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ABSTRACT

The thesis is concerned with generalizations of some important and
interesting properties of separation, compactness and connectedness in a

span of seven chapters.

In the first chapter pseudo regular and pseudo normal topological
spaces have been defined. Their properties have been studied and a number

of important theorems regarding these spaces have been established.

In the second chapter strongly pseudo-regular and strongly pseudo-
normal topological spaces have been introduced and their properties have
been studied. A number of important theorems have been proved in this

regard.

This is the third chapter. In this chapter strictly pseudo-regular and
strictly pseudo-normal topological spaces have been defined and their
properties have been studied. In the former class a compact set can be
separated from an external point by a continuous function, while in the
latter, two disjoint compact sets can be separated by a continuous function.

Many important properties have been proved.

The fourth chapter introduces the notions of nearly regular topological
spaces of the first kind and the second kind and studies their properties. A

number of important theorems regarding these spaces have been established.

In this fifth chapter two new generalizations of normal spaces have
been defined and studied. The spaces in these classes have been termed
nearly normal topological spaces of the first kind and the second kind

respectively.



v

This is the sixth chapter. In this chapter further new generalizations of
normal spaces have been made. These have been called slightly normal
spaces of the first kind, the second kind and the third kind respectively. A

number of important properties of these spaces have been proved.

In this chapter seven compactness has been generalized to pseudo-
compactness and c-compactness, and a continuum 1.e., a connected compact
space has been generalized to pseudo-continuum. Several properties of these

three classes of spaces have been studied.



CHAPTER ONE

Pseudo Regular and Pseudo Normal
Topological Spaces

1.1. Introduction

Regular and normal topological spaces have been generalized in various
ways. p-regular, p-normal, A-normal andy-normal spaces ([5], [8], [9],
[15], [36]) are several examples of some of these.

In this chapter we have introduced pseudo regular and pseudo normal
spaces and studied their important properties. Many results have been
proved about these spaces. We have also established characterizations of
such spaces. Parallel study of further generalizations using preopen and
semi open sets etc. are intended to be done in near future. We have used the
terminology and definitions of text book of S. Majumdar and N. Akhter
[22], Munkres [10], Dugundji [11], Simmons [7], Kelley [12] and Hocking-
Young [13].

Unless otherwise stated, every compact set considered in this chapter

will have at least two elements.

1.2. Preliminaries

We start with the definitions of almost y -normal, almost p-normal, almost

S -normal, y -normal, p -normal, S -normal spaces.
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A subset A of a topological space X is said to be regular open (resp.
regular closed) if A=int(cl(A)) (resp. cl(int(A)),preopen ( briefly p-open)
if Acint(cl(A)), B-open if Accl(int(cl(A))), y-open if Accl(int(A))u
int(cl(A))[5].

A topological spaces X is said to be almost y -normal (resp. almost p-
normal, almost #-normal [5]) if for any two disjoint closed subsets A and
B of X, one of which is regularly closed, there exist disjoint y -open (resp. p-
open, B -open) sets U and V of X such that AcU and Bc V.

A topological spaces X is said to be y-normal (resp. p-normal, 5 -
normal [5]) if for every pair of disjoint closed subsets A and B of X, there
exist disjoint y -open (resp. p-open, S -open) sets U and V of X such that A <
Uand Bc V.

Their inter-relationships are also mentioned below:

normal = almost normal
U U
p-normality = almost p-normality

U

y-normality = almost y-normality

U U

S -normality = almost S-normality

We now define pseudo regular spaces and proceed to study them.

1.3. Pseudo Regular Spaces

Definition 1.3.1: A topological space X will be called pseudo regular if
every compact subset K of X and every x e X with x ¢ K can be separated by

disjoint open sets.
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Example 1.3.1: Let K be a compact subset of R™and let x € R™ such that
x¢ K . Since R™ isT,, {x}is closed and since R™ is normal and K is closed
(by Heine-Borel Theorem), {x} and K can be separated by disjoint open

sets. Thus R" is pseudo regular.

Example 1.3.2: Let X = {a, b, ¢, d} and I={X,4,{a.b},{c.d}}. Then (X, J) is
regular but not pseudo regular.

For, {a, c}is compact, bg {a,c} but {a, ¢} and b cannot be separated by

9

disjoint open sets.

Example 1.3.3: Let X =R, J be the topology generated by 3, u{ where
3, is the usual topology on R and {= {{x}|xe R — Q }. Then Q is closed,

since R — Q is open. Q cannot be separated from an irrational point since
the only open set which contains Q is R. Therefore X is not regular. The
compact sets in X are the closed and bounded subsets of R, i.e., finite
unions of closed intervals, e.g., [a;b;] U --- U [a,, by]. Let K be a compact

subset of X and letx ¢ K. So let K be given by K=[a; b;] U -- U [a,, by] . Let
5, =d(x,[a;,b;]) the distance of x from[a;,5;] and lets = %min{él, ...,8,}. Then

G=(a, - 6,b, +5)U ... U(a, —6,b, +5) and H=(x—5,x+5), separate K and x.

Thus X is pseudo regular but not regular.

Theorem 1.3.1: Every pseudo regular compact space is regular.

Proof: Let X be compact and pseudo regular. Let K be a closed subset of X
and let x € X with x ¢ K .Since X is compact, K is compact. Again, since X
is pseudo regular, there exist disjoint open sets G and H such that x € G and

K < H . Therefore X is regular.
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Theorem 1.3.2: Every regular Hausdorff space is pseudo regular.

Proof: Let X be a regular Hausdorff space. Let K be a compact subset of X
andxe X, x¢ K . Since X is Hausdorff, K is closed. Now, since X is regular,
there exist disjoint open sets G and H such that x e GandK < H . Therefore

X is pseudo regular.

Theorem 1.3.3: A topological space X is pseudo regular if and only if for
every x € X and any compact set K not containing x, there exists an open set
H of X such that xe H c H c K*.
Proof: Let X be pseudo regular and let K be compact in X. Let x¢ K i.e.,
xe K. Since X is pseudo regular, there exist open sets U, V such that
xeUKcvand UnV=¢.Then UcV* cK®.So UcV =V cK*. Writing
U=H we havexe Hc H c K° .

Now, let for every x € X and any compact set K not containing x, there
exists open set H such that xe H « H < K°. Since K is a compact set and
x¢ K. Then x e K°. According to the condition, there exists open set H such
thatxe Hc Hc K°.Let H =G. Then Gis open, K cGand GNH =¢.

Thus X is pseudo regular.

Theorem 1.3.4: The product space X of any non-empty collection {X,} of
topological spaces is pseudo regular if and only if each X, is pseudo

regular.

Proof: Let {X,} be a non-empty collection of pseudo regular spaces and X =
IX,. We show that X is a pseudo regular space. Let K be a compact set not
containing a point xe X . Let K, =T1,(K), x, ¢ K, . Since the projection

maps are continuous I1,(K)=K, is a compact subset of X,. Sincexg¢ K,
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there exists i,such that x, ¢ K, . Since X, is pseudo regular, there exist
disjoint open sets G, , H, in X, suchthat x, e #, , K, c G, . Foreachi=i,
let G,,H, be open sets such that x, € H,,K, < G,. Let G=I1,G, and H=I1,H, .
Then GNH =¢,since G, nH, =¢ .Now, KcG,xeH. Hence X is
pseudo regular.

Conversely, if X is pseudo regular, then we show that for each i, X, is
pseudo regular. For each 1, let K, be a compact subset of X, and x, € X, but
x, ¢K,.Let K =TII,K, and x={x,}, xe Xbut x¢ K . Then K is compact by
Tychonoff Theorem. Since X is pseudo regular, there exist disjoint open sets
G and H such that xe GandK ¢ H and G=I1,G,, H=I1,H,,G,, H, are open

sets in X, such that x, e H,,K, < G, andG, " H, = ¢. Therefore X, is pseudo

regular.

Theorem 1.3.5: Any subspace of a pseudo regular space is pseudo regular.

Proof: Let X be a pseudo regular space and ¥ < X. Let yeY and Bis a
compact subset of Y such thaty ¢ B . Since B is compact in Y, so B is
compact in X. Since X is pseudo regular, there exist disjoint open sets G and
H of X such that yeGandBc H.Let U=GnY and V=H nY. Then U and
V are disjoint open sets of Y where yeUand Bc V. Hence Y is pseudo

regular.

Corollary 1.3.1: Let X be a topological space and A, B are two pseudo
regular subspaces of X. Then 4 B is pseudo regular.

Proof: 4N B being a subspace of both A and B, 4~ B is pseudo regular by
the above Theorem 1.3.5.
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Theorem 1.3.6: Let X be a pseudo regular space and R is an equivalence
relation of X. Then R is a closed subset of X xX.

Proof: We shall prove that R is open. So, let (x,y)e R°. It is sufficient to
show that there exist two open sets G and H of X such that xeGand ye H

and GxHcR°. Let p:X— %be the projection map. Since(x, y)e R,

p(x)= p(y) i.e., xe p™'(p(y)). Again, since {y} is compact and p is a

continuous mapping, p(y) is compact. Also, let {G,}be an open cover of

»”'(p(v)) in X, and let G, = p(G,). Then {G,} is an open cover of p(y) in %
Since p(y) is a singleton element in % , there exists G_,O such that p(y)e G,

in % . Then by the definition of the topology in % and the nature of the

map p, (i) G, is open in X, (ii) G, = p™'(G,) and (iii) p ' (p(»)) c G, in X.
Hence p~'(p(y)) is compact in X. So by the pseudo regularity of X, there
exist disjoint open sets G and H in X such that xe Gand p~'(p(y))c H .
Hencey e p'(p(y))c Hie., ye H.Since GNH=¢, p(G)np(H)=4¢.
Therefore GxHc R° and so(x,y)e GxH < R°.

Corollary 1.3.2: Let X be a pseudo regular space and R is an equivalence

relation of X. Then % is Hausdorff.

Proof: Let x and y be two distinct points of % Then x=p(x) and y=p(y)
for some x,y € X such that x # yand (x,y)e R°. By the proof of the above

Theorem 1.3.6, there exist disjoint open sets Gand H in % such that xe G

and ye H . Thus % is Hausdorff. [ G =p(G) and H=p(H) of the above

theorem].
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We now define pseudo normal spaces and proceed to study them.

1.4. Pseudo Normal Spaces

Definition 1.4.1: A topological space X will be called pseudo normal if
each pair of disjoint compact subsets of X can be separated by disjoint open

sets.

Example 1.4.1: Since R™ is normal and every compact subset of R" is

closed, R™ is pseudo normal.

Example 1.4.2: Let X = {a, b, ¢, d} and I ={X,¢,{a,b},{c.,d}}. Then (X, J) is
a normal space. Here {a, c}and {b, d}are two disjoint compact sets in X,
but there do not exist disjoint open sets containing these compact sets.

Therefore (X, J) is not pseudo normal.

Theorem 1.4.1: Every pseudo normal compact space is normal.

Proof: Let X be compact and pseudo normal. Let A, B be two disjoint
closed subsets of X. Since X is compact, A and B are compact. Again, since
X is pseudo normal, A and B can be separated by disjoint open sets.

Therefore X is normal.

Theorem 1.4.2: Every normal Hausdorff space is pseudo normal.

Proof: Let X be Hausdorff and normal. Let A, B be two disjoint compact
subsets of X. Since X is Hausdorff, A, B are closed. Again, since X is
normal, there exist disjoint open sets G and H in X such that 4 < Gand

B c H . Therefore X is pseudo normal.
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Theorem 1.4.3: A topological space X is pseudo normal if and only if each
pair of disjoint compact sets K; and K, _there exists open set U such that

K, cUcUcK,.

Proof: Let X be a pseudo normal space and K, K, be two compact subsets

of Xand K, nK, =¢ Since X is pseudo normal, there exist open sets U, V

such that K, cU, K, cVand UnV=¢ . Then U cV° <K, . So

UcV* =V cKk,” Hencewehave K, cUcUcK,"
Conversely, suppose that for each pair K, and K, of disjoint compact

subsets of X, there exists an open set H of X such that K, cU cU < K,°. We
shall show that X is pseudo normal. Here K, c Hand K, cH .Let H =G.

Then G is open, K, cGand GNH=¢.[Forxe HNH =xeHand xeH".

But xe H=xeH.So x¢H* which is a contradiction, so GNH =¢]

Theorem 1.4.4: Every open image of a pseudo normal space is pseudo
normal.

Proof: Let X be a pseudo normal space and Y a topological space and let
f:X —>Y be an open and onto mapping. Let K, and K, be two disjoint
compact subsets in Y. Then f7'(K,) and f'(K,) are compact in X. Since X
is pseudo normal, there exist open subsets U and V of X such that
f(K,)cUand f'(K,)c¥VandUV =¢. Again, since fis open, f(U) and
f(V) are openin Y and K, c ff'(K,)c f(U), K,  ff(K,) < f(V) and
f(U)Nf(¥)=¢.Hence Y is pseudo normal.
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Corollary 1.4.1: Every quotient space of a pseudo normal space is pseudo
normal.

Proof: Let X be a pseudo normal space and R is an equivalence relation on

X. Since the projection map p: X — % is open and onto, the corollary then

follows from the above Theorem 1.4.4.

Although a subspace of a normal space need not be normal (see

Majumdar and Akhter [22], p.109), we have the following theorem:

Theorem 1.4.5: Every subspace of a pseudo normal space is pseudo
normal.

