq. (5.28), we have the figures Fig-5.10 for the solution of Eq. (5.21). The energy 

distribution is symmetric over all the periodic lump waves while it travels (see Fig-5.9). 

Beside this, the solution in case-2 exhibits as a single lump wave for 1 (see Fig-5.10(a, 

d)) but it is going to split into double lump waves due to fission of lump wave for the increase 

of  (see the Fig-5.10(b, c) and (e, f)) gradually.  
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(a) 1  (b) 8  (c) 16  

 

 

 
(d) 1  (e) 8  (f) 16  

Fig-5.10: (a-c) Profiles of collision solution   and (d-e), profiles of collision solution   of Eq. (5.21) 
for 12212  l . 

 
5.7.2. Collision of lump wave and a strip solution: Due to produce collision of lump 

wave and a stripe soliton, we assume a function constructed by double quadratic form and an 

exponential function 

),exp()()( 321
2

321
2

321 tmymxmltyxtyx             (5.34)  

where lmmm ,,,,,,,,, 321321321   and   are real free constants. Setting Eq. (5.34) into 

the Eq. (5.28), we have a system of algebraic equations in lmmm ,,,,,,,,, 321321321   
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and  . By solving these equations via Maple 18, we get ,0, 3133
2

21
1  mm




  

,, 22   llmm  ,,, 222211  , then the Eq. (5.34) can be written as     

)exp()()( 2
2

21
2

2
2

21 ymlyxyx 

  .            (5.35)   

(a) (b) 
Fig-5.11: Profiles of collision lump solution   and   of Eq. (5.21) for 

.5,122212   lm  

Choosing 5,12212   lm  and inserting Eq. (5.35) in Eq. (5.28), we 

have the figures Fig-5.11 for the solution of Eq. (5.21). The Fig-5.11 exhibits the dynamic 

processes of interaction between lump waves with a stripe solution. We observe that the lump 

wave is downed and consumed by the stripe compare with single lump wave Fig-5.8 and flow 

pattern being congested from one side. 

5.7.3. Collision of lump wave and a double stripes solution: Due to produce collision 

of lump wave and a double stripes soliton, we assume a function constructed by double 

quadratic form and a cosine hyperbolic function 



Chapter Five                       Interaction solutions of the (2+1)-D BBS and BBMB models 

71 
 

  ),cosh()()( 321
2

321
2

321 tyxltyxtyx             (5.36) 

where l,,,,,,,,, 321321321   and   are free parameters. Setting Eq. (5.36) in the 

Eq. (5.28), we have a system of algebraic equations in l,,,,,,,,, 321321321   and  

.  By solving these equations via Maple 18, we obtain ,0, 3133
2

21
1  


  

,  ll  ,,,, 22221122  , then the Eq. (5.36) can be written as   

)cosh()()( 2
2

21
2

2
2

21 ylyxyx 

  .            (5.37)   

 
(a) 

 
(b) 

Fig-5.12: Profiles of collision lump solution  and  of Eq. (5.21) for 12212  l .   

Choosing 12212  l  and setting Eq. (5.37) in Eq. (5.28), we have the 

figures Fig-5.12 for the solution of Eq. (5.21).  The Fig-5.12 exhibits the dynamic processes 

of collision between lump waves with two stripes solution. We observe that the lump wave is 

downed and swallowed by the stripes compare with lump wave (see Fig-5.8 and Fig-5.11) 

and flow pattern being congested from two sides. 

5.7.4. Collision among lump, periodic and a stripe solution: Due to produce interaction 

among a lump wave, a periodic and a stripe soliton, we assume a function constructed by 

double quadratic form, a cosine and a exponential functions 
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ltyxtyx  2

321
2

321 )()(   

)exp()cos( 32123211 mymxmtyx   ,            (5.38) 

where 1321321321321 ,,,,,,,,,,,,,  lmmm  and 2  are real free constants. Setting 

Eq. (5.38) in the Eq. (5.28), we have a system of algebraic equations in ,,,,, 21321   

13213213 ,,,,,,,,  lmmm  and 2 . By solving these equations via Maple 18, we have 1

,,,,,0, 11222211313133
2

21 



 mm ,, 2222    

llmm  ,22 , then the Eq. (3.18) can be written as   

)exp()cos()()( 2221
2

21
2

2
2

21 ymylyxyx 

  .          (3.39)     

Choosing 3,1 222212   lm  and inserting Eq. (5.39) in Eq. (5.28), we 

have the figures Fig-5.13 for the solution of Eq. (5.21). The Fig-5.13 exhibits the dynamic 

processes of collision among rogue waves with one stripe and periodic wave solution. We 

observe that the lump wave is downed and consumed by the stripe compare with lump wave 

(see Fig-5.8 and Fig-5.11) and flow pattern being congested from one sides. Besides this, 

effect of periodic function makes the fission phenomena. The solution Fig-5.13 exhibits as a 

single lump-stripe wave for 11   (see Fig-5.13(a, d)) but it is going to split into double 

lump-stripe waves with 111   (see the Fig-5.13(b, c) and Fig-5.13(e, f)). In fact, it is shown 

that one lump of them goes to diminish and another one still unchanged for 161  or more 

increasing values. 
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(a) 11   (b) 111   (c) 161   

  

 

 
(d) 11   (e) 111   (f) 161   

Fig-5.13: (a-c) Profiles of collision solution   and (d-e) Profiles of collision solution  of Eq. (5.21) 
for 3,1 222212   lm . 

5.7.5. Collision among lump, periodic and a double stripes solution: Due to produce 

collision among a lump wave, a periodic and a double stripes soliton, we assume a function 

constructed by double quadratic form, a cosine and cosine hyperbolic functions 

  
ltyxtyx  2

321
2

321 )()(                                       

  
)cosh()cos( 32123211 tyxtyx   ,            (5.40) 

where 1321321321321 ,,,,,,,,,,,,,  l  and 2  are free parameters. Setting Eq. 

(5.40) into the Eq. (5.28), we have a system of algebraic equations in 

1321321321321 ,,,,,,,,,,,,,  l  and 2 . By solving these equations via Maple 
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18, we have ,,,,,0, 11222211313133
2

21
1 




     

,22   ll  ,, 2222  , then the Eq. (5.40) can be written as   

)cosh()cos()()( 2221
2

21
2

2
2

21 yylyxyx 

  .          (5.41) 

   
(a) 11   (b) 101   (c) 201   

  

 

 
(d) 11   (e) 101   (f) 201   

Fig-5.14: (a-c) Profiles of collision solution   and (d-e) Profiles of collision solution   of Eq. (5.21) 
for 1222212   l . 

 
Choosing 1222212   l  and setting Eq. (5.41) in Eq. (5.28), we 

have the figures Fig-5.14 for the solution of Eq. (5.21). The Fig-5.14 exhibits the dynamic 

processes of collision among lump waves with double stripes and a periodic wave solution. 

We observe that the lump wave is downed and consumed by the stripe compare with lump 

wave (see Fig-5.8 and Fig-5.11) and flow pattern being congested from two sides. Besides 
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this, effect of periodic function makes the fission phenomena. The solution Fig-5.14 exhibits 

as a single lump-stripe wave for 11   (see Fig-5.14(a, d)) but it is going to split into double 

lump-stripe waves with the increase of 1  (see the Fig-5.14(b, c) and Fig-5.14(e, f)) 

gradually. 

5.8. Conclusion 

The main result in this chapter is the procedure of obtaining the lump wave solutions and a 

class of interactions among lump, periodic and the soliton solutions of the BBS and BBMB 

models by using different ansatz functions. In particular, for the double quadratic polynomials 

in the structure of the solution provide a lump wave solution that profiles are depicted in Fig-

5.1 and Fig-5.8. We explicitly present interactions between lump and periodic waves, lump 

and single-, double-kink soliton solutions of the model. We also show how to interact lump 

with periodic waves, and single-, double- kink solitons, and to produce dynamical various 

structures such as periodic kinky-lump waves, periodic lump waves, lump-single, -double 

kink solitions, periodic-single, -double kink solitons. All interaction solitons are depicted in 

figures Fig-5.2 to Fig-5.7 and Fig-5.9 to Fig-5.14. It is observed that the results are much 

interesting as they present the causes of fission properties of the lump waves, which are 

presented in the figures Fig-5.3, Fig-5.6, Fig-7, Fig-5.10, Fig-5.13 and Fig-5.14. It is 

included that the new dynamics may be enriched nonlinear behavior of the model and even 

can be found to others nonlinear models.  
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Chapter Six 

Interaction solutions of the (3+1)-D STOL equation 

Acknowledgement 

In this chapter [3], we consider a (3+1)-dimensional Sharma–Tasso–Olver-like (STOL) model 

describing dynamical propagation of nonlinear dispersive waves in inhomogeneous media. 

Applying Hirota’s bilinear technique and a trial function, we explore nonlinear dynamical 

properties of basic solutions to the STOL model. We find that the fission fusion pattern 

occurs in the collision between the lump and kink waves, the collision between the lump and 

periodic waves, and the collision among the lump, kink and periodic waves, which is a novel 

fascinating collision pattern. We also observe that a large value of the coefficient in the 

periodic function produces a hybrid lump wave by fission in the collision solution. To better 

understand the dynamic properties of the obtained collision solutions, we plot a number of 3D 

and contour diagrams by choosing suitable parametric values with the aid of the 

computational software Maple 18. 

6.1. Introduction  

Nonlinear evolution equations (NLEEs) applicable not only the areas of mathematical 

physics, but also other branches of nonlinear science for instance optics, plasma physics, 

atmospheric, geochemistry and oceanic sciences etc. [1-21]. Complication of NLEES and 

challenges in their analytical study has engrossed lots of effort from renowned scientists who 

are involved with nonlinear dynamics. As a result, exploration of exact solutions of NLEEs is 

a vital anxiety for dynamical researchers. There are diverse categories of exact solutions 

mainly  soliton, multi-soliton, rational, periodic, breather line, breather kinky, lump and rogue 
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wave solutions through the generalized Kudryashov method [39], the Hirota bilinear method 

[40], the tan-cot method [42], the tanh-coth method [43], the direct algebraic method [44], the 

Darboux transformation method [45] etc. In mathematical physics, the interaction of lump 

wave with other soliton/periodic wave is a kind of remarkable task in nonlinear sciences 

which are localized both in position and time. Recently, combination of positive quadratic 

polynomial functions with the exponential/trigonometric functions i.e. collision of kink, lump, 

rogue and periodic waves produce kinky-lump, kinky-rogue, periodic-lump wave, periodic-

rogue waves and kinky-periodic rogue wave for the NLEEs and their nonlinear dynamics 

concerned a lot of interest [71-78].  

Motivated by the above works, we would like to derive novel higher order collision solutions 

of the (3+1)-dimensional classical STOL equation [81] 

 ])2[(])3[( 1213
xxyxyxyxxyxxxxxt uuuuuuubuuuuau  

 0])2[( 121  
xxzzxzxxz uuuuuuuc                    (6.1)       

with real function ),,,( tzyxu  and real constants ,a ,b c . Here 1 x  indicate integral operator and 

inverse of x .  

In this chapter, our main goal is to construct more novel exact collision among lump, periodic and 

kinky wave solutions that degenerate into periodic line breather waves, kinky periodic waves, double 

kinky periodic waves, periodic lump waves, double kinky lump waves, kinky periodic lump waves, 

hybrid lump waves and fission fusion properties of the Eq. (6.1). 

6.2. Interaction solutions and dynamics of the solutions for STOL equation 

Through the relation xfu )(ln , the Eq. (6.1) can be expressed as the form  

0 txxtxxzxxxyxxxxxxxxzxxxyxxxx fffffcffbffafcffbffaff              (6.2) 
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with real function ),,,( tzyxf  to be determine. When f  satisfies Eq. (6.2), xfu )(ln  

directly generates a solution of the main Eq. (6.1). 

In order to evaluate f  explicitly, we assume an ansatz of the following form 

 2
109876

2
54321 )()( mtmzmymxmmtmzmymxmf   

   

)cos( 1615141312111 mtmzmymxmlm 

 )cosh( 21201918172 mtmzmymxml  ,               (6.3) 

where 16321 ,......,, mmmm , 1l  and 2l  are real free constants, 2117 ,......mm  are real/completely 

imaginary constants. Inserting Eq. (6.3) to Eq. (6.2), collect every coefficients of ,x ,y ,z ,t

cos, sin, cosh, sinh together and setting each of these expression equal zero, we gain a system 

of equations in 21321 ,......,, mmmm , 1l   and 2l . Solving this system of algebraic equations by 

using Maple 18, we obtain the following four results,  

Case 1: 

0,0,0,0 9421  mmll , )21,,11,10,8,7,6,5,3,2,1(  imm ii .             (6.4) 

Inserting Eq. (6.4) into the Eq. (6.3), we obtain 

11
2

10876
2

5321 )()( mmzmymxmmzmymxmf  .             (6.5) 

Using the relation xfu )(ln , Eq. (6.5) offer the result 

/])(2)(2[ 610876153211 mmzmymxmmmzmymxmu   

])()[( 11
2

10876
2

5321 mmzmymxmmzmymxm  .             (6.6) 

The result Eq. (6.6) contains nine free arbitrary constants and exhibits lump wave with the 

condition 011 m  in the xy  plane. The line soliton solution that is definitely dissimilar 

starting a moving line soliton, arise very quickly and disappear in the constant background 
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within tiny time but in the intermediate time it gives highest peak. It is well known that 

0u  as the two quadratic functions tend to positive or negative infinity. It maximum 

minimum amplitude occurs at the points ),(
6271

10165
2

6
2

1

11

6271

75102

mmmm
mmmm

mm
m

mmmm
mmmm










 
when

0z . The Fig-6.1 represent stretch of the lump wave solution Eq. (6.6), consists of one deep 

hole and one high crest for the particular values ,5,1,2,3,2 65321  mmmmm

,5,1 87  mm 10,1 1110  mm , in the xy  plane with .0,0  zt  The peak of the lump wave 

locates at )
13
3,

29
290

13
2(  , the valley locates at )

13
3,

29
290

13
2( 

 
and maximum 

amplitude is 
10
290

 
and deep is equal distance i.e. 

10
290

  .  

 
Fig-6.1: Outlook of lump wave solution 1u  of the Eq. (6.6).  

Case 2: 

)(,0,0,0 191817
2

1720941 cmbmammmmml   

)21,19,18,17,11,10,8,7,6,5,3,2,1(,22  immll ii ,               (6.7) 
where ,a b  and c  can take arbitrary values. 
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Inserting Eq. (6.7) into the Eq. (6.3), we emerge to 

11
2

10876
2

5321 )()( mmzmymxmmzmymxmf   

})(cosh{ 21191817
2

171918172 mtcmbmammzmymxml  .             (6.8) 

Using the relation xfu )(ln , Eq. (6.8) provides the result 

610876153212 )(2)(2[ mmzmymxmmmzmymxmu   

/}])(sinh{ 21191817
2

17191817172 mtcmbmammzmymxmml 

 11
2

10876
2

5321 )()[( mmzmymxmmzmymxm 

  }])(cosh{ 21191817
2

171918172 mtcmbmammzmymxml  .             (6.9) 

In the solutions Eq. (6.9), we explore collision of the lump and a double kink waves through 

demonstration of the Fig-6.2. It is seen that only a double kink waves is visible in Fig-6.2 (a) 

at the time  16t  and a small wave initiate at the lower kink (see from contour plot of Fig-

6.2(a)) but in its propagation a lump wave come out at the time 6t  from the lower kink 

(see Fig-6.2(b)). So, the fission phenomenon of lower kink is happened. As time goes, it 

moves to the upper kink and then get highest amplitude at 0t  as well as lump reach in the 

middle of the two kinks (see Fig-6.2(c)). Then the lump wave goes to the upper kink and 

amplitude of lump decreases again as time increase (see Fig-6.2(d)) and finally diminished to 

the upper kink at 16t (see Fig-6.2(e)). So, the fusion phenomenon of upper kink is 

occurred. From the overall observation, we see the height of the double kink waves remain 

same in the overall propagation before and after the collision. 
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(a) 16t  (b) 6t  (c) 0t  

  
(d) 6t  (e) 16t  

Fig-6.2: Fission-fusion profiles of the lump wave get into a duel kinky waves for the solutions Eq. 
(6.9) with ,9.3,3,4,4.4,146,3,1,1 7653212  mmmmmmcbal

,24.108 m  ,110 m 0,6.4,1.2,05.1,82.8 2119181711  mmmmm  at .0z  

Case 3: 

)(,0,0,0 141312
2

1215942 cmbmammmmml 
 

)16,14,13,12,11,10,8,7,6,5,3,2,1(,11  immll ii .             (6.10) 

where ,a b  and c  can take arbitrary real values. 

Setting Eq. (6.10) to the Eq. (6.3), we acquire 

11
2

10876
2

5321 )()( mmzmymxmmzmymxmf   

})(cos{ 16141312
2

121413121 mtcmbmammzmymxml  .           (6.11) 
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Using the relation xfu )(ln , Eq. (6.11) offers the result 

610876153213 )(2)(2[ mmzmymxmmmzmymxmu   

/]})(sin{ 1216141312
2

12141312121 mmtcmbmammzmymxmml 

 

 

11
2

10876
2

5321 )()[( mmzmymxmmzmymxm 

  }])(cos{ 16141312
2

121413121 mtcmbmammzmymxml  .           (6.12) 

For 01 l , 3u  reduce to single lump only like case-1 but for 01 l , 3u  comes in-terms of two 

quadratic polynomials and a sinusoidal function (i.e. collision of lump and periodic wave), as 

depicted in the Fig.-6.3, Fig. 6.4 and Fig. 6.5. Here, three sub cases are arises in the 

followings. 

(i) When 012 m  and 013 m , 3u  reduces to collision solution with following 

dynamics: It is well-known that the lump form with a crest and a trough (observe Fig. 6.3(a)). 

But as the value of 1l  increases, the collision of lump and periodic waves create a fission of 

lump wave i.e. a crest and a trough progressively split into two crest and two trough having 

the same height (observe Fig. 6.3(b-d)) and propagate along y -direction initially. Thus the 

fission of lump wave is happened. We also observe that fission of the lump wave is 

continuous process as for large values of 3551 l , the lump wave again generate fission and 

split into four lump waves propagate along both in the x  and y -directions, even if for 

10451 l , it gives six lump (hybrid lump) waves (see Fig.-6.3(e, f)) and so on.  
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(a) 01 l  (b) 41 l  (c) 121 l  

(d) 161 l  (e) 3551 l  (f) 10451 l  
Fig-6.3: Diagrams of collision solution 3u  of Eq. (6.12) for the values 

 

,4,3,3  cba
 ,1,1 21  mm ,1,0,1,1.0,2,1,1,1.0,2 1312111087653  mmmmmmmmm

.0,2 1614  mm  

  (ii) When 012 m  and 013 m , 3u  reduces to collision solution with following 

dynamics: It gives the similar collision solution (fission of lump) in the figures Fig. 6.4.(b-f) 

and produces more lump waves propagate periodically toward the x -axis and also the 

extreme amplitude of the crests and the troughs gradually enlarges as 1l  increases. In contrast 

the Fig.-6.3 with Fig.-6.4, we observe that the lump wave in the collision solution locates 

toward the y -axis in Fig.-6.3 but the lump wave in the collision solution locates toward the x

-axis in the Fig.-6.4. 
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(a) 01 l  (b) 41 l  (c) 81 l  

  
(d) 121 l  (e) 161 l  (f) 171 l  

Fig-6.4: Diagrams of the collision solution 3u  of Eq. (4.12) for the values ,4,3,3  cba

 ,1,1 21  mm ,0,1,1,1.0,2,1,1,1.0,2 1312111087653  mmmmmmmmm  
.0,2 1614  mm  

(iii) When 012 m  and 013 m , 3u  reduces to collision solution with following 

dynamics: In fact, some interesting phenomenon can also be observed when both 012 m  and 

013 m  and the values coefficient 1l  increases the trigonometric function that dominate on 

the values of coefficients in quadratic functions (lump wave) as depicted in Fig-6.5(a)-(d). 

We display the corresponding 3D plot (3D as in upper and contour plot as in lower), density 

and 2D profile in the xy -plane (for ,3y ,0 3  in Fig-6.5(c)) of the lump-periodic wave. 

Anyone can see that at 0y  amplitude of the lump gives highest peak (observe Fig-6.5(c) ). 

On the other hand, another periodic-lump wave can be observed in xt -plane as in the Fig-

6.5(d).  
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(a) (b) 

(c) (d) 
Fig-6.5: Profile of the collision of  lump and  periodic waves solution 3u  of Eq. (6.12) for ,151 l  

,1,5.0,4,2,1 21  mmcba ,3,25.0,5.0,1 7653  mmmm ,5.38 m
,110 m ,15/4,3/1,20 131211  mmm 0,8.0 1614  mm : (a) the 3D plot, (b) the density plot 

and  (c) the similar curve plot at 0,0  tz ; (d)  Periodic lump wave at

 

0,0  yz . 

Case 4: 

)(),(,0,0 191817
2

1720141312
2

121594 cmbmammmcmbmammmmm     

)21,19,18,17,16,14,13,12,11,10,8,7,6,5,3,2,1(,, 2211  immllll ii ,          (6.13) 

where ,a b  and c  can take any arbitrary values. 

Putting Eq. (6.13) into the Eq. (6.3), offers the result 

11
2

10876
2

5321 )()( mmzmymxmmzmymxmf   

})(cos{ 16141312
2

121413121 mtcmbmammzmymxml 

 })(cosh{ 21191817
2

171918172 mtcmbmammzmymxml  .           (6.14) 
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Using the relation xfu )(ln , Eq. (6.14) offers the result 

610876153214 )(2)(2[ mmzmymxmmmzmymxmu 

  

 

})(sin{ 16141312
2

12141312121 mtcmbmammzmymxmml 

 

/}])(sinh{ 21191817
2

17191817172 mtcmbmammzmymxmml 

 

11
2

10876
2

5321 )()[( mmzmymxmmzmymxm 

 

})(cos{ 16141312
2

121413121 mtcmbmammzmymxml 

 

}])(cosh{ 21191817
2

171918172 mtcmbmammzmymxml  .           (6.15) 

In the solution Eq. (6.15), comes in terms of two quadratic polynomials, a periodic and a 

hyperbolic function which exhibits double kinky-periodic-lump type wave propagation for

0,0 12  ll . In this case, three clusters are arises in the followings. 

Cluster-1 - Taking 2l  very small as 02 l : 

Taking 2l  very small, a dynamical situation viewed in the Figs. 6.6-6.8 for the values 

,1,1,5  cba ,1141110853  mmmmmm ,1.016 m 1,7 2119  mm  at 0z . 

The solution 4u  provides double kinky-periodic lump wave in which some x -periodic-lump 

with period 12/2 m  get into the double kink and kinky wave moves through x  axis with time 

increases for the values as depicted in the Fig-6.6(a)-(c). In this case number of lump wave  

remains same with the same value of 0001.02 l . But when 02 l , the number of lump 

wave gradually increases as the values of 2l  decreases (observe Fig-6.6(d)-(e)), even if, kink 

vanishes and only periodic lump exist for 02 l  (observe Fig-6.6(f)) at .0t  Actually, 

changing different parametric constraint of the solution Eq. (6.15) distinguish characteristics 

again exhibits in Fig-6.7(a)-(d) as y periodic lump with period 13/2 m  get into the kink 
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that arise with a constant background and decay go back to the same previous background at a 

longer time.  

(a) 5t  (b) 0t  (c) 5t  

(d) 7
2 10l  (e) 10

2 10l  (f) 02 l  
Fig-6.6: Profiles of collision solution 4u  of Eq. (6.15) for the parameters ,0181361  mmmm  

171272 mmmm   ,1 5.01 l : (a)-(c) the periodic lump get into the double kinky wave for
4

2 10l ; (d)-(e) increases of periodic lump into the double kinky wave for 02 l ; (f)  x - periodic 
lump wave  for 02 l . 

On the other hand, same behavior can be observed in line soliton in the Fig-6.7(e)-(h). 

Interesting characteristics can also be experienced when constant coefficients vanishes (i.e., 

0211611105  mmmmm ) as depicted in the Fig-6.8(a)-(c) that behaved y periodic 

bright-dark lump waves get into the double kink waves with period 13/2 m . The bright 

lumps get into the lower kink and dark lumps get into the upper kink. Both kinks give the 

fission phenomena and produce hybrid lump waves in which height and number of lump 
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increases as 1l  increase (observe Fig-6.8(a)-(c)). These novel nonlinear phenomena are the 

first report for the (3+1)-dimension STOL equation.  

(a) 50t  (b) 0t  (c) 5t  (d) 50t  

 
(e) 50t  (f) 0t  (g) 5t  (h) 50t  

 
Fig-6.7: Profiles of collision solution 4u  of Eq. (6.15) for 4

21 10,5.0  ll  at 0z ; (a)-(d) y
periodic lump wave get into the kinky wave for 171361181272 ,0 mmmmmmmm   

1 ; (e)-(h) x - periodic lump get into the kink wave for ,0181372  mmmm
1171261  mmmm . 

(a) 51 l  (b) 501 l  (c) 5001 l  
Fig-6.8: Profiles of collision solution 4u  of Eq. (6.15) for ,5,10 4

2   al ,1,1  cb  61 mm

12m 18m 171413873219 ,7,0 mmmmmmmm  1  at 0,0  zt  
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(a) 16t  (b) 4t  (c) 0t  

      
(d) 4t  (e) 8t  (f) 16t  

Fig-6.9: Fission-fusion profile of y -periodic lump wave with the double kink wave of solution 
Eq. (6.15) for 113 m . 

   
(a) 20t  (b) 6t  (c) 0t  

      
(d) 6t  (e) 9t  (f) 20t  

   Fig-6.10: Fission-fusion profile of x -periodic lump wave with the double kink wave of solution  
Eq. (6.15) for 112 m . 



Chapter Six                                            Interaction solutions of the (3+1)-D STOL equation 

90 
 

Cluster-2 - Taking 2l  not so small: 

Taking 2l  not so small, a dynamical situation viewed to the solution 4u , provides double 

kinky waves in which two lump waves periodically get into the kink waves and exhibits 

fission fusion phenomena. Solution Eq. (6.15), exhibits fission-fusion phenomena as depicted 

in the Fig-6.9(a)-(f) and Fig-6.10(a)-(f) which are similar to the fission-fusion phenomena of 

the Fig-6.2. But the only different is that y  periodic two lumps causes fission from the upper 

kink and then fused into the lower kink when 0,0 1312  mm  (observe Fig-6.9(a)-(e)) and x  

periodic two lumps causes fission from the upper kink and then fused into the lower kink 

when 0,0 1312  mm (observe Fig-6.10(a)-(f)). Both the figures Fig-6.9(a)-(f) and Fig-

6.10(a)-(f) are sketch with specific parameters ,1,2,3,5.0,16 21  cball  ,11 m  

,12 m  ,23 m  ,1,1,0 765  mmm  ,48 m ,010 m ,1,1 1411  mm ,016 m ,117 m

,2,0 1918  mm 021 m  at 0z . These novel nonlinear phenomenon is the first report for the 

(3+1)-dimension STOL equation.   

