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AAbbssttrraacctt  
 

This dissertation is concerned with the study of interaction phenomena of nonlinear waves in 

unmagnetized plasmas. The plasma system considered is fully ionized, collisionless and 

homogeneous and/or inhomogeneous that contains multi-component plasma species under 

different situations. To investigate the physical issues of the interaction phenomena of 

nonlinear waves the nonlinear evolution equations are derived. The extended Poincaré-

Lighthill-kue (ePLK) method is used to derive the nonlinear evolution equations. The 

interaction phenomena pertaining to plasma parameters on the production of ion-acoustic 

solitary waves, ion-acoustic shock waves and rogue waves and their consequences on phase 

shifts and amplitudes are investigated in different plasma situation. The interaction processes 

among the waves (such as ion-acoustic solitary waves, ion-acoustic shock waves) for single 

and multi-soliton plasmas are also studied considering the analytical solutions to the nonlinear 

evolution equations under some assumptions to discuss the characteristic of the waves in the 

plasmas that are observed in astrophysical, space and laboratory plasmas. In chapter one, 

some important physical terms that are relevant to the plasma phenomena are briefly 

discussed.   

Chapter two discusses the interaction phenomena of ion-acoustic multi-solition and 

the production of rogue waves in an unmagnetized plasmas composing non-relativistic as well 

as relativistic degenerate electrons and positrons, and inertial non-relativistic helium ions. The 

interaction phenomena are investigated by deriving two-sided Korteweg-de Vries (KdV) 

equations with their corresponding phase shifts employing  extended Poicaré-Lighthill-Kuo 

(ePLK) method and to study the properties of rogue waves the nonlinear Schrödinger equation 

(NLSE) is obtained from the modified KdV (mKdV) equation.  

Chapter three presents a comparative study of the interactions between nonlinear ion 

acoustic solitary waves propagating toward each other, and the electrostatic nonlinear 

propagation of ion-acoustic solitary waves, both for the weakly and highly relativistic 

regimes. The considered plasma system is consisted of relativistic warm ions, nonthermal 

electrons, and positrons.  

On the other hand, the propagation characteristics and interaction phenomena among 

the dust acoustic solitons in unmagnetized dusty plasmas are studied in chapter four. To do 
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so, the solutions of the KdV equations are constructed using the Hirota bilinear method both 

for single- and multi-solitons and the phase shifts are determined for the interactions among 

the two-, four-, and six-dust acoustic solitons.  

Chapter five incorporates the head-on collision of ion acoustic shock waves and the 

consequences after collision are investigated in the plasma system  to be consisting of 

relativistic warm ions and nonextensive electrons and positrons. In this regard two-sided 

KdV-Burger equations are derived employing the ePLK method. The effects of plasma 

parameters on the formation of shock, phase shift after collision, and amplitude of the solitons 

are also studied.  

In Chapter six the head-on collisions between positron acoustic solitary waves as well 

as the production of rogue waves in homogeneous and positron acoustic solitary waves 

inhomogeneous unmagnetized plasma systems are investigated deriving the nonlinear 

evolution equations. Besides, to investigate the basic feature of positron acoustic solitary 

waves due to head-on collision in homogeneous unmagnetized plasma the KdV and mKdV 

equations are derived using ePLK method along with generic case. To study the characteristic 

of rogue waves, the nonlinear Schrödinger equation from mKdV equation is derived. 

Furthermore, to investigate the effect of inhomogeneity on the propagation of positron 

acoustic solitary waves the KdV and mKdV equations with variable coefficients are derived 

using stretched coordinates applicable for spatially inhomogeneous plasmas.  

Finally, the important results found in this work are summarized with future plan in 

chapter seven.   
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Chapter 1 

 

General Introduction 

1.1 Plasma description 

     Plasma is the fourth state of matter; the remaining three are solid, liquid and gaseous. It is 

either partially or fully ionized state depending on the properties of plasma. Plasma is a quasi-

neutral gas of charged and neutral particles, that is, the plasma is almost neutral, but not 

neutral enough to remove all the electromagnetic forces; which exhibits collective behavior. 

The collective behavior means that the dynamics of plasma are not controlled by the 

interactions between individual particles (e.g., binary collision) and are determined by the 

particle system as a whole. As the temperature of a material is raised, its state changes from 

solid to liquid and then to gas. If the temperature is raised further, a significant number of gas 

particles are ionized and then become the high temperature gaseous state in which the 

numbers of ions and electrons are almost the same and the charge neutrality condition is 

satisfied macroscopically. Typically plasma consists of electrons, ions in conjunction with 

energetic metastables and neutrals. When the ions and electrons move collectively, these 

charged particles interact with Coulomb force which is a long range force and decays only in 

inverse-square of the distance between the charged particles. The resultant current flows due 

to the motion of charged particles and consequently Lorentz interactions take place. 

Therefore, many charged particles interact with each other by long range forces and various 

collective movements occur in the gaseous state. The typical cases show different types of 

instabilities and wave phenomena. However, modern life-style is vastly depending on plasma 

technologies [1-3] for manufacturing semiconductor devices and components. The 

applications of plasma technologies include in manufacturing computer processors, storage 

devices, plasma display panel, solar cells, light sources, protective coatings, processing of 

exotic new materials, rocket thrusters and so on. Very recently, plasma technologies are 

applied in agriculture [4-7], wastewater treatment [8-11] and medicine. Based on the relative 

temperatures of the species, plasmas are classified as thermal and nonthermal. Plasma is said 

to be thermal, if the plasma species temperatures are in thermodynamic equilibrium, i.e.,𝑇𝑇𝑒𝑒 ≈

𝑇𝑇ℎ, where 𝑇𝑇𝑒𝑒 and 𝑇𝑇ℎ are the electron and heavy species or neutral temperatures, respectively.  
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On the other hand, plasma is said to be nonthermal, if plasma species are not in 

thermodynamic equilibrium, i.e., 𝑇𝑇𝑒𝑒 ≫ 𝑇𝑇ℎ [12]. Under this situation, the velocity distribution 

functions are different for different species present in plasma [12]. Plasmas can also be 

magnetized or unmagnetized. The plasma is said to be magnetized, if the magnetic field is 

strong enough to influence the motion of charged particles. Due to the high conductivity of 

plasma, the electric field is usually small, then the electric field associated with plasma 

moving in magnetic field is defined by 𝐄𝐄 = 𝐯𝐯 × 𝐁𝐁, where E is the electric field, v is the 

velocity, and B is the magnetic field, and is not affected by Debye shielding [13]. On the other 

hand, the unmagnetized plasma is one in which neither ambient magnetic field nor self-

consistent magnetic field is present due to the plasma current, that is 𝐁𝐁 → 0. In particular, 

unmagnetized plasma is assumed isotropic. Plasmas are ubiquitous in astrophysical, space and 

laboratory environments. The nearest natural region dominated by plasmas is Earth’s 

ionosphere and magnetosphere. 99% of observable universe is in plasma state, such as in the 

ionosphere, solar corona and solar wind, magnetospheres of the earth and other planets, tails 

of comets, interstellar and inter-galactic spaces, and in the accretion disks, Van Allen 

radiation belts etc. are the names of a few. Besides, the space plasma is very prosperous 

environment in terms of different physical phenomena that demonstrates over a wide range of 

parameters, which makes it thrilling as well as challenging field to investigate.  
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Plasmas are found in many contexts: both in nature, industry and laboratory. Fig.1.1 

represents some of those and their general properties in terms of temperature and number 

densities. The plasmas can also be collisional and collisionless. The collisionless plasma is 

one in which the mean free path (𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚) for binary Coulomb collision is usually much larger 

than the typical size of the system and the collision frequency is much smaller than the typical 

frequency at which the plasma quantities vary. Time scale for observing the phenomenon is 

much smaller than the time of collision between the two particles. Tokamak, solar wind, 

planetary magnetospheres are a few names of collisionless plasma. In space physics, the 

magnetopause phenomena are apparently collisionless [15] because of typical distance 

(𝑑𝑑 ≈ 103 km) much less than 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 107 km. Besides, the collisional plasma is one in which 

mean free path for binary Coulomb collision is usually much less than the typical size of the 

system. The collision between particles does not play a role in the dynamics of the plasma in 

collisionless case. 

 

 

Figure 1.1 Plasmas in terms of temperature (𝑇𝑇) and number densities (𝑛𝑛) [14]. 
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1.1.1 Properties of Plasmas    

     A number of natural frequencies are associated with the motions of particles in plasmas. 

The angular plasma frequency for the particle of species 𝛼𝛼 is defined by [16] 

                                       𝜔𝜔𝑚𝑚𝑝𝑝 = �𝑛𝑛𝛼𝛼𝑞𝑞𝛼𝛼
2

𝑚𝑚𝛼𝛼𝜖𝜖0
�
1 2⁄

,                                                               (1.1)   

where,  𝑛𝑛𝑝𝑝, 𝑞𝑞𝑝𝑝, and 𝑚𝑚𝑝𝑝 are the number density, charge and mass of the particles of species 𝛼𝛼, 

respectively, and  𝜖𝜖0 is the permittivity of free space. Plasmas have various characteristic 

length scales. The Debye length 𝜆𝜆𝐷𝐷𝑝𝑝 is, the scale over which mobile charge carriers screen out 

the electric fields in the plasmas, given by [16] 

                                            𝜆𝜆𝐷𝐷𝑝𝑝 = 𝑣𝑣𝛼𝛼
𝜔𝜔𝑝𝑝𝛼𝛼

,                                                                     (1.2) 

where  𝑣𝑣𝑝𝑝 = �𝑘𝑘𝐵𝐵𝑇𝑇𝑝𝑝 𝑚𝑚𝑝𝑝⁄  is the thermal speed, 𝑇𝑇𝑝𝑝 is the particle temperature and 𝑘𝑘𝐵𝐵 is the 

Boltzmann constant. The plasma frequency and Debye length are related with the velocity of 

the particle 𝛼𝛼 by the formula  

                                          𝑣𝑣𝑝𝑝 = 𝜔𝜔𝑚𝑚𝑝𝑝𝜆𝜆𝐷𝐷𝑝𝑝.                                                                  (1.3) 

It is required that 𝜆𝜆𝐷𝐷𝑝𝑝 to be very small compared to the physical dimension (𝐿𝐿) of the system, 

that is 𝜆𝜆𝐷𝐷𝑝𝑝 ≪ 𝐿𝐿, so as to fulfill the condition of collective shielding. For the validation of ideal 

plasma, the necessary conditions can be expressed mathematically as: (i) 𝐿𝐿 ≫ 𝜆𝜆𝐷𝐷𝑝𝑝 (ii) 𝑁𝑁𝐷𝐷 ≫

1 , and (iii) 𝜔𝜔𝜔𝜔 > 1, where 𝑁𝑁𝐷𝐷 = 4
3
𝜋𝜋𝑛𝑛𝜆𝜆𝐷𝐷𝑝𝑝3  is the number of charged particles in the Debye 

sphere, 𝜔𝜔 is the mean free time, 𝜔𝜔 is the angular frequency of typical plasma oscillation. The 

sum of energies of interactions of the test charge with each of the surrounding charged 

particles represents the interaction energy of the test charge with all the charged particles in 

the plasma. The interaction energy of two charged particles in plasma is determined [17] by  

                                                      𝑈𝑈(𝑟𝑟) =  𝑒𝑒𝑞𝑞
4𝜋𝜋𝜋𝜋𝜖𝜖0

 exp �−  𝜋𝜋
𝜆𝜆𝐷𝐷𝛼𝛼

�,                    (1.4) 

where 𝑞𝑞 = ±𝑒𝑒 and r is the distance between the particles. Due to plasma quasi-neutrality, the 

average interaction energy of the test charge would be vanished when the influence of test 

charge on the space charge distribution is neglected. The solution for the potential distribution 

is obtained [17] as 

                                                             𝜙𝜙(𝑟𝑟) = 𝑒𝑒
4𝜋𝜋𝜋𝜋𝜖𝜖0

 exp �−  𝜋𝜋
𝜆𝜆𝐷𝐷𝛼𝛼

� .                         (1.5) 

The potential will interact with the Coulomb potential in free space for 𝑟𝑟 ≪ 𝜆𝜆𝐷𝐷𝑝𝑝, but it is 

much less for 𝑟𝑟 ≫ 𝜆𝜆𝐷𝐷𝑝𝑝 because of the plasma shielding effect. Therefore, the characteristic 

scale of the plasma shielding region is determined by the Debye radius. 
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1.1.2 Electron-positron-ion (epi) plasma 

    The electron-positron-ion (epi) plasma is a special case of ambiplasma, the term was 

introduced by H. Alfven in 1965 [18], means the existence of matter and antimatter in 

plasmas. It is a quasi-neutral space plasma, containing electrons, positrons, and ions with 

neutrals as background. The formation [19] of ambistars (i.e. stars consisting of ambiplasma) 

can be described by several models due to star-antistar collisions. The epi plasmas occur in a 

wide variety in the universe, such as in inner region of accretion discs in the vicinity of  black 

holes [20-21], magnetosphere of neutron stars [22-23], active galactic cores [24 ] and even in 

solar flare plasma [25] are the names of a few. A number of authors [26-34] have studied the 

characteristics of plasma waves in different situations due to their potentiality concerning the 

epi plasma. Most of them are focused in nonrelativistic plasmas. But when the streaming 

velocity of the plasma particle is comparable to the velocity of light, then the relativistic effect 

cannot be neglected. The relativistic energy is considered in the range 0.1-100 MeV [35-36]. 

The e-p-i relativistic plasmas are the well established phenomena in pulsar magnetosphere 

[37] and laser-plasma interaction [38-39]. Recently, in the vicinity of blazers and micro-

quasars the narrow-collimated extended relativistic jets of epi plasma were observed [24, 40-

42]. A significant number of researchers have carried out works [43-53] concerning the 

velocities of astrophysical particles comparable to the speed of light at different plasma 

situations. Thus, the studies of nonlinear phenomena of ion-acoustic and ion-acoustic shock 

waves in epi nonrelativistic and relativistic plasmas have drawn attention to understand the 

physical issues involved in astrophysical, space and laboratory plasmas. 

1.1.3 Dusty plasma 

     Dusty plasmas are composed of electrons, ions and micron or submicron size massively 

charged dusts with masses in the range 106 − 1012 of proton masses [54]. The plasma is said 

to be “dusty plasma”, if  𝑅𝑅𝑑𝑑 ≪ 𝐴𝐴 < 𝜆𝜆𝐷𝐷 is fulfilled, where 𝑅𝑅𝑑𝑑 and 𝐴𝐴 are the dust grain radius 

and average integration, respectively. These plasmas are considered for understanding several 

types of collective processes that are existed in the lower and upper mesosphere, cometary 

tails, planetary rings, interstellar media, planetary magnetosphere, interplanetary spaces [54-

57], as well as in laboratory dusty plasmas [58-60]. Research on dusty plasma have drawn 

interest after the discovery of dust acoustic wave [58], dust ion acoustic wave  [61], dusty 

plasma crystal [62-64] and dust lattice wave [65]. The dust ion acoustic solitary waves appear 

on a time scale larger than the ion plasma period in dusty plasma, as a result the charged dust 

particles remain stationary and they provide only the back-ground charge-neutrality [66]. Rao 
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et al. [58] have investigated the characteristics of low phase speed dust acoustic waves in 

dusty plasmas that are observed in space and laboratory. They have found that the inertia is 

provided by the mass of the dust particles, while the pressure of the inertialess electrons and 

ions provides restoring force due to the production of dust acoustic waves in plasmas. Many 

researchers [67-70] have investigated the propagation characteristics of dust acoustic waves in 

dusty plasmas considering different plasma assumptions. On the other hand, the effect of dust 

charge fluctuation plays a significant role only for the wave whose time period (𝑇𝑇𝜔𝜔) is 

comparable to the dust charging time period (𝑇𝑇𝑐𝑐𝜔𝜔) [71]. Bandyopadhyay et al. [72] have 

studied the nonlinear dust acoustic solitary waves  experimentally with constant dust charge 

fluctuation in dusty plasmas and determined ion density 𝑛𝑛𝑖𝑖 = 7 × 10−3𝑚𝑚−3 , dust density 

𝑛𝑛𝑑𝑑 = 1 × 1010𝑚𝑚−3, ion temperature 𝑇𝑇𝑖𝑖 = 0.3 eV, dust charge number 𝑍𝑍𝑑𝑑 = 3 × 103, and 

dust mass 𝑚𝑚𝑑𝑑 = 1 × 10−3 kg.  

1.2 Nonlinearity of plasma  

    Nonlinearity is a charming element of nature. The importance of nonlinearity has 

appreciated for many years when large amplitude wave motions are observed [73] in various 

fields, such as in fluids and plasmas, astrophysics, particle physics etc. are the names of a few. 

Innumerable instabilities are present in plasmas while the amplitude of rising perturbations is 

small. If the amplitude becomes suitably large, the linearization process breaks down. Thus, 

the nonlinearity cannot be ignored and the plasma is then effectively a nonlinear medium. The 

nonlinearities occur due to harmonic generation involving fluid, Lorenz force, trapping of 

particles in the wave potentials, and ponderomotive force etc. The localized large amplitude 

waves called solitons propagate with particle-like properties in a medium without spreading; 

it is one of the most outstanding aspects of nonlinear phenomena. The nonlinearities in the 

plasmas contribute to the localization of waves, leading to different types of interesting 

articulate of nonlinear wave structures such as: solitary structures (solitons), shock waves, 

vortices and double layers etc. The studies of nonlinear waves have gained momentum in 

various configurations of plasma dynamics, laboratory, astrophysical, and space plasmas [74]. 

Nonlinear wave dynamics (referred to as nonlinear science or chaos theory) is a rapidly 

growing topic in many fields. Besides, due to enormous applications of nonlinear dynamics, 

the study of nonlinear wave propagation in astrophysical, space and laboratory plasmas in the 

form of soliton and sheath dynamics has drawn considerable interest. 
 1.3 Plasma waves 
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   Plasma waves are produced due to the production and annihilation of interconnecting set of 

particles and fields. These include instabilities, fluctuations, wave-induced transport and so 

on. Waves can deliver energy to the particles in plasmas by heating, current drive, particle 

acceleration, mode stabilization and so on. Plasma waves are observed in almost all objects of 

the solar system [75-76] such as in planets and their satellites, comets, interplanetary medium 

and sun. Plasma has many degrees of freedom, so it supports many waves, e.g. Langmuir 

wave, ion acoustic solitary wave, electrostatic ion cyclotron wave, ion acoustic shock wave, 

Rouge wave, Alfven wave, and magneto sonic wave, and so on. This dissertation is confined 

into the ion acoustic solitary waves, ion acoustic shock waves, positron acoustic waves and 

rouge waves.  

1.3.1 Solitary waves and soliton 

The solitary wave is a permanent form of finite amplitude wave. This type of wave arises 

from the balance of nonlinearity and dispersive effects of the medium. The solitary water 

wave was first observed and documented by Scottish scientist and engineer Russell [77]. The 

solitary waves can be described by certain nonlinear wave equations (which either integrable, 

or close to integrable). Solitary waves are bell-shaped and travel with maintaining their 

original shapes and velocities. They can cross each other without any change in structure and 

phase. The resulting nonlinear solitary waves are known as solitons. Solitons are found 

through the solutions of model equations together with the Korteweg-de Vries (KdV) and the 

nonlinear Schödinger equations.  These model equations are approximations which grasp 

under a prevailing set of conditions. To obtain the soliton solutions for nonlinear waves, the 

necessary ingredients are nonlinearity and dispersion. These soliton solutions deliver the 

information about solitary waves. The name “solitons” of the solitary wave, due to exhibiting 

the properties of particles, was first proposed Zabusky and Kruskal [78]. The phenomena, 

regarding excitation, propagation, and interaction, of solitons play a vital role in plasma 

physics. The phase of the solitons changes without changing their amplitudes due to 

interactions.  

 

 

 

1.3.2 Ion acoustic waves 

     Acoustic wave is a type of longitudinal wave that propagates by adiabatic compression and 

decompression. Sound pressure, particle velocity, particle displacement and sound intensity 
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etc. are the quantities for describing the acoustic waves. The acoustic waves propagate with 

the speed of sound which depends on the properties of medium. The ion acoustic waves are 

the acoustic-type waves, which commonly occurs due to pressure gradients, with time scale 

longer than the frequency corresponding to the relevant length scale. In the ion acoustic 

waves, the restoring force is provided by the pressure of lighter species such as electrons, 

positrons etc., and inertia is provided by the massive ionic species. As the ions interact with 

electrostatic or electromagnetic fields at long distance, therefore the ion acoustic waves may 

propagate in collisionless medium. The motion of massive ions are occupied in the ion 

acoustic waves, this will result in low frequency oscillations. Under these conditions, the 

dispersion relation can be defined as    

                                                     𝜔𝜔2 = 𝑘𝑘2 �𝜅𝜅𝐵𝐵𝑇𝑇𝑒𝑒
𝑀𝑀

+ 𝛾𝛾𝑖𝑖𝜅𝜅𝐵𝐵𝑇𝑇𝑖𝑖
𝑀𝑀

�,                                       (1.6) 

where, 𝑀𝑀 is the mass of ions, 𝛾𝛾𝑖𝑖 is the ratio of specific heat at constant pressure to constant 

volume, 𝜔𝜔 is the angular wave frequency and 𝑘𝑘 is the wave number.  

1.3.3 Positron acoustic solitary waves 

Positron acoustic waves are acoustic-type of waves. The Positron acoustic waves are 

the low frequency electrostatic waves in plasma system. In Positron acoustic waves, the 

restoring force is provided by the thermal pressure of hot positrons and electrons, and the 

inertia comes from the mass of cold positron. The propagation of the positron acoustic solitary 

wave is very important for the understanding of electrostatic disturbances as observed in 

space and laboratory plasmas.  

1.3.4 Shock waves 

   Much interest has grown to the research community in the study of shock waves due to their 

(shock waves) significant importance in plasmas. It carries energy and can propagate through 

the medium (solid, liquid, gas or plasma). shock waves are a special class of nonlinear waves 

in the form of propagating discontinuous disturbances that are characterized [79] by abrupt 

nearly-discontinuous change in the characteristic of the medium. The properties of shock 

include rapid rise in velocity, pressure, temperature and density. shock wave occurs in a 

variety of neutral media such as in gas [80], liquid [81] and solid [82]. They are also observed 

in space during the early stages of star formation and the interaction between the magnetic 

fields of the Earth and the solar wind. In plasma, shock wave can be excited when a large 

amplitude mode propagates in the presence of strong dissipation such as due to collisions with 

neutrals, viscosity or Landau damping [83-84]. In collision dominated media like the Earth’s 
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atmosphere, energy dissipation is accomplished through binary collision of particles. The 

shock waves are found in air and water which are produced when the flow velocity of air 

molecule relative to the water is greater than the speed of sound. Shock waves are the final 

stage of nonlinearity steeping wave that balance between nonlinearity and energy dissipation 

(i.e. irreversible energy transformation) [85-87]. Thus, one can conclude that the shock is 

produced due to the balance between the nonlinearity and dissipation. Depending on the 

modes of small-amplitude waves, shock wave can be of three types: the fast, slow, and 

intermediate as can be observed in magneto hydrodynamics. shock waves are also found in a 

wide variety of plasmas in the universe. These plasmas are  generally collisionless, which 

means that the energy is dissipated with wave-particle interaction instead of particle-particle 

interaction. The collisionless shock waves are known to be the efficient mechanisms by which 

charged particles can be heated and/or accelerated. There are four  possible mechanisms by 

which a collisionless shock could transfer energy: wave dispersion [88-90], wave-particle 

interactions [91-92], particle reflection [93-95] and macroscopic quasi-static field effects [96-

98]. The Earth’s bow shocks, the interplanetary shocks and the supernova remnant are some 

examples of the collisionless shocks.  

1.3.5 Rogue wave 

    Rogue waves are large, unexpected and suddenly appearing surface waves. Rogue 

waves are also known as freak waves, monster waves, episodic waves, killer waves, extreme 

waves, and abnormal waves. For the first time in 1995, the Rogue waves were recorded by 

[99] during a winter storm in the North Sea, when the “New Years Wave” hit the Draupner 

platform with a wave height of 27 m and 2.25 times the average wave height. The formations 

of rogue waves are now being investigated in various physical contexts, such as in nonlinear 

optics [100-102], plasma physics [103], and superfluids [104]. Therefore, the studies on rogue 

waves will enrich the concept and bring a full understanding of the mysterious phenomenon.  

1.3.6 Bohm potential  

    The quantum potential is the concept of de Brogle-Bohm formulation of quantum 

mechanics, was first introduced by David Bohm in 1952[105]. It is also known as Bohm 

potential, quantum Bohm potential or Bohm quantum potential and which could be taken as 

the source of quantum novelties. Lee and Jung [106] have found that the Bohm potential term 

generates the propagation mode in quantum plasmas. There exists a parameter in the study of 

ion acoustic waves in degenerate plasmas, called quantum parameter, due to the Bohm 

potential, which is solely responsible for the tunneling effect of the corresponding plasma 
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components. The tunneling effect is sometimes exhibited by moving particles that succeed in 

passing from one side of a potential barrier to the other having insufficient energy to pass over 

the top.  

1.4 Basic hydrodynamic equation in plasma 

   As the plasma consists of electrons, ions and neutral particles, thus the system of fluid 

transport equation, which describes the plasma properties, can be derived separately for each 

type of particle. 

Continuity equation: If 𝑣𝑣 and 𝑛𝑛 are the velocity and number density, then the continuity 

equations [107] can be written as  

     𝜕𝜕𝑛𝑛0
𝜕𝜕𝜕𝜕

+ 𝜵𝜵. (𝑛𝑛0𝑣𝑣0) = 𝑅𝑅0𝜋𝜋𝑒𝑒𝑐𝑐 − 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 ,                                                              (1.7) 

      𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝜵𝜵. (𝑛𝑛𝑖𝑖𝑣𝑣𝑖𝑖) = 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 − 𝑅𝑅0𝜋𝜋𝑒𝑒𝑐𝑐                                                                  (1.8) 

        𝜕𝜕𝑛𝑛𝑒𝑒
𝜕𝜕𝜕𝜕

+ 𝜵𝜵. (𝑛𝑛𝑒𝑒𝑣𝑣𝑒𝑒) = 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 − 𝑅𝑅0𝜋𝜋𝑒𝑒𝑐𝑐                                                             (1.9) 

The function 𝑅𝑅𝑗𝑗𝜋𝜋𝑒𝑒𝑐𝑐�𝑛𝑛0,𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑒𝑒, ⋯ ,𝑝𝑝,𝑇𝑇� and 𝑅𝑅𝑗𝑗𝑖𝑖𝑖𝑖𝑛𝑛�𝑛𝑛0,𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑒𝑒, ⋯ ,𝑝𝑝,𝑇𝑇� are the recombination and 

ionization rate of j (= i for ion and 0 for neutral) species, respectively and p is the pressure. 

The mass conservation equations can be obtained by multiplying each of the above continuity 

equations with the corresponding mass per molecule. The total mass density of the plasma 

fluid defined as  

                                                       𝜌𝜌 = 𝑛𝑛0𝑚𝑚0 + 𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖 + 𝑛𝑛𝑒𝑒𝑒𝑒,                                  (1.10) 

and the plasma fluid mass averaged velocity denoted and defined by  

𝑣𝑣𝑎𝑎 = 1
𝜌𝜌

(𝑛𝑛0𝑚𝑚0𝒗𝒗𝟎𝟎 + 𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝒗𝒗𝒊𝒊 + 𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝒗𝒗𝒆𝒆).                                                     (1.11) 

Therefore,                                      𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝜵𝜵. (𝜌𝜌𝒗𝒗𝒂𝒂) = 0 .                                           (1.12) 

This is known as the equation of continuity describing the conservation of mass. The first 

term represents the time rate of change of density of a particular species in a volume and the 

second term represents the difference of outflow and inflow fluxes of particles inside a small 

volume.  

Momentum equation: 

Let us consider the plasma flows through a fixed element in space. Therefore, the 

electromagnetic (EM) force on the element per unit volume is defined as  

                           𝑭𝑭𝑒𝑒𝑚𝑚 = 𝑛𝑛𝑞𝑞(𝑬𝑬 + 𝒗𝒗 × 𝑩𝑩).                                                    (1.13) 

Where, 𝑛𝑛𝑞𝑞 is the charge density. The momentum flow across the boundary per unit volume is  
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𝛻𝛻 ⋅ ��𝑚𝑚�𝒗𝒗 + 𝒗𝒗𝒒𝒒��𝒗𝒗 + 𝒗𝒗𝒒𝒒�𝑓𝑓�𝒗𝒗𝒒𝒒�𝑑𝑑3𝒗𝒗𝒒𝒒� 

= 𝛻𝛻 ⋅ ��𝑚𝑚�𝒗𝒗𝒗𝒗 + �𝒗𝒗𝒗𝒗𝒒𝒒 + 𝒗𝒗𝒒𝒒𝒗𝒗� + 𝒗𝒗𝒒𝒒𝒗𝒗𝒒𝒒�𝑓𝑓�𝒗𝒗𝒒𝒒�𝑑𝑑3𝒗𝒗𝒒𝒒� 

= 𝛻𝛻 ⋅ [𝑚𝑚𝑛𝑛𝒗𝒗𝒗𝒗 + 𝑝𝑝] 

= 𝑚𝑚𝑛𝑛(𝒗𝒗 ⋅ 𝛻𝛻) + 𝑚𝑚𝒗𝒗{𝛻𝛻 ⋅ (𝑛𝑛𝒗𝒗)} + 𝛻𝛻𝑝𝑝 [as, ∫�𝒗𝒗𝒗𝒗𝒒𝒒 + 𝒗𝒗𝒒𝒒𝒗𝒗�𝑓𝑓�𝒗𝒗𝒒𝒒�𝑑𝑑3𝒗𝒗𝒒𝒒 = 0].           (1.14)  

 

𝒗𝒗𝒒𝒒 is the peculiar velocity[107-108]. As the momentum density of the element is 𝑚𝑚𝑛𝑛𝒗𝒗, thus 

the rate of change of momentum within the element per unit volume is  𝜕𝜕(𝑚𝑚𝑛𝑛𝒗𝒗) 𝜕𝜕𝜕𝜕⁄ . 

Therefore, the total momentum balance equation becomes 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑚𝑚𝑛𝑛𝒗𝒗) + 𝑚𝑚𝑛𝑛(𝒗𝒗 ⋅ 𝛻𝛻) + 𝑚𝑚𝒗𝒗{𝛻𝛻 ⋅ (𝑛𝑛𝒗𝒗)} + 𝛻𝛻𝑝𝑝 = 𝑭𝑭𝑒𝑒𝑚𝑚, 

⟹ 𝑚𝑚𝒗𝒗�𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕

+ 𝜵𝜵 ⋅ (𝑛𝑛𝒗𝒗)� + 𝑚𝑚𝑛𝑛(𝒗𝒗 ⋅ 𝛻𝛻)𝒗𝒗 + 𝑚𝑚𝑛𝑛 𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

+ 𝛻𝛻𝑝𝑝 = 𝑛𝑛𝑞𝑞(𝑬𝑬 + 𝒗𝒗 × 𝑩𝑩).            (1.15) 

From Eq. (1.12) and Eq. (1.15) one can determine the momentum equation 

                                 𝑚𝑚𝑛𝑛 �𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

+ (𝒗𝒗 ⋅ 𝛻𝛻)𝒗𝒗� = 𝑛𝑛𝑞𝑞(𝑬𝑬 + 𝒗𝒗 × 𝑩𝑩) − 𝛻𝛻𝑝𝑝.        (1.16) 

Poisson’s equation: 

    The Maxwell’s equations are  

                                                      

𝛻𝛻 ⋅ 𝑬𝑬 = 𝜌𝜌 𝜀𝜀0⁄
𝛻𝛻 ⋅ 𝑩𝑩 = 0
𝛻𝛻 × 𝑬𝑬 = 𝟎𝟎
𝛻𝛻 × 𝑩𝑩 = 𝜇𝜇𝑖𝑖𝑱𝑱

�.                               (1.17) 

Where  𝜌𝜌 and 𝑱𝑱 are the densities of electric charges and current, respectively and 𝜀𝜀0 is the 

electric permittivity in vacuum. Since 𝛻𝛻 × 𝑬𝑬 = 𝟎𝟎, there exits an electric potential 𝜙𝜙 such that 

𝐸𝐸 = −𝛻𝛻𝜙𝜙, thus 𝛻𝛻 ⋅ 𝑬𝑬 = 𝜌𝜌 𝜀𝜀0⁄  gives Poisson’s equation  

                                                        ∇2𝜙𝜙 = − 𝜌𝜌
𝜀𝜀0

 .                                (1.18)                      

1.5 Distribution functions in plasma system 

The distribution functions 𝑓𝑓(𝑥𝑥, 𝑣𝑣, 𝜕𝜕) are the basic elements in the plasma system that describes 

how particles are distributed in both physical space and velocity space. In this section it is 

important to discuss some important distribution functions that are relevant to this 

dissertation.  

1.5.1 Maxwell distribution  
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The Maxwell-Boltzmann distribution illustrates speeds of particle in gases, where the 

particles move freely between short collisions, but do not interact with each other. The 

normalized distribution function [109] for molecular velocities can be defined as: 

          𝑓𝑓(𝑣𝑣)𝑑𝑑3𝑣𝑣𝑑𝑑3𝑥𝑥 = 𝑛𝑛(𝑚𝑚 2𝜋𝜋𝜅𝜅𝐵𝐵𝑇𝑇⁄ )3 2⁄ exp(−𝑚𝑚𝑣𝑣2 2𝜅𝜅𝐵𝐵𝑇𝑇⁄ )𝑑𝑑3𝑥𝑥𝑑𝑑3𝑣𝑣.      (1.19) 

After the name of James Clark Maxwell the distribution represents by Eq. (1.19) is known as 

the Maxwell velocity distribution. For the inertialess and isothermal electron the Boltzmann 

distributed electron can be taken into account as 

         𝑛𝑛𝑒𝑒 = 𝑛𝑛𝑖𝑖 exp(𝑒𝑒𝜙𝜙 𝜅𝜅𝐵𝐵𝑇𝑇𝑒𝑒⁄ ).                                                                     (1.20)        

Where, 𝑒𝑒 is the electronic charge and  𝑛𝑛𝑖𝑖 is the initial density of the electron.  

1.5.2 Non-thermal distribution 

To understand the nonlinear electrostatic disturbances in space plasma environments such 

as in the aurora acceleration region [110-111], upper ionosphere [112], lower part of the 

magnetosphere [113-114], around the Earth’s bow shock [115], etc. the population of non-

thermal particles, and their distribution have received a great deal of interest. To represent the 

population of the  nonthermal particles Cairns et al [116] have introduced a distribution 

function known as “Cairns distribution”, which is able to explain some special features of the 

ion acoustic solitary structures (e.g. the existence of rarefactive ion-acoustic solitons or 

density cavitons that are observed by the Freja Satellite [114] and Viking spacecraft [113]). 

Theoretical discussion of Cairns et al. [116] provided a model describing the velocity 

distribution function is written as 

               𝑓𝑓(𝑣𝑣) = 𝑛𝑛0{1 + (𝑚𝑚2𝑣𝑣4 4⁄ )𝛼𝛼}exp{−𝑚𝑚𝑣𝑣2 2(1 + 3𝛼𝛼)⁄ }.                      (1.21)               

𝛼𝛼 is the nonthermal parameter determines the number of energetic electrons or ions. 