Proof: Let X be a pseudo normal space and ¥ < X . Let K, and K, be two
disjoint compact subsets in Y. Since K, and K, are compact in Y, these are

compact in X too. Since X is pseudo normal, there exist disjoint open sets U

and W such thatK, cUand K, cW . Then U Y and W nY are disjoint open
sets in Y with property that K, cUnYand K, cW Y. Hence Y is pseudo

normal.

Comment 1.4.1: A continuous image of a pseudo regular (pseudo normal)
space need not be pseudo regular (pseudo normal).

For if(X,T;) is a pseudo regular (pseudo normal) space and (X,7,) a space
with the indiscrete topology, then the identity map 1, : X — X is continuous

and onto. But (X,7,) is not pseudo regular (pseudo normal).
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Theorem 1.4.6: Each compact Hausdorff space is pseudo normal.

Proof: Let X be a compact Hausdorff space and A, B be two disjoint
compact subsets of X. Let xe 4andy € B. Thenx # y. Since X 1s Hausdorff,
there exist disjoint open sets G, and H  such that xe G andyeG, .
Obviously {H : y € B}is an open cover of B. Since B is compact, so there
exists a finite sub-cover { H ,H,, ... H, } of B. Let

H =H UH, U . UH, and G, =G, NG, N .. NG, . Then Bc H_, xeG,
and H, NG, =g¢i.e., X is pseudo regular. So for eachx € 4, there exist two
disjoint open sets G, and H_ of X such that xe G,and Bc H,. Hence

{G, : x € A}is an open cover of A. Since A is compact, so there exists a finite
sub-cover {G, .G, , .. .G, } of this cover A. Let G=G, vG,_ v ... UG, and

H=H nH_n .. nH_.Then G, H are open sets of Xand 4c G, BcH

andGNH=¢.

Remark 1.4.1: It follows from the above proof that every compact

Hausdorff space is pseudo regular.

Theorem 1.4.7: Every locally compact Hausdorff space is pseudo regular.
Proof: Let X be a locally compact Hausdorff space. Then there exists one

point compactification X, of X and X_ is Hausdorff and compact.
According to above Remark 1.4.1, X is pseudo regular. Again, according

to Theorem 1.3.5, as a subspace of X_ , X is pseudo regular.
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Theorem 1.4.7: Let X be a topological space such that for every compact
subset K of X, X-K contains at least two elements, if each X is pseudo
normal then X is pseudo regular.

Proof: Let X be a pseudo normal space. Let K be a compact subset of X and
let x e X such that x ¢ K. Then there exists y such that y¢ K and y=x. Then
{x, y} being finite with two elements, is a compact subset of X such that
{X,y} nK =¢. Since X is pseudo normal, there exist open sets G and H
with{Xx,y}c G, KcH,GnH=¢ .Since XxeG, K cH, GNnH =¢ , hence X is

pseudo regular.

Example 1.4.3: Let X = {a, b, ¢} and I ={X,4,{a},{b,c}}. Then (X, J) is a
pseudo normal space. But X is not pseudo regular. For, {a, b} compact

c ¢ {a,b}, but {a, b} and c cannot be separated by disjoint open sets in X.

Theorem 1.4.8: Every metric space is both pseudo regular and pseudo
normal.

Proof: Since every metric space is Hausdorff, every compact set is closed.
Again, since every metric space is regular, normal, therefore it is pseudo
regular and pseudo normal by Theorem 1.3.2 and Theorem 1.4.2

respectively.
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1.5. Almost Pseudo Regular Spaces and Almost Pseudo Normal

Spaces

Here we consider two classes of topological spaces one of which lies
between the class of Hausdorff spaces and the class of pseudo regular
spaces, while the other lies between the class of Hausdorff spaces and the

class of pseudo normal spaces.

Definition 1.5.1: A topological space X will be called almost pseudo
regular if for every finite set A with at least two elements and for every x

¢ 4, there exist disjoint open sets G and H such that Ac Gand xe H .

Example 1.5.1: Let X=Q, 1,se Q, r<s, and let V.= {q € Q|r < g < s}. Let
3, the topology generated by {X, ?, {Vr_s}|r, SEQ|r< s} .Let A={qi, ***,qn},

n>2,and letg e Q, g ¢ 4.Suppose q1<qx<+--<qn. If q<qi, let 6§ =¢, —¢ Then
0, 1) :
qe Vq_%,q + A and Ac Vqr%’q” + A If ¢>qn, we construct the required

open sets similarly.

If qi<q<qi+1, for some 1,1 <i < n,lets = min(g — ¢;,¢;,; —¢). Then

qe< (q—%,q+%)=V, say (i, “"qie(QI —%a‘]z +%): Vland qi+15 """ 5(n

e(q,.+1 -9/ .4, +%):V2, say. Then g eV, AcV, UV,andV ~(V, UV, )=¢.

Definition 1.5.2: A topological space X will be called almost pseudo
normal if for every two finite disjoint sets A and B each with at least two

elements , there exist disjoint open sets G and H such that Ac Gand Bc H.
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Example 1.5.2: It can be shown that the above Example 1.5.1 is almost
pseudo normal too.

Many of the properties of the pseudo regular and pseudo normal spaces
are expected to hold but we are not proving these here. We will follow up

these in near future.

13



CHAPTER TWO

Strongly Pseudo-Regular and Strongly
Pseudo-Normal Topological Spaces

2.1. Introduction

This is the second chapter of our thesis on generalizations and
specializations of regular and normal topological spaces. Earlier, regular and
normal topological spaces have been generalized in various other ways.
p-regular, p-normal, £-normal and y-normal spaces ([5], [8], [9], [15], [36])
are several examples of some of these.

In this chapter we have introduced strongly pseudo-regular and
strongly pseudo-normal spaces and studied their important properties. Many
important results about these spaces have been established.

Unless otherwise stated, every compact set considered in this chapter

will have at least two elements.

We shall now define and study strongly pseudo-regular spaces as

specializations of pseudo regular spaces (see [23]).

2.2. Strongly Pseudo-Regular Spaces
Definition 2.2.1: A topological space X will be called strongly pseudo-
regular if, for each compact set K and for every x € X withx ¢ K , there exist

open sets G and H such thatxe GandK c Hand G H = ¢.
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Example 2.2.1: X= R with usual topology is strongly pseudo-regular. To

see this, let K be a non-empty compact subset of X and letxe X, x¢ K .

Then, by Heine-Borel Theorem, K is closed and bounded. Hence, K may be

written as K= O[ai,b,,] where[a,,b,|Na,,b, |= pifi= .

i=1

Leta, =min{g, } b, =max{b, } Since x ¢ K one of the following three
i D j . )

conditions must hold:

(i) x<a

() x>b

Jo

(iii) there exista,,a, and b,,b, suchthata, <b, <a, <b, ’ and [a, b, ]

and [«a, ,b, ] are consecutive intervals in K, andb, <x<a, .

. 1
If (i) holds, let 1= <|v=4,|, and let U=(X~9;,x +0y),

V,=(%, ~01>0;, +01). Then Uy, V, are open and U "V, =¢.Also
xeU,Kc/V, .

1
If (ii) holds, let %= 5|v=0, |, and let Upy=(x = 02,% +05),
Vo=(%, =02b;, +02). Then Uy, V are open, ¥€U, KV, and U, 0V, =¢.
1 .
If (iii) holds, let &= ymin{x~b, .4, ~x, and let Us=(x = 0s.¥ +05) and

Vi= (@, = 03b; +05)U(a, —0;,b; +05) Then Us, V; are open,
xeU,, KV and U; Vs = 4.

Thus, X is strongly pseudo-regular.
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Theorem 2.2.1: Every strongly pseudo-regular space is pseudo regular but
the converse is not true in general.
Proof: The first part is obvious. To prove the converse, let X={a, b, ¢, d}
and I ={X,¢,{a},{b,c},{a,b,c}}. Then (X, J) is a topological space. The closed
subsets of X are X,¢,{b,c,d},{a,d},{d}. Let K={a}. Then K is compact and b
¢ K .Then we have open sets G={a}, H={b,c}such that Kc G, beH and
GnH=¢. Hence X is pseudo regular. G and H are the only disjoint open
sets which contain K and b respectively.

Now, we have H = {b,c,d}, G = {a,d}andG " H = {d} # ¢ . Hence X is not

strongly pseudo-regular.

Theorem 2.2.2: Any subspace of a strongly pseudo-regular space is
strongly pseudo-regular.
Proof: Let X be a strongly pseudo-regular space and Y < X. Let yeY and

K be a compact subset of Y such thaty ¢ K . Since K is compact in Y, so K
is compact in X. Since X is strongly pseudo-regular, there exist open sets G
and H of X such that yeGandK c Hand GnH =¢. Let U=GNY and V=
HnNY.Then U and V are open sets of Y where yeUand K <V and

UV =¢. Hence Y is strongly pseudo-regular.

Corollary 2.2.1: Let X be a topological space and A, B are two strongly
pseudo-regular subspaces of X. Then 4N B is strongly pseudo-regular.
Proof: Since 4" B being a subspace of both A and B, 4 B is strongly
pseudo-regular by the above Theorem 2.2.2.
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Theorem 2.2.3: A topological space X is strongly pseudo-regular if, for
eachx e X and for any compact set K not containing x, there exists an open
set H of X such that xe H c H c K°.

Proof: Let X be strongly pseudo-regular and let K be compact in X. Let
x¢ Ki.e., xe K°. Since X is strongly pseudo regular, there exist open sets

U, V such that xeU,K cVandU NV =¢ and so U NV =¢.Then

UcV cK'.SoUcV'=r‘c K. Writing U=H we havexe H c H c K* .

Theorem 2.2.4: A topological space X is strongly pseudo-regular if X is
completely Hausdorff .

Proof: Let X be a completely Hausdorff space and let K be a compact
subset of X. Let x, y be two distinct points of X with y € K and x ¢ K .Since

X is completely Hausdorff, there exist open sets G, and H  such that xe G,
and ye H and G, nH, =¢.Let {H, :yeK}is an open cover of K.

Since K is compact, so there exist a finite subcover { #, ,H , ... ,H, } of K.
Let H =H, VH, ..UH, anG =G, NG, Nn..NG, . Then KcH, xeG
and we claim that G "H =¢. If G NH #¢,letzeG =z€G, N..NG,
and ze H =ze<H, ,forsome y. Thisimplies ze G, nH, , whichisa

contradiction. Therefore G nH =¢. Hence X is strongly pseudo-regular.

Theorem 2.2.5: The product space X of any non-empty collection {X, }of
topological spaces is strongly pseudo-regular if and only if each X, is

strongly pseudo-regular.

Proof: Let {X,} be a non-empty collection of strongly pseudo-regular spaces

and X =T1X,. We show that X is a strongly pseudo-regular space. Let K be a
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compact set not containing a point xe X . Let K, =I1,(K), x, ¢ K, . Since the
projection maps are continuous, IT,(K)= K, is a compact subset of X,. Since

x¢ K, there exists i,such that x, ¢ K, . Since X, is strongly pseudo-regular,

there exist open sets G, ,H, in X, suchthat x eH, ,K <G, and

G, nH, =¢.Foreach i=i,, let G, H, be open sets such that x, e 7,,K, = G,.
Let G=I1,G, and H=T1,H,. ThenG nH =¢,since G, nH, =¢ and

K c G, xe H. Hence X is strongly pseudo-regular.

Conversely, if X is strongly pseudo-regular, then we show that for each

1,X, 1s strongly pseudo-regular. For each 1, let K, be a compact subset of
X, and x, € X,butx, ¢K,. Let K =I1,K and x={x,} thenxe Xbut x¢ K . Then
K compact by Tychonoff Theorem. Since X is strongly pseudo-regular,
there exist open sets G and H such that xe GandK c Hand G nH =¢ and
G=I1,G, , H=I1,H,, G,, H, are open sets in X, such that x, € H,,K, G, and

G, nH, =¢ . Therefore X, is strongly pseudo-regular.

Theorem 2.2.6: Let X be a strongly pseudo-regular space and R is an
equivalence relation of X. Then R is a closed subset of X xX.

Proof: We shall prove that R° is open. So, let (x,y)e R°. It is sufficient to

show that there exist two open sets G and H of X such that xeGand ye H
and GxHc R°. Let p: X — %be the projection map. Since (x,y)e R,

p(x)# p(y) i.e., xe p~'(p(»)). Again, since {y} is compact and p is a

continuous mapping, p(y) is compact. Also, let {G, }be an open cover of

p(p(») in X, and let G, = p(G,). Then {G,} is an open cover of p(y) in %

Since p(y) is a singleton element in % , there exists G_0 such that p(y)e G, in
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%. Then by the definition of the topology in % and the nature of the map

p, (i) G, isopenin X, (ii) G, = p'(G,) and (iii) p"'(p(»)) = G, in X. Hence
p'(p(»)) is compact in X. So by the strongly pseudo-regularity of X, there
exist open sets G and H in X such that x € G and p™'(p(y))c # and
G nH =¢.Henceyep'(p(y)cH ie., yeH.Since G NnH =4,

p(G)n p(H) = ¢. Therefore GxHc R and so(x,y)e GxH < R°.
Corollary 2.2.2: Let X be a strongly pseudo-regular space and R is an
equivalence relation of X. Then % is completely Hausdorff.

