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ABSTRACT 

       The thesis is concerned with generalizations of some important and 

interesting properties of separation, compactness and connectedness in a 

span of seven chapters.  

         In the first chapter pseudo regular and pseudo normal topological 

spaces have been defined. Their properties have been studied and a number 

of important theorems regarding these spaces have been established. 

           In the second chapter strongly pseudo-regular and strongly pseudo-

normal topological spaces have been introduced and their properties have 

been studied. A number of important theorems have been proved in this 

regard. 

          This is the third chapter. In this chapter strictly pseudo-regular and 

strictly pseudo-normal topological spaces have been defined and their 

properties have been studied. In the former class a compact set can be 

separated from an external point by a continuous function, while in the 

latter, two disjoint compact sets can be separated by a continuous function. 

Many important properties have been proved. 

       The fourth chapter introduces the notions of nearly regular topological 

spaces of the first kind and the second kind and studies their properties. A 

number of important theorems regarding these spaces have been established. 

       In this fifth chapter two new generalizations of normal spaces have 

been defined and studied. The spaces in these classes have been termed 

nearly normal topological spaces of the first kind and the second kind 

respectively. 



 V

       This is the sixth chapter. In this chapter further new generalizations of 

normal spaces have been made. These have been called slightly normal 

spaces of the first kind, the second kind and the third kind respectively. A 

number of important properties of these spaces have been proved. 

        In this chapter seven compactness has been generalized to pseudo-

compactness and c-compactness, and a continuum i.e., a connected compact 

space has been generalized to pseudo-continuum. Several properties of these 

three classes of spaces have been studied.  

                                                

                                                                                      



CHAPTER ONE 

 

Pseudo Regular and Pseudo Normal  
Topological Spaces 

 
 

 

 

1.1 .  Introduction 

     Regular and normal topological spaces have been generalized in various 

ways. p-regular, p-normal,  -normal and -normal spaces ([5], [8], [9], 

[15], [36]) are several examples of some of these. 

     In this chapter we have introduced pseudo regular and pseudo normal 

spaces and studied their important properties. Many results have been 

proved about these spaces. We have also established characterizations of 

such spaces. Parallel study of further generalizations using preopen and 

semi open sets etc. are intended to be done in near future. We have used the 

terminology and definitions of text book of S. Majumdar and N. Akhter 

[22], Munkres [10], Dugundji [11], Simmons [7], Kelley [12] and Hocking-

Young [13]. 

      Unless otherwise stated, every compact set considered in this chapter 

will have at least two elements. 

 

1.2. Preliminaries 

   We start with the definitions of almost -normal, almost p-normal, almost

 -normal, -normal, p -normal,  -normal spaces.  
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     A subset A of a topological space X is said to be regular open (resp. 

regular closed) if A=int(cl(A)) (resp. cl(int(A)),preopen ( briefly p-open) 

if A int(cl(A)),  -open if Acl(int(cl(A))), -open if Acl(int(A))

int(cl(A))[5]. 

      A topological spaces X is said to be almost -normal (resp. almost p-

normal, almost -normal [5]) if for any two disjoint closed subsets A and 

B of X, one of which is regularly closed, there exist disjoint  -open (resp. p-

open, -open) sets U and V of X such that AU and BV. 

     A topological spaces X is said to be -normal (resp. p-normal, -

normal [5]) if for every pair of disjoint closed subsets A and B of X, there 

exist disjoint -open (resp. p-open, -open) sets U and V of X such that A

U and BV.   

  Their inter-relationships are also mentioned below: 

normalalmost normal 
                              
p-normalityalmost p-normality 
                              
 -normality  almost  -normality 
                              
 -normality  almost  -normality 

 

  We now define pseudo regular spaces and proceed to study them. 

 

1.3. Pseudo Regular Spaces 

Definition 1.3.1: A topological space X will be called pseudo regular if 

every compact subset K of X and every Xx with Kx can be separated by 

disjoint open sets. 
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Example 1.3.1: Let K be a compact subset of ℝ and let x ℝ  such that

Kx . Since ℝ  is 1T ,  x is closed and since ℝ  is normal and K is closed 

(by Heine-Borel Theorem),  x  and K can be separated by disjoint open 

sets. Thus ℝ  is pseudo regular. 

 

Example 1.3.2: Let X = {a, b, c, d} and ℑ     dcbaX ,,,,, . Then (X, ℑ) is 

regular but not pseudo regular. 

  For, {a, c}is compact, b  ca, ,  but {a, c} and b cannot be separated by 

disjoint open sets. 

 

Example 1.3.3: Let X =ℝ, ℑ be the topology generated by 0   where 

0 is the usual topology on ℝ and = {  xx |  ℝ − ℚ }. Then ℚ is closed, 

since ℝ − ℚ is open. ℚ cannot be separated from an irrational point since 

the only open set which contains ℚ is ℝ. Therefore X is not regular. The 

compact sets in X are the closed and bounded subsets of ℝ, i.e., finite 

unions of closed intervals, e.g., [a1,b1] ∪ ⋯ ∪ [an, bn]. Let K be a compact 

subset of X and let Kx . So let K be given by K=[a1,b1] ∪ ⋯ ∪ [an, bn] . Let

  iii baxd ,, , the distance of x from  ii ba ,  and let  n ,...,min
2

1
1 . Then 

G=      nn baba ,..., 11  and H=    xx , , separate K and x. 

Thus X is pseudo regular but not regular. 

 

Theorem 1.3.1: Every pseudo regular compact space is regular. 

Proof: Let X be compact and pseudo regular. Let K be a closed subset of X 

and let Xx with Kx .Since X is compact, K is compact. Again, since X 

is pseudo regular, there exist disjoint open sets G and H such that Gx and

HK  . Therefore X is regular. 
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Theorem 1.3.2: Every regular Hausdorff space is pseudo regular. 

Proof: Let X be a regular Hausdorff space. Let K be a compact subset of X 

and Xx , Kx . Since X is Hausdorff, K is closed. Now, since X is regular, 

there exist disjoint open sets G and H such that Gx and HK  . Therefore 

X is pseudo regular. 

 

Theorem 1.3.3: A topological space X is pseudo regular if and only if for 

every Xx and any compact set K not containing x, there exists an open set 

H of X such that cKHHx  . 

Proof: Let X be pseudo regular and let K be compact in X. Let Kx i.e., 
cKx . Since X is pseudo regular, there exist open sets U, V such that 

VKUx  , and VU . Then cc KVU  . So cVU  = cc KV  . Writing 

U=H we have cKHHx   . 

   Now, let for every Xx  and any compact set K not containing x, there 

exists open set H such that cKHHx  . Since K is a compact set and 

Kx . Then cKx . According to the condition, there exists open set H such 

that cKHHx  . Let 
c

H = G. Then G is open, GK  and HG . 

Thus X is pseudo regular. 

 

Theorem 1.3.4: The product space X of any non-empty collection  iX  of 

topological spaces is pseudo regular if and only if each iX  is pseudo 

regular. 

Proof: Let  iX  be a non-empty collection of pseudo regular spaces and X =

iX . We show that X is a pseudo regular space. Let K be a compact set not 

containing a point Xx  . Let  KK ii  , ii Kx   . Since the projection 

maps are continuous   ii KK   is a compact subset of iX .  Since Kx , 
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there exists 0i such that 
00 ii Kx  . Since 

0i
X is pseudo regular, there exist 

disjoint open sets 
00

, ii HG  in iX  such that 
0000

, iiii GKHx  . For each 0ii  , 

let ii HG ,  be open sets such that iiii GKHx  , . Let G= iiG  and H= iiH . 

Then HG , since 
00 ii HG  . Now, HxGK  , .  Hence X is 

pseudo regular. 

    Conversely, if X is pseudo regular, then we show that for each i, iX  is 

pseudo regular. For each i, let iK  be a compact subset of iX  and ii Xx   but

ii Kx  . Let iiKK   and x= ix , Xx but Kx . Then K is compact by 

Tychonoff Theorem. Since X is pseudo regular, there exist disjoint open sets 

G and H such that Gx and HK  and G= iiG , H= iiH , ii HG ,  are open 

sets in iX  such that iiii GKHx  ,  and  ii HG . Therefore iX  is pseudo 

regular. 

 

Theorem 1.3.5: Any subspace of a pseudo regular space is pseudo regular. 

Proof: Let X be a pseudo regular space and XY  . Let Yy  and B is a 

compact subset of Y such that By  .  Since B is compact in Y, so B is 

compact in X. Since X is pseudo regular, there exist disjoint open sets G and 

H of X such that Gy and HB  . Let U= YG and V= YH  . Then U and 

V are disjoint open sets of Y where Uy and VB  . Hence Y is pseudo 

regular.  

 

Corollary 1.3.1: Let X be a topological space and A, B are two pseudo 

regular subspaces of X. Then BA  is pseudo regular. 

Proof: BA  being a subspace of both A and B, BA  is pseudo regular by 

the above Theorem 1.3.5. 
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Theorem 1.3.6: Let X be a pseudo regular space and R is an equivalence 

relation of X. Then R is a closed subset of XX.  

Proof: We shall prove that cR  is open. So, let   cRyx , . It is sufficient to 

show that there exist two open sets G and H of X such that Gx and Hy

and  GH cR . Let p:X
R

X
 be the projection map. Since   cRyx , , 

   ypxp   i.e.,   yppx 1 . Again, since  y  is compact and p is a 

continuous mapping, p(y) is compact. Also, let  iG be an open cover of 

  ypp 1  in X, and let )( ii GpG  . Then }{ iG  is an open cover of p(y) in 
R

X
. 

Since p(y) is a singleton element in 
R

X
 , there exists 

0i
G such that 

0
)( iGyp 

in 
R

X
. Then by the definition of the topology in 

R

X
 and the nature of the 

map p, (i) 
0i

G is open in X, (ii) )(
00

1
ii GpG   and (iii)   

0

1
iGypp  in X. 

Hence   ypp 1  is compact in X. So by the pseudo regularity of X, there 

exist disjoint open sets G and H in X such that Gx and    Hypp 1 . 

Hence    Hyppy  1 i.e., Hy . Since HG ,  )()( HpGp . 

Therefore GH cR  and so   cRHGyx , . 

 

Corollary 1.3.2: Let X be a pseudo regular space and R is an equivalence 

relation of X. Then 
R

X
 is Hausdorff. 

Proof: Let x  and y  be two distinct points of 
R

X
. Then x =  xp  and y =  yp

for some Xyx , such that yx  and   cRyx , . By the proof of the above 

Theorem 1.3.6, there exist disjoint open setsG and H  in 
R

X
 such that Gx

and Hy . Thus 
R

X
 is Hausdorff. [G =p(G) and H =p(H) of the above 

theorem]. 

 



Pseudo Regular and Pseudo Normal Topological Spaces 7

We now define pseudo normal spaces and proceed to study them. 

 

1.4. Pseudo Normal Spaces 

Definition 1.4.1: A topological space X will be called pseudo normal if 

each pair of disjoint compact subsets of X can be separated by disjoint open 

sets. 

 

Example 1.4.1: Since ℝ   is normal and every compact subset of ℝ  is 

closed, ℝ  is pseudo normal. 

 

Example 1.4.2: Let X = {a, b, c, d} and ℑ     dcbaX ,,,,, . Then (X, ℑ) is 

a normal space. Here {a, c}and {b, d}are two disjoint compact sets in X, 

but there do not exist  disjoint open sets containing these compact sets. 

Therefore (X, ℑ) is not pseudo normal.  

 

Theorem 1.4.1: Every pseudo normal compact space is normal. 

Proof: Let X be compact and pseudo normal. Let A, B be two disjoint 

closed subsets of X. Since X is compact, A and B are compact. Again, since 

X is pseudo normal, A and B can be separated by disjoint open sets. 

Therefore X is normal. 

 

Theorem 1.4.2: Every normal Hausdorff space is pseudo normal. 

Proof: Let X be Hausdorff and normal. Let A, B be two disjoint compact 

subsets of X. Since X is Hausdorff, A, B are closed. Again, since X is 

normal, there exist disjoint open sets G and H in X such that GA and 

HB  . Therefore X is pseudo normal. 
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Theorem 1.4.3: A topological space X is pseudo normal if and only if each 

pair of disjoint compact sets K1 and K2 , there exists open set U such that
cKUUK 21  .  

Proof: Let X be a pseudo normal space and K1, K2 be two compact subsets 

of X and  21 KK . Since X is pseudo normal, there exist open sets U, V 

such that VKUK  21 , and VU  . Then cc KVU 2  . So 

ccc KVVU 2 . Hence we have cKUUK 21  .  

     Conversely, suppose that for each pair 1K  and 2K  of disjoint compact 

subsets of X, there exists an open set H of X such that cKUUK 21  . We 

shall show that X is pseudo normal. Here HK 1 and 
c

HK 2 . Let GH
c
 . 

Then G is open, GK 2 and HG . [ For HxHHx
c

 and cHx . 

But HxHx  . So cHx  which is a contradiction, so HG ] 

 

Theorem 1.4.4: Every open image of a pseudo normal space is pseudo 

normal. 

Proof: Let X be a pseudo normal space and Y a topological space and let 

YXf :  be an open and onto mapping. Let 1K  and 2K  be two disjoint 

compact subsets in Y. Then  1
1 Kf   and  2

1 Kf   are compact in X. Since X 

is pseudo normal, there exist open subsets U and V of X such that 

  UKf 
1

1 and   VKf 
2

1 and VU . Again, since f is open, f(U) and 

f(V) are open in Y and    UfKffK  
1

1
1 ,    VfKffK  

2
1

2  and 

     VfUf . Hence Y is pseudo normal.  
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Corollary 1.4.1: Every quotient space of a pseudo normal space is pseudo 

normal. 

Proof: Let X be a pseudo normal space and R is an equivalence relation on 

X. Since the projection map p:X
R

X
  is open and onto, the corollary then 

follows from the above Theorem 1.4.4. 

 

    Although a subspace of a normal space need not be normal (see 

Majumdar and Akhter [22], p.109), we have the following theorem: 

 

Theorem 1.4.5: Every subspace of a pseudo normal space is pseudo 

normal. 

Proof: Let X be a pseudo normal space and XY  . Let 1K  and 2K  be two 

disjoint compact subsets in Y. Since 1K  and 2K  are compact in Y, these are 

compact in X too. Since X is pseudo normal, there exist disjoint open sets U 

and W such that UK 1 and WK 2 . Then YU  and YW   are disjoint open 

sets in Y with property that YUK 1 and YWK 2 . Hence Y is pseudo 

normal.  