Subsequently, the electron number density appearing in the Eq. (1.22) can be obtained as  

                        𝑛𝑛𝑒𝑒 = (1 − 𝛽𝛽𝜙𝜙 + 𝛽𝛽𝜙𝜙2)exp(−𝜙𝜙),                                         (1.22) 

where 𝛽𝛽 = 4𝛼𝛼 (1 + 3𝛼𝛼)⁄  represents the nonthermality of electron distribution. In the limit 

𝛽𝛽 = 0 the Eq. (1.22) expresses the isothermally distributed electrons. The electron 

distribution given by Eq. (1.22) is common to many space and laboratory plasmas [110-116]. 

1.5.3 Superthermal distribution   

  When the plasmas are not in thermal equilibrium, as observed in space plasmas such 

as in the magnetosphere environment, solar wind, the corona [117-118] and so on, the particle 

distribution functions are characterized by non-Maxwellian power-law [119-121]. Such 

particle velocity distributions function known as the generalized Lorenzian or the kappa 

distribution [122-123]. In the one-dimensional case, the kappa distribution is given by [121] 
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𝑓𝑓(𝑣𝑣) = 𝑛𝑛Γ(𝜅𝜅+1)
𝜃𝜃√𝜋𝜋𝜅𝜅3 2⁄ Γ(𝜅𝜅−1 2⁄ )

{1 + 𝑣𝑣2 (𝜅𝜅𝜃𝜃2)⁄ }−𝜅𝜅,                                                (1.23) 

and in the three dimensional case, the kappa distribution is given [124] by     

𝑓𝑓(𝑣𝑣) = 𝑛𝑛Γ(𝜅𝜅+1)
𝜃𝜃3𝜋𝜋3 2⁄ 𝜅𝜅3 2⁄ Γ(𝜅𝜅−1 2⁄ )

{1 + 𝑣𝑣2 (𝜅𝜅𝜃𝜃2)⁄ }−(𝜅𝜅+1) ,                                     (1.24)       

where 𝑓𝑓(𝑣𝑣) is the distribution function, 𝜅𝜅, the spectral index, is a measure of the slope of the 

energy spectrum of the superthermal electrons forming the tail of the velocity distribution 

function,  𝜃𝜃 is the thermal speed, and Γ is the gamma function. The kappa distribution has a 

power-law tail for finite values of the spectral index 𝜅𝜅 at velocities larger than 𝜃𝜃, and in the 

limit 𝜅𝜅 → ∞, it becomes Maxwellian distribution.  

1.5.4 Nonextensive distribution 

   In fact, the Maxwell distribution is valid for the macroscopic ergodic equilibrium state 

[125-127]. However, the Maxwell distribution is not enough to describe the systems in 

thermally non-equilibrium state with long range interactions. The plasmas in space and 

laboratory [128-129] undoubtedly designate the presence of particle population distribution 

functions that may be different from the Maxwellian distributions but behave like the power-

law. For instance, the spacecraft measurements indicated that “suprathermal” power-law tail 

at the high energies [130], which can be modeled more effectively by generalized Lorentzian 

𝜅𝜅-distribution [131]. Such a 𝜅𝜅-distribution is known to be equal to the 𝑞𝑞-distribution in 

nonextensive statistics [132-133]. In 1988, Tsallis proposed the nonextensive entropy or the 

q-entropy [134] and it is called nonextensive statistics. The nonextensive distribution function 

for species 𝛼𝛼 can be defined [135] as 

𝑓𝑓𝑝𝑝(𝑣𝑣) = 𝐶𝐶𝑞𝑞𝑝𝑝 �1 − (𝑞𝑞𝑝𝑝 − 1) �𝑚𝑚𝛼𝛼𝑣𝑣2

2𝑘𝑘𝐵𝐵𝑇𝑇𝛼𝛼
+ 𝑒𝑒𝛼𝛼Φ

𝑘𝑘𝐵𝐵𝑇𝑇𝛼𝛼
��

1
𝑞𝑞𝛼𝛼−1,                                        (1.25) 

with                          𝐶𝐶𝑞𝑞𝑝𝑝 = 𝑛𝑛𝑝𝑝0
Γ� 1

1−𝑞𝑞𝛼𝛼
�

Γ� 1
1−𝑞𝑞𝛼𝛼

−12�
�𝑚𝑚𝛼𝛼(1−𝑞𝑞𝛼𝛼)

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇𝛼𝛼
, for  1 < 𝑞𝑞𝑝𝑝 < 1, 

and                           𝐶𝐶𝑞𝑞𝑝𝑝 = 𝑛𝑛𝑝𝑝0 �
1+𝑞𝑞𝛼𝛼
2
�

Γ� 1
1−𝑞𝑞𝛼𝛼

+12�

Γ� 1
1−𝑞𝑞𝛼𝛼

�
�𝑚𝑚𝛼𝛼(1−𝑞𝑞𝛼𝛼)

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇𝛼𝛼
, for 𝑞𝑞𝑝𝑝 > 1, 

where 𝐶𝐶𝑞𝑞𝑝𝑝 and Γ are the normalization constant and Gamma function, respectively. The 

nonextensive densities of electrons and positrons can be obtained [136] in the form 𝑛𝑛𝑒𝑒 =

𝑛𝑛𝑒𝑒0 �1 + (𝑞𝑞𝑒𝑒 − 1) Φ
𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒

�
𝑞𝑞𝑒𝑒+1

2(𝑞𝑞𝑒𝑒−1) and 𝑛𝑛𝑚𝑚 = �1 + �𝑞𝑞𝑚𝑚 − 1� Φ
𝑘𝑘𝐵𝐵𝑇𝑇𝑝𝑝

�
𝑞𝑞𝑝𝑝+1

2�𝑞𝑞𝑝𝑝−1�,  respectively.  𝑞𝑞𝑒𝑒  and  

𝑞𝑞𝑚𝑚  indicate nonextensive parameters which characterizing the degree of nonextensivity. For 
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superthermality −1 < 𝑞𝑞𝑒𝑒,𝑚𝑚 < 1 and for subthermality 𝑞𝑞𝑒𝑒,𝑚𝑚 > 1 and in the limit 𝑞𝑞𝑒𝑒,𝑚𝑚 → 1 the 

nonextensive distribution becomes the Maxwell- Boltzmann distribution function. 

1.6 Nonlinear methodology  

Different methods are used to study the structures and properties of nonlinear solitary 

waves. The reductive perturbation method is one, which was first proposed by Washima and 

Taniuti [137]. It is used to solve a set of nonlinear differential equations in almost all branches 

of physics such as, in plasma physics [137], fluid dynamics [138-139], nonlinear lattice [140-

141], etc. The RP method is only valid for small amplitude and long wave length nonlinear 

waves [142]. On the other hand, the quasi-potential (Sagdeev potential) method [143] is 

typically used for the case of large amplitude waves. The quasi-potential method is valid only 

for the special case in which the waveform remains unchanged. For the head-on collision 

between two counter propagating solitary waves, neither the reductive perturbation method 

nor the quasi-potential method can solve such type of problem. To solve such type of 

problem, asymptotic expansion method is employed like the extended Poincar𝑒𝑒΄-Lighthill-

Kuo (ePLK) method [144-147]. This method is comprehensively used in many branches of 

physics, for instance, in plasma physics [148-149], in Boes-Einstein condensates [147,150], 

and in nonlinear lattice dynamics [151-152], etc. In fact, the ePLK method can be considered 

as an extension of the reductive perturbation method. The ePLK is only valid when the 

amplitudes of both the colliding solitary waves are small enough [153]. 

1.6.1 Poincar𝒆𝒆΄-Lighthill-Kuo (ePLK) method 

In 1880, Poincar𝑒𝑒΄ introduced a technique of strained parameters in the study of 

celestial mechanics [154], which is later on generalized by Lighthill in 1949 and applied to 

some complicated problem in aerodynamics [155]. In 1953, Kuo realized a perfect 

combination of Lighthill technique with the boundary layer method which is summarized and 

reviewed by Tsien in 1956 [156-157]. Thus the method was named as the extended ePLK 

method.  

The dependent variables are expanded as:  

𝑛𝑛𝑖𝑖 = 1 + 𝜀𝜀2𝑛𝑛𝑖𝑖
(1) + 𝜀𝜀3𝑛𝑛𝑖𝑖

(2) + 𝜀𝜀4𝑛𝑛𝑖𝑖
(3) + ⋯  

𝑢𝑢𝑖𝑖 = 𝑢𝑢0 + 𝜀𝜀2𝑢𝑢𝑖𝑖
(1) + 𝜀𝜀3𝑢𝑢𝑖𝑖

(2) + 𝜀𝜀4𝑢𝑢𝑖𝑖
(3) + ⋯

𝜙𝜙 = 0 + 𝜀𝜀2𝜙𝜙(1) + 𝜀𝜀3𝜙𝜙(2) + 𝜀𝜀4𝜙𝜙(3) + ⋯

�.                                               (1.26)       

The stretched variables are expanded as: 
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𝜉𝜉 = 𝜀𝜀(𝑥𝑥 − 𝑐𝑐1𝜕𝜕) + 𝜀𝜀2𝑃𝑃0(𝜁𝜁, 𝜔𝜔) + 𝜀𝜀3𝑃𝑃1(𝜁𝜁, 𝜉𝜉, 𝜔𝜔) + ⋯
𝜁𝜁 = 𝜀𝜀(𝑥𝑥 + 𝑐𝑐2𝜕𝜕) + 𝜀𝜀2𝑄𝑄0(𝜉𝜉, 𝜔𝜔) + 𝜀𝜀3𝑄𝑄1(𝜁𝜁, 𝜉𝜉, 𝜔𝜔) + ⋯

𝜔𝜔 = 𝜀𝜀3𝜕𝜕
�.                                 (1.27) 

Where 𝜉𝜉 and 𝜁𝜁 denote the trajectories of two solitons traveling toward each other, and 𝑐𝑐1 and 

𝑐𝑐2 are the unknown phase velocities. 

1.7 Outline of the dissertation  

      In this dissertation, the interaction phenomena of nonlinear waves in unmagnetized 

plasmas in different plasma conditions are investigated. Such plasmas are homogeneous or 

inhomogeneous, collisionless, and relativistic or nonrelativistic comprising multi-species. The 

purpose of this study is to investigate the production of nonlinear solitary, shock and rogue 

waves as well as the phase shifts and amplitudes due to collision for the effects of plasma 

parameters arising in this dissertation to better understanding the physics concerned. The 

dissertation is organized as follows:  

Chapter one includes the brief discussion on some basic physical terms that are relevant to 

the works presented in this dissertation.   

Chapter two: The interactions among solitons and their consequences in the production of 

rogue waves in an unmagnetized plasmas, composing non-relativistic as well as relativistic 

degenerate electrons and positrons, and inertial non-relativistic helium ions, are investigated. 

The extended Poincaré–Lighthill–Kuo (ePLK) method is employed to derive the two-sided 

Korteweg–de Vries (KdV) equations with their corresponding phase shifts. The NLSE is 

obtained from the modified KdV (mKdV) equation, which allows one to study the properties 

of rogue waves. It is found that the Fermi temperature and quantum mechanical effects 

become pronounced due to the quantum diffraction of electrons and positrons in the plasmas. 

The densities and temperatures of the helium ions, degenerate electrons and positrons, and 

quantum parameters strongly modify the electrostatic ion acoustic resonances and their 

corresponding phase shifts due to the interactions among solitons and produce rogue waves in 

the plasma. 

Chapter three: A comparative study of the interactions between nonlinear ion acoustic 

solitary waves propagating toward each other, and the electrostatic nonlinear propagation of 

ion acoustic solitary waves, both for the weakly and highly relativistic regimes consisting of 

relativistic warm ions, nonthermal electrons, and positrons, is carried out. Two-sided KdV 

equations are derived using the ePLK method to reveal the physical issues concerned. The 

effects of positron concentration, ion-electron temperature ratio, electron-positron temperature 

ratio, relativistic streaming factor, the population of electron, and positron nonthermality on 
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the electrostatic resonances and their phase shifts are investigated for both regimes. It is found 

that the plasma parameters significantly modify the phase shifts, electrostatic resonances, 

hump-shaped electrostatic potential profiles, and the electric fields on the nonlinear 

propagation characteristics of ion acoustic solitary waves. The results obtained may be useful 

for clarifications of interaction between ion acoustic solitary waves in astrophysical and 

laboratory plasmas, especially in pulsar magnetosphere, laser-produced inertial confinement 

plasmas, and pulsar relativistic winds with supernova ejecta that produce nonthermal 

electrons, positrons and relativistic ions.  

Chapter four: Propagation characteristics and interaction phenomena among the dust 

acoustic solitons in unmagnetized dusty plasmas are studied. The plasma is composed of 

negatively charged mobile dust, Boltzmann distributed electrons, and nonthermally 

distributed cold and hot ions. The extended ePLK method is employed to derive the two-sided 

KdV-equations. The solutions of the KdV equations are constructed using the Hirota bilinear 

method both for single- and multi-solitons. The phase shifts are determined for the 

interactions among the two-, four-, and six- dust acoustic solitons. The effects of plasma 

parameters on the head-on collisions of the dust acoustic single- and multi-solitons and their 

corresponding phase shifts are investigated.   

Chapter five: Head-on collision between ion acoustic shock waves and the consequences 

after collision are investigated considering the plasma system to be consisting of relativistic 

warm ions and nonextensive electrons and positrons, taking into account the effects of 

nonlinearity and dispersion. Two-sided KdV-Burger equations are derived employing the 

ePLK method. The results reveal that the plasma parameters are responsible for the 

modification of the structures along with phase shifts of the shock waves. The nonlinearity 

effects on ion acoustic shock waves in a highly relativistic regime (HRR) become pronounced 

rather than the weakly relativistic  regime (WRR). The phase shifts of ion acoustic shock 

waves are enhanced by the relativistic streaming factor and superthermality. The electrostatic 

ion acoustic shock waves become rarefactive depending on temperatures, kinematic viscosity, 

and superthermality in both WRR and HRR. The amplitudes of ion acoustic shock waves are 

increasing for WRR but decreasing for HRR due to increasing ion thermal velocities. Besides, 

the amplitudes of the solitons are detaining due to the increase in the positron concentration 

for the depopulation of ions.  

Chapter six: The head-on collision between positron acoustic solitary waves as well as the 

production of rogue waves in homogeneous and positron acoustic solitary waves in 
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inhomogeneous unmagnetized plasma systems are investigated deriving the nonlinear 

evolution equations. The plasmas are composed of immobile positive ions, mobile cold and 

hot positrons, and hot electrons, where the hot positrons and hot electrons are assumed to 

follow the Kappa distributions. The evolution equations are derived using the appropriate 

coordinate transformation and the reductive perturbation technique. The effects of 

concentrations, kappa parameters of hot electrons and positrons, and temperature ratios on the 

characteristics of positron acoustic solitary waves and rogue waves are examined. It is found 

that the kappa parameters and temperature ratios significantly modify phase shifts after head-

on collisions and rogue waves in homogeneous as well as positron acoustic solitary waves in 

inhomogeneous plasmas. The amplitudes of the positron acoustic solitary waves in 

inhomogeneous plasmas are diminished with increasing kappa parameters, concentration and 

temperature ratios. Further, the amplitudes of rogue waves are reduced with increasing 

concentrations of charged particles, while it enhances with increasing kappa- and temperature 

parameters. Besides, the compressive and rarefactive solitons are produced at critical densities 

from KdV equation for hot and cold positrons, while the compressive solitons are only 

produced from mKdV equation for both in homogeneous and inhomogeneous plasmas. 

Chapter seven: The important results obtained and conclusions are summarized in this 

chapter. Prospects for the future works are also presented therein.   
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Chapter 2 
 

Interactions of ion acoustic multi-soliton and rogue wave with Bohm 
quantum potential in degenerate plasma 

 
 
2.1 Introduction 

    It is well known that the dense electron–positron–ion (epi) plasmas are prevailed in the 

astrophysical environments, such as in white dwarfs, neutron stars, and active galactic 

nuclei[1–4], and are produced in the laboratory, such as in the intense laser–solid interaction 

experiments[5-6]. The relativistic or quantum effect becomes prominent due to the fact that 

the inter electron distance is comparable to the thermal de Broglie wave length [1] in such 

high density (of the order of 1030 cm−3) plasmas, e.g., in white dwarfs. In such extremely 

high density plasmas, the electron thermal energy is much less the electron Fermi energy. 

According to Pauli’s exclusion principle, the electron thermal pressure can thus be neglected 

[7] compared to the Fermi degeneracy pressure. The astrophysical objects sustain against the 

enormous gravitational forces due to the extremely dense degenerate electron pressure. In 

such case, the tunneling of the plasma species associated with the Bohm potential and 

statistical Fermi–Dirac pressure plays a significant role [8] on the structures and dynamics of 

the ion acoustic waves as observed in different astrophysical and space plasmas[9-10], such as 

in white dwarf[1] and magnetars [11].  

    References [4] and [12-21] have investigated the structures and nonlinear propagation of 

ion acoustic waves considering either degenerate or non-degenerate plasmas. Mamun and 

Shukla [12] investigated the structures of the shock waves in degenerate dense plasma in 

order to explain the phenomenon observed in white dwarfs. Rahman et al. [17] showed that 

the positron concentration and the relativistic plasma parameters significantly modify the 

amplitude, width, and phase velocity of the ion acoustic waves in epi plasmas. Haas et al.[18] 

found that the interaction of plasma particles with the Bohm potential significantly affects the 

properties of the nonlinear ion acoustic waves. Bhowmik et al. [19] studied the effects of 

quantum diffraction parameter (H) and equilibrium plasma species density ratio on the 

propagation of electron acoustic waves in the quantum plasmas. Recently, Hossen et al. [8] 

considered a degenerate epi plasma system consisting of inertial non-relativistic light ions, 
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degenerate electrons, and positrons and noted the effects of tunneling of the plasma particles 

with the Bohm potential on the propagation of ion acoustic waves by deriving the KdV, 

mKdV, and mixed mKdV (mmKdV) equations. On the other hand, many authors [22–29] 

have studied the propagation phenomena of the rogue waves by transforming the KdV, 

mKdV, and mmKdV equations to the corresponding NLS equations. Besides, Mandal et al. 

[30] have investigated only the overtaking collisions and phase shifts of dust acoustic multi-

solitions in a four component dusty plasma. However, the interactions between single- and 

multi-solitons and hence the production of rogue waves along with their structures and 

dynamics are still unrevealed in the plasmas[8] for better understanding the physical issues 

observed in space plasmas [25–29,31–38]. Being motivated, for the significance of the 

problems related to the astrophysical and laboratory plasmas, we study the interaction 

processes of the ion acoustic single- and multi-solitons, and their phase shifts as well as rogue 

waves in an unmagnetized plasmas composing degenerate electrons and positrons including 

Bohm quantum potential and an inertial non-relativistic light ions. The effects of helium ion 

mass and density, degenerate electrons, and positrons densities and temperatures on the phase 

shift, interactions among the ion acoustic single- and multi-solitons, and the production of 

rogue waves are investigated.  

    In sequence of introduction, the theoretical model and derivations of two-sided KdV 

equations are presented in Section 2.2.The single- and multi-solitons solutions of the KdV 

equations and their corresponding phase shifts are illustrated in Section 2.3. Derivation of 

nonlinear Schrödinger equation (NLSE) along with the solution of its rational function is 

displayed in Section 2.4. The results and discussion are described in Section 2.5. Finally, the 

conclusion is drawn in Section 2.6.  

2.2 Governing equations 

2.2.1 Model equations 

   The electrons (positrons) remain non-relativistic if their Fermi energy is less than their rest 

mass energy [39] in high density plasmas. On the other hand, the electrons have Fermi energy 

that is comparable to or greater than their rest mass energy, and hence the electron Fermi 

speed turns out to be comparable to the speed of light in vacuum for the number densities in 

the range of 1029 − 1034cm−3. Chandrasekhar [4, 40] explained the equation of state for 

degenerate plasmas, as observed in an astrophysical compact object, namely, white dwarf, 

considering degenerate pressure exerted by plasma fluid as 𝑃𝑃𝑠𝑠 = 𝐾𝐾𝑠𝑠𝑛𝑛𝑠𝑠𝛼𝛼 = 𝐾𝐾𝑠𝑠𝑛𝑛𝑠𝑠
𝛾𝛾, where 𝛼𝛼 =

5/3, 𝐾𝐾𝑠𝑠 ≈ (3/5)Λ𝑐𝑐ħ𝑐𝑐, (Λ𝑐𝑐 = 𝜋𝜋ħ 𝑚𝑚𝑠𝑠𝑐𝑐⁄ = 1.2 × 10−10cm, ħ = ℎ/2𝜋𝜋) for the non-relativistic 
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and 𝛾𝛾 = 4/3, 𝐾𝐾𝑠𝑠 ≈ (3/4)ħ𝑐𝑐 for the ultra-relativistic cases, 𝑚𝑚𝑠𝑠 and 𝑛𝑛𝑠𝑠 are the plasma species 

mass and density, and ℎ and 𝑐𝑐 are the Planck constant and velocity of light in free space, 

respectively. In this report, an unmagnetized dense epi plasma system is considered 

composing both non-relativistic and relativistic degenerate electrons and positrons, and 

inertial non-relativistic light ions. 𝑛𝑛𝑒𝑒0 = 𝑛𝑛𝑝𝑝0 + 𝑛𝑛𝑖𝑖0 is considered as the quasi-neutrality 

condition, where 𝑛𝑛𝑒𝑒0, 𝑛𝑛𝑝𝑝0, and 𝑛𝑛𝑖𝑖0 are the densities of the unperturbed electrons, positrons, 

and ions, respectively. To study the structures and dynamics of the ion acoustic waves 

including their electrostatic resonance phenomena, corresponding phase shifts, and production 

of rogue waves in the considered plasmas, the normalized fluid equations [8] can be written as 

                                                                                𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝜕𝜕 
𝜕𝜕𝜕𝜕

(𝑛𝑛𝑖𝑖𝑢𝑢𝑖𝑖) = 0   ,                       (2.1) 

                                                                  𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕

+  𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕
− 𝐾𝐾1

𝜕𝜕𝑖𝑖
 𝜕𝜕𝜕𝜕𝑖𝑖

𝛼𝛼

𝜕𝜕𝜕𝜕
  ,        (2.2) 

                                                          𝑛𝑛𝑒𝑒
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕
− 𝐾𝐾2  𝜕𝜕𝜕𝜕𝑒𝑒

𝛾𝛾

𝜕𝜕𝜕𝜕
+ 𝛽𝛽 𝜕𝜕

𝜕𝜕𝜕𝜕
� 1
�𝜕𝜕𝑒𝑒

𝜕𝜕2�𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕2

� = 0   ,            (2.3) 

                                                      𝑛𝑛𝑝𝑝
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

+ 𝐾𝐾2𝜂𝜂1  
𝜕𝜕𝜕𝜕𝑝𝑝

𝛾𝛾

𝜕𝜕𝜕𝜕
− 𝜆𝜆 𝜕𝜕

𝜕𝜕𝜕𝜕
� 1

�𝜕𝜕𝑝𝑝

𝜕𝜕2�𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕2

� = 0  ,            (2.4) 

                                                 𝜕𝜕
2𝜙𝜙
𝜕𝜕𝜕𝜕2

= 𝜇𝜇𝑛𝑛𝑒𝑒 − 𝑛𝑛𝑖𝑖 − 𝜎𝜎𝑛𝑛𝑝𝑝.                                                      (2.5) 

Here, 𝑛𝑛𝑠𝑠 (s = i, 𝑒𝑒,𝑝𝑝) is normalized by their equilibrium counterparts  𝑛𝑛𝑠𝑠0  , 𝑢𝑢𝑖𝑖 is the ion fluid 

speed normalized by ion acoustic speed 𝐶𝐶𝑖𝑖 = (𝑘𝑘𝐵𝐵𝑇𝑇𝐹𝐹𝑒𝑒/𝑚𝑚𝑖𝑖)1/2, 𝜙𝜙 is the electrostatic potential 

normalized by (𝑘𝑘𝐵𝐵𝑇𝑇𝐹𝐹𝑒𝑒/𝑒𝑒), 𝜂𝜂1 = (𝑇𝑇𝐹𝐹𝑝𝑝/𝑇𝑇𝐹𝐹𝑒𝑒), 𝜇𝜇 = (𝑛𝑛𝑒𝑒0/𝑛𝑛𝑖𝑖0), 𝜎𝜎 = (𝑛𝑛𝑝𝑝0/𝑛𝑛𝑖𝑖0), 𝐾𝐾1 =

(𝑛𝑛𝑖𝑖0𝛼𝛼−1𝐾𝐾𝑖𝑖/𝑚𝑚𝑖𝑖𝑐𝑐2),  𝐾𝐾2 = (𝑛𝑛𝑗𝑗0
𝛾𝛾−1𝐾𝐾𝑗𝑗/𝑚𝑚𝑖𝑖𝑐𝑐2), 𝑗𝑗 = 𝑒𝑒,𝑝𝑝, 𝑘𝑘𝐵𝐵 is the Boltzmann constant, 𝑚𝑚𝑖𝑖 is the ion 

rest mass and 𝑇𝑇𝐹𝐹𝑝𝑝(𝑇𝑇𝐹𝐹𝑒𝑒) is the Fermi temperature of positron (electron).The time and space 

variables are normalized by 𝜔𝜔𝑝𝑝𝑝𝑝−1 = (𝑚𝑚𝑖𝑖/4𝜋𝜋𝑛𝑛𝑖𝑖0𝑒𝑒2)1/2 and 𝜆𝜆𝐷𝐷𝑖𝑖 = (𝑘𝑘𝐵𝐵𝑇𝑇𝐹𝐹𝑒𝑒/4𝜋𝜋𝑛𝑛𝑖𝑖0𝑒𝑒2)1/2, 

respectively. The remaining dimensionless quantum parameters are 𝛽𝛽 (=  𝑛𝑛𝑖𝑖0𝐻𝐻𝑒𝑒2/2 𝑛𝑛𝑒𝑒0) and 𝜆𝜆 

(= 𝑛𝑛𝑖𝑖0𝐻𝐻𝑝𝑝2/2 𝑛𝑛𝑝𝑝0), where 𝐻𝐻𝑒𝑒 = ℏ𝜔𝜔𝑝𝑝𝑒𝑒/𝑘𝑘𝐵𝐵𝑇𝑇𝐹𝐹𝑒𝑒 and 𝐻𝐻𝑝𝑝 = ℏ𝜔𝜔𝑝𝑝𝑝𝑝/𝑘𝑘𝐵𝐵𝑇𝑇𝐹𝐹𝑝𝑝 introduced in Eqs.(2.3) 

and (2.4) due to the tunneling effect associated with Bohm potential [41]. 

2.2.2 Derivation of two-sided KdV equations 

The two-sided KdV equations are derived by employing the extended Poincaré-Lighthill-

Kuo (ePLK) method [38]. According to the ePLK method, the scaling variables 𝑥𝑥 and 𝑡𝑡 are 

defined as   
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𝜉𝜉 = 𝜀𝜀�𝑥𝑥 − 𝑉𝑉𝑝𝑝𝑡𝑡� + 𝜀𝜀2𝑋𝑋0(𝜂𝜂, 𝜏𝜏) + 𝜀𝜀3𝑋𝑋1(𝜂𝜂, 𝜉𝜉, 𝜏𝜏) +  … …
𝜂𝜂 = 𝜀𝜀�𝑥𝑥 + 𝑉𝑉𝑝𝑝𝑡𝑡� + 𝜀𝜀2𝑌𝑌0(𝜉𝜉, 𝜏𝜏) + 𝜀𝜀3𝑌𝑌1(𝜂𝜂, 𝜉𝜉, 𝜏𝜏) + … …
𝜏𝜏 = 𝜀𝜀3𝑡𝑡                                                                                

� ,                             (2.6) 

and the perturbed quantities can be written as  

                                �
𝑛𝑛𝑠𝑠
𝑢𝑢𝑖𝑖
𝜙𝜙
� = �

1
0
0
� + ∑ 𝜀𝜀𝑟𝑟+1 �

𝑛𝑛𝑠𝑠
(𝑟𝑟)

𝑢𝑢𝑖𝑖
(𝑟𝑟)

𝜙𝜙(𝑟𝑟)

�∞
𝑟𝑟=1   ,                                          (2.7) 

where 𝜉𝜉 and 𝜂𝜂 indicate the trajectories between the ion acoustic waves that are propagating  

toward each other, 𝑉𝑉𝑝𝑝 is the unknown phase velocity of ion acoustic waves normalized by 𝐶𝐶𝑖𝑖, 

and 𝜀𝜀 is a small parameter. The unknown phase functions 𝑋𝑋0(𝜂𝜂, 𝜏𝜏) and 𝑌𝑌0(𝜉𝜉, 𝜏𝜏) will be 

evaluated later. Substituting Eqs.(2.6) and (2.7) into Eqs. (2.1)-(2.5) and equating the 

quantities with the same orders of 𝜀𝜀, one can obtain coupled equations. Taking the lowest 

order of 𝜀𝜀 gives the following equations: 

�−𝑉𝑉𝑝𝑝
𝜕𝜕𝑛𝑛𝑖𝑖

(1)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝑢𝑢𝑖𝑖

(1)

𝜕𝜕𝜉𝜉 � + �𝑉𝑉𝑝𝑝
𝜕𝜕𝑛𝑛𝑖𝑖

(1)

𝜕𝜕𝜂𝜂
+
𝜕𝜕𝑢𝑢𝑖𝑖

(1)

𝜕𝜕𝜂𝜂 � = 0,                                                 (2.8)   

�−𝑉𝑉𝑝𝑝
𝜕𝜕𝑢𝑢𝑖𝑖

(1)

𝜕𝜕𝜉𝜉
+ 𝐾𝐾1′

𝜕𝜕𝑛𝑛𝑖𝑖
(1)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜉𝜉 � + �𝑉𝑉𝑝𝑝
𝜕𝜕𝑢𝑢𝑖𝑖

(1)

𝜕𝜕𝜂𝜂
+ 𝐾𝐾1′

𝜕𝜕𝑛𝑛𝑖𝑖
(1)

𝜕𝜕𝜂𝜂
+
𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜂𝜂 � = 0, (2.9)  

𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜉𝜉
− 𝐾𝐾2′

𝜕𝜕𝑛𝑛𝑒𝑒
(1)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜂𝜂
− 𝐾𝐾2′

𝜕𝜕𝑛𝑛𝑒𝑒
(1)

𝜕𝜕𝜂𝜂
= 0 ,                                                      (2.10) 

𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜉𝜉
+ 𝐾𝐾2′ 𝜂𝜂1

𝜕𝜕𝑛𝑛𝑝𝑝
(1)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜂𝜂
+ 𝐾𝐾2′ 𝜂𝜂1

𝜕𝜕𝑛𝑛𝑝𝑝
(1)

𝜕𝜕𝜂𝜂
= 0 ,                                              (2.11) 

𝜇𝜇𝑛𝑛𝑒𝑒 
(1) − 𝑛𝑛𝑖𝑖

(1) − 𝜎𝜎𝑛𝑛𝑝𝑝
(1) = 0  ,                                                                                     (2.12) 

 where 𝐾𝐾1′ = 𝐾𝐾1 𝛼𝛼 and 𝐾𝐾2′ = 𝐾𝐾2𝛾𝛾. One may define the relations along with different physical 

quantities 𝜙𝜙𝑅𝑅
(1)(𝜉𝜉, 𝜏𝜏) ≈ 𝜙𝜙𝑅𝑅

(1) and 𝜙𝜙𝐿𝐿
(1)(𝜂𝜂, 𝜏𝜏) ≈ 𝜙𝜙𝐿𝐿

(1) taking Eqs. (2.8) to (2.11) into account as    

𝜙𝜙(1) = 𝜙𝜙𝑅𝑅
(1) + 𝜙𝜙𝐿𝐿

(1) ,𝑢𝑢𝑖𝑖
(1) =

𝑉𝑉𝑝𝑝
𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′

�𝜙𝜙𝑅𝑅
(1) − 𝜙𝜙𝐿𝐿

(1)�,𝑛𝑛𝑖𝑖
(1) =

1
𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′

�𝜙𝜙𝑅𝑅
(1) + 𝜙𝜙𝐿𝐿

(1)�,

𝑛𝑛𝑒𝑒
(1) =

1
𝐾𝐾2′
�𝜙𝜙𝑅𝑅

(1) + 𝜙𝜙𝐿𝐿
(1)�,𝑛𝑛𝑝𝑝

(1) = −
1

𝐾𝐾2′ 𝜂𝜂1
�𝜙𝜙𝑅𝑅

(1) + 𝜙𝜙𝐿𝐿
(1)�.                        (2.13) 
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 Equation (2.13) indicates the two-sided electrostatic waves, one of which 𝜙𝜙𝑅𝑅
(1) is propagating 

to the right direction from  𝜉𝜉 = 0, 𝜂𝜂 → −∞   to 𝜉𝜉 = 0, 𝜂𝜂 → +∞   and the other 𝜙𝜙𝐿𝐿
(1) is 

propagating to the left direction from 𝜂𝜂 = 0, 𝜉𝜉 → +∞  to 𝜂𝜂 = 0, 𝜉𝜉 → −∞. By inserting Eq. 

(2.13) into Eq.(2.12), the phase velocity is obtained as 

𝑉𝑉𝑝𝑝 = �𝐾𝐾1′ +
𝐾𝐾2′ 𝜂𝜂1

𝜇𝜇𝜂𝜂1 + 𝜎𝜎
�

1
2

  .                                                                                         (2.14) 

Again, the next order of 𝜀𝜀 provides a set of equations in terms of the second order perturbed 

quantities, similar to Eqs. (2.8)-(2.12). One may also define the physical quantities 𝜙𝜙𝑅𝑅
(2) and 

𝜙𝜙𝐿𝐿
(2) similar to those of Eq. (2.13). Considering the next higher order of 𝜀𝜀 yields a set of 

nonlinear evolution equations that are presented in Appendix A (Eqs. (A1)-(A5)). Simplifying 

Eqs. (A1)-(A5) with the help of Eq. (2.13) and then integrating with regards to 𝜉𝜉 and 𝜂𝜂 yield 

��
𝜕𝜕𝜙𝜙𝑅𝑅

(1)

𝜕𝜕𝜏𝜏
+ 𝐴𝐴𝜙𝜙𝑅𝑅

(1) 𝜕𝜕𝜙𝜙𝑅𝑅
(1)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵

𝜕𝜕3𝜙𝜙𝑅𝑅
(1)

𝜕𝜕𝜉𝜉3
�𝑑𝑑𝜂𝜂 +

𝜕𝜕
𝜕𝜕𝜂𝜂

��
𝜕𝜕𝜙𝜙𝐿𝐿

(1)

𝜕𝜕𝜏𝜏
− 𝐴𝐴𝜙𝜙𝐿𝐿

(1) 𝜕𝜕𝜙𝜙𝐿𝐿
(1)

𝜕𝜕𝜂𝜂
− 𝐵𝐵

𝜕𝜕3𝜙𝜙𝐿𝐿
(1)

𝜕𝜕𝜂𝜂3
�𝑑𝑑𝜉𝜉

+ ��𝐶𝐶
𝜕𝜕𝑋𝑋0
𝜕𝜕𝜂𝜂

+ 𝐷𝐷𝜙𝜙𝐿𝐿
(1)�

𝜕𝜕2𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉2
𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂 −��𝐶𝐶

𝜕𝜕𝑌𝑌0
𝜕𝜕𝜉𝜉

+ 𝐷𝐷𝜙𝜙𝑅𝑅
(1)�

𝜕𝜕2𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂2
𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂

= −2�𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ �𝑢𝑢𝑖𝑖
(3) ,                                                                                                (2.15) 

where, 𝐴𝐴 = �𝑉𝑉𝑝𝑝2−𝐾𝐾1′ �
2

2𝑉𝑉𝑝𝑝
� 3𝑉𝑉𝑝𝑝2

�𝑉𝑉𝑝𝑝2−𝐾𝐾1′ �
3 + 𝐾𝐾1′ (𝛼𝛼−2)

�𝑉𝑉𝑝𝑝2−𝐾𝐾1′ �
3 + 𝜇𝜇(γ−2)

�𝐾𝐾2′ �
2 −

𝜎𝜎(γ−2)

�𝐾𝐾2′ 𝜂𝜂1�
2�, 

𝐵𝐵 =
�𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ �

2

2𝑉𝑉𝑝𝑝
�1 −

𝜇𝜇𝛽𝛽

2�𝐾𝐾2′ �
2 −

𝜆𝜆𝜎𝜎

2�𝐾𝐾2′ 𝜂𝜂1�
2�, 

𝐶𝐶 =
�𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ �

2

2𝑉𝑉𝑝𝑝
�

3𝑉𝑉𝑝𝑝2

�𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ �
2 +

1
�𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ �

−
2𝜎𝜎
𝐾𝐾2′ 𝜂𝜂1

�, 

𝐷𝐷 =
�𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ �

2

2𝑉𝑉𝑝𝑝
�
𝜇𝜇(γ− 2)

�𝐾𝐾2′ �
2 −

𝜎𝜎(γ− 2)

�𝐾𝐾2′ 𝜂𝜂1�
2 −

𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ (𝛼𝛼 − 2)

�𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ �
3 �. 