Proof: Let clsx and clsy be two distinct points of % Then clsx= p(x) and
clsy= p(y)for some x,y e X such that x # yand (x,y) e R°. By the proof of the

above Theorem 2.2.6, there exist open sets G, and G, in % such that clsx

€G, andclsy e G and G, NG, =¢. Thus % is completely Hausdorff.
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We shall now define a new class of specialized pseudo normal spaces

(see [23]), viz., strongly pseudo-normal spaces and proceed to study them.

2.3. Strongly Pseudo-Normal Spaces
Definition 2.3.1: A topological space X will be called strongly pseudo-

normal if, for each pair of disjoint compact subsets K, K, of X, there exist

open sets G and H such thatk, c G, K, cHand G nH =¢.

Example 2.3.1: X= R with usual topology is strongly pseudo-normal. To

see this, let K; and K; be two non-empty disjoint compact sets in X. Then,

K, and K, may be written as K;= O[ani] Kfo lc,.d,] where
=1 ’ ’

P
[ai,b,.]m[ai/,b/J=¢ifi¢i/ , [cj,djjm[cj ,dj/J=¢ifj¢j/ and [ai,b,.]m[c,,d,J=¢ for
eachiandj.

For each consecutive pair[a,,b,| and [cj,d jJ in the natural ordering in R , let

0, =§infﬂx—y|:xe [ai,b,.],y € [cj,dj]}
and let
V,=(a,~0,b+09,)

W= (C./ —0,.d, +8zf,).
Then, each Vj; and each Wj; are open, and

V, W, =¢. Let V=, and W=Jw, . Then, V and W are open,
i.j i,j

vaw = 7, nJ W, =W, AW,)=¢ andk,cv, K, cW_
i,J i,J i,j

Thus, X is strongly pseudo-normal.

In the aboveV = U Vi W= U i > because of the nature of Vi’s and Wy’s.
L] L]
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Theorem 2.3.1: Every strongly pseudo-normal space is pseudo normal but
the converse is not true in general.
Proof: Let X be strongly pseudo-normal. Let X,, K, be two disjoint
compact subsets of X. Since X is strongly pseudo-normal, there exist open
sets G and H such thatx, < G, K, < H and GNnH=¢.Since GNH =¢, 50
G H =¢ Thus X is pseudo normal.

Conversely, let X={a, b, ¢, d} and I={x,4,{a},{b,c},{a.b,c}}. Then F is a
topology on X. The closed subsets of X are X,¢,{b,c,d},{a,d},{d}. Let
K, ={a}, K, = {b}.Then K, and K, are two disjoint compact subsets of X .We
have open sets G={a}, H={b,c}such that K, c Gk, c Hand GnH=¢.
Hence X is pseudo normal. Clearly, G and H are the only disjoint open sets
which separate K; and K, respectively.
We have H = {b,c,d}, G=1{a,d}and soG N H = {d} = ¢ . Hence X is not

strongly pseudo-normal.

Theorem 2.3.2: Every open image of a strongly pseudo-normal space is
strongly pseudo-normal.
Proof: Let X be a strongly pseudo-normal space and Y a topological space

and let /: X —Y be an open and onto mapping. Let X, and K, be two
disjoint compact subsets in Y. Since fis open, /'is continuous, /'(K,) and
f7(K,) are compact in X. Since X is strongly pseudo-normal, there exist
open subsets U and V of X such that f/'(K,)cUand f(K,)cV and

U NV =¢. Again, since fis open, f(U) and f(V) are open in Y and

K, c (k) fU), K, c 7 (K,) = f(V). Now f(U) f(V) = 4. Since fis

open , fis also closed. Therefore f(U)is closed, hence f(U)= f(U) . Since
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)< ), fU)c ﬁ=f(U_) . Similarly 7(V)<c 77)=f(V_). Therefore
fU)~f(V)=¢.Hence Y is strongly pseudo-normal.

Corollary 2.3.1: Every quotient space of a strongly pseudo-normal space is
strongly pseudo-normal.

Proof: Let X be a strongly pseudo-normal space and R is an equivalence

. . . X .
relation on X. Since the projection map p:X — ® 1s open and onto, the

corollary then follows from the above Theorem 2.3.2.

Although a subspace of a normal space need not be normal (see [22], p.

109), we have the following theorem:

Theorem 2.3.3: Every subspace of a strongly pseudo-normal space is
strongly pseudo-normal.

Proof: Let X be a strongly pseudo-normal space and ¥ < X . Let K, and X,
be two disjoint compact subsets in Y. Since X, and K, are compactin Y,
these are compact in X too. Since X is strongly pseudo-normal, there exist
open sets U and V such thatk, cU and kK, c ¥V and UnV=¢.Let G=UNY
and H=V nY. Then G and H are open sets in Y with property that K, c G

and K, c Hand G H = ¢. Hence Y is strongly pseudo-normal.

Comment 2.3.1: A continuous image of a strongly pseudo-regular
(strongly pseudo-normal) space need not be strongly pseudo-regular
(strongly pseudo-normal).

For, if(x,7,) is a strongly pseudo-regular (strongly pseudo-normal) space

and (X,I) a space with the indiscrete topology, then the identity map
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1, :(X,T,) > (X,I)is continuous and onto. But (X,7) is not strongly pseudo-

regular (strongly pseudo-normal).

Theorem 2.3.4: A topological space X is strongly pseudo-normal if for each
pair of disjoint compact sets K; and K _ there exists an open set U such that
K, cUcUCcK,".

Proof: Let X be a strongly pseudo-normal space and K;, K, be two compact

subsets of X and K, nK, =¢ Since X is strongly pseudo-normal, there exist

open sets U, V such that K, c U, K, c vandU NV =gand soU NV =¢ .

Then UcV* c K, .So UcV* =V cK," Hence we havek, cUcUcK,"

Theorem 2.3.5: A topological space X is strongly pseudo-normal if X is
completely Hausdorff .
Proof: Let X be a completely Hausdorff space and let A, B be two disjoint

compact subsets of X. Let xe 4andy € B. Thenx = y. Since X is completely
HausdorfT, there exist open sets G, and H  such that xe G, and y e G, and
G,nH, =¢.0bviously {H, :ye B}is an open cover of B. Since B is
compact, so there exists a finite sub-cover { #, ,H,, ... ,H, } of B. Let
H,=H, VH, v..OH and G,=G, "G, n..NG, .Then Bc H, , xeG,
and G. "H_=¢ i.e., X is strongly pseudo-regular. So for eachx e 4, there
exist two open sets G, and H, of X such that xe G, and Bc H, and
G,NH, =¢.Hence {G, : x e A}is an open cover of A. Since A is compact, so
there exists a finite sub-cover {G, .G, , ...,G, } of this cover A. Let

G=G, VG, v..uG andH=H, nH_n..nH_.Then G, H are open sets

of Xand 4c G, Bc HandG N H = ¢. Hence X is strongly pseudo-normal.
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Theorem 2.3.6: Every strongly pseudo-normal space is strongly pseudo-
regular.

Proof: Let X be a strongly pseudo-normal space. Let K be a compact subset

of X and let x € X such that x ¢ K. Therefore {x}and K are disjoint compact
subsets of X. Since X is strongly pseudo-normal, there exist open sets G and
Hin X such that {x}c G and K c Hi.e., xeG andK c HandGNH = ¢.

Hence X is strongly pseudo-regular.

Theorem 2.3.7: Every normal T;- space is strongly pseudo-regular.
Proof: Let X be normal and T;. Then by Theorem 3.10 of ([22], p. 108), for
eachx e X and for each open set G withx € G, , there exists an open set H_ in
X suchthat xe H, cH, cG,....(1)

Let K be a compact subset of X and let y € X such thaty ¢ K. We note

that X is Hausdorff, hence for each x € K, there exist open sets Gy and Vi

suchthatxe G ,yeV, and G, NV, =¢. By (1), there exists an open set H_in
X such that xe H, c H, ¢ G, . Clearly x={H_ | xe K} and so G= {le, Gy }

is an open cover of K. K being compact, ® has a finite sub-cover, say,

........ H } Let G=G, v..uG, and V=V, n..nV, .Then G and V are

opensetsinKandGnV =¢ . Alsoif H=H, v .. UH, , then Hisopen, Ho

KandxevVand HnV =¢ .Since {H_,..,H, }cG,H, U..UH,_ s
contained in G and is disjoint from V.H_u ..U H_ isa closed set
containing H, U ...uH, andsoH cH, u..uH, .HenceHnV =¢ . Now,

there exists an open set W in X such thatx e W c W < V. Then
H, U..UH,_ AW =¢ i.e., H W = ¢. Therefore X is strongly pseudo-

regular.



CHAPTER THREE

Strictly Pseudo-Regular and Strictly
Pseudo-Normal Topological Spaces

3.1. Introduction

This is the third chapter of our thesis. Here we have defined and studied
two new classes of topological spaces. A topological space X will be called
strictly pseudo-regular if for each compact set K and for every xe X with

x ¢ K, there exists a continuous function f:X —[0,1] such that f(x) = 0 and

f(K)=1. X will be called strictly pseudo-normal if for each pair of disjoint
compact subsets K, K, of X, there exists a continuous function f:X —[0,1]
such that f( K,)=0 and f( K,)=1. We have established various properties of
these spaces. The strictly pseudo-regular spaces resemble the completely
regular spaces. Many such properties hold for these two classes. For
Hausdorff spaces, ‘completely regular’ and ‘completely normal’ are
synonymous with ‘strictly pseudo-regular’ and ‘strictly pseudo- normal’
spaces respectively. For compact spaces ‘strictly pseudo-regular’ implies
‘completely regular’ and ‘strictly pseudo- normal’ implies ‘completely
normal’ . Every metric space is both strictly pseudo-regular and strictly

pseudo-normal.
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We shall now define and study strictly pseudo-regular spaces as a

generalization of completely regular spaces.

3.2. Strictly Pseudo-Regular Spaces

Definition 3.2.1: A topological space X will be called strictly pseudo-
regular if for each compact set K and for every x e X withx ¢ K , there

exists a continuous function f: X —[0,1] such that f(x) = 0 and f(K)=1.

Example 3.2.1: Let K be a compact subset of R and let x e R such thatx ¢ K
. Since R is Hausdorff, K is closed and since R is completely regular, there

exists a continuous function f: X —[0,1] such that f(x) = 0 and f(K)=1. Thus

R is strictly pseudo-regular.

Theorem 3.2.1: Every strictly pseudo-regular compact space is completely
regular.

Proof: Let X be compact and strictly pseudo-regular. Let K be a closed
subset of X and let x € X with x ¢ K .Since X is compact, K is compact.
Again, since X is strictly pseudo-regular, there exists a continuous function

f: X —[0.,1] such that f(x)=0 and f(K)=1. Therefore X is completely

regular.

Theorem 3.2.2: Every completely regular Hausdorff space is strictly
pseudo-regular.

Proof: Let X be a completely regular Hausdorff space. Let K be a compact
subset of X and x € X withx ¢ K. Since X is Hausdorff, K is closed. Now,
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since X is completely regular, there exists a continuous function

f: X —[0,1] such that f(x)=0 and f(K)=1. Therefore X is strictly pseudo-

regular.

Theorem 3.2.3: A topological space X is strictly pseudo-regular if for each
x € X and any compact set K not containing x, there exists an open set H of
X such that xe H c H c K°©.

Proof: Let X be a strictly pseudo-regular space and let K be compact in X.
Let x¢ Ki.e., xe K°. Since X is strictly pseudo-regular, there exists a
continuous function f: X —[0,1] such that f(x)=0 and f(K) = 1. Let a,b [0.1]
and a <b. Then [0,a) and (b,1] are two disjoint open sets of [0,1]. Since fis
continuous, ! ([0,a)) and f! ((b,1]) are two disjoint open sets of X and
obviouslyx € f! ([0,a)) and K< f! ((b,1]). Let U = f! ([0,a)) and
V=11((b,1]). Then xeU,KcVand UnV =¢.Then UcV°cK°. So

UcVe=rc K. Writing U=H, we havexe H c H c K* .

Theorem 3.2.4: Any subspace of a strictly pseudo-regular space is strictly
pseudo-regular.

Proof: Let X be a strictly pseudo-regular space and Y < X . Let yeY and K
be a compact subset of Y such thaty ¢ K . Sincey €Y, so ye X and since K
is compact in Y, so K is compact in X. Since X is strictly pseudo-regular,
there exists a continuous function f: X —[0,1] such that f(y)=0 and f(K)=1.
Therefore the restriction function f of fis a continuous function f : Y —[0,1]

such that f(y)=0 and f(K)=1. Hence Y is strictly pseudo-regular.
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Corollary 3.2.1: Let X be a topological space and A, B are two strictly
pseudo-regular subspaces of X. Then 4N B is strictly pseudo-regular.
Proof: Since 4 B being a subspace of both A and B, 4B is strictly
pseudo-regular by the above Theorem 3.2.4.

Theorem 3.2.5: Every strictly pseudo-regular space is Hausdorff.

Proof: Let X be a strictly pseudo-regular space. Let x,y € X with x = y.
Then{x} is a compact set and y ¢ {x} . Since X is strictly pseudo-regular,
there exists a continuous function f: X —[0,1] such that f(y)=0 and
f({x})=1. Let a,h€[0,]] and a <b. Then [0,a) and (b,1] are two disjoint open
sets of [0,1]. Since f'is continuous, ! ([0,a)) and ! ((b,1]) are two disjoint
open sets of X and obviously y € ! ([0,a)) and {x} c f!((b,1])i.e., xe f!
((b,1]) . Therefore X is Hausdorff.