Cluster-3 - Taking lump vanish (i.e., 10,7,6,5,3,2,1;0  imi ): 

when )10,7,6,5,3,2,1(,0  imi ; lump waves being diminished and then collision between 

the kinky and periodic wave are appeared in the solution Eq. (6.15), then we find 

})(cos{ 16141312
2

12141312111 mtcmbmammzmymxmlmf 
 

       
})(cosh{ 21191817

2
171918172 mtcmbmammzmymxml  . (6.16) 

The solution Eq. (6.16) can convert to diverse collision solutions, selecting the constants 

21191817 ,,, mmmm  are real/purely imaginary value.  
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(i) For 21191817 ,,, mmmm  are real valued, we acquire a collision wave of the Eq. (6.1) 

using the relation xfu )(ln  as: 

})(sin{[ 16141312
2

121413121215 mtcmbmammzmymxmmlu 

 

 

/}])(sinh{ 21191817
2

17191817172 mtcmbmammzmymxmml 

 

})(cos{[ 16141312
2

12141312111 mtcmbmammzmymxmlm 

 

 

}])(cosh{ 21191817
2

171918172 mtcmbmammzmymxml  .           (6.17) 

Characteristics of the solution 5u  for the Eq. (6.17) are explained for the involve parametric 

values 1,12/1,1,1,2,1500,3,2,1 211917161411  mmmmmmcba  and 

1002 l  in the figure Fig. 6.11 and corresponding contour line of the diagram are drawn 

bellow of the figures in Fig. 6.11. For 01 l , 5u  reduces to double kinky waves (see Fig. 

6.11(a)) but for 01 l , 5u  is collision of a y - kinky periodic breather wave (see Fig.-6.11(b-

d)). Evidently, as t  changes the collision wave moves toward the x axis and the phase of the 

periodic wave changes after 
13

2
m
  along y -axis. 

we also observe that changing different parametric constraint in the solution Eq. (6.17) 

distinguish characteristics again exhibits which are periodic line breather waves proceed in 

various directions as depicted in the Fig-6.11(e)-(h), (i)-(l), (m)-(p). Each group of periodic 

line breather waves begins with a constant background and decay return to the same previous 

background at a longer time. Therefore the annihilation properties are obtained in this case. 
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(a) 0t  (b) 20t  (c) 0t  (d) 20t  

 
(e) 70t  (f) 0t  (g) 5t  (h) 70t  

    
(i) 70t  (j) 0t  (k) 5t  (l) 70t  

(m) 50t  (n) 0t  (o) 5t  (p) 50t  
Fig-6.11: Annihilation properties of the collision  solution 5u  of Eq. (6.17): (a) double kinky waves 

for ,018121  mml 113 m ;  (b)-(d) y - periodic and double kinky waves for ,10001 l
 1812 mm ,0 113 m ; (e)-(h) x - periodic and double kinky waves for ,10001 l ,01813  mm

112 m ; (i)-(l) ),( yx - periodic and double kinky waves for ,10001 l ,018 m 11312  mm ; (m)-
(p) ),( yx - periodic and double kinky waves for ,10001 l 1181312  mmm . 
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(ii) For 21191817 ,,, mmmm  are pure imaginary valued, i.e., ,~,~
18181717 mimmim 

,~
1919 mim  2121

~mim   with 191817
~,~,~ mmm  and 21

~m  are real valued, we acquire a collision of 

two breather waves of the Eq. (6.1) using the relation xfu )(ln  as: 

})(sin{[~
16141312

2
121413121215 mtcmbmammzmymxmmlu 

 

 

/}]~)~~~(~~~~sin{~
21191817

2
17191817172 mtmcmbmamzmymxmml 

 

})(cos{[ 16141312
2

12141312111 mtcmbmammzmymxmlm   

}]~)~~~(~~~~cos{ 21191817
2

171918172 mtmcmbmamzmymxml  .           (6.18) 

Lastly, the solution represented by Eq. (6.18) are different periodic waves for different 

chooses of parameters in 5
~u . When 01 l , 5

~u  is a one periodic wave that confine in the 

position and time directions (observe Fig. 6.12(a)). Otherwise, when 01 l , then 5
~u  exhibits 

the dual periodic waves in both xy  and xz - planes (observe Fig. 6.12(b, c)). 

(a) 0,0  zy  (b) 0,0  zt  (c) 0,0  yt  
Fig-6.12: Diagrams of the collision solution 5

~u  of Eq. (6.18) for ,1,6.0,1,1 11  mcba  
,012 m ,213 m ,214 m 1.0,1 216  lm  and  1~,12/1~,25.0~,1~

21191817  mmmm : (a) 
one periodic wave at 01 l ;  (b)-(c) dual periodic wave at 1.01 l . 
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6.3. Conclusion 

In summary, interaction solutions of the (3+1)-dimensional STOL equation have been 

determined successfully. With the aid of Maple software, a test function is carefully used to 

derive different nonlinear dynamical properties. As a result, some novel collision solutions 

among the lump, periodic and kinky waves are derived for the STOL model. We also 

established fission fusion properties for the collision of lump and kink waves, lump and 

periodic waves and among the collision of lump, kink and periodic waves. We also observe 

that fission and fusion properties exist in presence and without presence of sinusoidal function 

that produces hybrid lump waves. By taking purely imaginary values of some parameters, we 

derived line breather and double periodic breather wave solutions. To better understand the 

dynamic natures of the obtained collision solutions, we depict adequate 3d plots and contour 

diagrams by choosing suitable parametric values with the aid of computational software 

Maple 18. It is expected that our achieved solutions can improve the dynamical characteristics 

of the other higher order models. 
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Chapter Seven 

Multi -Soliton and interaction solutions to the (2+1)-D BBS model 

Acknowledgement 

In this chapter [4], we derive a multi-soliton solution for the Bogoyavlenskii’s breaking 

soliton (BBS) equation by utilizing the simplified Hirota's approach. From this multi-

soliton solution, we investigate various forms of single kinky-lump type breather solitons, 

double kinky-lump type breather solitons, collision of a kink line soliton with a kinky-type 

breather soliton, and collision of a pair of double kinky-lump breather solitons by the 

appropriate selection of the involved parameters. These breathers hold unlike features in 

various planes even in various times. Elastic and non-elastic collisions for double kinky 

type lump breather are experienced in various planes and in various times. The effect and 

control of the propagation direction, energies, phase shifts and shape of waves by the 

parameters are also analyzed. Some figures are given to illustrate the dynamics of the 

achieved solutions. The acquired results can enrich the dynamical properties of the higher 

dimensional nonlinear scenarios in the engineering fields. 

7.1. Introduction 

 Nonlinear partial differential models are extensively employed to interpret many 

complicated areas of sciences and engineering issue for instance optical connections, 

oceanic scientific problems, fluid dynamics, atmospheric, geochemistry, chemical physics, 

plasma physics and others [1-21]. It has three sections specifically soliton, chaos and 

fractal. Concepts of solitons are very significant and effective research area in nonlinear 

science. The hot topics of solitons are lump, kink, rogue and breather solitary waves. To 

explore the features of solitary wave numerous reputed scientists have been developed 

various reliable and fruitful approaches mainly the Hirota bilinear method [40], tan-cot  
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method [42], direct algebraic method [44], Darboux transformation [45], )/( GG -

expansion method [47], F-expansion method [49], exp-function method [54], 

homogeneous balance method [56], Homotopy perturbation method [57], the inverse 

scattering transform [58] and so forth. In 1971, a well known approach called Hirota 

bilinear method was firstly discovered by Hirota [40]. This method become effective and 

reliable within the short time and used to derive soliton, multi soliton, lump waves, rogue 

waves, breather waves and exciting localized formations of soliton solutions [71-78]. 

The prime aim of this chapter is to determine multiple soliton solutions and then construct 

various new kinds of localized wave solutions to the following Bogoyavlenskii’s breaking 

soliton (BBS) equation [79] via the Hirota bilinear technique 

044  xtxyxxxyxxxy .          (7.1) 

To reach our goal, this chapter is arranged as follows: we employ the Hirota bilinear 

technique to determine the n -soliton solutions of the BBS equation in section 7.2. In 

section 7.3 offers the lump, breather soliton and their collision solutions of the BBS 

equation. Finally some conclusions are drown in the section 7.4. 

 7.2. Multi-soliton of the BBS equation 

Dispersion relation for the BBS Eq. (7.1) can be evaluated considering a trial solution in 

an exponential form as:  

)exp(),,( ityx  , tybxa iiii   .          (7.2) 

Exerting the Eq. (7.2) into the linear terms of the Eq. (7.1), we get hold of the dispersion 

relation i  as 

iii ba 2 , ni ,,2,1              (7.3) 

and the resultant variables take place as 
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tbaybxa iiiii
2 , ni ,,2,1  .          (7.4) 

Let us consider the conversion relation 

xtyxRtyx )),,((ln),,(  .            (7.5) 

Now exerting the Eq. (7.5) with )exp(1),,(  tyx  into the Eq. (7.1) and then resolve 

R , we acquire 

  
2
3

R .              (7.6) 

To evaluate n  soliton solution, we must consider the supplementary function ),,( tyx  in 

the following: 





n

ji
jiij

n

i
i Atyx )exp()exp(1),,(

1
  





n

i
i

ji
ijk

n

kji
jijkikij AAAA

1
)exp()(....)exp(  .       (7.7) 

Here we consider trial solution for two soliton as  

)exp()exp()exp(1),,( 211221   Atyx .         (7.8) 

Setting Eq. (7.8) with Eq. (7.5) and Eq. (7.6) into the Eq. (7.1), then solving for unknown 
12A  we gain  

.
)22)((
)22)((

2
212212112

2
121

2
212212112

2
121

12 abbaaababaaa
abbaaababaaaA




          (7.9) 

In the similar way, we can get three, four and more soliton solution from Eq. (7.7), where 

the unknowns are given by 

nji
abbaaababaaa

abbaaababaaa
A

jijjijiijiji

jijjijiijiji
ij ,,2,1,,

)22)((
)22)((

22

22





 .    (7.10) 

providing 0)22)(( 22  jijjijiijiji abbaaababaaa . 

Profile of the solution Eq. (7.7) exhibits multi-soliton solutions or n  kink soliton solutions 

as depicted into the Fig-7.1.  Taking 2,1n  and 3n , we get single kink wave (observe 
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Fig-7.1(a)), double kink solitons (observe Fig-7.1(b)) and triple kink solitons (observe 

Fig-7.1(c)) respectively. It evidently observe from Figs-7.1(b) and 7.1(c) that before 

( 0t ) and after ( 0t ) collision multi-kink solitons remains their own properties (height, 

width and speed) are same. That is the collisions are elastic.  

(a) (b) (c) 
Fig-7.1: Sketch of the Eq. (7.5) with Eq. (7.7) and Eq. (7.10) for the values ,88.1 a  ,77.2 a  

,66.3 a  ,11 b  ,9.2 b  8.3 b  (a) 3D shape of single kink soliton ( 1n ); (b) 3D shape of 
double kink or two solitons ( 2n ); (c) 3D shape of triple kink or three solitons ( 3n ). 

 

7.3. Lump and breather soliton solution of the BBS equation 

This section recalls the multi-soliton solutions to derive lump type breather solution; 

collision of a soliton and a lump type breather soliton; and collision between two lump 

type breather solitons in the succeeding subsections. 

7.3.1. Lump type breather soliton solutions from two solitons: Here, we would like 

to create lump type breather wave propagation. To perform that, we have to assume at 

least two soliton solutions by putting 2n  and then let ,111 imla   ,112 imla    

,111 iqpb   112 iqpb   into the Eq. (7.8) and Eq. (7.9) and then Eq. (7.5) gives 

xMAMtyx )}2exp()cos()exp(21{ln(
2
3),,( 11211   ,      (7.11) 

where 
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(a) 5t  (b) 0t  (c) 5t  
Fig-7.2: Outlook of the Eq. (7.11) with the parametric values ,11 l  ,11 m  ,11 p  11 q : 

3D plot (upper) and its contour plot (below). 

  
(a) 5y  (b) 0y  (c) 5y  

Fig-7.3: Outlook of the Eq. (7.11) with the parametric values ,11 l  ,11 m  ,11 p  11 q : 
3D plot (upper) and its contour plot (below). 
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tqmlpmplypxlM )2( 1111
2

11
2

1111  ,  tpmlqmqlyqxm )2( 1111
2

11
2

1111   

 and 
)32(
)32(

2
11

2
111111

2
11

2
111111

12 lpmpmlql
mqlqmlpmA




 . 

The solution Eq. (7.11) comes from two solitons solution and gives lump type breather 

propagation. Features of the solution Eq. (7.11) (observe Fig.-7.2 3D (upper) & its contour 

(below)) for the values  ,11 l  ,11 m  ,11 p  11 q . Figures show that the solution 

exhibits as lump type breather propagations along the paradox c at 0t  (observe Fig.-

7.2(b)), for different times ( 0t ) it propagate not along paradox in the xy -plane but 

parallel to the paradox (observe Fig.-7.2(a, c)) and in every case all lump get into a kink 

wave. We also observe that the kink waves as well as periodic lump lie in the negative 

quadrant for 0t , moves toward the paradox with time increases and reach along 

paradox at 0t , and then moves away from the paradox into the positive quadrant for as 

0t  with increase time.  Its swiftness, breadth and direction remain unchanged on the 

whole dynamical system and periodic lump occur equidistance from each other in each 

system. 

Alternatively, we experience different phenomena when profile observes in the xt -plane. 

In this case, the solution Eq. (7.11) exhibits as multi-lump waves periodically get into a 

single kink wave when 0y  (observe Fig-7.3(a, c)), but exhibits double kinky wave at 

0y  (observe Fig-7.3(b)) and periodic lump type scratch are also viewed in the both 

kink wave. 

7.3.2. Interaction of a soliton and a lump type breather soliton from three soliton 

solutions: In this case, we would like to determine a collision solution between periodic 

lump type breather waves comes from two solitons and a kink soliton. In this regard, 

consider the three solitons solution by putting 3n  into the Eq. (7.7) with Eq. (7.10), and 
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then let ,111 imla   ,112 imla   ,3 ca   ,111 iqpb   ,112 iqpb   db 3  into the Eq. 

(7.7) together with the Eq. (7.5), Eq. (7.6) and Eq. (7.10) gives the resultant solution as 

xdtcdycxMA

dtcdycxMdtcdycx

MAMtyx

)}2exp()cos(

)exp(2)exp(

)2exp()cos()exp(21ln{
2
3),,(

2
1

2
11211

2
11

2

11211













     (7.12) 

where ,
)32(
)32(

2
11

2
111111

2
11

2
111111

12 lpmpmlql
mqlqmlpmA




  tqmlpmplypxlM )2( 1111

2
11

2
1111  ,  

tpmlqmqlyqxm )2( 1111
2

11
2

1111   and )exp( 111123  iiQPA  (say), then 

)exp( 111113  iiQPA   in which 2
1

2
11 QP   and )(tan

1

11
1 P

Q .  

In the Eq. (7.12), solution comes in terms of the combination of exponential and 

periodic sinusoidal function exhibits collision of a kinky periodic lump type breather 

soliton and a kink shaped line soliton, as viewed in the Figs-7.4, 7.5 and 7.6 for the values 

,11 l  ,11 m  ,11 p  ,11 q  1c . There are two sub-cases existed depending on 

interaction direction.  

Case (i):  For 0d , we observe (see Fig-7.4 3D (upper) and its contour (below)) 

that the two waves are always parallel to each other, even at the time of interaction (see 

the contour plots Fig-7.4 (below)). We also observe that the two waves (display as a 

double kink wave) contains periodically lump waves get into the lower kink (see Fig.-

7.4(a) (upper)) before ( 0t ) collision and upper kink (see Fig.-7.4(c) (upper)) after 

( 0t ) collision in the xy -plane respectively.  They are overlapped entirely at 

0t where highest amplitude comes into sight (see Fig.-7.4(b) (upper)). Actually the 

whole collision processes is completely elastic which is evidently observed in the contour 

plots Fig.-7.4 (below) in the same plane.  
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(a) 5t  (b) 0t  (c) 5t  
Fig-7.4: Collision between breather lump soliton and kink line soliton of the Eq. (7.12) for ,11 l  

,11 m  ,11 p  ,11 q  ,1c  1d : 3D plot (upper) and its contour plot (below). 

   
(a) 7t  (b) 0t  (c) 7t  

Fig-7.5: Collision between breather lump soliton and kink line soliton of the Eq. (7.12) for ,11 l  
,11 m  ,11 p  ,11 q  ,1c  1d : 3D plot (upper) and its contour plot (below). 
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(a) 5y  (b) 0y  (c) 5y  

Fig-7.6: Collision between breather lump soliton and kink line soliton of the Eq. (7.12) for ,11 l  
,11 m  ,11 p  ,11 q  ,1c  1d : 3D plot (upper) and its contour plot (below). 

Case (ii): For 0d , we observe (see Fig-7.5 3D (upper) and its contour (below)) 

that the two waves (a kinky periodic lump type breather soliton and a kink shaped line 

soliton) interact at a certain angle. We see that a kink wave interact the breather wave and 

shifting of the collision changes along negative of y-axis (observe Fig-7.5(a)) to positive 

of y-axis (observe Fig-7.5(c)), but at the intermediate time they interact at the origin 

(observe Fig-7.5(b)). The overall propagation process is elastic. Beside this, when we take 

the plot into the xt -plane similar elastic collision are also observed in the double kink 

waves with the same parametric values (observe Fig.-7.6 3D (upper) and its contour 

(below)). 

7.3.3. Four solitons and Interaction of two lump type breather solitons: To 

determine interaction of two lump type breather solitons, we have to consider at four 
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soliton solutions. In this regard, consider the three solitons solution by putting 4n  in 

Eq. (7.7) with Eq. (7.10), and then let ,111 imla   ,112 imla   ,223 imla   

,224 imla   ,111 iqpb   ,112 iqpb   ,223 iqpb   224 iqpb   into the Eq. (7.7) 

together with Eqs. (7.5), (7.6) and (7.10) gives the resultant solution as 

xMMAA
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MMtyx
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     (7.13) 

where  tqmlpmplypxlM )2( 1111
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1111  ,  

tpmlqmqlyqxm )2( 1111
2

11
2

1111  ,  

tqmlpmplypxlM )2( 2222
2

22
2

2222  , 

tpmlqmqlyqxm )2( 2222
2

22
2

2222  ,  

)32(
)32(

2
11

2
111111

2
11

2
111111

12 lpmpmlql
mqlqmlpmA




 , 

)32(
)32(

2
22

2
222222

2
22

2
222222

34 lpmpmlql
mqlqmlpmA




 , 

)exp( 111124  iiQPA   (say) and )exp( 222214  iiQPA   (say), then 

)exp( 111113  iiQPA   and )exp( 222223  iiQPA  .  

To find the values of ,1  ,2  1  and 2  we apply 22 QP   and )(tan 1

P
Q . 

In the solution Eq. (7.13), comes in-terms of exponential and periodic sinusoidal function 

exhibits collision of a pair of periodic lump type breather waves, as viewed in the Fig-7.7 

with the values ,11 l  ,11 m  ,11 p  ,11 q  ,001.12 l  ,12 m  ,12 p  12 q  at 

0t . It is fascinating that collision of these breathers own unlike dynamic natures in 

distinct planes. Both elastic (observe Fig-7.7(a) 3D (upper) & its contour (below)) and 

non-elastic (observe Fig-7.7(b, c) 3D (upper) & its contour (below)) collision own for 



Chapter Seven      Multi -Soliton and interaction solutions of the (2+1)-D BBS model 
 

105 
 

different times and different planes.  Fig-7.7(a) exhibits double kink type X-shaped 

breather soliton for elastic collision as before and after collision each lump type breather 

wave remains their same solitonic natures and interacts at the origin coming along 

opposite paradox in the xy -plane. It is observed that the some lump waves are periodically 

got into each soliton, being at equal distance from each other. On the other hand, when we 

take the same plot in the same xy -plane but in different time at 4t  it exhibits non-

elastic fusion phenomena after collision as propagate from negative to positive along y  

direction (observe Fig-7.7(b) 3D (upper) and its contour (below)). Other behaviour is also 

own the collision when observed in the xt -plane. It is seen that a breather lump wave 

interact at 0t  and then causes fission as it split into two breather type lump waves 

(observe Fig-7.7(c) 3D (upper) & its contour (below)) times goes by.  

 
(a) 0t  (b) 4t  (c) 0y  

Fig-7.7: Collision of periodic lump and periodic line waves of the Eq. (7.13) for ,11 l  ,11 m  
,11 p ,11 q ,001.12 l ,12 m  ,12 p  12 q : 3D plot (upper) and its contour plot (below). 



Chapter Seven      Multi -Soliton and interaction solutions of the (2+1)-D BBS model 
 

106 
 

7.4. Conclusions 

In the summery, we have been successfully used Hirota bilinear method to gian multi-

soliton solutions Eq. (7.7) of the BBS equation, see Figs-7.1. Various parametric values 

have been selected to get distinguish dynamical characteristics single kinky-lump type 

breather solitons (see Figs-7.2, 7.3(a, c)), double kinky-lump type breather solitons (see 

Figs-7.3 (b), 7.4, 7.5, 7.6 and 7.7(a)), collision of a kink line soliton with a kinky-type 

breather soliton ( see Figs-7.4, 7.5, 7.6), and collision of a pair of kinky-lump breather 

solitons (see Fig-7.7(a)) by the appropriate selection of exist parameters from the multi 

soliton solutions of the models. These breathers hold unlike features in various planes 

even in various times. Elastic (see see Figs-7.1-7.6, 7.7(a)) and non-elastic (see Fig-7.7 (b, 

c)) collisions for double kinky type lump breather are experienced in various plane and in 

various times. Some figures are given to illustrate the dynamics of the achieved solutions. 

This will also prompt us to explore new approach to obtain more extensive and accurate 

solution to the models. The acquired results can enhance the dynamical properties of 

higher dimensional nonlinear scenarios in the engineering fields.   
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Chapter Eight 

Multi-solitons and interaction solution to the (3+1)-D STOL model 

Acknowledgement 

In this chapter, the Hirota bilinear integral technique is applied to execute n-soliton 

solutions of the (3+1)-dimensional Sharma–Tasso–Olver-like (STOL) model. We also 

reveal the interactions are non-elastic fusion or fission phenomena that more kink waves 

fused or a single kink wave split into more kink waves due to soliton fission. We derive 

kinky-lump breather, combo line kink and kinky-lump breather, and a pair of kinky-lump 

breather wave solutions that degenerate from two-, three- and four-solitons respectively by 

choosing complex conjugate values involving free parameters. We reveal the interactions 

are non-elastic fusion phenomena that kink and breather waves fused into a kinky-lump 

breather from the collision of line kink and combo kinky-lump breather, a single kinky-

lump breather from a pair of kinky-lump breather waves after interaction respectively. The 

fission phenomena also observe from the same interaction with the reverse condition on 

parameters. All special properties of these collision solutions are illustrated clearly with 

3D and contour plots.  

8.1 Introduction 

Nonlinear evolution models can illustrate various complicated happening in various 

branches including fluid mechanics, optical fiber communications, plasmas, mathematical 

biology, and so on [1-21]. With the improvement of the soliton concept, numerous 

effective and reliable schemes to achieve exact and analytical solutions of the models have 

been presented in the literature [38-70]. A novel integral technique which is familiar as 

Hirota bilinear scheme was primarily presented in 1971 [40], by Hirota, and was 

effectively applied in huge amount of nonlinear models [71-78]. 
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The primary purpose of this chapter is to find some novel exact multi-solutions and 

collision solutions of the following STOL model [81]   

])2[(])3[( 1213
xxyxyxyxxyxxxxxt qp     

0])2[( 121  
xxzzxzxxzr  .         (8.1) 

where ,p ,q r  are free parametric values and   is the function that contains the space 

variables ,x ,y z , and time variable t . The integral operator 1 x  is the inverse of x . 

The STOL model Eq. (8.1) can explain the extension of nonlinear dispersive waves in the 

inhomogeneous medium [96]. This model can also illustrate various difficult sciences 

areas for instance optics, plasmas, quantum physics, and others [97–100]. 

The design of this chapter is given as: firstly we apply the Hirota bilinear transformation to 

establish the multi-soliton solutions of the STOL model in section 8.2. Section 8.3 

discusses the interaction solutions of the STOL model. Lastly, conclusions and some 

comments are provided in section 8.4. 

8.2. Multi-solitons of the STOL model 

To achieve dispersion relation of the STOL model Eq. (8.1), we consider an exponential 

function solution as bellow:  

)exp(),,,( itzyx   , tzcybxa iiiii   .                    (8.2) 

Putting Eq. (8.2) in the linear parts of the Eq. (8.1), then we have  

iiiiii ccabbaaa 223  , ni ,,2,1  .          (8.3) 

Thus we reach to 

tccabbaaazcybxa iiiiiiiii )( 223  , ni ,,2,1  .       (8.4) 

Now, consider the bilinear conversion relation 

xtzyxAtzyx )),,,((ln),,,(   .           (8.5) 
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Inserting Eq. (8.5) and )exp(1    in the Eq. (8.1), then solve A  yields 

  1A .               (8.6) 

For n  multi-soliton solution, suppose the trial function as follows: 
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Now suppose the trial solution for 2-soliton as follows 

)exp()exp()exp(1),,,( 211221   Ptzyx .         (8.8) 

Putting Eq. (8.8) including Eq. (8.5) and Eq. (8.6) in the Eq. (8.1), then solve 12P  yields  

.012 P               (8.9) 

Similarly, we can find 3-soliton, 4-soliton and all other soliton solutions from Eq. (8.7), 

with the following conditions 

,0ijP nji ,,2,1,  .                             (8.10) 

Shapes of the wave equation Eq. (8.7) together with Eq. (8.5) & Eq. (8.10) for 1n , 2  

and 3  exhibits one-, two- and three-soliton solutions respectively as described in the Fig-

8.1 with the parametric values ,1p  ,1321211  cccbba  ,12 a  ,5.03 a  

5.03 b . It is experienced that 1n  displays a single kink wave (view Fig-8.1(a, d)) 

only, but in the interaction solutions: single kink wave split into two kink waves ( 2n ) 

(view Fig-8.1(b)) and single kink wave split into three kink waves ( 3n ) (view Fig-

8.1(c)) after ( 0t ) interactions due to non-elastic collisions fission phenomena. The 

reverse phenomena also observed for reverse conditions on involve parameters depicted in 

Fig-8.1(e-f).  
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(a) 1 rq  (b) 1 rq  (c) 1 rq  

   
(d) 1 rq  (e) 1 rq  (f) 1 rq  

Fig-8.1: Shape of the wave solution Eq. (8.7) with ,0y  0z : (a, d) single kink soliton 
( 1n ); (b, e) dual kink solitons ( 2n ); (c, f) triple kink solitons ( 3n ). 

 
8.3. Interaction solutions of the STOL model 

For retrieving lump breather; the interaction between single soliton and single lump 

breather; and interaction of double lump breather solitons we address the Eq. (8.7) again in 

the next subdivisions. 

8.3.1. Collisions of 2-soliton degenerate into a lump shape breather solitons: Here, 

we spotlight on lump shape breather wave propagation from the two solitons solution. To 

present that, we have to assume 2n  in Eq. (8.7) and then place ,111  ia   

,112  ia   ,111  ib   ,112  ib   ,111  ic   112  ic   into the Eq. (8.8) and 

Eq. (8.9) together with Eq. (8.5), yields 
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(a)  4t  (b)  0t  (c)  7t  

Fig-8.2: Outlook of the Eq. (8.11)  for ,1a  ,1b  ,1c  ,21   ,01   ,21   ,41   
,11   11   at 1z : 3D plot (upper) and its contour plot (below). 