It is clearly seen that the first and second terms in the left hand side of Eq. (2.15) are 

proportional to 𝜂𝜂 and 𝜉𝜉, respectively. Therefore, all the terms involved in the first two 

expressions of the left hand side of Eq. (2.15) become secular, which may be eliminated in 
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order to stay away from resonances [42]. The following two-sided KdV equations are 

obtained to study the resonance phenomena of the electrostatic potential: 

𝜕𝜕𝜙𝜙𝑅𝑅
(1)

𝜕𝜕𝜏𝜏
+ 𝐴𝐴𝜙𝜙𝑅𝑅

(1) 𝜕𝜕𝜙𝜙𝑅𝑅
(1)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵

𝜕𝜕3𝜙𝜙𝑅𝑅
(1)

𝜕𝜕𝜉𝜉3
= 0,                                                                (2.16) 

𝜕𝜕𝜙𝜙𝐿𝐿
(1)

𝜕𝜕𝜏𝜏
− 𝐴𝐴𝜙𝜙𝐿𝐿

(1) 𝜕𝜕𝜙𝜙𝐿𝐿
(1)

𝜕𝜕𝜂𝜂
− 𝐵𝐵

𝜕𝜕3𝜙𝜙𝐿𝐿
(1)

𝜕𝜕𝜂𝜂3
= 0.                                                                (2.17) 

The third and the fourth terms of the left hand side of Eq. (2.15) may become secular terms in 

the next higher order and yield the following equations: 

𝐶𝐶
𝜕𝜕𝑋𝑋0
𝜕𝜕𝜂𝜂

= −𝐷𝐷𝜙𝜙𝐿𝐿
(1),                                                                                                      (2.18) 

𝐶𝐶
𝜕𝜕𝑌𝑌0
𝜕𝜕𝜉𝜉

= −𝐷𝐷𝜙𝜙𝑅𝑅
(1).                                                                                                     (2.19) 

Equations (2.18) and (2.19) indicate that 𝑋𝑋0 and 𝑌𝑌0 are the functions of 𝜂𝜂 and 𝜉𝜉, respectively, 

which may be calculated with the help of analytical soliton solutions of KdV equations  (2.16) 

and (2.17).  

2.3 Soliton solutions and phase shifts 

To study the nonlinear propagation characteristics of the interactions of ion acoustic 

solitons and their phase shifts in the plasmas, one has to derive the analytical soliton solutions 

of the KdV Eqs.(2.16) and (2.17) using the well established Hirota bilinear method [43-44]. 

According to this method, the single soliton solutions of Eqs.(2.16) and (2.17) can be obtained 

as 

𝜙𝜙𝑅𝑅
(1) =

12𝐵𝐵
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜉𝜉2
𝑙𝑙𝑛𝑛�1 + 𝑒𝑒𝜃𝜃�,                                                                                 (2.20) 

𝜙𝜙𝐿𝐿
(1) =

12𝐵𝐵
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜂𝜂2
𝑙𝑙𝑛𝑛(1 + 𝑒𝑒−𝜔𝜔),                                                                                (2.21) 

where 𝜃𝜃 = �𝑘𝑘1𝐵𝐵
−13𝜉𝜉 − 𝑘𝑘13𝜏𝜏� and 𝜔𝜔 = �𝑘𝑘1𝐵𝐵

−13𝜂𝜂 + 𝑘𝑘13𝜏𝜏�. Simplifying Eqs. (2.18) and (2.19) 

and taking Eqs. (2.20) and (2.21) into account, the leading phase changes due to the 

interaction of ion acoustic solitary waves that can be defined as   
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𝑋𝑋0 = −
12𝐵𝐵𝐷𝐷
𝐶𝐶𝐴𝐴

𝜕𝜕
𝜕𝜕𝜂𝜂

𝑙𝑙𝑛𝑛(1 + 𝑒𝑒−𝜔𝜔) =
12𝐵𝐵2/3𝐷𝐷𝑘𝑘1

𝐶𝐶𝐴𝐴
𝑒𝑒−𝜔𝜔

1 + 𝑒𝑒−𝜔𝜔
,                                 (2.22) 

𝑌𝑌0 = −
12𝐵𝐵𝐷𝐷
𝐶𝐶𝐴𝐴

𝜕𝜕
𝜕𝜕𝜉𝜉
𝑙𝑙𝑛𝑛�1 + 𝑒𝑒𝜃𝜃� = −

12𝐵𝐵2/3𝐷𝐷𝑘𝑘1
𝐶𝐶𝐴𝐴

𝑒𝑒𝜃𝜃

1 + 𝑒𝑒𝜃𝜃
.                                   (2.23) 

The trajectories of solitary waves for weak interactions can be reduced to  

𝜉𝜉 = 𝜀𝜀�𝑥𝑥 − 𝑉𝑉𝑝𝑝𝑡𝑡� + 𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷𝑘𝑘1

𝐶𝐶𝐴𝐴
𝑒𝑒−𝜔𝜔

1 + 𝑒𝑒−𝜔𝜔
 + ⋯⋯⋯ ,                                     (2.24) 

𝜂𝜂 = 𝜀𝜀�𝑥𝑥 + 𝑉𝑉𝑝𝑝𝑡𝑡� − 𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷𝑘𝑘1

𝐶𝐶𝐴𝐴
𝑒𝑒𝜃𝜃

1 + 𝑒𝑒𝜃𝜃
+  ⋯⋯⋯ .                                       (2.25) 

To evaluate the phase shifts after interactions between ion acoustic solitons, one may assume 

that the solitons, say 𝑅𝑅 and 𝐿𝐿 are asymptotically far away from each other at the initial time, 

that is, soliton 𝑅𝑅 is at  𝜉𝜉 = 0, 𝜂𝜂 → −∞ and 𝐿𝐿 is at  𝜂𝜂 = 0, 𝜉𝜉 → +∞. After interaction, 𝑅𝑅 is at 

 𝜉𝜉 = 0, 𝜂𝜂 → +∞   and 𝐿𝐿 is at  𝜂𝜂 = 0, 𝜉𝜉 → −∞ to the right of 𝐿𝐿. The corresponding phase shifts 

are obtained as 

∇𝑋𝑋0 = 𝜀𝜀�𝑥𝑥 − 𝑉𝑉𝑝𝑝𝑡𝑡��𝜂𝜂→−∞,𝜉𝜉=0
− 𝜀𝜀�𝑥𝑥 − 𝑉𝑉𝑝𝑝𝑡𝑡��𝜂𝜂→∞,𝜉𝜉=0

= 𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷𝑘𝑘1

𝐶𝐶𝐴𝐴
,         (2.26) 

∇𝑌𝑌0 = 𝜀𝜀�𝑥𝑥 + 𝑉𝑉𝑝𝑝𝑡𝑡��𝜉𝜉→−∞,𝜂𝜂=0
− 𝜀𝜀�𝑥𝑥 + 𝑉𝑉𝑝𝑝𝑡𝑡��𝜉𝜉→∞,𝜂𝜂=0

= −𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷𝑘𝑘1

𝐶𝐶𝐴𝐴
 .     (2.27) 

Again, double- soliton solutions of the KdV equations can be written as  

𝜙𝜙𝑅𝑅
(1) =

12𝐵𝐵
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜉𝜉2
𝑙𝑙𝑛𝑛�1 + 𝑒𝑒𝜃𝜃1 + 𝑒𝑒𝜃𝜃2 + 𝑎𝑎12𝑒𝑒𝜃𝜃1+𝜃𝜃2�,                                              (2.28) 

𝜙𝜙𝐿𝐿
(1) =

12𝐵𝐵
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜂𝜂2
𝑙𝑙𝑛𝑛[1 + 𝑒𝑒𝜔𝜔1 + 𝑒𝑒𝜔𝜔2 + 𝑎𝑎12𝑒𝑒𝜔𝜔1+𝜔𝜔2],                                          (2.29) 

where 𝜃𝜃𝑖𝑖 = �𝑘𝑘𝑖𝑖𝐵𝐵−1/3𝜉𝜉 − 𝑘𝑘𝑖𝑖3𝜏𝜏�, 𝜔𝜔i = −�𝑘𝑘𝑖𝑖𝐵𝐵−1/3𝜂𝜂 + 𝑘𝑘𝑖𝑖3𝜏𝜏�  and 𝑎𝑎12 = (𝑘𝑘2 − 𝑘𝑘1)2/(𝑘𝑘2 + 𝑘𝑘1)2 

with 𝑖𝑖 = 1, 2. By using Eqs.(2.28) and (2.29), the solution of Eqs. (2.18) and (2.19) can 

written as 

𝑋𝑋0 =
12𝐵𝐵2/3𝐷𝐷
𝐶𝐶𝐴𝐴

𝑘𝑘1𝑒𝑒𝜃𝜃1 + 𝑘𝑘2𝑒𝑒𝜃𝜃2 + 𝑎𝑎12(𝑘𝑘1 + 𝑘𝑘2)𝑒𝑒𝜃𝜃1+𝜃𝜃2
1 + 𝑒𝑒𝜃𝜃1 + 𝑒𝑒𝜃𝜃2 + 𝑎𝑎12𝑒𝑒𝜃𝜃1+𝜃𝜃2

,                                   (2.30) 
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𝑌𝑌0 = −
12𝐵𝐵2/3𝐷𝐷
𝐶𝐶𝐴𝐴

𝑘𝑘1𝑒𝑒𝜔𝜔1 + 𝑘𝑘2𝑒𝑒𝜔𝜔2 + 𝑎𝑎12(𝑘𝑘1 + 𝑘𝑘2)𝑒𝑒𝜔𝜔1+𝜔𝜔2

1 + 𝑒𝑒𝜔𝜔1 + 𝑒𝑒𝜔𝜔2 + 𝑎𝑎12𝑒𝑒𝜔𝜔1+𝜔𝜔2
,                             (2.31) 

and the corresponding phase shifts may be obtained due to the interactions of double soliton 

as  

∇𝑋𝑋0 = 𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷
𝐶𝐶𝐴𝐴

�𝑘𝑘𝑖𝑖

2

𝑖𝑖=1

,∇𝑌𝑌0 = −𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷
𝐶𝐶𝐴𝐴

�𝑘𝑘𝑖𝑖

2

𝑖𝑖=1

 .                                 (2.32) 

Finally, triple-soliton solutions of the KdV equations can be written as  

𝜙𝜙𝑅𝑅
(1) =

12𝐵𝐵
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜉𝜉2
𝑙𝑙𝑛𝑛�1 + 𝑒𝑒𝜃𝜃1 + 𝑒𝑒𝜃𝜃2 + 𝑒𝑒𝜃𝜃3 + 𝑎𝑎12𝑒𝑒𝜃𝜃1+𝜃𝜃2 + 𝑎𝑎23𝑒𝑒𝜃𝜃2+𝜃𝜃3 + 𝑎𝑎13𝑒𝑒𝜃𝜃1+𝜃𝜃3                  

+ 𝑎𝑎123𝑒𝑒𝜃𝜃1+𝜃𝜃2+𝜃𝜃3�,                                                                                          (2.33) 

𝜙𝜙𝐿𝐿
(1) =

12𝐵𝐵
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜂𝜂2
𝑙𝑙𝑛𝑛[1 + 𝑒𝑒𝜔𝜔1 + 𝑒𝑒𝜔𝜔2 + 𝑒𝑒𝜔𝜔3 + 𝑎𝑎12𝑒𝑒𝜔𝜔1+𝜔𝜔2 + 𝑎𝑎23𝑒𝑒𝜔𝜔2+𝜔𝜔3 + 𝑎𝑎13𝑒𝑒𝜔𝜔1+𝜔𝜔3            

+ 𝑎𝑎123𝑒𝑒𝜔𝜔1+𝜔𝜔2+𝜔𝜔3],                                                                                                   (2.34) 

Where 𝜃𝜃𝑖𝑖 = �𝑘𝑘𝑖𝑖𝐵𝐵−1/3𝜉𝜉 − 𝑘𝑘𝑖𝑖3𝜏𝜏�, ωi = −�𝑘𝑘𝑖𝑖𝐵𝐵−1/3𝜂𝜂 + 𝑘𝑘𝑖𝑖3𝜏𝜏�, 𝑎𝑎12 = (𝑘𝑘1 − 𝑘𝑘2)2/(𝑘𝑘1 + 𝑘𝑘2)2, 

𝑎𝑎23 = (𝑘𝑘2 − 𝑘𝑘3)2/(𝑘𝑘2 + 𝑘𝑘3)2, 𝑎𝑎13 = (𝑘𝑘1 − 𝑘𝑘3)2/(𝑘𝑘1 + 𝑘𝑘3)2, and 𝑎𝑎123 = 𝑎𝑎12𝑎𝑎23𝑎𝑎13 with 

𝑖𝑖 = 1,2,3, and their corresponding phase shifts due to the interaction of triple soliton may be 

written as 

∇𝑋𝑋0 = 𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷

𝐴𝐴
�𝑘𝑘𝑖𝑖

3

𝑖𝑖=1

,∇𝑌𝑌0 = −𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷
𝐶𝐶𝐴𝐴

�𝑘𝑘𝑖𝑖

3

𝑖𝑖=1

.                                   (2.35) 

2.4 Derivation of NLSE with rogue wave solution 

To study the behavior of weakly nonlinear wave packets in the plasmas, one can derive the 

NLSE considering the KdV equation as mentioned Eq.(2.16). For simplicity, one can use the 

following equation for the transformation of variables: 

𝜙𝜙(𝜉𝜉, 𝜏𝜏) = � 𝜀𝜀𝑝𝑝
∞

𝑝𝑝=1

� 𝜙𝜙𝑙𝑙𝑝𝑝(𝜉𝜉, 𝜏𝜏)𝑒𝑒𝑖𝑖𝑙𝑙(𝑘𝑘𝜉𝜉−𝜔𝜔𝜔𝜔)
𝑝𝑝

𝑙𝑙=−𝑝𝑝

,                                                       (2.36)  

                                   𝑋𝑋 = 𝜀𝜀�𝜉𝜉 − 𝑣𝑣𝑔𝑔𝜏𝜏�,𝑇𝑇 = 𝜀𝜀2𝜏𝜏  ,                                                             (2.37) 
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where 𝜙𝜙 = 𝜙𝜙𝜉𝜉
(1), 𝑘𝑘 is the wave number, 𝜔𝜔 is the angular frequency, and vg is the group 

velocity of the nonlinear IA waves. By using the KdV Eq.(2.16), the following NLSE is 

obtained: 

𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇

+
1
2
𝑃𝑃
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑋𝑋2

+ 𝑄𝑄𝜕𝜕|𝜕𝜕|2 = 0 ,                                                                            (2.38) 

   where 𝑃𝑃 = 6𝐵𝐵𝑘𝑘 and 𝑄𝑄 = −(𝐴𝐴2/6𝐵𝐵𝑘𝑘). The rational function solution of Eq. (2.38) can be 

written as 

𝜕𝜕(𝑋𝑋,𝑇𝑇) = �
𝑃𝑃
𝑄𝑄 �

4(1 + 2𝑖𝑖𝑃𝑃𝑇𝑇)
1 + 4𝑃𝑃2𝑇𝑇2 + 4𝑋𝑋2

− 1� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 .                                                     (2.39) 

It is seen that the ratio of 𝑃𝑃 and 𝑄𝑄 obtained is always negative, that is 𝑃𝑃/𝑄𝑄 = −1/𝐴𝐴2. 

Moreover, the weakly nonlinear theory predicts that quasi-monochromatic wave packets are 

always modulationally stable and the rogue waves cannot propagate due to the existence of 

the negative nonlinear coefficient terms in the NLSE. This indicates that the NLSE obtained 

from the KdV equation may not support the rogue wave solution. 

   On the other hand, there may arise the cases where the nonlinear coefficient (𝐴𝐴) vanishes at 

the critical value (𝜎𝜎𝑐𝑐) for certain plasma parameters and equation (2.16) fails to study the 

nonlinear evolution of perturbation. For instance, 𝐴𝐴 vanishes at 𝜎𝜎 = 𝜎𝜎𝑐𝑐 ≈ 0.0195 for 𝜆𝜆 =

0.10, 𝛽𝛽 = 0.10, 𝛾𝛾 = 4 3⁄ , 𝜇𝜇 = 0.1 and 𝜂𝜂1 = 0.8. In such a case, one can derive the mKdV 

equation by employing the stretched coordinates 𝜉𝜉 = 𝜀𝜀�𝑥𝑥 − 𝑉𝑉𝑝𝑝𝑡𝑡�, 𝜏𝜏 = 𝜀𝜀3𝑡𝑡 and perturbed 

quantities as 𝑀𝑀 = 𝑀𝑀0 + ∑ 𝜀𝜀𝑟𝑟𝑀𝑀𝑟𝑟∞
𝑟𝑟=1  into Eqs. (2.1)-(2.5), where 𝑀𝑀 = (𝑛𝑛𝑠𝑠 𝑢𝑢𝑖𝑖 𝜙𝜙)′, 𝑀𝑀0 =

(1 0 0)′, and 𝑀𝑀𝑟𝑟 = �𝑛𝑛𝑠𝑠
(𝑟𝑟)𝑢𝑢𝑖𝑖

(𝑟𝑟)𝜙𝜙(𝑟𝑟)�
′
. The lowest power of 𝜀𝜀 gives the first order perturbed 

quantities as 𝑢𝑢𝑖𝑖
(1) = �𝑉𝑉𝑝𝑝/(𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ )�𝜙𝜙(1), 𝑛𝑛𝑖𝑖

(1) = 𝜙𝜙(1)/(𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ ), 𝑛𝑛𝑒𝑒
(1) = 𝜙𝜙(1) 𝐾𝐾2′⁄ , and 

𝑛𝑛𝑝𝑝
(1) = −𝜙𝜙(1) 𝐾𝐾2′⁄ 𝜂𝜂1 [8]. The next higher power of 𝜀𝜀 provides the second order perturbed 

quantities 𝑢𝑢𝑖𝑖
(2), 𝑛𝑛𝑖𝑖

(2), 𝑛𝑛𝑒𝑒
(2), and 𝑛𝑛𝑝𝑝

(2) that are presented in appendix A( Eqs. (A6) and (A7)). 

Finally, the next higher order of 𝜀𝜀 gives the following mKdV equation by taking the first and 

the second order perturbed quantities into account [8]:  

𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜏𝜏
+ 𝐶𝐶�𝜙𝜙(1)�

2 𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵

𝜕𝜕3𝜙𝜙(1)

𝜕𝜕𝜉𝜉3
= 0                                                            (2.40) 

  Where 
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𝐶𝐶 = �𝑉𝑉𝑝𝑝2−𝐾𝐾1′�
2

2𝑉𝑉𝑝𝑝
� 𝐸𝐸

2�𝑉𝑉𝑝𝑝2−𝐾𝐾1′�
4 + 𝐹𝐹

2�𝑉𝑉𝑝𝑝2−𝐾𝐾1′�
5 + �𝜂𝜂13𝜇𝜇+𝜎𝜎�(𝛾𝛾−2)(3−2𝛾𝛾)

2�𝐾𝐾2′𝜂𝜂1�
2 �, 

𝐸𝐸 = 6𝑉𝑉𝑝𝑝2 + 6𝐾𝐾1′(𝛼𝛼 − 2) + 6𝐾𝐾1′(𝛼𝛼 − 2)(𝛼𝛼 − 3), 

𝐹𝐹 = 6𝑉𝑉𝑝𝑝2𝐾𝐾1′ + 6(𝐾𝐾1′)2(𝛼𝛼 − 2) + 18𝑉𝑉𝑝𝑝4 + 3𝐾𝐾1′𝑉𝑉𝑝𝑝2(𝛼𝛼 − 2) + 3(𝐾𝐾1′)2(𝛼𝛼 − 2)2. 

In order to obtain the rogue wave, substituting Eqs. (2.36) and (2.37) to the mKdV Eq. (2.40) 

and collect terms having the same order of 𝜀𝜀. The lowest order approximation for 𝑚𝑚 = 1 with 

the first harmonic 𝑙𝑙 = 1 gives the dispersion relation of electrostatic waves as 𝜔𝜔 = −𝐵𝐵𝑘𝑘3. 

The second order approximation for 𝑚𝑚 = 2 with 𝑙𝑙 = 1 predicts 𝑣𝑣𝑔𝑔 = −3𝐵𝐵𝑘𝑘2.Finally, the 

compatibility condition for the equation that is obtained from the next order (𝑚𝑚 = 3 ,𝑙𝑙 = 1) 

provides the NLSE as mentioned in Eq. (2.38). The nonlinearity (𝑄𝑄) and dispersive 

coefficients (𝑃𝑃) are obtained as  

𝑄𝑄 = −𝑘𝑘
�𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ �

2

2𝑉𝑉𝑝𝑝
�

𝐸𝐸

2�𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ �
4 +

𝐹𝐹

2�𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ �
5 +

(𝜂𝜂13𝜇𝜇 + 𝜎𝜎)(γ − 2)(3 − 2γ)

2�𝐾𝐾2′ 𝜂𝜂1�
2 �, 

𝑃𝑃 = −6𝑘𝑘
�𝑉𝑉𝑝𝑝2 − 𝐾𝐾1′ �

2

2𝑉𝑉𝑝𝑝
�1 −

𝜇𝜇𝛽𝛽

2�𝐾𝐾2′ �
2 −

𝜆𝜆𝜎𝜎

2�𝐾𝐾2′ 𝜂𝜂1�
2�.  
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Figure 2.1 Effects of 𝜇𝜇 and 𝜎𝜎 on the phase shift ∇𝑌𝑌0 due to the interaction between 
two ((a) and (b)), four ((c) and (d)) and six ((e) and (f)) equal amplitude ion acoustic 
solitons for non-relativistic helium light ions with 𝛼𝛼 = 5/3 , ultra-relativistic (𝛾𝛾 =
4/3), and non-relativistic (𝛾𝛾 = 5/3) electrons and positrons, respectively, where 
𝜂𝜂1 = 0.6, 𝜆𝜆 = 0.1, 𝛽𝛽 = 0.1, 𝑘𝑘1 = 1, 𝑘𝑘2 = 2, 𝑘𝑘3 = 3, and  𝜀𝜀 = 0.1. 



Interaction of IA Multi-Soliton and RW 
 

Plasma Science and Technology Lab, EEE, RU   36 
 

2.5 Results and discussion 

Two-sided KdV and NLSE equations are derived to investigate the unrevealed physical 

issues in the plasma considered, such as temporal evolution of electrostatic resonances and 

phase shifts due to the interaction of single- and multi-solitons, and modulus instability. The 

effects of plasma parameters on the temporal evolution of electrostatic resonances, phase 

shifts, and rogue waves are investigated considering helium ion mass 𝑚𝑚𝑖𝑖 = 6.68 × 10−24 kg, 

ion density 𝑛𝑛𝑖𝑖0 = 3.0 × 1031cm−3, electron density 𝑛𝑛𝑒𝑒0 = 9.11 × 1029cm−3 , positron 

density 𝑛𝑛𝑝𝑝0 = 1.5 × 𝑛𝑛𝑒𝑒0, quantum parameters 𝛽𝛽 = 0.01 − 0.5 and 𝜆𝜆 = 0.01 − 0.5 which are 

for the relativistic degenerate astrophysical plasmas [4, 12, 45]. The results obtained from this 

study are described below. 

When two or more solitary waves propagate toward each other, they will interact and 

exchange their energies among themselves, and then separate off, regain their original wave 

forms. During the whole process of the interactions, the solitary waves are remarkably stable 

entities, preserving their identities through interaction. Each soliton gains two phase shifts, 

one is due to the head-on interaction and the other one is due to overtaking one soliton by the 

other one. On the other hand, the unique effect is due to the interactions that change their 

phase shifts. The phase shifts become either positive or negative due to head-on and 

overtaking interactions of the solitons, which is independent of the wave modes [31-38]. 

Figures 2.1(a)-2.1(f) illustrate the effects of 𝜎𝜎 and 𝜇𝜇 on the phase shift ∇𝑌𝑌0 due to the 

interaction among two, four, and six equal amplitude ion acoustic solitons in both ultra-

relativistic and non-relativistic cases, respectively, taking the remaining parameters constant. 

It is seen that the changes of phase shifts are decreasing with the increase of positron to ion 

density ratio 𝜎𝜎 = (𝑛𝑛𝑝𝑝0/𝑛𝑛𝑖𝑖0). This means that with the increase of positrons density, their 

interaction with electrons increases having opposite charges due to the contribution to the 

higher restoring forces. On the other hand, the changes of phase shifts are increasing with the 

increase of 𝜇𝜇 = (𝑛𝑛𝑒𝑒0/𝑛𝑛𝑖𝑖0) from 0.2 to 0.35 for ultra-relativistic and from 0.2 to 0.25 for non-

relativistic cases due to interaction of oppositely propagating single- and multi-solitons, and 

then decreasing significantly.  
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It is provided that the electrons can contribute to the restoring force due to their small number 

density in the range 0.2 ≤ 𝜇𝜇 ≤ 0.35 and then the restoring force increases due to the 

electrostatic interaction between electrons and positrons increases in the range  𝜇𝜇 > 0.35.  

Figures 2.2(a)-2.2(b) show the changes of phase shifts ∇𝑌𝑌0 with 𝛽𝛽 for the interaction between 

equal amplitude single- and multi-solitons in both cases, respectively, considering the fixed 

values of the remaining parameters. The quantum parameter 𝛽𝛽 is mainly arisen due to the 

Bohm potential, which is solely responsible for the tunneling effect of the corresponding 

plasma components. It is clear from Figs. 2.2 that the Bohm quantum potential significantly 

affects the phase shifts in which the changes of phase shifts are decreasing with the increase 

of quantum parameter 𝛽𝛽. This phenomenon indicates that the electrons interact more actively 

with the helium ions, causing the reduction in the magnitude changes of phase shift.  Thus, it 

can be concluded that the phase shifts due to the interaction of two-sided single- and multi-

solitons are strongly dependent on the plasma parameters and the wave numbers. 

    

Figure 2.2 Effect of 𝛽𝛽 on the phase shift ∇𝑌𝑌0 due to the interaction between two (red 

color), four (blue color) and six (green color) same amplitudes ion acoustic solitons for 

non-relativistic helium light ions with 𝛼𝛼 = 5/3 and ultra-relativistic (𝛾𝛾 = 4/3) as well as 

non-relativistic (𝛾𝛾 = 5/3) electrons and positrons where 𝜂𝜂1 = 0.6, 𝜆𝜆 = 0.1, 𝜇𝜇 = 0.4, 𝜎𝜎 =

0.6, 𝑘𝑘1 = 1, 𝑘𝑘2 = 2, 𝑘𝑘3 = 3, and  𝜀𝜀 = 0.1. 
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Figure 2.3 Electrostatic potential (𝜙𝜙(1) = 𝜙𝜙𝑅𝑅
(1) + 𝜙𝜙𝐿𝐿

(1)) profiles due to the interaction 
between equal amplitude single solitons at different 𝜏𝜏 and 𝛽𝛽  with inertial non-
relativistic helium ions for both ultra-relativistic (𝛾𝛾 = 4/3) and non-relativistic (𝛾𝛾 =
5/3) degenerate electrons and positrons, where 𝜂𝜂1 = 0.6, 𝜆𝜆 = 0.10, 𝜇𝜇 = 0.40, 𝑘𝑘1 = 1 
and  𝜎𝜎 = 0.5. 
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Figure 2.4 Electrostatic potential (𝜙𝜙(1)) profiles due to the interaction between equal 
amplitude double solitons at different 𝜏𝜏 and 𝛽𝛽  for both ultra-relativistic (𝛾𝛾 = 4/3) and 
non-relativistic (𝛾𝛾 = 5/3) degenerate electrons and positrons, and inertial non-
relativistic helium ions, where 𝜂𝜂1 = 0.6, 𝜆𝜆 = 0.10, 𝜇𝜇 = 0.40, 𝑘𝑘1 = 1, 𝑘𝑘2 = 2 and  𝜎𝜎 =
0.5. 
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Figures 2.3(a)-2.3(d), 2.4(a)-2.4(d), and 2.5(a)-2.5(d) display the two-sided equal amplitude 

electrostatic potential structures 𝜙𝜙(1) = 𝜙𝜙𝑅𝑅
(1) + 𝜙𝜙𝐿𝐿

(1) for single-, double-, and tripple-solitons 

against 𝜉𝜉 and 𝜂𝜂, respectively, with different values of 𝛽𝛽 and 𝜏𝜏 taking the remaining parameters 

constant for both ultra-relativistic and non-relativistic cases. It is seen from these figures that 

the amplitudes and widths of both right and left moving solitons are decreasing with 

increasing 𝛽𝛽. The quantum parameter 𝛽𝛽 is mainly arisen due to the influence of Bohm 

potential and exclusively related to the tunneling effect of the corresponding plasma 

component. The tunneling effect is also increasing with the increase of 𝛽𝛽. It is ensured that the 

electrons interact more actively with the ions, causing the reduction in amplitude and width of 

solitons, which is in agreement with the theoretical finding of Ref. [8]. Furthermore, the 

potential profiles 𝜙𝜙𝑅𝑅
(1)(𝜉𝜉, 𝜏𝜏) of the solitons are shifted towards the right, while 𝜙𝜙𝐿𝐿

(1)(𝜂𝜂, 𝜏𝜏) are 

Figure 2.5 Electrostatic potential (𝜙𝜙(1)) profiles due to the interaction between equal   

amplitude triple solitons at different 𝜏𝜏 for ultra-relativistic (𝛾𝛾 = 4/3) degenerate 

electrons and positrons, and inertial non-relativistic helium ions, where 𝜂𝜂1 = 0.6, 𝜆𝜆 =

0.10, 𝛽𝛽 = 0.10, 𝜇𝜇 = 0.40, 𝑘𝑘1 = 1, 𝑘𝑘2 = 2, 𝑘𝑘3 = 3, and  𝜎𝜎 = 0.5. 
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shifted towards the left with increasing 𝜏𝜏. This dictates that the position of solitons 𝑅𝑅 is at 𝜉𝜉 =

0, 𝜂𝜂 → −∞  and that of 𝐿𝐿 is at 𝜂𝜂 = 0, 𝜉𝜉 → +∞ before interaction and they collide at time  𝑡𝑡 →

0 and then the soliton 𝑅𝑅 is at 𝜉𝜉 = 0, 𝜂𝜂 → +∞  and 𝐿𝐿 is at 𝜂𝜂 = 0, 𝜉𝜉 → −∞ after interaction, 

such interaction phenomena are displayed in Figs. 2.3-2.5. 

 
On the other hand, it is found that the NLSE obtained from the KdV equation does not 

support rogue wave solutions due to modulational stability of the quasi-monochromatic wave 

packets. But, the NLSE obtained from the mKdV equation supports the rogue wave solutions 

for the considered plasma parameters as well as the critical value for which the nonlinear 

coefficient 𝐴𝐴 of the KdV equation is zero.  Figures 2.6(a) and 2.6(b) show the influences of  𝜎𝜎 

and 𝛽𝛽 on the rogue waves, respectively, taking different values of 𝜇𝜇 and remaining parameters 

constant for ultra-relativistic degenerate electrons and positrons. It is seen that the amplitudes 

of rogue waves are decreasing with increasing 𝛽𝛽, 𝜎𝜎 and 𝜇𝜇 in the plasmas. The quantum 

parameter 𝛽𝛽 arises due to the Bohm potential which is solely responsible for the tunneling 

effect of the corresponding plasma component. The tunneling effect becomes pronounced 

with the increase of 𝛽𝛽, which dictates that the electrons interact more actively with the ions, 

causing the reduction of amplitude of rogue waves. Furthermore, the amplitude of rogue 

waves decreases significantly due to the increase of 𝜎𝜎 and 𝜇𝜇 in the aforementioned plasma 

Figure 2.6 Effect of (a) 𝜎𝜎 (𝛽𝛽 = 0.10, 𝑇𝑇 = 0.01) and (b) 𝛽𝛽 (𝜎𝜎 = 0.4, 𝑇𝑇 = 0.1) on the 
rogue waves for ultra-relativistic (𝛾𝛾 = 4/3) degenerate electrons, positrons, and inertial 
non-relativistic helium ions, where the remaining parameters are 𝜂𝜂1 = 0.6, 𝜆𝜆 = 0.10 
and 𝜇𝜇 = 0.40. 
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system, which predicts that the electrostatic interaction between electrons and positrons 

increases, and thus their contribution to the restoring force increases in the plasmas.  

 

    

Finally, Figs. 2.7(a)-2.7(d) display the existence regions (red color) of the rogue waves with 

respect to 𝜇𝜇, 𝛽𝛽, 𝜎𝜎, and 𝜂𝜂1 along with 𝑘𝑘, respectively, taking the remaining parameters as 

constant for ultra-relativistic degenerate electrons and positrons. 