Theorem 3.2.6: Every strictly pseudo-regular space is pseudo regular.
Proof: Let X be a strictly pseudo-regular space. Let K be a compact subset
of X andx e X withx ¢ K. Since X is strictly pseudo-regular, there exists a
continuous function f: X —[0,1] such that f(x)=0 and f(K)=1. Let a,b €[0,]]
and a <b. Then [0,a) and (b,1] are two disjoint open sets of [0,1]. Since f'is
continuous, ! ([0,a)) and f! ((b,1]) are two disjoint open sets of X and

obviously x e f! ([0,a)) and K< f! ((b,1]) .Therefore X is pseudo regular.
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We shall now define strictly pseudo-normal spaces as a class of

specialized pseudo normal spaces (see [23]) and proceed to study them.

3.3. Strictly Pseudo-Normal Spaces

Definition 3.3.1: A topological space X will be called strictly pseudo-

normal if for each pair of disjoint compact subsets K, K, of X, there exists a

continuous function f: X —[0,1] such that f( K, )=0 and f( K, )=1.

Example 3.3.1: Let X, K, be two disjoint compact subsets of R. Since R is
Hausdorff, K, K, are also closed and since R is completely normal, there
exists a continuous function f: X —[0,1] such that f( K, )=0 and f( K, )=1.

Thus R is strictly pseudo-normal.

Theorem 3.3.1: Every strictly pseudo-normal compact space is completely
normal.

Proof: Let X be compact and strictly pseudo-normal. Let K,, K, be two
disjoint closed subsets of X. Since X is compact, K,, K, are also compact.

Again, since X is strictly pseudo-normal, there exists a continuous function

f: X —[0,]] such that f( K, )=0 and f( K, )=1.Therefore X is completely

normal.

Theorem 3.3.2: Every completely normal Hausdorff space is strictly
pseudo-normal.

Proof: Let X be Hausdorff and completely normal. LetK,, K, be two
disjoint compact subsets of X. Since X is Hausdorff, K|, K, are closed.

Again, since X is completely normal, there exists a continuous function
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f: X —[0,]] such that f( X, )=0 and f( K, ))=1. Therefore X is strictly pseudo-

normal.

Theorem 3.3.3: A topological space X is strictly pseudo-normal if each pair

of disjoint compact sets K; and K, | there exists an open set U such that

K, cUcUcK,.

Proof: Let X be a strictly pseudo-normal space and K, K, be two compact
subsets of X and K, nK, =¢. ThenK, c K,° . Since X is strictly pseudo-
normal, there exists a continuous function f: X —[0,1] such that f( K, )=0
and f(K,)=1. Let a,p [0,]] and a <b. Then [0,a) and (b,1] are two disjoint
open sets of [0,1]. Since fis continuous f! ([0,a)) and ! ((b,1]) are two
disjoint open sets of X and obviously K, c ! ([0,a)) and K, £ ((b,1]).
Let U=f!([0,a)) and V="' ((b,1]). Then K, cU, K, cV and UnV =¢ .

ThenU cV° <K, . So Ucve=v c K,°. Hence we have K, cU c U c K,°

Although a subspace of a normal space need not be normal (see [22],

p-109), we have the following theorem:

Theorem 3.3.4: Every subspace of a strictly pseudo-normal space is strictly
pseudo-normal.

Proof: Let X be a strictly pseudo-normal space and Y < X . Let K, and K,
be two disjoint compact subsets of Y. Since K, and K, are compactinY,
these are compact in X too. Since X is strictly pseudo-normal, there exists a
continuous function f: X —[0,1] such that f( K, )=0 and f( K,)=1. Therefore
the restriction function 7 of 7 is a continuous function f : ¥ —[0,1] such that

f( K, )=0 and f(K,)=1. Hence Y is strictly pseudo-normal.
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Theorem 3.3.5: Every strictly pseudo-normal space is Hausdorff.

Proof: Let X be a strictly pseudo-normal space. Let x,y e X withx = y.
Then{x} and {y}are two disjoint compact subsets of X . Since X is strictly
pseudo-normal, there exists a continuous function f: X —[0,1] such that
f({x})=0 and f({y})=1. Let a,b€[0,1] and a <b. Then [0,a) and (b,1] are two
disjoint open sets of [0,1]. Since f is continuous, f! ([0,a)) and ! ((b,1]) are
two disjoint open sets of X and obviously {x} c f! ([0,a)) i.e., x e ! ([0,a))
and {y}c ! ((b,1])i.e., ye ! ((b,1]). Therefore X is Hausdorff.

Theorem 3.3.6: Every strictly pseudo-normal space is pseudo normal.
Proof: Let X be a strictly pseudo-normal space. Let K, and K, be two
disjoint compact subsets of X. Since X is strictly pseudo-normal, there
exists a continuous function f: X —[0,1] such that f( K, )=0 and f( K, )=1. Let
a,be0,1]] and a <b. Then [0,a) and (b,1] are two disjoint open sets of [0,1].
Since f'is continuous, f! ([0,a)) and f! ((b,1]) are two disjoint open sets of X

and K, c ! ([0,a)), K, c ! ((b,1]) .Therefore X is pseudo normal.

Theorem 3.3.7: Every strictly pseudo-normal space is strictly pseudo-
regular.

Proof: Let X be a strictly pseudo-normal space. Let K be a compact subset
of X and let x € X such that x ¢ K . Therefore {x}and K are disjoint compact
subsets of X. Since X is strictly pseudo-normal, there exists a continuous
function f: X —[0,1] such that {({x})=0 and f( K )=1 1.e., {(x)=0 and

f( K )=1. Hence X is strictly pseudo-regular.
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Theorem 3.3.8: Every metric space is both strictly pseudo-regular and
strictly pseudo-normal.

Proof: Since every strictly pseudo-regular, strictly pseudo-normal spaces is
pseudo-regular, pseudo-normal (Theorem 3.2.6 and Theorem 3.3.6
respectively), and since every metric space is both pseudo regular and
pseudo normal (Theorem 1.4.8), therefore, it is strictly pseudo-regular and

strictly pseudo-normal.



CHAPTER FOUR

Nearly Regular Topological Spaces of
the First Kind and the Second Kind

4.1. Introduction

Regular topological spaces form a very important and interesting class
of spaces in topology. The class of p-regular spaces is an example of
generalization of this class ([5]).

In this chapter we shall introduce a number of new important
generalizations of regular spaces. We shall provide examples of such spaces
and establish some of their important properties. The generalizations to be
introduced by us in this chapter is nearly regular topological spaces of the

first kind and the second kind.

We now define nearly regular spaces of the first kind and proceed to

study them.

4.2. Nearly Regular Spaces of the First Kind

Definition 4.2.1: A topological space X will be called nearly regular of
the first kind (n. r .f. k.) if there exists a nontrivial closed set Fy such that

for eachx e X, x ¢ F,, there exist disjoint open sets G and H such thatx e G

andF, c H.
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Example 4.2.1: Let
Y=R3I=(R0,(1,2),12)3UA={{x}]lx eR—(1,2)}UB =
R~ 0133 €12),y, € (1,2°)

Here (1,2) is a closed set Fo. The points of A are the only points disjoint
from Fy. Each of these points can be separated from F, by disjoint open sets.
Letx € 4 then {x} and F are desired open sets. Then X is n. r. f. k. but not
regular.

Let F=(1,2)*—[{x,}U ...... Uix,},x €(1,2)°

=(1,2)° N [{x,}U ... U {x,}°
Then F is closed x; & F. x; and F cannot be separated by disjoint open

sets.

Theorem 4.2.1: Every regular space is nearly regular space of the first kind
but the converse is not true in general.
Proof: Let X be a regular space. Let Fy be a closed subset of X and letx e X
such thatx ¢ F;. Now, since X is regular, there exist disjoint open sets G and
H such that x e Gand F, c H# . Therefore X is nearly regular space of the first
kind.

To see that the converse is always not true,
let X ={a,b,c,d,e}, I=1{X,D,{a,b},la,b,el, e, lab,cd ). Then(X,3) is a
topological space in which the closed sets of X are X, @,
{c,d,e},{e},{a,b,c,d},{c,d}.

The closed set{a,b,c,d} and e can be separated by {a,b,c,d} and {e}, but the
closed set{c,d,e} and a cannot be separated by disjoint open sets. Thus

(X,3) 1s nearly regular space of the first kind but not regular.
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Theorem 4.2.2: A topological space X is nearly regular space of the first

kind if and only if there exists a closed set F such that for each x € X with
x ¢ F,, there exists an open set G such thatxe G c G = F,°.
Proof: First, suppose that X is nearly regular space of the first kind. Then

there exists a closed set Fy in X such that for each x e X withx ¢ F,, there

exist open sets G and H such thatxe G,F, c HandGn H = ¢ . It follows
thatGc H c F,". HenceGec G H* c F,". Thus, xe G c G F,’.

Conversely, suppose that there exists a closed subset Fy of X such that

for each x e X with x ¢ F,, there exist an open set G in X such that

xeGcGcF, . Let G =H. Then His open, GNH =¢ and xe G and

F, < H. Hence X is nearly regular space of the first kind.

Theorem 4.2.3: Let{X,} _ be a non-empty family of topological spaces, and

let X=] [ X, be the product space. If X, nearly regular of the first kind, for

iel
each 1, then X is nearly regular of the first kind.

Proof: Since each X, is nearly regular of the first kind, there exists, for each
1, a closed set F; of X; such that for eachx, € X, withx, ¢ F, there are open

sets U;, Viin Xjsuch thatx, eU,, F,cV,, U N V=@ .cccccceoviiiiiiiiaiinaiinn, (1)

1

Let F=HF,. . Then F is closed in X. Letx e X such that x¢ F. Letx = {x;} .

iel
Then there exists iy such thatx;, ¢ F, . By (1), there are open

setsG, , H, inX, suchthatx, €G,, F, cH,, G, nH, =¢. For

7

eachjel, j#i,,letG,and H be open sets in X, such thatx, eG,, F, c H,.

ThenG =] ]G, ,H =] | H, are open sets in X such that xe G, F c H and

iel iel

G H =¢. Therefore, X is nearly regular space of the first kind.
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Theorem 4.2.4: Let{X,} _ be a non-empty family of topological spaces, and

let X=HX ; be the product space. If X is nearly regular of the first kind,

iel
then at least one of the X;’s is nearly regular of the first kind.

Proof: Let X be a nearly regular space of the first kind. Then there exists a
closed set F in X such that for every xe X ,x ¢ F, there are open sets U and
Vin X such thatxeU andF cVandU nV =¢. Let, for eachie I,7,(F)=F,
where 7z, : X — X, is the projection map. Then each F; is closed in X;. For
eachi e/, letx, € X, be such thatx, ¢ F, . Letx ={x,}. Thenx ¢ F. Since X is
nearly regular space of the first kind, there are open sets G and H in X such
thatxeG,Fc HandGnH =¢ . Letr,(G)=G,, n,(H)=H,. Then G, and H;
are open in X, for eachi e 7. Since G~ H = ¢ there exists i, € I such that

G, nH, =¢.Clearly,x, €G,, F, < H, . Hence X, is nearly regular of the

I,

first kind.

Theorem 4.2.5: Every subspace of a nearly regular space of the first kind is
nearly regular space of the first kind.

Proof: Let X be a nearly regular first kind space and Y a subspace of X.
Since X is nearly regular first kind space, there exists a closed set F in X
which can be separated from each point of X which is not contained in F.

Then for eachy e Y < X, y ¢ F, there exist open sets U;, U, in X such
thatyeU,, F cU, withU, nU, =¢ . LetF, =YnF . ThenF, is closed in Y
and clearly y ¢ F, .Alsolet V, =Y nU,, V,=YnU,. Then V, and V, are
disjoint open sets in Y where y e 7,, F, cV,. Hence Y is nearly regular space

of the first kind.
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Corollary 4.2.1: Let X be a topological space and A, B are two nearly
regular subspaces of X of the first kind. Then 4 B is nearly regular space
of the first kind.

Proof: 4 B being a subspace of both A and B, 4 B is nearly regular
space of the first kind by the above Theorem 4.2.5.

Theorem 4.2.6: Let X be a nearly regular T;-space of the first kind and R is

an equivalence relation of X. If the projection mapping p:X — % is closed.

Then R 1is a closed subset of X xX.
Proof: We shall prove that R* is open. So, let(x,y)e R°. It is sufficient to

show that there exist two open sets G and H of X such that x e Gand

y e Hand GxHc R°. For that p(G) n p(H) = ¢. Since(x,y)e R°, p(x)= p(y)i.e;
x ¢ p~'(p(y)).Again, since {y} is closed and since p closed mapping, p(y) is
closed and since p is a continuous mapping, p~'(p(y))is closed. So by the

nearly regularity of X of the first kind, there exist disjoint open sets G and U
in X such that x e Gand p~'(p(y)) c U .Since p is a closed mapping, there

exists an open set V containing p(y) such that p™' (p(y))c p™' (V) U .

Writing p~'(V)=H , we have GxHc R°.

Corollary 4.2.2: Let X be a nearly regular T -space of the first kind. R is an
equivalence relation of X and p:X — % is closed and open mapping. Then
% is Hausdorff.

R
Proof: Since p: X —> % is closed, by the proof of the above Theorem 4.2.6, R

is a closed subset of XxX. Let p(x) and p(y)be two distinct points of %
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Therefore(x,y)e R . Since R is a closed subset of X xX, there exist open sets

G, H in X such thatx e Gand y e H and GxHc R°. So p(x)e p(G), p(v)e p(H) .