   
(a) 3z  (b) 0z  (c) 3z  

Fig-8.3: Outlook of the Eq. (8.11) for ,1a  ,1b  ,1c  ,21   ,001.01   ,11   
,21   ,51   5.01   at 0t : 3D plot (upper) and its contour plot (below). 
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Here the wave equation Eq. (8.11) appears from 2-soliton solution degenerate into a lump 

shape breather wave by taking complex conjugate of free parameters. Actually, it comes 

with the combinations of exponential and sinusoidal functions. Dynamics of the wave 

equation Eq. (8.11) is viewed in Fig-8.2 (3D diagram (above) & corresponding contour 

diagram (below)). Figures display that the solution reveals as lump style breather waves in 

the xy -plane with 0z  and it moves towards the paradox ( 0t ) with time goes (view 

Fig-8.2(a)), arrive at the paradox for 0t  (view Fig-8.2(b)), and then go away from the 

paradox with times ( 0t ) (view Fig-8.2(c)) and overall its movement each lump occur 

on a kink wave. Its direction, width and velocity remain the same in the overall 

propagation process and periodic lump occur equal distance from one another. Besides 

this, we skilled a similar phenomena when sketch viewed in the same xy -plane for 0t . 

Here, the lump breather wave moves towards the paradox ( 0z ) from negative quadrant 

with value of z  increases (view Fig-8.3(a)), reach along the paradox at 0z  (view Fig- 

8.3(b)), and then go away from the paradox through positive quadrant with increase of 

z (view Fig-8.3(c)) and overall its movement each lump occur on a kink wave. 

8.3.2. Collision of single soliton with a lump style breather wave from 3-soliton solutions: 

Here, this subsection decides a collision between kink type line soliton and a lump style 

breather waves degenerate from other two solitons. From consider the three solitons 

3n , one soliton remain same and the other two solitons take its parameters as the 

complex conjugate new parametric values like ,111  ia   ,112  ia   ,111  ib    
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(a) 1t  (b) 0t  (c) 1t  

Fig-8.4: Interaction of single soliton with a lump shape breather wave of the Eq. (8.12) at 
0y : 3-dimensional diagram (above) and corresponding contour diagram (under). 

   
(a) 1z  (b) 0z  (c) 1z  

Fig-8.5: Interaction profile of single soliton with a lump shape breather wave of the Eq. 
(8.12) at 0t : 3-dimensional diagram (above) and corresponding contour diagram 

(under). 
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,112  ib   ,111  ic   ,112  ic   ,3 da   ,3 eb   kc 3  into the Eq. (8.7) along 

with the Eq. (8.5), Eq. (8.6) and Eq. (8.10) yields 
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  and tkcdebdadkzeydx )( 223    

The Eq. (8.12), exhibits a solution of the combo exponential and sinusoidal functions, 

demonstrate interaction of a line soliton (kink) and lump shape breather soliton arises into 

a kink wave, as sighted in the Fig-8.4 and Fig-8.5 for the values ,1p  ,1q  ,3/1r  

,21   ,001.01   ,11   ,41   ,51   ,11   ,4d  ,001.0e  .1k  

Figures display that the solution reveals as a kink and combo kinky-lump breather wave 

(few lump get in each kink wave) interact and degenerate into a kinky-lump breather wave 

(see 3D plots of Fig-8.4(a-c)) after interaction ( 0x ). Besides this, we skilled a similar 

phenomena when sketch viewed in the xy -plane with 0t  in the figures (Fig-8.5). 

8.3.3. Collision of double kinky-lump shape breather waves degenerate into a single 

kinky-lump shape breather wave: To establish collision of double kinky-lump shape 

breather waves, we recall the four solitons solution from the general multi-soliton solution 

Eq. (8.7). Here, the four solitons solution ( 4n ) take its parameters as the complex 

conjugate new parametric values like then let ,111  ia   ,112  ia   ,223  ia   

,224  ia   ,111  ib   ,112  ib   ,223  ib   ,224  ib   ,111  ic   

,112  ic   ,223  ic   224  ic   into the Eq. (8.7) together with Eq. (8.5), Eq. 

(8.6) and Eq. (8.10) yields 
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(a) ,0z 0t   (b) ,0y 0z  
Fig-8.6: Interaction profile of two kinky-lump breather solitons of the Eq. (8.13): 3 

dimensional diagram (above) and corresponding contour diagram (under). 

The Eq. (8.13), exhibits a solution of combo exp-sinusoidal function, demonstrate 

interaction of double kinky-lump shape breather waves, as sighted in the Fig-8.6 for the 
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values ,2p  ,5q  ,7r  ,21   ,001.01   ,11   ,21   ,11   ,5.01   

,22   ,001.02   ,12   ,72   ,3/12   5.02  . Fig-8.6 display that the 

solution reveals as a pair of combo kinky-lump breather waves degenerate into a single 

combo kinky-lump wave after interaction ( 0y ) (see 3D plots of Fig-8.6(a)) and after 

interaction ( 0x ) (see 3D plots of Fig-8.6(b)). After 0y  i.e., when 0y  Fig-8.6(a), 

combo kinky-lump fused and degenerated into a single kinky-lump breather wave is 

cleared from its corresponding contour plots. After 0x  i.e., when 0x  Fig-8.6(b), 

combo kinky-lump fused and degenerated into a single kinky-lump breather wave is 

cleared from its corresponding contour plots. 

8.4. Conclusion  

Hirota bilinear integral technique has been used successfully to derive n-soliton solutions 

of the STOL model Fig-8.1. We have obtained a kinky-lump breather (Fig-8.2 & Fig-8.3), 

combo line kink and kinky-lump breather degenerate into single breather wave (Fig-8.4 & 

Fig-8.5), and a pair of kinky-lump breather degenerate into single breather wave (Fig-8.6) 

solutions from two-, three- and four-solitons respectively by selecting complex conjugate 

values of involved parameters. We have been experienced with fission-fusion phenomena 

in Fig-8.1, Fig-8.4, Fig-8.5 & Fig-8.6 from interactions of multi-solitons, and kink- 

breather waves. The 3-dimensional and contour diagrams are presented to illustrate the 

dynamics of new properties of these collision solutions. The integral scheme can also be 

used to derive distinguish complex nonlinear models. 
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Chapter Nine 

Conclusions 
This dissertation has been presented exact traveling wave solutions of the three nonlinear 

models namely, the (2+1) Bogoyavlenskii’s breaking soliton (BBS) equation, the (2+1)-

dimensional Benjamin-Bona-Mahony-Burgers (BBMB) equation and the (3+1)-dimensional 

Sharma–Tasso–Olver-like (STOL) equation by applying Hirota bilinear method. We have 

successfully obtained the bilinear form and interaction solutions of the above three models. 

We also obtained multi-soliton solutions and their interaction solutions of the BBS and STOL 

model. We evaluated various characteristic of the solutions including, lump wave, fission-

fusion and annihilation properties of lump wave. It is very interesting that we have the three 

new dynamics for BBMB and STOL models which are still unexplored in the literature. First 

one comes from the interaction of kink and lump wave degenerate a kinky-lump wave for the 

BBMB model. This kinky-lump wave split into double, triple, even large numbers of kinky-

lump waves due to fission for the increase of the coefficient of cosine function gradually (See 

the Fig-5.2). The second property is comes from the interaction of two quadratic polynomials 

(lump wave) and a periodic sinusoidal function degenerated a periodic-lump wave solutions 

of the STOL model gives hybrid lump wave solutions (see Fig-6.3) as increases of the 

coefficient of cosine function gradually. Third property is interaction among lump, kink and 

periodic waves provides a double kinky-periodic lump waves (see Fig-6.8). The lump into the 

double kink wave split due to fission produces a hybrid lump wave into a double kinky wave. 

All special properties of the obtained solutions are illustrated clearly with a number of 3D 

plot, 2D plot, density plot, curve plot and contour plot by choosing suitable parametric values 

with the aid of the computational software Maple 18. The acquired results can enrich the 

dynamical properties of the higher dimensional nonlinear scenarios in the engineering fields. 
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A B S T R A C T

By employing modified simple equation (MSE) scheme, we estimate the presence of stable kink soliton and
kinky-periodic rogue wave solutions; unstable singular kink wave solutions of the biological dynamical models
as a Cahn–Allen model and a diffusive predator–prey model. This model frequently occurs in various nonlinear
science including quantum physics, plasmas and biophysics. We present some novel exact explicit solutions
of the exponential form of both Cahn–Allen and diffusive predator–prey models with some free parametric
values. We also derive particular solutions from the explicit solutions selecting some definite values of the free
parametric values. As a result, kink, singular kink and kinky-periodic lump wave surfaces are achieved of the
solutions. Lastly, the variety and graphic representations of the composition make the models dynamic. Stable
and unstable situations are explained in detail from the analysis of the profiles.

1. Introduction

The mathematical representing of happenings in nature can be
revealed by differential equations. It is well familiar that abundant
categories of the physical occurrences in the field of fluid dynamics,
quantum physics, chemical physics, electricity and plasmas are demon-
strated by nonlinear models and the existence of solitary waves in
nature is frequently. However, nonlinear behavior is a challenging due
to some minor changes in time-related parametric values; it is not com-
fortable to manage the non-linear representative of the organism very
quickly. Nonlinearity is responsible for the development of local waves
and has the ability to carry energy without wastage which is a very fas-
cinating matter.1,2 Otherwise, rapidly growing the spread of infection
may cause a disaster state in a community. To tackle the unavailable
state or to remain a suitable state, we have to learn the dissimilar
types of solutions of the dynamical system in a model of Cahn–Allen
or any type of predator–prey model. As in tragedy state waves or to
keep emerges location, the height and width of population size is very
essential. If we resolve the model of dynamical systems of such difficul-
ties by applying diverse approaches, we can find the best approach of
appreciative such potential disasters and then earnings necessary pre-
cautions. Thus, the concern becomes more challenging and hence deci-
sive solutions are needed. The solutions of the equation have a crucial
impression on mathematical physics and engineering. Recently, there

∗ Corresponding author at: Department of Mathematics, Comilla University, Cumilla 3506, Bangladesh.
E-mail addresses: safi.ru1985@gmail.com (M.S. Ullah), harunorroshidmd@gmail.com (H.O. Roshid), zulfi1022002@yahoo.com (M.Z. Ali),
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has been a tremendous increased to find the exact solutions of nonlinear
models. Various effective schemes have been reputed and enriched,
such as the tan(𝜑(𝜉)∕2)-expansion scheme,3 the generalized Kudryshov
scheme,4 the (𝐺′∕𝐺)-expansion scheme,5 the sine–Gordon expansion
scheme,6–8 the F-expansion scheme,9 the exp-function scheme,10,11 the
MSE scheme,12–15 first integral scheme,16 Simple equation scheme,17

Bilinear scheme,18–21 the Exp-(−𝜙(𝜉))-expansion scheme,22 the tanh
scheme23 and so on.24–35 All most all of the above schemes are con-
tingent on computational software except the MSE scheme. The MSE
scheme is a very effective and reliable procedure settled successfully
by Vitanov12 and the reference therein.12–15

The ambition of this manuscript is to seek novel exact solutions
together with topological soliton, periodic cusp soliton, periodic bell
solutions of the well-recognized Cahn–Allen model11,16,35 and diffusive
predator–prey model33,34 via MSE scheme.

2. Description of the MSE scheme

Consider a general form of a nonlinear model as

𝐻(𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑡, 𝑢𝑥𝑥,… …) = 0, (2.1)

with real function 𝑢(𝜉) = 𝑢(𝑥, 𝑡) and 𝐻 is a polynomial of 𝑢(𝑥, 𝑡). We
present the key steps of the scheme as follows:
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Step 1: Let us combine the real variables 𝑥 and 𝑡 by a combined variable
𝜉 as

𝑢(𝑟, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑃 . 𝑟 ±𝑤𝑡, (2.2)

where 𝑃 = 𝑙𝑖 + 𝑚𝑗 + 𝑛𝑘̂ and 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘̂ with real constants 𝑙, 𝑚, 𝑛,
wave amount 𝑘 and wave velocity 𝑤.

By the above relation the Eq. (2.1) converted to the ordinary
differential equation as follows

𝐺(𝑢, 𝑢′, 𝑢′′ … … …) = 0, (2.3)

where 𝐺 is a polynomial in 𝑢(𝜉) and its derivatives.

Step 2: Consider the trial solution of Eq. (2.3) as

𝑢(𝜉) =

𝑛
∑

𝑖=0

𝐴𝑖

(

𝑆′(𝜉)

𝑆(𝜉)

)𝑖

, (2.4)

with real constants 𝐴𝑖(𝑖 = 0, 1,… , 𝑛) and unknown function 𝑆(𝜉).

Step 3: By balancing the derivative of highest order and nonlinear
terms in Eq. (2.3), we can find the value of 𝑛 in Eq. (2.4).

Step 4: From Eqs. (2.4) and (2.3), we get a polynomial of (𝑆′(𝜉)∕𝑆(𝜉))

and its derivatives and (𝑆(𝜉))−𝑖, (𝑖 = 0, 1, 2,… , 𝑛), and then equating
the coefficients of (𝑆(𝜉))−𝑖, (𝑖 = 0, 1, 2,… , 𝑛) equal to zero. This pro-
duces gives an algebraic system which can be solved to obtain 𝐴𝑖(𝑖 =

0, 1, 2,… , 𝑛),𝑆(𝜉). Then we can find the solution of the Eq. (2.1).

Remark. In comparison the MSE scheme with the simple equation
scheme,17 it is seen that simple equation scheme depend upon an
auxiliary equation (Riccati equation) but MSE scheme is independent
and can perform directly without help of any auxiliary equation. On
the other hand, Simple equation gives results which are special case of
Modified equation scheme.

3. Illustrative examples

Here, we include two examples to make clear the suitability of the
MSE scheme to solve nonlinear models declared above.

3.1. Example-1: Traveling wave solution of Cahn–Allen model

Let us consider nonlinear model given as

𝑢𝑡 = 𝑢𝑥𝑥 − 𝑢𝑚 + 𝑢. (3.1)

For 𝑚 = 3, Eq. (3.1) suits to Cahn–Allen model.11,16,35 This model
occurs in various scientific areas including biophysics, quantum physics
and plasmas. To solve this model, we use transformation 𝜉 = 𝑘𝑥 +

𝑤𝑡, for wave amount 𝑘 and wave velocity 𝑤. Taking help of this
transformation, Eq. (3.1) converts to an ordinary differential equation

𝑤𝑢′ − 𝑘2𝑢′′ + 𝑢3 − 𝑢 = 0. (3.2)

Balancing 𝑢3 with 𝑢′′ we receive the unknown order of solution as 𝑛 = 1.
Hence the trial solution Eq. (2.4) takes the form as

𝑢(𝜉) = 𝐴0 + 𝐴1

𝑆′(𝜉)

𝑆(𝜉)
. (3.3)

Now, we can compute the terms:

𝑢′(𝜉) = 𝐴1

𝑆′′(𝜉)

𝑆(𝜉)
− 𝐴1

(

𝑆′(𝜉)

𝑆(𝜉)

)2

, (3.4)

𝑢′′(𝜉) = 𝐴1

𝑆′′′(𝜉)

𝑆(𝜉)
− 3𝐴1

𝑆′′(𝜉)𝑆′(𝜉)

𝑆2(𝜉)
+ 2𝐴1

(

𝑆′(𝜉)

𝑆(𝜉)

)3

. (3.5)

Putting Eqs. (3.3)–(3.5) in the Eq. (3.2) and equating coefficients of
same powers of 𝑆′(𝜉)

𝑆(𝜉)
, we gain:

Coefficient of (𝑆(𝜉))0 ∶ 𝐴3
0
− 𝐴0 = 0, (3.6)

Coefficient of (𝑆(𝜉))−1 ∶ − 𝑘2𝐴1𝑆
′′′(𝜉) + 3𝐴2

0
𝐴1𝑆

′(𝜉)

+ 𝑤𝐴1𝑆
′′(𝜉) − 𝐴1𝑆

′(𝜉) = 0, (3.7)

Coefficient of (𝑆(𝜉))−2 ∶ −𝑤𝐴1

(

𝑆′(𝜉)
)2

+ 3𝑘3𝐴1𝑆
′(𝜉)𝑆′′(𝜉)

+ 3𝐴0𝐴
2
1

(

𝑆′(𝜉)
)2

= 0, (3.8)

Coefficient of (𝑆(𝜉))−3 ∶ 𝐴1(𝐴
2
1
− 2𝑘2)

(

𝑆′(𝜉)
)3

= 0. (3.9)

From Eq. (3.6), we achieve 𝐴0 = 0, 1,−1 and from Eq. (3.9) we can
receive the values 𝐴1 ≠ 0 and thus 𝐴1 = ±

√

2𝑘 and

𝑆′′′

𝑆′′
=

3𝑘2(3𝐴2
0
− 1) +𝑤(𝑤 − 3𝐴0𝐴1)

𝑘2(𝑤 − 3𝐴0𝐴1)
. (3.10)

Integrating we have

𝑆′′ = 𝑐1 exp(
3𝑘2(3𝐴2

0
− 1) +𝑤(𝑤 − 3𝐴0𝐴1)

𝑘2(𝑤 − 3𝐴0𝐴1)
𝜉). (3.11)

From Eq. (3.8), we also get,

From Eq. (3.8), we also get,

𝑆′ =
3𝑐1𝑘

2

𝑤 − 3𝐴0𝐴1

exp(
3𝑘2(3𝐴2

0
− 1) +𝑤(𝑤 − 3𝐴0𝐴1)

𝑘2(𝑤 − 3𝐴0𝐴1)
𝜉). (3.12)

Integrating Eq. (3.12) one time, we have

𝑆 =
3𝑐1𝑘

4

3𝑘2(3𝐴2
0
− 1) +𝑤(𝑤 − 3𝐴0𝐴1)

× exp(
3𝑘2(3𝐴2

0
− 1) +𝑤(𝑤 − 3𝐴0𝐴1)

𝑘2(𝑤 − 3𝐴0𝐴1)
𝜉) + 𝑐2. (3.13)

Using Eqs. (3.12) and (3.13), we attain to the solution

𝑢 = 𝐴0 +
3𝑐1𝐴1𝑘

2

𝑤 − 3𝐴0𝐴1

×
exp(

3𝑘2(3𝐴2
0
−1)+𝑤(𝑤−3𝐴0𝐴1)

𝑘2(𝑤−3𝐴0𝐴1)
𝜉)

3𝑐1𝑘
4

3𝑘2(3𝐴2
0
−1)+𝑤(𝑤−3𝐴0𝐴1)

exp(
3𝑘2(3𝐴2

0
−1)+𝑤(𝑤−3𝐴0𝐴1)

𝑘2(𝑤−3𝐴0𝐴1)
𝜉) + 𝑐2

,

(3.14)

where 𝜉 = 𝑘(𝑥 ±
3
√

2
𝑡) with 𝑤 = ±

3
√

2
𝑘. Here 𝑐1 and 𝑐2 are arbitrary

constants.

Case-I: For the set 𝐴0 = 0, 𝐴1 = ±
√

2𝑘, we get

𝑢 = ±
3
√

2𝑐1𝑘
3

𝑤
×

exp(
(𝑤2−3𝑘2)

(𝑘2𝑤)
𝜉)

3𝑐1𝑘
4

𝑤2−3𝑘2
exp(

(𝑤2−3𝑘2)

(𝑘2𝑤)
𝜉) + 𝑐2

, (3.15)

where 𝜉 = 𝑘(𝑥 ±
3
√

2
𝑡) with 𝑤 = ±

3
√

2
𝑘.

If we choose 𝑐2 =
3𝑘4𝑐1

𝑤2−3𝑘2
, then we arrive to the solution

𝑢 = ±
𝑤2 − 3𝑘2
√

2𝑤𝑘

{

1 + tanh

(

𝑤2 − 3𝑘2

2𝑤𝑘2
𝜉

)}

, (3.16)

where 𝜉 = 𝑘(𝑥 ±
3
√

2
𝑡) with 𝑤 = ±

3
√

2
𝑘.

If we choose 𝑐2 = −
3𝑘4𝑐1

𝑤2−3𝑘2
, then we arrive to the solution

𝑢 = ±
𝑤2 − 3𝑘2
√

2𝑤𝑘

{

1 + cot h

(

𝑤2 − 3𝑘2

2𝑤𝑘2
𝜉

)}

, (3.17)

where 𝜉 = 𝑘(𝑥 ±
3
√

2
𝑡).

Since 𝑐1 and 𝑐2 are free parameters, for various selections of 𝑐1
and 𝑐2 it provides abundant novel exact solutions of the Cahn–Allen
model. The achieved solutions from Eqs. (3.16) and (3.17) are depicted
graphically in Figs. 1 and 2.

Case-II: For the set 𝐴0 = ±1, 𝐴1 = ±
√

2𝑘, we get

𝑢 = ±1 ±
3
√

2𝑐1𝑘
3

𝑤 − 3
√

2𝑘
×

exp(
(6𝑘2+𝑤(𝑤−3

√

2𝑘))

𝑘2(𝑤−3
√

2𝑘)
𝜉)

3𝑐1𝑘
4

6𝑘2+𝑤(𝑤−3
√

2𝑘)
exp(

(6𝑘2+𝑤(𝑤−3
√

2𝑘))

𝑘2(𝑤−3
√

2𝑘)
𝜉) + 𝑐2

, (3.18)

for 𝜉 = 𝑘(𝑥 ±
3
√

2
𝑡) with 𝑤 = ±

3
√

2
𝑘. Here 𝑐1 and 𝑐2 are arbitrary

parametric values.

2
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Fig. 1. Kink wave of the solution Eq. (3.16) with 𝑘 = 1.

Fig. 2. Single-kink wave solution of the Eq. (3.17) with 𝑘 = 1.

If we choose 𝑐2 =
3𝑘4𝑐1

6𝑘2+𝑤(𝑤−3
√

2𝑘)
, then we attain to the solution as

𝑢 = ±1 ±

√

2{6𝑘2 +𝑤(𝑤 − 3
√

2𝑘)}

𝑘(𝑤 − 3
√

2𝑘)

{

1 + tanh

(

6𝑘2 +𝑤(𝑤 − 3
√

2𝑘)

𝑘2(𝑤 − 3
√

2𝑘)
𝜉

)}

,

(3.19)

where 𝜉 = 𝑘(𝑥 ±
3
√

2
𝑡) with 𝑤 = ±

3
√

2
𝑘.

If we choose 𝑐2 = −
3𝑘4𝑐1

6𝑘2+𝑤(𝑤−3
√

2𝑘)
, then we attain to the solution as

𝑢 = ±1 ±

√

2{6𝑘2 +𝑤(𝑤 − 3
√

2𝑘)}

𝑘(𝑤 − 3
√

2𝑘)

{

1 + tanh

(

6𝑘2 +𝑤(𝑤 − 3
√

2𝑘)

𝑘2(𝑤 − 3
√

2𝑘)
𝜉

)}

,

(3.20)

where 𝜉 = 𝑘(𝑥 ±
3
√

2
𝑡) with 𝑤 = ±

3
√

2
𝑘.

Since 𝑐1 and 𝑐2 are free parameters, for different selections of 𝑐1
and 𝑐2 it provides abundant novel exact solutions of the Cahn–Allen
model. The achieved solutions from Eqs. (3.19) and (3.20) are similar in
diagrams Fig. 1 and Fig. 2 respectively. So, we exclude these equations
for convenience.

Again with commercial software, we can also get various solutions
of the Cahn–Allen model (solving from Eqs. (3.7) and (3.8)).

For the set of solution 𝐴0 = 0, 𝐴1 = ±
√

2𝑘, we get 𝑆(𝜉) = 𝑎 +

𝑏 exp(±𝜉∕
√

2𝑘).
Thus arrive to the solution

𝑢(𝑥, 𝑡) = ±
𝑏

𝑎

{

cosh
𝜉

√

2𝑘
∓ sin h

𝜉
√

2𝑘

}

+ 𝑏

with 𝜉 = 𝑘

(

𝑥 ± 3𝑡∕
√

2
)

.

(3.21)

If we consider 𝑎∕𝑏 = exp(2𝑐), then Eq. (3.21) reduces to well known
solution

𝑢(𝑥, 𝑡) = ±
1

2

{

1 + tanh

(

±
1
√

2
𝑥 +

3

2
𝑡 + 𝑐

)}

. (3.22)

For the set 𝐴0 = 1, 𝐴1 = ±
√

2𝑘, we get 𝑆(𝜉) = 𝑎 + 𝑏 exp(±𝜉∕
√

2𝑘).
Hence arrive to the solution

𝑢(𝑥, 𝑡) = 1 −
𝑏

𝑎

{

cosh
𝜉

√

2𝑘
± sin h

𝜉
√

2𝑘

}

+ 𝑏

with 𝜉 = 𝑘

(

𝑥 ± 3𝑡∕
√

2
)

.

(3.23)

If we consider 𝑎∕𝑏 = exp(2𝑐), then Eq. (3.23) reduces to well known
solution

𝑢(𝑥, 𝑡) =
1

2

{

1 + tanh

(

±
1
√

2
𝑥 +

3

2
𝑡 + 𝑐

)}

. (3.24)

For the set 𝐴0 = −1, 𝐴1 = ±
√

2𝑘, we get 𝑆(𝜉) = 𝑎 + 𝑏 exp(∓𝜉∕
√

2𝑘).
Hence we attain to the solution

𝑢(𝑥, 𝑡) = −1 −
𝑏

𝑎

{

cosh
𝜉

√

2𝑘
∓ sin h

𝜉
√

2𝑘

}

+ 𝑏

with 𝜉 = 𝑘

(

𝑥 ∓ 3𝑡∕
√

2
)

.

(3.25)

If we consider 𝑎∕𝑏 = exp(2𝑐), then Eq. (3.22) gives to well known
solution

𝑢(𝑥, 𝑡) = −
1

2

{

1 + tanh

(

±
1
√

2
𝑥 +

3

2
𝑡 + 𝑐

)}

. (3.26)

Since 𝑎 and 𝑏 are free parameters, for different selections of 𝑎 and 𝑏

it provides abundant novel exact solutions of the Cahn–Allen model.
Choosing 𝑎∕𝑏 = exp(2𝑐) we get special type solution like Eqs. (3.24)
and (3.26), but for other choose 𝑎 and 𝑏 in different way we can get
dissimilar type of solutions. Thus Eqs. (3.24) and (3.26) are particular
type of our solutions.

Graphs of the solutions Eqs. (3.21), (3.23) and (3.25) represent
kink type wave propagation (like Fig. 1) for same positive/negative
values of the arbitrary constants 𝑐1 and 𝑐2. But to get single soliton like
wave propagation (like Fig. 2) from the same solution, we have to pick
opposite values of arbitrary constants 𝑐1 and 𝑐2.