 

Comment 1.4.1: A continuous image of a pseudo regular (pseudo normal) 

space need not be pseudo regular (pseudo normal). 

    For if  1,TX  is a pseudo regular (pseudo normal) space and  2,TX  a space 

with the indiscrete topology, then the identity map XXx :1 is continuous 

and onto. But  2,TX  is not pseudo regular (pseudo normal). 
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Theorem 1.4.6: Each compact Hausdorff space is pseudo normal. 

Proof: Let X be a compact Hausdorff space and A, B be two disjoint 

compact subsets of X. Let Ax and By . Then yx  . Since X is Hausdorff, 

there exist disjoint open sets yG  and yH such that yGx and yGy . 

Obviously }:{ ByH y  is an open cover of B. Since B is compact, so there 

exists a finite sub-cover {
myyy HHH ,...,,

21
} of B. Let   

myyyx HHHH  ...
21

and 
myyyx GGGG  ...

21
. Then xx GxHB  ,  

and  xx GH i.e., X is pseudo regular. So for each Ax , there exist two 

disjoint open sets xG  and xH  of X such that xGx and xHB  . Hence 

}:{ AxGx  is an open cover of A. Since A is compact, so there exists a finite 

sub-cover {
nxxx GGG ,...,,

21
} of this cover A. Let 

nxxx GGGG  ...
21

and 

nxxx HHHH  ...
21

. Then G, H are open sets of X and  HBGA  ,

and HG . 

 

Remark 1.4.1: It follows from the above proof that every compact 

Hausdorff space is pseudo regular. 

 

Theorem 1.4.7: Every locally compact Hausdorff space is pseudo regular. 

Proof: Let X be a locally compact Hausdorff space. Then there exists one 

point compactification X  of X and X  is Hausdorff and compact. 

According to above Remark 1.4.1, X  is pseudo regular. Again, according 

to Theorem 1.3.5, as a subspace of X  , X is pseudo regular.  
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Theorem 1.4.7: Let X be a topological space such that for every compact 

subset K of X, X-K contains at least two elements, if each X is pseudo 

normal then X is pseudo regular. 

Proof: Let X be a pseudo normal space. Let K be a compact subset of X and 

let Xx  such that Kx . Then there exists y such that y K and y x. Then 

{x, y} being finite with two elements, is a compact subset of X such that   

{x, y}  K . Since X is pseudo normal, there exist open sets G and H 

with{x, y}  HGHKG ,,  . Since x  HGHKG ,,  , hence X is 

pseudo regular. 

 

Example 1.4.3: Let X = {a, b, c} and ℑ     cbaX ,,,, . Then (X, ℑ) is a 

pseudo normal space. But X is not pseudo regular. For, {a, b} compact 

 bac , , but {a, b} and c cannot be separated by disjoint open sets in X.  

   

Theorem 1.4.8: Every metric space is both pseudo regular and pseudo 

normal. 

Proof: Since every metric space is Hausdorff, every compact set is closed. 

Again, since every metric space is regular, normal, therefore it is pseudo 

regular and pseudo normal by Theorem 1.3.2 and Theorem 1.4.2 

respectively.  
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1.5. Almost Pseudo Regular Spaces and Almost Pseudo Normal 

Spaces 

    Here we consider two classes of topological spaces one of which lies 

between the class of Hausdorff spaces and the class of pseudo regular 

spaces, while the other lies between the class of Hausdorff spaces and the 

class of pseudo normal spaces. 

 

Definition 1.5.1: A topological space X will be called almost pseudo 

regular if for every finite set A with at least two elements and for every x

A , there exist disjoint open sets G and H such that A G and x H . 

 

Example 1.5.1: Let X= ℚ, r, s ℚ, r<s , and let Vr,s= {𝑞 ∈ ℚ|𝑟 < 𝑞 < 𝑠}. Let 

ℑ, the topology generated by 𝑋, ∅, 𝑉𝑟,𝑠 |𝑟, 𝑠 ∈ ℚ, |𝑟 < 𝑠  .Let A={q1, ⋯,qn}, 

n 2 , and let q  ℚ, Aq .Suppose q1<q2<⋯<qn. If q<q1, let qq  1 . Then 

2,
2


   qVq

q
and A 2,

21


   nq

qV . If q>qn, we construct the required 

open sets similarly. 

If qi<q<qi+1, for some i,1 ,ni  let  qqqq ii  1,min . Then 

 2,2
  qqq =V, say q1, ⋯,qi   121 2,2 Vqq   and qi+1, ⋯ ,qn

  21 2,2 Vqq ni  
 , say. Then 21, VVAVq  and   .21  VVV  

 

Definition 1.5.2:A topological space X will be called almost pseudo 

normal if for every two finite disjoint sets A and B each with at least two 

elements , there exist disjoint open sets G and H such that A G and B H . 
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Example 1.5.2: It can be shown that the above Example 1.5.1 is almost 

pseudo normal too. 

     Many of the properties of the pseudo regular and pseudo normal spaces 

are expected to hold but we are not proving these here. We will follow up 

these in near future.  

 



 

CHAPTER TWO 

 

Strongly Pseudo-Regular and Strongly  
Pseudo-Normal Topological Spaces 

 
 

 

2.1.  Introduction 

      This is the second chapter of our thesis on generalizations and 

specializations of regular and normal topological spaces. Earlier, regular and 

normal topological spaces have been generalized in various other ways.              

p-regular, p-normal,  -normal and -normal spaces ([5], [8], [9], [15], [36]) 

are several examples of some of these. 

        In this chapter we have introduced strongly pseudo-regular and 

strongly pseudo-normal spaces and studied their important properties. Many 

important results about these spaces have been established. 

        Unless otherwise stated, every compact set considered in this chapter 

will have at least two elements. 

 

 

     We shall now define and study strongly pseudo-regular spaces as 

specializations of pseudo regular spaces (see [23]). 

 

2.2.  Strongly Pseudo-Regular Spaces 

Definition 2.2.1: A topological space X will be called strongly pseudo-

regular if, for each compact set K and for every Xx with Kx , there exist 

open sets G and H such that Gx and HK  and  HG . 
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Example 2.2.1: X= ℝ with usual topology is strongly pseudo-regular. To 

see this, let K be a non-empty compact subset of X and let KxXx  ,  . 

Then, by Heine-Borel Theorem, K is closed and bounded. Hence, K may be 

written as K=  


1

,
i

ii ba ,where      jjii baba ,, if ji   .  

Let }{min
00 i

i
i aa  , }{max

00 j
j

j bb  . Since Kx ,one of the following three 

conditions must hold:  

(i) 
0i

ax   

(ii) 
0j

bx   

(iii) there exist
11

, kj aa  and 
11

, kj bb such that
1111 kkjj baba  , and [

1j
a , 1j

b ] 

and [
1k

a
1

, kb ] are consecutive intervals in K, and
11 kj axb   . 

     If (i) holds, let 1 = 03

1
iax  , and let U1=( 11,  xx ),                   

V1=( 11 00
,  ji ba ). Then U1, V1 are open and  11 VU . Also

11, VKUx   . 

    If (ii) holds, let 2 = 03

1
jbx  , and let U2=( 22 ,  xx ),                   

V2=( 22 00
,  ji ba ). Then U2, V2 are open, 22 , VKUx   and  22 VU .  

    If (iii) holds, let 3 =  xabx kj 
11

,min
3

1
, and let U3=( 33,  xx ) and                   

V3=  ( 33 10
,  ji ba )( 33 01

,  jk ba ). Then U3, V3 are open, 

33, VKUx   and  33 VU .  

Thus, X is strongly pseudo-regular.  

 

 



Strongly Pseudo-Regular and Strongly Pseudo-Normal Topological Spaces 16

Theorem 2.2.1:  Every strongly pseudo-regular space is pseudo regular but 

the converse is not true in general. 

Proof: The first part is obvious. To prove the converse, let X={a, b, c, d} 

and ℑ       cbacbaX ,,,,,,, . Then (X, ℑ) is a topological space. The closed 

subsets of X are      ddadcbX ,,,,,,, . Let K= a . Then K is compact and b

K .Then we have open sets G= a , H= cb, such that K G , bH and       

GH  . Hence X is pseudo regular. G and H are the only disjoint open 

sets which contain K and b respectively.  

      Now, we have H  dcb ,, , G  da, and  }{dHG . Hence X is not 

strongly pseudo-regular. 

 

Theorem 2.2.2: Any subspace of a strongly pseudo-regular space is 

strongly pseudo-regular. 

Proof: Let X be a strongly pseudo-regular space and XY  . Let Yy  and 

K be a compact subset of Y such that Ky  .  Since K is compact in Y, so K 

is compact in X. Since X is strongly pseudo-regular, there exist open sets G 

and H of X such that Gy and HK  and HG . Let U= YG and V=

YH  . Then U and V are open sets of Y where Uy and VK   and 

VU . Hence Y is strongly pseudo-regular.  

 

Corollary 2.2.1: Let X be a topological space and A, B are two strongly 

pseudo-regular subspaces of X. Then BA  is strongly pseudo-regular. 

Proof: Since BA  being a subspace of both A and B, BA  is strongly 

pseudo-regular by the above Theorem 2.2.2. 
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Theorem 2.2.3: A topological space X is strongly pseudo-regular if, for 

each Xx and for any compact set K not containing x, there exists an open 

set H of X such that cKHHx  . 

Proof: Let X be strongly pseudo-regular and let K be compact in X. Let 

Kx i.e., cKx . Since X is strongly pseudo regular, there exist open sets 

U, V such that VKUx  , and VU  and so VU .Then 

cc KVU  . So cVU  = cc KV  . Writing U=H we have cKHHx   . 

 

Theorem 2.2.4: A topological space X is strongly pseudo-regular if X is 

completely Hausdorff . 

Proof: Let X be a completely Hausdorff space and let K be a compact 

subset of X. Let x, y be two distinct points of X with Ky and Kx .Since 

X is completely Hausdorff, there exist open sets yG  and yH such that yGx  

and yHy and  yy HG . Let }:{ KyH y  is an open cover of K. 

Since K is compact, so there exist a finite subcover {
nyyy HHH ,...,,

21
} of K. 

Let 
nyyy HHHH  ...

21
an

nyyy GGGG  ...
21

. Then GxHK  ,  

and we claim that HG . If HG , let Gz z
nyy GG  ...

1

and Hz z
iy

H , for some iy . This implies 
ii yy HGz  , which is a 

contradiction. Therefore  HG . Hence X is strongly pseudo-regular. 

 

Theorem 2.2.5: The product space X of any non-empty collection iX of 

topological spaces is strongly pseudo-regular if and only if each iX  is 

strongly pseudo-regular. 

Proof: Let  iX  be a non-empty collection of strongly pseudo-regular spaces 

and X = iX . We show that X is a strongly pseudo-regular space. Let K be a 
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compact set not containing a point Xx  . Let  KK ii  , ii Kx   . Since the 

projection maps are continuous,   ii KK   is a compact subset of iX .  Since

Kx , there exists 0i such that 
00 ii Kx  . Since 

0i
X  is strongly pseudo-regular, 

there exist open sets 
00

, ii HG  in iX  such that     
0000

, iiii GKHx  and 


00 ii HG . For each 0ii  , let ii HG ,  be open sets such that iiii GKHx  , . 

Let G= iiG  and H= iiH . Then  HG , since 
00 ii HG  and

HxGK  , .  Hence X is strongly pseudo-regular. 

       Conversely, if X is strongly pseudo-regular, then we show that for each 

i , iX  is strongly pseudo-regular. For each i, let iK  be a compact subset of 

iX  and ii Xx  but ii Kx  . Let KK i  and x= ix  then Xx but Kx . Then 

K compact by Tychonoff Theorem. Since X is strongly pseudo-regular, 

there exist open sets G and H such that Gx and HK  and  HG  and 

G= iiG  , H= iiH , ii HG ,  are open sets in iX  such that iiii GKHx  ,  and 

 ii HG  .  Therefore iX  is strongly pseudo-regular. 

 

Theorem 2.2.6: Let X be a strongly pseudo-regular space and R is an 

equivalence relation of X. Then R is a closed subset of XX.  

Proof: We shall prove that cR  is open. So, let   cRyx , . It is sufficient to 

show that there exist two open sets G and H of X such that Gx and Hy

and GH cR . Let p:X
R

X
 be the projection map. Since   cRyx , , 

   ypxp   i.e.,   yppx 1 . Again, since  y  is compact and p is a 

continuous mapping, p(y) is compact. Also, let  iG be an open cover of 

  ypp 1  in X, and let )( ii GpG  . Then }{ iG  is an open cover of p(y) in 
R

X
. 

Since p(y) is a singleton element in 
R

X
 , there exists 

0i
G such that

0
)( iGyp  in 
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R

X . Then by the definition of the topology in 
R

X  and the nature of the map 

p, (i) 
0i

G is open in X, (ii) )(
00

1
ii GpG   and (iii)   

0

1
iGypp  in X. Hence 

  ypp 1  is compact in X. So by the strongly pseudo-regularity of X, there 

exist open sets G and H in X such that Gx  and    Hypp 1  and 

HG . Hence    Hyppy  1  i.e., Hy . Since HG ,

 )()( HpGp . Therefore GH cR  and so   cRHGyx , . 

 

Corollary 2.2.2: Let X be a strongly pseudo-regular space and R is an 

equivalence relation of X. Then 
R

X
 is completely Hausdorff. 

Proof: Let cls x  and cls y  be two distinct points of 
R

X . Then clsx=  xp  and 

clsy=  yp for some Xyx , such that yx  and   cRyx , . By the proof of the 

above Theorem 2.2.6, there exist open sets xG and yG  in 
R

X  such that cls x

xG  and cls y yG and  yx GG . Thus 
R

X  is completely Hausdorff. 
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    We shall now define a new class of specialized pseudo normal spaces 

(see [23]), viz., strongly pseudo-normal spaces and proceed to study them. 

 

2.3.  Strongly Pseudo-Normal Spaces 

Definition 2.3.1: A topological space X will be called strongly pseudo-

normal if, for each pair of disjoint compact subsets 21 , KK  of X, there exist 

open sets G and H such that GK 1 , HK 2 and  HG . 