Since p is open, p(G) and p(H) are open sets of % and since

GxHc R, p(G)n p(H) = ¢.Thus % is Hausdorff.
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We now define nearly regular spaces of the second kind and proceed

to study them.

4.3. Nearly Regular Spaces of the Second Kind

Definition 4.3.1: A topological space X will be called nearly regular of

the second kind (n. r. s. k.) if there exists a pointx, € X such that for each
nontrivial closed set F in X withx, ¢ F', there exist disjoint open sets G and

H such thatx, e G andF c H .

Example 4.3.1: Let x, be a point in R such that for every closed set F in
R", x, ¢ F.Since R™ isT,, {x,}is closed and since IR" is normal and F is
closed, {x,} and F can be separated by disjoint open sets. Thus R" is nearly

regular of the second kind.

Example 4.3.2: The Example 4.2.1 of n. r. f. k. is not n. r. s. k.

The closed sets of the form:

(1,2), (1,2)% R — {py ) wov ooe g AV LY2)-

Letz € K. Let F={y,y.}. If z € (1,2), then z and F can be separated by
disjoint open sets.

If z € (1,2), then z =y, for some R —{y1,y2} € B. So, z cannot be separated
from F={y.,y2}.
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Theorem 4.3.1: Every regular space is nearly regular space of the second
kind but the converse is not true in general.

Proof: Let X be a regular space. Let x, be a point in X and let F be a closed
subset in X such thatx, ¢ F. Now, since X is regular, there exist disjoint
open sets G and H such that x, e Gand F ¢ H . Therefore X is nearly regular

of the second kind.
To see that the converse is always not true,
letX =R, 3 =({R,0,{x,}, {x, TV {(n,n+ 1)°|n € N}, x, & N)
Let xy &(no, not1). The closed sets are finite unions of {x;} and (n,
nt+l),n € N. x, and (ng,no+1) are separated by {x,} and {x,}°. Thus X is
n.r.s.k. But is not regular. Because if x =5 and F = (5, 6), then F is closed
and x ¢ F. But X and F can be separated by disjoint open sets.
Theorem 4.3.2: A topological space X is nearly regular space of the second

kind if and only if there exists a point x,in X such that for each nontrivial
closed set F in X with x, ¢ F, there exists an open set G such that
x, €Gc G c F°.

Proof: First, suppose that X be a nearly regular space of the second kind.

Then there exists a pointx, € X such that for each nontrivial closed set F in
X withx, ¢ F, there exist open sets G and H such thatx, e G, F < H and
GNH=¢.It follows thatGc H* c F. HenceGc Gc H® c F*. Thus,
x,€Gc G c F°.

Conversely, suppose that there exists a point x,in X such that for each
nontrivial closed set F in X with x, ¢ F, there exists an open set G such that
x,eGcGc F. Let G =H. Then H is open,G N H = gand

x, e Gand F c H . Hence X is nearly regular space of the second kind.
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Theorem 4.3.3: Let{X,} _ be a non-empty family of topological spaces, and

let X=] [ X, be the product space. If X, nearly regular of the second kind, for

iel
each i, then X is nearly regular of the second kind.

Proof: Since each X, is nearly regular of the second kind, there exists, for
each i, a point x; in X; such that for each closed subset F; in X; with x, ¢ F,

there are open sets Uj, Vi in X such thatx, eU,, F, cV,,

Let F=HF,. . Then F is closed in X. Letx e X such thatx ¢ F. Letx = {x,} .

iel

Then there exists io such thatx, ¢ F, . By (1), there are open sets G, , H,

I,

in X, such thatx, €G, , F, cH,, G nH, =¢. Foreachjel, j=#i,
letG,and 7, be open sets in X, such thatx, eG,, F, c H,.

ThenG =] ]G, ,H =] | H, are open sets in X such that xe G, Fc H and

iel iel

GnN H = ¢. Therefore, X is nearly regular space of the second kind.

Theorem 4.3.4: Let{X,} _ be a non-empty family of topological spaces, and

let X=] [ X, be the product space. If X is nearly regular of the second kind,

iel
then at least one of the X;’s is nearly regular of the second kind.
Proof: The proof of the Theorem 4.3.4 of the above is almost similar to the

proof of the Theorem 4.2.4.

Theorem 4.3.5: Any subspace of a nearly regular space of the second kind
is nearly regular space of the second kind.

Proof: The proof of the Theorem 4.3.5 follows from the proof of the
Theorem 4.2.5.
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Corollary 4.3.1: Let X be a topological space and A, B are two nearly
regular subspaces of X of the second kind. Then 4" B is nearly regular
space of the second kind.

Proof: The proof of the Corollary 4.3.1 of the above is almost similar to the
proof of the Corollary 4.2.1.

Theorem 4.3.6: Let X be a nearly regular T;-space of the second kind and R

is an equivalence relation of X. If the projection mapping p: X — % is closed.

Then R 1is a closed subset of X xX.
Proof: The proof of the Theorem 4.3.6 is most similar to the proof of the
Theorem 4.2.6.

Corollary 4.3.2: Let X be a nearly regular T;-space of the second kind. R is

an equivalence relation of X and p:X— % is closed and open mapping. Then

% 1s Hausdorft.

Proof: The proof of the Corollary 4.3.2 follows from the proof of the
Corollary 4.2.2.

Theorem 4.3.7: Every metric space is both n. r. f. k. and n. r. s. k.
Proof: Since every metric space is regular, therefore, it is n. r. f. k. and n. r.

s. k.



CHAPTER FIVE

Nearly Normal Topological Spaces of
the First Kind and the Second Kind

5.1. Introduction

A number of generalizations of normal topological spaces have been defined

and studied earlier. p-normal, g-normal, y-normal and mildly normal spaces ([5],

[8], [9], [15], [36]) are several examples of some of these.

In this fifth chapter we have defined two new generalizations of normal spaces.
These have been called nearly normal topological spaces of the first kind and the
second kind. We have provided examples and established many properties of such

spaces.

We now define nearly normal spaces of the first kind and proceed to study them.

5.2. Nearly Normal Spaces of the First Kind

Definition 5.2.1: A topological space X will be called nearly normal of the first
kind (n. n. f. K) if there exists a nontrivial closed set Fy in X such that, for each
nontrivial closed set F in X which is disjoint from Fy, Fy and F can be separated by

disjoint open sets in X. This space will be denoted by (X, Fy).
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Theorem 5.2.1: Every normal space is nearly normal space of the first kind but the

converse is not true in general.

Proof: Let X be a normal space. Let F be a closed set in X such that, for every

closed set H in X such that /, " H = ¢. Now, since X is normal, there exist disjoint
open sets G,, G,in X such thatF, < G,and H c G, .Therefore X is nearly normal

space of the first kind.
To see that the converse is always not true,
letX =R, 3 =(R,0,(1,2),(1,2)¢(2,3),(2,3)¢,(2,4), (2,4)¢,(2,7),(2,7)¢, (4,5)°)

Let Fi=(1,2) . Clearly F, is closed.(1,2)¢, (2,3), (2,4), (4,5), (2,7) are nontrivial
closed sets in X. F(can be separated from each of them by open sets, but
(2,4) " (4,5 and (2,3) n (4,5) are disjoint closed sets which can’t be separated by

disjoint open sets. Hence (X, Fo) is n. n. f. k. but not normal.

[Many such examples can be easily constructed. ]

Theorem 5.2.2: A topological space X is nearly normal space of the first kind if
and only if there is a nontrivial closed set Fy in X such that, for every nontrivial

closed set F in X which are disjoint from F, and an open set G such that

FogGgag(F)c.

Proof: First, suppose that X is nearly normal space of the first kind. Then there is a
nontrivial closed set Fy in X such that, for every nontrivial closed set F in X such

that F, N F = ¢ and there are open sets G, H in X such that 7, c Gand F < H and
GNH =¢. 1t follows thatG < H° = (F)°. Hence G G < H® < (F)°. Thus,

F,cGcGc(F).
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Conversely, suppose that there is a nontrivial closed set Fy in X such that, for

every nontrivial closed set F in X which are disjoint from F( and an open set G
such that F, c Gc Gc(F)° . Here F,cGandF cG .Let G =H.Then H is open,

Fc HandGNH =¢. Hence X is nearly normal space of the first kind.

Theorem 5.2.3: Let{X,}_,be a non-empty family of topological spaces, and let X=

[ T X, be the product space. If X, is nearly normal of the first kind, for each i, then

iel
X is nearly normal of the first kind.
Proof: Since each X, is nearly normal of the first kind, there exists, for each i/, a
nontrivial closed set F; of X; such that for each nontrivial closed set H; in X, with

F,nH, =¢, there are open sets U;, Vi in Xj such thatF, cU,, H, cV, andU, " V,=¢

Let F= HF,. . Then F is a nontrivial closed in X. Let K be a nontrivial closed

iel
subset of X such that F " K =¢.Let, for eachi € I,7,(K) = K, wherer, : X — X,is the
projection map. Then K is nontrivial closed in X;. By (1), there are open sets

W, W/'inX, such thatF, cW,, K, cw,/ . Let W=[[w,, w' =]]w,. ThenF cw,

iel iel

K cw'andW nW' = ¢ . Therefore, X is nearly normal space of the first kind.
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Theorem 5.2.4: Every open and one-one image of a nearly normal space of the

first kind is nearly normal space of the first kind.

Proof: Let X be a nearly normal space of the first kind and Y a topological space

and let /: X —> Y be an open and onto mapping. Since X is nearly normal space of

the first kind, there is a nontrivial closed set F in X such that, for every nontrivial

closed set H in X such that F " H = ¢, there are open sets U, V in X such that
FcU,HcVand UnV =¢.Since /' is open, f(F)and f(H)are openin Y. So

(f(F)) and(f(H)) are closed in Y.

Now, FFu H*=Xand so f(F° U H)=Y,1ie., f(F)u f(H)=Y. Hence
(f(FY N(fH)) =¢.Lety, e(f(F)). Theny, ¢ f(F°)1.e., there exists x, e F*,
f(x,)# y,. Hence x, € Fsuch that f(x,) = y,, since f is onto. Thus y, € f(F). Hence
(f(F))" < f(F). Similarly, (f(H) c f(H).

Now, f(F)< f(U), f(H)c f(V), fbeing open and one-one, f(U), f(V) are open
and disjoint in Y. Thus for a nontrivial closed set (f(F°))°in Y such that, for every

nontrivial closed sets (f(H))" in Y such that(f(F))° n(f(H"))" = ¢, there are open

sets f(U), f(¥)in Y such that(f(F))" < f(U),(f(H*)" = f(¥) and fFU) " f(V) = ¢.

Hence Y is nearly normal space of the first kind.

Corollary 5.2.1: Every quotient space of a nearly normal space of the first kind is

nearly normal space of the first kind.

Proof: Let X be a nearly normal space of the first kind and R is an equivalence

relation on X. Since the projection map p:X — % is open and onto, the corollary

then follows from the above Theorem 5.2.4.
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Theorem 5.2.5: Let X be a nearly normal space of the first kind and Y is a

subspace of X. Then Y is a nearly normal space of the first kind.

Proof: Since X is nearly normal space of the first kind, there is a nontrivial closed

set F in X such that, for every nontrivial closed set H in X such that FNH = ¢,
there are open sets U, Vin X suchthat FcU , HcVand UnV=¢.Let F' =YNF
and H' =Y n H . Then for a nontrivial closed set 7' in Y such that, for every
nontrivial closed set H in Y such thatF' nH' =¢. Alsolet U' =Y U, V' =YV .
Then U/, V' are opensetsin Y and U' nV' =¢ andF’ cU’, H < V'.Hence Y is

nearly normal space of the first kind.

Remark 5.2.1: The corresponding theorem does not hold for normal spaces. The
validity of the proof in Theorem 5.2.5 above depends on the separablity of a
particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of

Munkres [10]).

Comment 5.2.1: A continuous image of a nearly regular space of the first kind
(nearly normal space of the first kind) need not be nearly regular space of the first

kind (nearly normal space of the first kind).

For if (x,T,) is a nearly regular space of the first kind (nearly normal space of
the first kind) and (x,7,) a space with the indiscrete topology, then the identity
map 1, : X — X is continuous and onto. But (X,7,) is not nearly regular space of

the first kind (nearly normal space of the first kind).
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Theorem 5.2.6: Each compact Hausdorff space is nearly normal space of the first

kind.

Proof: Let X be a compact Hausdorff space and let for a nontrivial closed subset
A, there is a nontrivial closed subset B in X which is disjoint from A. Let xe 4and

yeB. Thenx#y. Since X is Hausdorff, there exist disjoint open sets G, and H,

such that xe G and y e G, . Obviously {H : y € B}is an open cover of B.

Since B is a closed subset of X, B is compact. So there exist a finite subcover

{H,H, ,..,H yofB.Let H =H,6 VH U..VH, and G, =G, NG, N..NG, .
Then Bc H_, xeG,  and H, NG, =¢1i.e., X is nearly regular space of the first kind.
So for eachx € 4, there exist two disjoint open sets G, and H_ of X such that xe G,
and Bc H,. Hence {G, : x € 4} 1s an open cover of A. Since A is a closed subset of
X, A is compact. So there exist a finite subcover {G, .G, ,..,G, } of this cover A.
Let G=G, VG, v..UG and H=H nH_n..NnH . Then G, H are open sets of

X and 4c G, Bc HandG N H =¢. Hence the proof.