3.2. Example 2: A diffusive predator–prey model

In the predator–prey model including any type of natural disaster,
the cycle can be reflected as a flow that may be periodic or remain
unchanged like soliton and may be considered as a nonlinear wave phe-
nomenon allied to a large amount of significance in modern biophysics.
Here, we deliberate a model of two combined nonlinear models relating
the spatio-temporal kinetics of a predator–prey model,33

{

𝑢𝑡 = 𝑢𝑥𝑥 − 𝛽𝑢 + (1 + 𝛽)𝑢2 − 𝑢3 − 𝑢𝑣

𝑣𝑡 = 𝑣𝑥𝑥 + 𝑘𝑢𝑣 − 𝑚𝑣 − 𝛿𝑣3
, (3.27)

with positive constants 𝑘, 𝛿, 𝑚 and 𝛽. Research has been done from
several angles to find a solution to the predator–prey model.33,34 For
further convenience, to visualize the kinetics of the dispersive predator–
prey model have expected the relations as 𝑚 = 𝛽 and 𝑘 + 1∕

√

𝛿 =

𝛽 + 1.

3
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Hence the Eq. (3.27) converted to
{

𝑢𝑡 = 𝑢𝑥𝑥 − 𝛽𝑢 + (𝑘 + 1∕
√

𝛿)𝑢2 − 𝑢3 − 𝑢𝑣

𝑣𝑡 = 𝑣𝑥𝑥 + 𝑘𝑢𝑣 − 𝛽𝑣 − 𝛿𝑣3
. (3.28)

Analogously, we bring in the variable 𝜂 = 𝑥 − 𝑤𝑡, and make the
transformation 𝑢(𝑥, 𝑡) = 𝑢(𝜂), to convert Eq. (3.28) as the following form:

{

𝑢′′ + 𝑐𝑢′ − 𝛽𝑢 + (𝑘 + 1∕
√

𝛿)𝑢2 − 𝑢3 − 𝑢𝑣 = 0

𝑣′′ + 𝑐𝑣′ + 𝑘𝑢𝑣 − 𝛽𝑣 − 𝛿𝑣3 = 0
, (3.29)

for 𝑐 ≠ 0.
To solve the Eq. (3.29), consider the relation 𝑣 = 𝑢∕

√

𝛿 to convert
the system to a single equation and we finally attain,

𝑢′′ + 𝑐𝑢′ − 𝛽𝑢 + 𝑘𝑢2 − 𝑢3 = 0. (3.30)

Balancing 𝑢3 and 𝑢′′ in Eq. (3.30), yields 𝑚 + 2 = 3𝑚 → 𝑚 = 1. So Eq.
(3.30) has the following solution

𝑢(𝜂) = 𝑎0 + 𝑎1
𝛺′(𝜂)

𝛺(𝜂)
and 𝑎1 ≠ 0, (3.31)

where 𝑎0 and 𝑎1 are constants and need to be determined. Inserting
Eq. (3.31) in Eq. (3.30) and equating the coefficient of same powers of
(𝛺(𝜂))−𝑖 , 𝑖 = 0, 1,… , 3 and setting each of them is identical to zero; we
have an algebraic system as below

𝑘𝑎2
0
− 𝛽𝑎0 − 𝑎3

0
= 0

𝑤𝑎1𝛺
′′(𝜂) − (𝛽𝑎1 + 3𝑎2

0
𝑎1 − 2𝑘𝑎0𝑎1)𝛺

′(𝜂) + 𝑎1𝛺
′′′(𝜂) = 0

− 3𝑎1
(

𝛺′(𝜂)
) (

𝛺′′(𝜂)
)

− (𝑤𝑎1 − 𝑘𝑎2
1
+ 3𝑎0𝑎

2
1
)
(

𝛺′(𝜂)
)2

= 0,
(

2𝑎1 − 𝑎3
1

) (

𝛺′(𝜂)
)3

= 0.

From first and last equation of the above algebraic system, we get three
types of solutions
𝑎0 = 0, 𝑎1 = ±

√

2 and 𝑎0 =
1

2
(𝑘 +

√

𝑘2 − 4𝛽), 𝑎1 = ±
√

2 and 𝑎0 =
1

2
(𝑘 −

√

𝑘2 − 4𝛽), 𝑎1 = ±
√

2.

Case1: When we consider 𝑎0 = 0 and 𝑎1 = ±
√

2.

Set-1: For the solution 𝑎0 = 0 and 𝑎1 =
√

2, we get other parametric

values 𝑤 =

√

2

4
(𝑘 ± 3

√

𝑘2 − 4𝛽) and 𝛺(𝜂) = 𝑐1 + 𝑐2𝑒
−

1
3
(𝑤−

√

2𝑘)𝜂 .
Using these parametric values in Eq. (3.31), we can find the solution

of the Eq. (3.28) as follows

𝑢 = −

√

2

3

𝑐2(𝑤 −
√

2𝑘)

𝑐2 + 𝑐1(cosh 𝜗 + sin h𝜗)
, (3.32)

where 𝜂 = 𝑥 −

√

2

4
(𝑘 ± 3

√

𝑘2 − 4𝛽)𝑡 and 𝜗 =
1

3
(𝑤 −

√

2𝑘)𝜂.

Set-2: For the solution 𝑎0 = 0 and 𝑎1 = −
√

2, we get remain-

ing parametric values 𝑤 = −

√

2

4
(𝑘 ± 3

√

𝑘2 − 4𝛽) and 𝛺(𝜂) = 𝑐1 +

𝑐2𝑒
−

1
3
(𝑤+

√

2𝑘)𝜂 .
Using these parametric values in Eq. (3.31), we can find the solution

of the Eq. (3.28) as follows

𝑢 =

√

2

3

𝑐2(𝑤 +
√

2𝑘)

𝑐2 + 𝑐1(cosh 𝜗 + sin h𝜗)
, (3.33)

where 𝜂 = 𝑥 +

√

2

4
(𝑘 ± 3

√

𝑘2 − 4𝛽)𝑡 and 𝜗 =
1

3
(𝑤 +

√

2𝑘)𝜂.

Case-2: When we consider 𝑎0 =
1

2
(𝑘 +

√

𝑘2 − 4𝛽) and 𝑎1 = ±
√

2.

Set-1: For the solution 𝑎0 =
1

2
(𝑘 +

√

𝑘2 − 4𝛽) and 𝑎1 =
√

2, we get
remaining parametric values

𝑤 = −
1
√

2
𝑘,

√

2

4
(𝑘 − 3

√

𝑘2 − 4𝛽) and 𝛺(𝜂) = 𝑐1 + 𝑐2𝑒
−

√

2

6
(
√

2𝑤+𝑘+3
√

𝑘2−4𝛽)𝜂 .

Using these parametric values in Eq. (3.31), we can find the solution
of the Eq. (3.28) as follows

𝑢 =
1

2
(𝑘 +

√

𝑘2 − 4𝛽) −
1

3

𝑐2(
√

2𝑤 + 𝑘 + 3
√

𝑘2 − 4𝛽)

𝑐2 + 𝑐1(cosh 𝜗 + sin h𝜗)
, (3.34)

where 𝜂 = 𝑥 −

√

2

4
(𝑘 − 3

√

𝑘2 − 4𝛽)𝑡 or 𝜂 = 𝑥 +
1
√

2
𝑘𝑡 and 𝜗 =

√

2

6
(
√

2𝑤 +

𝑘 + 3
√

𝑘2 − 4𝛽)𝜂.

Set-2: For the solution 𝑎0 =
1

2
(𝑘 +

√

𝑘2 − 4𝛽) and 𝑎1 = −
√

2, we get
remaining parametric values

𝑤 =
1
√

2
𝑘,−

√

2

4
(𝑘 − 3

√

𝑘2 − 4𝛽) and 𝛺(𝜂) = 𝑐1 + 𝑐2𝑒
−

√

2

6
(
√

2𝑤−𝑘−3
√

𝑘2−4𝛽)𝜂 .

Using these parametric values in Eq. (3.31), we can find the solution
of the Eq. (3.28) as follows

𝑢 =
1

2
(𝑘 +

√

𝑘2 − 4𝛽) +
1

3

𝑐2(
√

2𝑤 − 𝑘 − 3
√

𝑘2 − 4𝛽)

𝑐2 + 𝑐1(cosh 𝜗 + sin h𝜗)
, (3.35)

where 𝜂 = 𝑥 +

√

2

4
(𝑘 − 3

√

𝑘2 − 4𝛽)𝑡 or 𝜂 = 𝑥 −
1
√

2
𝑘𝑡 and 𝜗 =

√

2

6
(
√

2𝑤 −

𝑘 − 3
√

𝑘2 − 4𝛽)𝜂.

Case-3: When we consider 𝑎0 =
1

2
(𝑘 −

√

𝑘2 − 4𝛽) and 𝑎1 = ±
√

2.

Set-1: For the solution 𝑎0 =
1

2
(𝑘 −

√

𝑘2 − 4𝛽) and 𝑎1 =
√

2, we get
remaining parametric values

𝑤 = −
1
√

2
𝑘,

√

2

4
(𝑘 + 3

√

𝑘2 − 4𝛽) and 𝛺(𝜂) = 𝑐1 + 𝑐2𝑒
−

√

2

6
(
√

2𝑤+𝑘−3
√

𝑘2−4𝛽)𝜂 .

Using these parametric values in Eq. (3.31), we can find the solution
of the Eq. (3.28) as follows

𝑢 =
1

2
(𝑘 −

√

𝑘2 − 4𝛽) −
1

3

𝑐2(
√

2𝑤 + 𝑘 − 3
√

𝑘2 − 4𝛽)

𝑐2 + 𝑐1(cosh 𝜗 + sin h𝜗)
, (3.36)

where 𝜂 = 𝑥 −

√

2

4
(𝑘 + 3

√

𝑘2 − 4𝛽)𝑡 or 𝜂 = 𝑥 +
1
√

2
𝑘𝑡 and 𝜗 =

√

2

6
(
√

2𝑤 +

𝑘 − 3
√

𝑘2 − 4𝛽)𝜂.

Set-2: For the solution 𝑎0 =
1

2
(𝑘 −

√

𝑘2 − 4𝛽) and 𝑎1 = −
√

2, we get
remaining parametric values

𝑤 =
1
√

2
𝑘,−

√

2

4
(𝑘 + 3

√

𝑘2 − 4𝛽) and 𝛺(𝜂) = 𝑐1 + 𝑐2𝑒
−

√

2

6
(
√

2𝑤−𝑘+3
√

𝑘2−4𝛽)𝜂 .

Using these parametric values in Eq. (3.31), we can find the solution
of the Eq. (3.28) as follows

𝑢 =
1

2
(𝑘 −

√

𝑘2 − 4𝛽) +
1

3

𝑐2(
√

2𝑤 − 𝑘 + 3
√

𝑘2 − 4𝛽)

𝑐2 + 𝑐1(cosh 𝜗 + sin h𝜗)
, (3.37)

where 𝜂 = 𝑥 +

√

2

4
(𝑘 + 3

√

𝑘2 − 4𝛽)𝑡 or 𝜂 = 𝑥 −
1
√

2
𝑘𝑡 and 𝜗 =

√

2

6
(
√

2𝑤 −

𝑘 + 3
√

𝑘2 − 4𝛽)𝜂.
If we plot Eq. (3.32) with particular choose of the constants such

that 𝑘2 − 4𝛽 > 0, then we achieved progress of spaces as kink type that
is population density is stable and lies between two asymptotic state
𝑢 = 0 to 𝑢 = 0.85 with 𝑐1 = 𝑐2 = 𝑤 = 𝛽 = 1, 𝑘 = 2 (see Fig. 3a). But
if we set the constants such that 𝑘2 − 4𝛽 < 0, then most of the times
population are stable except some times and periodic (see Fig. 3b with
𝑐1 = 𝑐2 = 𝑤 = 𝛽 = 1, 𝑘 = 1). On the other hand when 𝑐1 𝑜𝑟 𝑐2 negative,
then density of species unstable and increases unexpectedly (see Fig. 3c
with 𝑐1 = −1, 𝑐2 = 𝑤 = 𝛽 = 1, 𝑘 = 2). Fig. 3d: perspective view of
Eq. (3.33) for 𝑐1 = 𝑐2 = 𝑤 = 𝛽 = 1, 𝑘 = 1. The other solution gives the
same type of situation with similar conditions on the parametric values.
So we avoid the similar figures again.

4. Comparison

Here, we compare our solutions with the solutions of other re-
searchers obtained by some renowned schemes as exp-function scheme,
first integral scheme and Bernoulli sub-equation function scheme. The
details are included as follows:
(a) Comparison with Exp-function scheme Ref. 11: Ugurlu11 ob-
tained some solutions of the Cahn–Allen model via exp-function scheme
in which solutions 𝑢8, 𝑢9 are identical with our solution Eq. (3.21) when
𝑏 = 1, 𝑎 = 𝑏0 and the other solutions are different with their solutions
(For more see the Ref. 14).
(b) Comparison with first integral scheme Ref. 16: Tascan and
Bekir16 obtained some solutions of the Cahn–Allen model via first

4
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Fig. 3a. Kink wave view of Eq. (3.32) for 𝑐1 = 𝑐2 = 𝑤 = 𝛽 = 1, 𝑘 = 2.

Fig. 3b. Kinky-periodic lump wave view of Eq. (3.32) for 𝑐1 = 𝑐2 = 𝑤 = 𝛽 = 1, 𝑘 = 1.

Fig. 3c. Singular-kink soliton view of Eq. (3.32) for 𝑐1 = −1, 𝑐2 = 𝑤 = 𝛽 = 1, 𝑘 = 2.

integral scheme in which solutions Eq. (3.16) are identical with our
solutions Eq. (3.21) (when in our study 𝑎 = 𝑏 = 1, 𝑘 = −1∕

√

2 and
in their study 𝑐0 = 0) and 𝑢8, 𝑢9 are identical with our solutions Eq.

Fig. 3d. Kinky-periodic lump wave view of Eq. (3.33) for 𝑐1 = 𝑐2 = 𝑤 = 𝛽 = 1, 𝑘 = 1.

(3.21) when 𝑏 = 1, 𝑎 = 𝑏0 and the other solutions are different with
their solutions.
(c) Comparison with the Bernoulli sub-equation function scheme
Ref. 35: Bulut et al.35 derived six solutions of Cahn–Allen model and all
of these are special case of our solutions. When we put 𝑘 = −

√

2∕3, 𝑐2 =

𝑎2, 2𝑐1𝑘
2 = 𝐸; 𝑘 = −

√

2∕3, 𝑐2 = 2
√

2𝑑, 2𝑐1𝑘
2 = 𝐸 and 𝑘 = −

√

2∕3, 𝑐2 =

3
√

2𝑑, 2𝑐1𝑘
2 = 𝐸 in our solution (Case-I i.e., Eq. (3.15)) reduces to

solutions 𝑢1, 𝑢4 and 𝑢5 of Ref. 35 respectively. Similarly, we see that
the solutions 𝑢2, 𝑢3, 𝑢6 are special case of our solution (Case-II i.e., Eq.
(3.18)). Our results have more free parameters which can be converted
to diverse types of dynamical behavior for diverse choices of free
parameters.

In contrast, by employing the MSE scheme in this manuscript we
have achieved four solutions with simple calculations.

5. Conclusions

In this paper, the MSE scheme has been effectively employed for
finding the exact solutions and dynamics of the Cahn–Allen model
and the dispersive predator–prey model. We presented abundant new
exact explicit solutions of the exponential form of both Cahn–Allen
and diffusive predator–prey models with some free parametric values.
We derived particular solutions from the general exponential function
such as stable kink soliton and kinky-periodic rogue wave solutions;
unstable singular kink wave solutions of both models. We also derive
particular solutions from the explicit solutions selecting some definite
values of the free parametric values. Lastly, the variety and graphic
representations of the composition make the models dynamic. Stable
and unstable situations are explained in detail from the analysis of
the profiles. By comparing the MSE scheme with different schemes,
we can claim that the MSE scheme is frank, simple, proficient, and
can be applied in numerous nonlinear models. In existing schemes, for
example, the (𝐺′∕𝐺)-expansion scheme, the Exp-function scheme and
the tanh-function scheme, it is essential to employ suggestive calcula-
tion software like Mathematica or Maple to solve the intricate algebraic
equation. No auxiliary equations are needed to solve non-linear models
by using the MSE scheme.
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A B S T R A C T

This work retrieves polarized optical soliton solutions for pulses in birefringent fibers that are modeled by
the Lakshmanan–Porsezian–Daniel model. The unified approach recovers singular solitons only. This approach
fails to retrieve the much needed bright and dark soliton solutions. These singular solitons exist with restricted
parametric conditions that are also exhibited.

Introduction

Optical soliton dynamics is an engineering marvel in telecommu-
nications industry [1–10]. An inherent problem with the dynamics of
pulse propagation across trans-oceanic and trans-continental distances
is its polarization. This is attributed to several factors such as the
randomness of fiber diameter, rough handling of optical fibers and
many others. These factors occasionally lead to hi-bi fibers. It is often
a challenging task to retrieve the soliton solutions to the models that
are studied in the context of high birefringence.

One such model that has been around for a fairly long period is
the Lakshmanan–Porsezian–Daniel (LPD) model that was first reported
in 1988 and later gained a lot of popularity [11]. A wide range of
integration algorithms have been implemented to secure soliton and
other solutions to LPD model in the context of polarization-preserving
fibers [12], including exp(−𝜙(𝜉))-expansion scheme [13], trial equation
scheme [14] and many more [15–18]. Today’s work will retrieve

∗ Corresponding author.
E-mail address: mehmet.ekici@bozok.edu.tr (M. Ekici).

soliton solutions to LPD model with differential group delay by uni-
fied approach that was first reported during 2018 [19]. As it will be
revealed, the algorithm could only expose singular solitons. The details
are jotted in the rest of the paper after a quick re-visitation of the model
and the integration algorithm.

Governing model

The dimensionless LPD model with Kerr law nonlinearity has the
following form [15,16,20]:

𝑖𝜓𝑡 + 𝑎𝜓𝑥𝑥 + 𝑏𝜓𝑥𝑡 + 𝑐 |𝜓|2 𝜓 = 𝜎𝜓𝑥𝑥𝑥𝑥 + 𝑝𝜓
2
𝑥
𝜓∗ + 𝑞 ||𝜓𝑥||2 𝜓 + 𝑟 |𝜓|2 𝜓𝑥𝑥

+ 𝜆𝜓2𝜓∗
𝑥𝑥

+ 𝑠 |𝜓|4 𝜓. (1)

In Eq. (1), 𝑥 and 𝑡 represent independent spatial and temporal variables,
respectively. The dependent variable 𝜓 represents the complex wave
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function. Next, the parameters 𝑎, 𝑏, 𝑐, 𝜎 and 𝑠 signify group velocity
dispersion, spatio-temporal dispersion, the coefficient of Kerr law non-
linearity, the coefficient of fourth order dispersion and the two-photon
absorption, respectively. Finally, the 𝑝, 𝑞, 𝑟 and 𝜆 terms account for
several forms of the nonlinear dispersion. Solitons are possible for a
sustained delicate balance of dispersion with the nonlinear terms.

For birefringent fibers, the model can be divided into two parts of
a vector representation. Avoiding the properties of 4WM, the above
model reduces to [13,14]:

𝑖𝑢𝑡 + 𝑎1𝑢𝑥𝑥 + 𝑏1𝑢𝑥𝑡 +
(
𝑐1 |𝑢|2 + 𝑑1 |𝑣|2

)
𝑢

= 𝜎1𝑢𝑥𝑥𝑥𝑥 +
(
𝑝1𝑢

2
𝑥
+ 𝑞1𝑣

2
𝑥

)
𝑢∗ +

(
𝑟1

||𝑢𝑥||2 + 𝑠1 ||𝑣𝑥||2
)
𝑢

+
(
𝜆1 |𝑢|2 + 𝜃1 |𝑣|2

)
𝑢𝑥𝑥 +

(
𝜒1𝑢

2 + 𝜂1𝑣
2
)
𝑢∗
𝑥𝑥

+
(
𝑓1 |𝑢|4 + 𝜙1 |𝑢|2 |𝑣|2 + 𝜗1 |𝑣|4

)
𝑢 (2)

𝑖𝑣𝑡 + 𝑎2𝑣𝑥𝑥 + 𝑏2𝑣𝑥𝑡 +
(
𝑐2 |𝑣|2 + 𝑑2 |𝑢|2

)
𝑣

= 𝜎2𝑣𝑥𝑥𝑥𝑥 +
(
𝑝2𝑣

2
𝑥
+ 𝑞2𝑢

2
𝑥

)
𝑣∗ +

(
𝑟2

||𝑣𝑥||2 + 𝑠2 ||𝑢𝑥||2
)
𝑣

+
(
𝜆2 |𝑣|2 + 𝜃2 |𝑢|2

)
𝑣𝑥𝑥 +

(
𝜒2𝑣

2 + 𝜂2𝑢
2
)
𝑣∗
𝑥𝑥

+
(
𝑓2 |𝑣|4 + 𝜙2 |𝑣|2 |𝑢|2 + 𝜗2 |𝑢|4

)
𝑣. (3)

In Eqs. (2) and (3), 𝑐𝑗 , 𝑓𝑗 for 𝑗 = 1, 2 represent the self-phase and
𝑑𝑗 , 𝜙𝑗 , 𝜗𝑗 with 𝑗 = 1, 2 stand for the cross-phase modulation effects,
respectively.

Mathematical analysis

Consider the following transformation of this coupled system

𝑢(𝑥, 𝑡) = 𝐻1(𝜁 ) exp(𝑖𝜑) (4)

𝑣(𝑥, 𝑡) = 𝐻2(𝜁 ) exp(𝑖𝜑) (5)

where 𝐻1 and 𝐻2 are the soliton amplitude components and

𝜁 = 𝑥 −𝜛𝑡 (6)

is the traveling wave variable with the soliton speed 𝜛. The phase
component 𝜑 is as below:

𝜑 = −𝑘𝑥 +𝑤𝑡 + 𝜀 (7)

with frequency 𝑘, wave number 𝑤 and phase shift 𝜀. Inserting Eqs. (4)
and (5) into Eqs. (2) and (3) and sorting out the real and imaginary
parts leads to the following equations. The real part is

(𝑤 + 𝑎𝑛𝑘
2 − 𝑏𝑛𝑘𝑤 + 𝑘4𝜎𝑛)𝐻𝑛 − (𝑐𝑛 + 𝑘

2(𝑝𝑛 − 𝑟𝑛 + 𝜆𝑛 + 𝜒𝑛))𝐻
3
𝑛

+ 𝑓𝑛𝐻
5
𝑛
− (𝑑𝑛 + 𝑘

2(𝑞𝑛 − 𝑠𝑛 + 𝜂𝑛 + 𝜃𝑛))𝐻𝑛(𝐻𝑛̄)
2 + 𝜙𝑛(𝐻𝑛)

3(𝐻𝑛̄)
2

+ 𝜗𝑛𝐻𝑛(𝐻𝑛̄)
4 + (𝑝𝑛 + 𝑟𝑛)𝐻𝑛(𝐻

′
𝑛
)2 + (𝑞𝑛 + 𝑠𝑛)𝐻𝑛(𝐻

′
𝑛̄
)2

− (𝑎𝑛 − 𝑏𝑛𝜛 + 6𝑘2𝜎𝑛)𝐻
′′
𝑛
+ (𝜆𝑛 + 𝜒𝑛)𝐻

2
𝑛
𝐻 ′′
𝑛

+ (𝜂𝑛 + 𝜃𝑛)(𝐻𝑛̄)
2𝐻 ′′

𝑛
+ 𝜎𝑛𝐻

(4)
𝑛

= 0 (8)

while the imaginary part is

(𝜛 + 2𝑎𝑛𝑘 − 𝑏𝑛(𝑘𝜛 +𝑤) + 4𝑘3𝜎𝑛)𝐻
′
𝑛
− 2𝑘(𝑝𝑛 + 𝜆𝑛 − 𝜒𝑛)𝐻

2
𝑛
𝐻 ′
𝑛

+2𝑘(𝜂𝑛 − 𝜃𝑛)𝐻
′
𝑛
(𝐻𝑛̄)

2 − 2𝑞𝑛𝑘𝐻𝑛𝐻𝑛̄𝐻
′
𝑛̄
− 4𝑘𝜎𝑛𝐻

(3)
𝑛

= 0 (9)

with 𝑛 = 1, 2 and 𝑛̄ = 3 − 𝑛. By the balancing principle, one can write

𝐻𝑛̄ = 𝐻𝑛. (10)

From Eqs. (8) and (10), we can rewrite

(𝑤 + 𝑎𝑛𝑘
2 − 𝑏𝑛𝑘𝑤 + 𝑘4𝜎𝑛)𝐻𝑛 − (𝑐𝑛 + 𝑑𝑛 + 𝑘

2(ℎ𝑛 + 𝑅𝑛))𝐻
3
𝑛
+ 𝐽𝑛𝐻

5
𝑛

+𝐿𝑛𝐻𝑛(𝐻
′
𝑛
)2 − (𝑎𝑛 − 𝑏𝑛𝜛 + 6𝑘2𝜎𝑛)𝐻

′′
𝑛
+ 𝑅𝑛𝐻

2
𝑛
𝐻 ′′
𝑛
+ 𝜎𝑛𝐻

(4)
𝑛

= 0 (11)

where

𝐽𝑛 = 𝑓𝑛 + 𝜙𝑛 + 𝜗𝑛, ℎ𝑛 = 𝑝𝑛 + 𝑞𝑛 − 𝑟𝑛 − 𝑠𝑛,

𝐿𝑛 = 𝑝𝑛 + 𝑞𝑛 + 𝑟𝑛 + 𝑠𝑛, 𝑅𝑛 = 𝜂𝑛 + 𝜃𝑛 + 𝜆𝑛 + 𝜒𝑛. (12)

From Eqs. (9) and (10), one can rewrite

(𝜛 + 2𝑎𝑛𝑘 − 𝑏𝑛(𝑘𝜛 +𝑤) + 4𝑘3𝜎𝑛)𝐻
′
𝑛

− 2𝑘(𝑝𝑛 + 𝑞𝑛 − 𝜂𝑛 + 𝜃𝑛 + 𝜆𝑛 − 𝜒𝑛)𝐻
2
𝑛
𝐻 ′
𝑛
− 4𝑘𝜎𝑛𝐻

(3)
𝑛

= 0. (13)

Thus, the third expression of Eq. (13) gives 𝜎𝑛 = 0. Hence the solutions
of the coupled system Eqs. (2) and (3) will be presented for the
fourth order dispersion omitted. The other terms in Eq. (13), yield the
following relation

𝜂𝑛 + 𝜒𝑛 = 𝑝𝑛 + 𝑞𝑛 + 𝜃𝑛 + 𝜆𝑛 (14)

and therefore the soliton speed is

𝜛 =
𝑣𝑛𝑤 − 2𝑎𝑛𝑘

1 − 𝑣𝑛𝑘
(15)

for 𝑏𝑛 =
1

𝑘
. Comparing the values of the soliton velocity, Eq. (15) gives

(1 − 𝑏1𝑘)(𝑏2𝑤 − 2𝑎2𝑘) = (1 − 𝑏2𝑘)(𝑏1𝑤 − 2𝑎1𝑘). (16)

Therefore Eq. (11) can be written as

(𝑤 + 𝑎𝑛𝑘
2 − 𝑏𝑛𝑘𝑤)𝐻𝑛 − (𝑐𝑛 + 𝑑𝑛 + 𝑘

2(ℎ𝑛 + 𝑅𝑛))𝐻
3
𝑛
+ 𝐽𝑛𝐻

5
𝑛
+ 𝐿𝑛𝐻𝑛(𝐻

′
𝑛
)2

− (𝑎𝑛 − 𝑏𝑛𝜛)𝐻 ′′
𝑛
+ 𝑅𝑛𝐻

2
𝑛
𝐻 ′′
𝑛
= 0. (17)

Application of unified method to LPD model

Assume the trial solution of Eq. (17) is

𝐻𝑛(𝜁 ) =

𝑁∑
𝑖=0

𝐴
(𝑛)
𝑖
𝑆(𝜁 )𝑖 + 𝐵

(𝑛)
𝑖
𝑆(𝜁 )−𝑖 (18)

where 𝐴(𝑛)

0
, 𝐴

(𝑛)
𝑖
and 𝐵(𝑛)

𝑖
for 𝑖 = 1, 2,… , 𝑁 are real constants and 𝑆(𝜁 )

satisfies Riccati equation:

𝑆′(𝜁 ) = 𝑆2(𝜁 ) + 𝑙. (19)

Eq. (19) has nine solution categories according to three cases:

Case-1: Hyperbolic functions (when 𝑙 < 0):

𝑆(𝜁 ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
−(𝐶2 +𝐷2)𝑙 − 𝐶

√
−𝑙 cosh(2

√
−𝑙(𝜁 + 𝐸))

𝐶 sinh(2
√
−𝑙(𝜁 + 𝐸)) +𝐷

,

−
√
−(𝐶2 +𝐷2)𝑙 − 𝐶

√
−𝑙 cosh(2

√
−𝑙(𝜁 + 𝐸))

𝐶 sinh(2
√
−𝑙(𝜁 + 𝐸)) +𝐷

,

√
−𝑙 +

2𝐶
√
−𝑙

𝐶 + cosh(2
√
−𝑙(𝜁 + 𝐸)) − sinh(2

√
−𝑙(𝜁 + 𝐸))

,

−
√
−𝑙 +

2𝐶
√
−𝑙

𝐶 + cosh(2
√
−𝑙(𝜁 + 𝐸)) − sinh(2

√
−𝑙(𝜁 + 𝐸))

,

(20)

Case-2: Trigonometric functions (when 𝑙 > 0):

𝑆(𝜁 ) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
(𝐶2 −𝐷2)𝑙 − 𝐶

√
𝑙 cos(2

√
𝑙(𝜁 + 𝐸))

𝐶 sin(2
√
𝑙(𝜁 + 𝐸)) +𝐷

,

−
√
(𝐶2 −𝐷2)𝑙 − 𝐶

√
𝑙 cos(2

√
𝑙(𝜁 + 𝐸))

𝐶 sin(2
√
𝑙(𝜁 + 𝐸)) +𝐷

,

𝑖
√
𝑙 +

−2𝑖𝐶
√
𝑙

𝐶 + 𝑐𝑜𝑠(2
√
𝑙(𝜁 + 𝐸)) − 𝑖 sin(2

√
𝑙(𝜁 + 𝐸))

,

−𝑖
√
𝑙 +

2𝑖𝐶
√
𝑙

𝐶 + 𝑐𝑜𝑠(2
√
𝑙(𝜁 + 𝐸)) − 𝑖 sin(2

√
𝑙(𝜁 + 𝐸))

,

(21)

where 𝐶 ≠ 0 and 𝐷, 𝐸 are real arbitrary constants.