 

Example 2.3.1: X= ℝ with usual topology is strongly pseudo-normal. To 

see this, let K1 and K2 be two non-empty disjoint compact sets in X. Then, 

K1 and K2 may be written as K1=  
n

i
ii ba

1

,


, K2=  
n

j
jj dc

1

,


 where

     // ,,
iiii baba if /ii   ,      // ,,

jjjj dcdc if /jj   and      jjii dcba ,,  for 

each i and j.  

   For each consecutive pair  ii ba ,  and  jj dc ,  in the natural ordering in ℝ , let 

    jjiiij dcybaxyx ,,,:inf
3

1
   

and let 

 ,, ijiijiij baV  , 

 ,, ijjijjij dcW  . 
Then, each Vij and each Wij are open, and 

 

  ijij WV .
  

Let V=
ji

ijV
,

 and W=
ji

ijW
,

 . Then, V and W are open, 

  
ji

ijijij
ji

ij
ji

WVWVWV
,,,

)()(   and VK 1 , WK 2 . 

Thus, X is strongly pseudo-normal. 

In the above ij
ji

VV 
,

 , ,
,

ij
ji

WW  because of the nature of Vij’s and Wij’s.  
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Theorem 2.3.1: Every strongly pseudo-normal space is pseudo normal but 

the converse is not true in general. 

Proof: Let X be strongly pseudo-normal. Let 21 , KK  be two disjoint 

compact subsets of X. Since X is strongly pseudo-normal, there exist open 

sets G and H such that GK 1 , HK 2 and HG .Since  HG , so 

HG  Thus X is pseudo normal. 

     Conversely, let X={a, b, c, d} and ℑ       cbacbaX ,,,,,,, . Then ℑ is a 

topology on X. The closed subsets of X are      ddadcbX ,,,,,,, . Let 

 aK 1 ,  bK 2 .Then K1 and K2 are two disjoint compact subsets of X .We 

have open sets G= a , H= cb, such that GK 1 , HK 2 and GH  . 

Hence X is pseudo normal. Clearly, G and H are the only disjoint open sets 

which separate K1 and K2 respectively. 

We have H  dcb ,, , G  da, and so  }{dHG . Hence X is not 

strongly pseudo-normal. 

 

Theorem 2.3.2: Every open image of a strongly pseudo-normal space is 

strongly pseudo-normal. 

Proof: Let X be a strongly pseudo-normal space and Y a topological space 

and let YXf :  be an open and onto mapping. Let 1K  and 2K  be two 

disjoint compact subsets in Y. Since f is open, 1f is continuous,  1
1 Kf   and 

 2
1 Kf   are compact in X. Since X is strongly pseudo-normal, there exist 

open subsets U and V of X such that   UKf 
1

1 and   VKf 
2

1  and

VU . Again, since f is open, f(U) and f(V) are open in Y and 

   UfKffK  
1

1
1 ,    VfKffK  

2
1

2 . Now  )()( VfUf . Since f is 

open , f is also closed. Therefore )(Uf is closed, hence  UfUf )(  . Since 
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)()( UfUf  ,    UfUf  = )(Uf  . Similarly    VfVf  = )(Vf . Therefore

     VfUf . Hence Y is strongly pseudo-normal.  

 

Corollary 2.3.1: Every quotient space of a strongly pseudo-normal space is 

strongly pseudo-normal. 

Proof: Let X be a strongly pseudo-normal space and R is an equivalence 

relation on X. Since the projection map p:X
R

X
  is open and onto, the 

corollary then follows from the above Theorem 2.3.2. 

    

    Although a subspace of a normal space need not be normal (see [22], p. 

109), we have the following theorem: 

 

Theorem 2.3.3: Every subspace of a strongly pseudo-normal space is 

strongly pseudo-normal. 

Proof: Let X be a strongly pseudo-normal space and XY  . Let 1K  and 2K  

be two disjoint compact subsets in Y. Since 1K  and 2K  are compact in Y, 

these are compact in X too. Since X is strongly pseudo-normal, there exist 

open sets U and V such that UK 1 and VK 2  and VU . Let G= YU 

and H= YV  . Then G and H are open sets in Y with property that GK 1

and HK 2 and HG . Hence Y is strongly pseudo-normal.  

 

Comment 2.3.1: A continuous image of a strongly pseudo-regular               

(strongly pseudo-normal) space need not be strongly pseudo-regular 

(strongly pseudo-normal). 

    For, if  1,TX  is a strongly pseudo-regular (strongly pseudo-normal) space 

and  IX ,  a space with the indiscrete topology, then the identity map 
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),(),(:1 1 IXTXx  is continuous and onto. But  IX ,  is not strongly pseudo-

regular (strongly pseudo-normal). 

 

Theorem 2.3.4: A topological space X is strongly pseudo-normal if for each 

pair of disjoint compact sets K1 and K2 , there exists an open set U such that
cKUUK 21  .  

Proof: Let X be a strongly pseudo-normal space and K1, K2 be two compact 

subsets of X and  21 KK . Since X is strongly pseudo-normal, there exist 

open sets U, V such that VKUK  21 , and VU and so VU  . 

Then cc KVU 2  . So ccc KVVU 2 . Hence we have cKUUK 21  .  

 

Theorem 2.3.5: A topological space X is strongly pseudo-normal if X is 

completely Hausdorff . 

Proof: Let X be a completely Hausdorff space and let A, B be two disjoint 

compact subsets of X. Let Ax and By . Then yx  . Since X is completely 

Hausdorff, there exist open sets yG  and yH such that yGx  and yGy  and 

 yy HG . Obviously }:{ ByH y  is an open cover of B. Since B is 

compact, so there exists a finite sub-cover {
myyy HHH ,...,,

21
} of B. Let 

myyyx HHHH  ...
21

and 
myyyx GGGG  ...

21
. Then xx GxHB  ,  

and  xx HG  i.e., X is strongly pseudo-regular. So for each Ax , there 

exist two open sets xG  and xH  of X such that xGx  and xHB   and 

 xx HG . Hence }:{ AxGx  is an open cover of A. Since A is compact, so 

there exists a finite sub-cover {
nxxx GGG ,...,,

21
} of this cover A. Let 

nxxx GGGG  ...
21

and
nxxx HHHH  ...

21
. Then G, H are open sets 

of X and HBGA  , and  HG . Hence X is strongly pseudo-normal. 
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Theorem 2.3.6: Every strongly pseudo-normal space is strongly pseudo-

regular. 

Proof: Let X be a strongly pseudo-normal space. Let K be a compact subset 

of X and let Xx  such that Kx . Therefore  x and K are disjoint compact 

subsets of X. Since X is strongly pseudo-normal, there exist open sets G and 

H in X such that   Gx   and HK  i.e., Gx  and HK  and  HG . 

Hence X is strongly pseudo-regular. 

 

Theorem 2.3.7: Every normal T1- space is strongly pseudo-regular. 

Proof: Let X be normal and T1. Then by Theorem 3.10 of ([22], p. 108), for 

each Xx  and for each open set G with xGx  , there exists an open set xH in 

X such that xxx GHHx  ….(1) 

    Let K be a compact subset of X and let Xy  such that Ky . We note 

that X is Hausdorff, hence for each Kx , there exist open sets Gx and Vx 

such that xGx , xVy  and  xx VG . By (1), there exists an open set xH in 

X such that xxx GHHx   . Clearly ϰ= KxH x |  and so Ԍ= 
nxx GG ,...,

1
 

is an open cover of K. K being compact, ϰ has a finite sub-cover, say, 

 
nxx HH ,........,

1
. Let G=

nxx GG  ...
1

and V=
nxx VV  ...

1
 . Then G and V are 

open sets in K and VG  . Also if H=
nxx HH  ...

1
, then H is open, H

K and Vx and VH  . Since GHH
nxx },...,{

1
,

nxx HH  ...
1

 is 

contained in G and is disjoint from V.
nxx HH  ...

1
 is a closed set 

containing
nxx HH  ...

1
 and so

nxx HHH  ...
1

 . Hence VH  . Now, 

there exists an open set W in X such that VWWx  . Then

 WHH
nxx ...

1
 i.e., WH . Therefore X is strongly pseudo-

regular. 

 



CHAPTER THREE 
 

Strictly Pseudo-Regular and Strictly  
Pseudo-Normal Topological Spaces 

 
 

  
3.1. Introduction 

     This is the third chapter of our thesis. Here we have defined and studied 

two new classes of topological spaces. A topological space X will be called 

strictly pseudo-regular if for each compact set K and for every Xx with

Kx , there exists a continuous function ]1,0[: Xf  such that f(x) = 0 and 

f(K)=1. X will be called strictly pseudo-normal if for each pair of disjoint 

compact subsets 21 ,KK of X, there exists a continuous function ]1,0[: Xf  

such that f( 1K )=0 and f( 2K )=1. We have established various properties of 

these spaces. The strictly pseudo-regular spaces resemble the completely 

regular spaces. Many such properties hold for these two classes. For 

Hausdorff spaces, ‘completely regular’ and ‘completely normal’ are 

synonymous with ‘strictly pseudo-regular’ and ‘strictly pseudo- normal’ 

spaces respectively. For compact spaces ‘strictly pseudo-regular’ implies 

‘completely regular’ and ‘strictly pseudo- normal’ implies ‘completely 

normal’ . Every metric space is both strictly pseudo-regular and strictly 

pseudo-normal.      
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   We shall now define and study strictly pseudo-regular spaces as a 

generalization of completely regular spaces. 

 

3.2. Strictly Pseudo-Regular Spaces 

 

Definition 3.2.1: A topological space X will be called strictly pseudo-

regular if for each compact set K and for every Xx with Kx , there 

exists a continuous function ]1,0[: Xf  such that f(x) = 0 and f(K)=1. 

 

Example 3.2.1: Let K be a compact subset of ℝ and let x ℝ such that Kx

. Since ℝ is Hausdorff, K is closed and since ℝ is completely regular, there 

exists a continuous function ]1,0[: Xf  such that f(x) = 0 and f(K)=1. Thus 

ℝ is strictly pseudo-regular. 

 

Theorem 3.2.1: Every strictly pseudo-regular compact space is completely 

regular. 

Proof: Let X be compact and strictly pseudo-regular. Let K be a closed 

subset of X and let Xx with Kx .Since X is compact, K is compact. 

Again, since X is strictly pseudo-regular, there exists a continuous function 

]1,0[: Xf  such that f(x)=0 and f(K)=1.  Therefore X is completely 

regular. 

 

Theorem 3.2.2: Every completely regular Hausdorff space is strictly 

pseudo-regular. 

Proof: Let X be a completely regular Hausdorff space. Let K be a compact 

subset of X and Xx  with Kx . Since X is Hausdorff, K is closed. Now, 
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since X is completely regular, there exists a continuous function 

]1,0[: Xf  such that f(x)=0 and f(K)=1. Therefore X is strictly pseudo-

regular. 

 

Theorem 3.2.3: A topological space X is strictly pseudo-regular if for each

Xx and any compact set K not containing x, there exists an open set H of 

X such that cKHHx  . 

Proof: Let X be a strictly pseudo-regular space and let K be compact in X. 

Let Kx i.e., cKx . Since X is strictly pseudo-regular, there exists a 

continuous function ]1,0[: Xf  such that f(x)=0 and f(K) = 1. Let  1,0, ba  

and ba  . Then [0,a) and (b,1] are two disjoint open sets of [0,1]. Since f is 

continuous, f-1 ([0,a)) and f-1 ((b,1]) are two disjoint open sets of X and 

obviously x  f-1 ([0,a)) and K f-1 ((b,1]). Let U = f-1 ([0,a)) and  

V = f-1 ((b,1]) . Then VKUx  , and VU . Then cc KVU  . So 

cVU  = cc KV  . Writing U=H, we have cKHHx   . 

 

Theorem 3.2.4: Any subspace of a strictly pseudo-regular space is strictly 

pseudo-regular. 

Proof: Let X be a strictly pseudo-regular space and XY  . Let Yy  and K 

be a compact subset of Y such that Ky  . Since Yy , so Xy  and since K 

is compact in Y, so K is compact in X. Since X is strictly pseudo-regular, 

there exists a continuous function ]1,0[: Xf  such that f(y)=0 and f(K)=1. 

Therefore the restriction function f  of f is a continuous function ]1,0[: Yf  

such that f(y)=0 and f(K)=1. Hence Y is strictly pseudo-regular.  
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Corollary 3.2.1: Let X be a topological space and A, B are two strictly 

pseudo-regular subspaces of X. Then BA  is strictly pseudo-regular. 

Proof: Since BA  being a subspace of both A and B, BA  is strictly 

pseudo-regular by the above Theorem 3.2.4. 

 

Theorem 3.2.5: Every strictly pseudo-regular space is Hausdorff.  

Proof: Let X be a strictly pseudo-regular space. Let Xyx , with yx  . 

Then{x} is a compact set and   xy  . Since X is strictly pseudo-regular, 

there exists a continuous function ]1,0[: Xf  such that f(y)=0 and 

f({x})=1. Let  1,0, ba  and ba  . Then [0,a) and (b,1] are two disjoint open 

sets of [0,1]. Since f is continuous, f-1 ([0,a)) and f-1 ((b,1]) are two disjoint 

open sets of X and obviously y  f-1 ([0,a)) and {x}  f-1 ((b,1]) i.e., x  f-1 

((b,1]) . Therefore X is Hausdorff.      

 

Theorem 3.2.6: Every strictly pseudo-regular space is pseudo regular. 

Proof: Let X be a strictly pseudo-regular space. Let K be a compact subset 

of X and Xx  with Kx . Since X is strictly pseudo-regular, there exists a 

continuous function ]1,0[: Xf  such that f(x)=0 and f(K)=1. Let  1,0, ba  

and ba  . Then [0,a) and (b,1] are two disjoint open sets of [0,1]. Since f is 

continuous, f-1 ([0,a)) and f-1 ((b,1]) are two disjoint open sets of X and 

obviously x  f-1 ([0,a)) and K  f-1 ((b,1]) .Therefore X is pseudo regular.     
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   We shall now define strictly pseudo-normal spaces as a class of 

specialized pseudo normal spaces (see [23]) and proceed to study them. 

 

3.3. Strictly Pseudo-Normal Spaces 

 

Definition 3.3.1: A topological space X will be called strictly pseudo-

normal if for each pair of disjoint compact subsets 21 ,KK of X, there exists a 

continuous function ]1,0[: Xf  such that f( 1K )=0 and f( 2K )=1.   