2.6 Conclusions 

The interactions between the ion acoustic solitons, their phase shifts, and the production of 

rogue waves are investigated by considering the soliton solution of the two-sided KdV 

equations and the rational function solution of the NLSE, respectively. It is found that the 

Figure 2.7 Contour plot of 𝑃𝑃𝑄𝑄 for the existence regions (red color) of the 
rogue waves against (a) 𝜇𝜇 and 𝑘𝑘 (𝛽𝛽 = 0.10, 𝜆𝜆 = 0.10, 𝜂𝜂1 = 0.45,𝜎𝜎 = 0.01), 
(b) 𝛽𝛽 and 𝑘𝑘 (𝜆𝜆 = 0.10, 𝜂𝜂1 = 0.8,𝜎𝜎 = 0.3,𝜇𝜇 = 0.4), (c)  𝜎𝜎 and 𝑘𝑘 (𝛽𝛽 =
0.3, 𝜆𝜆 = 0.3, 𝜂𝜂1 = 0.8, 𝜇𝜇 = 0.1), and (d) 𝜂𝜂1 and 𝑘𝑘 (𝛽𝛽 = 0.10, 𝜆𝜆 = 0.10,𝜇𝜇 =
0.4,𝜎𝜎 = 0.3).  
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quantum parameters become prominent due to the Bohm potential, which significantly 

modifies the propagation characteristics due to the interactions of the small amplitude long-

lived solitons as well as large amplitude short-lived rogue waves in the plasmas.  The results 

obtained in this study might be useful for the understanding of the effects of electrostatic 

resonance and phase shifts after weak interaction between multi-solitons and rogue waves for 

astrophysical compact objects, e.g., white dwarfs, neutron stars, etc., and for laboratory 

plasmas like intense laser–solid matter interaction experiments. 
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Abbreviation and Nomenclature:  

KdV= Korteweg-de Vries 

mKdV= modified Korteweg-de Vries 

mmKdV= mixed modified Korteweg-de Vries 

NLSE= nonlinear Schrödinger equation 

PLK = Poincaré-Lighthill-Kuo 

H= quantum diffraction parameter 

𝑚𝑚𝑠𝑠= mass of plasma spesies 

𝑛𝑛𝑠𝑠= density of plasma species(s = i,e,p) 

h = Plank constant 

c = velocity of light 

𝐶𝐶𝑖𝑖 = ion acoustic speed 

𝑛𝑛𝑖𝑖 = density of ion 

𝑛𝑛𝑒𝑒 = density of electron 

𝑛𝑛𝑝𝑝 = density of positron 

𝑢𝑢𝑖𝑖 = ion fluid speed 

𝜙𝜙 = electrostatic potential 

𝜂𝜂1 = Fermi temperature ratio of positron to electron 

𝑇𝑇𝐹𝐹𝑝𝑝 = Fermi temperature of positron 

𝑇𝑇𝐹𝐹𝑒𝑒 = Fermi temperature of electron 

𝑘𝑘𝐵𝐵 = Boltzmann constant  

𝑚𝑚𝑖𝑖 = mass of rest ion  

𝜔𝜔𝑝𝑝𝑝𝑝 = plasma frequency 

𝜆𝜆𝐷𝐷𝑖𝑖 = ion Debye length 

𝛽𝛽 = 𝑛𝑛𝑖𝑖0𝐻𝐻𝑒𝑒2 2𝑛𝑛𝑒𝑒0⁄  = dimensionless quantum parameter for electron 

𝜆𝜆 = 𝑛𝑛𝑖𝑖0𝐻𝐻𝑝𝑝2 2𝑛𝑛𝑝𝑝0�  = dimensionless quantum parameter for positron 

𝐻𝐻𝑒𝑒 = ℏ𝜔𝜔𝑝𝑝𝑒𝑒 𝑘𝑘𝐵𝐵⁄ 𝑇𝑇𝐹𝐹𝑒𝑒 

𝐻𝐻𝑝𝑝 = ℏ𝜔𝜔𝑝𝑝𝑝𝑝 𝑘𝑘𝐵𝐵⁄ 𝑇𝑇𝐹𝐹𝑝𝑝 

ℏ = h 2π⁄  

𝑉𝑉𝑝𝑝 = unknown phase velocity 

𝜉𝜉, 𝜂𝜂, 𝜏𝜏 = stretched coordinates 
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𝜀𝜀 = small parameter, measure the strength of nonlinearity 

 𝑘𝑘𝑖𝑖 = wave number, 𝑖𝑖 = 1,2,3 

𝜔𝜔 = angular velocity 

𝑣𝑣𝑔𝑔 = group velocity 

𝜎𝜎 = 𝑛𝑛𝑝𝑝0 𝑛𝑛𝑖𝑖0⁄  = density ratio of unperturbed positron to ion 

𝜇𝜇 = 𝑛𝑛𝑒𝑒0 𝑛𝑛𝑖𝑖0⁄  = density ratio of unperturbed electron to ion 

𝐴𝐴 = coefficient of nonlinearity in KdV equation 

𝐵𝐵 = coefficient of dispersion in KdV equation 

𝑃𝑃 = coefficient of nonlinearity in NLSE 

𝑄𝑄 = coefficient of dispersion in NLSE 

∇X0 = phase shift of right moving soliton 

∇Y0 = phase shift of left moving soliton 

 
 
 
 
 

 

 

 



 

Chapter 3 

 
Head-on collision of ion acoustic solitary waves in electron-positron-ion 

nonthermal plasmas for weakly and highly relativistic regimes 

 

3.1 Introduction 

   It is well established that the electron–positron (ep) plasmas are observed both in the 

laboratory, e.g., in inertial confinement fusion experiments [1-3] and in nature, e.g.,  in the 

relativistic wind of pulsar magnetosphere [4], polar regions of neutron stars [5], pulsar 

magnetospheres [6], active galactic nuclei [7], at the centre of the Milky Way galaxy [8], in 

the early universe [9-10], and so on by pair production through high-energy processes. For 

instance, the solar wind and cosmic rays are the sources of highly energy particles that exist in 

the Van Allen belts, which are trapped by the earth magnetic field. These highly energetic 

cosmic protons and heavy nuclei interact with the molecules of the earth’s upper atmosphere 

and produce nonthermal electrons and positrons [11-12]. Further, the hot ep plasma  exists in 

the sheet boundary layer of the earth’s magneto-tail, outflows from the pulsar, and interacts 

with the interstellar cold, low density electron-ion plasmas [13]. Besides, the nonthermal 

charge particles gain high energy due to stochastic heating, and this effect may arise in the 

pulsar magnetosphere [4, 6]. The electric field may generate due to the rotation of pulsar and 

extracts electrons from the pulsar surface. These electrons lose their energies through the pair 

production process to generate ep plasma. Moreover, the plasma particles may gain 

relativistic energies under the influences of high-power laser interaction [14-15]. The ratio of 

ion-electron temperature is found to be greater than unity as observed in solar flares [16], the 

solar wind [17] and interplanetary space [18]. It is therefore important to consider finite ion 

temperature and relativistic effects which significantly affect the propagation characteristics 

of the solitons. Furthermore, most of the astrophysical plasmas contain ions as well as 

electrons and positrons, and forming electron-position-ion (epi) plasmas. Therefore, it is 

reasonable to consider that the relativistic effects in such plasmas prevail because the particles 

having streaming velocities approach to the velocity of light. It is considered that the weakly 

relativistic effects of ions are considered in the range of 0.1–4.7MeV for the appropriate 

description, whereas the highly relativistic effects are taken into account in the range of 4.7–
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100MeV that are frequently observed in astrophysical and space environments. Therefore, the 

propagation of ion acoustic waves in the epi relativistic plasmas plays a vital role for the 

understanding of physical scenarios concerned in space environments, Van Allen radiation 

belts, plasma sheet boundary layer of Earth’s magnetosphere and laser plasma interaction, and 

so on [11-19]. Several authors [20-32] have studied, considering their significance and 

potentiality for understanding the physical issues involved, the characteristics of ion acoustic 

waves for epi relativistic plasmas, taking two as well as three-term expansion of the Lorentz 

relativistic factor for ions assuming different plasma conditions. It was noted in Refs. 27-31 

that the three-term expansion of the Lorentz relativistic factor [the so called highly relativistic 

regime (HRR) of ions], rather than two-term of the Lorentz relativistic factor [the so called 

weakly relativistic regime (WRR) of ions], significantly modify the ion acoustic wave 

dynamics in the plasmas. On the other hand, the high-energy particles are produced by the 

nonthermal particles, which reached higher than thermal energies [33]. In such a situation, the 

plasma particles have long range interactions that are characterized by different distribution 

functions except Boltzmann distribution. The Cairns distribution function [34],is one of the 

most important distributions and applies to evaluate nonthermal particle concentration. Hafez 

et al. [28] have investigated the oblique nonlinear propagation of ion acoustic shock waves 

both for the weakly and highly relativistic regimes consisting of nonthermal electrons, 

positrons, and relativistic thermal ions. They showed that the effect of obliqueness, 

nonthermal electrons, and positrons significantly modifies the ion acoustic shock waves in epi 

plasmas in highly relativistic rather than weakly relativistic regimes. Therefore, the existence 

of relativistic ions and nonthermal electrons and positrons in the pulsar magnetosphere and 

laser–plasma interaction is a well established phenomenon [35-38] for studying the properties 

of nonlinear waves in epi plasmas. 

However, the interaction between nonlinear ion acoustic solitary waves is one of the most 

important physical phenomena as observed in space plasmas [39-41]. A few authors [42-44] 

have investigated the head-on collision and their corresponding phase shifts considering the 

unit amplitude of the solitons in weakly relativistic epi plasmas. Khaled [43] has studied the 

head-on collision and their corresponding phase shift between ion acoustic solitary waves in 

plasmas consisting of relativistic cold ions and nonextensive electrons and positrons in WRR. 

Saini and Singh [44] have considered the head-on collision between dust acoustic solitary 

waves in plasmas with relativistic cold ions, Kappa distributed electrons, and positrons in 

WRR. In such situations, the phase shift and trajectories [45] play a significant role in the 
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formation of solitary waves after head-on collision. The extended Poincaré-Lighthill-Kuo 

(ePLK) method [40] can be employed to derive two-sided KdV equations for investigating the 

interaction of solitary waves and their corresponding phase shifts. The solitary wave solutions 

of the two-sided KdV equations reveal important physical phenomena, including resonances 

due to its wide application and potentiality as mentioned earlier. Therefore, head-on collision 

deserves significant importance for revealing the propagation characteristics of nonlinear ion 

acoustic solitary waves in the plasmas consisting of relativistic ions, nonthermal electrons, 

and positrons both for WRR and HRR. The effect of plasma parameters on the interaction 

between electrostatic ion acoustic solitary waves, the corresponding phase shifts and bell-

shaped structures are investigated. In sequence of introduction, the hydrodynamic fluid 

equations are presented in Section 3.2. Derivations of two-sided KdV equations for weakly 

and highly relativistic regimes are mentioned in Section 3.3. The stationary solutions of two-

sided KdV equations and phase shift are displayed in Section 3.4. The results along with 

relevant discussion are depicted in Section 3.5. Finally, the conclusion is drawn in section 3.6. 

3.2 Theoretical model equations 

   An unmagnetized collisionless epi plasma is considered consisting of nonthermal 

electrons, positrons, and relativistic warm ions. The electrons and positrons are assumed to 

follow Cairns nonthermal distribution [34], and their velocity distribution functions can be 

written in the following form: 

𝑓𝑓𝑗𝑗(𝑣𝑣𝑗𝑗) =
𝑛𝑛𝑗𝑗0

(1 + 3𝛼𝛼𝑗𝑗)√2𝜋𝜋
�1 +

𝛼𝛼𝑗𝑗
𝑣𝑣𝑡𝑡𝑗𝑗4

(𝑣𝑣𝑗𝑗2 − 2𝜙𝜙)2� exp �−
𝑣𝑣𝑗𝑗2 − 2𝜙𝜙

2𝑣𝑣𝑡𝑡𝑗𝑗2
� , 𝑣𝑣𝑡𝑡𝑗𝑗 = �𝑇𝑇𝑗𝑗/𝑚𝑚𝑗𝑗�

1/2, (3.1) 

where, 𝜙𝜙, 𝑣𝑣𝑗𝑗, 𝑇𝑇𝑗𝑗, 𝑚𝑚𝑗𝑗, 𝑛𝑛𝑗𝑗0, and 𝛼𝛼𝑗𝑗 are the electrostatic potential, velocity, temperature, mass, 

unperturbed densities, and population of the particles. The densities of electrons and positrons 

can be obtained by integrating Eq. (3.1) over the volume space as 

𝑛𝑛𝑒𝑒 = 𝑛𝑛𝑒𝑒0 �1 − 𝛽𝛽𝑒𝑒 �
𝑒𝑒𝜙𝜙
𝑇𝑇𝑒𝑒
� + 𝛽𝛽𝑒𝑒 �

𝑒𝑒𝜙𝜙
𝑇𝑇𝑒𝑒
�
2

� exp �
𝑒𝑒𝜙𝜙
𝑇𝑇𝑒𝑒
� ,                                                   (3.2) 

and                                                              

𝑛𝑛𝑝𝑝 = 𝑛𝑛𝑝𝑝0 �1 + 𝛽𝛽𝑝𝑝 �
𝑒𝑒𝜙𝜙
𝑇𝑇𝑝𝑝
� + 𝛽𝛽𝑝𝑝 �

𝑒𝑒𝜙𝜙
𝑇𝑇𝑝𝑝
�
2

� exp(−
𝑒𝑒𝜙𝜙
𝑇𝑇𝑝𝑝

),                                                (3.3) 

where 𝛽𝛽𝑒𝑒 = 4𝛼𝛼𝑒𝑒/(1 + 3𝛼𝛼𝑒𝑒), 𝛽𝛽𝑝𝑝 = 4𝛼𝛼𝑝𝑝/(1 + 3𝛼𝛼𝑝𝑝), and 𝑛𝑛𝑒𝑒0(𝑛𝑛𝑝𝑝0) are the unperturbed 

electron (positron) concentration, 𝑇𝑇𝑒𝑒(𝑇𝑇𝑝𝑝) is the  electron (positron) temperature, 𝑒𝑒 is the 
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electronic charge, and 𝛼𝛼𝑒𝑒,𝑝𝑝 > −1/3 determines the population of nonthermal electrons and 

positrons, respectively. It is seen that Eqs. (3.2) and (3.3) can be reduced to the isothermally 

distributed electrons and positrons by inserting 𝛼𝛼𝑒𝑒,𝑝𝑝 = 0. It is also considered that 𝑣𝑣𝑡𝑡ℎ𝑖𝑖 ≪

𝐶𝐶𝑠𝑠 ≪ 𝑣𝑣𝑡𝑡ℎ𝑒𝑒, 𝑣𝑣𝑡𝑡ℎ𝑝𝑝, so that the Landau damping can be ignored, where 𝑣𝑣𝑡𝑡ℎ𝑖𝑖 is the ion thermal 

velocity, 𝐶𝐶𝑠𝑠 = �(𝑇𝑇𝑒𝑒 𝑚𝑚𝑖𝑖⁄ ) is the ion acoustic speed, 𝑚𝑚𝑖𝑖 is the ion mass, and 𝑣𝑣𝑡𝑡ℎ𝑒𝑒�𝑣𝑣𝑡𝑡ℎ𝑝𝑝� is the 

electron (positron) thermal velocity. On the other hand, the plasma instabilities are 

characterized, in general, by a solution in which initially small perturbations of an equilibrium 

configuration are predicted to grow exponentially with time or space. Thus, such growing 

perturbations will not remain small. The linearization procedure breaks down, and the 

nonlinear effects tend to limit the growth of instabilities (nonlinear saturation), provided that 

the amplitude of the wave becomes sufficiently large [46-47].The nonlinear terms in the 

equations become eventually significant for describing system dynamics. Further, the 

dispersion relation of ion acoustic wave can be counter-balanced by nonlinearity, and an ion 

acoustic pulse-like solitary perturbation can propagate without appreciable deformation. 

Besides, the nonlinearities may also occur from the harmonic generation involving fluid 

advection, the nonlinear Lorentz force, trapping of particles in the wave potential, 

ponderomotive force, and so on [46]. In such situation, one may study the nonlinear 

propagation characteristics without considering two-stream instability in the considered 

plasmas. Thus, to study the nonlinear dynamics of ion acoustic solitary waves, the normalized 

fluid equations can be defined to the following forms: 

                                                              𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝑡𝑡

+ 𝜕𝜕(𝑛𝑛𝑖𝑖𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕

= 0,                    (3.4) 

                                       𝜕𝜕(𝛾𝛾𝑢𝑢𝑖𝑖)
𝜕𝜕𝑡𝑡

+ 𝑢𝑢𝑖𝑖
𝜕𝜕(𝛾𝛾𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕

+ 𝑗𝑗𝑛𝑛𝑖𝑖
𝑗𝑗−2𝑇𝑇𝑖𝑖𝑖𝑖

�1−𝑛𝑛𝑝𝑝𝑖𝑖�
𝑗𝑗−1

𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, (3.5) 

   𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

= (1 − 𝛽𝛽𝑒𝑒𝜙𝜙 + 𝛽𝛽𝑒𝑒𝜙𝜙2)𝑒𝑒𝜕𝜕 − 𝑛𝑛𝑝𝑝𝑒𝑒�1 + 𝛽𝛽𝑝𝑝𝑇𝑇𝑒𝑒𝑝𝑝 𝜙𝜙 + 𝛽𝛽𝑝𝑝𝑇𝑇𝑒𝑒𝑝𝑝2 𝜙𝜙2�𝑒𝑒−𝑇𝑇𝑖𝑖𝑝𝑝 𝜕𝜕 − 𝑛𝑛𝑖𝑖 .     (3.6) 

Here, 𝑛𝑛𝑖𝑖, 𝑢𝑢𝑖𝑖, 𝑇𝑇𝑖𝑖𝑒𝑒, 𝑇𝑇𝑒𝑒𝑝𝑝 , and 𝑛𝑛𝑝𝑝𝑒𝑒 denote the normalized ion density, ion fluid velocity, ion-

electron temperature ratio (𝑇𝑇𝑖𝑖𝑒𝑒 = 𝑇𝑇𝑖𝑖 𝑇𝑇𝑒𝑒⁄ ), electron-positron temperature ratio (𝑇𝑇𝑒𝑒𝑝𝑝 = 𝑇𝑇𝑒𝑒 𝑇𝑇𝑝𝑝⁄ ), 

and fractional concentration of positrons with respect to electron (𝑛𝑛𝑝𝑝𝑒𝑒 = 𝑛𝑛𝑝𝑝0 𝑛𝑛𝑒𝑒0⁄ ), 

respectively. The perturbed quantities 𝑛𝑛𝑖𝑖, 𝑢𝑢𝑖𝑖, and 𝜙𝜙 are normalized as 𝑛𝑛𝑖𝑖 → 𝑛𝑛𝑖𝑖 𝑛𝑛𝑒𝑒0⁄ , 𝑢𝑢𝑖𝑖 →

𝑢𝑢𝑖𝑖 𝐶𝐶𝑠𝑠⁄ , 𝜙𝜙 → (𝑇𝑇𝑒𝑒 𝑒𝑒)𝜙𝜙⁄ . The space variable is normalized by the electron Debye radius λ𝐷𝐷𝑒𝑒 =

�(𝑇𝑇𝑒𝑒 4𝜋𝜋𝑛𝑛𝑒𝑒0𝑒𝑒2⁄ ), and the time variable is normalized by λ𝐷𝐷𝑒𝑒/𝐶𝐶𝑠𝑠. The equation of state for the 
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adiabatic ions is considered as 𝑃𝑃𝑖𝑖0/𝑛𝑛𝑖𝑖0
𝑗𝑗 = 𝑃𝑃𝑖𝑖/𝑛𝑛𝑖𝑖

𝑗𝑗, 𝑃𝑃𝑖𝑖 is ion pressure, 𝑗𝑗 = (𝑁𝑁 + 2)/𝑁𝑁 (𝑁𝑁 is the 

number of degrees of freedom),  and 𝑁𝑁 = 1 for one-dimensional case. The parameter 𝛾𝛾 =

1/�1 − 𝑢𝑢𝑖𝑖2 𝑐𝑐2⁄  in Eq. (3.5) is the Lorentz relativistic factor, where the non-relativistic limit 

𝛾𝛾 = 1 and 𝑛𝑛𝑖𝑖0 = 1 − 𝑛𝑛𝑝𝑝𝑒𝑒 is the normalized quasi-neutrality condition. 

3.3 Formation of two-sided KdV equations 

To investigate the interaction of two ion acoustic solitary waves for WRR and HRR 

regimes, one can apply the ePLK method [40], which leads to the scaling of independent 

variables through the stretched coordinates as  

𝜉𝜉 = 𝜀𝜀(𝑥𝑥 − 𝑉𝑉1𝑡𝑡) + 𝜀𝜀2𝑃𝑃0(𝜂𝜂, 𝜏𝜏) + 𝜀𝜀3𝑃𝑃1(𝜂𝜂, 𝜉𝜉, 𝜏𝜏) +  … … …
𝜂𝜂 = 𝜀𝜀(𝑥𝑥 + 𝑉𝑉2𝑡𝑡) + 𝜀𝜀2𝑄𝑄0(𝜉𝜉, 𝜏𝜏) + 𝜀𝜀3𝑄𝑄1(𝜂𝜂, 𝜉𝜉, 𝜏𝜏) +  … … …

𝜏𝜏 = 𝜀𝜀3𝑡𝑡.
�                                    (3.7) 

where 𝜉𝜉 and 𝜂𝜂 indicate the trajectories of two solitary waves traveling toward to each other, 

and 𝑉𝑉1 and 𝑉𝑉2 are the unknown phase velocities of ion acoustic solitary waves. The 

mysterious phase functions 𝑃𝑃0(𝜂𝜂, 𝜏𝜏) and 𝑄𝑄0(𝜉𝜉, 𝜏𝜏) will be evaluated later. The perturbed 

quantities may be expanded as   

𝑛𝑛𝑖𝑖 = �1 − 𝑛𝑛𝑝𝑝𝑒𝑒� + 𝜀𝜀2𝑛𝑛𝑖𝑖
(1) + 𝜀𝜀3𝑛𝑛𝑖𝑖

(2) + 𝜀𝜀4𝑛𝑛𝑖𝑖
(3) + ⋯⋯⋯⋯

𝑢𝑢𝑖𝑖 = 𝑢𝑢𝑖𝑖0 + 𝜀𝜀2𝑢𝑢𝑖𝑖
(1) + 𝜀𝜀3𝑢𝑢𝑖𝑖

(2) + 𝜀𝜀4𝑢𝑢𝑖𝑖
(3) +  ⋯⋯⋯⋯⋯

𝜙𝜙 = 0 + 𝜀𝜀2𝜙𝜙(1) + 𝜀𝜀3𝜙𝜙(2) + 𝜀𝜀4𝜙𝜙(3) +  ⋯⋯⋯⋯⋯⋯

�  .                              (3.8) 

The relativistic Lorentz factor involved in the momentum [Eq.(3.5)] is considered to be weak 

and taking up to two-term, that is, for WRR as  

𝛾𝛾 ≈ 1 +
𝑢𝑢𝑖𝑖2

2𝑐𝑐2
 .                                                                                                                  (3.9) 

Inserting Eqs. (3.7)-(3.9) into Eqs. (3.4)-(3.6) and separating the perturbed quantities with the 

similar power of 𝜀𝜀, one can derive a set of equations in various power of  𝜀𝜀. The lowest power 

of 𝜀𝜀 yeilds  

(−𝑉𝑉1 + 𝑢𝑢𝑖𝑖0)
𝜕𝜕𝑛𝑛𝑖𝑖

(1)

𝜕𝜕𝜉𝜉
+ (𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

𝜕𝜕𝑛𝑛𝑖𝑖
(1)

𝜕𝜕𝜂𝜂
+ �1 − 𝑛𝑛𝑝𝑝𝑒𝑒�

𝜕𝜕𝑢𝑢𝑖𝑖
(1)

𝜕𝜕𝜉𝜉
+ �1 − 𝑛𝑛𝑝𝑝𝑒𝑒�

𝜕𝜕𝑢𝑢𝑖𝑖
(1)

𝜕𝜕𝜂𝜂
= 0,      
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                                                                                                                              (3.10)           

(−𝑉𝑉1 + 𝑢𝑢𝑖𝑖0)𝛾𝛾1
𝜕𝜕𝑢𝑢𝑖𝑖

(1)

𝜕𝜕𝜉𝜉
+ (𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)𝛾𝛾1

𝜕𝜕𝑢𝑢𝑖𝑖
(1)

𝜕𝜕𝜂𝜂
+

3𝑇𝑇𝑖𝑖𝑒𝑒
�1 − 𝑛𝑛𝑝𝑝𝑒𝑒�

𝜕𝜕𝑛𝑛𝑖𝑖
(1)

𝜕𝜕𝜉𝜉
+  

3𝑇𝑇𝑖𝑖𝑒𝑒
�1 − 𝑛𝑛𝑝𝑝𝑒𝑒�

𝜕𝜕𝑛𝑛𝑖𝑖
(1)

𝜕𝜕𝜂𝜂
                      

= −  �
𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜂𝜂
�  ,                                                                                  (3.11) 

  

𝑛𝑛𝑖𝑖
(1) = �(1 − 𝛽𝛽𝑒𝑒) + 𝑛𝑛𝑝𝑝𝑒𝑒𝑇𝑇𝑒𝑒𝑝𝑝�1 − 𝛽𝛽𝑝𝑝��𝜙𝜙(1).                                                           (3.12) 

Solving  Eqs. (3.10)-(3.12), one may define the relations along with the different physical 

quantities as 

𝜙𝜙(1) = 𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) + 𝜙𝜙𝜂𝜂

(1)(𝜂𝜂, 𝜏𝜏)                                                                                 (3.13) 

𝑛𝑛𝑖𝑖
(1) =

�1 − 𝑛𝑛𝑝𝑝𝑒𝑒�
[(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)2𝛾𝛾1 − 3𝑇𝑇𝑖𝑖𝑒𝑒]

𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) +

�1 − 𝑛𝑛𝑝𝑝𝑒𝑒�
[(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)2𝛾𝛾1 − 3𝑇𝑇𝑖𝑖𝑒𝑒]

𝜙𝜙𝜂𝜂
(1)(𝜂𝜂, 𝜏𝜏), (3.14) 

𝑢𝑢𝑖𝑖
(1) =

(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)
[(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)2𝛾𝛾1 − 3𝑇𝑇𝑖𝑖𝑒𝑒]

𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) −

(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)
[(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)2𝛾𝛾1 − 3𝑇𝑇𝑖𝑖𝑒𝑒]

𝜙𝜙𝜂𝜂
(1)(𝜂𝜂, 𝜏𝜏). (3.15) 

It is seen from Eq. (3.13) that two electrostatic solitary waves may be obtained, one of which 

𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) is propagating from left to right and the other 𝜙𝜙𝜂𝜂

(1)(𝜂𝜂, 𝜏𝜏) is propagating from right 

to left. Using the solvability condition, the phase velocities are obtained as  

𝑉𝑉1 = �
3𝑇𝑇𝑖𝑖𝑒𝑒
𝛾𝛾1

+
(1 − 𝑛𝑛𝑝𝑝𝑒𝑒)
𝛾𝛾1𝐾𝐾1

+ 𝑢𝑢𝑖𝑖0,  𝑉𝑉2 = �
3𝑇𝑇𝑖𝑖𝑒𝑒
𝛾𝛾1

+
(1 − 𝑛𝑛𝑝𝑝𝑒𝑒)
𝛾𝛾1𝐾𝐾1

− 𝑢𝑢𝑖𝑖0  ,                  (3.16) 

where 𝐾𝐾1 = [(1 − 𝛽𝛽𝑒𝑒) + 𝑛𝑛𝑝𝑝𝑒𝑒𝑇𝑇𝑒𝑒𝑝𝑝(1 − 𝛽𝛽𝑝𝑝)]. The next power of 𝜀𝜀 provides another set of 

equations whose solutions are also defined by the following relations: 

𝜙𝜙(2) = 𝜙𝜙𝜉𝜉
(2)(𝜉𝜉, 𝜏𝜏) + 𝜙𝜙𝜂𝜂

(2)(𝜂𝜂, 𝜏𝜏)                                                                                 (3.17) 

𝑛𝑛𝑖𝑖
(2) =

�1 − 𝑛𝑛𝑝𝑝𝑒𝑒�
[(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)2𝛾𝛾1 − 3𝑇𝑇𝑖𝑖𝑒𝑒]

𝜙𝜙𝜉𝜉
(2)(𝜉𝜉, 𝜏𝜏) +

�1 − 𝑛𝑛𝑝𝑝𝑒𝑒�
[(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)2𝛾𝛾1 − 3𝑇𝑇𝑖𝑖𝑒𝑒]

𝜙𝜙𝜂𝜂
(2)(𝜂𝜂, 𝜏𝜏), (3.18) 

𝑢𝑢𝑖𝑖
(2) =

(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)
[(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)2𝛾𝛾1 − 3𝑇𝑇𝑖𝑖𝑒𝑒]

𝜙𝜙𝜉𝜉
(2)(𝜉𝜉, 𝜏𝜏) −

(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)
[(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)2𝛾𝛾1 − 3𝑇𝑇𝑖𝑖𝑒𝑒]

𝜙𝜙𝜂𝜂
(2)(𝜂𝜂, 𝜏𝜏). (3.19) 

Finally, the next higher order of 𝜀𝜀 gives the following relation taking Eqs.(3.13)-(3.16)  into 

account: 
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𝜕𝜕
𝜕𝜕𝜉𝜉
�
𝜕𝜕𝜙𝜙𝜉𝜉

(1)

𝜕𝜕𝜏𝜏
+ 𝐴𝐴1𝜙𝜙𝜉𝜉

(1) 𝜕𝜕𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵1

𝜕𝜕3𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉3
� +

𝜕𝜕
𝜕𝜕𝜂𝜂

�
𝜕𝜕𝜙𝜙𝜂𝜂

(1)

𝜕𝜕𝜏𝜏
− 𝐴𝐴2𝜙𝜙𝜂𝜂

(1) 𝜕𝜕𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂
− 𝐵𝐵2

𝜕𝜕3𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂3
�  

+ �𝐶𝐶1
𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

− 𝐷𝐷1𝜙𝜙𝜂𝜂
(1)�

𝜕𝜕2𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉2
− �𝐶𝐶2

𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

− 𝐷𝐷2𝜙𝜙𝜉𝜉
(1)�

𝜕𝜕2𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂2

= −�
𝐿𝐿(𝑉𝑉1 + 𝑉𝑉2)
2(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)

+
𝑀𝑀(𝑉𝑉1 + 𝑉𝑉2)
2(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

�
𝜕𝜕2𝑢𝑢𝑖𝑖

(3)

𝜕𝜕𝜉𝜉𝜕𝜕𝜂𝜂
  ,                                                (3.20) 

where                                                      

𝐴𝐴1 = �
(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)

𝐿𝐿
+ �𝛾𝛾1 − 𝛾𝛾2 �

𝑉𝑉1 − 𝑢𝑢𝑖𝑖0
𝑢𝑢𝑖𝑖0

��
(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)

2𝛾𝛾1𝐿𝐿
+

3𝑇𝑇𝑖𝑖𝑒𝑒
2𝛾𝛾1(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)𝐿𝐿

−
𝐾𝐾2𝐿𝐿

𝛾𝛾1(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)𝐾𝐾1
�,  

𝐵𝐵1 =
𝐿𝐿

2𝛾𝛾1(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)𝐾𝐾1
, 

𝐶𝐶1 = �
(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)

2
+ (𝑉𝑉2 + 𝑢𝑢𝑖𝑖0) +

3𝑇𝑇𝑖𝑖𝑒𝑒
2𝛾𝛾1(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)

+
𝐿𝐿

2𝛾𝛾1(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)
�, 

𝐷𝐷1 = ��𝛾𝛾1 − 𝛾𝛾2 �
𝑉𝑉1 − 𝑢𝑢𝑖𝑖0
𝑢𝑢𝑖𝑖0

��
(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

2𝛾𝛾1𝑀𝑀
−

3𝑇𝑇𝑖𝑖𝑒𝑒
2𝛾𝛾1(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)𝑀𝑀

+
𝐾𝐾2𝐿𝐿

𝛾𝛾1(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)𝐾𝐾1
�, 

𝐴𝐴2 = �
(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

𝑀𝑀
+ �𝛾𝛾1 + 𝛾𝛾2 �

𝑉𝑉2 + 𝑢𝑢𝑖𝑖0
𝑢𝑢𝑖𝑖0

��
(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

2𝛾𝛾1𝑀𝑀
+

3𝑇𝑇𝑖𝑖𝑒𝑒
2𝛾𝛾1(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)𝑀𝑀

−
𝐾𝐾2𝑀𝑀

𝛾𝛾1(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)𝐾𝐾1
�, 

𝐵𝐵2 =
𝑀𝑀

2𝛾𝛾1(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)𝐾𝐾1
, 

𝐶𝐶2 = �(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0) +
(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

2
+

3𝑇𝑇𝑖𝑖𝑒𝑒
2𝛾𝛾1(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

+
𝑀𝑀

2𝛾𝛾1(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)
�, 

𝐷𝐷2 = ��𝛾𝛾1 + 𝛾𝛾2 �
𝑉𝑉2 + 𝑢𝑢𝑖𝑖0
𝑢𝑢𝑖𝑖0

��
(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)

2𝛾𝛾1𝐿𝐿
−

3𝑇𝑇𝑖𝑖𝑒𝑒
2𝛾𝛾1(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)𝐿𝐿

+
𝐾𝐾2𝑀𝑀

𝛾𝛾1(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)𝐾𝐾1
�, 

𝐿𝐿 = [(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)2𝛾𝛾1 − 3𝑇𝑇𝑖𝑖𝑒𝑒], 

𝑀𝑀 = [(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)2𝛾𝛾1 − 3𝑇𝑇𝑖𝑖𝑒𝑒], 

𝐾𝐾2 = �1 − 𝑛𝑛𝑝𝑝𝑒𝑒𝑇𝑇𝑒𝑒𝑝𝑝2 �/2, and 𝛾𝛾2 = 3𝛽𝛽2. 