Case-3: Rational function solution (when 𝑙 = 0):

𝑆(𝜁 ) =
1

𝜁 + 𝐸
. (22)



Results in Physics 22 (2021) 103958

3

M.S. Ullah et al.

To identify the value of 𝑁 in Eq. (18), balancing 𝐻2
𝑛
𝐻 ′′
𝑛
with 𝐻5

𝑛
yields

𝑁 = 1. Eq. (18) takes the form

𝐻𝑛(𝜁 ) = 𝐴
(𝑛)

0
+ 𝐴

(𝑛)

1
𝑆(𝜁 ) + 𝐵

(𝑛)

1
𝑆(𝜁 )−1. (23)

Then putting Eq. (23) along with Eq. (19) into Eq. (17) and after some
calculations, we pose the following sets of solutions:

Set-1: 𝐴(𝑛)

0
= 0, 𝐴

(𝑛)

1
=𝑀𝑛, 𝐵

(𝑛)

1
= 0

𝑤 = (𝑘3𝐽𝑛𝑎𝑛𝑏𝑛 − 𝑘𝜆
2𝐿2

𝑛
𝑏𝑛 − 2𝑘𝑙2𝐿𝑛𝑅𝑛𝑏𝑛 + 2𝑘𝑙𝐽𝑛𝑎𝑛𝑏𝑛 − 𝑘

2𝐽𝑛𝑎𝑛

+ 𝑙2𝐿2
𝑛
+ 2𝑙2𝐿𝑛𝑅𝑛 + 2𝑙𝐽𝑛𝑎𝑛)∕(𝐽𝑛(𝑘

2𝑏2
𝑛
+ 2𝑙𝑏2

𝑛
− 2𝑘𝑏𝑛 + 1))

𝑐𝑛 = −(𝑘4ℎ𝑛𝐿𝑛𝑏
2
𝑛
+ 2𝑘4ℎ𝑛𝑅𝑛𝑏

2
𝑛
+ 𝑘4𝐿𝑛𝑅𝑛𝑏

2
𝑛
+ 2𝑘4𝑅2

𝑛
𝑏2
𝑛
+ 2𝑘2𝑙ℎ𝑛𝐿𝑛𝑏

2
𝑛

+4𝑘2𝑙ℎ𝑛𝑅𝑛𝑏
2
𝑛
− 2𝑘2𝑙𝐿2

𝑛
𝑏2
𝑛
− 4𝑘2𝑙𝐿𝑛𝑅𝑛𝑏

2
𝑛
− 2𝑘3ℎ𝑛𝐿𝑛𝑏𝑛 − 4𝑘3ℎ𝑛𝑅𝑛𝑏𝑛

−2𝑘3𝐿𝑛𝑅𝑛𝑏𝑛 − 4𝑘3𝑅2
𝑛
𝑏𝑛 + 𝑘

2𝐿𝑛𝑏
2
𝑛
𝑑𝑛 + 2𝑘2𝑅𝑛𝑏

2
𝑛
𝑑𝑛 − 2𝑙2𝐿2

𝑛
𝑏2
𝑛

−8𝑙2𝐿𝑛𝑅𝑛𝑏
2
𝑛
− 8𝑙2𝑅2

𝑛
𝑏2
𝑛
+ 4𝑘𝑙𝐿2

𝑛
𝑏𝑛 + 12𝑘𝑙𝐿𝑛𝑅𝑛𝑏𝑛 + 8𝑘𝑙𝑅2

𝑛
𝑏𝑛 + 2𝑙𝐿𝑛𝑏

2
𝑛
𝑑𝑛

+4𝑙𝑅𝑛𝑏
2
𝑛
𝑑𝑛 + 𝑘

2ℎ𝑛𝐿𝑛 + 2𝑘2ℎ𝑛𝑅𝑛 + 𝑘
2𝐿𝑛𝑅𝑛 + 2𝑘2𝑅2

𝑛
− 2𝑘𝐿𝑛𝑏𝑛𝑑𝑛

−4𝑘𝑅𝑛𝑏𝑛𝑑𝑛 − 2𝑙𝐿2
𝑛
− 6𝑙𝐿𝑛𝑅𝑛 − 4𝑙𝑅2

𝑛
− 2𝐽𝑛𝑎𝑛 + 𝐿𝑛𝑑𝑛 + 2𝑅𝑛𝑑𝑛)∕(𝑘

2𝐿𝑛𝑏
2
𝑛

+2𝑘2𝑅𝑛𝑏
2
𝑛
+ 2𝑙𝐿𝑛𝑏

2
𝑛
+ 4𝑙𝑅𝑛𝑏

2
𝑛
− 2𝑘𝐿𝑛𝑏𝑛 − 4𝑘𝑅𝑛𝑏𝑛 + 𝐿𝑛 + 2𝑅𝑛)

Set-2: 𝐴(𝑛)

0
= 0, 𝐴

(𝑛)

1
= 0, 𝐵

(𝑛)

1
=𝑀𝑛𝑙

𝑤 = (𝑘3𝐽𝑛𝑎𝑛𝑏𝑛 − 𝑘𝜆
2𝐿2

𝑛
𝑏𝑛 − 2𝑘𝑙2𝐿𝑛𝑅𝑛𝑏𝑛 + 2𝑘𝑙𝐽𝑛𝑎𝑛𝑏𝑛 − 𝑘

2𝐽𝑛𝑎𝑛 + 𝑙
2𝐿2

𝑛

+2𝑙2𝐿𝑛𝑅𝑛 + 2𝑙𝐽𝑛𝑎𝑛)∕(𝐽𝑛(𝑘
2𝑏2
𝑛
+ 2𝑙𝑏2

𝑛
− 2𝑘𝑏𝑛 + 1))

𝑐𝑛 = −(𝑘4ℎ𝑛𝐿𝑛𝑏
2
𝑛
+ 2𝑘4ℎ𝑛𝑅𝑛𝑏

2
𝑛
+ 𝑘4𝐿𝑛𝑅𝑛𝑏

2
𝑛
+ 2𝑘4𝑅2

𝑛
𝑏2
𝑛
+ 2𝑘2𝑙ℎ𝑛𝐿𝑛𝑏

2
𝑛

+4𝑘2𝑙ℎ𝑛𝑅𝑛𝑏
2
𝑛
− 2𝑘2𝑙𝐿2

𝑛
𝑏2
𝑛
− 4𝑘2𝑙𝐿𝑛𝑅𝑛𝑏

2
𝑛
− 2𝑘3ℎ𝑛𝐿𝑛𝑏𝑛 − 4𝑘3ℎ𝑛𝑅𝑛𝑏𝑛

−2𝑘3𝐿𝑛𝑅𝑛𝑏𝑛 − 4𝑘3𝑅2
𝑛
𝑏𝑛 + 𝑘

2𝐿𝑛𝑏
2
𝑛
𝑑𝑛 + 2𝑘2𝑅𝑛𝑏

2
𝑛
𝑑𝑛 − 2𝑙2𝐿2

𝑛
𝑏2
𝑛

−8𝑙2𝐿𝑛𝑅𝑛𝑏
2
𝑛
− 8𝑙2𝑅2

𝑛
𝑏2
𝑛
+ 4𝑘𝑙𝐿2

𝑛
𝑏𝑛 + 12𝑘𝑙𝐿𝑛𝑅𝑛𝑏𝑛 + 8𝑘𝑙𝑅2

𝑛
𝑏𝑛 + 2𝑙𝐿𝑛𝑏

2
𝑛
𝑑𝑛

+4𝑙𝑅𝑛𝑏
2
𝑛
𝑑𝑛 + 𝑘

2ℎ𝑛𝐿𝑛 + 2𝑘2ℎ𝑛𝑅𝑛 + 𝑘
2𝐿𝑛𝑅𝑛 + 2𝑘2𝑅2

𝑛
− 2𝑘𝐿𝑛𝑏𝑛𝑑𝑛

−4𝑘𝑅𝑛𝑏𝑛𝑑𝑛 − 2𝑙𝐿2
𝑛
− 6𝑙𝐿𝑛𝑅𝑛 − 4𝑙𝑅2

𝑛
− 2𝐽𝑛𝑎𝑛 + 𝐿𝑛𝑑𝑛 + 2𝑅𝑛𝑑𝑛)∕(𝑘

2𝐿𝑛𝑏
2
𝑛

+2𝑘2𝑅𝑛𝑏
2
𝑛
+ 2𝑙𝐿𝑛𝑏

2
𝑛
+ 4𝑙𝑅𝑛𝑏

2
𝑛
− 2𝑘𝐿𝑛𝑏𝑛 − 4𝑘𝑅𝑛𝑏𝑛 + 𝐿𝑛 + 2𝑅𝑛)

Set-3: 𝐴(𝑛)

0
= 0, 𝐴

(𝑛)

1
=𝑀𝑛, 𝐵

(𝑛)

1
=𝑀𝑛𝑙

𝑤 = −(8𝑀2
𝑛
𝑙2𝑘𝐽𝑛𝐿

2
𝑛
𝑏𝑛 + 16𝑀2

𝑛
𝑙2𝑘𝐽𝑛𝐿𝑛𝑅𝑛𝑏𝑛 − 6𝑀2

𝑛
𝑙𝑘𝐽 2

𝑛
𝑎𝑛𝑏𝑛 − 𝑘

3𝐽𝑛𝐿𝑛𝑎𝑛𝑏𝑛

−2𝑘3𝐽𝑛𝑅𝑛𝑎𝑛𝑏𝑛 + 8𝑘𝑙2𝐿3
𝑛
𝑏𝑛 + 32𝑙2𝐿2

𝑛
𝑅𝑛𝑏𝑛 + 32𝑘𝑙2𝐿𝑛𝑅

2
𝑛
𝑏𝑛 − 8𝑀2

𝑛
𝑙2𝐽𝑛𝐿

2
𝑛

−16𝑀2
𝑛
𝑙2𝐽𝑛𝐿

𝑛𝑅𝑛 − 2𝑘𝑙𝐽𝑛𝐿𝑛𝑎𝑛𝑏𝑛 − 4𝑘𝑙𝐽𝑛𝑅𝑛𝑎𝑛𝑏𝑛 − 6𝑀2
𝑛
𝑙𝐽 2
𝑛
𝑎𝑛 + 𝑘

2𝐽𝑛𝑎𝑛

+2𝑘2𝐽𝑛𝑅𝑛𝑎𝑛 − 8𝑙2𝐿3
𝑛
− 32𝑙2𝐿2

𝑛
𝑅𝑛 − 32𝑙2𝐿𝑛𝑅

2
𝑛
− 2𝑙𝐽𝑛𝐿𝑛𝑎𝑛 − 4𝑙𝐽𝑛𝑅𝑛𝑎𝑛)

∕(𝐽𝑛(6𝐽𝑛𝑏
2
𝑛
𝑀2

𝑛
𝑙 + 𝑘2𝐿𝑛𝑏

2
𝑛
+ 2𝑘2𝑅𝑛𝑏

2
𝑛
+ 2𝑙𝐿𝑛𝑏

2
𝑛
+ 4𝑙𝑅𝑛𝑏

2
𝑛
− 2𝑘𝐿𝑛𝑏𝑛

−4𝑘𝑅𝑛𝑏𝑛 + 𝐿𝑛 + 2𝑅𝑛))

𝑐𝑛 = −(6𝑘2ℎ𝑛𝐽𝑛𝑏
2
𝑛
𝑀2

𝑛
− 6𝑘2𝐽𝑛𝐿𝑛𝑏

2
𝑛
𝑀2

𝑛
𝑙 + 12𝑘𝐽𝑛𝐿𝑛𝑏𝑛𝑀

2
𝑛
𝑙 + 12𝑘𝐽𝑛𝑅𝑛𝑏𝑛𝑀

2
𝑛
𝑙

+2𝑘2𝑙ℎ𝑛𝐿𝑛𝑏
2
𝑛
+ 4𝑘2𝑙ℎ𝑛𝑅𝑛𝑏

2
𝑛
− 4𝑘2𝑙𝐿𝑛𝑅𝑛𝑏

2
𝑛
+ 12𝑘𝑙𝐿𝑛𝑅𝑛𝑏𝑛 − 6𝐽𝑛𝐿𝑛𝑀

2
𝑛
𝑙

−6𝐽𝑛𝑅𝑛𝑀
2
𝑛
𝑙 − 2𝑎𝑛𝐽𝑛 + 2𝑘2𝑅2

𝑛
− 2𝑙𝐿2

𝑛
− 4𝑙𝑅2

𝑛
+ 𝐿𝑛𝑑𝑛 + 2𝑅𝑛𝑑𝑛 − 24𝑙2𝐿2

𝑛
𝑏2
𝑛

+2𝑘4𝑅2
𝑛
𝑏2
𝑛
− 4𝑘3𝑅2

𝑛
𝑏𝑛 − 80𝑙2𝑅2

𝑛
𝑏2
𝑛
+ 𝑘2ℎ𝑛𝐿𝑛 + 2𝑘2ℎ𝑛𝑟𝑛 + 𝑘

2𝐿𝑛𝑅𝑛 − 6𝑙𝐿𝑛𝑅𝑛

−88𝑙2𝐿𝑛𝑅𝑛𝑏
2
𝑛
+ 𝑘4ℎ𝑛𝐿𝑛𝑏

2
𝑛
+ 2𝑘4ℎ𝑛𝑅𝑛𝑏

2
𝑛
+ 𝑘4𝐿𝑛𝑅𝑛𝑏

2
𝑛
− 2𝑘2𝑙𝐿2

𝑛
𝑏2
𝑛
− 2𝑘3ℎ𝑛𝐿𝑛𝑏𝑛

−4𝑘3ℎ𝑛𝑅𝑛𝑏𝑛 − 2𝑘3𝐿𝑛𝑅𝑛𝑏𝑛 + 𝑘
2𝐿𝑛𝑏

2
𝑛
𝑑𝑛 + 2𝑘2𝑅𝑛𝑏

2
𝑛
𝑑𝑛 + 4𝑘𝑙𝐿2

𝑛
𝑏𝑛 + 8𝑘𝑙𝑅2

𝑛
𝑏𝑛

+2𝑙𝐿𝑛𝑏
2
𝑛
𝑑𝑛 + 4𝑙𝑅𝑛𝑏

2
𝑛
𝑑𝑛 − 2𝑘𝐿𝑛𝑏𝑛𝑑𝑛 − 4𝑘𝑅𝑛𝑏𝑛𝑑𝑛 − 8𝑙2𝐽𝑛𝑏

2
𝑛
𝑀2 − 24𝑙2𝐽𝑛𝑅𝑛𝑏

2
𝑛
𝑀2

𝑛

+6𝐽𝑛𝑏
2
𝑛
𝑑𝑛𝑀

2
𝑛
𝑙)∕(6𝐽𝑛𝑏

2
𝑛
𝑀2

𝑛
𝑙 + 𝑘2𝐿𝑛𝑏

2
𝑛
+ 2𝑘2𝑅𝑛𝑏

2
𝑛
+ 2𝑙𝐿𝑛𝑏

2
𝑛
+ 4𝑙𝑅𝑛𝑏

2
𝑛
− 2𝑘𝐿𝑛𝑏𝑛

−4𝑘𝑅𝑛𝑏𝑛 + 𝐿𝑛 + 2𝑅𝑛)

for

𝑀𝑛 = ±

√
−𝐽𝑛(𝐿𝑛 + 2𝑅𝑛)

𝐽𝑛
.

Using Eqs. (20)–(21)–(22) and Eqs. (4)–(5), with the help of the solu-
tion Set-1, we obtain the following eighteen exact solutions of Eqs. (2)
and (3):

𝑢1,1(𝑥, 𝑡) =𝑀1

(√
−(𝐶2 +𝐷2)𝑙 − 𝐶

√
−𝑙 cosh(2

√
−𝑙(𝜁 + 𝐸))

𝐶 sinh(2
√
−𝑙(𝜁 + 𝐸)) +𝐷

)
exp[𝑖𝜑]

𝑣1,1(𝑥, 𝑡) =𝑀2

(√
−(𝐶2 +𝐷2)𝑙 − 𝐶

√
−𝑙 cosh(2

√
−𝑙(𝜁 + 𝐸))

𝐶 sinh(2
√
−𝑙(𝜁 + 𝐸)) +𝐷

)
exp[𝑖𝜑]

𝑢1,2(𝑥, 𝑡) =𝑀1

(
−
√
−(𝐶2 +𝐷2)𝑙 − 𝐶

√
−𝑙 cosh(2

√
−𝑙(𝜁 + 𝐸))

𝐶 sinh(2
√
−𝑙(𝜁 + 𝐸)) +𝐷

)
exp[𝑖𝜑]

𝑣1,2(𝑥, 𝑡) =𝑀2

(
−
√
−(𝐶2 +𝐷2)𝑙 − 𝐶

√
−𝑙 cosh(2

√
−𝑙(𝜁 + 𝐸))

𝐶 sinh(2
√
−𝑙(𝜁 + 𝐸)) +𝐷

)
exp[𝑖𝜑]

𝑢1,3(𝑥, 𝑡) =𝑀1

(√
−𝑙 +

2𝐶
√
−𝑙

𝐶 + cosh(2
√
−𝑙(𝜁 + 𝐸)) − sinh(2

√
−𝑙(𝜁 + 𝐸))

)
exp[𝑖𝜑]

𝑣1,3(𝑥, 𝑡) =𝑀2

(√
−𝑙 +

2𝐶
√
−𝑙

𝐶 + cosh(2
√
−𝑙(𝜁 + 𝐸)) − sinh(2

√
−𝑙(𝜁 + 𝐸))

)
exp[𝑖𝜑]

𝑢1,4(𝑥, 𝑡) =𝑀1

(
−
√
−𝑙 +

2𝐶
√
−𝑙

𝐶 + cosh(2
√
−𝑙(𝜁 + 𝐸)) − sinh(2

√
−𝑙(𝜁 + 𝐸))

)
exp[𝑖𝜑]

𝑣1,4(𝑥, 𝑡) =𝑀2

(
−
√
−𝑙 +

2𝐶
√
−𝑙

𝐶 + cosh(2
√
−𝑙(𝜁 + 𝐸)) − sinh(2

√
−𝑙(𝜁 + 𝐸))

)
exp[𝑖𝜑]

which are all singular soliton pairs. Further, one arrives at the following
periodic solutions:

𝑢1,5(𝑥, 𝑡) =𝑀1

(√
(𝐶2 −𝐷2)𝑙 − 𝐶

√
𝑙 cos(2

√
𝑙(𝜁 + 𝐸))

𝐶 sin(2
√
𝑙(𝜁 + 𝐸)) +𝐷

)
exp[𝑖𝜑]

𝑣1,5(𝑥, 𝑡) =𝑀2

(√
(𝐶2 −𝐷2)𝑙 − 𝐶

√
𝑙 cos(2

√
𝑙(𝜁 + 𝐸))

𝐶 sin(2
√
𝑙(𝜁 + 𝐸)) +𝐷

)
exp[𝑖𝜑]

𝑢1,6(𝑥, 𝑡) =𝑀1

(
−
√
(𝐶2 −𝐷2)𝑙 − 𝐶

√
𝑙 cos(2

√
𝑙(𝜁 + 𝐸))

𝐶 sin(2
√
𝑙(𝜁 + 𝐸)) +𝐷

)
exp[𝑖𝜑]

𝑣1,6(𝑥, 𝑡) =𝑀2

(
−
√
(𝐶2 −𝐷2)𝑙 − 𝐶

√
𝑙 cos(2

√
𝑙(𝜁 + 𝐸))

𝐶 sin(2
√
𝑙(𝜁 + 𝐸)) +𝐷

)
exp[𝑖𝜑]

𝑢1,7(𝑥, 𝑡) =𝑀1

(
𝑖
√
𝑙 +

−2𝑖𝐶
√
𝑙

𝐶 + cos(2
√
𝑙(𝜁 + 𝐸)) − 𝑖 sin(2

√
𝑙(𝜁 + 𝐸))

)
exp[𝑖𝜑]

𝑣1,7(𝑥, 𝑡) =𝑀2

(
𝑖
√
𝑙 +

−2𝑖𝐶
√
𝑙

𝐶 + cos(2
√
𝑙(𝜁 + 𝐸)) − 𝑖 sin(2

√
𝑙(𝜁 + 𝐸))

)
exp[𝑖𝜑]

𝑢1,8(𝑥, 𝑡) =𝑀1

(
−𝑖
√
𝑙 +

2𝑖𝐶
√
𝑙

𝐶 + cos(2
√
𝑙(𝜁 + 𝐸)) − 𝑖 sin(2

√
𝑙(𝜁 + 𝐸))

)
exp[𝑖𝜑]

𝑣1,8(𝑥, 𝑡) =𝑀2

(
−𝑖
√
𝑙 +

2𝑖𝐶
√
𝑙

𝐶 + cos(2
√
𝑙(𝜁 + 𝐸)) − 𝑖 sin(2

√
𝑙(𝜁 + 𝐸))

)
exp[𝑖𝜑]

𝑢1,9(𝑥, 𝑡) =
𝑀1

𝜁 + 𝐸
exp[𝑖𝜑]

𝑣1,9(𝑥, 𝑡) =
𝑀2

𝜁 + 𝐸
exp[𝑖𝜑]

where 𝑀𝑛 and 𝑤 are come from Set-1 and 𝜑 = −𝑘𝑥 +𝑤𝑡 + 𝜀. Here 𝑢1,9
and 𝑣1,9 are the rational solutions to the model.