 

Example 3.3.1: Let 21 ,KK be two disjoint compact subsets of ℝ. Since ℝ is 

Hausdorff, 21 ,KK are also closed and since ℝ is completely normal, there 

exists a continuous function ]1,0[: Xf  such that f( 1K )=0 and f( 2K )=1. 

Thus ℝ is strictly pseudo-normal. 

 

Theorem 3.3.1: Every strictly pseudo-normal compact space is completely 

normal. 

Proof: Let X be compact and strictly pseudo-normal. Let 21 , KK  be two 

disjoint closed subsets of X. Since X is compact, 21 , KK  are also compact. 

Again, since X is strictly pseudo-normal, there exists a continuous function 

]1,0[: Xf  such that f( 1K )=0 and f( 2K )=1.Therefore X is completely 

normal. 

 

Theorem 3.3.2: Every completely normal Hausdorff space is strictly 

pseudo-normal. 

Proof: Let X be Hausdorff and completely normal. Let 21 , KK   be two 

disjoint compact subsets of X. Since X is Hausdorff, 21 , KK  are closed. 

Again, since X is completely normal, there exists a continuous function 
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]1,0[: Xf  such that f( 1K )=0 and f( 2K )=1. Therefore X is strictly pseudo-

normal. 

 

Theorem 3.3.3: A topological space X is strictly pseudo-normal if each pair 

of disjoint compact sets K1 and K2 , there exists an open set U such that
cKUUK 21  .  

Proof: Let X be a strictly pseudo-normal space and K1, K2 be two compact 

subsets of X and  21 KK . Then cKK 21   . Since X is strictly pseudo-

normal, there exists a continuous function ]1,0[: Xf  such that f( 1K )=0 

and f( 2K )=1. Let  1,0, ba  and ba  . Then [0,a) and (b,1] are two disjoint 

open sets of [0,1]. Since f is continuous f-1 ([0,a)) and f-1 ((b,1]) are two 

disjoint open sets of X and obviously 1K  f-1 ([0,a)) and K2  f-1 ((b,1]).  

Let U = f-1 ([0,a)) and V = f-1 ((b,1]) . Then VKUK  21 ,  and VU  . 

Then cc KVU 2  . So ccc KVVU 2 . Hence we have cKUUK 21  .  

   

    Although a subspace of a normal space need not be normal (see [22], 

p.109), we have the following theorem: 

 

Theorem 3.3.4: Every subspace of a strictly pseudo-normal space is strictly 

pseudo-normal. 

Proof: Let X be a strictly pseudo-normal space and XY  . Let 1K  and 2K  

be two disjoint compact subsets of Y. Since 1K  and 2K  are compact in Y, 

these are compact in X too. Since X is strictly pseudo-normal, there exists a 

continuous function ]1,0[: Xf  such that f( 1K )=0 and f( 2K )=1. Therefore 

the restriction function f  of f  is a continuous function ]1,0[: Yf  such that 

f( 1K )=0 and f( 2K )=1. Hence Y is strictly pseudo-normal.  
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Theorem 3.3.5: Every strictly pseudo-normal space is Hausdorff.  

Proof: Let X be a strictly pseudo-normal space. Let Xyx , with yx  . 

Then{x} and {y}are two disjoint compact subsets of X . Since X is strictly 

pseudo-normal, there exists a continuous function ]1,0[: Xf  such that 

f({x})=0 and f({y})=1. Let  1,0, ba  and ba  . Then [0,a) and (b,1] are two 

disjoint open sets of [0,1]. Since f is continuous, f-1 ([0,a)) and f-1 ((b,1]) are 

two disjoint open sets of X and obviously }{x  f-1 ([0,a)) i.e., x  f-1 ([0,a))  

and {y}  f-1 ((b,1]) i.e., y  f-1 ((b,1]) . Therefore X is Hausdorff.      

 

Theorem 3.3.6: Every strictly pseudo-normal space is pseudo normal. 

Proof: Let X be a strictly pseudo-normal space. Let 1K  and 2K  be two 

disjoint compact subsets of X. Since X is strictly pseudo-normal, there 

exists a continuous function ]1,0[: Xf  such that f( 1K )=0 and f( 2K )=1. Let 

 1,0, ba  and ba  . Then [0,a) and (b,1] are two disjoint open sets of [0,1]. 

Since f is continuous, f-1 ([0,a)) and f-1 ((b,1]) are two disjoint open sets of X 

and 1K  f-1 ([0,a)), 2K  f-1 ((b,1]) .Therefore X is pseudo normal. 

 

Theorem 3.3.7: Every strictly pseudo-normal space is strictly pseudo-

regular. 

Proof: Let X be a strictly pseudo-normal space. Let K be a compact subset 

of X and let Xx  such that Kx . Therefore  x and K are disjoint compact 

subsets of X. Since X is strictly pseudo-normal, there exists a continuous 

function ]1,0[: Xf  such that f({x})=0 and f(K )=1 i.e., f(x)=0 and            

f(K )=1.  Hence X is strictly pseudo-regular. 

 

 



Strictly Pseudo-Regular and Strictly Pseudo-Normal Topological Spaces 32

Theorem 3.3.8: Every metric space is both strictly pseudo-regular and 

strictly pseudo-normal. 

Proof: Since every strictly pseudo-regular, strictly pseudo-normal spaces is 

pseudo-regular, pseudo-normal (Theorem 3.2.6 and Theorem 3.3.6 

respectively), and since every metric space is both pseudo regular and 

pseudo normal (Theorem 1.4.8), therefore, it is strictly pseudo-regular and 

strictly pseudo-normal. 

 

 



CHAPTER FOUR 
 

Nearly Regular Topological Spaces of  
the First Kind and the Second Kind 

 
 
 

4.1. Introduction 

      Regular topological spaces form a very important and interesting class 

of spaces in topology. The class of p-regular spaces is an example of 

generalization of this class ([5]). 

      In this chapter we shall introduce a number of new important 

generalizations of regular spaces. We shall provide examples of such spaces 

and establish some of their important properties. The generalizations to be 

introduced by us in this chapter is nearly regular topological spaces of the 

first kind and the second kind.  

 

   We now define nearly regular spaces of the first kind and proceed to 

study them. 

 

4.2.   Nearly Regular Spaces of the First Kind 

Definition 4.2.1: A topological space X will be called nearly regular of 

the first kind (n. r .f. k.) if there exists a nontrivial closed set F0 such that 

for each Xx , 0Fx , there exist disjoint open sets G and H such that Gx  

and HF 0 . 
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Example 4.2.1: Let 

 

   Here (1,2) is a closed set F0. The points of A are the only points disjoint 

from F0. Each of these points can be separated from F0 by disjoint open sets. 

Let Ax  then  and F0 are desired open sets. Then X is n. r. f. k. but not 

regular. 

   Let F= (1,2)c  

         =  

   Then F is closed .  and F cannot be separated by disjoint open 

sets.  

 

Theorem 4.2.1: Every regular space is nearly regular space of the first kind 

but the converse is not true in general. 

Proof: Let X be a regular space. Let F0 be a closed subset of X and let Xx  

such that 0Fx . Now, since X is regular, there exist disjoint open sets G and 

H such that Gx and HF 0 . Therefore X is nearly regular space of the first 

kind. 

   To see that the converse is always not true,  

let }},,,{},{},,,{},,{,,{},,,,,{ dcbaeebabaXedcbaX  . Then ),( X  is a 

topological space in which the closed sets of X are X,  , 

},{},,,,{},{},,,{ dcdcbaeedc . 

   The closed set },,,{ dcba  and e can be separated by },,,{ dcba  and {e}, but the 

closed set },,{ edc  and a  cannot be separated by disjoint open sets. Thus 

),( X  is nearly regular space of the first kind but not regular.  
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Theorem 4.2.2: A topological space X is nearly regular space of the first 

kind if and only if there exists a closed set F0 such that for each Xx with 

0Fx , there exists an open set G such that Gx cFG 0 . 

Proof: First, suppose that X is nearly regular space of the first kind. Then 

there exists a closed set F0 in X such that for each Xx with 0Fx , there 

exist open sets G and H such that Gx , HF 0 and HG  . It follows 

that cc FHG 0 . Hence cc FHGG 0 . Thus, Gx cFG 0 . 

     Conversely, suppose that there exists a closed subset F0 of X such that 

for each Xx with 0Fx , there exist an open set G in X such that 

Gx cFG 0 . Let 
c

G = H. Then H is open, HG  and Gx  and 

HF 0 . Hence X is nearly regular space of the first kind.    

 

Theorem 4.2.3: Let  IiiX  be a non-empty family of topological spaces, and 

let X=
Ii

iX be the product space. If iX  nearly regular of the first kind, for 

each i, then X is nearly regular of the first kind. 

Proof: Since each iX is nearly regular of  the first kind, there exists, for each 

i, a closed set Fi of Xi such that for each ii Xx   with ii Fx   there are open 

sets Ui, Vi in Xi such that ii Ux  , ii VF  , iU iV = ………………………….(1) 

Let F=
Ii

iF . Then F is closed in X. Let Xx  such that Fx . Let }{ ixx   . 

Then there exists i0 such that
00 ii Fx  . By (1), there are open 

sets
00

, ii HG in
0i

X such that
00 ii Gx  , 

00 ii HF  , 
00 ii HG .  For 

each 0, ijIj  , let jG and jH be open sets in jX  such that jj Gx  , jj HF  . 

Then 



Ii

iGG , 



Ii

iHH are open sets in X such that Gx , HF   and 

HG . Therefore, X is nearly regular space of the first kind.  
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Theorem 4.2.4: Let  IiiX  be a non-empty family of topological spaces, and 

let X=
Ii

iX be the product space. If X is nearly regular of the first kind, 

then at least one of the Xi’s is nearly regular of the first kind. 

Proof: Let X be a nearly regular space of the first kind. Then there exists a 

closed set F in X such that for every Xx , Fx , there are open sets U and 

V in X such that Ux  and VF  and VU . Let, for each ii FFIi  )(,  

where ii XX : is the projection map. Then each Fi is closed in Xi. For 

each ,Ii let ii Xx   be such that ii Fx   . Let }{ ixx  . Then Fx . Since X is 

nearly regular space of the first kind, there are open sets G and H in X such 

that Gx , HF  and HG  .  Let ii GG )( , ii HH )( . Then iG and Hi 

are open in Xi, for each Ii . Since HG  there exists Ii 0 such that 


00 ii HG . Clearly,

00 ii Gx  , 
00 ii HF  . Hence

0i
X is nearly regular of the 

first kind. 

 

Theorem 4.2.5: Every subspace of a nearly regular space of the first kind is 

nearly regular space of the first kind. 

Proof: Let X be a nearly regular first kind space and Y a subspace of X. 

Since X is nearly regular first kind space, there exists a closed set F  in X 

which can be separated from each point of X which is not contained in F.  

Then for each XYy  , Fy , there exist open sets U1, U2 in X such 

that 1Uy , 2UF   with  21 UU  . Let FYF 0 . Then 0F  is closed in Y 

and clearly 0Fy  .Also let 11 UYV  , 22 UYV  . Then V1 and V2 are 

disjoint open sets in Y where 1Vy , 20 VF  . Hence Y is nearly regular space 

of the first kind. 
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Corollary 4.2.1: Let X be a topological space and A, B are two nearly 

regular subspaces of X of the first kind. Then BA  is nearly regular space 

of the first kind. 

Proof: BA  being a subspace of both A and B, BA  is nearly regular 

space of the first kind by the above Theorem 4.2.5. 

 

Theorem 4.2.6: Let X be a nearly regular T1-space of the first kind and R is 

an equivalence relation of X. If the projection mapping p:X
R

X
 is closed. 

Then R is a closed subset of XX.  

Proof: We shall prove that cR  is open. So, let   cRyx , . It is sufficient to 

show that there exist two open sets G and H of X such that Gx and 

Hy and GH cR . For that  )()( HpGp . Since   cRyx , ,    ypxp  i.e; 

  yppx 1 .Again, since  y  is closed and since p closed mapping, p(y) is 

closed and since p is a continuous mapping,   ypp 1 is closed. So by the 

nearly regularity of X of the first kind, there exist disjoint open sets G and U 

in X such that Gx and    Uypp 1 .Since p is a closed mapping, there 

exists an open set V containing p(y) such that      UVpypp   11  . 

Writing   HVp 1  , we have GH cR . 

 

Corollary 4.2.2: Let X be a nearly regular T1-space of the first kind. R is an 

equivalence relation of X and p:X
R

X
 is closed and open mapping. Then 

R

X
 is Hausdorff. 

Proof: Since p:X
R

X
 is closed, by the proof of the above Theorem 4.2.6, R 

is a closed subset of XX. Let  xp  and  yp be two distinct points of 
R

X
. 
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Therefore   Ryx , . Since R is a closed subset of XX, there exist open sets 

G, H in X such that Gx and Hy and GH cR . So        HpypGpxp  ,  . 

Since p is open, p(G) and p(H) are open sets of 
R

X
 and since 

GH cR ,  )()( HpGp .Thus 
R

X
 is Hausdorff. 
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      We now define nearly regular spaces of the second kind and proceed 

to study them. 

 

4.3 .  Nearly Regular Spaces of the Second Kind 

Definition 4.3.1: A topological space X will be called nearly regular of 

the second kind (n. r. s. k.)  if there exists a point Xx 0  such that for each 

nontrivial closed set F in X with Fx 0 , there exist disjoint open sets G and 

H such that Gx 0  and HF  . 

 

Example 4.3.1: Let 0x  be a point in  such that for every closed set F in 

, Fx 0 .Since  is 1T ,  0x is closed and since  is normal and F is 

closed,  0x  and F can be separated by disjoint open sets. Thus  is nearly 

regular of the second kind. 

 

Example 4.3.2: The Example 4.2.1 of n. r. f. k. is not n. r. s. k. 

The closed sets of the form: 

(1,2), (1,2)c, {y1,y2}. 

Let  . Let F={y1,y2}. If , then z and F can be separated by 

disjoint open sets.  

If , then z = y2 for some {y1,y2} . So, z cannot be separated 

from F={y1,y2}.    
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Theorem 4.3.1: Every regular space is nearly regular space of the second 

kind but the converse is not true in general. 