Remark 5.2.2: It follows from the above proof that every compact Hausdorff

space is nearly regular space of the first kind.

Theorem 5.2.7: Every locally compact Hausdorff space is nearly regular space of

the first kind.

Proof: Let X be a locally compact Hausdorff space. Then there exists one point

compactification X, of X. Then, X is Hausdorff and compact. According to the
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above Remark 5.2.2, X is nearly regular space of first kind. Again, according to

Theorem 5.2.5, as a subspace of x_ , X is nearly regular space of the first kind.

Theorem 5.2.8: Let X be a T;- space. Then X is nearly normal space of the first
kind if and only if X is nearly regular space of the first kind.

Proof: First, suppose that X be a nearly normal space of the first kind. Let x be a

point in X and let Fy be a nontrivial closed subset of X such thatx ¢ F;,. Since X is
T;- space, {x} is closed subset of X. We have {x} n F = ¢. Since X is nearly
normal space of the first kind, there are open sets G and H such that
{x}cG,F,cH,GnH=¢l.e.,XxeG, F,c H, GnH=¢ . Hence X is nearly regular

space of the first kind.
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Conversely, suppose that X be a nearly regular space of the first kind. Let x be a

point in X and let Fy be a nontrivial closed subset of X such thatx ¢ F,. Since X is
Ti- space, {x} is closed subset of X. We have {x} nF, =¢. Since X is nearly

regular space of the first kind, there exist open sets G and H such that x

€eG, F,cH,GnH=¢1.e.,{X}cG, F,c H, GnH=¢. Hence X is nearly normal

space of the first kind.

Theorem 5.2.9: Every metric space is nearly normal space of the first kind.

Proof: Since every metric space is normal, therefore it is nearly normal space of

the first kind.
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We now define nearly normal spaces of the second kind and proceed to

study them.

5.3. Nearly Normal Spaces of the Second Kind

Definition 5.3.1: A topological space X will be called nearly normal of the
second Kkind (n. n. s. k) if for each nontrivial closed set F, there exists a nontrivial
closed set F, in X which is disjoint from F; such that F; and F, can be separated by

disjoint open sets in X.

Example 5.3.1: Every n. n. f. k. isn. n. s. k.

[We are to construct an example of an n. n. s. k. space which is not n. n. f. k.]

Theorem 5.3.1: Every normal space is nearly normal space of the second kind but

the converse is not true in general.

Proof: Let X be a normal space. Let F be a closed set in X such that, there exists a

closed set H in X such that F nH =¢. Now, since X is normal, there exist disjoint
open sets G,, G, in X such that ¥ < G,and H < G,.Therefore X is nearly normal space

of the second kind.
To see that the converse is always not true,

the proof is most similar to the proof of the last part of Theorem 5.2.1 of n. n. f. k.
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Theorem 5.3.2: A topological space X is nearly normal space of the second kind if
and only if for each nontrivial closed set F in X such that, there is a nontrivial

closed set Fy in X which is disjoint from F and an open set G such that

FgGg@gQi

Proof: First, suppose that X is nearly normal space of the second kind. Then for
each nontrivial closed set F in X such that, there is a nontrivial closed set Fy in X

such that F, " F = ¢ and there are open sets G, H in X such that F c Gand F, c H
andG N H =¢. It follows thatG c H* = F,°. Hence G G H* c F,°. Thus,

FgGg@gQi

Conversely, suppose that for each nontrivial closed set F in X such that, there is

a nontrivial closed set Fy in X which is disjoint from F and an open set G such that
FcGcGcF, . Here FcGandF, =G .Let G =H . Then H is open, F, c H and

GnNH =¢. Hence X is nearly normal space of the second kind.

Theorem 5.3.3: Let{X, |_ be a non-empty family of topological spaces, and let X=

[ [ X be the product space. If.X, is nearly normal of the second kind, for each i,

iel
then X is nearly normal of the second kind.

Proof: Since each X, is nearly normal of the second kind, for each i e 7, for each
nontrivial closed set F; of X; such that there exists a nontrivial closed set Hjin X,
with F, "H, =¢, there are open sets U;, Vi in X; such thatF, cU,, H, cV, andU, N

A T (1)

1
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LetF =HF,. . Then F is closed in X. Let K be a nontrivial closed subset of X such

iel

that F N K =¢. Let, for each i € I,7,(K) = K, wherez, : X — X, is the projection map.

Then K; is closed in X;. By (1), there are open sets #,, W, in X, such thatF, c W, ,

1

K, cw' . Letw=][[w,, w =]]w,.ThenFcw, KW andW niW' =¢.

iel iel

Therefore, X is nearly normal space of the second kind.

Theorem 5.3.4: Every open and one-one image of a nearly normal space of the

second kind is nearly normal space of the second kind.

Proof: The proof of the Theorem 5.3.4 of the above is almost similar to the proof

of the Theorem 5.2.4.

Corollary 5.3.1: Every quotient space of a nearly normal space of the second kind

is nearly normal space of the second kind.

Proof: The proof of the Corollary 5.3.1 is most similar to the proof of the
Corollary 5.2.1.

Theorem 5.3.5: Let X be a nearly normal space of the second kind and Y is a

subspace of X. Then Y is a nearly normal space of the second kind.

Proof: The proof of the Theorem 5.3.5 follows from the proof of the Theorem
5.2.5.
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Remark 5.3.1: The corresponding theorem does not hold for normal spaces. The
validity of the proof in Theorem 5.3.5 above depends on the separablity of a
particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of

Munkres [10]).

Comment 5.3.1: A continuous image of a nearly regular space of the second kind
(nearly normal space of the second kind) need not be nearly regular space of the

second kind (nearly normal space of the second kind).

For if (X,7)) is a nearly regular space of the second kind (nearly normal space
of the second kind) and (X,7,) a space with the indiscrete topology, then the
identity map 1, : X — X is continuous and onto. But (X,7,) is not nearly regular

space of the second kind (nearly normal space of the second kind).

Theorem 5.3.6: Each compact Hausdorff space is nearly normal space of the

second kind.

Proof: The proof of the Theorem 5.3.6 is most similar to the proof of the Theorem
5.2.6.

Theorem 5.3.7: Every locally compact Hausdorff space is nearly regular space of

the second kind.

Proof: The proof of the Theorem 5.3.7 of the above is almost similar to the proof

of the Theorem 5.2.7.
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Theorem 5.3.8: Let X be a T;- space and xobe a point in X. X is nearly normal

space of the second kind if and only if X is nearly regular space of the second kind.

Proof: The proof of the Theorem 5.3.8 is almost similar to the proof of the
Theorem 5.2.8.

Theorem 5.3.9: Every metric space is nearly normal space of the second kind.

Proof: Since every metric space is normal, therefore, it is nearly normal space of

the second kind.



CHAPTER SIX

Slightly Normal Topological Spaces of the First Kind
and the Second Kind and the Third Kind

6.1. Introduction

Two types of generalizations of normal spaces different from those considered in
the last chapter have been defined in this chapter. A topological space X in which a
particular pair of disjoint closed subsets can be separated by disjoint open sets will
be called a slightly normal space of the first kind. Generalizing this concept, we shall
call a topological space X a slightly normal space of the second kind (third kind) if
there is a finite (countable) collection of mutually disjoint closed subsets in X, for
which each pair can be separated by disjoint open sets. We have studied these classes
closely, and established a number of important properties of these spaces which

resemble those of normal spaces.
We now define slightly normal spaces of the first kind and proceed to study them.

6.2. Slightly Normal Spaces of the First Kind
Definition 6.2.1: A topological space X will be called slightly normal of the first
kind (s. n. f. k.) if there exist two disjoint nontrivial closed sets F;, F, in X such

that F; and F, can be separated by disjoint open sets. This space will be denoted by
(X; Fi, F2).
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Example 6.2.1: Every normal space is slightly normal space of the first kind.

Example 6.2.2: Let X = R, 3 = (R, 0, (1,4), (1,4)¢, (5,7)¢)

Then the disjoint closed sets (1,4) and (1,4)¢ can be separated by disjoint open sets,
but (1,4) and (5,7) are disjoint closed sets and these can’t be separated by disjoint
open sets. Thus (X, J) is s. n. f. k. but not normal. Here X=(X;(1,4), (1,4)°).

Comment 6.2.1: It is easy to see that there are infinitely many s. n. f. k. which are

not normal.

Theorem 6.2.1: Every normal space is slightly normal space of the first kind but
the converse is not true in general.
Proof: Let X be a normal space. Let F;, F,be two disjoint nontrivial closed sets in
X. Now, since X is normal, there exist disjoint open sets G,, G, in X such that
F, c G,and F, c G,. Therefore X is slightly normal space of the first kind.

To see that the converse is always not true,
let X ={a,b,c,d,e}, I={X,D,{a,b},{a,b,e},{e},{a,b,c,d},b,c,d, e}, {b},{b,e},b,c,d}}.
Then (X,3) is a topological space in which the closed sets of X are X, @,
{c.d,e} e} {a,b,c,d},{c,d} {a}{a, ¢, d, e}{a, c, d},{a, b}.

The closed sets {a,b,c,d} and {e} can be separated by {a,b,c,d} and {e}, but the
closed sets {c,d,e} and {a} cannot be separated by disjoint open sets. Thus (X,3J) is

slightly normal space of the first kind but not normal.
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Theorem 6.2.2: A topological space X is slightly normal space of the first kind if
and only if there exist two disjoint nontrivial closed sets F;, F, and an open set G
suchthat F cGc Gc F,°.

Proof: First, suppose that X is slightly normal space of the first kind. Then there
exist disjoint nontrivial closed sets F;, F, and open sets G, H in X such that F, c G
and F, c H andGNnH =¢ . It follows that G c H* < F,". Hence GcGc HS cF,°.
Thus, F, gGgEngc.

Conversely, suppose that there exist disjoint nontrivial closed sets F, F, and an
open set G in X such thatF, cGc G F,°. Here F,cGandF, cG .Let G =H .
Then H is open, F, c HandGNH =¢. Hence X is slightly normal space of the first
kind.

Theorem 6.2.3: Let{X,}_, be a non-empty family of topological spaces, and let X=

[ [ X. be the product space. If each X, is slightly normal of the first kind, then X is

iel
slightly normal of the first kind.

Proof: Since each X, is slightly normal of the first kind, there exist for each 1, two
nontrivial closed sets Fj, H; and two open sets Uj, Vi in Xj such that F, cU,,
H oV, FnH =¢,UnNV=¢.

Let F=] [ F,, H=] [ H, . Then F and H are closed sets in X. Clearly, FNH =¢. Let

iel iel

U=]]U,, V=[]V .Then, UandV are opensets in X, and F cU, H c ¥ and

iel iel

UV =¢. Therefore, X is slightly normal space of the first kind.
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Theorem 6.2.4: Every open and one-one image of a slightly normal space of the
first kind is slightly normal space of the first kind.
Proof: Let X be a slightly normal space of the first kind and Y a topological space

and let /: X =Y be an open and onto mapping. Since X is slightly normal space of
the first kind, there exist disjoint nontrivial closed sets F;, F, and disjoint open
sets G,, G, in X such that F, ¢ G,and F, < G,. Since f'is open, f(F")and f(F,")are
openin Y. So(f(F)) and(f(F,)) are closed in Y.

Now, F'u E=X and so f(F U F,) =Y, i.e., f(F)v f(F)=Y. Hence
(fEN N (f(F)) =@. Letye(f(F)). Theny ¢ f(F’) i.e., forevery xeF’,
f(x)# y. Hence there exists x, € F, such that f(x,)=y, since f'is onto. Thus
ye f(F). Hence(f(£)) c f(F). Similarly, (f(£)) < f(F).

Now, f(F)c f(G), f(F,)c f(G,), f being open and one-one, f(G,), f(G,)are
open and disjoint in Y. Thus for the disjoint nontrivial closed sets (/' (F)), (f(F,))
in Y and there exist disjoint open sets 1(G,), f(G,) in'Y such that(f(£"))‘ < f(G))

and (f(F,))° < f(G,). Hence Y is slightly normal space of the first kind.

Corollary 6.2.1: Every quotient space of a slightly normal space of the first kind is
slightly normal space of the first kind.

Proof: Let X be a slightly normal space of the first kind and R is an equivalence

. . .. X .
relation on X. Since the projection map p:X — — isopen and onto, the corollary

then follows from the above Theorem 6.2.4.

Theorem 6.2.5: Let X be a slightly normal space of the first kind and Y is a
subspace of X. Then Y is a slightly normal space of the first kind.
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Proof: Since X is slightly normal space of the first kind, there exist disjoint

nontrivial closed sets F,, F, and disjoint open sets G,, G, in X such that 7, < G,and
F,cG,.Let H =YNnF and H,=YNF,. ThenH,,H,are closedin Y andH, "~ H, =
.Also letV,=YnG,, V,=YNG,. ThenV,nV,=0 andH, cV;, H,cV,. Hence Y is

slightly normal space of the first kind.

Remark 6.2.1: The corresponding theorem does not hold for normal spaces. The
validity of the proof in Theorem 6.2.5 above depends on the separablity of a
particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of

Munkres [10]).

Comment 6.2.1: A continuous image of a slightly normal space of the first kind
need not be slightly normal space of the first kind.
For if(X,T;) is a slightly normal space of the first kind) and (X,7,) a space with

the indiscrete topology, then the identity map 1, : X — X is continuous and onto.

But (X,7,) is not slightly normal space of the first kind.