Using Eqs. (20)–(21)–(22) and Eqs. (4)–(5), with the help of the
solution Set-2, we obtain the following eighteen exact solutions of Eqs.
(2) and (3):

𝑢2,1(𝑥, 𝑡) =
𝑀1𝑙√

−(𝐶2 +𝐷2)𝑙 − 𝐶
√
−𝑙 cosh(2

√
−𝑙(𝜁 + 𝐸))

𝐶 sinh(2
√
−𝑙(𝜁 + 𝐸)) +𝐷

exp[𝑖𝜑]

𝑣2,1(𝑥, 𝑡) =
𝑀2𝑙√

−(𝐶2 +𝐷2)𝑙 − 𝐶
√
−𝑙 cosh(2

√
−𝑙(𝜁 + 𝐸))

𝐶 sinh(2
√
−𝑙(𝜁 + 𝐸)) +𝐷

exp[𝑖𝜑]

𝑢2,2(𝑥, 𝑡) =
𝑀1𝑙

−
√
−(𝐶2 +𝐷2)𝑙 − 𝐶

√
−𝑙 cosh(2

√
−𝑙(𝜁 + 𝐸))

𝐶 sinh(2
√
−𝑙(𝜁 + 𝐸)) +𝐷

exp[𝑖𝜑]

𝑣2,2(𝑥, 𝑡) =
𝑀2𝑙

−
√
−(𝐶2 +𝐷2)𝑙 − 𝐶

√
−𝑙 cosh(2

√
−𝑙(𝜁 + 𝐸))

𝐶 sinh(2
√
−𝑙(𝜁 + 𝐸)) +𝐷

exp[𝑖𝜑]
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𝑢2,3(𝑥, 𝑡) =
𝑀1𝑙

√
−𝑙 +

2𝐶
√
−𝑙

𝐶 + cosh(2
√
−𝑙(𝜁 + 𝐸)) − sinh(2

√
−𝑙(𝜁 + 𝐸))

exp[𝑖𝜑]

𝑣2,3(𝑥, 𝑡) =
𝑀2𝑙

√
−𝑙 +

2𝐶
√
−𝑙

𝐶 + cosh(2
√
−𝑙(𝜁 + 𝐸)) − sinh(2

√
−𝑙(𝜁 + 𝐸))

exp[𝑖𝜑]

𝑢2,4(𝑥, 𝑡) =
𝑀1𝑙

−
√
−𝑙 +

2𝐶
√
−𝑙

𝐶 + cosh(2
√
−𝑙(𝜁 + 𝐸)) − sinh(2

√
−𝑙(𝜁 + 𝐸))

exp[𝑖𝜑]

𝑣2,4(𝑥, 𝑡) =
𝑀2𝑙

−
√
−𝑙 +

2𝐶
√
−𝑙

𝐶 + cosh(2
√
−𝑙(𝜁 + 𝐸)) − sinh(2

√
−𝑙(𝜁 + 𝐸))

exp[𝑖𝜑]

These constitute another set of singular solitons. Next, the periodic
solution pairs are

𝑢2,5(𝑥, 𝑡) =
𝑀1𝑙√

(𝐶2 −𝐷2)𝑙 − 𝐶
√
𝑙 cos(2

√
𝑙(𝜁 + 𝐸))

𝐶 sin(2
√
𝑙(𝜁 + 𝐸)) +𝐷

exp[𝑖𝜑]

𝑣2,5(𝑥, 𝑡) =
𝑀2𝑙√

(𝐶2 −𝐷2)𝑙 − 𝐶
√
𝑙 cos(2

√
𝑙(𝜁 + 𝐸))

𝐶 sin(2
√
𝑙(𝜁 + 𝐸)) +𝐷

exp[𝑖𝜑]

𝑢2,6(𝑥, 𝑡) =
𝑀1𝑙

−
√
(𝐶2 −𝐷2)𝑙 − 𝐶

√
𝑙 cos(2

√
𝑙(𝜁 + 𝐸))

𝐶 sin(2
√
𝑙(𝜁 + 𝐸)) +𝐷

exp[𝑖𝜑]

𝑣2,6(𝑥, 𝑡) =
𝑀2𝑙

−
√
(𝐶2 −𝐷2)𝑙 − 𝐶

√
𝑙 cos(2

√
𝑙(𝜁 + 𝐸))

𝐶 sin(2
√
𝑙(𝜁 + 𝐸)) +𝐷

exp[𝑖𝜑]

𝑢2,7(𝑥, 𝑡) =
𝑀1𝑙

𝑖
√
𝑙 +

−2𝑖𝐶
√
𝑙

𝐶 + cos(2
√
𝑙(𝜁 + 𝐸)) − 𝑖 sin(2

√
𝑙(𝜁 + 𝐸))

exp[𝑖𝜑]

𝑣2,7(𝑥, 𝑡) =
𝑀2𝑙

𝑖
√
𝑙 +

−2𝑖𝐶
√
𝑙

𝐶 + cos(2
√
𝑙(𝜁 + 𝐸)) − 𝑖 sin(2

√
𝑙(𝜁 + 𝐸))

exp[𝑖𝜑]

𝑢2,8(𝑥, 𝑡) =
𝑀1𝑙

−𝑖
√
𝑙 +

2𝑖𝐶
√
𝑙

𝐶 + cos(2
√
𝑙(𝜁 + 𝐸)) − 𝑖 sin(2

√
𝑙(𝜁 + 𝐸))

exp[𝑖𝜑]

𝑣2,8(𝑥, 𝑡) =
𝑀2𝑙

−𝑖
√
𝑙 +

2𝑖𝐶
√
𝑙

𝐶 + cos(2
√
𝑙(𝜁 + 𝐸)) − 𝑖 sin(2

√
𝑙(𝜁 + 𝐸))

exp[𝑖𝜑]

𝑢2,9(𝑥, 𝑡) =𝑀1𝑙(𝜁 + 𝐸) exp[𝑖𝜑]

𝑣2,9(𝑥, 𝑡) =𝑀2𝑙(𝜁 + 𝐸) exp[𝑖𝜑]

where 𝑀𝑛 and 𝑤 are come from Set-2 and 𝜑 = −𝑘𝑥 +𝑤𝑡 + 𝜀.
Similarly, using Eqs. (20)–(21) and Eqs. (4)–(5), with the help of

the solution Set-3, we obtain the sixteen exact solutions of Eqs. (2) and
(3). But, Eq. (22) does not provide any exact solution of Eqs. (2) and
(3) for the solution Set-3.

Conclusions

This paper revealed soliton solutions to LPD model with differential
group delay. The polarized solitons are thus retrieved and exhibited.
The scheme implemented is the unified approach which yielded sin-
gular soliton solutions only. Singular solitons are applicable to model
optical rogons, but not optical solitons, and the algorithm, evidently,
has a few drawbacks. The method fails to retrieve the much-needed
bright solitons and dark solitons. Also, this scheme is unable to produce
𝑁-soliton solutions to the governing model. Moreover, a profound

drawback is its inability to locate soliton radiation that is inevitably
present once linear and nonlinear dispersion terms are embedded in the
model. Thus, to conclude, the unified approach is not of much use in the
study of governing models that give rise to optical solitons. From the
applications perspective, this integration algorithm cannot be applied
to obtain bright or dark solitons in any model. It can only be used
to address optical rogons that are supposedly modeled with singular
solitons. In addition, singular solitons cannot be plotted. This paper
therefore concludes with analytical results for only singular solitons
obtained by the aid of the unified method.
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Abstract: In the current article, the generalized Kudryshov method is applied to determine exact solitary wave solutions 

for the time fractional generalized Hirota–Satsuma coupled KdV model. Here, fractional derivative is illustrated in the 

conformable derivative. Therefore, plentiful exact traveling wave solutions are achieved for this model, which encourage 

us to enlarge, a novel technique to gain unsteady solutions of autonomous nonlinear evolution models those occurs in 

physical and engineering branches. The obtained traveling wave solutions are expressed in terms of the exponential 

and rational functions. It is effortless to widen that this method is powerful and will be applied in further tasks to create 
advance exclusively innovative solutions to other higher-order nonlinear conformable fractional differential model in 

engineering problems.

Keywords: The generalized Kudryshov method; exact solitary wave solutions; time fractional generalized Hirota-Satsuma 

coupled (HSC) KdV system; conformable fractional derivative

1. Introduction
Nearby, great interest in fractional calculus applied in various fields such as electrical networks, control theory of 

dynamics, statistics, electro-chemistry of oxidization, acoustics, nonlinear optical fibre, plasma and solid state physics, 
chemical kinetics and geochemistry phenomena, signal processing and data mining can be effectively formed by means of 
nonlinear fractional order differential systems [1-6].

 Modeling of a range of physical phenomena in terms of nonlinear time 

fractional evolution equations has played a significant factor in numerous efficient applications in the above mentioned 
fields. 

The time fractional generalized HSC KdV system is vital nonlinear model occurs in the Toda lattice equation, a 

recognized (1+1) dimension soliton equation. This system can also be utilized as the model of interaction of neighboring 

particles of the same mass in a lattice formation with a crystal as well as illustrated basic characteristics of string dynamics 

in constant curvature space 
[13]

.

The more general form of time fractional generalized HSC KdV system can be written as follows 
[10, 11, 22]

:
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Recently, searching exact solutions of the system Eq.(1) was found by renowned researchers 
[12, 13]

.Guo et. al. 
[12] 
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applied the improved fractional sub-equation method to construct analytical solutions to the space–time fractional 

equations arises in fluid mechanics. The exact and complex traveling wave solutions to the time fractional generalized 
Hirota-Satsuma coupled KdV system are deliberated by Neirameh 

[13]
 using the direct algebraic method.

Considerable effort have been paid by many dynamical researchers to investigate exact solutions for FDEs such as the 
impulsive fractional differential equations with different boundary conditions [14, 15, 16],

 nonlinear impulsive hybrid boundary 

value problems involving fractional differential equations [17]
, Space–Time fractional Burgers equation 

[18]
, time fractional 

Burgers equation in fluid flow [19],
 the fractional coupled viscous Burgers’ equation 

[20]
, Time-fractional KdV equations 

[21]
 

and so on. 

The objective of this paper is to apply the generalized Kudryashov method for finding the exact solitary wave 

solutions of the time fractional generalized HSC KdV system, which take part in a key task in mathematical physics.
This paper is organized as follows: fundamental properties of conformable fractional derivative are presented in 

section 2. The brief description of the generalized Kudryashov methods is given in section 3.  Then in section 4, this 

method has been applied to establish exact solutions for the time fractional general HSC KdV system. The obtained results 

are presented graphically and the relevant physical illustrations are provided in section 5. Finally, concluding remarks are 
drawn in section 6.

2. Conformable fractional derivative and its properties

For a function ℜ→∞),0(:φ , the conformable fractional derivative of φ for order α is defined [23]
 as 

                                                     ,                 and

                                                     

Some important properties of the conformable fractional derivative are as follows:

1
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3. The Method
Let us assume a general nonlinear evolution equation in x and t as

0,,0...),,,,( >ℜ∈=ℵ txhhhh xxxt  ,                                                                          (2)

where the function h = h (x,t) is unknown and ℵ  is a polynomial function with respect to some functions or specified 
variables, which have nonlinear terms and highest order derivatives of the unknown function. The key steps of the 
generalized Kudryashov method are as

 [7, 9, 21]
:

Step 1: Consider the following traveling wave transformation

( , ) ( ),
ct
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α
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α

= = −                                                                                                                                             (3)

where c is the velocity of the relative wave mode. By using the above transformation the nonlinear partial differential 
equation (3) is reduced to a nonlinear ordinary differential equation (ODE)
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where the prime denotes the derivative of H with respect to ζ  and χ  is a polynomial of )(ζH .

Step 2: Let us assume that the solution of Eq. (4) has the following form:

∑

∑
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b
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0

0

)(

)(

)(

ζφ

ζφ
ζ                                                                                                                                             (5)

where ai and bj are real constants, N and M are positive integers such that aN, bM ≠ 0  and  )(ζφ  satisfies the following 
ordinary differential equation:

)()()( 2 ζφζφζφ −=′ .                                                                                                  (6)

The general solution of Eq. (6) is of the following form:

1
( ) ,

1 Aeζ
φ ζ =

+                                                                                                                                             (7)

where A is any arbitrary constant.

Step 3: Determine the positive integers N and M in Eq. (5) by balancing the highest order derivative term with the 

nonlinear term of )(ζH  in Eq. (2) or Eq. (4). Moreover, we define the degree of )(ζH  as MNHD −=))(( ζ , which gives 

rise to the degree of other expression as 

( ) , ( ( ) ) ( ) ( ),
q q

p s

q q

d H d H
D N M q D H N M p s N M q

d dζ ζ
= − + = − + − +

where p, q, s are integer numbers.

Thus, we can find the value of N and M in Eq. (5).

Step 4: Inserting Eq. (5) along with Eq. (6) into Eq. (4) and collect all terms with the same powers of φ  together. 

Setting each coefficients of this polynomial φ  to zero, we obtain a system of algebraic equations for ai ,bj and c .

Step 5: By inserting the values of parameters gained in previous step and )(ζφ  into the Eq. (5), then the solutions of 

Eq. (2) can be constructed.

4. Applications
Consider the following traveling wave transformation:

                                                                   

                                                                                              

                                                                                                                                                     (8)        
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Inserting Eq. (8) into Eq. (1) reduced into ordinary differential equations  
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and  
3 22 2 0.cH H c Hξξ + − =                                                                                           (10)

                                                         

where R is an integration constant to be evaluated later.

Case 1: By balancing the highest order derivative term  with the nonlinear term H
4
 in Eq. (9) gives N = M+ 1 

Setting M = 1 , we have N = 2 . Therefore Eq. (5) reduces to
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Inserting Eq.(11) along with Eq.(6) into Eq.(9), we have a polynomial of ,...)2,1,0(, =kkφ . Equating the 

coefficients of this polynomial of the same powers of φ  to zero, we obtain a system of equations yields the values for R,c, 

a0, a1, a2, b0 and b1.
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For set 1, the time fractional generalized HSC KdV equations hold the solution as: 
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For set 2, the time fractional generalized HSC KdV equations hold the solution as:
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where 

α
ξ

αt
x += .

For set 3, the time fractional generalized HSC KdV equations hold the solution as:
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where 
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ξ
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For set 4, the time fractional generalized HSC KdV equations hold the solution as:
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For set 5, the time fractional generalized HSC KdV equations hold the solution as: 
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Inserting Eq.(17) along with Eq.(5) into Eq.(10), we get a polynomial of ,...)2,1,0(, =kkφ .
 
Equating the 

coefficients of this polynomial of the same powers of φ  to zero, we obtain a system of equations yields the values forc, a0, 

a1, a2, b0 and b1 .

Set 1: .,,
2

1
,

2

1

4

1
,

4

1
,

4

1
101201100 constbbbabbabac ==+−=−=−=

Set 2: .,
2

1
,,,

2

1
,1 110121110 constbbbbababac =−==−==−=  

Set 3: .,
2

1
,,,

2

1
,1 110121110 constbbbbababac =−=−==−=−=

Set 4: .,,
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,

2

1

4

1
,

4

1
,

4

1
101201100 constbbbabbabac =−=−==−=  

Set 5: 
01002010 2.,,2,2,0,

2

1
bbconstbbiabiaac ===±===  .

From some simplification, we see that the set-1 to set-4 gives the same results as in case-1. But only set-5 is different 
which gives solution as

 

                                                                                                                                                     (18)

where  

α
ξ

α

2

t
x −= .

5. Graphical representations 
Ten set of results are achieved in this research. All of the results are analyzed and some of them depicted in the Figs. 

1–2. The graphs signify the change of amplitude, shape of wave and nature of the solitary waves for each acquired wave 

solutions in space x at time t. The solution h (x,t) 
 
of Eq.(12) represents bright bell solitary wave (Fig-1(a)) for the physical 

parameters A=0.5, α=0.67 The solution both v (x,t) and w (x,t)
 
of Eq.(12) represents similar kink solitary wave. Fig-1(b) 

expressed the shape of the kink wave v (x,t)
 
of Eq.(12) for the physical parameters A=0.5, α=0.67.

The solutions h (x,t)of Eq.(15) represent bright bell solitary wave solutions and all of them are similar like to the 
graph Fig-1(a) of h (x,t) in Eq.(12). We also see that the solutions v (x,t), w (x,t)

 
of Eq.(15) represent kink solitary wave 

solutions and all of them are similar like to the graph Fig-1(b) of h (x,t) in Eq.(12). So we omit the similar type of figures.
The solution h (x,t) of Eq.(13) represents dark solitary wave (see Fig-2(a)) for the physical parameters A=0.5, α=0.5 

in space x at time t. The solution both v (x,t)
 
and w (x,t)

 
of Eq.(13) represents similar singular kink solitary wave. Fig-2(b) 

expressed the shape of the singular kink solitary wave v (x,t) of Eq.(13) for the physical parameters A=0.5, α=0.5. 

The solutions h (x,t) of Eq.(14), Eq.(16) and Eq.(18) represent dark bell solitary wave solutions and all of them are 
similar to the graph Fig-2(a) of h (x,t) in Eq.(13). We also see that the solutions v (x,t), w (x,t) of Eq.(14) and complex part 

of v (x,t), w (x,t) of Eq.(16) and v (x,t), w (x,t) of Eq.(18) represent singular kink solitary wave solutions and all of them are 
similar like to the graph Fig-2(b) of h (x,t) in Eq.(13). So we omit the similar type of figures. Real part of in Eq.(16) and 
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Eq.(18) gives constant solution that represent in xt plane.

   

              (a)                                                                                                          (b)                                               

Figure 1 (a) Represent bright bell solitary wave solution h (x,t)
 
of Eq.(12) for the physical parametric values A=0.5, α=0.67  and (b) 

Represent kink solitary wave solution v (x,t) of Eq.(12) for the physical parametric values A=0.5, α=0.67.

       (a)                                                                                                                        (b)

Figure 2 (a) Represent dark bell solitary wave solution h (x,t) of Eq.(13) for the physical parametric values A=0.5, α=0.67 

and (b) Represent kink solitary wave solution v (x,t) of Eq.(13) for the physical parametric values A=0.5, α=0.67. 

6. Conclusions 
In this article, we have successfully used a mathematical apparatus named the generalized Kudryashov method for 

creating exact solitary wave solutions to the time fractional generalized Hirota-Satsuma coupled KdV system. The achieved 

solitary wave solutions are expressed in terms of the exponential and rational functions. The acquired results will serve 

as a very important milestone in the study of interaction of neighboring particles of the same mass in a lattice formation 

with a crystal and long water wave phenomena. We also have demonstrated that the generalized Kudryashov method is an 

effective solvable tool for large classes of system of conformable nonlinear fractional differential equations.
Conflict of Interest: The authors declare that they have no conflict of interest.

References

[1] K.B. Oldham, J. Spanier. The Fractional Calculus. New York: Academic Press; 1974.
[2] I. Podlubny. Numerical solution of ordinary fractional differential equations by the fractional difference method. In    

Elaydi, S., Gyori, I. and Ladas, G. (Eds.) Advances in Difference Equations. Amsterdam: Gordon and Breach; 1997. 



Contemporary Mathematics 32 | Mohammad Safi Ullah et al.

[3] I. Podlubny. Fractional Differential Equations. New York: Academic Press; 1999.
[4] S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integrals and Derivatives: Theory and Applications. Yverdon: 

Gordon and Breach; 1993.

[5] K.S. Miller, B. Ross. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: 
Wiley; 1993.

[6] M. Caputo. Linear models of dissipation whose Q is almost frequency independent. J. Roy. Astr. Soc., 1967; 13: 529-

539.

[7] M.R. Islam, H.O. Roshid. Application of Generalized Kudryashov Method to the Burger Equation. Int. J. Math. 

Trends and Tech. (IJMTT), 2017; 38(2): 111-113.

[8] M.J. Ablowitz, H. Segur. Solitons and Inverse Scattering Transform. Philadephia: SIAM; (1981).

[9] S.T. Demiray, Y. Pandir, H. Bulut. Generalized Kudryashov method for time-fractional differential equations. In: 

Abstract and applied analysis. 2014; 2014 (Article ID 901540).

[10] Z.Z. Ganji, D.D. Gangi, Y. Rostamiyan. Solitary wave solutions for a time-fraction generalized Hirota–Satsuma 

coupled KdV equation by an analytical technique. Appl. Math. Model. 2009; 33 (7): 3107-3113.

[11] M. Shateri, D.D. Ganji. Solitary Wave Solutions for a Time-Fraction Generalized Hirota-Satsuma Coupled KdV 
Equation by a New Analytical Technique. Int. J. Differ. Equ. 2010; 2010: 117-223. Article ID 954674.

[12] S. Guo , L. Mei , Y. Li , Y. Sun . The improved fractional sub-equation method and its applications to the space–time 

fractional differential equations in fluid mechanics. Phys. Lett. A 2012;376 (4): 407–411.

[13] A. Neirameh. Soliton Solutions of the Time Fractional Generalized Hirota-satsuma Coupled KdV System. Appl. 

Math. Inf. Sci. 2015; 9(4): 1847-1853.

[14] G.M. Mophou. Existence and uniqueness of mild solutions to impulsive fractional differential equations . Nonlinear 

Anal. 2010; 72: 1604-1615.

[15] G. Wang, B. Ahmad, L. Zhang, Some existence results for impulsive nonlinear fractional differential equations with 
mixed boundary conditions. Comput. Math. Appl. 2011; 62(3): 1379-1397.

[16] X. Zhang, X. Huang, Z. Liu. The existence and uniqueness of mild solutions for impulsive fractional equations with 

nonlocal conditions and infinite delay. Nonlinear Anal. Hybrid Syst.2010; 4: 775-781.

[17] B. Ahmad, S. Sivasundaram. Existence results for nonlinear impulsive hybrid boundary value problems involving 

fractional differential equations. Nonlinear Anal.: Hybrid Syst. 2009; 3: 251-258.

[18] A. B. Emad, Abdel-Salamand, J. H. Ahmed. Solutions of the (2+1) Space–Time Fractional Burgers equation. 
American Journal of Computational and Applied Mathematics. 2016; 6(2): 109-117.

[19] A. Yokus, D. Kaya. Numerical and exact solutions for time fractional Burgers’ equation. J. Nonlinear Sci. Appl. 2017; 

10: 3419–3428.

[20] T. A. Sulaiman, M.Yavuz, H. Bulut, H. M. Baskonus. Investigation of the fractional coupled viscous Burgers’ equation 
involving Mittag-Leffler kernel. Physica A: Statistical Mechanics and its Applications, 2019; 527(1): 121-126.

[21] H. Bulut, Y. Pandir, S. T. Demiray. Exact Solutions of Time-Fractional KdV Equations by Using Generalized 
Kudryashov Method. International Journal of Modeling and Optimization, 2014; 4(4): 315-320.

[22] A.S. Arife, S.K. Vanani, A. Yildirim. Numerical Solution of Hirota-Satsuma Couple Kdv and a Coupled MKdv 

Equation by Means of Homotopy Analysis Method. World Appl. Sci. J. 2011; 01(13): 2271-2276.

[23] R. Khalil , M.A. Horani , A. Yousef , M. Sababheh. A new definition of fractional derivative. Journal of 

Computational and Applied Mathematics 2014; 264: 65–70.

https://www.sciencedirect.com/science/article/pii/S0307904X08002722
https://www.sciencedirect.com/science/article/pii/S0307904X08002722
https://www.sciencedirect.com/science/article/pii/S0375960111013776
https://www.sciencedirect.com/science/article/pii/S0375960111013776
https://www.sciencedirect.com/science/journal/08981221
https://www.sciencedirect.com/science/journal/03784371


Physics Letters A 397 (2021) 127263

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Collision phenomena among lump, periodic and soliton solutions to a 

(2+1)-dimensional Bogoyavlenskii’s breaking soliton model

Mohammad Safi Ullah b,c,∗, M. Zulfikar Ali c, Harun-Or-Roshid e, A.R. Seadawy d, 
Dumitru Baleanu a

a Department of Mathematics, Cankaya University, 06530 Ankara, Turkey
b Department of Mathematics, Comilla University, Cumilla-3506, Bangladesh
c Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh
d Department of Applied Mathematics, Taibah University, Al-Ula, Saudi Arabia
e Department of Mathematics, Pabna University of Science and Technology, Pabna-6600, Bangladesh

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 February 2021
Received in revised form 19 February 2021
Accepted 25 February 2021
Available online 2 March 2021
Communicated by B. Malomed

Keywords:

BBS model

Lump wave

Periodic wave

Soliton solutions

In this manuscript, the (2+1)-dimensional Bogoyavlenskii’s breaking soliton (BBS) model is considered. At-
first, we reduce the model into its bilinear form using the Hirota bilinear approach. We then analytically 
construct lump waves and collision of lump with periodic waves via the Hirota scheme. We also present 
collision between lump wave and single-, double-kink soliton solutions, and the collision among lump, 
periodic and single-, double-kink soliton solutions of the model. In addition, we explain the fission 
properties of the collisions. It is noticed that collision of lump-kink waves split into double kinky-lump 
waves and gradually increases the number of such waves as the increase of λ, which was not found in 
the previous literature. Finally, we graphically present the nature of the collision solutions of the model 
in 3D and contour plots. The derived such wave solutions may have much more important for controlling 
unpredictable harmful waves arises in nature.

 2021 Elsevier B.V. All rights reserved.

1. Introduction

The soliton theory, which is one of the three sections of non-
linear science, is broadly used in various areas of physical science 
such as fluid mechanics, nonlinear optics, mathematical biology, 
ecology, chemical kinetics, plasma waves and others [1–8]. Various 
reliable and effective approaches have been suggested to address 
the solitary waves such as the (G ′/G)-expansion method [9], the 
generalized Kudryashov method [10], the Hirota bilinear method 
[11], the tan-cot method [12], the tanh-coth method [13], the di-
rect algebraic method [14], the Modified simple equation method 
[15], F expansion method [16], the sine-Gordon expansion method 
[17,18], etc. Lump wave is one of the most important parts of 
solitary waves and have diverse properties [19–25]. In 1977, the 
simplest lump wave solution was primary reported by Manakov et 
al. [26]. The study of lump wave solutions has been used in op-
tical fiber [3], oceanic science [27], atmospheric science [28] and 

* Corresponding author.
E-mail addresses: safi.ru1985@gmail.com (M.S. Ullah), 

harunorroshidmd@gmail.com (H.-O. Roshid).

so forth. Recently, the multi-type collisions between lump/rogue 
and periodic waves are investigated in [29], and collisions between 
higher-order rogue waves and diverse types of n-soliton solutions 
are investigated in [30] as well. Thus such studies are highly fo-
cused on the viewpoint of the combination of quadratic functions 
with the exponential or trigonometric or hyperbolic functions to 
explain the nature of the collision of kink, lump, rogue and pe-
riodic waves for produce kinky-lump, kinky-rogue, periodic-lump 
wave, periodic-rogue waves and kinky-periodic-rogue wave for the 
NLEEs [31–38]. Based on the motivation of the above study, we 
consider the BBS model [39–42]:

φxxxy + 4φyφxx + 4φxφxy + φxt = 0 (1)

where φ is the function of spatial variables x, y and time vari-
able t; for the study of new dynamic phenomena and the physical 
behavior of different collisions among lump, periodic and soliton 
solutions.

Such interaction was not studied in the previous literature of 
the BBS model. Fission phenomena of kinky-lump wave were not 
derived in any nonlinear models and it is the first step of this 
model. These type studies of the model are still unexplored and 
have much scientific interest.

https://doi.org/10.1016/j.physleta.2021.127263

0375-9601/ 2021 Elsevier B.V. All rights reserved.
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We will here firstly obtain the bilinear formation of the model 
Eq. (1) to construct lump and periodic wave solutions and their 
various collision solutions. Then the dynamics of those solutions 
will be clearly illustrated.

2. The bilinear formation of the BBS model

Consider the conversion relation as below

φ =
3

2
(lnψ)x, (2)

with real function ψ(x, y, t) to be determined.

Inserting the relation Eq. (2), in Eq. (1), then we can write

(lnψ)xxxxy + 6(lnψ)xy(lnψ)xxx

+ 6(lnψ)xx(lnψ)xxy + (lnψ)xxt = 0. (3)

Integrating the Eq. (3) with respect to x, then we have

(lnψ)xt + (lnψ)xxxy + 6(lnψ)xy .(lnψ)xx = 0. (4)

By considering the linear terms of Eq. (4), we have

(lnψ)xt + (lnψ)xxxy = 0. (5)

By using the bilinear operator D, the Eq. (5) can be written as

(DxDt + D yDx
3) f . f = 0, (6)

when the D-operator [11] is defined by

(Dx
mD y

kDt
n) f .g

=

(

∂

∂x1
−

∂

∂x2

)m(

∂

∂ y1
−

∂

∂ y2

)k(
∂

∂t1
−

∂

∂t2

)n

×
[

f (x1, y1, t1).g(x2, y2, t2)
]

.

Thus Eq. (5) reduces to

ψψxt − ψtψx + 3ψxxψxy − 3ψxψxxy + ψψxxxy − ψxxxψy = 0. (7)

Clearly if ψ satisfies Eq. (1), then φ =
3
2
(lnψ)x directly generates 

the solutions of the governing model Eq. (1).