Proof: Let X be a regular space. Let 0x  be a point in X and let F be a closed 

subset in X such that Fx 0 . Now, since X is regular, there exist disjoint 

open sets G and H such that Gx 0 and HF  . Therefore X is nearly regular 

of the second kind. 

   To see that the converse is always not true,  

let  

Let (n0, n0+1). The closed sets are finite unions of  and (n, 

n+1)   and (n0,n0+1) are separated by   and  .  Thus X is 

n.r.s.k. But is not regular. Because if x = 5 and F = (5, 6), then F is closed 

and x  F. But X and F can be separated by disjoint open sets.    

Theorem 4.3.2: A topological space X is nearly regular space of the second 

kind if and only if there exists a point 0x in X such that for each nontrivial 

closed set F in X with Fx 0 , there exists an open set G such that 

cFGGx 0 . 

Proof: First, suppose that X be a nearly regular space of the second kind. 

Then there exists a point Xx 0  such that for each nontrivial closed set F in 

X with Fx 0 , there exist open sets G and H such that Gx 0 , HF  and 

HG .It follows that cc FHG  .  Hence cc FHGG  . Thus, 

Gx 0
cFG  . 

    Conversely, suppose that there exists a point 0x in X such that for each 

nontrivial closed set F in X with Fx 0 , there exists an open set G such that 

cFGGx 0 . Let 
c

G = H. Then H is open, HG and 

Gx 0 and HF  . Hence X is nearly regular space of the second kind.    
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Theorem 4.3.3: Let  IiiX  be a non-empty family of topological spaces, and 

let X=
Ii

iX be the product space. If iX  nearly regular of the second kind, for 

each i, then X is nearly regular of the second kind. 

Proof: Since each iX is nearly regular of the second kind, there exists, for 

each i, a point xi in Xi such that for each closed subset Fi  in Xi  with ii Fx   

there are open sets Ui, Vi in Xi such that ii Ux  , ii VF  , 

iU iV = ………………………….(1) 

Let F=
Ii

iF . Then F is closed in X. Let Xx such that Fx . Let }{ ixx   . 

Then there exists i0 such that
00 ii Fx  . By (1), there are open sets 

00
, ii HG  

in
0i

X such that
00 ii Gx  , 

00 ii HF  , 
00 ii HG .  For each 0, ijIj  , 

let jG and jH be open sets in jX  such that jj Gx  , jj HF  . 

Then 



Ii

iGG , 



Ii

iHH are open sets in X such that Gx ,  HF   and 

HG . Therefore, X is nearly regular space of the second kind.  

 

Theorem 4.3.4: Let  IiiX  be a non-empty family of topological spaces, and 

let X=
Ii

iX be the product space. If X is nearly regular of the second kind, 

then at least one of the Xi’s is nearly regular of the second kind. 

Proof: The proof of the Theorem 4.3.4 of the above is almost similar to the 

proof of the Theorem 4.2.4. 

 

Theorem 4.3.5: Any subspace of a nearly regular space of the second kind 

is nearly regular space of the second kind. 

Proof: The proof of the Theorem 4.3.5 follows from the proof of the 

Theorem 4.2.5. 
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Corollary 4.3.1: Let X be a topological space and A, B are two nearly 

regular subspaces of X of the second kind. Then BA  is nearly regular 

space of the second kind. 

Proof: The proof of the Corollary 4.3.1 of the above is almost similar to the 

proof of the Corollary 4.2.1. 

 

Theorem 4.3.6: Let X be a nearly regular T1-space of the second kind and R 

is an equivalence relation of X. If the projection mapping p:X
R

X
 is closed. 

Then R is a closed subset of XX.  

Proof: The proof of the Theorem 4.3.6 is most similar to the proof of the 

Theorem 4.2.6. 

 

Corollary 4.3.2: Let X be a nearly regular T1-space of the second kind. R is 

an equivalence relation of X and p:X
R

X
 is closed and open mapping. Then 

R

X
 is Hausdorff. 

Proof: The proof of the Corollary 4.3.2 follows from the proof of the 

Corollary 4.2.2. 

 

Theorem 4.3.7: Every metric space is both n. r. f. k. and n. r. s. k. 

Proof: Since every metric space is regular, therefore, it is n. r. f. k. and n. r. 

s. k.  



 

CHAPTER FIVE 

 

Nearly Normal Topological Spaces of 
the First Kind and the Second Kind 

 

 

5.1.  Introduction 

       A number of generalizations of normal topological spaces have been defined 

and studied earlier. p-normal,  -normal,  -normal and mildly normal spaces ([5], 

[8], [9], [15], [36]) are several examples of some of these. 

         In this fifth chapter we have defined two new generalizations of normal spaces. 

These have been called nearly normal topological spaces of the first kind and the 

second kind. We have provided examples and established many properties of such 

spaces.   

 

   We now define nearly normal spaces of the first kind and proceed to study them. 

 

5.2.  Nearly Normal Spaces of the First Kind 

Definition 5.2.1:A topological space X will be called nearly normal of the first 

kind (n. n. f. k) if there exists a nontrivial closed set F0 in X such that, for each 

nontrivial closed set F in X which is disjoint from F0, F0 and F can be separated by 

disjoint open sets in X. This space will be denoted by (X, 𝑭𝟎). 
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Theorem 5.2.1: Every normal space is nearly normal space of the first kind but the 

converse is not true in general. 

Proof: Let X be a normal space. Let F0 be a closed set in X such that, for every 

closed set H in X such that HF0 . Now, since X is normal, there exist disjoint 

open sets 1G , 2G in X such that 10 GF  and 2GH  .Therefore X is nearly normal 

space of the first kind. 

    To see that the converse is always not true, 

let 𝑋 = ℝ, ℑ = ⟨ℝ, ∅, (1,2), (1,2) , (2,3), (2,3) , (2,4), (2,4) , (2,7), (2,7) , (4,5) ⟩ 

   Let F0=(1,2) . Clearly F0 is closed.(1,2) , (2,3), (2,4), (4,5), (2,7) are nontrivial 

closed sets in X. F0 can be separated from each of them by open sets, but

)5,4()4,2(  and )5,4()3,2(   are disjoint closed sets which can’t be separated by 

disjoint open sets. Hence (X, F0) is n. n. f. k. but not normal. 

[Many such examples can be easily constructed.] 

 

Theorem 5.2.2: A topological space X is nearly normal space of the first kind if 

and only if there is a nontrivial closed set F0 in X such that, for every nontrivial 

closed set F in X  which are disjoint from F0 and an open set G such that 

cFGGF )(0  .  

Proof: First, suppose that X is nearly normal space of the first kind. Then there is a 

nontrivial closed set F0 in X such that, for every nontrivial closed set F in X such 

that FF0 and there are open sets G, H in X such that GF 0 and HF  and

HG . It follows that cc FHG )( . Hence cc FHGG )( . Thus, 

cFGGF )(0  . 
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    Conversely, suppose that there is a nontrivial closed set F0 in X such that, for 

every nontrivial closed set F in X which are disjoint from F0 and an open set G 

such that cFGGF )(0  . Here GF 0 and
c

GF  . Let HG
c
 . Then H is open, 

HF  and HG . Hence X is nearly normal space of the first kind. 

 

Theorem 5.2.3: Let  IiiX  be a non-empty family of topological spaces, and let X=


Ii

iX be the product space. If iX  is nearly normal of the first kind, for each i, then 

X is nearly normal of the first kind. 

Proof: Since each iX is nearly normal of the first kind, there exists, for each Ii , a 

nontrivial closed set Fi of Xi such that for each nontrivial closed set Hi in iX  with

 ii HF , there are open sets Ui, Vi in Xi such that ii UF  , ii VH   and iU iV =

………………………….(1) 

       Let F=
Ii

iF . Then F is a nontrivial closed in X. Let K be a nontrivial closed 

subset of X such that KF .Let, for each ii KKIi  )(,  where ii XX : is the 

projection map. Then Ki is nontrivial closed in Xi. By (1), there are open sets
/, ii WW in iX  such that ii WF  , /

ii WK  . Let 



Ii

iWW , 



Ii

iWW // . Then WF  , 

/WK  and  /WW . Therefore, X is nearly normal space of the first kind.  
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Theorem 5.2.4: Every open and one-one image of a nearly normal space of the 

first kind is nearly normal space of the first kind. 

Proof: Let X be a nearly normal space of the first kind and Y a topological space 

and let YXf :  be an open and onto mapping. Since X is nearly normal space of 

the first kind, there is a nontrivial closed set F in X such that, for every nontrivial 

closed set H in X such that HF , there are open sets U, V in X such that 

UF  , VH  and VU .Since f is open, )( cFf and )( cHf are open in Y. So

ccFf ))(( and ccHf ))(( are closed in Y.  

      Now, cF cH =X and so cFf ( cH ) =Y, i.e., )( cFf )( cHf =Y. Hence

ccFf ))(( ccHf ))(( . Let ccFfy ))((0  . Then )(0
cFfy  i.e., there exists cFx 0 , 

00 )( yxf  . Hence Fx 1 such that 01 )( yxf  , since f is onto. Thus )(0 Ffy  . Hence

)())(( FfFf cc  . Similarly, )())(( HfHf cc  . 

     Now, )()( UfFf  , )()( VfHf  , f being open and one-one, )(Uf , )(Vf are open 

and disjoint in Y. Thus for a nontrivial closed set ccFf ))(( in Y such that, for every 

nontrivial closed sets ccHf ))((  in Y such that ccFf ))((  ccHf ))(( , there are open 

sets )(Uf , )(Vf in Y such that )())(( UfFf cc  , )())(( VfHf cc   and .)()(  VfUf

Hence Y is nearly normal space of the first kind. 

 

Corollary 5.2.1: Every quotient space of a nearly normal space of the first kind is 

nearly normal space of the first kind. 

Proof: Let X be a nearly normal space of the first kind and R is an equivalence 

relation on X. Since the projection map p:X
R

X
  is open and onto, the corollary 

then follows from the above Theorem 5.2.4. 
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Theorem 5.2.5: Let X be a nearly normal space of the first kind and Y is a 

subspace of X. Then Y is a nearly normal space of the first kind. 

Proof: Since X is nearly normal space of the first kind, there is a nontrivial closed 

set F in X such that, for every nontrivial closed set H in X such that HF , 

there are open sets U, V in X such that UF  , VH  and VU . Let FYF /

and HYH / . Then for a nontrivial closed set /F  in Y such that, for every 

nontrivial closed set H/ in Y such that  // HF . Also let UYU / , VYV / . 

Then U/, V/ are open sets in Y and /U /V  and // UF  , // VH  . Hence Y is 

nearly normal space of the first kind. 

 

Remark 5.2.1: The corresponding theorem does not hold for normal spaces. The 

validity of the proof in Theorem 5.2.5 above depends on the separablity of a 

particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of 

Munkres [10]). 

 

 Comment 5.2.1: A continuous image of a nearly regular space of the first kind 

(nearly normal space of the first kind) need not be nearly regular space of the first 

kind (nearly normal space of the first kind). 

      For if  1,TX  is a nearly regular space of the first kind (nearly normal space of 

the first kind) and  2,TX  a space with the indiscrete topology, then the identity 

map XXx :1 is continuous and onto. But  2,TX  is not nearly regular space of 

the first kind (nearly normal space of the first kind). 
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Theorem 5.2.6: Each compact Hausdorff space is nearly normal space of the first 

kind. 

Proof: Let X be a compact Hausdorff space and let for a nontrivial closed subset 

A, there is a nontrivial closed subset B in X which is disjoint from A. Let Ax and

By . Then yx  . Since X is Hausdorff, there exist disjoint open sets yG  and yH

such that yGx and yGy . Obviously }:{ ByH y  is an open cover of B. 

Since B is a closed subset of X, B is compact. So there exist a finite subcover         

{
myyy HHH ,...,,

21
} of B. Let 

myyyx HHHH  ...
21

and 
myyyx GGGG  ...

21
. 

Then xx GxHB  ,  and  xx GH i.e., X is nearly regular space of the first kind. 

So for each Ax , there exist two disjoint open sets xG  and xH  of X such that xGx

and xHB  . Hence }:{ AxGx  is an open cover of A. Since A is a closed subset of 

X, A is compact. So there exist a finite subcover   {
nxxx GGG ,...,,

21
} of this cover A. 

Let 
nxxx GGGG  ...

21
and 

nxxx HHHH  ...
21

. Then G, H are open sets of 

X and HBGA  , and HG . Hence the proof. 

 

Remark 5.2.2: It follows from the above proof that every compact Hausdorff 

space is nearly regular space of the first kind. 

 

Theorem 5.2.7: Every locally compact Hausdorff space is nearly regular space of 

the first kind. 

Proof: Let X be a locally compact Hausdorff space. Then there exists one point 

compactification X  of X. Then, X  is Hausdorff and compact. According to the 
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above Remark 5.2.2, X  is nearly regular space of first kind. Again, according to 

Theorem 5.2.5, as a subspace of X  , X is nearly regular space of the first kind.  

 

Theorem 5.2.8: Let X be a T1- space. Then X is nearly normal space of the first 

kind if and only if X is nearly regular space of the first kind. 

Proof: First, suppose that X be a nearly normal space of the first kind. Let x be a 

point in X and let F0 be a nontrivial closed subset of X such that 0Fx . Since X is 

T1- space, {x} is closed subset of X. We have {x}  F . Since X is nearly 

normal space of the first kind, there are open sets G and H such that                      

{x}  HGHFG ,, 0 i.e., x  HGHFG ,, 0  . Hence X is nearly regular 

space of the first kind. 

     Conversely, suppose that X be a nearly regular space of the first kind. Let x be a 

point in X and let F0 be a nontrivial closed subset of X such that 0Fx . Since X is 

T1- space, {x} is closed subset of X. We have {x}  0F . Since X is nearly 

regular space of the first kind, there exist open sets G and H such that x

 HGHFG ,, 0 i.e.,{x}  HGHFG ,, 0 . Hence X is nearly normal 

space of the first kind.    

 

Theorem 5.2.9: Every metric space is nearly normal space of the first kind. 

Proof: Since every metric space is normal, therefore it is nearly normal space of 

the first kind.  
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    We now define nearly normal spaces of the second kind and proceed to 

study them. 