Integrating Eq. (3.20) twice with regards to 𝜉𝜉 and 𝜂𝜂, respectively, one obtains 
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��
𝜕𝜕𝜙𝜙𝜉𝜉

(1)

𝜕𝜕𝜏𝜏
+ 𝐴𝐴1𝜙𝜙𝜉𝜉

(1) 𝜕𝜕𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵1

𝜕𝜕3𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉3
�𝑑𝑑𝜂𝜂 + ��

𝜕𝜕𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜏𝜏
− 𝐴𝐴2𝜙𝜙𝜂𝜂

(1) 𝜕𝜕𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂
− 𝐵𝐵2

𝜕𝜕3𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂3
�𝑑𝑑𝜉𝜉  

+ ��𝐶𝐶1
𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

− 𝐷𝐷1𝜙𝜙𝜂𝜂
(1)�

𝜕𝜕2𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉2
𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂 − ��𝐶𝐶2

𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

− 𝐷𝐷2𝜙𝜙𝜉𝜉
(1)�

𝜕𝜕2𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂2
𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂

= −�
𝐿𝐿(𝑉𝑉1 + 𝑉𝑉2)
2(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)

+
𝑀𝑀(𝑉𝑉1 + 𝑉𝑉2)
2(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

� 𝑢𝑢𝑖𝑖
(3).                                                       (3.21) 

Eq. (3.21) shows that the perturbed quantity 𝑢𝑢𝑖𝑖
(3) contains both secular and non-secular terms 

that are obtained by solving only the secular terms. It is noted that two-sided KdV equations 

can only be obtained when the secular terms are considered. The first and second terms on the 

left side of Eq. (3.21) are proportional to 𝜂𝜂 and 𝜉𝜉, respectively, because the integrands 

involving the first and second terms in the left side of Eq.(3.21) are independent of 𝜂𝜂 and  𝜉𝜉, 

respectively. Since the first two expressions are all secular terms those can be eliminated in 

order to avoid unexpected resonances. Thus, one can find the following two-sided KdV 

equations: 

𝜕𝜕𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜏𝜏
+ 𝐴𝐴1𝜙𝜙𝜉𝜉

(1) 𝜕𝜕𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵1

𝜕𝜕3𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉3
= 0 ,                                                  (3.22) 

𝜕𝜕𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜏𝜏
− 𝐴𝐴2𝜙𝜙𝜂𝜂

(1) 𝜕𝜕𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂
− 𝐵𝐵2

𝜕𝜕3𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂3
= 0 .                                                 (3.23) 

Further, the third and fourth expressions on the left side of Eq. (3.21) may become secular 

terms in the next higher order and yields the following equations: 

𝐶𝐶1
𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

− 𝐷𝐷1𝜙𝜙𝜂𝜂
(1) = 0 ,                                                                                   (3.24) 

𝐶𝐶2
𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

− 𝐷𝐷2𝜙𝜙𝜉𝜉
(1) = 0 .                                                                                  (3.25) 

For improved accuracy of the potential profiles due to the interaction between ion acoustic 

solitary waves, the three-term expansion of the Lorentz relativistic factor (𝛾𝛾) involved in the 

momentum Eq. (3.5) can be considered as  

𝛾𝛾 ≈ 1 +
𝑢𝑢𝑖𝑖2

2𝑐𝑐2
+

3𝑢𝑢𝑖𝑖4

8𝑐𝑐4
  .                                                                                     (3.26) 
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Again, inserting Eqs.(3.7), (3.8), and (3.26) into Eqs. (3.4)-(3.6) and separating the perturbed 

quantities with equal powers of 𝜀𝜀, one can obtain a set equations in various powers of  𝜀𝜀. The 

lowest power of 𝜀𝜀 gives a set of equations whose solutions may be  defined by the following 

relations: 

𝜙𝜙(1) = 𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) + 𝜙𝜙𝜂𝜂

(1)(𝜂𝜂, 𝜏𝜏)  ,                                                                              (3.27) 

𝑛𝑛𝑖𝑖
(1) =

�1 − 𝑛𝑛𝑝𝑝𝑒𝑒�
[(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)2𝛾𝛾3 − 3𝑇𝑇𝑖𝑖𝑒𝑒]

𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) +

�1 − 𝑛𝑛𝑝𝑝𝑒𝑒�
[(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)2𝛾𝛾3 − 3𝑇𝑇𝑖𝑖𝑒𝑒]

𝜙𝜙𝜂𝜂
(1)(𝜂𝜂, 𝜏𝜏), (3.28) 

𝑢𝑢𝑖𝑖
(1) =

(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)
[(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)2𝛾𝛾3 − 3𝑇𝑇𝑖𝑖𝑒𝑒]

𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) −

(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)
[(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)2𝛾𝛾3 − 3𝑇𝑇𝑖𝑖𝑒𝑒]

𝜙𝜙𝜂𝜂
(1)(𝜂𝜂, 𝜏𝜏), (3.29) 

where 𝛾𝛾3 = 𝛾𝛾1 + 15
8
𝛽𝛽4. The phase velocities in Eq. (3.16) can be converted to  

𝑉𝑉1 = �
3𝑇𝑇𝑖𝑖𝑒𝑒
𝛾𝛾3

+
(1 − 𝑛𝑛𝑝𝑝𝑒𝑒)
𝛾𝛾3𝐾𝐾1

+ 𝑢𝑢𝑖𝑖0,  𝑉𝑉2 = �
3𝑇𝑇𝑖𝑖𝑒𝑒
𝛾𝛾3

+
(1 − 𝑛𝑛𝑝𝑝𝑒𝑒)
𝛾𝛾3𝐾𝐾1

− 𝑢𝑢𝑖𝑖0  .                  (3.30) 

Similarly, one can derive Eqs. (3.22)-(3.25) in the above forms. But, the coefficients of Eqs. 

(3.22)-(3.25) can be obtained as  

𝐴𝐴1 = �
(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)

𝐿𝐿1
+ �𝛾𝛾3 − 𝛾𝛾4 �

𝑉𝑉1 − 𝑢𝑢𝑖𝑖0
𝑢𝑢𝑖𝑖0

��
(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)

2𝛾𝛾3𝐿𝐿1
+

3𝑇𝑇𝑖𝑖𝑒𝑒
2𝛾𝛾3(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)𝐿𝐿1

−
𝐾𝐾2𝐿𝐿1

𝛾𝛾3(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)𝐾𝐾1
�,  

𝐵𝐵1 =
𝐿𝐿1

2𝛾𝛾3(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)𝐾𝐾1
, 

𝐶𝐶1 = �
(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)

2
+ (𝑉𝑉2 + 𝑢𝑢𝑖𝑖0) +

3𝑇𝑇𝑖𝑖𝑒𝑒
2𝛾𝛾3(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)

+
𝐿𝐿1

2𝛾𝛾3(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)
�, 

𝐷𝐷1 = ��𝛾𝛾3 − 𝛾𝛾4 �
𝑉𝑉1 − 𝑢𝑢𝑖𝑖0
𝑢𝑢𝑖𝑖0

��
(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

2𝛾𝛾3𝑀𝑀1
−

3𝑇𝑇𝑖𝑖𝑒𝑒
2𝛾𝛾3(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)𝑀𝑀1

+
𝐾𝐾2𝐿𝐿1

𝛾𝛾3(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)𝐾𝐾1
�, 

𝐴𝐴2 = �
(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

𝑀𝑀1
+ �𝛾𝛾3 + 𝛾𝛾4 �

𝑉𝑉2 + 𝑢𝑢𝑖𝑖0
𝑢𝑢𝑖𝑖0

��
(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

2𝛾𝛾3𝑀𝑀1
+

3𝑇𝑇𝑖𝑖𝑒𝑒
2𝛾𝛾3(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)𝑀𝑀1

−
𝐾𝐾2𝑀𝑀1

𝛾𝛾3(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)𝐾𝐾1
�, 

𝐵𝐵2 =
𝑀𝑀1

2𝛾𝛾3(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)𝐾𝐾1
, 

𝐶𝐶2 = �(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0) +
(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

2
+

3𝑇𝑇𝑖𝑖𝑒𝑒
2𝛾𝛾3(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)

+
𝑀𝑀1

2𝛾𝛾3(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)
�, 
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𝐷𝐷2 = ��𝛾𝛾3 + 𝛾𝛾4 �
𝑉𝑉2 + 𝑢𝑢𝑖𝑖0
𝑢𝑢𝑖𝑖0

��
(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)

2𝛾𝛾3𝐿𝐿1
−

3𝑇𝑇𝑖𝑖𝑒𝑒
2𝛾𝛾3(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)𝐿𝐿1

+
𝐾𝐾2𝑀𝑀1

𝛾𝛾3(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)𝐾𝐾1
�, 

𝐿𝐿1 = [(𝑉𝑉1 − 𝑢𝑢𝑖𝑖0)2𝛾𝛾3 − 3𝑇𝑇𝑖𝑖𝑒𝑒],  𝑀𝑀1 = [(𝑉𝑉2 + 𝑢𝑢𝑖𝑖0)2𝛾𝛾3 − 3𝑇𝑇𝑖𝑖𝑒𝑒], and 𝛾𝛾4 = 𝛾𝛾2 + 15
2
𝛽𝛽4.  

3.4 Solitary wave solutions and phase shifts 

      It is seen from Eqs. (3.22) and (3.23) that the KdV equations represent the two-sided 

traveling waves for the considered frame of references 𝜉𝜉 and 𝜂𝜂, respectively. The stationary 

solutions of the KdV equations can be obtained as 

𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) = 𝜙𝜙𝑅𝑅sech2 �

(𝜉𝜉 − 𝑈𝑈0𝜏𝜏)
𝑊𝑊𝑅𝑅

�  ,                                                                     (3.31) 

𝜙𝜙𝜂𝜂
(1)(𝜂𝜂, 𝜏𝜏) = 𝜙𝜙𝐿𝐿sech2 �

(𝜂𝜂 + 𝑈𝑈0𝜏𝜏)
𝑊𝑊𝐿𝐿

�  ,                                                                      (3.32)  

where 𝜙𝜙𝑅𝑅 = (3𝑈𝑈0/𝐴𝐴1) and 𝑊𝑊𝑅𝑅 = �((4𝐵𝐵1/𝑈𝑈0) are the amplitude and width of the right 

moving solitons in their initial positions, 𝜙𝜙𝐿𝐿 = (3𝑈𝑈0/𝐴𝐴2) and 𝑊𝑊𝐿𝐿 = �(4𝐵𝐵2/𝑈𝑈0) are the 

amplitude and width of the left moving solitons in their initial positions, and 𝑈𝑈0 is the 

constant velocity of the solitons. The leading phase functions due to the collision can be 

obtained solving Eqs. (3.24) and (3.25) with the help of the analytical solutions of Eqs. (3.31) 

and (3.32) as  

𝑃𝑃0(𝜂𝜂, 𝜏𝜏) =
𝐷𝐷1
𝐶𝐶1
𝜙𝜙𝐿𝐿𝑊𝑊𝐿𝐿 �tanh �

𝜂𝜂 + 𝑈𝑈0𝜏𝜏
𝑊𝑊𝐿𝐿

� + 1�  ,                                                        (3.33) 

𝑄𝑄0(𝜉𝜉, 𝜏𝜏) =
𝐷𝐷2
𝐶𝐶2
𝜙𝜙𝑅𝑅𝑊𝑊𝑅𝑅 �tanh �

𝜉𝜉 − 𝑈𝑈0𝜏𝜏
𝑊𝑊𝑅𝑅

� − 1�  .                                                       (3.34) 

Therefore, the trajectories of the two ion acoustic solitary waves for weak head-on collision 

can be obtained up to order of 𝜀𝜀2 as follows: 

𝜉𝜉 = 𝜀𝜀(𝑥𝑥 − 𝑉𝑉1𝑡𝑡) + 𝜀𝜀2
𝐷𝐷1
𝐶𝐶1
𝜙𝜙𝐿𝐿𝑊𝑊𝐿𝐿 �tanh �

𝜂𝜂 + 𝑈𝑈0𝜏𝜏
𝑊𝑊𝐿𝐿

� + 1�   + ⋯ ,                           (3.35) 

𝜂𝜂 = 𝜀𝜀(𝑥𝑥 + 𝑉𝑉2𝑡𝑡) + 𝜀𝜀2
𝐷𝐷2
𝐶𝐶2
𝜙𝜙𝑅𝑅𝑊𝑊𝑅𝑅 �tanh �

𝜉𝜉 − 𝑈𝑈0𝜏𝜏
𝑊𝑊𝑅𝑅

� − 1� + ⋯    .                         (3.36) 

In order to obtain the phase shift after the head-on collision between two solitons, say 𝑆𝑆𝑅𝑅 and 

𝑆𝑆𝐿𝐿, one can assume that the solitons 𝑆𝑆𝑅𝑅 at 𝜉𝜉 = 0, 𝜂𝜂 → −∞  and 𝑆𝑆𝐿𝐿 at 𝜂𝜂 = 0, 𝜉𝜉 → +∞  are 



HOC of IASWs for WR and HR Regimes 
 

Plasma Science and Technology Lab, EEE, RU  59 
 

asymptotically far away from each other at the initial time (𝑡𝑡 → −∞). After collision (𝑡𝑡 →

+∞), 𝑆𝑆𝑅𝑅 is far to the right of 𝑆𝑆𝐿𝐿, that is, 𝑆𝑆𝑅𝑅 is at 𝜉𝜉 = 0, 𝜂𝜂 → +∞  and 𝑆𝑆𝐿𝐿 is at 𝜂𝜂 = 0, 𝜉𝜉 →

−∞ .Using Eqs. (3.35) and (3.36), one can obtain their corresponding phase shifts as  

𝛻𝛻𝑃𝑃0 = −2𝜀𝜀2
𝐷𝐷1
𝐶𝐶1
𝜙𝜙𝐿𝐿𝑊𝑊𝐿𝐿 ,                                                                                              (3.37) 

𝛻𝛻𝑄𝑄0 = 2𝜀𝜀2
𝐷𝐷2
𝐶𝐶2
𝜙𝜙𝑅𝑅𝑊𝑊𝑅𝑅  .                                                                                               (3.38) 

Equations(3.37) and (3.38) show that the magnitudes of phase shifts depend on the amplitude 

and width of the solitons.  
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Figure 3.1 Effect of 𝛼𝛼𝑒𝑒((a) and (b)) taking  𝑇𝑇𝑖𝑖𝑒𝑒 = 𝑇𝑇𝑖𝑖 𝑇𝑇𝑒𝑒⁄ = 0.001, 𝑇𝑇𝑒𝑒𝑝𝑝 = 𝑇𝑇𝑒𝑒 𝑇𝑇𝑝𝑝⁄ =
1, 𝛼𝛼𝑝𝑝 = 0.5, 𝑈𝑈0 = 0.0075, and 𝜖𝜖 = 0.1; and 𝑛𝑛𝑝𝑝𝑒𝑒 = 𝑛𝑛𝑝𝑝0 𝑛𝑛𝑒𝑒0⁄  ((c) and (d)) taking  
𝑇𝑇𝑖𝑖𝑒𝑒 = 0.001, 𝑇𝑇𝑒𝑒𝑝𝑝1, 𝛼𝛼𝑒𝑒,𝑝𝑝 = 0.1, 𝑈𝑈0 = 0.0075, and 𝜖𝜖 = 0.1 along with relativistic 
streaming factor 𝛽𝛽 = 𝑢𝑢𝑖𝑖0 𝑐𝑐⁄  on the positive phase shift 𝛻𝛻𝑄𝑄0 for both of WRR (left 
column) and HRR (right column). 
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3.5 Results and discussion  

The interaction of ion acoustic solitary waves and their phase shift, time evolution, and 

pulse like electrostatic ion acoustic solitary waves are studied in the considered plasmas  

composing relativistic ions and high-energy nonthermal electrons and positrons. It is known 

that the high-energy particles are produced through the collisions among nonthermal particles, 

which reached high energies rather than their thermal energies [33]. In such situation, the 

relativistic ions are produced by the nonthermal electrons and positrons. Furthermore, the 

energetic streaming ions with energies 0.1-100 MeV are observed in solar atmosphere and 

interstellar space [20, 22]. To study the effect on phase shift after head-on collision between 

ion acoustic solitary waves, the time evolution and  hump-shape structures of ion acoustic 

solitary waves in the considered plasmas both for WRR and HRR, the two-sided KdV 

equations are derived using the ePLK  method. On the other hand, many authors [39-44] have 

studied the head-on collision between two solitons and their corresponding phase shift 

considering the unit amplitude of the solitons, whereas the amplitude of solitons strongly 

depends on the plasma parameters. In addition, the phase shifts are constructed in terms of the 

amplitude and width of the solitons using the well established stationary solitary wave 

solutions of KdV equations. Therefore, the influence of positron concentration (𝑛𝑛𝑝𝑝𝑒𝑒), 

relativistic streaming factor (𝛽𝛽), electron to positron temperature ratio (𝑇𝑇𝑒𝑒𝑝𝑝), ion to electron 

temperature ratio (𝑇𝑇𝑖𝑖𝑒𝑒), and 𝛼𝛼𝑒𝑒(𝛼𝛼𝑝𝑝), which are responsible for the production of nonthermal 

electrons and positrons, on the phase shift, evolution and propagation of electrostatic 

potentials, and hump shape electrostatic ion acoustic solitary waves are investigated.  

Figures 3.1(a) and 3.1(b) display the effects of 𝛼𝛼𝑒𝑒 and 𝑛𝑛𝑝𝑝𝑒𝑒 along with relativistic streaming 

factor 𝛽𝛽  (= 𝑢𝑢𝑖𝑖0/𝑐𝑐) on the phase shift ∇𝑄𝑄0 both for WRR (left column) and HRR (right 

column) taking the remaining plasma parameters constant. On the other hand, Figs. 3.2(a) and 

3.2(b) depict the effect of ∇𝑄𝑄0  on the  𝛽𝛽 − 𝑇𝑇𝑖𝑖𝑒𝑒 and 𝛽𝛽 − 𝑇𝑇𝑒𝑒𝑝𝑝 planes both for WRR (left 

column) and HRR (right column), respectively, considering the remaining parameters 

constants. It is seen that the magnitudes of phase shift are increasing with increasing 

relativistic streaming factor, while it is decreasing with positron concentration, ion-electron 

temperature ratio, and electron-positron temperature ratio for both cases. This phenomenon 

can be attributed as follows. The electronic pressure depends on electron temperature as well 

as on electron density. Thus, the restoring force, as produced by electronic pressure, reduces 
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with increasing positron density and ion temperature, and hence, the magnitude of phase shift 

is decreasing. This means that the increase in positron concentration can be interpreted as  

depopulation of ions from the plasma system, and as a result, the driving force (provided by 

ions inertia) of ion acoustic solitary waves decreases. It is also seen that the magnitudes of 

phase shift are almost the same for 𝛽𝛽 ≤ 0.1 and slightly larger for 𝛽𝛽 > 0.1    in HRR rather 

 

 

 

Figure 3.2 Effect of 𝑇𝑇𝑖𝑖𝑒𝑒 for 𝑇𝑇𝑒𝑒𝑝𝑝 = 1.05 ((a) and (b)) and 𝑇𝑇𝑒𝑒𝑝𝑝 for 𝑇𝑇𝑖𝑖𝑒𝑒 = 0.01 
((c) and 3(d)) along with relativistic streaming factor 𝛽𝛽 on the positive phase 
shift 𝛻𝛻𝑄𝑄0 for both of WRR (left column) and HRR (right column). The 
remaining parameters are considered as 𝑛𝑛𝑝𝑝𝑒𝑒 = 0.7, 𝑇𝑇𝑒𝑒 = 0.01 MeV, 𝛼𝛼𝑒𝑒 =
 𝛼𝛼𝑝𝑝 = 0.5, and 𝜖𝜖 = 0.1.    
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than WRR. Furthermore, it is seen from Fig. 3.2(b) that the magnitudes of phase shift is 

decreasing with the decrease of positron temperature in the range 𝑇𝑇𝑒𝑒𝑝𝑝 = 1 − 5  and then 

saturating in the range 𝑇𝑇𝑒𝑒𝑝𝑝 > 5 in both cases. It is noticed that the phase shift is independent 

of the wave modes [48].The coefficients 𝐷𝐷1 and 𝐷𝐷2 of Eqs. (3.24) and (3.25), respectively, 

dictate the types of phase shift, that is, positive or negative after head-on collision between 

 

Figure 3.3 Electrostatic right 𝜙𝜙𝜉𝜉
(1) and left  𝜙𝜙𝜂𝜂

(1) moving profiles at 𝜏𝜏 = 0 
(green color),  𝜏𝜏 = 50 (red color), and 𝜏𝜏 = 100 (blue color) for both of (a) 
WRR and (b) HRR. Electrostatic profile (𝜙𝜙(1)) with different values of 𝜏𝜏 for 
both of (c) WRR and (d)HRR. The remaining parameters are considered as 
𝑛𝑛𝑝𝑝𝑒𝑒 = 0.7, 𝑇𝑇𝑒𝑒𝑝𝑝 = 1 , 𝛼𝛼𝑒𝑒 =  𝛼𝛼𝑝𝑝 = 0.2, 𝑈𝑈0 = 0,075, and 𝛽𝛽 = 0.4. 
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two solitary waves. It is observed from Figs. 3.1 and 3.2 that the magnitudes of phase shifts 

significantly modify for HRR rather than WRR and positive phase shift is obtained due to 

influences of plasma parameters in the plasma system. 

Figures 3.3(a) and 3.3(b) show the temporal evolutions of compressive electrostatic potential 

structures 𝜙𝜙𝜉𝜉
(1)and 𝜙𝜙𝜂𝜂

(1) against 𝜉𝜉 and 𝜂𝜂, respectively, whereas Figs. 3.3(c) and 3.3(d) show 

the temporal evolution of compressive electrostatic potential 𝜙𝜙(1) = 𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) + 𝜙𝜙𝜂𝜂

(1)(𝜂𝜂, 𝜏𝜏) 

against 𝜉𝜉 and 𝜂𝜂 , respectively,  taking the remaining plasma parameters constant.  

It is clearly seen from Figs. 3.3(a) and 3.3(b) that 𝜙𝜙𝜉𝜉
(1) and 𝜙𝜙𝜂𝜂

(1) are shifted towards the right 

and left direction, respectively, with increasing time 𝜏𝜏. The two electrostatic ion acoustic 

solitary waves are propagating toward each other. This means that  before collision, that is, at 

the initial time 𝑡𝑡 → −∞, the soliton 𝑆𝑆𝑅𝑅 is at 𝜉𝜉 = 0, 𝜂𝜂 → −∞  and 𝑆𝑆𝐿𝐿 is  at 𝜂𝜂 = 0, 𝜉𝜉 → +∞, and  

at time  𝑡𝑡 → 0, they collide, and then after collision, that is, at the time 𝑡𝑡 → +∞, the soliton 𝑆𝑆𝑅𝑅 

is at 𝜉𝜉 = 0, 𝜂𝜂 → +∞  and 𝑆𝑆𝐿𝐿 is at 𝜂𝜂 = 0, 𝜉𝜉 → −∞, such collision phenomena are shown in 

Figs. 3.3, as expected. On the other hand, the phase shifts combine to yield a single composite 

structure after interaction between the solitons, and then they propagate along the trajectories 

which deviate from the initial trajectories. Figs. 3.3(c) and 3.3(d) clearly indicate that the 

phase shift is approximately zero within −10 < 𝜏𝜏 < 10 and then increasing with time 𝜏𝜏 (𝜏𝜏 <

−10, 𝜏𝜏 > 10) for both cases.  

 One can study the effect of plasma parameters on the hump shape structures of electrostatic 

potentials of ion acoustic solitary waves both for WRR and HRR considering  the stationary 

solution 𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) = 𝜙𝜙𝑅𝑅sech2(𝜒𝜒/𝑊𝑊𝑅𝑅) of the KdV equation, [Eq. (3.22)]. The effects of 𝛽𝛽, 

𝑛𝑛𝑝𝑝𝑒𝑒, and 𝑇𝑇𝑖𝑖𝑒𝑒 on  the spatial electrostatic potential profiles of ion acoustic solitary waves are 

illustrated in Figs. 3.4(a)-3.4(f) both for WRR [Figs. 3.4(a), 3.4(c),  3.4(e)] and HRR 

[3.4(b),3.4 (d), 3.4(f)], respectively, taking the remaining plasma parameters constant into 

account. It is observed from Fig. 3.4 that the amplitudes and widths of the ion acoustic 

solitary waves are decreasing with the increase in 𝑛𝑛𝑝𝑝𝑒𝑒 and  𝑇𝑇𝑖𝑖𝑒𝑒,  and increasing with the 

increase in  𝛽𝛽. The relativistic streaming factor significantly affects the amplitude of ion 

acoustic solitary 
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waves in which the amplitudes are almost  similar when 𝛽𝛽 ≥ 0.1 for both cases, but higher for 

HRR rather than WRR when 𝛽𝛽 < 0.1. It is also provided that the HRR significantly modifies 

the wave dynamics rather than WRR in the plasmas. Furthermore, it is found that the 

compressive and rarefactive  ion acoustic solitary waves are obtained in the plasmas. The 

rarefective ion acoustic solitary waves are only found in both cases of plasmas for 𝑛𝑛𝑝𝑝𝑒𝑒 ≤ 0.1. 

Figure 3.4 Effect of 𝛽𝛽 (𝑛𝑛𝑝𝑝𝑒𝑒 = 0.7,𝑇𝑇𝑖𝑖𝑒𝑒 = 0.01), 𝑛𝑛𝑝𝑝𝑒𝑒 (𝛽𝛽 = 0.3,𝑇𝑇𝑖𝑖𝑒𝑒 = 0.01), 
and 𝑇𝑇𝑖𝑖𝑒𝑒 (𝑛𝑛𝑝𝑝𝑒𝑒 = 0.7,𝛽𝛽 = 0.25), on the electrostatic bell-shaped potential for 
both WRR ((a),(c), (e)) and HRR ((b), (d), (f)). The remaining parameters are 
considered as 𝑇𝑇𝑒𝑒𝑝𝑝 = 1 , 𝛼𝛼𝑒𝑒 =  𝛼𝛼𝑝𝑝 = 0.2, and 𝑈𝑈0 = 0,075. 
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The normalized electric fields can be investigated using the relation 𝑬𝑬 = (2𝜙𝜙𝑅𝑅/𝑊𝑊𝑅𝑅)sech2(𝜒𝜒/

𝑊𝑊𝑅𝑅)tanh(𝜒𝜒/𝑊𝑊𝑅𝑅). The behaviors of normalized electric fields are illustrated both for WRR 

and HRR in Figs. 3.5(a) and 3.5(b), respectively. It is observed that the electric field behaves 

like a semi-kink shape structure in the plasmas.  

3.6 Conclusions 

     The electrostatic nonlinear propagation and head-on collision of ion acoustic solitary  

waves are investigated taking different plasma parameters into account both for the weakly 

and highly relativistic regimes by deriving the two-sided KdV equations employing the ePLK 

method. The phase shift is observed in terms of plasma parameters considering the stationary 

solutions of the KdV equations. It is found that the change in phase shift, magnitude of 

amplitude, and width of ion acoustic solitary waves are decreasing with the increase of 

positron concentration, ion-electron temperature ratio, electron-positron temperature ratio, but 

increasing with the increase of relativistic streaming factor. On the other hand, the nonlinear 

propagation characteristics of electrostatic ion acoustic solitary waves are almost same for 

𝛽𝛽 ≤ 0.1 and slightly larger  for 𝛽𝛽 > 0.1  in HRR rather than WRR. It is concluded that the ion 

acoustic solitary waves are propagating faster in highly relativistic rather than weakly 

relativistic plasmas. The results revel that the propagation characteristics including 

electrostatic resonances of ion acoustic solitary waves are useful for understanding the 

physical issues of highly energetic nonthermal particles with relativistic warm ions in 

astrophysical and laboratory plasmas, especially in pulsar magnetosphere, laser produced, 

inertial confinement plasmas, pulsar relativistic winds with supernova ejecta, etc. This work is 

done to study the interaction of ion acoustic solitary waves and their corresponding phase 

shift derived from two-sided KdV equations. It is to be noted that there can be a possibility of 

producing instabilities due to higher order nonlinearity that may require further investigation. 
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Figure 3.5 Behaviors of normalized electric field for both of (a) 
WRR and (b) HRR taking 𝛼𝛼𝑒𝑒 =  𝛼𝛼𝑝𝑝 = 0.2 , 𝑛𝑛𝑝𝑝𝑒𝑒 = 0.7, 𝑇𝑇𝑖𝑖𝑒𝑒 =
0.01, 𝑇𝑇𝑒𝑒𝑝𝑝 = 1, and 𝑈𝑈0 = 0.0075 into account. 
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Abbreviation and Nomenclature:  

KdV= Korteweg-de Vries 

ePLK = extended Poincaré-Lighthill-Kuo 

WRR= weakly relativistic regime 

HRR= highly relativistic regime 

DA= dust acoustic 

𝜙𝜙 = electrostatic potential 

𝑣𝑣𝑗𝑗 = velocity of jth species 

𝑇𝑇𝑗𝑗 = temperature of jth species 

𝑚𝑚𝑗𝑗 = mass of jth species 

𝑛𝑛𝑗𝑗0 = unperturbed density of jth species  

𝛼𝛼𝑗𝑗 = population of jth particle  

𝑣𝑣𝑡𝑡𝑗𝑗 = thermal speed of jth species  

𝛽𝛽𝑒𝑒 = thermality of electron 

𝛽𝛽𝑝𝑝 = thermality of positron 

𝑚𝑚𝑖𝑖 = mass of ion 

𝑣𝑣𝑡𝑡ℎ𝑖𝑖 = ion thermal velocity 

𝑣𝑣𝑡𝑡ℎ𝑝𝑝 = positron thermal velocity 

𝑛𝑛𝑖𝑖 = ion density 

𝑢𝑢𝑖𝑖 = ion fluid velocity 

𝑇𝑇𝑖𝑖𝑒𝑒 = 𝑇𝑇𝑖𝑖 𝑇𝑇𝑒𝑒⁄  = temperature ratio of ion to electron 

𝑇𝑇𝑒𝑒𝑝𝑝 = 𝑇𝑇𝑒𝑒 𝑇𝑇𝑝𝑝⁄  = temperature ratio of electron to positron 

𝑃𝑃𝑖𝑖 = ion pressure 

𝑁𝑁 = degrees of freedome 

𝛾𝛾 = Lorentz relativistic factor 

c = velocity of light 

𝑉𝑉1( 𝑉𝑉2) = unknown phase velocity 

𝜀𝜀 = small parameter, measure the strength of nonlinearity 

𝛽𝛽 = relativistic streaming factor 

𝐴𝐴1( 𝐴𝐴2) = coefficient of nonlinearity 

𝐵𝐵1( 𝐵𝐵2) = coefficient of dispersion 

𝜙𝜙𝑅𝑅(𝜙𝜙𝐿𝐿) = amplitude of right (left) moving soliton 
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𝑊𝑊𝑅𝑅(𝑊𝑊𝐿𝐿) = width of right (left) moving soliton 

𝑈𝑈0 = constant velocity of soliton 

𝑢𝑢𝑖𝑖0 = unperturbed ion dencity 

M eV= mega electron volt 

𝐸𝐸 = electric field 

∇𝑃𝑃0(∇𝑄𝑄0) = phase shift of right (left) moving soliton 



 

Chapter 4 
 

Effects of two-temperature ions on head-on collision and phase shifts of 
dust acoustic single- and multi-solitons in dusty plasma 

 
4.1 Introduction 

 
  Dusty plasmas are composed of electrons, ions, and micron or submicron size massively 

charged dust with masses in the range from 106 − 1012 of proton masses [1]. These plasmas 

are considered for understanding several types of collective processes that are existed in the 

lower and upper mesosphere, cometary tails, planetary rings, interstellar media, planetary 

magnetosphere, interplanetary spaces [1–4], as well as in laboratory dusty plasmas [5–7]. The 

nonlinear collective effects of plasmas cannot appropriately be studied without tedious 

mathematical techniques. The localization of waves produces several types of important 

structures, namely: solitary waves, shock waves, double layers, vortices, etc., due to 

nonlinearity with dispersion or dissipation, which deserve both theoretical and experimental 

studies to get insight knowledge of the physical phenomena. Rao et al.[5] have investigated 

the characteristics of low phase speed dust acoustic waves in dusty plasmas that are observed 

in space and laboratory. They have found that the inertia is provided by the mass of the dust 

particles, while the pressure of the inertialess electrons and ions provides restoring force due 

to the production of dust acoustic waves in the plasmas. Many authors [8–17] have 

investigated the propagation characteristics of dust acoustic waves in dusty plasmas 

considering different plasma assumptions. On the other hand, the effect of dust charge 

fluctuation plays a significant role only for the wave whose time period (𝑇𝑇𝜔𝜔) is comparable to 

the dust charging time period (𝑇𝑇𝑐𝑐𝑐𝑐) [18]. But  𝑇𝑇𝜔𝜔 (= 0.01-0.1s) is much larger than 𝑇𝑇𝑐𝑐𝜔𝜔 (=

1 − 10𝜇𝜇s) , and in such case, one can neglect the effect of dust charge fluctuation of the dust 

acoustic waves. Bandyopadhyay et al. [19] have studied the nonlinear dust acoustic solitary 

waves experimentally with constant dust charge fluctuation in dusty plasmas and determined 

ion density 𝑛𝑛𝑖𝑖 = 7 × 1013m−3, dust density 𝑛𝑛𝑑𝑑 = 1 × 1010m−3, ion temperature 𝑇𝑇𝑖𝑖 = 0.3eV, 

dust charge number 𝑍𝑍𝑑𝑑 = 3 × 103, and dust mass 𝑚𝑚𝑑𝑑 = 1 × 10−13 kg. They have mentioned, 

taking the propagation of two solitary structures of different heights moving with different 
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velocities into account, that the dynamics of solitary pulses are similar to those of theoretical 

findings for compressive solitary waves of the Korteweg–de Vries (KdV). 

  However, the interactions among nonlinear waves, including resonances, carry important 

physical phenomena that are observed in space plasmas [20–28]. When two or more solitary  

waves propagate toward each other, they will interact and exchange their energies among 

themselves and then separate off. During the process of interactions, the solitary waves 

become stable and preserve their identities. Each soliton gains two phase shifts (either 

positive or negative) that is independent of wave modes [22]. One is due to the head-on 

collision [29] and the other is due to the overtaking collision [30] of one soliton by another. 

The asymptotic conservation, which is one of the salient properties of solitons, forms when 

two or more waves undergo collision. It provides two important effects: phase shifts and 

trajectories [31-32]. In such case, one can employ the extended Poincaré-Lighthill-Kuo 

(ePLK) method with strained coordinates [33-34] to derive the two-sided nonlinear evolution 

equations. On the other hand, the multi-soliton solutions of the evolution equations may 

properly describe how greater amplitude (with higher velocity) solitons overtake the smaller 

(with lower velocity) one, in the presence of nonlinearity during the interaction phase. 

However, many authors [20–28] have investigated the effects of plasma parameters on equal-

amplitude colliding solitons and time delay considering the square root of the initial 

amplitude. Harvey et al. [35] have investigated experimentally the interaction of two counter-

propagating equal initial amplitude solitons in a complex plasma. They have found that the 

propagation velocity of the soliton becomes slower after the collision and the time delay is not 

proportional to the square root of the initial amplitude. They are unable to verify their 

experimental findings due to theoretical limitations [20–28]. Theoretical predictions of 

colliding solitons considering appropriate initial amplitude are important for understanding 

the electrostatic resonances and their time delay in the plasmas. Thus, the study of interactions 

of nonlinear solitons and their phase shifts becomes one of the most important topics due to 

its wide applications and potentiality. 

   Considering two-temperature (cold and hot) ions of equal masses and charge numbers 

following Boltzmann distribution function, Xie et al.[36] have found that the energy exchange 

rate is much smaller than the characteristic frequency of the plasma system. The Soviet 

Phobos 2 spacecraft [37] and the Japanese Nozomi spacecraft [38] have detected nonthermal 

ions having a partial ring structure in the velocity phase space. 