3. Lump wave solution of BBS model

To obtain the lump wave solutions of the BBS model, consider 
an ansatz of the following form

ψ = (p1x+ p2 y + p3t)
2
+ (q1x+ q2 y + q3t)

2
+ l, (8)

where p1, p2, p3, q1, q2, q3 and l are free parameters. Setting 
Eq. (8) in Eq. (7), we have an algebraic system in p1, p2, p3,

q1, q2, q3 and l. By solving this system via Maple 18, we have 
p3 = q3 = 0, p1 = p1 , p2 = −

q1q2
p1

, q1 = q1 , q2 = q2 , l = l, then 
the Eq. (8) can be written as

ψ =

(

p1x−
q1q2

p1

y

)2

+ (q1x+ q2 y)
2
+ l. (9)

By combining Eq. (9) and Eq. (7) and putting p1 = q1 = q2 = l = 1, 
we have the solution of Eq. (1) as depicted in Fig. 1. Due to guar-
antee φ is localized in every direction, l have to be considered as 
a positive constant. In this case, the optimum amplitude of the 

solution φ is occurred at the points (±
√

l
p12+q12

, 0) with the am-

plitudes 3
2

√

p12+q12

l
and − 3

2

√

p12+q12

l
.

Fig. 1. Profiles of the lump solution φ Eq. (1) for p1 = q1 = q2 = l = 1.

4. Collision among lumps, periodic waves, and soliton solutions

4.1. Collision between lumps and periodic waves

To study the collision scenarios between lump and periodic 
waves, consider a function constructed by double quadratic form 
and a sinusoidal function

ψ =(α1x+ α2 y + α3t)
2
+ (β1x+ β2 y + β3t)

2

+ l + λ cos(γ1x+ γ2 y + γ3t), (10)

where α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, l and λ are free parame-

ters. Inserting Eq. (10) in Eq. (7), we have an algebraic system in 
α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, l and λ. By solving this system via 
Maple 18, we get the following results:

Case 1: α2 = α3 = β2 = β3 = γ2 = γ3 = 0, λ = λ, α1 = α1, β1 =

β1, γ1 = γ1, l = l.

Case 2: α1 = α1, α2 = −
β1β2

α1
, α3 = β3 = γ1 = γ3 = 0, λ = λ, β1 =

β1, β2 = β2, γ2 = γ2, l = l

For case 1, the Eq. (10) can be written as

ψ = (α1x)
2
+ (β1x)

2
+ l + λ cos(γ1x). (11)

For case 2, the Eq. (10) can be written as

ψ =

(

α1x−
β1β2

α1

y

)2

+ (β1x+ β2 y)
2
+ l + λ cos(γ2 y). (12)

Using Eq. (11) and Eq. (7) and selecting α1 = β1 = γ1 = l = 1, 
we have the solution of Eq. (1) (see Fig. 2). Fig. 2 exhibits as a 
single kinky-lump wave for λ = 1 (see Fig. 2(a)) but it is going to 
split into double kinky-lump waves even large number of kinky-
lump waves due to fission of wave for the increase of λ (see the 
Fig. 2(b-d)) gradually. Beside this, by choosing α1 = β1 = β2 = γ2 =

l = 1 and setting Eq. (12) in Eq. (7), we have the solution of Eq. (1)
(see Fig. 3). The solution in case-2 exhibits as a single lump wave 
for λ = 1 (see Fig. 3(a)) but it is going to split into double lump 
waves due to fission of lump wave for the increase of λ (see the 
Fig. 3(b-d)) gradually. The energy distribution is symmetric over all 
the periodic lump waves while it travels (see Fig. 3).

4.2. Collision between a lump and a single-kink soliton

To construct the collision of lump wave and a single kink soli-
ton, we consider a function constructed by double quadratic form 
and an exponential function

2
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Fig. 2. Profiles of the kinky-lump wave degenerate into periodic kinky-lump wave gradually via solution φ of Eq. (1) for α1 = β1 = γ1 = l = 1.

Fig. 3. Profiles of collision solution φ of Eq. (1) for α1 = β1 = β2 = γ2 = l = 1.

ψ =(α1x+ α2 y + α3t)
2
+ (β1x+ β2 y + β3t)

2

+ l + λexp(m1x+m2 y +m3t), (13)

where α1, α2, α3, β1, β2, β3, m1, m2, m3, l and λ are real free con-
stants. Setting Eq. (13) into the Eq. (7), we have an algebraic sys-
tem in α1, α2, α3, β1, β2, β3, m1, m2, m3, l and λ. By solving these 
equations via Maple 18, we get α1 = α1, α2 = −

β1β2

α1
, α3 = β3 =

m1 = m3 = 0, β1 = β1 , β2 = β2 , m2 = m2 , l = l, λ = λ, then the 
Eq. (13) can be written as

ψ =

(

α1x−
β1β2

α1

y

)2

+ (β1x+ β2 y)
2
+ l + λexp(m2x). (14)

Using Eq. (14) and Eq. (7) and selecting α1 = β1 = β2 =m2 = l = 1, 
λ = 10, we have the solution of Eq. (1) (see Fig. 4). The Fig. 4

exhibits the dynamic processes of collision between lump waves 
with a single kink wave solution. We observe that the lump wave 
is downed and consumed by the kink compare with single lump 
wave Fig. 1 and flow pattern being congested from one side.

4.3. Collision between a lump and a double kink soliton

To make the collision of lump wave and a two-kink soliton, we 
assume a function constructed by double quadratic form and a co-
sine hyperbolic function

ψ =(α1x+ α2 y + α3t)
2
+ (β1x+ β2 y + β3t)

2

+ l + λ cosh(δ1x+ δ2 y + δ3t), (15)

where α1, α2, α3, β1, β2, β3, δ1, δ2, δ3, l and λ are free parameters. 
Setting Eq. (15) in Eq. (7), we have a system of algebraic equations 
in α1, α2, α3, β1, β2, β3, δ1, δ2, δ3, l and λ. By solving these equa-
tions via Maple 18, we obtain α1 = α1 , α2 = −

β1β2

α1
, α3 = β3 =

δ1 = δ3 = 0, λ = λβ1 = β1 , β2 = β2 , δ2 = δ2 , l = l, then the Eq. (15)
can be written as

Fig. 4. Profiles of collision lump solution φ of Eq. (1) for α1 = β1 = β2 =m2 = l = 1, 
λ = 10.

ψ =

(

α1x−
β1β2

α1

x

)2

+ (β1x+ β2 y)
2
+ l + λ cosh(δ2 y). (16)

By combining Eq. (16) and Eq. (7) and setting α1 = β1 = β2 = δ2 =

l = 1, λ = 10 and inserting, we have the solution of Eq. (1) (see 
Fig. 5). The Fig. 5 exhibits the dynamic processes of collision be-
tween lump waves with two kink waves. We observe that the lump 
wave is downed and consumed by the kink waves compare with 
lump wave (see Fig. 1 and Fig. 4) and flow pattern being congested 
from two sides.

4.4. Collision among lump, periodic and a single kink wave

To achieve the collision among a lump wave, a periodic and a 
single kink solution of Eq. (1), we assume a function constructed 
by double quadratic form, a cosine and an exponential function

3
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Fig. 5. Profiles of collision lump solution φ of Eq. (1) for α1 = β1 = β2 = δ2 = l = 1, λ = 10.

ψ =(α1x+ α2 y + α3t)
2
+ (β1x+ β2 y + β3t)

2
+ l

+ λ1 cos(γ1x+ γ2 y + γ3t) + λ2 exp(m1x+m2 y +m3),

(17)

where α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, m1, m2, m3, l, λ1 and λ2 are 
real free constants. Setting Eq. (17) in Eq. (7), we have a system of 
algebraic equations in α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, m1, m2, m3,

l, λ1 and λ2 . By solving these equations via Maple 18, we have 
α1 = α1 , α2 = −

β1β2

α1
, α3 = β3 = γ1 = γ3 = m1 = m3 = 0, λ1 = λ1 , 

λ2 = λ2 , α2 = α2 , β1 = β1 , β2 = β2 , γ2 = γ2 , m2 = m2 , l = l, then 
the Eq. (17) can be written as

ψ =

(

α1x−
β1β2

α1

y

)2

+ (β1x+ β2 y)
2

+ l + λ1 cos(γ2 y) + λ2 exp(m2 y). (18)

Using Eq. (18) and Eq. (7) and putting α1 = β1 = β2 = γ2 = m2 =

l = 1, λ2 = 2, we achieve the solution of Eq. (1) (see Fig. 6). The 
Fig. 6 exhibits the dynamic processes of collision among lump 
waves with single kink and periodic wave solution. We observe 
that the lump wave is downed and consumed by the kink wave 
compare with lump wave (see Fig. 1 and Fig. 4) and flow pattern 
being congested from one sides. Besides this, effect of periodic 
function makes the fission phenomena. The solution (see Fig. 6) 
exhibits as a single lump wave for λ1 = 1 (see Fig. 6(a)) but it 
is going to split into double lump waves with λ1 = 15 (see the 
Fig. 6(b, c) and Fig. 6(e, f)). In fact, it is shown that one lump of 
them goes to diminish and another one still unchanged for λ1 = 17

or more increasing values.

4.5. Collision among lump, periodic and a double kink soliton

To construct the collision among a lump wave, a periodic and 
a two-kink soliton, we assume a function constructed by double 
quadratic form, a cosine and cosine hyperbolic functions

ψ =(α1x+ α2 y + α3t)
2
+ (β1x+ β2 y + β3t)

2
+ l

+ λ1 cos(γ1x+ γ2 y + γ3t) + λ2 cosh(δ1x+ δ2 y + δ3t),

(19)

where α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3, l, λ1 and λ2 are 
free parameters. Setting Eq. (19) into the Eq. (7), we have an alge-
braic system in α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3, l, λ1 and 

λ2 . By solving this system via Maple 18, we have α1 = α1, α2 =

−
β1β2

α1
, α3 = β3 = γ1 = γ3 = δ1 = δ3 = 0, λ1 = λ1, λ2 = λ2, β1 =

β1, β2 = β2, γ2 = γ2, δ2 = δ2, l = l, then the Eq. (19) can be writ-

ten as

ψ =

(

α1x−
β1β2

α1

y

)2

+ (β1x+ β2 y)
2

+ l + λ1 cos(γ2 y) + λ2 cosh(δ2 y). (20)

By using Eq. (20) and Eq. (7) and putting α1 = β1 = β2 = γ2 = δ2 =

l = 1, λ2 = 2, then we acquire the solution of Eq. (1) (see Fig. 7). 
The Fig. 7 exhibits the dynamic processes of collision among lump 
waves with double kink and a periodic wave solution. We observe 
that the lump wave is downed and consumed by the kink com-

pare with lump wave (see Fig. 1 and Fig. 4) and flow pattern being 
congested from two sides. Besides this, effect of periodic function 
makes the fission phenomena. The solution Fig. 7 exhibits as a sin-
gle lump for λ1 = 1 (see Fig. 7(a)), but it is going to split into 
double lump with the increase of λ1 (see the Fig. 7(b-f)) gradually.

5. Conclusion

The main result in this paper is the procedure of obtaining the 
lump wave solutions and a class of interactions among lump, peri-
odic and the soliton solutions of the BBS model by using different 
ansatz functions. In particular, for the double quadratic polyno-
mials in the structure of the solution provide a lump wave so-
lution that profiles are depicted in Fig. 1. We explicitly present 
interactions between lump and periodic waves, lump and single-, 
double-kink soliton solutions of the model. We also show how to 
interact lump with periodic waves, and single-, double- kink soli-
tons, and to produce dynamical various structures such as periodic 
kinky-lump waves, periodic lump waves, lump-single, -double kink 
solitons, periodic-single, -double kink solitons. All interaction soli-
tons are depicted in figures Fig. 2 to Fig. 7. It is observed that the 
results are much interesting as they present the causes of fission 
properties of the lump waves, which are presented in the figures 
Fig. 3, Fig. 6 and Fig. 7. It is included that the new dynamics may 
be enriched by the nonlinear behavior of the model and even can 
be found in other nonlinear models.
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Fig. 6. Profiles of collision solution φ of Eq. (1) for α1 = β1 = β2 = γ2 =m2 = l = 1, λ2 = 2.

Fig. 7. Profiles of collision solution φ of Eq. (1) for α1 = β1 = β2 = γ2 = δ2 = l = 1, λ2 = 2.
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A B S T R A C T   

In this article, we consider a (3 + 1)-dimensional Sharma–Tasso–Olver-like (STOL) model 
describing dynamical propagation of nonlinear dispersive waves in inhomogeneous media. 
Applying Hirota’s bilinear technique and a trial function, we explore nonlinear dynamical 
properties of basic solutions to the STOL model. We find that the fission fusion pattern occurs in 
the collision between the lump and kink waves, the collision between the lump and periodic 
waves, and the collision among the lump, kink and periodic waves, which is a novel fascinating 
collision pattern. We also observe that a large value of the coefficient in the periodic function 
produces a hybrid lump wave by fission in the collision solution. To better understand the dy-
namic properties of the obtained collision solutions, we plot a number of 3D and contour dia-
grams by choosing suitable parametric values with the aid of the computational software Maple 
18.   

1. Introduction 

Nonlinear evolution equations (NLEEs) applicable not only the areas of mathematical physics, but also other branches of nonlinear 
science for instance optics, plasma physics, atmospheric, geochemistry and oceanic sciences etc. [1-4]. Complication of NLEES and 
challenges in their analytical study has engrossed a lots of effort from renowned scientists who are involved with nonlinear dynamics. 
As a result, exploration of exact solutions of NLEEs is a vital anxiety for dynamical researchers. There are diverse categories of exact 
solutions mainly soliton, multi-soliton, rational, periodic, breather line, breather kinky, lump and rogue wave solutions [5-12]. For 
investigating the characteristics of solitary waves, there are various reliable and fruitful approaches such as inverse scattering scheme 
[13], tanh function method [14], exp-function method [15,16], Darboux method [17], direct algebraic method [18], first integral 
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method [19, 20], exp (− ϕ(ξ))expansion method [21], Hirota’s bilinear method [22-24] etc. Though, soliton should have elastic 
property yet fission-fusion type non-elastic properties have been existed in few nonlinear models and investigated by many researchers 
[12, 23-25]. 

In mathematical physics, the interaction of rogue wave with other soliton/periodic wave is a kind of remarkable task in nonlinear 
sciences which are localized both in position and time, while lump wave is localized in every spaces only. Recently, combination of 
positive quadratic polynomial functions with the exponential/trigonometric functions i.e. collision of kink, lump, rogue and periodic 
waves produce kinky-lump, kinky-rogue, periodic-lump wave, periodic-rogue waves and kinky-periodic rogue wave for the NLEEs and 
their nonlinear dynamics concerned a lot of interest [26-41]. In the existed literature, we observed that interactions as mixed 
lump-kink [27, 28], lump solitons and the interaction phenomena [29-36], lump-stripe soliton solutions [37-38], non-elastic fusion 
phenomena of multi-solitons [39], N th-order rogue waves [40], two lump solitons [41] are studied by recent dynamical researchers. 
But it is still unexplored that both bright and dark kinks give the fission phenomena even produce hybrid lump waves, double 
kinky-periodic-lump type wave exhibits as hybrid lump wave, fission and fusion properties exist in presence and without presence of 
sinusoidal function and produces hybrid lump waves, both fission-fusion phenomena occurrences in both x-and y-periodic lump waves 
into a double kink wave and produce hybrid lump waves, annihilations of lump-kink wave. 

Motivated by the above works and new properties, we would like to derive novel higher order collision solutions which are not 
reported in the previous literature for the (3 + 1)-dimensional classical STOL equation [42, 43]: 

ut + a
[(

3uux + u3
)

x
+ uxxx

]

+ b
[(

2uuy + ux∂
−1

x uy + u2∂−1

x uy

)

x
+ uxxy

]

+c
[(

2uuz + ux∂−1

x uz + u2∂−1

x uz

)

+ uxxz

]

= 0.
(1)  

with real function u(x,y, z, t)and real constants a,b, c. Here ∂−1
x indicate integral operator and inverse of ∂x. 

In this article, our main goal is to construct more novel exact collision among lump, periodic and kinky wave solutions that 
degenerate into periodic line breather waves, kinky periodic waves, double kinky periodic waves, periodic lump waves, double kinky 
lump waves, kinky periodic lump waves, hybrid lump waves and fission fusion properties of the Eq. (1). 

2. Interaction solutions and dynamics of the solutions for STOL equation 

Through the relation u = (lnf)x, the Eq. (1)can be expressed as the form 
affxxxx + bffxxxy + cffxxxz − afxfxxx − bfxfxxy − cfxfxxz + ffxt − fxft = 0, (2)  

with real function f(x,y, z, t)to be determined. When fsatisfies Eq. (2), u = (lnf)xdirectly generates a solution of the main Eq. (1). 
In order to evaluate fexplicitly, we assume an ansatz of the following form 

f = (m1x + m2y + m3z + m4t + m5)2 + (m6x + m7y + m8z + m9t + m10)2

+m11 + l1cos(m12x + m13y + m14z + m15t + m16)
+l2cosh(m17x + m18y + m19z + m20t + m21),

(3)  

where m1,m2,m3,......m16, l1and l2are real free constants, m17, ......m21are real/completely imaginary constants. Inserting Eq. (3) to Eq. 
(2), collect every coefficients of x,y,z,t,cos,sin,cosh,sinhtogether and setting each of these expression equal to zero, we gain a system of 
equations in m1,m2,m3, ......m21, l1and l2. Solving this system of algebraic equations by using Maple 18, we obtain the following four 

Fig. 1.. (Color online) Outlook of lump wave solution u1of the Eq. (6) (For interpretation of the references to color in the text, the reader is referred 
to the web version of this article.). 
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results, 
Case 1: 

l1 = 0, l2 = 0,m4 = 0,m9 = 0, mi = mi(i= 1, 2, 3, 5, 6, 7, 8, 10, 11,⋯, 21). (4) 
Inserting Eq. (4) into the Eq. (3), we obtain 

f = (m1x + m2y + m3z + m5)2 + (m6x + m7y + m8z + m10)2 + m11. (5) 
Using the relation u = (lnf)x, Eq. (5)offers the result 

u1 = [2(m1x + m2y + m3z + m5)m1 + 2(m6x + m7y + m8z + m10)m6]/
[

(m1x + m2y + m3z + m5)2 + (m6x + m7y + m8z + m10)2 + m11

]

.
(6) 

The result Eq. (6) contains nine free arbitrary constants and exhibits lump wave with the condition m11 > 0 in the xyplane. The line 
soliton solution that is definitely dissimilar starting a moving line soliton, arise very quickly and disappear in the constant background 
within tiny time but in the intermediate time it gives highest peak. It is well known that u → 0as the two quadratic functions tend to 
positive or negative infinity. It maximum minimum amplitude occurs at the points 

(

m2m10−m5m7
m1m7−m2m6 ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m11
m12+m62

√

,m5m6−m1m10
m1m7−m2m6

)

when z = 0. The 
Fig.1 represents stretch of the lump wave solution Eq. (6), consists of one deep hole and one high crest for the particular values m1 = 2,
m2 = 3,m3 = 2,m5 = 1,m6 = 5,m7 = 1,m8 = 5,m10 = 1,m11 = 10, in the xyplane with t = 0,z = 0. The peak of the lump wave locates 
at 

(

− 2
13 +

̅̅̅̅̅̅290√

29 , − 3
13

)

, the valley locates at 
(

− 2
13 −

̅̅̅̅̅̅290√

29 , − 3
13

)

and maximum amplitude is ̅̅̅̅̅̅290√

10 and deep is equal distance i.e. − ̅̅̅̅̅̅290√

10 . 
Case 2: 

l1 = 0,m4 = 0,m9 = 0, m20 = −m2
17(am17 + bm18 + cm19)

l2 = l2,mi = mi (i = 1, 2, 3, 5, 6, 7, 8, 10, 11, 17, 18, 19, 21),
(7)  

where a,band ccan take arbitrary values. 
Inserting Eq. (7) into the Eq. (3), we emerge to 

Fig. 2.. (Color online) Fission-fusion profiles of the lump wave get into a duel kinky waves for the solutions Eq. (9) with l2 = a = b = 1,c = − 1,m1 
= 3,m2 = − 146,m3 = − 4.4,m5 = 4,m6 = 3,m7 = − 3.9,m8 = 10.24,m10 = 1,m11 = 8.82,m17 = 1.05,m18 = 2.1,m19 = 4.6,m21 = 0at z =
0(For interpretation of the references to color in the text, the reader is referred to the web version of this article.). 
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f = (m1x + m2y + m3z + m5)2 + (m6x + m7y + m8z + m10)2 + m11

+l2cosh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

.
(8) 

Using the relation u = (lnf)x, Eq. (8)provides the result 

u2 =
[

2(m1x + m2y + m3z + m5)m1 + 2(m6x + m7y + m8z + m10)m6

+l2m17sinh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

]

/

⎡

⎣

(m1x + m2y + m3z + m5)2 + (m6x + m7y + m8z + m10)2 + m11

+l2cosh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

⎤

⎦.

(9) 

In the solutions Eq. (9), we explore collision of the lump and a double kink waves through demonstration of the Fig. 2. It is seen that 
only a double kink waves is visible in Fig. 2(a) at the time t = − 16and a small wave initiate at the lower kink (see from contour plot of 
Fig. 2(a)) but in its propagation a lump wave come out at the time t = − 6from the lower kink (see Fig. 2(b)). So, the fission phe-
nomenon of lower kink is happened. As time goes, it moves to the upper kink and then get highest amplitude at t = 0as well as lump 
reach in the middle of the two kinks (see Fig. 2(c)). After then the lump wave goes to the upper kink and amplitude of lump decreases 
again as time increases (see Fig. 2(d)) and finally diminished to the upper kink at t = 16(see Fig. 2(e)). So, the fusion phenomenon of 
upper kink is occurred. From the overall observation, we see the height of the double kink waves remain same in the overall prop-
agation before and after the collision. 

Case 3: 
l2 = 0,m4 = 0,m9 = 0,m15 = m2

12(am12 + bm13 + cm14)
l1 = l1,mi = mi (i = 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16),

(10)  

where a,band ccan take arbitrary real values. 
Setting Eq. (10) to the Eq. (3), we acquire 

f = (m1x + m2y + m3z + m5)2 + (m6x + m7y + m8z + m10)2 + m11

+l1cos
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

.
(11) 

Using the relationu = (ln f)x, Eq. (11)offers the result 

Fig. 3.. (Color online) Diagrams of collision solution u3of Eq. (12) for the values a = 3,b = 3,c = − 4,m1 = − 1,m2 = 1,m3 = − 2,m5 = − 0.1,m6 
= 1,m7 = 1,m8 = 2,m10 = 0.1,m11 = 1,m12 = 0,m13 = 1,m14 = − 2,m16 = 0(For interpretation of the references to color in the text, the reader is 
referred to the web version of this article.). 
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u3 =
[

2(m1x + m2y + m3z + m5)m1 + 2(m6x + m7y + m8z + m10)m6

−l1m12sin
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

m12

]

/

⎡

⎣

(m1x + m2y + m3z + m5)2 + (m6x + m7y + m8z + m10)2 + m11

+l1cos
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

⎤

⎦.

(12) 

For l1 = 0, u3reduces to single lump only like case-1 but for l1 ∕= 0, u3comes in-terms of two quadratic polynomials and a sinusoidal 
function (i.e. collision of lump and periodic wave), as depicted in the Figs. 3–5. Here, three sub cases are arising in the followings.  

(i) When m12 = 0and m13 ∕= 0, u3reduces to collision solution with following dynamics: 

It is well-known that the lump form with a crest and a trough (observe Fig. 3(a)). But as the value of l1increases, the collision of 
lump and periodic waves create a fission of lump wave i.e. a crest and a trough progressively split into two crests and two troughs 
having the same height (observe Fig. 3(b)–3(d)) and propagate along y-direction initially. Thus the fission of lump wave is happened. 
We also observe that fission of the lump wave is continuous process as for large values of l1 = 355, the lump wave again generate 
fission and split into four lump waves propagate along both in the xand y-directions, even if for l1 = 1045, it gives six lump (hybrid 
lump) waves (see Fig.3(e, f)) and so on.  

(ii) When m12 ∕= 0and m13 = 0, u3reduces to collision solution with following dynamics: 

It gives the similar collision solution (fission of lump) in the figures Fig. 4(b)–4(f) and produces more lump waves propagate 
periodically toward the x-axis and also the extreme amplitude of the crests and the troughs gradually enlarges as l1increases. In 
contrast the Fig. 3 with Fig. 4, we observe that the lump wave in the collision solution locates toward the y-axis in Fig. 3but the lump 
wave in the collision solution locates toward the x-axis in the Fig. 4.  

(iii) When m12 ∕= 0and m13 ∕= 0, u3reduces to collision solution with following dynamics: 

In fact, some interesting phenomenon can also be observed when both m12 ∕= 0and m13 ∕= 0and the value of coefficient l1increases 
the trigonometric function that dominate on the values of coefficients in quadratic functions (lump wave) as depicted in Fig. 5(a)-(d). 
We display the corresponding 3D plot (3D as in upper and contour plot as in lower), density and 2D profile in the xyplane (for y = − 3,
0,3in Fig. 5(c)) of the lump-periodic wave. Anyone can see that at y = 0amplitude of the lump gives highest peak (observe Fig. 5(c)). 
On the other hand, another periodic-rogue wave can be observed in xtplane as in the Fig. 5(d). 

Case 4: 

Fig. 4.. (Color online) Diagrams of the collision solution u3of Eq. (12) for the values a = 3,b = 3,c = − 4, m1 = − 1,m2 = 1,m3 = − 2,m5 = −
0.1,m6 = 1,m7 = 1,m8 = 2,m10 = 0.1,m11 = 1,m12 = 1,m13 = 0,m14 = − 2,m16 = 0(For interpretation of the references to color in the text, the 
reader is referred to the web version of this article.). 
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m4 = 0,m9 = 0,m15 = m2
12(am12 + bm13 + cm14),m20 = −m2

17(am17 + bm18 + cm19)
l1 = l1, l2 = l2,mi = mi (i = 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21),

(13)  

where a,band ccan take any arbitrary values. 
Putting Eq. (13) into the Eq. (3), offers the result 

f = (m1x + m2y + m3z + m5)2 + (m6x + m7y + m8z + m10)2 + m11

+l1cos
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

+l2cosh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

.

(14) 

Using the relationu = (lnf)x, Eq. (14)offers the result 

u4 =

⎡

⎢

⎢

⎢

⎣

2(m1x + m2y + m3z + m5)m1 + 2(m6x + m7y + m8z + m10)m6

−l1m12sin
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

+l2m17sinh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

⎤

⎥

⎥

⎥

⎦

/

⎡

⎢

⎢

⎢

⎣

(m1x + m2y + m3z + m5)2 + (m6x + m7y + m8z + m10)2 + m11

+l1cos
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

+l2cosh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

⎤

⎥

⎥

⎥

⎦

.

(15) 

In the solution Eq. (15), comes in terms of two quadratic polynomials, a periodic and a hyperbolic function which exhibits double 
kinky-periodic-lump type wave propagation forl2 ∕= 0, l1 ∕= 0. In this case, three clusters are arising in the followings. 