Theorem 6.2.6: Each compact Hausdorff space is slightly normal space of the first
kind.
Proof: Let X be a compact Hausdorff space and let A, B be two disjoint closed
subsets of X. Let xe 4 and ye B. Thenx = y. Since X is Hausdorff, there exist
disjoint open sets G, and H  such that xe G and y e H,. Obviously {H, : y e B}is
an open cover of B.

Since B is a closed subset of X, B is compact. So there exists a finite sub-cover

{H,H, ,.,H ofB.Let H =H VH, v..UH and G, =G, "G, N..NG, .

Then Bc H,, xeG, and H, "G, =¢ . So for eachx e 4 there exist two disjoint
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open sets G, and H_ of X such that xe G_.and B< H_ . Hence {G, : x € 4}1s an open
cover of A. Since A is a closed subset of X, A is compact. So there exists a finite
sub-cover{G, .G, ...,G, }of this cover A. Let G=G, VG v .. UG, and

H=H nH_n..nH_.Then G, H are open sets of X and 4 < G, Bc H and

GNnH=¢.

Theorem 6.2.7: Every metric space is slightly normal space of the first kind.

Proof: Since every metric space is normal, therefore it is slightly normal space of

the first kind.
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We now define slightly normal spaces of the second kind and proceed to

study them.

6.3. Slightly Normal Spaces of the Second Kind

Definition 6.3.1: A topological space X will be called slightly normal of the
second kind (s. n. s. k) if there exists a finite collection F of pairwise disjoint
nontrivial closed sets in X such that, for each pair Fy, F,in F, F; and F, can be

separated by disjoint open sets in X. This space will be denoted by (X,F).

Example 6.3.1:

LetX =R, 3 =(R,0,Q Q% (1,2),(1,2)(3,4),(3,4),-+,(15,16), (15,16)°)
Let F = {(1,2),(3,4),(5,6),-+,(15,16)}. Then F is a finite collection of pairwise
disjoint nontrivial closed sets in X such that, for each distinct pair Fy, Foin F, F,
and F, can be separated by disjoint open sets, since each of these is open as well.
Thus (X, J) is s. n. s. k. However X is not normal, for let A =[(1,2) N Q]U[(3.,4)
N Q] and B =[(1,2) N Q<] U[(3,4) N Q]. Then A and B are disjoint closed sets
but they can’t be separated by disjoint open sets.

Here X=(X;(1,2),(3,4),(5,6),--,(15,16)).

Comment 6.3.1: Obviously an infinite number of such examples can be

constructed.

Theorem 6.3.1: A topological space X is slightly normal space of the second kind

if and only if there exists a finite collection F of pairwise disjoint nontrivial closed
sets F1, F, and an open set G such that £ cGc G F,°.

Proof: First, suppose that X is slightly normal space of the second kind. Then there

exists a finite collection F of pairwise disjoint nontrivial closed sets such that for
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each pair Fy, F, in F, there exist open sets G, H in X such that 7, G and F, c H
andGNH =¢ . It follows thatG c H* < F,°. Hence G cGcH F,". Thus,
F cGc Gc F,°.

Conversely, suppose that there exists a finite collection F of pairwise disjoint

nontrivial closed sets such that for each pair F, F, in F, there exist an open set G
in X such thatF, cGc G F,. Here F, cGandF, cG .Let G =H . Then H is

open, F, c HandGNH =¢. Hence X is slightly normal space of the second kind.

Theorem 6.3.2: Let{X,}_, be a non-empty family of topological spaces, and let X=

[ [ X be the product space. If each X, is slightly normal of the second kind, then X

iel
is slightly normal of the second kind.

Proof: Since each X, is slightly normal of the second kind, there exists for each 1, a

finite collection F of pairwise disjoint nontrivial closed sets such that for each pair
Fi, Hi in F , there exist open sets Uj, Viin Xjsuchthat F, cU,, H,cV,, FnH,=¢
, U NV=¢.

Let F=] [ F,, H=] | H, . Then F and H are closed sets in X. Clearly, FNH =¢. Let

iel iel

U=]]U,, V=[]V .Then, UandV are opensets in X, and F cU, H c ¥ and

iel iel

UV =¢. Therefore, X is slightly normal space of the second kind.

Theorem 6.3.3: Every open and one-one image of a slightly normal space of the
second kind is slightly normal space of the second kind.

Proof: The proof of the Theorem 6.3.3 of the above is almost similar to the proof
of the Theorem 6.2.4.



Slightly Normal Topological Spaces of the First Kind and the Second Kind and the Third Kind 63

Corollary 6.3.1: Every quotient space of a slightly normal space of the second
kind is slightly normal space of the second kind.

Proof: The proof of the Corollary 6.3.1 follows from the proof of the Corollary
6.2.1.

Theorem 6.3.4: Let X be a slightly normal space of the second kind and Y is a
subspace of X. Then Y is a slightly normal space of the second kind.
Proof: The proof of the Theorem 6.3.4 is most similar to the proof of the Theorem

6.2.5.

Remark 6.3.1: The corresponding theorem does not hold for normal spaces. The
validity of the proof in Theorem 6.3.4 above depends on the separablity of a
particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of

Munkres [10]).

Comment 6.3.1: A continuous image of a slightly normal space of the second kind
need not be slightly normal space of the second kind.
For if (X,T}) is a slightly normal space of the second kind and (X,7,) a space

with the indiscrete topology, then the identity map 1, : X — X is continuous and

onto. But (X,7,) is not slightly normal space of the second kind.

Theorem 6.3.5: Each compact Hausdorff space is slightly normal space of the
second kind.

Proof: The proof of the Theorem 6.3.5 of the above is almost similar to the proof

of the Theorem 6.2.6.
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We now define slightly normal spaces of the third kind and proceed to
study them.

6.4. Slightly Normal Spaces of the Third Kind

Definition 6.4.1: A topological space X will be called slightly normal of the
third kind (s. n. t. k) if there exists a countable collection C of pairwise disjoint
nontrivial closed sets in X such that, for each pair F;, F»in C, F; and F, can be

separated by disjoint open sets in X. This space will be denoted by (X,C).

Example 6.4.1: Let X = R, 3 = ({R,0,Q, Q°}U{(n,n+ 1),(n,n + 1)°|n € N})
Let C = {(n,n + 1)|n € N}. Then (X,C) is clearly s. n. t. k. But X is not normal,
forlet A =[(1,2) N QJU[(2,3) N Q<] and B =[(1,2) N Q<] U[(2,3) N Q]. Then A

and B are disjoint closed sets but they can’t be separated by disjoint open sets.

Example 6.4.2:
LetX = C3 = <{<c, 0,QQYU{(D, ={zec|lz—nl <3}, DS)n e N}>
Let C = {D,|n € N}. Then C is a countable collection of pairwise disjoint closed

sets such that, for each pair D, and D,,, (n; # n,)can be separated by disjoint

open sets since each D, is both open and closed. Hence X is s. n. t. k. However X
is not normal since QN D, and Q°ND, are disjoint closed sets which can’t be

separated by disjoint open sets.
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Theorem 6.4.1: A topological space X is slightly normal space of the third kind if
and only if there exists a countable collection C of pairwise disjoint nontrivial
closed sets Fy, F» and an open set G such that F, c G G c F,°.
Proof: First, suppose that X is slightly normal space of the third kind. Then there
exists a countable collection C of pairwise disjoint nontrivial closed sets such that
for each pair Fy, F, in C, there exist open sets G, H in X such that 7, < Gand
F,c H andGNH =¢ . It follows thatG c H* c F,". Hence GC G H® c F,°.
Thus, F, gGgangc.

Conversely, suppose that there exists a countable collection C of pairwise
disjoint nontrivial closed sets such that for each pair Fy, F, in C, there exist an open
set G in X such that ;, cGc Gc F,°. Here F, cGandF, cG .Let G =H . Then H

is open, F, c HandGNH =¢. Hence X is slightly normal space of the third kind.

Theorem 6.4.2: Let{X,}_ be a non-empty family of topological spaces, and let X=

[ [ X be the product space. If each X, is slightly normal of the third kind, then X is

iel
slightly normal of the third kind.

Proof: Since each X, is slightly normal of the third kind, there exists for each i, a
countable collection C of pairwise disjoint nontrivial closed sets such that for each
pair F;, Hi in C, there exist open sets Uj, Viin Xjsuchthat F, cU,, H,cV,, F, N
H=¢,U V=9

Let F=] [ F,, H=] | H, . Then F and H are closed sets in X. Clearly, FNnH =¢. Let

iel iel

U=]]U,, V=[]V .Then, UandV are opensets in X, and F c U, H c ¥ and

iel iel

UV =¢. Therefore, X is slightly normal space of the third kind.
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Theorem 6.4.3: Every open and one-one image of a slightly normal space of the
third kind is slightly normal space of the third kind.

Proof: The proof of the Theorem 6.4.3 is most similar to the proof of the Theorem
6.2.4.

Corollary 6.4.1: Every quotient space of a slightly normal space of the third kind
is slightly normal space of the third kind.

Proof: The proof of the Corollary 6.4.1 of the above is almost similar to the proof
of the Corollary 6.2.1.

Theorem 6.4.4: Let X be a slightly normal space of the third kind and Y is a
subspace of X. Then Y is a slightly normal space of the third kind.

Proof: The proof of the Theorem 6.4.4 follows from the proof of the Theorem
6.2.5.

Remark 6.4.1: The corresponding theorem does not hold for normal spaces. The
validity of the proof in Theorem 6.4.4 above depends on the separablity of a
particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of

Munkres [10]).

Comment 6.4.1: A continuous image of a slightly normal space of the third kind
need not be slightly normal space of the third kind.
For if (X,T;) is a slightly normal space of the third kind and (X,7,) a space with

the indiscrete topology, then the identity map 1, : X — X is continuous and onto.

But (X,7,) is not slightly normal space of the third kind.
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Theorem 6.4.5: Each compact Hausdorff space is slightly normal space of the
third kind.

Proof: The proof of the Theorem 6.4.5 is most similar to the proof of the Theorem
6.2.6.



CHAPTER SEVEN

Pseudo-Compact Spaces, C-Compact Spaces and
Pseudo-Continua

7.1. Introduction

In this chapter two generalizations of compact spaces have been considered.
Such spaces have been called pseudo-compact and c-compact. Another
generalization of compact spaces viz., H-closed spaces has been introduced and
studied ([18], [35]) a number of years ago.

We have shown that both pseudo-compact spaces and c-compact spaces are
distinct from each of compact spaces and H-closed spaces. Properties of pseudo-
compact spaces and c-compact spaces have been studied here.

Definitions of a number of generalized connectedness viz., locally
connectedness, connectedness imkleinen, path-connectedness, locally path-
connectedness, Cantor’s connectedness have been given. Generalizing a continuum
i.e., a connected compact space, we have defined a pseudo-continuum. Some

properties of pseudo-continua have been proved.



Pseudo-Compact Spaces, C-Compact Spaces and Pseudo-Continua 69

7.2. Pseudo-Compact Spaces

Definition 7.2.1: A collection{G,} will be called pseudo-open-cover of a
topological space X if {G_a} covers X.

X will be called pseudo-compact if every pseudo-open-cover of X has a finite

sub-pseudo-cover.

A pseudo-open-cover need not be an open cover, as the following example
shows:
Example 7.2.1: Let X=R, and J = the topology generated by {(x,x + 1)|x € Z}.

Then {(x, x + 1)|x € Z} is not an open cover of X, but it is a pseudo-open-cover

of X, since(x,x+1)=[x,x+1] forall x € Z andU[x,x+1]=X.

xeZ

Example 7.2.2: Let X=[0,1] and I = {X, @, (0,1)} be a topology on X. Then
{(0,1)} 1s the only pseudo-open cover of X. Since this is finite, X is pseudo-

compact.

Definition 7.2.2: A topological space X is H-closed (Gangully and Jana [35]) if
every open cover{G,} of X has a finite sub-collection {G,,...,G, }such that

G_alu...uGaﬂ =X.

An H-closed space need neither be pseudo-compact nor be compact. The
following example proves the truth of this statement:
Example 7.2.3: Let X=R, and 3 = the topology generated by {{Q}U{(x, x +
1)|x € Z}}. Then, for each open cover C of X, either C contains {R} or
C={QIU{(x,x+1D|x€Z}orC={QU{U (x,x + 1)|x € Z}}.
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Since R=R =X and Q =R =X, (X, J) is H-closed.
Now, | J{(x,x +1)=[x,x+1}}= R =X. Hence {(x, x + 1)|x € Z} is a pseudo-open-

xeZ

cover of X. But it does not have a finite sub-pseudo-cover. Hence X is not pseudo-

compact. Also, since C does not have a finite subcover, X is not compact.

A pseudo-compact space may not be compact. This is illustrated by the
following example:

Example 7.2.4: Let X=RuU{i},i =+/-1, and let I be the topology generated
by {{(x,x + D|x € ZYU{QU {i}}}. ThenC = {(x,x + D|x € Z}u {QuU {i}}is a
pseudo-open-cover of X. For, | J{(x,x+1)|xeZ}u {Qu {z}}z Ullxx+1]jxezju {R

xez xez
Uil =RU{R u{i}} = Ru{i}=X.

Any other pseudo-open-cover of X must contain Q U {i} or X as its member.
Hence every pseudo-open-cover of X has a finite sub-pseudo-cover, viz.,{Q U
{i}},0r{X}, or {{Q U {i}}, X}. So, X is pseudo-compact.