Besides, Tagare et al.[39] have noted that the electron becomes isothermal if the electron 

temperature is much smaller than the effective ion temperature. Zhang and Wang [40] have 
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studied the effect of two-temperature nonthermally distributed ions on dust acoustic solitary 

waves. Tasnim et al.[41] have also considered the distinct nonthermal ion temperature in a 

dusty plasma system using the Gardner equation to study the properties of dust acoustic 

solitary waves. Later on, Tasnim et al.[18] have studied the properties of dust acoustic solitary 

waves in  unmagnetized quasi-neutral dusty plasma neglecting the effect of dust charge 

fluctuation considering that the surface charge of the extremely massive mobile dust particles 

is composed of Boltzmann distributed electrons, and two distinct ion temperatures, where the 

cold and hot ions follow the nonextensive and nonthermal distributions, respectively. They 

have derived the KdV, modified KdV (mKdV), and standard Gardner (SG) equations to study 

the nonlinear physical phenomena in the aforementioned plasmas. They have also determined 

how the Gardner solution  differs from the KdV and mKdV solutions based on the typical 

data of Refs. 19, 40, and 41, and mentioned that these plasmas may exist in various cosmic 

dust laden plasmas [42-43], where two distinct temperature ions [41, 44-45] can significantly 

modify the wave dynamics. However, the role of the head-on collisions between the dust 

acoustic waves may not be ignored, because it plays an important role in understanding 

physical scenarios of plasmas. Being motivated by the potentiality of the problems related to 

the astrophysical, space, and laboratory plasmas, the head-on collisions among the dust 

acoustic single- and multi-solitons and their phase shifts in unmagnetized plasmas consisting 

of massive negatively charged mobile dust particles, Boltzmann distributed electrons, and 

two-temperature nonthermal ions are investigated; the two temperature nonthermal cold and 

hot ions occupy two different regions of phase space. The effects of cold and hot ions 

temperature ratio (𝜎𝜎1), cold ion-electron temperature ratio (𝜎𝜎2), unperturbed cold ion-dust 

density ratio (𝜇𝜇𝑖𝑖1), unperturbed hot ion-dust density ratio (𝜇𝜇𝑖𝑖2), population of cold ion 

nonthermality (𝛽𝛽𝑖𝑖1) and population of hot ion nonthermality (𝛽𝛽𝑖𝑖2) on the phase shift, and 

head-on collisions among the dust acostic single- and multi-solitons are examined. In 

sequence of introduction, theoretical model and derivations of two different types of KdV 

equations are presented in Section 4.2. The single- and multi-soliton solutions of KdV 

equations and their corresponding phase shifts are displayed in Section 4.3. The results along 

with the relevant discussion are presented in Section 4.4. Finally, the conclusion is drawn in 

Section 4.5. 

4.2 Basic equations 

4.2.1 Model equations 

   Let us consider a one-dimensional unmagnetized plasma system consisting of negatively 

charged mobile dust, two temperature ions, and Boltzmann-distributed electrons. Yu and Luo 



Effects of two-temperature ions on HOC in dusty plasma 
 

Plasma Science and Technology Lab, EEE, RU 75 

[46] have shown that the different species occupy different regions of phase space, and 

therefore, it is reasonable to consider different temperatures of the species in the multispecies 

fluid model to construct quasi-stationary nonlinear structures. So, the two temperature (cold 

and hot) ions may occupy two different regions of the phase space. Further, the distribution of 

charged particles does not follow the Boltzmann-Gibbs statistics for the systems with the 

long-range interactions, where the non-equilibrium stationary states exist. In such situations, 

one can consider the non-Maxwellian distributions (e.g., Cairns, nonextensive, and kappa 

distributions [47]) for the charge particles. The cold and hot ions are assumed to follow the 

nonthermal distribution [48] due to the production of two temperature nonthermal ions in the 

satellite missions [37-38]. According to the Cairns distribution [48], the nonthermal 

concentrations of cold and hot ions are obtained [41] as 

𝑛𝑛𝑖𝑖1(𝑖𝑖2) = 𝑛𝑛𝑖𝑖10,(𝑖𝑖20) �1 + 𝛽𝛽𝑖𝑖1(𝑖𝑖2) �
𝑒𝑒𝑒𝑒

𝑇𝑇𝑖𝑖1(𝑖𝑖2)
� + 𝛽𝛽𝑖𝑖1(𝑖𝑖2) �

𝑒𝑒𝑒𝑒
𝑇𝑇𝑖𝑖1(𝑖𝑖2)

�
2
� × 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑒𝑒𝑒𝑒

𝑇𝑇𝑖𝑖1(𝑖𝑖2)
�, 

where 𝛽𝛽𝑖𝑖1(𝑖𝑖2) = 4𝛼𝛼𝑖𝑖1(𝑖𝑖2) �1 + 3𝛼𝛼𝑖𝑖1(𝑖𝑖2)�⁄ , 𝑛𝑛𝑖𝑖10,(𝑖𝑖2) are the unperturbed cold (hot) ions 

concentration, 𝑇𝑇𝑖𝑖1(𝑖𝑖2) is the cold (hot) ion temperature, 𝑒𝑒 is the electron charge, and 𝛼𝛼𝑖𝑖1(𝑖𝑖2) >

−1/3 determines the population of nonthermal cold (hot) ions, respectively. The nonthermal 

cold and hot ions become isothermal for 𝛼𝛼𝑖𝑖1(𝑖𝑖2) → 0. At equilibrium, the charge neutrality 

condition 𝑛𝑛𝑖𝑖10 + 𝑛𝑛𝑖𝑖20 = 𝑛𝑛𝑒𝑒0 + 𝑍𝑍𝑑𝑑𝑛𝑛𝑑𝑑0 is obtained, where 𝑛𝑛𝑒𝑒0 and 𝑛𝑛𝑑𝑑0 are the densities of 

unperturbed electrons and surface electrons of the dust grain, respectively, and 𝑍𝑍𝑑𝑑 is the 

charge number. To study the head-on collision dynamics of the low phase velocity dust 

acoustic waves, the normalized governing fluid equations can be defined as  
𝜕𝜕𝑛𝑛𝑑𝑑
𝜕𝜕𝜕𝜕

+
𝜕𝜕 
𝜕𝜕𝑒𝑒

(𝑛𝑛𝑑𝑑  𝑢𝑢𝑑𝑑) = 0 ,                                                                                           (4.1) 

𝜕𝜕𝑢𝑢𝑑𝑑
𝜕𝜕𝜕𝜕

+  𝑢𝑢𝑑𝑑
𝜕𝜕𝑢𝑢𝑑𝑑
𝜕𝜕𝑒𝑒

=
𝜕𝜕𝜙𝜙
𝜕𝜕𝑒𝑒

 ,                                                                                              (4.2) 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑒𝑒2

=  𝑛𝑛𝑑𝑑 + 𝜇𝜇𝑒𝑒𝑇𝑇𝑠𝑠𝜎𝜎2𝑒𝑒 − 𝜇𝜇𝑖𝑖1(1 + 𝛽𝛽𝑖𝑖1𝑇𝑇𝑠𝑠𝜙𝜙 + 𝛽𝛽𝑖𝑖1𝑇𝑇𝑠𝑠2𝜙𝜙2)𝑒𝑒−𝑇𝑇𝑠𝑠𝑒𝑒

− 𝜇𝜇𝑖𝑖2(1 + 𝛽𝛽𝑖𝑖2𝑇𝑇𝑠𝑠𝜎𝜎1𝜙𝜙 + 𝛽𝛽𝑖𝑖2𝑇𝑇𝑠𝑠2𝜎𝜎12𝜙𝜙2)𝑒𝑒−𝑇𝑇𝑠𝑠𝜎𝜎1𝑒𝑒.                                (4.3)     

Here, 𝑛𝑛𝑑𝑑 is dust particle density normalized by 𝑛𝑛𝑑𝑑0  , 𝑢𝑢𝑑𝑑 is the dust fluid speed normalized by 

dust acoustic speed 𝐶𝐶𝑑𝑑 = (𝑍𝑍𝑑𝑑𝑘𝑘𝐵𝐵𝑇𝑇𝑖𝑖1/𝑚𝑚𝑑𝑑)1/2, 𝜙𝜙 is the electrostatic potential normalized by 

 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒/𝑒𝑒, 𝜎𝜎1 = 𝑇𝑇𝑖𝑖1/𝑇𝑇𝑖𝑖2,  𝜎𝜎2 = 𝑇𝑇𝑖𝑖1/𝑇𝑇𝑒𝑒, 𝜇𝜇𝑖𝑖1(𝑖𝑖2) = 𝑛𝑛𝑖𝑖10(𝑖𝑖20)/𝑍𝑍𝑑𝑑𝑛𝑛𝑑𝑑0, 𝑇𝑇𝑠𝑠 =

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇𝑖𝑖1 = 1 (𝜇𝜇𝜎𝜎2 + 𝜇𝜇𝑖𝑖1 + 𝜇𝜇𝑖𝑖2𝜎𝜎1)⁄⁄ , 𝑘𝑘𝐵𝐵 is the Boltzmann constant, 𝑚𝑚𝑑𝑑 is the dust particle 

mass and 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 is the effective ion temperature which is obtained from the relation 
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1 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = (1 𝑍𝑍𝑑𝑑𝑛𝑛𝑑𝑑0⁄ )⁄ (𝑛𝑛𝑒𝑒0 𝑇𝑇𝑒𝑒 + 𝑛𝑛𝑖𝑖10 𝑇𝑇𝑖𝑖1⁄⁄ + 𝑛𝑛𝑖𝑖20 𝑇𝑇𝑖𝑖2⁄ ) . The time variable 𝜕𝜕 is normalized by 

dust particle period 𝜔𝜔𝑝𝑝𝑑𝑑
−1 = (𝑚𝑚𝑑𝑑/4𝜋𝜋𝑛𝑛𝑑𝑑0𝑍𝑍𝑑𝑑2𝑒𝑒2)1/2 and the space variable 𝑒𝑒 is normalized by 

the Debye length 𝜆𝜆𝐷𝐷𝐷𝐷 = �𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒/4𝜋𝜋𝑛𝑛𝑑𝑑0𝑍𝑍𝑑𝑑𝑒𝑒2�
1/2

. The equilibrium charge neutrality 

condition in the plasmas is obtained by taking the Poisson’s relation into account as 𝜇𝜇 =

𝑛𝑛𝑒𝑒0/𝑍𝑍𝑑𝑑𝑛𝑛𝑑𝑑0 = 𝜇𝜇𝑖𝑖1 + 𝜇𝜇𝑖𝑖2 − 1. It is to be noted that the electrons may become isothermal for 

𝑇𝑇𝑒𝑒 ≪ 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒. 

4.2.2 Formation of two-sided KdV equations via the extended PLK   method 

  The ePLK method [33-34] of stretched coordinates is employed to derive the two-sided KdV 

equations for studying the interactions of dust acoustic solitons in the considered plasma 

system. According to this method, the scaling variables 𝑒𝑒 and 𝜕𝜕 can be the following 

coordinate system:  

𝜉𝜉 = 𝜀𝜀(𝑒𝑒 − 𝑉𝑉𝜕𝜕) + 𝜀𝜀2𝑃𝑃0(𝜂𝜂, 𝜏𝜏) + 𝜀𝜀3𝑃𝑃1(𝜂𝜂, 𝜉𝜉, 𝜏𝜏) +  … …
𝜂𝜂 = 𝜀𝜀(𝑒𝑒 + 𝑉𝑉𝜕𝜕) + 𝜀𝜀2𝑄𝑄0(𝜉𝜉, 𝜏𝜏) + 𝜀𝜀3𝑄𝑄1(𝜂𝜂, 𝜉𝜉, 𝜏𝜏) + … …

𝜏𝜏 = 𝜀𝜀3𝜕𝜕  
� ,                                    (4.4) 

where 𝜉𝜉 and 𝜂𝜂 are the trajectories between the solitons which are traveling toward each other, 

and 𝑉𝑉 is the unknown phase velocity of dust acoustic waves and 𝜀𝜀 is a small parameter 

measuring the strength of nonlinearity and dissipation. The unknown variables 𝑃𝑃0(𝜂𝜂, 𝜏𝜏) and 

𝑄𝑄0(𝜉𝜉, 𝜏𝜏) will be determined later.  Using Eq. (4.4), the operators can be defined as  

𝜕𝜕
𝜕𝜕𝜕𝜕

≈ 𝜀𝜀3
𝜕𝜕
𝜕𝜕𝜏𝜏

+ 𝜀𝜀𝑉𝑉 �−
𝜕𝜕
𝜕𝜕𝜉𝜉

+
𝜕𝜕
𝜕𝜕𝜂𝜂�

+ 𝜀𝜀3𝑉𝑉 �
𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

𝜕𝜕
𝜕𝜕𝜉𝜉

−
𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

𝜕𝜕
𝜕𝜕𝜂𝜂�

+ ⋯⋯

𝜕𝜕
𝜕𝜕𝑒𝑒

≈ 𝜀𝜀 �
𝜕𝜕
𝜕𝜕𝜉𝜉

+
𝜕𝜕
𝜕𝜕𝜂𝜂�

+ 𝜀𝜀3 �
𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

𝜕𝜕
𝜕𝜕𝜉𝜉

+
𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

𝜕𝜕
𝜕𝜕𝜂𝜂�

+ ⋯⋯⋯⋯⋯⋯⋯
⎭
⎬

⎫
.            (4.5) 

The perturbed quantities can be expanded in power series of 𝜀𝜀 as 

  �
𝑛𝑛𝑑𝑑
𝑢𝑢𝑑𝑑
𝜙𝜙
� = �

1
0
0
� + 𝜀𝜀2 �

𝑛𝑛𝑑𝑑
(1)

𝑢𝑢𝑑𝑑
(1)

𝜙𝜙(1)

� + 𝜀𝜀3 �
𝑛𝑛𝑑𝑑

(2)

𝑢𝑢𝑑𝑑
(2)

𝜙𝜙(2)

� + 𝜀𝜀4 �
𝑛𝑛𝑑𝑑

(3)

𝑢𝑢𝑑𝑑
(3)

𝜙𝜙(3)

� + ⋯    .                               (4.6) 

Inserting Eqs.(4.5) and (4.6) into Eqs. (4.1)-(4.3) and equating the quantities with equal 

powers of 𝜀𝜀, one may obtain a set of equations in different orders of 𝜀𝜀. To the lowest order of 

𝜀𝜀 yeilds  

�−𝑉𝑉
𝜕𝜕𝑛𝑛𝑑𝑑

(1)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝑢𝑢𝑑𝑑

(1)

𝜕𝜕𝜉𝜉 � + �𝑉𝑉
𝜕𝜕𝑛𝑛𝑑𝑑

(1)

𝜕𝜕𝜂𝜂
+
𝜕𝜕𝑢𝑢𝑑𝑑

(1)

𝜕𝜕𝜂𝜂 � = 0,                                               (4.7) 
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�−𝑉𝑉
𝜕𝜕𝑢𝑢𝑑𝑑

(1)

𝜕𝜕𝜉𝜉
−
𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜉𝜉 � + �𝑉𝑉
𝜕𝜕𝑢𝑢𝑑𝑑

(1)

𝜕𝜕𝜂𝜂
−
𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜂𝜂 � = 0,                                               (4.8) 

                                𝑛𝑛𝑑𝑑
(1) = −𝐶𝐶1𝜙𝜙(1) ,                                                                                 (4.9) 

where 𝐶𝐶1 = 𝑇𝑇𝑠𝑠[𝜇𝜇𝜎𝜎2 − 𝜇𝜇𝑖𝑖1(𝛽𝛽𝑖𝑖1 − 1) − 𝜇𝜇𝑖𝑖2𝜎𝜎1(𝛽𝛽𝑖𝑖2 − 1)]. One may define the relations along 

with the different physical quantities, taking Eqs. (4.7)-(4.9) into account as 

𝜙𝜙(1) = 𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) + 𝜙𝜙𝜂𝜂

(1)(𝜂𝜂, 𝜏𝜏) ,                                                                            (4.10) 

𝑛𝑛𝑑𝑑
(1) = −𝐶𝐶1 �𝜙𝜙𝜉𝜉

(1)(𝜉𝜉, 𝜏𝜏) + 𝜙𝜙𝜂𝜂
(1)(𝜂𝜂, 𝜏𝜏)�  ,                                                                 (4.11) 

𝑢𝑢𝑑𝑑
(1) =

1
𝑉𝑉
�−𝜙𝜙𝜉𝜉

(1)(𝜉𝜉, 𝜏𝜏) + 𝜙𝜙𝜂𝜂
(1)(𝜂𝜂, 𝜏𝜏)�  .                                                                  (4.12) 

The normalized phase velocity is obtained as 𝑉𝑉 = �1 𝐶𝐶1⁄  by taking the solvability condition 

into account. The functions 𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) and 𝜙𝜙𝜂𝜂

(1)(𝜂𝜂, 𝜏𝜏) may be determined taking the next order 

of 𝜀𝜀. Relations (4.10)-(4.12) provide the two-sided electrostatic waves, one of which (𝜙𝜙𝜉𝜉
(1)) is 

traveling to right direction and the other  (𝜙𝜙𝜂𝜂
(1)) is traveling to left direction.  

To the next order of 𝜀𝜀, one can obtain another set of  equations whose solutions are defined as  

𝜙𝜙(2) = 𝜙𝜙𝜉𝜉
(2)(𝜉𝜉, 𝜏𝜏) + 𝜙𝜙𝜂𝜂

(2)(𝜂𝜂, 𝜏𝜏) ,                                                                           (4.13) 

𝑛𝑛𝑑𝑑
(2) = −𝐶𝐶1 �𝜙𝜙𝜉𝜉

(2)(𝜉𝜉, 𝜏𝜏) + 𝜙𝜙𝜂𝜂
(2)(𝜂𝜂, 𝜏𝜏)�   ,                                                               (4.14) 

𝑢𝑢𝑑𝑑
(2) =

1
𝑉𝑉
�−𝜙𝜙𝜉𝜉

(2)(𝜉𝜉, 𝜏𝜏) + 𝜙𝜙𝜂𝜂
(2)(𝜂𝜂, 𝜏𝜏)�   .                                                                 (4.15) 

Finally, the next higher order of 𝜀𝜀 gives  

𝜕𝜕𝑛𝑛𝑑𝑑(1)

𝜕𝜕𝜏𝜏
− 𝑉𝑉

𝜕𝜕𝑛𝑛𝑑𝑑
(3)

𝜕𝜕𝜉𝜉
+ 𝑉𝑉

𝜕𝜕𝑛𝑛𝑑𝑑
(3)

𝜕𝜕𝜂𝜂
+
𝜕𝜕𝑢𝑢𝑑𝑑

(3)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝑢𝑢𝑑𝑑

(3)

𝜕𝜕𝜂𝜂
+
𝜕𝜕
𝜕𝜕𝜉𝜉
�𝑛𝑛𝑑𝑑(1)𝑢𝑢𝑑𝑑(1)� +

𝜕𝜕
𝜕𝜕𝜂𝜂

�𝑛𝑛𝑑𝑑(1)𝑢𝑢𝑑𝑑(1)�

+ 𝑉𝑉
𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

𝜕𝜕𝑛𝑛𝑑𝑑
(1)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

𝜕𝜕𝑢𝑢𝑑𝑑
(1)

𝜕𝜕𝜉𝜉
− 𝑉𝑉

𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

𝜕𝜕𝑛𝑛𝑑𝑑
(1)

𝜕𝜕𝜂𝜂
+
𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

𝜕𝜕𝑢𝑢𝑑𝑑
(1)

𝜕𝜕𝜂𝜂

= 0,                                                                                                               (4.16) 
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𝜕𝜕𝑢𝑢𝑑𝑑(1)

𝜕𝜕𝜏𝜏
− 𝑉𝑉

𝜕𝜕𝑢𝑢𝑑𝑑
(3)

𝜕𝜕𝜉𝜉
+ 𝑉𝑉

𝜕𝜕𝑢𝑢𝑑𝑑
(3)

𝜕𝜕𝜂𝜂
+ 𝑢𝑢𝑑𝑑(1) 𝜕𝜕𝑢𝑢𝑑𝑑

(1)

𝜕𝜕𝜉𝜉
+ 𝑢𝑢𝑑𝑑(1) 𝜕𝜕𝑢𝑢𝑑𝑑

(1)

𝜕𝜕𝜂𝜂
−  
𝜕𝜕𝜙𝜙(3)

𝜕𝜕𝜉𝜉
−
𝜕𝜕𝜙𝜙(3)

𝜕𝜕𝜂𝜂
+ 𝑉𝑉

𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

𝜕𝜕𝑢𝑢𝑑𝑑
(1)

𝜕𝜕𝜉𝜉

−
𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜉𝜉
− 𝑉𝑉

𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

𝜕𝜕𝑢𝑢𝑑𝑑
(1)

𝜕𝜕𝜂𝜂
−
𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜂𝜂
= 0,                                   (4.17) 

𝜕𝜕2𝜙𝜙(1)

𝜕𝜕𝜉𝜉2
+
𝜕𝜕2𝜙𝜙(1)

𝜕𝜕𝜂𝜂2
+ 2

𝜕𝜕2𝜙𝜙(1)

𝜕𝜕𝜉𝜉𝜕𝜕𝜂𝜂
= 𝑛𝑛𝑑𝑑(3) + 𝐶𝐶1𝜙𝜙(3) + 𝐶𝐶2�𝜙𝜙(1)�2 ,                       (4.18)  

where 𝐶𝐶2 = 𝑇𝑇𝑠𝑠2

2
[𝜇𝜇𝜎𝜎22 − 𝜇𝜇𝑖𝑖1 − 𝜇𝜇𝑖𝑖2𝜎𝜎12]. Simplifying Eqs.(4.16)-(4.18) using Eqs. (4.10)-(4.12) 

and then integrating with regards to 𝜉𝜉 and 𝜂𝜂 provide  

2𝑉𝑉2𝑢𝑢𝑑𝑑
(3) = ��

𝜕𝜕𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜏𝜏
+ 𝐴𝐴𝜙𝜙𝜉𝜉

(1) 𝜕𝜕𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵

𝜕𝜕3𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉3 �𝑑𝑑𝜂𝜂                                                              

+ ��
𝜕𝜕𝜙𝜙𝜂𝜂

(1)

𝜕𝜕𝜏𝜏
− 𝐴𝐴𝜙𝜙𝜂𝜂

(1) 𝜕𝜕𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂
− 𝐵𝐵

𝜕𝜕3𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂3 �𝑑𝑑𝜉𝜉

+ ��2𝑉𝑉
𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

− �𝐶𝐶2𝑉𝑉3 −
1

2𝑉𝑉
�𝜙𝜙𝜂𝜂

(1)�
𝜕𝜕2𝜙𝜙𝜉𝜉

(1)

𝜕𝜕𝜉𝜉2
𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂

−��2𝑉𝑉
𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

− �𝐶𝐶2𝑉𝑉3 −
1

2𝑉𝑉
�𝜙𝜙𝜉𝜉

(1)�
𝜕𝜕2𝜙𝜙𝜂𝜂

(1)

𝜕𝜕𝜂𝜂2
𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂,                           (4.19) 

where 𝐴𝐴 = −[(3/2𝑉𝑉) + 𝑉𝑉3𝐶𝐶2] and 𝐵𝐵 = 𝑉𝑉3/2. The first and second terms on the right side of 

Eq.(4.19) are proportional to 𝜂𝜂 and 𝜉𝜉, respectively, because the integrands of these two terms 

are independent of 𝜂𝜂 and 𝜉𝜉. All the terms of the first two expressions on the right side of 

Eq.(4.19) become secular and they may be eliminated in order to stay away from spurious 

resonances. Thus, one finds the following KdV equations: 

𝜕𝜕𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜏𝜏
+ 𝐴𝐴𝜙𝜙𝜉𝜉

(1) 𝜕𝜕𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵

𝜕𝜕3𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉3
= 0,                                                               (4.20) 

𝜕𝜕𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜏𝜏
− 𝐴𝐴𝜙𝜙𝜂𝜂

(1) 𝜕𝜕𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂
− 𝐵𝐵

𝜕𝜕3𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂3
= 0.                                                                 (4.21) 

Equations (4.20) and (4.21) dictate two- sided traveling wave KdV equations in the 

considered frame of references  𝜉𝜉 and 𝜂𝜂, respectively. Moreover, the third and fourth terms in 

the right side of Eq. (4.19) may become secular on the next higher order and yield the 

following equations, respectively:  
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𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

= 𝐷𝐷𝜙𝜙𝜂𝜂
(1),                                                                                                             (4.22) 

𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

= 𝐷𝐷𝜙𝜙𝜉𝜉
(1),                                                                                                           (4.23) 

where, 

𝐷𝐷 = �
𝐶𝐶2𝑉𝑉2

2
−

1
4𝑉𝑉2�

 .                                                                                               (4.24) 

The leading phase functions 𝑃𝑃0(𝜂𝜂, 𝜏𝜏) and 𝑄𝑄0(𝜉𝜉, 𝜏𝜏) can be obtained by solving Eqs.(4.22) and 

(4.23) with the help of analytical solutions of the KdV equations (4.20) and (4.21).  

4.3 Soliton solutions and phase shifts 

4.3.1 Soliton solutions via Hirota bilinear method 

  The Hirota bilinear method [49] is employed to construct the single- and multi-soliton 

solutions of the KdV equations (4.20) and (4.21). By introducing the variable transform 𝜉𝜉 →

𝜉𝜉𝐵𝐵
1
3, 𝜂𝜂 → −𝜂𝜂𝐵𝐵

1
3, 𝜙𝜙𝜉𝜉

(1) → 6𝜙𝜙𝜉𝜉
(1)𝐴𝐴−1𝐵𝐵

1
3, and 𝜙𝜙𝜂𝜂

(1) → 6𝜙𝜙𝜂𝜂
(1)𝐴𝐴−1𝐵𝐵

1
3 into Eqs. (4.20) and (4.21), 

one obtains  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 6𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕3𝜕𝜕
𝜕𝜕𝜕𝜕3

= 0, 

where 𝑢𝑢 is used for 𝜙𝜙𝜉𝜉
(1) and 𝜙𝜙𝜂𝜂

(1), and 𝑋𝑋 is used for 𝜉𝜉 and 𝜂𝜂. Now, one can use the 

transformation 𝑢𝑢 = 2(𝑙𝑙𝑛𝑛𝑙𝑙)𝜕𝜕𝜕𝜕 to reduce the above KdV equation into the Hirota bilinear form 

(𝐷𝐷𝜕𝜕𝐷𝐷𝜕𝜕 + 𝐷𝐷𝜕𝜕4)(𝑙𝑙.𝑙𝑙) = 0. The N-soliton is therefore obtained as 𝑙𝑙1 = ∑ exp(𝜃𝜃𝑖𝑖)𝑁𝑁
𝑖𝑖=1 , where 

𝜃𝜃𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑋𝑋 − 𝜔𝜔𝑖𝑖𝜏𝜏, 𝑘𝑘𝑖𝑖 is the wave number, and 𝜔𝜔𝑖𝑖 is an arbitrary constant. Inserting 𝜙𝜙𝜉𝜉
(1) =

exp(𝑘𝑘𝑖𝑖𝑋𝑋 − 𝜔𝜔𝑖𝑖𝜏𝜏) into the linear terms of the above KdV equation gives the dispersion relation 

𝜔𝜔𝑖𝑖 = 𝑘𝑘𝑖𝑖3. Therefore, the single-soliton solutions of the KdV equations (4.20) and (4.21) 

considering 𝑙𝑙 = 1 + exp(𝑘𝑘1𝑋𝑋 − 𝑘𝑘13𝜏𝜏) can be written, respectively, as  

𝜙𝜙𝜉𝜉
(1) =

12𝐵𝐵
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜉𝜉2
�In �1 + exp �𝑘𝑘1𝐵𝐵

−13𝜉𝜉 − 𝑘𝑘13𝜏𝜏��� ,                                          (4.25) 

𝜙𝜙𝜂𝜂
(1) =

12𝐵𝐵
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜂𝜂2
�In �1 + exp �−𝑘𝑘1𝐵𝐵

−13𝜂𝜂 − 𝑘𝑘13𝜏𝜏��� .                                       (4.26) 

Again, double-soliton solutions of Eqs.(4.20) and (4.21) can be written, respectively, as  

𝜙𝜙𝜉𝜉
(1) =

12𝐵𝐵
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜉𝜉2
[In{1 + exp(𝜗𝜗1) + exp(𝜗𝜗2) + 𝑎𝑎12 exp(𝜗𝜗1 + 𝜗𝜗2)}],         (4.27) 
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𝜙𝜙𝜂𝜂
(1) =

12𝐵𝐵
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜂𝜂2
[In{1 + exp(Ω1) + exp(Ω2) + 𝑎𝑎12 exp(Ω1 + Ω2)}],         (4.28) 

where 𝜗𝜗𝑖𝑖 = 𝑘𝑘𝑖𝑖𝐵𝐵−1/3𝜉𝜉 − 𝑘𝑘𝑖𝑖3𝜏𝜏 , Ωi = −𝑘𝑘𝑖𝑖𝐵𝐵−1/3𝜂𝜂 − 𝑘𝑘𝑖𝑖3𝜏𝜏  and 𝑎𝑎12 = (𝑘𝑘2 − 𝑘𝑘1)2/(𝑘𝑘2 + 𝑘𝑘1)2 

with 𝑖𝑖 = 1, 2.   

   Finally, triple-soliton solutions of the Eqs.(4.20) and (4.21) can be written, respectively as  

𝜙𝜙𝜉𝜉
(1) =

12𝐵𝐵
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜉𝜉2
[In{1 + exp(𝜗𝜗1) + exp(𝜗𝜗2) + exp(𝜗𝜗3) + 𝑎𝑎12 exp(𝜗𝜗1 + 𝜗𝜗2) 

+ 𝑎𝑎23 exp(𝜗𝜗2 + 𝜗𝜗3) + 𝑎𝑎13 exp(𝜗𝜗1 + 𝜗𝜗3)   

+ 𝑎𝑎123 exp(𝜗𝜗1 + 𝜗𝜗2 + 𝜗𝜗3)}],                                                                  (4.29) 

𝜙𝜙𝜂𝜂
(1) =

12𝐵𝐵
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜂𝜂2
[In{1 + exp(Ω1) + exp(Ω2) + exp(Ω3) + 𝑎𝑎12 exp(Ω1 + Ω2)                  

+ 𝑎𝑎23 exp(Ω2 + Ω3) + 𝑎𝑎13 exp(Ω1 + Ω3)

+ 𝑎𝑎123 exp(Ω1 + Ω2 + Ω3)}],                                                                (4.30) 

where  𝜗𝜗𝑖𝑖 = 𝑘𝑘𝑖𝑖𝐵𝐵−1/3𝜉𝜉 − 𝑘𝑘𝑖𝑖3𝜏𝜏 , Ωi = −𝑘𝑘𝑖𝑖𝐵𝐵−1/3𝜂𝜂 − 𝑘𝑘𝑖𝑖3𝜏𝜏, 𝑖𝑖 = 1 − 3, 𝑎𝑎12 = (𝑘𝑘1 − 𝑘𝑘2)2/

(𝑘𝑘1 + 𝑘𝑘2)2, 𝑎𝑎23 = (𝑘𝑘2 − 𝑘𝑘3)2/(𝑘𝑘2 + 𝑘𝑘3)2 , 𝑎𝑎13 = (𝑘𝑘1 − 𝑘𝑘3)2/(𝑘𝑘1 + 𝑘𝑘3)2  and 𝑎𝑎123 =

𝑎𝑎12𝑎𝑎23𝑎𝑎13. 

 4.3.2 Phase shifts 

The phase shift can be determined after head-on single- as well multi-soliton collisions 

considering the soliton solutions of the two-sided KdV equations as follows: 

Using Eqs.(4.25) and (4.26), Eqs. (4.22) and (4.23) can be converted to  

𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

=
12𝐵𝐵𝐷𝐷
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜂𝜂2
�In�1 + exp�−𝑘𝑘1𝐵𝐵−1/3𝜂𝜂 − 𝑘𝑘13𝜏𝜏���,                                    (4.31) 

𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

=
12𝐵𝐵𝐷𝐷
𝐴𝐴

𝜕𝜕2

𝜕𝜕𝜉𝜉2
�In�1 + exp�𝑘𝑘1𝐵𝐵−1/3𝜉𝜉 − 𝑘𝑘13𝜏𝜏���.                                       (4.32) 

Solving Eqs. (4.31) and (4.32), the leading phase changes due to the collisions of two-sided 

solitary waves can be obtained as  

𝑃𝑃0(𝜂𝜂, 𝜏𝜏)  = −
12𝐵𝐵2/3𝐷𝐷𝑘𝑘1

𝐴𝐴
exp�−𝑘𝑘1𝐵𝐵−1/3𝜂𝜂 − 𝑘𝑘13𝜏𝜏�

1 + exp(−𝑘𝑘1𝐵𝐵−1/3𝜂𝜂 − 𝑘𝑘13𝜏𝜏) ,                              (4.33) 
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𝑄𝑄0(𝜉𝜉, 𝜏𝜏) =
12𝐵𝐵2/3𝐷𝐷𝑘𝑘1

𝐴𝐴

exp �𝑘𝑘1𝐵𝐵
−13𝜉𝜉 − 𝑘𝑘13𝜏𝜏�

1 + exp �𝑘𝑘1𝐵𝐵
−13𝜉𝜉 − 𝑘𝑘13𝜏𝜏�

 .                                        (4.34) 

The trajectories of two solitary waves for weak head-on collision can be written as  

𝜉𝜉 = 𝜀𝜀(𝑒𝑒 − 𝑉𝑉𝜕𝜕) − 𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷𝑘𝑘1

𝐴𝐴
exp�−𝑘𝑘1𝐵𝐵−1/3𝜂𝜂 − 𝑘𝑘13𝜏𝜏�

1 + exp(−𝑘𝑘1𝐵𝐵−1/3𝜂𝜂 − 𝑘𝑘13𝜏𝜏) + ⋯ ,          (4.35) 

𝜂𝜂 = 𝜀𝜀(𝑒𝑒 + 𝑉𝑉𝜕𝜕) + 𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷𝑘𝑘1

𝐴𝐴

exp �𝑘𝑘1𝐵𝐵
−13𝜉𝜉 − 𝑘𝑘13𝜏𝜏�

1 + exp �𝑘𝑘1𝐵𝐵
−13𝜉𝜉 − 𝑘𝑘13𝜏𝜏�

+ ⋯ .              (4.36) 

To evaluate the phase shifts after a head-on collision of the two solitons, one may consider the 

solitons, say, 𝑆𝑆1 and 𝑆𝑆2, are asymptotically far from each other at the initial time. After 

collision, 𝑆𝑆1 is far to the right of 𝑆𝑆2. Using the relation ∇𝑃𝑃0 = 𝜀𝜀(𝑒𝑒 − 𝑉𝑉𝜕𝜕)|𝜂𝜂→−∞,𝜉𝜉=0 −

𝜀𝜀(𝑒𝑒 − 𝑉𝑉𝜕𝜕)|𝜂𝜂→∞,𝜉𝜉=0 and ∇𝑄𝑄0 = 𝜀𝜀(𝑒𝑒 + 𝑉𝑉𝜕𝜕)|𝜉𝜉→−∞,𝜂𝜂=0 − 𝜀𝜀(𝑒𝑒 + 𝑉𝑉𝜕𝜕)|𝜉𝜉→∞,𝜂𝜂=0, the corresponding 

phase shifts may be obtained as 

∇𝑃𝑃0 = −𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷

𝐴𝐴
𝑘𝑘1,∇𝑄𝑄0 = 𝜀𝜀2

12𝐵𝐵2/3𝐷𝐷
𝐴𝐴

𝑘𝑘1 .                                             (4.37) 

Again, using the double-soliton solutions of the KdV equations given by Eqs.(4.27) and 

(4.28) of the KdV equations, the solution of Eqs. (4.22) and (4.23) can be determined as  

𝑃𝑃0 = −
12𝐵𝐵2/3𝐷𝐷

𝐴𝐴
𝑘𝑘1 exp(𝜗𝜗1) + 𝑘𝑘2 exp(𝜗𝜗2) + 𝑎𝑎12(𝑘𝑘1 + 𝑘𝑘2) exp(𝜗𝜗1 + 𝜗𝜗2)

1 + exp(𝜗𝜗1) + exp(𝜗𝜗2) + 𝑎𝑎12 exp(𝜗𝜗1 + 𝜗𝜗2) , (4.38) 

𝑄𝑄0 =
12𝐵𝐵2/3𝐷𝐷

𝐴𝐴
𝑘𝑘1 exp(Ω1) + 𝑘𝑘2 exp(Ω2) + 𝑎𝑎12(𝑘𝑘1 + 𝑘𝑘2) exp(Ω1 + Ω2)

1 + exp(Ω1) + exp(Ω2) + 𝑎𝑎12 exp(Ω1 + Ω2) , (4.39) 

and the corresponding phase shifts may be obtained as 

∇𝑃𝑃0 = −𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷

𝐴𝐴
�𝑘𝑘𝑖𝑖

2

𝑖𝑖=1

,     ∇𝑄𝑄0 = 𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷

𝐴𝐴
�𝑘𝑘𝑖𝑖

2

𝑖𝑖=1

 .                          (4.40) 

Finally, the phase shifts after head-on collisions between two-sided triple-solitons, given by 

Eqs. (4.29) and (4.30), may be evaluated as 

∇𝑃𝑃0 = −𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷

𝐴𝐴
�𝑘𝑘𝑖𝑖

3

𝑖𝑖=1

, ∇𝑄𝑄0 = 𝜀𝜀2
12𝐵𝐵2/3𝐷𝐷

𝐴𝐴
�𝑘𝑘𝑖𝑖

3

𝑖𝑖=1

.                       (4.41) 
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The interactions among the dust acoustic solitons and their corresponding phase shifts on 

plasma parameters are discussed in section 4.4.  