 

5.3.  Nearly Normal Spaces of the Second Kind 

Definition 5.3.1: A topological space X will be called nearly normal of the 

second kind (n. n. s. k) if for each nontrivial closed set F1, there exists a nontrivial 

closed set F2 in X which is disjoint from F1 such that F1 and F2 can be separated by 

disjoint open sets in X. 

 

Example 5.3.1: Every n. n. f. k. is n. n. s. k. 

[We are to construct an example of an n. n. s. k. space which is not n. n. f. k.] 

 

Theorem 5.3.1: Every normal space is nearly normal space of the second kind but 

the converse is not true in general. 

Proof: Let X be a normal space. Let F be a closed set in X such that, there exists a 

closed set H in X such that HF . Now, since X is normal, there exist disjoint 

open sets 1G , 2G in X such that 1GF  and 2GH  .Therefore X is nearly normal space 

of the second kind. 

   To see that the converse is always not true, 

the proof is most similar to the proof of the last part of Theorem 5.2.1 of n. n. f. k. 
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Theorem 5.3.2: A topological space X is nearly normal space of the second kind if 

and only if for each nontrivial closed set F in X such that, there is a nontrivial 

closed set F0 in X which is disjoint from F and an open set G such that 

cFGGF 0 .  

Proof: First, suppose that X is nearly normal space of the second kind. Then for 

each nontrivial closed set F in X such that, there is a nontrivial closed set F0 in X 

such that FF0  and there are open sets G, H in X such that GF  and HF 0

and HG . It follows that cc FHG 0 . Hence cc FHGG 0 . Thus, 

cFGGF 0 . 

    Conversely, suppose that for each nontrivial closed set F in X such that, there is 

a nontrivial closed set F0 in X which is disjoint from F and an open set G such that 

cFGGF 0 . Here GF  and
c

GF 0 . Let HG
c
 . Then H is open, HF 0 and

HG . Hence X is nearly normal space of the second kind. 

 

Theorem 5.3.3: Let  IiiX  be a non-empty family of topological spaces, and let X=


Ii

iX be the product space. If iX  is nearly normal of the second kind, for each i, 

then X is nearly normal of the second kind. 

Proof: Since each iX is nearly normal of the second kind, for each Ii , for each 

nontrivial closed set Fi of Xi such that there exists a nontrivial closed set Hi in iX  

with  ii HF , there are open sets Ui, Vi in Xi such that ii UF  , ii VH   and iU

iV =………………………….(1) 
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   Let F=
Ii

iF . Then F is closed in X. Let K be a nontrivial closed subset of X such 

that KF . Let, for each ii KKIi  )(,  where ii XX : is the projection map. 

Then Ki is closed in Xi. By (1), there are open sets /, ii WW in iX  such that ii WF  , 

/
ii WK  . Let 




Ii

iWW , 



Ii

iWW // . Then WF  , /WK  and  /WW . 

Therefore, X is nearly normal space of the second kind.  

 

Theorem 5.3.4: Every open and one-one image of a nearly normal space of the 

second kind is nearly normal space of the second kind. 

Proof: The proof of the Theorem 5.3.4 of the above is almost similar to the proof 

of the Theorem 5.2.4. 

 

Corollary 5.3.1: Every quotient space of a nearly normal space of the second kind 

is nearly normal space of the second kind. 

Proof: The proof of the Corollary 5.3.1 is most similar to the proof of the 

Corollary 5.2.1. 

 

Theorem 5.3.5: Let X be a nearly normal space of the second kind and Y is a 

subspace of X. Then Y is a nearly normal space of the second kind. 

Proof: The proof of the Theorem 5.3.5 follows from the proof of the Theorem 

5.2.5. 
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Remark 5.3.1: The corresponding theorem does not hold for normal spaces. The 

validity of the proof in Theorem 5.3.5 above depends on the separablity of a 

particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of 

Munkres [10]). 

Comment 5.3.1: A continuous image of a nearly regular space of the second kind 

(nearly normal space of the second kind) need not be nearly regular space of the 

second kind (nearly normal space of the second kind). 

     For if  1,TX  is a nearly regular space of the second kind (nearly normal space 

of the second kind) and  2,TX  a space with the indiscrete topology, then the 

identity map XXx :1 is continuous and onto. But  2,TX  is not nearly regular 

space of the second kind (nearly normal space of the second kind). 

 

Theorem 5.3.6: Each compact Hausdorff space is nearly normal space of the 

second kind. 

Proof: The proof of the Theorem 5.3.6 is most similar to the proof of the Theorem 

5.2.6. 

 

Theorem 5.3.7: Every locally compact Hausdorff space is nearly regular space of 

the second kind. 

Proof: The proof of the Theorem 5.3.7 of the above is almost similar to the proof 

of the Theorem 5.2.7. 
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Theorem 5.3.8: Let X be a T1- space and x0 be a point in X. X is nearly normal 

space of the second kind if and only if X is nearly regular space of the second kind. 

Proof: The proof of the Theorem 5.3.8 is almost similar to the proof of the 

Theorem 5.2.8. 

 

Theorem 5.3.9: Every metric space is nearly normal space of the second kind. 

Proof: Since every metric space is normal, therefore, it is nearly normal space of 

the second kind.  

 



 

CHAPTER SIX 

 

Slightly Normal Topological Spaces of the First Kind  
and the Second Kind and the Third Kind 

 

 

6.1.  Introduction 

 
    Two types of generalizations of normal spaces different from those considered in 

the last chapter have been defined in this chapter. A topological space X in which a 

particular pair of disjoint closed subsets can be separated by disjoint open sets will 

be called a slightly normal space of the first kind. Generalizing this concept, we shall 

call a topological space X a slightly normal space of the second kind (third kind) if 

there is a finite (countable) collection of mutually disjoint closed subsets in X, for 

which each pair can be separated by disjoint open sets. We have studied these classes 

closely, and established a number of important properties of these spaces which 

resemble those of normal spaces. 

  

    We now define slightly normal spaces of the first kind and proceed to study them. 

 

6.2.  Slightly Normal Spaces of the First Kind 

Definition 6.2.1: A topological space X will be called slightly normal of the first 

kind (s. n. f. k.) if there exist two disjoint nontrivial closed sets F1, F2 in X such 

that F1 and F2 can be separated by disjoint open sets. This space will be denoted by 

(X; F1, F2). 
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Example 6.2.1: Every normal space is slightly normal space of the first kind. 

 

Example 6.2.2: Let 𝑋 = ℝ, ℑ = ⟨ℝ, ∅, (1,4), (1,4) , (5,7) ⟩ 

Then the disjoint closed sets (1,4) and (1,4)c can be separated by disjoint open sets, 

but (1,4) and (5,7) are disjoint closed sets and these can’t be separated by disjoint 

open sets. Thus (𝑿, 𝕴) is s. n. f. k. but not normal. Here X=(𝑿;(𝟏, 𝟒), (𝟏, 𝟒)𝒄). 

 

Comment 6.2.1: It is easy to see that there are infinitely many s. n. f. k. which are 

not normal. 

 

Theorem 6.2.1: Every normal space is slightly normal space of the first kind but 

the converse is not true in general. 

Proof: Let X be a normal space. Let 1F , 2F be two disjoint nontrivial closed sets in 

X. Now, since X is normal, there exist disjoint open sets 1G , 2G  in X such that

11 GF  and 22 GF  . Therefore X is slightly normal space of the first kind. 

   To see that the converse is always not true,  

let }},,{},,{},{},,,,{},,,,{},{},,,{},,{,,{},,,,,{ dcbebbedcbdcbaeebabaXedcbaX  . 

Then ),( X  is a topological space in which the closed sets of X are X, ,

},{},,,,{},{},,,{ dcdcbaeedc ,{a},{a, c, d, e},{a, c, d},{a, b} . 

   The closed sets },,,{ dcba  and {e} can be separated by },,,{ dcba  and {e}, but the 

closed sets },,{ edc  and {a} cannot be separated by disjoint open sets. Thus ),( X  is 

slightly normal space of the first kind but not normal.  

 

 



Slightly Normal Topological Spaces of the First Kind and the Second Kind and the Third Kind 

 

57

Theorem 6.2.2: A topological space X is slightly normal space of the first kind if 

and only if there exist two disjoint nontrivial closed sets F1, F2 and an open set G 

such that cFGGF 21  .  

Proof: First, suppose that X is slightly normal space of the first kind. Then there 

exist disjoint nontrivial closed sets F1, F2 and open sets G, H in X such that GF 1

and HF 2  and HG  . It follows that cc FHG 2 . Hence cc FHGG 2 . 

Thus, cFGGF 21  .  

    Conversely, suppose that there exist disjoint nontrivial closed sets F1, F2 and an 

open set G in X such that cFGGF 21  . Here GF 1 and
c

GF 2 . Let HG
c
 . 

Then H is open, HF 2 and HG . Hence X is slightly normal space of the first 

kind.  

  

Theorem 6.2.3: Let  IiiX  be a non-empty family of topological spaces, and let X=


Ii

iX be the product space. If each iX  is slightly normal of the first kind, then X is 

slightly normal of the first kind. 

Proof: Since each iX is slightly normal of the first kind, there exist for each i, two 

nontrivial closed sets Fi, Hi and two open sets Ui, Vi in  Xi such that ii UF  , 

ii VH  , iF iH , iU iV = .  

Let F=
Ii

iF , H=
Ii

iH . Then F and H are closed sets in X. Clearly, HF . Let





Ii

iUU , 



Ii

iVV . Then, U and V are open sets in X, and UF  , VH  and

VU . Therefore, X is slightly normal space of the first kind.  
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Theorem 6.2.4: Every open and one-one image of a slightly normal space of the 

first kind is slightly normal space of the first kind.  

Proof: Let X be a slightly normal space of the first kind and Y a topological space 

and let YXf :  be an open and onto mapping. Since X is slightly normal space of 

the first kind, there exist disjoint nontrivial closed sets 1F , 2F  and  disjoint open 

sets 1G , 2G  in X such that 11 GF  and 22 GF  . Since f is open, )( 1
cFf and )( 2

cFf are 

open in Y. So ccFf ))(( 1 and ccFf ))(( 2 are closed in Y.  

     Now, cF1
cF2 =X and so cFf 1( cF2 ) =Y, i.e., )( 1

cFf )( 2
cFf =Y. Hence

ccFf ))(( 1 ccFf ))(( 2 . Let ccFfy ))(( 1 . Then )( 1
cFfy  i.e., for every cFx 1 , 

yxf )( . Hence there exists 11 Fx   such that yxf )( 1 , since f is onto. Thus

)( 1Ffy . Hence )())(( 11 FfFf cc  . Similarly, )())(( 22 FfFf cc  . 

    Now, )()( 11 GfFf  , )()( 22 GfFf  , f being open and one-one, )( 1Gf , )( 2Gf are 

open and disjoint in Y. Thus for the disjoint nontrivial closed sets ccFf ))(( 1 , ccFf ))(( 2  

in Y and there exist disjoint open sets )( 1Gf , )( 2Gf  in Y such that )())(( 11 GfFf cc 

and )())(( 22 GfFf cc  . Hence Y is slightly normal space of the first kind. 

  

Corollary 6.2.1: Every quotient space of a slightly normal space of the first kind is 

slightly normal space of the first kind. 

Proof: Let X be a slightly normal space of the first kind and R is an equivalence 

relation on X. Since the projection map p:X
R

X
  is open and onto, the corollary 

then follows from the above Theorem 6.2.4. 

 

 

Theorem 6.2.5: Let X be a slightly normal space of the first kind and Y is a 

subspace of X. Then Y is a slightly normal space of the first kind.  
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Proof: Since X is slightly normal space of the first kind, there exist disjoint 

nontrivial closed sets 1F , 2F  and  disjoint open sets 1G , 2G  in X such that 11 GF  and 

22 GF  . Let 11 FYH   and 22 FYH  . Then 1H , 2H are closed in Y and 1H 2H

. Also let 11 GYV  , 22 GYV  . Then 1V 2V  and 11 VH  , 22 VH  . Hence Y is 

slightly normal space of the first kind.  

 

Remark 6.2.1: The corresponding theorem does not hold for normal spaces. The 

validity of the proof in Theorem 6.2.5 above depends on the separablity of a 

particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of 

Munkres [10]). 

 

Comment 6.2.1: A continuous image of a slightly normal space of the first kind 

need not be slightly normal space of the first kind. 

    For if  1,TX  is a slightly normal space of the first kind) and  2,TX  a space with 

the indiscrete topology, then the identity map XXx :1 is continuous and onto. 

But  2,TX  is not slightly normal space of the first kind. 

 

Theorem 6.2.6: Each compact Hausdorff space is slightly normal space of the first 

kind. 

Proof: Let X be a compact Hausdorff space and let A, B be two disjoint closed 

subsets of X. Let Ax  and By . Then yx  . Since X is Hausdorff, there exist 

disjoint open sets yG  and yH such that yGx and yHy . Obviously }:{ ByH y  is 

an open cover of B. 

       Since B is a closed subset of X, B is compact. So there exists a finite sub-cover       

{
myyy HHH ,...,,

21
} of B. Let 

myyyx HHHH  ...
21

and 
myyyx GGGG  ...

21
. 

Then xx GxHB  ,  and  xx GH  . So for each Ax  there exist two disjoint 
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open sets xG  and xH  of X such that xGx and xHB  . Hence }:{ AxGx  is an open 

cover of A. Since A is a closed subset of X, A is compact. So there exists a finite 

sub-cover{
nxxx GGG ,...,,

21
}of this cover A. Let 

nxxx GGGG  ...
21

and 

nxxx HHHH  ...
21

. Then G, H are open sets of X and HBGA  , and

HG . 

 

Theorem 6.2.7: Every metric space is slightly normal space of the first kind. 

Proof: Since every metric space is normal, therefore it is slightly normal space of 

the first kind.  
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    We now define slightly normal spaces of the second kind and proceed to 

study them. 

 

6.3.  Slightly Normal Spaces of the Second Kind 

Definition 6.3.1: A topological space X will be called slightly normal of the 

second kind (s. n. s. k) if there exists a finite collection ℱ of pairwise disjoint 

nontrivial closed sets in X such that, for each pair F1, F2 in ℱ, F1 and F2 can be 

separated by disjoint open sets in X. This space will be denoted by (X,𝓕). 