Cluster-1 - Taking l2very small asl2 → 0: 
Taking l2very small, a dynamical situation viewed in the Figs.6–7 for the values a = 5,b = 1,c = − 1,m3 = m5 = m8 = m10 = m11 

= m14 = 1,m16 = 0.1,m19 = 7,m21 = 1at z = 0. The solution u4provides double kinky-periodic lump wave in which somex-periodic- 

Fig. 5.. (Color online) Profile of the collision of lump and periodic waves solution u3of Eq. (12) for l1 = 15,a = 1,b = 2,c = − 4,m1 = 0.5,m2 = −
1,m3 = 1,m5 = − 0.5,m6 = − 0.25,m7 = − 3,m8 = − 3.5,m10 = 1,m11 = 20,m12 = 1

3,m13 = 4
15,m14 = − 0.8,m16 = 0: (a) the 3D plot, (b) the 

density plot and (c) the similar curve plot at z = 0, t = 0; (d) Periodic rogue wave at z = 0,y = 0(For interpretation of the references to color in the 
text, the reader is referred to the web version of this article.). 
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lump with period 2π/m12get into the double kink and kinky wave moves through xaxis with time increases for the values as depicted in 
the Fig. 6(a)-(c). In this case number of lump wave remains same with the same value of l2 = 0.0001. But whenl2 → 0, the number of 
lump wave gradually increases as the values of l2decreases (observe Fig. 6(d)-(e)), even if, kink vanishes and only periodic lump exist 
for l2 = 0(observe Fig. 6(f)) at t = 0.Actually, changing different parametric constraint of the solution Eq. (15) distinguish charac-
teristics again exhibits in Fig. 7(a)-(d) as y− periodic lump with period 2π/m13get into the kink that arises with a constant background 
and decay go back to the same previous background at a longer time. On the other hand, same behavior can be observed in line soliton 
in the Fig. 7(e)-(h). Interesting characteristics can also be experienced when constant coefficients vanishes (i.e., m5 =m10 =m11 = m16 
= m21 = 0) as depicted in the Fig.8(a)-(c) that behaved y− periodic bright-dark lump waves get into the double kink waves with 
period 2π/m13. The bright lumps get into the lower kink and dark lumps get into the upper kink. Both kinks give the fission phenomena 
and produce hybrid lump waves in which height and number of lump increases as l1increase (observe Fig. 8(a)-(c)). These novel 
nonlinear phenomena are the first reported for the (3 + 1)-dimension STOL equation. 

Cluster-2 - Taking l2not so small: 
Taking l2not so small, a dynamical situation viewed to the solutionu4, provides double kinky waves in which two lump waves 

periodically get into the kink waves and exhibits fission fusion phenomena. Solution Eq. (15), exhibits fission-fusion phenomena as 
depicted in the Figs.9(a)-(f) and 10(a)-(f) which are similar to the fission-fusion phenomena of the Fig. 2. But the only different is that 
yperiodic two lumps causes fission from the upper kink and then fused into the lower kink when m12 = 0, m13 ∕= 0(observe Fig. 9(a)- 
(e)) and xperiodic two lumps causes fission from the upper kink and then fused into the lower kink when m12 ∕= 0, m13 = 0(observe 
Fig. 10(a)-(f)). Both the figures Figs. 9(a)-(f) and 10(a)-(f) are sketch with specific parameters l1 = 16,l2 = 0.5,a = − 3,b = 2,c = 1,m1 
= − 1,m2 = 1,m3 = − 2,m5 = 0,m6 = 1,m7 = 1,m8 = 4,m10 = 0,m11 = 1,m14 = 1,m16 = 0,m17 = 1,m18 = 0,m19 = 2,m21 = 0at z 
= 0. These novel nonlinear phenomenon is the first reported for the (3 + 1)-dimension STOL equation. 

Cluster-3 - Taking lump vanish (i.e., mi = 0; i = 1,2,3,5,6,7,10): 
When mi = 0 (i = 1, 2, 3, 5,6, 7, 10); lump waves being diminished and then collision between the kinky and periodic wave are 

appeared in the solution Eq. (15), then we find 
f = m11 + l1cos

{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

+l2cosh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

.
(16) 

The solution Eq. (16) can convert to diverse collision solutions, selecting the constants m17, m18, m19,m21are real/purely imaginary 

Fig. 6.. (Color online) Profiles of collision solution u4of Eq. (15) for the parameters m1 = m6 = m13 = m18 = 0,m2 = m7 = m12 = m17 = 1, l1 =
0.5: (a)-(c) the periodic lump get into the double kinky wave for l2 = 10−4; (d)-(e) increases of periodic lump into the double kinky wave for l2 → 0; 
(f) x- periodic lump wave for l2 = 0(For interpretation of the references to color in the text, the reader is referred to the web version of this article.). 
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Fig. 7.. (Color online) Annihilation properties of collision solution u4of Eq. (15) for l1 = 0.5, l2 = 10−4at z = 0; (a)-(d) y− periodic lump wave get 
into the kinky wave for m2 = m7 = m12 = m18 = 0,m1 = m6 = m13 = m17 = 1; (e)-(h) x- periodic lump get into the kink wave for m2 = m7 = m13 
= m18 = 0, m1 = m6 = m12 = m17 = 1(For interpretation of the references to color in the text, the reader is referred to the web version of 
this article.). 

Fig. 8.. (Color online) Profiles of collision solution u4of Eq. (15) for l2 = 10−4,a = 5,b = 1,c = − 1,m1 = m6 = m12 = m18 = 0,m19 = 7,m2 = m3 =
m7 = m8 = m13 = m14 = m17 = 1at t = 0,z = 0(For interpretation of the references to color in the text, the reader is referred to the web version of 
this article.). 
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value.  

(i) For m17, m18, m19, m21are real valued, we acquire a collision wave of the Eq. (1) using the relation u = (lnf)xas: 

u5 =

⎡

⎣

−l1m12sin
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

+l2m17sinh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

⎤

⎦

/

⎡

⎣

m11 + l1cos
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

+l2cosh
{

m17x + m18y + m19z − m2
17(am17 + bm18 + cm19)t + m21

}

⎤

⎦.

(17)   

Characteristics of the solution u5for the Eq. (17) are explained for diverse choose of the involve parametric values in the figure 
Fig. 11 and corresponding contour line of the diagram are drawn bellow of the figures in Fig. 11(a)–11(d). For l1 = 0, u5reduces to 
double kinky waves (see Fig. 11(a)) but for l1 ∕= 0, u5is collision of a y- kinky periodic breather wave (see Fig. 11(b)–(d)). Evidently, as 
tchanges the collision wave moves toward the x− axis and the phase of the periodic wave changes after 2π

m13along y-axis. 
In this case, we also observe that changing different parametric constraint in the solution Eq. (17) distinguish characteristics again 

exhibits which are periodic line breather waves proceed in various directions as depicted in the Fig. 11(e)-(h), (i)-(l), (m)-(p). Each 
group of periodic line breather waves begins with a constant background and decay return to the same previous background at a longer 
time.  

(i) For m17, m18, m19,m21are pure imaginary valued, i.e., m17 = im̃17,m18 = im̃18,m19 = im̃19,m21 = im̃21with m̃17, m̃18, m̃19and 
m̃21are real valued, we acquire a collision of two breather waves of the Eq. (1) using the relation u = (lnf)xas: 

Fig. 9.. (Color online) Fission-fusion profile of y-periodic lump wave with the double kink wave of solution Eq. (15)for m13 = 1(For interpretation 
of the references to color in the text, the reader is referred to the web version of this article.). 
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ũ5 =

⎡

⎣

−l1m12sin
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

−l2m̃17sin

{

m̃17x + m̃18y + m̃19z + m̃
2

17

(

am̃17 + bm̃18 + cm̃19

)

t + m̃21

}

⎤

⎦

/

⎡

⎣

m11 + l1cos
{

m12x + m13y + m14z + m2
12(am12 + bm13 + cm14)t + m16

}

+l2cos

{

m̃17x + m̃18y + m̃19z + m̃
2

17

(

am̃17 + bm̃18 + cm̃19

)

t + m̃21

}

⎤

⎦.

(18)   

Lastly, the solution represented by Eq. (18) are different periodic waves for different chooses of parameters in ̃u5. When l1 = 0, ̃u5is 
a one periodic wave that confine in the position and time directions (observe Fig. 12(a)). Otherwise, when l1 ∕= 0, then ũ5exhibits the 
dual periodic waves in both xyand xz- planes (observe Fig. 12(b) and (c)). 

3. Conclision 

In summary, interaction solutions of the (3 + 1)-dimensional STOL equation have been determined successfully. With the aid of 
Maple software, a test function is carefully used to derive different nonlinear dynamical properties. As a result, some novel collision 
solutions among the lump, periodic and kinky waves are derived of the STOL model. We also established fission fusion properties for 
the collision of lump and kink waves, lump and periodic waves and among the collision of lump, kink and periodic waves. We also 
observed that fission and fusion properties exist in presence and without presence of sinusoidal function and produces hybrid lump 
waves. By taking purely imaginary values of some parameters, we derived line breather and double periodic breather wave solutions. 
To better understand the dynamic natures of the obtained collision solutions, we depict adequate 3d plots and contour diagrams by 
choosing suitable parametric values with the aid of computational software Maple 18. It is expected that our achieved solutions can 
improve the dynamical characteristics of the other higher order models. 

Fig. 10.. (Color online) Fission-fusion profile of x-periodic lump wave with the double kink wave of solution Eq. (15)for m12 = 1(For interpretation 
of the references to color in the text, the reader is referred to the web version of this article.). 
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Fig. 11.. (Color online) Annihilation properties of the collision solution u5of Eq. (17)for a = 1,b = − 2,c = 3,m11 = 1500,m14 = − 2,m16 = 1,m17 
= 1,m19 = − 1/12,m21 = 1and l2 = 100: (a) double kinky waves for l1 = m12 = m18 = 0,m13 = 1; (b)-(d) y- periodic and double kinky waves for 
l1 = 1000,m12 = m18 = 0, m13 = 1; (e)-(h) x- periodic and double kinky waves for l1 = 1000,m13 = m18 = 0,m12 = 1; (i)-(l) (x,y)- periodic and 
double kinky waves for l1 = 1000,m18 = 0,m12 = m13 = 1; (m)-(p) (x,y)- periodic and double kinky waves for l1 = 1000,m12 = m13 = m18 = 1(For 
interpretation of the references to color in the text, the reader is referred to the web version of this article.). 
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Abstract We derive a multi-soliton solution for the Bogoyavlenskii’s breaking soliton equa-

tion by utilizing the simplified Hirota’s approach. From this multi-soliton solution, we inves-

tigate various forms of single kinky–lump-type breather solitons, double kinky–lump-type

breather solitons, collision of a kink line soliton with a kinky-type breather soliton, and col-

lision of a pair of double kinky–lump breather solitons by the appropriate selection of the

involved parameters. These breathers hold unlike features in various planes even in various

times. Elastic and non-elastic collisions for double kinky-type lump breather are experienced

in various planes and in various times. The effect and control of the propagation direction,

energies, phase shifts and shape of waves by the parameters are also analyzed. Some figures

are given to illustrate the dynamics of the achieved solutions. The acquired results can enrich

the dynamical properties of the higher-dimensional nonlinear scenarios in the engineering

fields.

1 Introduction

Nonlinear partial differential models are extensively employed to interpret many complicated

areas of sciences and engineering issue, for instance, optical connections, oceanic scientific

problems, fluid dynamics, atmospheric, geochemistry, chemical physics and plasma physics

and others [1–5]. It has three sections specifically soliton, chaos and fractal. Concepts of

solitons are very significant and effective research area in nonlinear science. The hot topics

of solitons are lump, kink, rogue and breather solitary waves. To explore the features of soli-

tary wave, numerous reputed scientists have been developed by various reliable and fruitful

approaches mainly Exp-function method [6,7], (G ′/G)-expansion method [8], homogeneous

balance method [9,10], homotopy perturbation method [11], F-expansion method [12], direct

algebraic method [13], Tan-Cot method [14], the inverse scattering transform [15], Darboux

transformation [16], and so forth. In 2004, a well-known approach called Hirota bilinear

method was firstly discovered by Hirota [17]. This method becomes effective and reliable
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within the short time and used to derive soliton, multi-soliton, lump waves, rogue waves,

breather waves and exciting localized formations of soliton solutions [17–20,24–28]. More

recently, Ma [29–31] determined lump wave solutions and their interactions with various

solitons for both linear and nonlinear PDEs. Ma [32] also derived long-time asymptotes for

a three-competent coupled mKdV model, and he used inverse scattering transforms [33] to

derive soliton solutions for nonlocal reverse-time nonlinear Schrödinger equations.

The prime aim of this work is to determine multi-soliton solutions and then construct

various new kinds of localized wave solutions to the following Bogoyavlenskii’s breaking

soliton (BBS) equation [21–23] via the Hirota bilinear technique.

�xxxy + 4�y�xx + 4�x�xy + �xt = 0 (1)

To reach our goal, this paper is arranged as follows: we employ the Hirota bilinear technique

to determine the n-soliton solutions of the BBS equation in Sect. 2. Section 3 offers the lump,

breather soliton and their collision solutions of the BBS equation. Finally, some conclusions

are drawn in Sect. 4.

2 Multi-soliton of the BBS equation

Dispersion relation for the BBS Eq. (1) can be evaluated considering a trial solution in an

exponential form as:

�(x, y, t) = exp(ϑi ), ϑi = ai x + bi y − ̟i t. (2)

Exerting Eq. (2) into the linear terms of Eq. (1), we get hold of the dispersion relation ̟i as

̟i = a2
i bi , i = 1, 2, · · · · · · , n (3)

and the resultant variables take place as

ϑi = ai x + bi y − a2
i bi t, i = 1, 2, · · · · · · , n. (4)

Let us consider the conversion relation

�(x, y, t) = R(ln τ(x, y, t))x . (5)

Now exerting Eq. (5) with τ(x, y, t) = 1 + exp(ϑ) into Eq. (1) and then resolving R, we

acquire

R =
3

2
. (6)

To evaluate n-soliton solution, we must consider the supplementary function τ(x, y, t) in the

following:

τ(x, y, t) = 1 +

n
∑

i=1

exp(ϑi ) +

n
∑

i< j

Ai j exp(ϑi + ϑ j )

+

n
∑

i< j<k

Ai j Aik A jk exp(ϑi + ϑ j + ϑk)

+ · · · +

⎛

⎝

∏

i< j

Ai j

⎞

⎠ exp

(

n
∑

i=1

ϑi

)

. (7)
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Fig. 1 Sketch of Eq. (5) with Eq. (7) and Eq. (10) for the values l1 = 1, m1 = −1, p1 = 1, q1 = 1. a 3D

shape of single-kink soliton (n = 1); b 3D shape of double-kink or two solitons (n = 2); c 3D shape of

triple-kink or three solitons (n = 3)

Here we consider trial solution for two solitons as

τ(x, y, t) = 1 + exp(ϑ1) + exp(ϑ2) + A12 exp(ϑ1 + ϑ2). (8)

Setting Eq. (8) with Eq. (5) and Eq. (6) into Eq. (1) and then solving for unknown A12, we

gain

A12 =
(a1 − a2)(a

2
1b2 + 2a1b1a2 − 2a1a2b2 − b1a2

2)

(a1 + a2)(a
2
1b2 + 2a1b1a2 + 2a1a2b2 + b1a2

2)
. (9)

In the similar way, we can get three, four and more soliton solutions from Eq. (7), where the

unknowns are given by

Ai j =
(ai − a j )(a

2
i b j + 2ai bi a j − 2ai a j b j − bi a

2
j )

(ai + a j )(a
2
i b j + 2ai bi a j + 2ai a j b j + bi a

2
j )

, i, j = 1, 2, · · · , n (10)

providing (ai + a j )(a
2
i b j + 2ai bi a j + 2ai a j b j + bi a

2
j ) �= 0.

Profile of the solution Eq. (7) with Eq. (5) and Eq. (10) exhibits multi-soliton solutions or

n-kink soliton solutions as depicted in Fig. 1. Taking n = 1, 2 and n = 3, we get single-kink

wave (Fig. 1a), double-kink solitons (Fig. 1b) and triple-kink solitons (Fig. 1c), respectively.

It is evidently observed from Fig. 1b, c that before (t < 0) and after (t > 0) collision multi-

kink solitons remain their own properties (height, width and speed) which are same. That is,

the collisions are elastic.

3 Lump and breather soliton solution of the BBS equation

This section recalls the multi-soliton solutions to derive lump-type breather solution; collision

of a soliton and a lump-type breather soliton; and collision between two lump-type breather

solitons in the succeeding subsections.

3.1 Two-soliton and lump-type breather soliton solutions

Here, we would like to create lump-type breather wave propagation. To perform that, we have

to assume at least two soliton solutions by putting n = 2 and then let a1 = l1 + im1, a2 =

l1 − im1, b1 = p1 + iq1, b2 = p1 − iq1, into Eq. (8) and Eq. (9) and then Eq. (5) gives
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Fig. 2 Outlook of Eq. (11) with the parametric values l1 = 1, m1 = −1, p1 = 1, q1 = 1: 3D plot (upper)

and its contour plot (below)

�(x, y, t) =
3

2
{ln(1 + 2 exp(M1) cos(σ1) + A12 exp(2σ1)}x . (11)

where M1 = l1x + p1 y − (l2
1 p1 − m2

1 p1 − 2l1m1q1)t , σ1 = m1x + q1 y − (l2
1q1 − m2

1q1 +

2l1m1 p1)t and A12 = −
m1(2p1l1m1+q1l2

1+3q1m2
1)

l1(2q1l1m1+p1m2
1+3p1l2

1 )
.

The solution Eq. (11) comes from two-soliton solution and gives lump-type breather

propagation. Features of the solution Eq. (11) (Fig. 2 3D (upper) and its contour (below))

for the values l1 = 1, m1 = −1, p1 = 1, q1 = 1. Figures show that the solution exhibits as

lump-type breather propagations along the paradox in the xy-plane at t = 0 (Fig. 2b), for

different times (t �= 0) it propagates not along paradox in the xy-plane but parallel to the

paradox (Fig. 2a, c) and in every case all lump gets into a kink wave. We also observe that

the kink waves as well as periodic lump lie in the negative quadrant for t < 0, move toward

the paradox with time increase and reach along paradox at t = 0, and then move away from

the paradox into the positive quadrant for as t > 0 with an increase in time. Its swiftness,

breadth and direction remain unchanged on the whole dynamical system and periodic lump

occurs equidistance from each other in each system.

Alternatively, we experience different phenomena when profile observes in the xt-plane.

In this case, the solution Eq. (11) exhibits as multi-lump waves periodically get into a single-

kink wave when y �= 0 (Fig. 3a, c), but exhibits double kinky wave at y = 0 (Fig. 3b) and

periodic lump-type scratch is also viewed in both kink waves.

3.2 Interaction of a soliton and a lump-type breather soliton from three-soliton solutions

In this case, we would like to determine a collision solution between periodic lump-type

breather waves that comes from two solitons and a kink soliton. In this regard, consider

the three-soliton solutions by putting n = 3 into Eq. (7) with Eq. (10), and then let a1 =
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Fig. 3 Outlook of Eq. (11) with the parametric values l1 = 1, m1 = −1, p1 = 1, q1 = 1: 3D plot (upper)

and its contour plot (below)

l1 + im1, a2 = l1 − im1, a3 = c, b1 = p1 + iq1, b2 = p1 − iq1, b3 = d into Eq. (7) together

with Eqs. (5, 6, 10) which gives the resultant solution as

�(x, y, t) =
3

2
ln{1 + 2 exp(M1) cos(σ1) + A12 exp(2σ1) + exp(cx + dy − c2dt)

+ 2ρ1 exp(M1 + cx + dy − c2dt) cos(σ1 + ξ1) + A12ρ
2
1 exp(2M1

+ cx + dy − c2dt)}x , (12)

where A12 = −
m1(2p1l1m1+q1l2

1+3q1m2
1)

l1(2q1l1m1+p1m2
1+3p1l2

1 )
, M1 = l1x + p1 y − (l2

1 p1 − m2
1 p1 − 2l1m1q1)t ,

σ1 = m1x + q1 y − (l2
1q1 − m2

1q1 + 2l1m1 p1)t and A23 = P1 + i Q1 = ρ1 exp(iξ1)(say),

then A13 = P1 − i Q1 = ρ1 exp(−iξ1) in which ρ1 =

√

P2
1 + Q2

1 and ξ1 = tan−1(
Q1

P1
).

In Eq. (12), solution comes in terms of the combination of exponential and periodic

sinusoidal function exhibiting collision of a kinky periodic lump-type breather soliton and a

kink-shaped line soliton, as viewed in Figs. 4, 5 and 6 for the values l1 = 1, m1 = −1, p1 =

1, q1 = 1, c = 1. There are two sub-cases existed depending on the interaction direction.

Case (i): For d > 0, we observe (Fig. 4 3D (upper) and its contour (below)) that the two

waves are always parallel to each other, even at the time of interaction (see the contour plots in

Fig. 4 (below)). We also observe that the two waves (display as a double-kink wave) contain

periodically lump waves to get into the lower kink (Fig. 4a (upper)) before (t < 0) collision

and upper kink (Fig. 4c (upper)) after (t > 0) collision in the xy-plane, respectively. They

are overlapped entirely at t = 0 where highest amplitude comes into sight (Fig. 4b (upper)).

Actually the whole collision processes are completely elastic which is evidently observed in

the contour plots in Fig. 4 (below) in the same plane.
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Fig. 4 Collision between breather lump soliton and kink line soliton of Eq. (12) for l1 = 1, m1 = −1,

p1 = 1, q1 = 1, c = 1, d = 1: 3D plot (upper) and its contour plot (below)

Case (ii): For d < 0, we observe (Fig. 5 3D (upper) and its contour (below)) that the two

waves (a kinky periodic lump-type breather soliton and a kink-shaped line soliton) interact

at a certain angle. We see that a kink wave interacts with the breather wave and shifting of

the collision changes along negative of y-axis (Fig. 5a) to positive of y-axis (Fig. 5c), but at

the intermediate time they interact at the origin (Fig. 5b). The overall propagation process

is elastic. Beside this, when we take the plot into the xt-plane, similar elastic collisions are

also observed in the double-kink waves with the same parametric values (Fig. 6 3D (upper)

and its contour (below)).

3.3 Four solitons and interaction of two lump-type breather solitons

To determine interaction of two lump-type breather solitons, we have to consider at four

soliton solutions. In this regard, consider the three-soliton solution by putting n = 4 in Eq.

(7) with Eq. (10), and then let a1 = l1 + im1, a2 = l1 − im1, a3 = l2 + im2, a4 = l2 − im2,

b1 = p1 + iq1, b2 = p1 − iq1, b3 = p2 + iq2, b4 = p2 − iq2 into Eq. (7) together with Eqs.

(5, 6, 10) giving the resultant solution as

�(x, y, t) =
3

2
ln{1 + 2 exp(M1) cos(σ1) + +2 exp(M2) cos(σ2) + A12 exp(2M1)

+ A34 exp(2M2) + 2ρ1 cos(ξ1 + σ1 + σ2) exp(M1 + M2)

+ 2ρ2 cos(ξ2 + σ1 − σ2) exp(M1 + M2)

+ 2A12ρ1ρ2 exp(2σ1 + σ2) cos(M2 + ξ1 − ξ2)

+ 2A34ρ1ρ2 exp(σ1 + 2σ2) cos(M1 + ξ1 + ξ2) + A12 A34 exp(2σ1 + 2σ2)}x

(13)
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Fig. 5 Collision between breather lump soliton and kink line soliton of Eq. (12) for l1 = 1, m1 = −1, p1 =

1, q1 = 1, c = 1, d = −1: 3D plot (upper) and its contour plot (below)

Fig. 6 Collision between breather lump soliton and kink line soliton of Eq. (12) for l1 = 1, m1 = −1, p1 =

1, q1 = 1, c = 1, d = −1: 3D plot (upper) and its contour plot (below)

123
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Fig. 7 Collision of periodic lump and periodic line waves of Eq. (13) for l1 = 1, m1 = −1, p1 = 1, q1 = 1,

l2 = −1.001, m2 = 1, p2 = 1, q2 = 1: 3D plot (upper) and its contour plot (below)

where M1 = l1x + p1 y − (l2
1 p1 − m2

1 p1 − 2l1m1q1)t , σ1 = m1x + q1 y − (l2
1q1 − m2

1q1 +

2l1m1 p1)t ,

M2 = l2x + p2 y − (l2
2 p2 − m2

2 p2 − 2l2m2q2)t,

σ2 = m2x + q2 y − (l2
2q2 − m2

2q2 + 2l2m2 p2)t,

A12 = −
m1(2p1l1m1 + q1l2

1 + 3q1m2
1)

l1(2q1l1m1 + p1m2
1 + 3p1l2

1)
, A34 = −

m2(2p2l2m2 + q2l2
2 + 3q2m2

2)

l2(2q2l2m2 + p2m2
2 + 3p2l2

2)

A24 = P1 + i Q1 = ρ1 exp(iξ1) (say) and A14 = P2 + i Q1 = ρ2 exp(iξ1) (say), then

A13 = P1 − i Q1 = ρ1 exp(−iξ1) and A23 = P2 − i Q2 = ρ2 exp(−iξ1).

To find the values of ρ1, ρ2, ϑ1 and ϑ2, we apply ρ =
√

P2 + Q2 and ϑ = tan−1(
Q
P

).

In the solution Eq. (13), comes in terms of exponential and periodic sinusoidal function

exhibits collision of a pair of periodic lump-type breather waves, as viewed in Fig. 7 with the

values l1 = 1, m1 = −1, p1 = 1, q1 = 1, l2 = −1.001, m2 = 1, p2 = 1, q2 = 1 at t = 0. It

is fascinating that collision of these breathers owns unlike dynamic natures in distinct planes.

Both elastic (Fig. 7a 3D (upper) and its contour (below)) and non-elastic (Fig. 7b, c 3D

(upper) and its contour (below)) collision own different times and different planes. Figure 7a

exhibits double-kink-type X-shaped breather soliton for elastic collision as before and after

collision each lump-type breather wave remains their same solitonic natures and interacts

at the origin coming along opposite paradox in the xy-plane. It is observed that the some

lump waves are periodically got into each soliton, being at equal distance from each other.

On the other hand, when we take the same plot in the same xy-plane but in different times at

t = −4 it exhibits non-elastic fusion phenomena after collision as propagated from negative

to positive along y direction (Fig. 7b 3D (upper) and its contour (below)). Other behavior

also owns the collision when observed in the xt-plane. It is seen that a breather lump wave
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interacts at t = 0 and then causes fission as it is split into two breather-type lump waves

(Fig. 7c 3D (upper) and its contour (below)) time goes by.

4 Conclusions

In the summary, we have successfully used Hirota bilinear method to gain multi-soliton solu-

tions Eq. (7) of the BBS equation; see Fig. 1. Various parametric values have been selected to

get distinguish dynamical characteristics of single kinky–lump-type breather solitons (Figs. 2,

3a, c), double kinky–lump-type breather solitons (Figs. 3b, 4, 5, 6, 7a), collision of a kink

line soliton with a kinky-type breather soliton (Figs. 4, 5, 6), and collision of a pair of kinky–

lump breather solitons (Fig. 7a) by the appropriate selection of involved parameters from the

multi-soliton solutions of the models. These breathers hold unlike features in various planes

even in various times. Elastic (Figs. 1, 2, 3, 4, 5, 6, 7a) and non-elastic (Fig. 7b, c) collisions

for double kinky–lump-type breather are experienced in various plane and in various times.

Some figures are given to illustrate the dynamics of the achieved solutions. This will also

prompt us to explore new approach to obtain more extensive and accurate solution to the

models. The acquired results can enhance the dynamical properties of higher-dimensional

nonlinear scenarios in the engineering fields.
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