4.4 Results and discussion   

  The head-on collision phenomena among the dust acoustic solitons and their corresponding 

phase shifts have been investigated by deriving two-sided KdV equations involving 

nonlinearity (𝐴𝐴) and dispersion (𝐵𝐵) cofficients with the ePLK method for a dusty plasma as 

mentioned earlier. The coefficients 𝐴𝐴 and 𝐵𝐵 strongly depend on the plasma parameters 𝜎𝜎1 =

𝑇𝑇𝑖𝑖1/𝑇𝑇𝑖𝑖2, 𝜎𝜎2 = 𝑇𝑇𝑖𝑖1/𝑇𝑇𝑒𝑒, 𝜇𝜇𝑖𝑖1 = 𝑛𝑛𝑖𝑖10/𝑍𝑍𝑑𝑑𝑛𝑛𝑑𝑑0, 𝜇𝜇𝑖𝑖2 = 𝑛𝑛𝑖𝑖20/𝑍𝑍𝑑𝑑𝑛𝑛𝑑𝑑0, 𝛽𝛽𝑖𝑖1, and 𝛽𝛽𝑖𝑖2.It is seen that the 

compressive and rarefactive dust acoustic solitons may exist when 𝐴𝐴 >  0 and 𝐴𝐴 < 0, 

respectively. Besides, the phase shifts may become either positive or negative due to the head-

on collision between the solitons which are independent of the wave mode. For instance, 

Ghosh et al. [22] have noted that the positive or negative phase shift does not depend on the 

type of wave mode, but depends on the co-efficient D in Eq. (4.24).  Furthermore, Han et 

al.[26], Xue [32], and Liang et al.[50] have mentioned that the colliding acoustic waves 

produce positive phase shift, while El-Labany et al. [27] have illustrated that the colliding 

dust acoustic solitary waves produce negative phase shift; both of these phases are shifted in 

the direction of propagation. It is found that the positive phase shifts are obtained only if 𝐴𝐴 >

 0 and 𝐷𝐷 <  0, otherwise negative. The parametric effects considering the typical data of 

Refs.18, 40, and 41 on the head-on collisions among the electrostatic dust acoustic single- and 

multi-solitons and their corresponding phase shifts are discussed. 

Figures 4.1(a)-4.1(c) show the effects on phase shift ∇𝑃𝑃0 for the interaction between the two 

equal amplitude single- solitons propagating toward each other with respect to 𝜇𝜇𝑖𝑖1 and 𝜇𝜇𝑖𝑖2, 𝜎𝜎1 

and 𝜎𝜎2, and 𝛽𝛽𝑖𝑖1 and 𝛽𝛽𝑖𝑖2, respectively, taking the remaining parameters constant. On the other 

hand, Figs. 4.2(a)-4.2(c) show the changes of phase shifts ∇𝑃𝑃0 for the interaction between the 

equal amplitude double-solitons propagating toward each other with respect to 𝜇𝜇𝑖𝑖1 and 𝜇𝜇𝑖𝑖2, 𝜎𝜎1 

and 𝜎𝜎2, and 𝛽𝛽𝑖𝑖1 and 𝛽𝛽𝑖𝑖2, respectively, considering the same values as in Fig.4.1 except the 

wave numbers 𝑘𝑘1 = 1 and 𝑘𝑘2 = 2. It is seen that the phase shifts due to the interaction of two-

sided single- and multi-solitons are strongly dependent on the plasma parameters and the  
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wave numbers, and are increasing with increasing 𝜇𝜇𝑖𝑖1, 𝜇𝜇𝑖𝑖2,and 𝜎𝜎1, and are decreasing with 

increasing 𝜎𝜎2, 𝛽𝛽𝑖𝑖1, and 𝛽𝛽𝑖𝑖2. Figures 4.1 and 4.2 obviously indicate that the inertialess electrons  

and two-temperature nonthermal ions significantly contribute to the restoring force with 

increasing the temperature and number density of cold ions, but decreasing with the 

temperature of electrons due to the electrostatic interaction of producing dust acoustic solitons 

for extremely massive negatively charged mobile dust. This physical phenomenon provides 

that the time delay is increasing with increasing restoring force. On the other hand, the 

population of two-temperature nonthermal ions significantly affects the phase shifts in which 

the changes of phase shifts are decreasing. This phenomenon indicates that the cold and hot 

ions interact more actively with the other plasma species, causing the reduction in the  

Figure 4.1 Influence on phase shifts due to head-on collision for single-
soliton (a) 𝜇𝜇𝑖𝑖1 and 𝜇𝜇𝑖𝑖2 taking 𝜎𝜎1 = 0.3, 𝜎𝜎2 = 0.01,  and 𝛽𝛽𝑖𝑖1 = 𝛽𝛽𝑖𝑖2 = 0.5 , 
(b) 𝜎𝜎1 and 𝜎𝜎2 taking 𝜇𝜇𝑖𝑖1 = 0.2, 𝜇𝜇𝑖𝑖2 = 0.41,  and  𝛽𝛽𝑖𝑖1 = 𝛽𝛽𝑖𝑖2 = 0.5 , , and (c) 
𝛽𝛽𝑖𝑖1  and 𝛽𝛽𝑖𝑖2 taking 𝜎𝜎1 = 0.5, 𝜎𝜎2 = 0.1, 𝜇𝜇𝑖𝑖1 = 0.1, and  𝜇𝜇𝑖𝑖2 = 0.41. 
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magnitude of phase shift. It is also found that the phase shifts for head-on collision for multi- 

solitons are higher rather than single-solitons due to increase of wave numbers.  

Figures 4.3(a)-4.3(d) display the electrostatic potential (𝜙𝜙) structures consisting of 𝜙𝜙𝜉𝜉
(1) and 

𝜙𝜙𝜂𝜂
(1) approaching toward each other for single-soliton as obtained from Eqs. (4.25) and (4.26) 

against 𝜉𝜉 and 𝜂𝜂, considering the different values of the plasma parameters and time 𝜏𝜏. It is 

seen that the amplitudes of the colliding dust acoustic solitary waves are increasing with the 

increase of 𝜇𝜇𝑖𝑖1, 𝜇𝜇𝑖𝑖2, and 𝜎𝜎1, and are decreasing with the increase of 𝜎𝜎2; hence the nonlinear 

Figure 4.2 Influence on phase shifts due to head-on collision for 
double-soliton (a) 𝜇𝜇𝑖𝑖1 and 𝜇𝜇𝑖𝑖2, (b) 𝜎𝜎1 and 𝜎𝜎2, and (c) 𝛽𝛽𝑖𝑖1 and 𝛽𝛽𝑖𝑖2 
considering typical values as of Fig.4.1. 
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coefficients A is proportional to 𝜎𝜎2, but it is inversely proportional to 𝜇𝜇𝑖𝑖1, 𝜇𝜇𝑖𝑖2, and 𝜎𝜎1. Further, 

Fig. 4.3(d) is the mirror image of Fig. 4.3(b) as is expected. It is also seen from Fig. 4.3(a)  

 

 

that the compressive and rarefactive potential structures are found for 𝜇𝜇𝑖𝑖1 < 0.5 and 𝜇𝜇𝑖𝑖1 >

0.5, respectively, due to the interaction between two-solitons which are in good agreement 

with the investigations of Ref.42. Figures 4.4(a)-4.4(d) display the electrostatic potential (𝜙𝜙) 

structures consisting of 𝜙𝜙𝜉𝜉
(1) and 𝜙𝜙𝜂𝜂

(1) traveling toward each other for double-solitons as 

obtained from Eqs. (4.27) and (4.28) against 𝜉𝜉 and 𝜂𝜂, respectively, taking the different values  

Figure 4.3 Electrostatic potential (𝜙𝜙) profiles single-soliton traveling 
toward right �𝜙𝜙𝜉𝜉

(1)� and left �𝜙𝜙𝜉𝜉
(1)� due to head-on collisions taking (a) 

𝜇𝜇𝑖𝑖1 = 0.5 (compressive), 𝜇𝜇𝑖𝑖1 = 0.6 (rarefactive), 𝜇𝜇𝑖𝑖2 = 0.41 𝜎𝜎1 = 0.2, 
𝜎𝜎2 = 0.05,and 𝛽𝛽𝑖𝑖1 = 𝛽𝛽𝑖𝑖2 = 0.3, (b) 𝜇𝜇𝑖𝑖1 = 0.2, 𝜇𝜇𝑖𝑖2 = 0.41, 𝜎𝜎1 = 0.1, 
𝜎𝜎2 = 0.05, and 𝛽𝛽𝑖𝑖1 = 𝛽𝛽𝑖𝑖2 = 0.3, (c) as of (b) but 𝜎𝜎2 = 0.01, and (d) as 
of (c) but 𝜇𝜇𝑖𝑖2 = 0.5.  
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of the plasma parameters and time 𝜏𝜏. It is seen that the amplitude of dust acoustic double-

solitons is increasing with the increase of 𝜇𝜇𝑖𝑖1, 𝜇𝜇𝑖𝑖2, and 𝜎𝜎1, and is decreasing with the increase 

of 𝜎𝜎2. Figures 4.4(a)-4.4(d) clearly dictate that the four compressive and rarefactive scattered  

solitons are produced due to head-on collisions of double-solitons, of which of two are 

propagating from left to right and remaining two are propagating in the opposite direction. 

Figures 4.5(a)-4.5(d) display the electrostatic potential (𝜙𝜙) structures consisting of 𝜙𝜙𝜉𝜉
(1) and 

𝜙𝜙𝜂𝜂
(1) traveling toward each other for triple-soliton as obtained from Eqs. (4.29) and (4.30) 

against 𝜉𝜉 and 𝜂𝜂, respectively, considering different values of the plasma parameters and 𝜏𝜏. It 

Figure 4.4 Electrostatic potential (𝜙𝜙) profiles of double-soliton traveling toward 
right �𝜙𝜙𝜉𝜉

(1)� and left �𝜙𝜙𝜂𝜂
(1)� due to head-on collisions taking (a) 𝜇𝜇𝑖𝑖1 = 0.78, 

𝜇𝜇𝑖𝑖2 = 0.41 𝜎𝜎1 = 0.5, 𝜎𝜎2 = 0.05,and  𝛽𝛽𝑖𝑖1 = 𝛽𝛽𝑖𝑖2 = 0.3, (b) as of (a) except 𝜇𝜇𝑖𝑖1 =
0.1, (c) 𝜇𝜇𝑖𝑖1 = 0.1, 𝜇𝜇𝑖𝑖2 = 0.41, 𝜎𝜎1 = 0.1, 𝜎𝜎2 = 0.05, and  𝛽𝛽𝑖𝑖1 = 𝛽𝛽𝑖𝑖2 = 0.3, and 
(d) as of (b) except 𝜎𝜎2 = 0.01. 
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is also seen that the amplitudes of dust acoustic solitary waves are increasing with the increase 

of 𝜇𝜇𝑖𝑖1, 𝜇𝜇𝑖𝑖2, and 𝜎𝜎1, and are decreasing with the increase of 𝜎𝜎2. Figures 4.5(a)-4.5(d) show that 

the compressive and rarefactive six scattered solitons are produced due to head-on collisions 

of triple-soliton, of which three are propagating from left to right and the remaining three are  

 

 

 

propagating in the opposite direction. It is observed from Figs.4.3-4.5 that the amplitudes of 

dust acoustic solitons are increasing with increasing 𝛽𝛽𝑖𝑖1 and 𝑇𝑇𝑖𝑖1, which provide that the 

nonextensive cold ions contribute significantly to the restoring force and then the restoring  

Figure 4.5 Electrostatic potential (𝜙𝜙) profiles of triple-soliton traveling 
toward right �𝜙𝜙𝜉𝜉

(1)�  and left �𝜙𝜙𝜉𝜉
(1)� due to head-on collisions (a) 𝜇𝜇𝑖𝑖1 =

0.78, 𝜇𝜇𝑖𝑖2 = 0.41 𝜎𝜎1 = 0.5, 𝜎𝜎2 = 0.05, and 𝛽𝛽𝑖𝑖1 = 𝛽𝛽𝑖𝑖2 = 0.3, (b) 𝜇𝜇𝑖𝑖1 = 0.1, 
𝜇𝜇𝑖𝑖2 = 0.41, 𝜎𝜎1 = 0.1, 𝜎𝜎2 = 0.05, and  𝛽𝛽𝑖𝑖1 = 𝛽𝛽𝑖𝑖2 = 0.3, (c) as of (b) but 
𝛽𝛽𝑖𝑖1 = 0.25, and (d) as of (b) but 𝜇𝜇𝑖𝑖2 = 0.31. 
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force increases due to the interactions among the extremely massive mobile dust and 

inertialess electrons as mentioned earlier. However, the nonthermal hot ions interact more 

actively with the remaining plasma species, causing a reduction in magnitudes of the dust 

acoustic solitons with the increase of 𝛽𝛽𝑖𝑖2. This means that the increase in concentrations of 

cold and hot ions can be interpreted due to the depopulation of extremely massive negative  

mobile dusts from the plasma system, and as a result the resulting force, as provided by the 

inertial mass of the dust particles, of dust acoustic waves decreases. Finally, Figs. 4.6 (a)-

4.6(c) show the contour plot for better visualization of the variation of electrostatic potential 

profiles with respect to space and time for the head-on collisions  among the single-,double-

,and triple-solitons, respectively, considering 𝜇𝜇𝑖𝑖1 = 0.1, 𝜇𝜇𝑖𝑖2 = 0.41, 𝜎𝜎1 = 0.5, 𝜎𝜎2 = 0.05, 

𝛽𝛽𝑖𝑖1 = 0.3,and 𝛽𝛽𝑖𝑖2 = 0.3. 

  This work concerns the electrostatic resonance phenomena of dust acoustic  solitons, time 

evolution, and their phase shifts, taking the plasma parameters 𝑛𝑛𝑑𝑑0 = 1 × 1010m−3, 𝑛𝑛𝑖𝑖20 =

7 × 1013m−3, 𝑇𝑇𝑖𝑖2 = 0.3eV, 𝑇𝑇𝑖𝑖1 = 0.01 − 0.1eV, and 𝑍𝑍𝑑𝑑 = 3 × 103 into account as obtained 

in Ref. 19 by deriving the analytical soliton solutions of the two-sided KdV equations (4.20) 

and (4.21). The results show that the compressive and rarefactive scattered dust acoustic 

solitons are produced for 𝐴𝐴 > 0 and 𝐴𝐴 < 0, respectively, but no soliton is observed for 𝐴𝐴 = 0. 

Besides, the phase shifts combine to yield a single composite structure after the interaction 

among the solitons, and they propagate along the trajectories which deviate from the initial 

trajectories. The sum of the phase shifts is zero for oppositely propagating solitons. It is 

clearly seen that the estimated phase shifts, as mentioned in Eqs. (4.37), (4.40), and (4.41), 

satisfy the phase conservation law, that is ∇𝑃𝑃0 + ∇𝑄𝑄0 = 0 for both compressive and 

rarefactive scattered dust acoustic solitons. Furthermore, many authors [22-28, 50] have 

investigated the phase shifts between two scattered solitons which are only valid for 𝐴𝐴 > 0. It 

is to be noted that the phase shifts estimated of the scattered dust acoustic two-, four-, and six- 

solitons are valid both for 𝐴𝐴 > 0 and 𝐴𝐴 < 0. It is also seen from Figs. 4.3-4.5 that the 

potential profiles 𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) of the solitons are shifted towards the right, while the other 

𝜙𝜙𝜂𝜂
(1)(𝜂𝜂, 𝜏𝜏) are shifted towards the left directions with increasing time 𝜏𝜏. This means that the 

dust acoustic scattered solitons propagate toward each other, collide, and then depart, which 

are in good agreement with the theoretical findings of Harvey et al.[35]. It is also observed 

that the multi-soliton solutions of the evolution equations provide that the taller (and faster) 

solitons overtake the smaller (and slower) one, with nonlinearity during the interaction phase.  
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Thus, the results obtained may be useful for better understanding the electrostatic resonances 

and phase shifts due to interactions of nonlinear waves in various cosmic dust-laden plasma 

[18,40-43] as well as in laboratory dusty plasmas [19,35].          

 

 

Figure 4.6 Contour plot of electrostatic potential (𝜙𝜙) due to head-on collisions 
among (a) single-soliton, (b) double-soliton, and (c) triple-soliton with 
respect to space and time taking 𝜇𝜇𝑖𝑖1 = 0.1, 𝜇𝜇𝑖𝑖2 = 0.41, 𝜎𝜎1 = 0.5, 𝜎𝜎2 = 0.05, 
and 𝛽𝛽𝑖𝑖1 = 𝛽𝛽𝑖𝑖2 = 0.3.  
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4.5 Conclusions 

     The paper is concerned with the study of the propagation characteristics due to the 

interactions among the dust acoustic solitons composed of negatively charged mobile dust, 

Boltzmann-distributed electrons, and two-temperature nonthermal cold and hot ions, 

occupying two different regions of velocity phase space. The KdV equations are derived 

using the ePLK method. The analytical solutions for solitons are constructed using the well 

established Hirota bilinear method. The phase shifts due to head-on collisions among the dust 

acoustic single-, double-, and triple-solitons are determined analytically from the solutions of 

the two-sided KdV equations. The effects of plasma parameters on the head-on collisions 

among the electrostatic dust acoustic single-and multi-solitons and their corresponding phase 

shifts are discussed. The compressive and rarefactive scattered two-, four-, and six- dust 

acoustic waves are obtained for 𝐴𝐴 > 0 and 𝐴𝐴 < 0, respectively. The phase shifts due to head-

on collision of dust acoustic single- and multi-solitons are strongly dependent on the plasma 

parameters and the wave numbers, are increasing with increasing  𝜇𝜇𝑖𝑖1, 𝜇𝜇𝑖𝑖2, 𝜎𝜎1, and 𝑞𝑞 , and are 

decreasing with the increase of   𝜎𝜎2, and 𝛽𝛽 . One may conclude that the results obtained in this 

investigation might be useful for understanding electrostatic resonance disturbances and phase 

shifts after weak head-on collision among the solitons in space and laboratory plasma 

systems, such as Saturn’s E-ring, Saturn’s F-ring, noctilucent clouds, Halley’s comet, 

interstellar molecular clouds in cosmic dust laden plasma, laboratory dusty plasmas, etc., 

where major plasma species are negatively charged massive mobile dust, Boltzmann 

distributed electrons, and two-temperature ions following the nonthermal distributions. This 

work is done to study the interaction of dust acoustic solitons and their corresponding phase 

shift (time delay) through the two-sided KdV equations. The quadratic nonlinearity of the 

KdV equations may disappear for a certain critical value; in such case, one may study the 

interactions among solitons using modified KdV equations. 
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Abbreviation and Nomenclature:  

KdV= Korteweg-de Vries 

mKdV = modify Korteweg-de Vries 

ePLK = extended Poincaré-Lighthill-Kuo 

SG = standard Gardner 

𝑇𝑇𝜔𝜔 = time period 

𝑇𝑇𝑐𝑐𝜔𝜔 = dust charging time period 

𝑇𝑇𝑖𝑖 = ion temperature  

𝑍𝑍𝑑𝑑 = duat charge number 

𝜎𝜎1 = temperature ratio of cold ion to hot ion temperature 

𝜎𝜎21 = temperature ratio of cold ion to electron temperature 

𝜇𝜇𝑖𝑖1 = density ratio of unperturbed cold ion to dust density 

𝜇𝜇𝑖𝑖2 = density ratio of unperturbed hot ion to dust density 

𝑛𝑛𝑖𝑖1(𝑛𝑛𝑖𝑖2) = concentration of cold (hot) ion 

𝑇𝑇𝑖𝑖1(𝑇𝑇𝑖𝑖2) = temperature of cold (hot) ion 

𝛼𝛼𝑖𝑖1(𝛼𝛼𝑖𝑖2) = population of cold (hot) ion  

𝑛𝑛𝑖𝑖1 (𝑛𝑛𝑖𝑖2) = density of cold (hot) ion 

𝛽𝛽𝑖𝑖1(𝛽𝛽𝑖𝑖2) = nonthermality of cold (hot) ion  

𝑛𝑛𝑑𝑑 = density of dust ion  

𝑢𝑢𝑑𝑑 = speed of dust fluid 

𝐶𝐶𝑑𝑑 = dust acoustic speed 

𝑒𝑒 = electronic charge 

𝜙𝜙 = electrostatic potential 

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = effective ion temperature 

𝑘𝑘𝐵𝐵= Boltzmann constant 

𝑚𝑚𝑑𝑑 = dust mass  

𝜀𝜀 = small parameter, measure the strength of nonlinearity 

𝑘𝑘𝑖𝑖= wave number, 𝑖𝑖 = 1,2,3 

𝜔𝜔𝑖𝑖 = angular velocity 

𝐴𝐴 = coefficient of nonlinearity in KdV equation 

𝐵𝐵 = coefficient of dispersion in KdV equation 

∇𝑃𝑃0(∇𝑄𝑄0) = phase shift of right (left) moving soliton 



 

Chapter 5 
 

Head-on collision of ion acoustic shock waves in electron-positron-ion 
nonextensive plasmas for weakly and highly relativistic regimes 

 
5.1 Introduction 

   Electron-positron (ep) plasmas are observed in astrophysical environments such as in the 

polar region of neutron stars [1], pulsar magnetospheres [2], active galactic nuclei [3], at the 

center of Milky Way galaxy [4], in the early universe [5], accretion disk [6] and black holes 

[7], and in the laboratory as in the intense laser fields [8]. Such plasmas are produced through 

pair production due to the high energy processes. Experimentally, it has established that at 

electron density of 1012 cm-3 and temperature as low as 1 eV, the positron annihilation time is 

greater than 1s [9]. Due to its longer life time, a numerous low frequency waves can be 

produced in the ep plasmas. Arons [10] has reported that the stochastic acceleration process 

generates the super-thermal/nonthermal tail on the thermal distribution of particles. In 

contrast, Livadiotis and McComas [11] have reported that Tsallis statistical mechanics is more 

suitable for describing superthermal tails in astrophysical and space plasmas. Since most of 

the astrophysical plasmas [12-13] contain positrons along with ions and electrons, and they 

form electron-position-ion (epi) plasmas. Besides, the Advanced Satellite for Cosmology and 

Astrophysics (ASCA) satellite [14] has observed the existence a fraction of ions in 

astrophysical ep plasmas. In addition, the pulsar relativistic wind is produced with electrons 

and positrons, and a small fraction of energetic ions. It is reasonable to model high-energy 

(non-thermal/super-thermal) electrons and positrons with the nonextensive distribution. The 

pulsar relativistic wind is one of the examples where relativistic ions exist. Several authors 

[15-19] have reported that the ion acoustic waves in relativistic plasmas exist due to 

simultaneous appearance of ep plasmas with relativistic ions. It is noted that the epi 

relativistic plasmas is also the well established phenomenon in pulsar magnetosphere and 

laser–plasma interaction [10, 20-22]. Pakzad et al. [23-24], Tribeche et al. [25], and Munoz 

[26] have already mentioned that the ion acoustic waves exist in epi plasma simultaneously 

with nonextensive and relativistic effects.  
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It was observed experimentally that the plasma particles attain relativistic speeds [27-

28] due to the interaction with ultra-intense laser pulses. It is evident [29] that the excitations 

of nonlinear structures such as shock and solitary waves are produced for the high-speed 

streaming ions, electrons, and positrons. Moreover, the epi relativistic plasmas plays crucial 

role in the formation of ion acoustic shocks which are concerned in space environments [30], 

Van Allen radiation belts [31], and plasma sheet boundary layer of Earth’s magnetosphere. 

Therefore, it is reasonable to consider that the relativistic effects in such plasmas prevail as 

the particles having streaming velocities approach to the velocity of light. A number of 

authors have investigated the nonlinear wave propagation in epi plasmas theoretically to 

explore the dynamic behaviors of double layers [15, 32] in astrophysical, cosmological [33], 

and laboratory plasmas [34]. The weakly relativistic effects of ions are considered [35] in the 

range 0.1–4.7MeV, and the highly relativistic effects are considered [35] in the range 4.7–

100MeV that are frequently observed in astrophysical and space environments. Alam et al. 

[35] have reported that the effects of head-on collision between two solitary waves in epi 

nonthermal relativistic plasmas by deriving Korteweg-de-Vries (KdV) equations. In this 

report, we studied the effects of positron concentration, temperature ratios, relativistic 

streaming factor, and population of electron and positron nonthermality on the electrostatic 

resonance and their corresponding phase shifts. They found that the plasma parameters play a 

vital role to produce ion acoustic solitary waves. Considering the importance of the physical 

issues concerned, the characteristics ion acoustic waves for epi relativistic plasmas are 

investigated [16,32,36] taking two- and three-term expansions of the Lorentz relativistic 

factor for ions assuming different plasma conditions. It is established [17, 37] that the Lorentz 

relativistic factor for ions significantly modifies the ion acoustic wave dynamics in the e-p-i 

relativistic plasmas. Hafez et al. [37] have studied the oblique nonlinear propagation of ion 

acoustic shock waves in case of weakly and highly relativistic regimes (WRR/HRR) 

composed nonthermal electrons, positrons, and relativistic thermal ions. They have found that 

the nonthermal electrons and positrons significantly modify the structures of ion acoustic 

shock waves in epi plasmas in highly relativistic rather than in weakly relativistic regimes. 

Han et al. [38] have studied the head-on collision in dense epi quantum plasmas without 

considering the relativistic effects and found that the two colliding shocks change the plane of 

propagation after head-on collision. Thus, the relativistic effect plays a significant role in the 

propagation characteristics for the head-on collisions between the two ion acoustic shock 

waves. Taking into consideration, the key importance of the epi plasmas with nonextensive 

effects for long-range interaction, as observed in the interstellar medium while the cosmic-
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rays interact with nuclei [39], astrophysics [40] etc., the head-on collision between the two ion 

acoustic shock waves propagating toward each other in weakly and highly relativistic plasmas 

consisting of relativistic ions, nonextensive electrons and positrons. Being motivated due to 

the significance of the above-mentioned physical issues concerned and to fill up the gap, the 

head-on collision of ion acoustic shock waves in epi nonextensive plasmas is investigated for 

weakly and highly relativistic regimes employing the extended Poincar�́�𝑒-Lighthill-Kuo 

(ePLK) method. In sequence of introduction, in section 5.2, the model equations for 

relativistic plasmas are presented. Derivations of two-sided KdV Burger (KdVB) equations 

along with ePLK technique are given in section 5.3. The solutions of shock wave are 

displayed in section 5.4. The results are discussed in section 5.5, and conclusion is drawn in 

section 5.6. 

5.2 Theoretical model equations  

    Unmagnetized collisionless epi plasma is considered consisting of nonextensive electrons, 

positrons, and relativistic ions. The nonextensive distribution function for species 𝛼𝛼 can be 

defined [41] as 

 𝑓𝑓𝛼𝛼(𝑣𝑣𝛼𝛼) = 𝐶𝐶𝑞𝑞𝛼𝛼 �1 − (𝑞𝑞𝛼𝛼 − 1) �𝑚𝑚𝛼𝛼𝑣𝑣𝛼𝛼2

2𝑘𝑘𝐵𝐵𝑇𝑇𝛼𝛼
+ 𝑒𝑒𝛼𝛼Φ

𝑘𝑘𝐵𝐵𝑇𝑇𝛼𝛼
��

1
𝑞𝑞𝛼𝛼−1, with 𝐶𝐶𝑞𝑞𝛼𝛼 = 𝑛𝑛𝛼𝛼0

Γ� 1
1−𝑞𝑞𝛼𝛼

�

Γ� 1
1−𝑞𝑞𝛼𝛼

−12�
�𝑚𝑚𝛼𝛼(1−𝑞𝑞𝛼𝛼)

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇𝛼𝛼
  for 

1 < 𝑞𝑞𝛼𝛼 < 1 and 𝐶𝐶𝑞𝑞𝛼𝛼 = 𝑛𝑛𝛼𝛼0 �
1+𝑞𝑞𝛼𝛼
2
�
Γ� 1

1−𝑞𝑞𝛼𝛼
+12�

Γ� 1
1−𝑞𝑞𝛼𝛼

�
�𝑚𝑚𝛼𝛼(1−𝑞𝑞𝛼𝛼)

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇𝛼𝛼
, for 𝑞𝑞𝛼𝛼 > 1, where 𝐶𝐶𝑞𝑞𝛼𝛼 and Γ are the 

normalization constant and Gamma function, respectively. Here, Φ, 𝑚𝑚𝛼𝛼, 𝑒𝑒𝛼𝛼, 𝑛𝑛𝛼𝛼0, 𝑣𝑣𝛼𝛼, 𝑇𝑇𝛼𝛼 and  

𝑘𝑘𝐵𝐵 , are the electrostatic potential, mass, charge, unperturbed particle density, velocity, and 

temperature of the species 𝛼𝛼, Boltzmann constant, respectively. 𝛼𝛼 = 𝑖𝑖, 𝑒𝑒, and 𝑝𝑝 are for ions, 

electrons, and positrons, respectively. It is noticed that the nonextensive velocity distribution 

function gives a thermal cutoff at the maximum velocities of the species considered as 

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = �2𝑘𝑘𝐵𝐵𝑇𝑇𝛼𝛼
𝑚𝑚𝛼𝛼

� 𝑒𝑒𝛼𝛼Φ
𝑘𝑘𝐵𝐵𝑇𝑇𝛼𝛼

+ 1
𝑞𝑞𝛼𝛼−1

�. Using the relation 𝑛𝑛𝛼𝛼 = ∫ 𝑓𝑓𝛼𝛼(𝑣𝑣)𝑑𝑑𝑣𝑣,∞
−∞  for 1 < 𝑞𝑞𝛼𝛼 < 1 and 

𝑛𝑛𝛼𝛼 = ∫ 𝑓𝑓𝛼𝛼(𝑣𝑣)𝑑𝑑𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
−𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

 for  𝑞𝑞𝛼𝛼 > 1, the population of nonextensive electrons and positrons can 

be obtained [17] in the form 𝑛𝑛𝑒𝑒 = 𝑛𝑛𝑒𝑒0 �1 + (𝑞𝑞𝑒𝑒 − 1) Φ
𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒

�
𝑞𝑞𝑒𝑒+1

2(𝑞𝑞𝑒𝑒−1) and 𝑛𝑛𝑝𝑝 = �1 + �𝑞𝑞𝑝𝑝 −

1� Φ
𝑘𝑘𝐵𝐵𝑇𝑇𝑝𝑝

�
𝑞𝑞𝑝𝑝+1

2�𝑞𝑞𝑝𝑝−1�  respectively. 𝑞𝑞𝑒𝑒 and 𝑞𝑞𝑝𝑝  indicate nonextensive parameters which characterize 

the degree of nonextensivity. For superthermality −1 < 𝑞𝑞𝑒𝑒,𝑝𝑝 < 1 and for subthermality 𝑞𝑞𝑒𝑒,𝑝𝑝 >

1 and in the limit 𝑞𝑞𝑒𝑒,𝑝𝑝 → 1, the nonextensive velocity distribution function transforms into the 
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Maxwell-Boltzmann distribution. The normalized continuity and momentum equations which 

are governed by the nonlinear dynamics of ion acoustic shock waves as 

𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝑛𝑛𝑖𝑖𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕

= 0,                                                                                                                  (5.1) 

and 

𝜕𝜕(𝛾𝛾𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑖𝑖
𝜕𝜕(𝛾𝛾𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕

+
𝑇𝑇𝑖𝑖𝑝𝑝
𝑛𝑛𝑖𝑖
𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜂𝜂𝑖𝑖
𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕2

 ,                                                               (5.2) 

where 𝑛𝑛𝑖𝑖 ,𝑢𝑢𝑖𝑖 ,𝜕𝜕 indicate the normalized ion number density, ion fluid velocity, and 

electrostatic potential, respectively.  𝑛𝑛𝑖𝑖 , 𝑢𝑢𝑖𝑖, and 𝜕𝜕 are normalized as 𝑛𝑛𝑖𝑖 → 𝑛𝑛𝑖𝑖/𝑛𝑛𝑒𝑒0, 𝑢𝑢𝑖𝑖 →

𝑢𝑢𝑖𝑖/𝐶𝐶𝑠𝑠, and 𝜕𝜕 → 𝜕𝜕𝑒𝑒/𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒 , with 𝐶𝐶𝑠𝑠 = �𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒/𝑚𝑚𝑖𝑖. The temperature ratios are defined as 𝑇𝑇𝑖𝑖𝑝𝑝 =

𝑇𝑇𝑖𝑖/𝑇𝑇𝑝𝑝 and 𝑇𝑇𝑒𝑒𝑝𝑝 = 𝑇𝑇𝑒𝑒 𝑇𝑇𝑝𝑝⁄ . The space and time variables are normalized by electron Debye 

length 𝜆𝜆𝐷𝐷𝑒𝑒 = (𝑇𝑇𝑒𝑒/4𝜋𝜋𝑛𝑛𝑒𝑒0𝑒𝑒2)1 2�  and 𝜕𝜕 = 𝜔𝜔𝑝𝑝𝑖𝑖
−1 = (𝑚𝑚𝑖𝑖/4𝜋𝜋𝑛𝑛𝑒𝑒0𝑒𝑒2)1 2� , respectively, where 𝜔𝜔𝑝𝑝𝑖𝑖 is 

the ion plasma frequency. 𝜂𝜂𝑖𝑖 is the viscosity coefficient of ions, normalized by  𝜂𝜂𝑖𝑖 =

𝜆𝜆𝐷𝐷𝑒𝑒2 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖0/𝜔𝜔𝑝𝑝𝑖𝑖
−1. 𝜂𝜂𝑖𝑖 is responsible for nonlinear shock wave propagation in the plasma. The 

kinematic viscosities of electrons and positrons are neglected because they are of the order of 

 𝑚𝑚𝑒𝑒 𝑚𝑚𝑖𝑖⁄ . In the range of ion densities 3.9 × 1028 < 𝑛𝑛𝑖𝑖(𝑐𝑐𝑚𝑚−3) < 1.4 × 1037, the annihilation 

effects of electrons and positrons can be neglected [42]. The Lorentz factor �𝛾𝛾 =