 

Example 6.3.1:  

Let 𝑋 = ℝ, ℑ = ⟨ℝ, ∅, ℚ, ℚ , (1,2), (1,2) , (3,4), (3,4) , ⋯ , (15,16), (15,16) ⟩ 

Let ℱ = {(1,2), (3,4), (5,6), ⋯ , (15,16)}. Then ℱ is a finite collection of pairwise 

disjoint nontrivial closed sets in X such that, for each distinct pair F1, F2 in ℱ, F1 

and F2 can be separated by disjoint open sets, since each of these is open as well. 

Thus (𝑿, 𝕴) is s. n. s. k. However X is not normal, for let A = [(1,2) ⋂ ℚ]∪[(3,4) 

⋂ ℚc] and B = [(1,2) ⋂ ℚc] ∪[(3,4) ⋂ ℚ].  Then A and B are disjoint closed sets 

but they can’t be separated by disjoint open sets.  

Here X=(𝑿;(𝟏, 𝟐), (𝟑, 𝟒), (𝟓, 𝟔), ⋯ , (𝟏𝟓, 𝟏𝟔)).  

 

Comment 6.3.1: Obviously an infinite number of such examples can be 

constructed. 

 
Theorem 6.3.1: A topological space X is slightly normal space of the second kind 

if and only if there exists a finite collection  ℱ of pairwise disjoint nontrivial closed 

sets F1, F2 and an open set G such that cFGGF 21  .  

Proof: First, suppose that X is slightly normal space of the second kind. Then there 

exists a finite collection ℱ of pairwise disjoint nontrivial closed sets such that for 
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each pair F1, F2 in ℱ, there exist open sets G, H in X such that GF 1  and HF 2  

and HG  . It follows that cc FHG 2 . Hence cc FHGG 2 . Thus, 

cFGGF 21  .  

    Conversely, suppose that there exists a finite collection ℱ of pairwise disjoint 

nontrivial closed sets such that for each pair F1, F2 in ℱ, there exist an open set G 

in X such that cFGGF 21  . Here GF 1 and
c

GF 2 . Let HG
c
 . Then H is 

open, HF 2 and HG . Hence X is slightly normal space of the second kind. 

   

Theorem 6.3.2: Let  IiiX  be a non-empty family of topological spaces, and let X=


Ii

iX be the product space. If each iX  is slightly normal of the second kind, then X 

is slightly normal of the second kind. 

Proof: Since each iX is slightly normal of the second kind, there exists for each i, a 

finite collection ℱ of pairwise disjoint nontrivial closed sets such that for each pair 

Fi, Hi in ℱ , there exist open sets Ui, Vi in  Xi such that ii UF  , ii VH  , iF iH

, iU iV = .  

Let F=
Ii

iF , H=
Ii

iH . Then F and H are closed sets in X. Clearly, HF . Let





Ii

iUU , 



Ii

iVV . Then, U and V are open sets in X, and UF  , VH  and

VU . Therefore, X is slightly normal space of the second kind.  

 

Theorem 6.3.3: Every open and one-one image of a slightly normal space of the 

second kind is slightly normal space of the second kind. 

Proof: The proof of the Theorem 6.3.3 of the above is almost similar to the proof 

of the Theorem 6.2.4. 
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Corollary 6.3.1: Every quotient space of a slightly normal space of the second 

kind is slightly normal space of the second kind. 

Proof: The proof of the Corollary 6.3.1 follows from the proof of the Corollary 

6.2.1. 

 

Theorem 6.3.4: Let X be a slightly normal space of the second kind and Y is a 

subspace of X. Then Y is a slightly normal space of the second kind. 

Proof: The proof of the Theorem 6.3.4 is most similar to the proof of the Theorem 

6.2.5. 

  

Remark 6.3.1: The corresponding theorem does not hold for normal spaces. The 

validity of the proof in Theorem 6.3.4 above depends on the separablity of a 

particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of 

Munkres [10]). 

 

Comment 6.3.1: A continuous image of a slightly normal space of the second kind 

need not be slightly normal space of the second kind. 

     For if  1,TX  is a slightly normal space of the second kind and  2,TX  a space 

with the indiscrete topology, then the identity map XXx :1 is continuous and 

onto. But  2,TX  is not slightly normal space of the second kind. 

 

Theorem 6.3.5: Each compact Hausdorff space is slightly normal space of the 

second kind. 

Proof: The proof of the Theorem 6.3.5 of the above is almost similar to the proof 

of the Theorem 6.2.6. 
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    We now define slightly normal spaces of the third kind and proceed to 

study them. 

 

6.4.  Slightly Normal Spaces of the Third Kind 

Definition 6.4.1: A topological space X will be called slightly normal of the 

third kind (s. n. t. k) if there exists a countable collection 𝒞 of pairwise disjoint 

nontrivial closed sets in X such that, for each pair F1, F2 in 𝒞, F1 and F2 can be 

separated by disjoint open sets in X. This space will be denoted by (X,𝓒). 

 

Example 6.4.1: Let 𝑋 = ℝ, ℑ = ⟨{ℝ, ∅, ℚ, ℚ } ∪ {(𝑛, 𝑛 + 1), (𝑛, 𝑛 + 1) |𝑛 ∈ ℕ}⟩ 

Let 𝒞 = {(𝑛, 𝑛 + 1)|𝑛 ∈ ℕ}. Then (X,𝓒) is clearly s. n. t. k. But X is not normal, 

for let A = [(1,2) ⋂ ℚ]∪[(2,3) ⋂ ℚc] and B = [(1,2) ⋂ ℚc] ∪[(2,3) ⋂ ℚ].  Then A 

and B are disjoint closed sets but they can’t be separated by disjoint open sets. 

 

Example 6.4.2:  

Let 𝑋 = ℂ, ℑ = {ℂ, ∅, ℚ, ℚ } ∪ {𝐷 = 𝑧 ∈ ℂ |𝑧 − 𝑛| < , 𝐷 }|𝑛 ∈ ℕ  

Let 𝒞 = {𝐷 |𝑛 ∈ ℕ}. Then 𝒞 is a countable collection of pairwise disjoint closed 

sets such that, for each pair 𝐷  and 𝐷  (𝑛 ≠ 𝑛 ) can be separated by disjoint 

open sets since each 𝐷  is both open and closed. Hence X is s. n. t. k. However X 

is not normal since ℚ⋂D1 and ℚ ⋂D1 are disjoint closed sets which can’t be 

separated by disjoint open sets.  
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Theorem 6.4.1: A topological space X is slightly normal space of the third kind if 

and only if there exists a countable collection  𝒞 of pairwise disjoint nontrivial 

closed sets F1, F2 and an open set G such that cFGGF 21  .  

Proof: First, suppose that X is slightly normal space of the third kind. Then there 

exists a countable collection 𝒞 of pairwise disjoint nontrivial closed sets such that 

for each pair F1, F2 in 𝒞, there exist open sets G, H in X such that GF 1 and 

HF 2  and HG  . It follows that cc FHG 2 . Hence cc FHGG 2 . 

Thus, cFGGF 21  .  

     Conversely, suppose that there exists a countable collection 𝒞 of pairwise 

disjoint nontrivial closed sets such that for each pair F1, F2 in 𝒞, there exist an open 

set G in X such that cFGGF 21  . Here GF 1 and
c

GF 2 . Let HG
c
 . Then H 

is open, HF 2 and HG . Hence X is slightly normal space of the third kind.  

  

Theorem 6.4.2: Let  IiiX  be a non-empty family of topological spaces, and let X=


Ii

iX be the product space. If each iX  is slightly normal of the third kind, then X is 

slightly normal of the third kind. 

Proof: Since each iX is slightly normal of the third kind, there exists for each i, a 

countable collection 𝒞 of pairwise disjoint nontrivial closed sets such that for each 

pair Fi, Hi in 𝒞 , there exist open sets Ui, Vi in  Xi such that ii UF  , ii VH  , iF

iH , iU iV = .  

Let F=
Ii

iF , H=
Ii

iH . Then F and H are closed sets in X. Clearly, HF . Let





Ii

iUU , 



Ii

iVV . Then, U and V are open sets in X, and UF  , VH  and

VU . Therefore, X is slightly normal space of the third kind.  
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Theorem 6.4.3: Every open and one-one image of a slightly normal space of the 

third kind is slightly normal space of the third kind.  

Proof: The proof of the Theorem 6.4.3 is most similar to the proof of the Theorem 

6.2.4. 

 

Corollary 6.4.1: Every quotient space of a slightly normal space of the third kind 

is slightly normal space of the third kind. 

Proof: The proof of the Corollary 6.4.1 of the above is almost similar to the proof 

of the Corollary 6.2.1. 

 

Theorem 6.4.4: Let X be a slightly normal space of the third kind and Y is a 

subspace of X. Then Y is a slightly normal space of the third kind. 

Proof: The proof of the Theorem 6.4.4 follows from the proof of the Theorem 

6.2.5. 

  

Remark 6.4.1: The corresponding theorem does not hold for normal spaces. The 

validity of the proof in Theorem 6.4.4 above depends on the separablity of a 

particular pair of disjoint closed spaces by disjoint open spaces (See Ex. of 

Munkres [10]). 

 

Comment 6.4.1: A continuous image of a slightly normal space of the third kind 

need not be slightly normal space of the third kind. 

    For if  1,TX  is a slightly normal space of the third kind and  2,TX  a space with 

the indiscrete topology, then the identity map XXx :1 is continuous and onto. 

But  2,TX  is not slightly normal space of the third kind. 
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Theorem 6.4.5: Each compact Hausdorff space is slightly normal space of the 

third kind. 

Proof: The proof of the Theorem 6.4.5 is most similar to the proof of the Theorem 

6.2.6. 

 

     

 



CHAPTER SEVEN 

 

Pseudo-Compact Spaces, C-Compact Spaces and 
Pseudo-Continua 

 

 

7.1.  Introduction 

 

      In this chapter two generalizations of compact spaces have been considered. 

Such spaces have been called pseudo-compact and c-compact. Another 

generalization of compact spaces viz., H-closed spaces has been introduced and 

studied ([18], [35]) a number of years ago. 

      We have shown that both pseudo-compact spaces and c-compact spaces are 

distinct from each of compact spaces and H-closed spaces. Properties of pseudo-

compact spaces and c-compact spaces have been studied here. 

       Definitions of a number of generalized connectedness viz., locally 

connectedness, connectedness imkleinen, path-connectedness, locally path-

connectedness, Cantor’s connectedness have been given. Generalizing a continuum 

i.e., a connected compact space, we have defined a pseudo-continuum. Some 

properties of pseudo-continua have been proved.        
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7.2 . Pseudo-Compact Spaces 

Definition 7.2.1: A collection G  will be called pseudo-open-cover of a 

topological space X if  G  covers X. 

      X will be called pseudo-compact if every pseudo-open-cover of X has a finite 

sub-pseudo-cover.  

      

     A pseudo-open-cover need not be an open cover, as the following example 

shows: 

Example 7.2.1: Let X=ℝ, and ℑ = the topology generated by {(𝑥, 𝑥 + 1)|𝑥 ∈ ℤ}. 

Then {(𝑥, 𝑥 + 1)|𝑥 ∈ ℤ} is not an open cover of X, but it is a pseudo-open-cover 

of X, since    1,1,  xxxx  for all 𝑥 ∈ ℤ and   Xxx
x





Z

1, . 

 

Example 7.2.2: Let X= [0,1] and ℑ = {𝑋, ∅, (0,1)} be a topology on X. Then 

{(0,1)} is the only pseudo-open cover of X. Since this is finite, X is pseudo-

compact.   

 

Definition 7.2.2: A topological space X is H-closed (Gangully and Jana [35]) if 

every open cover G  of X has a finite sub-collection },...,{
1 n

GG  such that

XGG
n
  ...

1
. 

 

     An H-closed space need neither be pseudo-compact nor be compact. The 

following example proves the truth of this statement: 

Example 7.2.3: Let X=ℝ, and ℑ = the topology generated by {{ℚ}⋃{(𝑥, 𝑥 +

1)|𝑥 ∈ ℤ}}. Then , for each open cover 𝒞 of X, either ∁ contains {ℝ} or                

𝒞 = {ℚ}⋃{(𝑥, 𝑥 + 1)|𝑥 ∈ ℤ}, or 𝒞 = {ℚ ∪ {∪ (𝑥, 𝑥 + 1)|𝑥 ∈ ℤ}}.  
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Since ℝ = ℝ =X and ℚ = ℝ =X, (X, ℑ) is H-closed.  

Now,    }1,1,{
Z




x

xxxx = ℝ =X. Hence {(𝑥, 𝑥 + 1)|𝑥 ∈ ℤ} is a pseudo-open-

cover of X. But it does not have a finite sub-pseudo-cover. Hence X is not pseudo-

compact. Also, since 𝒞 does not have a finite subcover, X is not compact. 

 

     A pseudo-compact space may not be compact. This is illustrated by the 

following example:   

Example 7.2.4: Let X=ℝ  ,1,  ii  and let ℑ be the topology generated 

by {{(𝑥, 𝑥 + 1)|𝑥 ∈ ℤ} ∪ ℚ ∪ {𝑖} }. Then 𝒞 = {(𝑥, 𝑥 + 1)|𝑥 ∈ ℤ} ∪ ℚ ∪ {𝑖}  is a 

pseudo-open-cover of X. For,       


Zxx

ZxxxiQZxxx |1,}|1,{
Z

 {ℝ 

}i =ℝ ∪ { ℝ }i  = ℝ i =X. 

    Any other pseudo-open-cover of X must contain ℚ ∪ {𝑖} or X as its member. 

Hence every pseudo-open-cover of X has a finite sub-pseudo-cover, viz.,{ℚ ∪

{𝑖}},or{X}, or { ℚ ∪ {𝑖} , 𝑋}. So, X is pseudo-compact. 

    However, 𝒞 is an open cover of X but 𝒞 does not have a finite sub-cover. Thus, 

X is not compact.  

 

     A compact space need not be pseudo-compact. This is shown by the 

following example: 

Example 7.2.5: Let X =[0,1] and let ℑ be the topology on X which is induced by 

the usual topology on ℝ . Then X is compact by Heine-Borel Theorem. We shall 

show that X is not pseudo-compact.  

Let 𝒞 = 0, ∪ {( + , 1)|𝑛 ∈ ℕ}   and  

 𝒟 = [0, ] ∪ {[ + , 1]|𝑛 ∈ ℕ}  

       = CVV | .  
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Then XV
CV




]1,0[ .  