However, C is an open cover of X but C does not have a finite sub-cover. Thus,

X is not compact.

A compact space need not be pseudo-compact. This is shown by the
following example:
Example 7.2.5: Let X =[0,1] and let J be the topology on X which is induced by
the usual topology on R . Then X is compact by Heine-Borel Theorem. We shall

show that X 1s not pseudo-compact.

Let€ ={(03)} U{G+ 55 DIn € N} and

D ={[0 1} U {[; + 5 HIn €N}

Wivec)




Pseudo-Compact Spaces, C-Compact Spaces and Pseudo-Continua 71

Then | JV =[0,]]=X.

veC
Thus C is pseudo-open-cover of X. But it does not have a finite sub-pseudo-

cover. Hence X is not pseudo-compact.

Theorem 7.2.1: Every pseudo-compact space is H-closed.

Proof: Let X be a pseudo-compact space. Let{G,} be a pseudo-open-cover of X.
So {Gj } covers X. Since X is pseudo-compact, there exists a finite sub-collection

{G,,....G, }of X such thatG_alu uG_an = X . Hence X 1s H-closed.

Theorem 7.2.2: Every pseudo-compact subspace of a completely Hausdorff space
is closed.

Proof: Let X be a completely Hausdorff space and K be a pseudo-compact
subspace of X. We show that K¢ is open. Letxe K,y € K. Thenx # y. Since X 1s

completely Hausdorff, so there exist open sets G,,H, such thatxe G,y e H, and
G,NH, = ¢.Clearly {Hy :yekK } is a pseudo-open cover of K. Since K is pseudo-
compact, so there exists y,, ...,», € K such thatK — H_ylu UE Since

(G_ylm mG_yﬂ)m(H_ylu uH_yﬂ) =g, G_ylm mG_yn c K. So G, Nn..nG, K"

Since G, N..NG, isopenandxeG, N..NG, .SoK" is open.
1 Yn Ml Yn

Theorem 7.2.3: A continuous image of a pseudo-compact space is pseudo-
compact.

Proof: Let X be a pseudo-compact space, Y a topological space and let f: X —>Y

be a continuous mapping. We show that as a subspace of Y, f(X) is pseudo-
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compact. Let{G, } be a pseudo-open-cover of f(X). Since f is continuous, {f ‘I(Ga)}
is a pseudo-open cover of X. Therefore {f (G, )} covers X.
Now, we shall show thatu /7 (G, )=uf™ (G_a) . The continuity of f implies

G f ( ) Letxe f~ ( ) Then f(x)e G,. Hence for every neighborhood V
of f(x), ¥ n G, = ¢. Let U be any neighborhood of x. Then f(x) e f(U).Now,
fWn f(G,)= f(U ~f(G, )) and f(U) ff (G, ) # ¢, since f is open. Therefore,
fUnsG,)=¢=Uns"(G,)=¢Hencexe 77G,)

Since X is pseudo-compact, so there exists a finite sub-pseudo-cover

G, f (G, ) Of {£7(G,)} such that

i )u ufi if( )u uf( )CX Hencef(X)cG U. uG

Therefore f(X) is pseudo-compact.

Theorem 7.2.4: A closed subspace of a pseudo-compact space is pseudo-compact.

Proof: The proof can be constructed exactly as in the case of compact spaces.

Theorem 7.2.5: (Generalizations of Theorem 4.1.16, [3]) Let X and Y be pseudo-
compact topological spaces. Then the product space X xY 1s pseudo-compact.
Proof: The proof is similar to that of Theorem 4.1.16 [3]. Still, we are writing the

proof for completeness. For eachx, € X,y — (x,,») is a surjective continuous
function and Y is a pseudo-compact space implies x, xY is a pseudo-compact subset

of X xY . Let C be a collection of basic open sets in X x¥ such that X x¥ = | JUxV

UxVeC
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This implies that x,xY = | JUxV implies there existU, x¥;, ...,U, x¥, such that

UxVeC

X XY U, xV)U e UU, XV,)) i, (1)
Also, if for some i, (U, xV,)N(x,xY)=¢, then we do not require to include such
an U, xV, in our finite sub-cover {U, xV,},i =12, ... ,n. SO we may assume that each

(U, xV,)N(x,xY)#¢. This implies thatx, e U, for all i=1,2, --- ,n and hence

x, €W, =(U, . Now it is clear thatW, xY c (U, x¥,)u ... u(U, xV,). Consider

i=1

(x,y)ew, xy.ThenxeU, foralliandyeY. Hence from equation (1)

(x,,»)eU, x¥, for some j. This implies(x,y)e U, x¥, for the same j. That is for
eachx, € X, the tube W, xYis covered by the closures of finitely many members of
C. So, W too is covered by the closures of finitely many members of C. Since
W, xYcW, xY ,the same is true for about , xY.

Now, we shall prove that X xY is covered by the closure of finitely many such

tubes W, xY . Now {W, :x e X}is a pseudo-open-cover for X. Hence X is a pseudo-

N
compact space implies there exist x,,x,, ...,x, € X such thatx = Jw, . Now

i=1

(x,y)e XxY = xeW, forsomei, 1<i<k and hence(x,y)e W, x¥ . This implies that

(N
XxY=|JW, xY and hence X xY is covered by the closure of finitely many

i=1

members of C. This proves that X xY is pseudo-compact.

Corollary 7.2.1: If X, --- , X, are pseudo-compact topological spaces. Then the

product space X, x ... x X, is pseudo-compact.

Proof: It follows from the above Theorem 7.2.5 by induction.
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Theorem 7.2.6: Let X be a topological space. Let A, B be pseudo-compact
subspaces of X. Then A U B is pseudo-compact.

Proof: Let C = {C,} be a pseudo-open-cover of A U B. Then C is a pseudo-open-
cover of both A and B. Since A and B are pseudo-compact then C contains finite
sub-pseudo-covers C; and C, of A and B respectively. Then C; U C, is a finite sub-

pseudo-cover of C and, C; U C, covers A U B. Hence A U B is pseudo-compact.

Corollary 7.2.2: If X is a topological space and Ay, --- ,A, are pseudo-compact
subspaces of X. Then 4; U --- U 4,, is pseudo-compact.

Proof: It follows from the above Theorem 7.2.6 by induction.
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7.3. C-Compact Spaces
Definition 7.3.1: A topological space X is called c-compact if every closed cover

of X has a finite sub-cover.

Example 7.3.1: Let X=R, and J = the topology generated by the
collection {(x, x + 1)|x € Z} U {Z} consider (x,x + 1) as closed sets.

Let A be a subset of R containing finite numbers of integers, say x; x, ... X,
where x; < x, <-+ < Xx, and bounded by x; and x,,.

Let C be a closed cover of A. Then C = {(x;,x,), (x5, %3), .., (X5y_1, %)} U

{Z}. Then every closed cover of A is finite. Thus A is c-compact.

Clearly, many such examples can be constructed.

We shall now give below an example of a topological space which is compact
but not c-compact:
Example 7.3.2: Let X=[0,1], and J = the topology on X which is induced by the
usual topology on R . Then X is compact by Heine-Borel Theorem.

However, X is not c-compact. For, if

1
on+1’

C = [0, %] U {[% + 1]|n € N}. Then C is a closed cover of X, but it does not
have a finite sub-cover. To see that C is a closed cover of X, we note that

[0, U{ U {5+ 57 1lIn € N}

=[0,2] u(5, 11=[0.1].
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Theorem 7.3.1: Every open subspace of a c-compact space is c-compact.

Proof: Let X be a c-compact space and K be an open subset of X. If{F, } is a
closed cover of K, we can take the collection {X — K}U{F,} as a closed cover of X.
Since X is c-compact, so there exist a finite sub-collection {X -K,F, , ...,F, }of X
such that X =X -KUF, U..UF, .So we have a finite sub-collection {F, , ... ,F, }

such thatk c F, v ... U F, .Hence K is c-compact.

Theorem 7.3.2: A continuous image of a c-compact space is c-compact.

Proof: Let X be a c-compact space, Y a topological space and let f: X —>Y be a
continuous mapping. We show that as a subspace of Y, f(X) is c-compact. Let {F, |
be a closed cover of f(X). Since f is continuous, {f“ (Fa)} is a closed cover of X.
Since f is continuous, {f - (Fa)} is a closed cover of X. Since X is c-compact, so
there exists a finite sub-cover { /7'(F, ), ...,/ (F, ) } of {f - (Fa)} . Hence
{F,,..,F, } is a finite sub-cover of {F, } Therefore f(X) is c-compact.

a

Theorem 7.3.3: Every c-compact space is pseudo-compact.

Proof: Let X be a c-compact space and let C be a collection of open sets in X such
that F = {G,: G, € C}is a cover of X. Thus C is a pseudo-open-cover of X. Then
F is a closed cover of X. X being c-compact, F has a finite sub-cover viz.,

{G_a1 AR T,n }. Hence {G,, ...,G, } is a pseudo-sub-cover of X. So X is pseudo-

compact.
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Theorem 7.3.4: Let X and Y be c-compact topological spaces. Then the product
space X xY 1is c-compact.
Proof: Since every c-compact space is pseudo-compact by above Theorem 7.3.3,

the proof can be constructed exactly as that of the Theorem 7.2.5.

Corollary 7.3.1: If X, --- X, are c-compact topological spaces. Then the product

space X, x...x X, is c-compact.

Proof: It follows from the above Theorem 7.3.4 by induction.
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7.4. Pseudo-Continua
Definition 7.4.1: ((Majumdar and Akhter [22], Munkres [10]) Let X be a
topological space. X is said to be connected if it can not be expressed as the union

of a pair of disjoint nonempty open subsets of X.

Definition 7.4.2: ((Majumdar and Akhter [22], Munkres [10]) A topological space
X is said to be locally connected at x if every neighborhood U of x, there is a
connected neighborhood V of x contained in U. If X is locally connected at each of

its point, it 1s said simply to be locally connected.

Definition 7.4.3: ((Majumdar and Akhter [22], Munkres [10]) Given points x and

y of the space X, a path in X from x to y is a continuous map f :[a,b] > X of some

closed interval in the real line into X, such that f(a)=x and f(b)=y. A space X is said
to be path connected if every pair of points of X can be joined by a path in X.

Definition 7.4.4: ((Majumdar and Akhter [22], Munkres [10]) A topological space
X is said to be locally path connected at x if every neighborhood U of x, there is a
path connected neighborhood V of x contained in U. If X is locally path connected

at each of its points, then it is said to be locally path connected.

Definition 7.4.5: (Majumdar and Akhter [22]) Cantor gave a special definition of
connectedness for metric spaces. According to him, a metric space X is connected

if for any two distinct points a, b of X and for anye>0, there exists a finite

sequence a = Xj, X, -, X, = b of X such thatd(x,,x_,)<e, i=1, -, n-1.
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Definition 7.4.6: (Majumdar and Akhter [22]) A topological space X is said to be
connected imkleinen at a pointx € X if for every open set U containing x, there is

an open set V containing x such that for every y € V', there exists a connected

subset C such thatx,y € C.

Definition 7.4.7: (Hocking and Young [13], p.43) A connected compact space is

called a continuum.

Definition 7.4.8: A connected pseudo-compact space will be called a pseudo-

continuum.

Example 7.4.1: Let X=[0,1] and I = {X, @, (0,1)} be the topology on X. Then
{(0,1)} is the only pseudo-open cover of X. Since this is finite, X is pseudo-

compact. Clearly, X is connected. Hence X is a pseudo-continuum.

Theorem 7.4.1: A continuous image of a pseudo-continuum is a pseudo-
continuum.

Proof: Since every continuous image of a pseudo-compact space is pseudo-
compact [Theorem 7.2.3] and every continuous image of a connected space is
connected (Theorem 23.5, Munkres [10], Theorem 1.6, p.72, Majumdar and
Akhter [22]), the theorem follows.

We recollect the following theorem on connectedness:
Theorem 7.4.2: (Theorem 1.4, p.71, Majumdar and Akhter [22], Theorem 23.3,
Munkres [10]) Let {A;} be a collection of connected subsets of a topological space
X. If N; 4; 1s non-empty, then U; 4; is connected.
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So we have
Theorem 7.4.3: Let X be a topological space. Let A and B be two subspaces of X
such that
(1) A, B are pseudo-continua
(i) ANB=#0.
Then A U B is pseudo-continuum.
Proof: Since A, B are pseudo-continua, Theorem 7.2.6 implies that A U B is
pseudo-compact and since A N B # @, Theorem 7.4.2 implies that A U B is

connected. Thus A U B is pseudo-continuum.

Corollary 7.4.1: If X is a topological space and Ay, -+, A, are subspaces of X
such that

(1)  Ai, Ay, -+, Ay are pseudo-continua

i) A Nn--NA,#0.
Then A; U --- U A,, is pseudo-continuum.

Proof: It follows from the above Theorem 7.4.3 by induction.

Theorem 7.4.4: Let X and Y be pseudo-continua. Then the product space X xY 1is
pseudo-continuum.

Proof: Since product of two pseudo-compact spaces is pseudo-compact [ Theorem
7.2.5] and product of two connected space 1s connected (Theorem 23.6, Munkres

[10], Theorem 1.9, p.73, Majumdar and Akhter [22]), the theorem follows.

Corollary 7.4.2: If X, -+ , X,, are pseudo-continua. Then the product space

X, x ... xX, 1s pseudo-continuum.

Proof: It follows from the above Theorem 7.4.4 by induction.
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