    Thus 𝒞 is pseudo-open-cover of X. But it does not have a finite sub-pseudo-

cover. Hence X is not pseudo-compact. 

     

Theorem 7.2.1: Every pseudo-compact space is H-closed. 

Proof: Let X be a pseudo-compact space. Let G  be a pseudo-open-cover of X. 

So G  covers X. Since X is pseudo-compact, there exists a finite sub-collection

},...,{
1 n

GG  of X such that XGG
n
  ...

1
. Hence X is H-closed. 

 

Theorem 7.2.2: Every pseudo-compact subspace of a completely Hausdorff space 

is closed. 

Proof: Let X be a completely Hausdorff space and K be a pseudo-compact 

subspace of X. We show that cK  is open. Let ., KyKx c  Then .yx  Since X is 

completely Hausdorff, so there exist open sets yy HG ,  such that yy HyGx  ,  and

. yy HG Clearly KyH y :  is a pseudo-open cover of K. Since K is pseudo-

compact, so there exists Kyy n ,...,1  such that ....
1 nyy HHK   Since

  ....,)...(...
111

c
yyyyyy KGGHHGG
nnn
   So ....

1

c
yy KGG
n
  

Since 
nyy GG  ...

1
 is open and ....

1 nyy GGx  So cK  is open. 

 

 Theorem 7.2.3: A continuous image of a pseudo-compact space is pseudo-

compact. 

Proof: Let X be a pseudo-compact space, Y a topological space and let YXf :  

be a continuous mapping. We show that as a subspace of Y, f(X) is pseudo-
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compact. Let G  be a pseudo-open-cover of f(X). Since f is continuous,  )(1
Gf   

is a pseudo-open cover of X. Therefore  }{ 1
Gf   covers X.  

       Now, we shall show that     GfGf 11      . The continuity of f implies

   .11
 GfGf    Let  .1

Gfx   Then   .Gxf   Hence for every neighborhood V 

of f(x), . GV  Let U be any neighborhood of x. Then   ).(Ufxf  Now, 

     GfUfGffUf 11)(    and   ,)( 1    GffUf since f is open. Therefore,

     .11     GfUGfUf Hence  .1
Gfx    

       Since X is pseudo-compact, so there exists a finite sub-pseudo-cover 

)}(,...),({ 11

1 n
GfGf 

 of  )(1
Gf   such that

        ....... 1111

11
XGfGfGfGf

nn
 

  Hence ....)(
1 n

GGXf    

Therefore f(X) is pseudo-compact. 

 

Theorem 7.2.4: A closed subspace of a pseudo-compact space is pseudo-compact. 

Proof: The proof can be constructed exactly as in the case of compact spaces.  

 

Theorem 7.2.5: (Generalizations of Theorem 4.1.16, [3]) Let X and Y be pseudo-

compact topological spaces. Then the product space YX   is pseudo-compact. 

Proof: The proof is similar to that of Theorem 4.1.16 [3]. Still, we are writing the 

proof for completeness.  For each ),(, 00 yxyXx   is a surjective continuous 

function and Y is a pseudo-compact space implies Yx 0 is a pseudo-compact subset 

of YX  . Let 𝒞 be a collection of basic open sets in YX  such that 
CVU

VUYX




. 
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This implies that 
CVU

VUYx


0  implies there exist nn VUVU  ,...,11  such that

)(...)( 110 nn VUVUYx  ……………….(1) 

    Also, if for some i,  )()( 0 YxVU ii , then we do not require to include such 

an ii VU   in our finite sub-cover niVU ii ,...,2,1},{  . So we may assume that each 

 )()( 0 YxVU ii . This implies that iUx 0  for all i=1,2, ⋯ ,n and hence


n

i
ix UWx

1
0 0



  . Now it is clear that )(...)( 110 nnx VUVUYW  . Consider 

  YWyx x 
0

, . Then iUx  for all i and Yy . Hence from equation (1) 

    ,0 jj VUyx  for some j. This implies      , jj VUyx  for the same j. That is for 

each Xx 0 , the tube YWx 0
is covered by the closures of finitely many members of 

𝒞. So,  
0

YWx  too is covered by the closures of finitely many members of 𝒞. Since

  Y
00

YWW xx  , the same is true for about Y
0
xW . 

    Now, we shall prove that YX   is covered by the closure of finitely many such 

tubes YWx  . Now }:{ XxWx  is a pseudo-open-cover for X. Hence X is a pseudo-

compact space implies there exist Xxxx k ,...,, 21  such that 
k

i
xi

WX
1

 . Now 

   ,
ix

WxYXyx  for some i, ki 1  and hence   YWyx
ix
  , . This implies that

YYX
k

i





1
x i

W  and hence YX   is covered by the closure of finitely many 

members of 𝒞. This proves that YX   is pseudo-compact. 

 

Corollary 7.2.1: If X1, ⋯ ,Xn are pseudo-compact topological spaces. Then the 

product space nXX  ...1  is pseudo-compact. 

Proof: It follows from the above Theorem 7.2.5 by induction. 
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Theorem 7.2.6: Let X be a topological space. Let A, B be pseudo-compact 

subspaces of X. Then 𝐴 ∪ 𝐵 is pseudo-compact. 

Proof: Let 𝒞 = {𝐶 } be a pseudo-open-cover of 𝐴 ∪ 𝐵. Then 𝒞 is a pseudo-open-

cover of both A and B. Since A and B are pseudo-compact then 𝒞 contains finite 

sub-pseudo-covers 𝒞  and 𝒞  of A and B respectively. Then 𝒞 ∪ 𝒞  is a finite sub-

pseudo-cover of 𝒞 and, 𝒞 ∪ 𝒞  covers 𝐴 ∪ 𝐵. Hence 𝐴 ∪ 𝐵 is pseudo-compact. 

 

Corollary 7.2.2: If X is a topological space and A1, ⋯ ,An are pseudo-compact 

subspaces of X. Then 𝐴 ∪ ⋯ ∪ 𝐴  is pseudo-compact. 

Proof: It follows from the above Theorem 7.2.6 by induction. 
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7.3.   C-Compact Spaces  

Definition 7.3.1: A topological space X is called c-compact if every closed cover 

of X has a finite sub-cover.  

 

Example 7.3.1: Let X=ℝ, and ℑ = the topology generated by the 

collection {(𝑥, 𝑥 + 1)|𝑥 ∈ ℤ} ∪ {ℤ} consider (𝑥, 𝑥 + 1) as closed sets. 

      Let A be a subset of ℝ containing finite numbers of integers, say 𝑥 ,𝑥 , …  𝑥  

where 𝑥  < 𝑥  < ⋯    < 𝑥    and bounded by x1 and xn .  

     Let 𝒞 be a closed cover of A. Then 𝒞 = {(𝑥  , 𝑥 ), (𝑥  , 𝑥 ), … , (𝑥  , 𝑥 )} ∪

{ℤ}. Then every closed cover of A is finite. Thus A is c-compact.  

 

   Clearly, many such examples can be constructed. 

 

   We shall now give below an example of a topological space which is compact 

but not c-compact: 

Example 7.3.2: Let X=[0,1] , and ℑ = the topology on X which is induced by the 

usual topology on ℝ . Then X is compact by Heine-Borel Theorem. 

However, X is not c-compact. For, if 

 𝒞 = [0, ] ∪ {[ + , 1]|𝑛 ∈ ℕ}. Then 𝒞 is a closed cover of X, but it does not 

have a finite sub-cover. To see that 𝒞 is a closed cover of X, we note that 

 [0, ] ∪{ 


1n

{[ + , 1]|𝑛 ∈ ℕ}} 

=[0, ] ∪( , 1]=[0,1]. 
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Theorem 7.3.1: Every open subspace of a c-compact space is c-compact.  
Proof: Let X be a c-compact space and K be an open subset of X. If F  is a 

closed cover of K, we can take the collection   FKX   as a closed cover of X. 

Since X is c-compact, so there exist a finite sub-collection },...,,{
1 n

FFKX  of X 

such that ....
1 n

FFKXX   So we have a finite sub-collection },...,{
1 n

FF    

such that ....
1 n

FFK   Hence K is c-compact.   

 

Theorem 7.3.2: A continuous image of a c-compact space is c-compact. 

Proof: Let X be a c-compact space, Y a topological space and let YXf :  be a 

continuous mapping. We show that as a subspace of Y, f(X) is c-compact. Let F  

be a closed cover of f(X). Since f is continuous,  )(1
Ff   is a closed cover of X. 

Since f is continuous,  )(1
Ff   is a closed cover of X. Since X is c-compact, so 

there exists a finite sub-cover { )(,...),( 11

1 n
FfFf 

 } of )(1
Ff   . Hence

},...,{
1 n

FF   is a finite sub-cover of F .Therefore f(X) is c-compact. 

 

Theorem 7.3.3: Every c-compact space is pseudo-compact. 

Proof:  Let X be a c-compact space and let 𝒞 be a collection of open sets in X such 

that ℱ = {𝐺 : 𝐺 ∈  𝒞 } is a cover of X. Thus 𝒞 is a pseudo-open-cover of X. Then 

ℱ is a closed cover of X. X being c-compact, ℱ has a finite sub-cover viz., 

 {𝐺  , ⋯ , 𝐺  }. Hence },...,{
1 n

GG   is a pseudo-sub-cover of X. So X is pseudo-

compact.  
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Theorem 7.3.4: Let X and Y be c-compact topological spaces. Then the product 

space YX   is c-compact. 

Proof: Since every c-compact space is pseudo-compact by above Theorem 7.3.3, 

the proof can be constructed exactly as that of the Theorem 7.2.5. 

 

Corollary 7.3.1: If X1, ⋯ ,Xn are c-compact topological spaces. Then the product 

space nXX  ...1  is c-compact. 

Proof: It follows from the above Theorem 7.3.4 by induction. 
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7.4.   Pseudo-Continua 
Definition 7.4.1:  ((Majumdar and Akhter [22], Munkres [10]) Let X be a 

topological space. X is said to be connected if it can not be expressed as the union 

of a pair of disjoint nonempty open subsets of X. 

 

Definition 7.4.2: ((Majumdar and Akhter [22], Munkres [10]) A topological space 

X is said to be locally connected at x if every neighborhood U of x, there is a 

connected neighborhood V of x contained in U. If X is locally connected at each of 

its point, it is said simply to be locally connected.   

 

Definition 7.4.3: ((Majumdar and Akhter [22], Munkres [10]) Given points x and 

y of the space X, a path in X from x to y is a continuous map Xbaf ],[:  of some 

closed interval in the real line into X, such that f(a)=x and f(b)=y. A space X is said 

to be path connected if every pair of points of X can be joined by a path in X. 

 

Definition 7.4.4: ((Majumdar and Akhter [22], Munkres [10]) A topological space 

X is said to be locally path connected at x if every neighborhood U of x, there is a 

path connected neighborhood V of x contained in U. If X is locally path connected 

at each of its points, then it is said to be locally path connected.   

 

Definition 7.4.5: (Majumdar and Akhter [22]) Cantor gave a special definition of 

connectedness for metric spaces. According to him, a metric space X is connected 

if for any two distinct points a, b of X and for any ,0    there exists a finite 

sequence a = x1, x2, ⋯ , xn = b of X such that   ,, 1 ii xxd  i = 1, ⋯ , n-1. 
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Definition 7.4.6: (Majumdar and Akhter [22]) A topological space X is said to be 

connected imkleinen at a point Xx  if for every open set U containing x, there is 

an open set V containing x such that for every Vy , there exists a connected 

subset C such that ., Cyx   

 

Definition 7.4.7: (Hocking and Young [13], p.43) A connected compact space is 

called a continuum.    

 

Definition 7.4.8: A connected pseudo-compact space will be called a pseudo-

continuum.  

 

Example 7.4.1: Let X= [0,1] and ℑ = {𝑋, ∅, (0,1)} be the topology on X. Then 

{(0,1)} is the only pseudo-open cover of X. Since this is finite, X is pseudo-

compact. Clearly, X is connected. Hence X is a pseudo-continuum.     

 

Theorem 7.4.1: A continuous image of a pseudo-continuum is a pseudo-

continuum.     

Proof: Since every continuous image of a pseudo-compact space is pseudo-

compact [Theorem 7.2.3] and every continuous image of a connected space is 

connected (Theorem 23.5, Munkres [10], Theorem 1.6, p.72, Majumdar and 

Akhter [22]), the theorem follows.   

 

     We recollect the following theorem on connectedness: 

Theorem 7.4.2: (Theorem 1.4, p.71, Majumdar and Akhter [22], Theorem 23.3, 

Munkres [10]) Let {Ai} be a collection of connected subsets of a topological space 

X. If ⋂ 𝐴  is non-empty, then ⋃ 𝐴  is connected. 
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  So we have  

Theorem 7.4.3: Let X be a topological space. Let A and B be two subspaces of X 

such that 

(i) A, B are pseudo-continua 

(ii) 𝐴 ∩ 𝐵 ≠ ∅. 

Then 𝐴 ∪ 𝐵 is pseudo-continuum.  

Proof: Since A, B are pseudo-continua, Theorem 7.2.6 implies that 𝐴 ∪ 𝐵 is 

pseudo-compact and since 𝐴 ∩ 𝐵 ≠ ∅, Theorem 7.4.2 implies that 𝐴 ∪ 𝐵 is 

connected. Thus 𝐴 ∪ 𝐵 is pseudo-continuum.  

 

Corollary 7.4.1: If X is a topological space and A1, ⋯ , An are subspaces of X 

such that  

(i) A1, A2, ⋯ , An are pseudo-continua 

(ii) 𝐴 ∩ ⋯ ∩ 𝐴 ≠ ∅ .   

Then 𝐴 ∪ ⋯ ∪ 𝐴  is pseudo-continuum. 

Proof: It follows from the above Theorem 7.4.3 by induction. 

 

Theorem 7.4.4: Let X and Y be pseudo-continua. Then the product space YX   is 

pseudo-continuum. 

Proof: Since product of two pseudo-compact spaces is pseudo-compact [Theorem 

7.2.5] and product of two connected space is connected (Theorem 23.6, Munkres 

[10], Theorem 1.9, p.73, Majumdar and Akhter [22]), the theorem follows.  

 

Corollary 7.4.2: If X1, ⋯  , Xn are pseudo-continua. Then the product space

nXX  ...1  is pseudo-continuum. 

Proof: It follows from the above Theorem 7.4.4 by induction. 
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