1/�1 − 𝑢𝑢𝑖𝑖2/𝑐𝑐2� for weakly and highly relativistic effect are defined as  𝛾𝛾 = 1 + 𝑢𝑢𝑖𝑖2/2𝑐𝑐2 and 

= 1 + 𝑢𝑢𝑖𝑖2/2𝑐𝑐2 + 3𝑢𝑢𝑖𝑖4/8𝑐𝑐4 , respectively,  where 𝑐𝑐 is the speed of light, 𝛾𝛾 = 1 in the non-

relativistic limit. The Poisson’s equation in such  plasma is defined as 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

= 𝑛𝑛𝑒𝑒 − 𝑛𝑛𝑝𝑝 − 𝑛𝑛𝑖𝑖 .                                                                                                (5.3) 

The normalized nonextensive electrons and positrons densities can be expanded as 

𝑛𝑛𝑒𝑒 =
1

1 − 𝑝𝑝 �
1 +

𝑞𝑞 + 1
2

𝜕𝜕 +
(𝑞𝑞 + 1)(3 − 𝑞𝑞)

8
𝜕𝜕2 + ⋯  ⋯�  ,                               (5.4) 

𝑛𝑛𝑝𝑝 =
𝑝𝑝

1 − 𝑝𝑝 �
1 −

𝑞𝑞 + 1
2

𝑇𝑇𝑒𝑒𝑝𝑝𝜕𝜕 +
(𝑞𝑞 + 1)(3 − 𝑞𝑞)

8
𝑇𝑇𝑒𝑒𝑝𝑝2 𝜕𝜕2 − ⋯  ⋯�  ,                  (5.5) 

where 𝑝𝑝 = 𝑛𝑛𝑝𝑝0 𝑛𝑛𝑒𝑒0⁄  at equilibrium. 
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5.3 Derivation of two-sided KdV Burger equations  

  Initially the two shock waves at 𝜕𝜕 → −∞ are asymptotically far apart and propagate toward 

each other. After some time, they collide and then depart from each other in the opposite 

direction. To study the interaction of two ion acoustic shock waves for WRR and HRR, one 

can consider the extended Poincare- Lighthill- Kuo (ePLK) method [43]. The independent 

variables 𝜉𝜉 and 𝜂𝜂 are expanded in light of the  ePLK method as 

𝜉𝜉 = 𝜖𝜖�𝜕𝜕 − 𝜆𝜆𝑝𝑝𝜕𝜕� + 𝜖𝜖2𝑃𝑃0(𝜂𝜂, 𝜏𝜏) + ⋯⋯⋯⋯⋯⋯⋯⋯⋯
𝜂𝜂 = 𝜖𝜖�𝜕𝜕 + 𝜆𝜆𝑝𝑝𝜕𝜕� + 𝜖𝜖2𝑄𝑄0(𝜉𝜉, 𝜏𝜏) + ⋯⋯⋯⋯⋯⋯⋯⋯⋯

𝜏𝜏 = 𝜖𝜖3𝜕𝜕 

� ,                                             (5.6) 

where 𝜉𝜉 and 𝜂𝜂 denote the trajectories of two shock waves traveling toward each other and 𝜆𝜆𝑝𝑝 

is the unknown phase velocity of ion acoustic shock waves and the unknown phase function 

determined earlier. The dependent variables are expanded as 

                                       
𝑛𝑛𝑖𝑖 = 1 + 𝜖𝜖2𝑛𝑛𝑖𝑖

(1) + 𝜖𝜖3𝑛𝑛𝑖𝑖
(2) + 𝜖𝜖4𝑛𝑛𝑖𝑖

(3) + ⋯⋯

      𝑢𝑢𝑖𝑖 = 𝑢𝑢𝑖𝑖0 + 𝜖𝜖2𝑢𝑢𝑖𝑖
(1) + 𝜖𝜖3𝑢𝑢𝑖𝑖

(2) + 𝜖𝜖4𝑢𝑢𝑖𝑖
(3) +  ⋯⋯

𝜕𝜕 = 𝜖𝜖2𝜕𝜕(1) + 𝜖𝜖3𝜕𝜕(2) + 𝜖𝜖4𝜕𝜕(3) +  ⋯⋯    

�  ,                 (5.7) 

where 𝜀𝜀 is a small parameter characterizing the strength of nonlinearity. As the value of ion 

kinematic viscosity 𝜂𝜂𝑖𝑖  infinitesimal be considered in many experimental situation, so we take 

𝜂𝜂𝑖𝑖  = 𝜀𝜀𝜂𝜂1. Considering the stretched coordinates (5.6) one can obtain 

𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜀𝜀𝜆𝜆𝑝𝑝 �
𝜕𝜕
𝜕𝜕𝜂𝜂

−
𝜕𝜕
𝜕𝜕𝜉𝜉
� + 𝜀𝜀3𝜆𝜆𝑝𝑝 �

𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

𝜕𝜕
𝜕𝜕𝜉𝜉

−
𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

𝜕𝜕
𝜕𝜕𝜂𝜂
� + 𝜀𝜀3

𝜕𝜕
𝜕𝜕𝜏𝜏

 ,                                           (5.8) 

 
𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜀𝜀 �
𝜕𝜕
𝜕𝜕𝜂𝜂

+
𝜕𝜕
𝜕𝜕𝜉𝜉
� + 𝜀𝜀3 �

𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

𝜕𝜕
𝜕𝜕𝜉𝜉

+
𝜕𝜕𝑄𝑄0
 𝜕𝜕𝜉𝜉

𝜕𝜕
𝜕𝜕𝜂𝜂
�  .                                                                    (5.9)   

Inserting the value of 𝑛𝑛𝑖𝑖 , 𝑢𝑢𝑖𝑖 , and 𝜕𝜕 from Eq.(5.7) into the Eqs. (5.1)-(5.3) and using Eq. (5.8) 

and Eq. (5.9), one can derive a set of partial differential equations (PDEs) in various powers 

of 𝜀𝜀 .   The smallest power of 𝜀𝜀 gives 

−�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0�
𝜕𝜕𝑛𝑛𝑖𝑖

(1)

𝜕𝜕𝜉𝜉
+ �𝜆𝜆𝑝𝑝 + 𝑢𝑢𝑖𝑖0�

𝜕𝜕𝑛𝑛𝑖𝑖
(1)

𝜕𝜕𝜂𝜂
+
𝜕𝜕𝑢𝑢𝑖𝑖

(1)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝑢𝑢𝑖𝑖

(1)

𝜕𝜕𝜂𝜂
= 0,                                    (5.10) 

−�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0�𝛾𝛾1
𝜕𝜕𝑢𝑢𝑖𝑖

(1)

𝜕𝜕𝜉𝜉
+ �𝜆𝜆𝑝𝑝 + 𝑢𝑢𝑖𝑖0�𝛾𝛾1

𝜕𝜕𝑢𝑢𝑖𝑖
(1)

𝜕𝜕𝜂𝜂
+ 𝑇𝑇𝑖𝑖𝑝𝑝

𝜕𝜕𝑛𝑛𝑖𝑖
(1)

𝜕𝜕𝜉𝜉
+  𝑇𝑇𝑖𝑖𝑝𝑝

𝜕𝜕𝑛𝑛𝑖𝑖
(1)

𝜕𝜕𝜂𝜂
 +  

𝜕𝜕𝜕𝜕(1)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝜕𝜕(1)

𝜕𝜕𝜂𝜂

= 0                                                                                                                               (5.11) 

and 
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                                                 𝑅𝑅1𝜕𝜕(1) − 𝑛𝑛𝑖𝑖
(1) = 0.                                                   (5.12) 

Solving Eqs. (5.10)-(5.12) for  𝑛𝑛𝑖𝑖 , 𝑢𝑢𝑖𝑖, and 𝜕𝜕, one can obtain  

      𝜕𝜕(1) = 𝜕𝜕𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) + 𝜕𝜕𝜂𝜂

(1)(𝜂𝜂, 𝜏𝜏) ,                                                                                    (5.13) 

  𝑛𝑛𝑖𝑖
(1) =

1

𝛾𝛾1�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0�
2 − 𝑇𝑇𝑖𝑖𝑝𝑝

𝜕𝜕𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) +

1

𝛾𝛾1�𝜆𝜆𝑝𝑝 + 𝑢𝑢𝑖𝑖0�
2 − 𝑇𝑇𝑖𝑖𝑝𝑝

𝜕𝜕𝜂𝜂
(1)(𝜂𝜂, 𝜏𝜏) ,              (5.14) 

   𝑢𝑢𝑖𝑖
(1) =

𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0
𝛾𝛾1�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0�

2 − 𝑇𝑇𝑖𝑖𝑝𝑝
𝜕𝜕𝜉𝜉

(1)(𝜉𝜉, 𝜏𝜏) −
𝜆𝜆𝑝𝑝 + 𝑢𝑢𝑖𝑖0

𝛾𝛾1�𝜆𝜆𝑝𝑝 + 𝑢𝑢𝑖𝑖0�
2 − 𝑇𝑇𝑖𝑖𝑝𝑝

𝜕𝜕𝜂𝜂
(1)(𝜂𝜂, 𝜏𝜏),              (5.15) 

and the phase velocity is 

𝜆𝜆𝑝𝑝 = ±𝑢𝑢𝑖𝑖0 + �
𝑇𝑇𝑖𝑖𝑝𝑝
𝛾𝛾1

+
1

𝛾𝛾1𝑅𝑅1
�
1
2�

,                                                                                             (5.16) 

where    𝑅𝑅1 = 1+𝑞𝑞
2(1−𝑝𝑝) + 𝑝𝑝(𝑞𝑞+1)𝑇𝑇𝑖𝑖𝑝𝑝

2(1−𝑝𝑝)  , 𝛾𝛾1 = 1 + 3
2
𝛽𝛽2 and  𝛽𝛽 = 𝑢𝑢𝑖𝑖0

𝑐𝑐
. 

     From Eq. (5.13) it is observed that two electrostatic shock waves may be obtained, one of 

which 𝜕𝜕𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) travels from left to right and the other 𝜕𝜕𝜂𝜂

(1)(𝜂𝜂, 𝜏𝜏) travels from right to left. 

For the next order of 𝜀𝜀 yields 

                                                                     𝜕𝜕(2) = 𝜕𝜕𝜉𝜉
(2)(𝜉𝜉, 𝜏𝜏) + 𝜕𝜕𝜂𝜂

(2)(𝜂𝜂, 𝜏𝜏) ,             (5.17) 

𝑛𝑛𝑖𝑖
(2) =

1

𝛾𝛾1�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0�
2 − 𝑇𝑇𝑖𝑖𝑝𝑝

𝜕𝜕𝜉𝜉
(2)(𝜉𝜉, 𝜏𝜏) +

1

𝛾𝛾1�𝜆𝜆𝑝𝑝 + 𝑢𝑢𝑖𝑖0�
2 − 𝑇𝑇𝑖𝑖𝑝𝑝

𝜕𝜕𝜂𝜂
(2)(𝜂𝜂, 𝜏𝜏),                 (5.18) 

and 

𝑢𝑢𝑖𝑖
(2) =

𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0
𝛾𝛾1�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0�

2 − 𝑇𝑇𝑖𝑖𝑝𝑝
𝜕𝜕𝜉𝜉

(2)(𝜉𝜉, 𝜏𝜏) −
𝜆𝜆𝑝𝑝 + 𝑢𝑢𝑖𝑖0

𝛾𝛾1�𝜆𝜆𝑝𝑝 + 𝑢𝑢𝑖𝑖0�
2 − 𝑇𝑇𝑖𝑖𝑝𝑝

𝜕𝜕𝜂𝜂
(2)(𝜂𝜂, 𝜏𝜏).                (5.19) 

Finally, considering the next higher order of 𝜀𝜀 one can be obtained the following relation 

using Eqs. (5.13)- (5.16) into account 
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−2𝜆𝜆𝑝𝑝 �
1

𝑏𝑏1 + 𝑎𝑎1�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0�
+

1
𝑏𝑏2 + 𝑎𝑎2�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0�

� 𝑢𝑢𝑖𝑖
(3)

= ��
𝜕𝜕𝜕𝜕𝜉𝜉

(1)

𝜕𝜕𝜏𝜏
+ 𝐴𝐴𝜕𝜕𝜉𝜉

(1) 𝜕𝜕𝜉𝜉
(1)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵

𝜕𝜕3𝜕𝜕𝜉𝜉
(1)

𝜕𝜕𝜉𝜉3
− 𝐶𝐶

𝜕𝜕2𝜕𝜕𝜉𝜉
(1)

𝜕𝜕𝜉𝜉2 � 𝑑𝑑𝜂𝜂

+ ��
𝜕𝜕𝜕𝜕𝜂𝜂

(1)

𝜕𝜕𝜏𝜏
− 𝐴𝐴1𝜕𝜕𝜂𝜂

(1) 𝜕𝜕𝜂𝜂
(1)

𝜕𝜕𝜂𝜂
− 𝐵𝐵1

𝜕𝜕3𝜕𝜕𝜂𝜂
(1)

𝜕𝜕𝜂𝜂3
+ 𝐶𝐶1

𝜕𝜕2𝜕𝜕𝜂𝜂
(1)

𝜕𝜕𝜂𝜂2 � 𝑑𝑑𝜉𝜉

−��𝐿𝐿𝜕𝜕𝜂𝜂
(1) −𝑀𝑀

𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

�
𝜕𝜕2𝜕𝜕𝜉𝜉

(1)

𝜕𝜕𝜉𝜉2
𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂

+ ��𝐿𝐿1𝜕𝜕𝜉𝜉
(1) −𝑀𝑀1

𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

�
𝜕𝜕2𝜕𝜕𝜂𝜂

(1)

𝜕𝜕𝜂𝜂2
𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂  ,                                                   (5.20) 

where  𝐴𝐴 =
𝑏𝑏1
2

2 �2+3𝛾𝛾2+𝛾𝛾2𝜆𝜆𝑝𝑝�−𝑇𝑇𝑖𝑖𝑝𝑝𝑚𝑚1+2𝛾𝛾1𝑚𝑚1𝑏𝑏1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�−2𝑅𝑅2�𝑇𝑇𝑖𝑖𝑝𝑝−𝛾𝛾1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�
2
�

𝛾𝛾1�𝑏𝑏1+𝑚𝑚1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0��
,  

𝐵𝐵 = 𝑇𝑇𝑖𝑖𝑝𝑝−𝛾𝛾1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�
2

𝛾𝛾1�𝑏𝑏1+𝑚𝑚1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0��
,  

𝐶𝐶 = 𝑏𝑏1𝜂𝜂1
𝛾𝛾1�𝑏𝑏1+𝑚𝑚1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0��

, 𝐴𝐴1 =
𝑏𝑏2
2

2 �2+3𝛾𝛾2+𝛾𝛾2𝜆𝜆𝑝𝑝�−𝑇𝑇𝑖𝑖𝑝𝑝𝑚𝑚2+2𝛾𝛾1𝑚𝑚2𝑏𝑏2�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�−2𝑅𝑅2�𝑇𝑇𝑖𝑖𝑝𝑝−𝛾𝛾1�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�
2
�

𝛾𝛾1�𝑏𝑏2+𝑚𝑚2�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0��
 ,      

𝐵𝐵1 = 𝑇𝑇𝑖𝑖𝑝𝑝−𝛾𝛾1�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�
2

𝛾𝛾1�𝑏𝑏2+𝑚𝑚2�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0��
,  𝐶𝐶1 = 𝑏𝑏2𝜂𝜂1

𝛾𝛾1�𝑏𝑏2+𝑚𝑚2�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0��
,    

𝐿𝐿 =
𝑏𝑏1𝑏𝑏2
2 �2+3𝛾𝛾2+

2𝛾𝛾2𝜆𝜆𝑝𝑝
𝑢𝑢𝑖𝑖0

�+𝛾𝛾1(𝑚𝑚1𝑏𝑏2−𝑚𝑚2𝑏𝑏1)�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�+𝑇𝑇𝑖𝑖𝑝𝑝𝑚𝑚1𝑚𝑚2+2�𝑇𝑇𝑖𝑖𝑝𝑝−𝛾𝛾1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�
2
�

𝛾𝛾1�𝑏𝑏1+𝑚𝑚1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0��
,    

𝑀𝑀 = 𝑏𝑏1𝛾𝛾1�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�+𝑇𝑇𝑖𝑖𝑝𝑝𝑚𝑚1+1+𝛾𝛾1𝑚𝑚1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�
2
+𝑏𝑏1𝛾𝛾1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�

𝛾𝛾1�𝑏𝑏1+𝑚𝑚1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0��
,   

𝐿𝐿1 =
𝑏𝑏1𝑏𝑏2
2 �2+3𝛾𝛾2+

2𝛾𝛾2𝜆𝜆𝑝𝑝
𝑢𝑢𝑖𝑖0

�+𝛾𝛾1(𝑚𝑚1𝑏𝑏2−𝑚𝑚2𝑏𝑏1)�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�+𝑇𝑇𝑖𝑖𝑝𝑝𝑚𝑚1𝑚𝑚2+2�𝑇𝑇𝑖𝑖𝑝𝑝−𝛾𝛾1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�
2
�

𝛾𝛾1�𝑏𝑏2+𝑚𝑚2�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0��
,   

𝑀𝑀1 = 𝑏𝑏2𝛾𝛾1�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�+𝑇𝑇𝑖𝑖𝑝𝑝𝑚𝑚2+1+𝛾𝛾1𝑚𝑚2�𝜆𝜆𝑝𝑝2−𝑢𝑢𝑖𝑖0
2 �+𝑏𝑏2𝛾𝛾1�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�

𝛾𝛾1�𝑏𝑏2+𝑚𝑚2�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0��
,  

𝑎𝑎1 = 1

𝛾𝛾1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�
2
−𝑇𝑇𝑖𝑖𝑝𝑝

,  𝑎𝑎2 = 1

𝛾𝛾1�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�
2
−𝑇𝑇𝑖𝑖𝑝𝑝

, 𝑏𝑏1 = 𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0
𝛾𝛾1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�

2
−𝑇𝑇𝑖𝑖𝑝𝑝

,  𝑏𝑏2 = 𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0
𝛾𝛾1�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�

2
−𝑇𝑇𝑖𝑖𝑝𝑝

,   

𝑅𝑅2 = (1+𝑞𝑞)(3−𝑞𝑞)
8(1−𝑝𝑝) − 𝑝𝑝(1−𝑞𝑞)(3−𝑞𝑞)𝑇𝑇𝑒𝑒𝑝𝑝2

8(1−𝑝𝑝) , and 𝛾𝛾2 = 3𝛽𝛽2. 
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The first and second terms in the right hand side of Eq. (5.20) are proportional to 𝜂𝜂(𝜉𝜉), for 

this reason, the integrand is independent of 𝜂𝜂(𝜉𝜉). Thus, these two terms are secular, which 

should be eliminated in order to avoid unexpected resonances and yields 

𝜕𝜕𝜕𝜕𝜉𝜉
(1)

𝜕𝜕𝜏𝜏
+ 𝐴𝐴𝜕𝜕𝜉𝜉

(1) 𝜕𝜕𝜉𝜉
(1)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵

𝜕𝜕3𝜕𝜕𝜉𝜉
(1)

𝜕𝜕𝜉𝜉3
− 𝐶𝐶

𝜕𝜕2𝜕𝜕𝜉𝜉
(1)

𝜕𝜕𝜉𝜉2
= 0                                                (5.21) 

and 

𝜕𝜕𝜕𝜕𝜂𝜂
(1)

𝜕𝜕𝜏𝜏
− 𝐴𝐴1𝜕𝜕𝜂𝜂

(1) 𝜕𝜕𝜂𝜂
(1)

𝜕𝜕𝜂𝜂
− 𝐵𝐵1

𝜕𝜕3𝜕𝜕𝜂𝜂
(1)

𝜕𝜕𝜂𝜂3
+ 𝐶𝐶1

𝜕𝜕2𝜕𝜕𝜂𝜂
(1)

𝜕𝜕𝜂𝜂2
= 0 .                                       (5.22) 

Equations (5.21) and (5.22) represent the two-sided traveling KdV Burger equations in the 

frame of references 𝜉𝜉 and 𝜂𝜂, where A (𝐴𝐴1), B (𝐵𝐵1), and C (𝐶𝐶1) are the coefficients of 

nonlinearity, dispersion, and dissipation, respectively. The dissipation term (Burger term) C 

(𝐶𝐶1) exists for the effect of ion kinematic viscosity 𝜂𝜂1. The reduced form of Eq. (5.21) has 

already been derived [18]: relativistic plasma with Boltzmann distributed electrons [15], 

dissipation free relativistic thermal ei plasma [44], weakly and highly relativistic plasmas with 

nonextensivity, and [16] dissipation free relativistic thermal epi plasmas. On the other hand, 

the results obtained employing reductive perturbation method [15, 16, 18, 44- 46] recovering 

classical limit for the ei [45] and the epi [46] plasmas. The third and fourth terms of Eq. (5.20) 

are not secular, it would be secular in the next order [47], and one can obtain the following 

relations:  

𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

=
𝐿𝐿
𝑀𝑀
𝜕𝜕𝜂𝜂 

(1),                                                                                                            (5.23) 

and 
𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

=
𝐿𝐿1
𝑀𝑀1

𝜕𝜕𝜉𝜉
(1) .                                                                                                         (5.24) 

To investigate the better accuracy for the interactions of two ion acoustic shock waves, one 

can consider the following expansion of the Lorentz factor (𝛾𝛾) for the case of highly 

relativistic regime as: 

𝛾𝛾 ≈ 1 +
𝑢𝑢𝑖𝑖2

2𝑐𝑐2
+

3𝑢𝑢𝑖𝑖4

8𝑐𝑐4
.                                                                                                    (5.25) 
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Inserting  Eqs. (5.4)-(5.7) and (5.25) into the Eqs. (5.1)- (5.3), a set of PDEs in various powers 

of 𝜀𝜀 can be derived. The smallest power of 𝜀𝜀 yield a set of equations whose solution can be 

expressed by the following relations: 

  𝜕𝜕(1) = 𝜕𝜕𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) + 𝜕𝜕𝜂𝜂

(1)(𝜂𝜂, 𝜏𝜏),                                                                             (5.26)   

𝑛𝑛𝑖𝑖
(1) =

1

𝛾𝛾3�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0�
2 − 𝑇𝑇𝑖𝑖𝑝𝑝

𝜕𝜕𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) +

1

𝛾𝛾3�𝜆𝜆𝑝𝑝 + 𝑢𝑢𝑖𝑖0�
2 − 𝑇𝑇𝑖𝑖𝑝𝑝

𝜕𝜕𝜂𝜂
(1)(𝜂𝜂, 𝜏𝜏),   (5.27) 

𝑢𝑢𝑖𝑖
(1) =

𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0
𝛾𝛾3�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0�

2 − 𝑇𝑇𝑖𝑖𝑝𝑝
𝜕𝜕𝜉𝜉

(1)(𝜉𝜉, 𝜏𝜏) −
𝜆𝜆𝑝𝑝 + 𝑢𝑢𝑖𝑖0

𝛾𝛾3�𝜆𝜆𝑝𝑝 + 𝑢𝑢𝑖𝑖0�
2 − 𝑇𝑇𝑖𝑖𝑝𝑝

𝜕𝜕𝜂𝜂
(1)(𝜂𝜂, 𝜏𝜏) , (5.28) 

and the phase velocity                                                     

𝜆𝜆𝑝𝑝 = ±𝑢𝑢𝑖𝑖0 + �
𝑇𝑇𝑖𝑖𝑝𝑝
𝛾𝛾3

+
1

𝛾𝛾3𝑅𝑅1
�
1
2�

,                                                                               (5.29) 

where    𝛾𝛾3 = 𝛾𝛾1 + 15
8
𝛽𝛽4. Continuing the above procedure one can derive the evolution 

equations in the same form as of Eqs. (5.21)-(5.24) except coefficients. The coefficients can 

be written in the follow form: 

𝐴𝐴 =
𝑏𝑏12
2 �2 + 3𝛾𝛾4 + 𝛾𝛾4𝜆𝜆𝑝𝑝� − 𝑇𝑇𝑖𝑖𝑝𝑝𝑎𝑎1 + 2𝛾𝛾3𝑎𝑎1𝑏𝑏1�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0� − 2𝑅𝑅2 �𝑇𝑇𝑖𝑖𝑝𝑝 − 𝛾𝛾3�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0�

2�

𝛾𝛾3�𝑏𝑏1 + 𝑎𝑎1�𝜆𝜆𝑝𝑝 − 𝑢𝑢𝑖𝑖0��
 

𝐵𝐵 = 𝑇𝑇𝑖𝑖𝑝𝑝−𝛾𝛾3�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�
2

𝛾𝛾3�𝑏𝑏1+𝑚𝑚1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0��
,𝐶𝐶 = 𝑏𝑏1𝜂𝜂1

𝛾𝛾3�𝑏𝑏1+𝑚𝑚1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0��
, 

𝐴𝐴1 =
𝑏𝑏2
2

2 �2+3𝛾𝛾4+𝛾𝛾4𝜆𝜆𝑝𝑝�−𝑇𝑇𝑖𝑖𝑝𝑝𝑚𝑚2+2𝛾𝛾3𝑚𝑚2𝑏𝑏2�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�−2𝑅𝑅2�𝑇𝑇𝑖𝑖𝑝𝑝−𝛾𝛾3�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�
2
�

𝛾𝛾3�𝑏𝑏2+𝑚𝑚2�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0��
, 

𝐵𝐵1 = 𝑇𝑇𝑖𝑖𝑝𝑝−𝛾𝛾3�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�
2

𝛾𝛾3�𝑏𝑏2+𝑚𝑚2�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0��
, 𝐶𝐶1 = 𝑏𝑏2𝜂𝜂1

𝛾𝛾3�𝑏𝑏2+𝑚𝑚2�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0��
, 

𝐿𝐿 =
𝑏𝑏1𝑏𝑏2
2 �2+3𝛾𝛾4+

2𝛾𝛾4𝜆𝜆𝑝𝑝
𝑢𝑢𝑖𝑖0

�+𝛾𝛾3(𝑚𝑚1𝑏𝑏2−𝑚𝑚2𝑏𝑏1)�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�+𝑇𝑇𝑖𝑖𝑝𝑝𝑚𝑚1𝑚𝑚2+2�𝑇𝑇𝑖𝑖𝑝𝑝−𝛾𝛾3�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�
2
�

𝛾𝛾3�𝑏𝑏1+𝑚𝑚1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0��
, 

𝑀𝑀 = 𝑏𝑏1𝛾𝛾3�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�+𝑇𝑇𝑖𝑖𝑝𝑝𝑚𝑚1+1+𝛾𝛾3𝑚𝑚1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�
2
+𝑏𝑏1𝛾𝛾3�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�

𝛾𝛾1�𝑏𝑏1+𝑚𝑚1�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0��
, 

𝐿𝐿1 =
𝑏𝑏1𝑏𝑏2
2 �2+3𝛾𝛾4+

2𝛾𝛾4𝜆𝜆𝑝𝑝
𝑢𝑢𝑖𝑖0

�+𝛾𝛾3(𝑚𝑚1𝑏𝑏2−𝑚𝑚2𝑏𝑏1)�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�+𝑇𝑇𝑖𝑖𝑝𝑝𝑚𝑚1𝑚𝑚2+2�𝑇𝑇𝑖𝑖𝑝𝑝−𝛾𝛾3�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0�
2
�

𝛾𝛾3�𝑏𝑏2+𝑚𝑚2�𝜆𝜆𝑝𝑝−𝑢𝑢𝑖𝑖0��
, 
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𝑀𝑀1 = 𝑏𝑏2𝛾𝛾3�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�+𝑇𝑇𝑖𝑖𝑝𝑝𝑚𝑚2+1+𝛾𝛾3𝑚𝑚2�𝜆𝜆𝑝𝑝2−𝑢𝑢𝑖𝑖0
2 �+𝑏𝑏2𝛾𝛾3�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0�

𝛾𝛾3�𝑏𝑏2+𝑚𝑚2�𝜆𝜆𝑝𝑝+𝑢𝑢𝑖𝑖0��
, and  𝛾𝛾4 = 𝛾𝛾2 + 15

2
𝛽𝛽4. 

5.4 Solutions of shock wave 

      Equations (5.21) and (5.22) are represent the two-sided KdV Burger equations for the two 

sided traveling waves in the considering frame of references 𝜉𝜉 and 𝜂𝜂. Putting C(C1) = 0 we get 

KdV equations, and for B (B1) = 0, we obtain Burger equations. The KdV Burger equation is 

extensively used in plasma physics. The tangent hyperbolic method seems to be a significant 

tool for the computation of exact traveling wave solutions. The solutions of ion acoustic shock 

waves governed by the Eqs.(5.21) and (5.22) can be obtained as [48]  

𝜕𝜕𝜉𝜉
(1) =

3𝐶𝐶2

25𝐴𝐴𝐵𝐵
�1 − 𝜕𝜕𝑎𝑎𝑛𝑛ℎ �

𝐶𝐶
10𝐵𝐵

�𝜉𝜉 −
6𝐶𝐶2

25𝐵𝐵
𝜏𝜏���

2

,                                                           (5.30) 

and 

𝜕𝜕𝜂𝜂
(1) =

3𝐶𝐶12

25𝐴𝐴1𝐵𝐵1
�1 + 𝜕𝜕𝑎𝑎𝑛𝑛ℎ �

𝐶𝐶1
10𝐵𝐵1

�𝜂𝜂 +
6𝐶𝐶12

25𝐵𝐵1
𝜏𝜏���

2

,                                                    (5.31) 

where 𝜏𝜏 denotes the stretched time coordinate in case of the slow time scale. The functions 𝑃𝑃0 

and 𝑄𝑄0 can be determined from Eqs.(5.23) and (5.24), respectively. The electrostatic wave 

potential 𝜕𝜕(1) for weak head-on collision is given by  

𝜕𝜕(1) = 𝜀𝜀2
3𝐶𝐶2

25𝐴𝐴𝐵𝐵
�1 − 𝜕𝜕𝑎𝑎𝑛𝑛ℎ �

𝐶𝐶
10𝐵𝐵

�𝜉𝜉 −
6𝐶𝐶2

25𝐵𝐵
𝜏𝜏���

2

+ 𝜀𝜀2
3𝐶𝐶12

25𝐴𝐴1𝐵𝐵1
�1 + 𝜕𝜕𝑎𝑎𝑛𝑛ℎ �

𝐶𝐶1
10𝐵𝐵1

�𝜂𝜂 +
6𝐶𝐶12

25𝐵𝐵1
𝜏𝜏���

2

.                                (5.32) 

 It is evident that the solution (5.32) depends thoughtfully on the plasma parameters 𝑝𝑝, 𝑞𝑞, 𝑇𝑇𝑒𝑒𝑝𝑝, 

𝑇𝑇𝑖𝑖𝑝𝑝, 𝛽𝛽,  𝜉𝜉, 𝜂𝜂, 𝜏𝜏, and 𝜂𝜂1.   

     To explain the head-on collision of ion acoustic shock waves asymptotically, it is necessary 

to find the solution of Eqs.(5.23) and (5.24) with suitable boundary conditions. The phase 

change, which occurs due to the collision, can be obtained solving Eqs. (5.23) and (5.24) and 

can be written as  

  𝑃𝑃0(𝜂𝜂, 𝜏𝜏) =
6𝐿𝐿𝐶𝐶1
5𝑀𝑀𝐴𝐴1

�𝜕𝜕𝑎𝑎𝑛𝑛ℎ �
𝐶𝐶1

25𝐵𝐵1
(𝜂𝜂 + 6𝐶𝐶12𝜏𝜏 25𝐵𝐵1⁄ )� + 1�  

−
12𝐿𝐿𝐶𝐶1
5𝑀𝑀𝐴𝐴1

�𝑙𝑙𝑛𝑛 �−1 + 𝜕𝜕𝑎𝑎𝑛𝑛ℎ �
𝐶𝐶1

25𝐵𝐵1
(𝜂𝜂 + 6𝐶𝐶12𝜏𝜏 25𝐵𝐵1⁄ )��� 
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and 

           𝑄𝑄0(𝜉𝜉, 𝜏𝜏) =
6𝐿𝐿1𝐶𝐶
5𝑀𝑀1𝐴𝐴

�𝜕𝜕𝑎𝑎𝑛𝑛ℎ �
𝐶𝐶

25𝐵𝐵
(𝜉𝜉 − 6𝐶𝐶2𝜏𝜏 25𝐵𝐵⁄ )� − 1�

+
12𝐿𝐿1𝐶𝐶
5𝑀𝑀1𝐴𝐴

�𝑙𝑙𝑛𝑛 �1 + 𝜕𝜕𝑎𝑎𝑛𝑛ℎ �
𝐶𝐶

25𝐵𝐵
(𝜉𝜉 − 6𝐶𝐶2𝜏𝜏 25𝐵𝐵⁄ )���.    

Therefore, up to 𝑂𝑂(𝜀𝜀2), the trajectories of the two shock waves due to head-on collision are  

𝜉𝜉 =   𝜀𝜀�𝜕𝜕 − 𝜆𝜆𝑝𝑝𝜕𝜕� + 𝜀𝜀2
6𝐿𝐿𝐶𝐶1
5𝑀𝑀𝐴𝐴1

�𝜕𝜕𝑎𝑎𝑛𝑛ℎ �
𝐶𝐶1

25𝐵𝐵1
(𝜂𝜂 + 6𝐶𝐶12𝜏𝜏 25𝐵𝐵1⁄ )� + 1�   

− 𝜀𝜀2
12𝐿𝐿𝐶𝐶1
5𝑀𝑀𝐴𝐴1

�𝑙𝑙𝑛𝑛 �−1 + 𝜕𝜕𝑎𝑎𝑛𝑛ℎ �
𝐶𝐶1

25𝐵𝐵1
(𝜂𝜂 + 6𝐶𝐶12𝜏𝜏 25𝐵𝐵1⁄ )���  

and 

𝜂𝜂 = 𝜀𝜀�𝜕𝜕 + 𝜆𝜆𝑝𝑝𝜕𝜕� + 𝜀𝜀2
6𝐿𝐿1𝐶𝐶
5𝑀𝑀1𝐴𝐴

�𝜕𝜕𝑎𝑎𝑛𝑛ℎ �
𝐶𝐶

25𝐵𝐵
(𝜉𝜉 − 6𝐶𝐶2𝜏𝜏 25𝐵𝐵⁄ )� − 1�

+ 𝜀𝜀2
12𝐿𝐿1𝐶𝐶
5𝑀𝑀1𝐴𝐴

�𝑙𝑙𝑛𝑛 �1 + 𝜕𝜕𝑎𝑎𝑛𝑛ℎ �
𝐶𝐶

25𝐵𝐵
(𝜉𝜉 − 6𝐶𝐶2𝜏𝜏 25𝐵𝐵⁄ )���.              

To find the phase shifts due to head-on collision of two solitons, it is assumed that initially 

(𝜕𝜕 → −∞), they are asymptotically far from each other, that is, one (the right traveling soliton) 

is at 𝜉𝜉 = 0, 𝜂𝜂 → −∞, and other (the left traveling soliton) is at 𝜂𝜂 = 0, 𝜉𝜉 → +∞. After head-on 

collision (𝜕𝜕 → +∞), the right traveling soliton is far to the right of left traveling soliton, that is, 

the right traveling soliton is at 𝜉𝜉 = 0, 𝜂𝜂 → +∞, and the left traveling soliton is at 𝜂𝜂 = 0, 𝜉𝜉 →

−∞. So one can obtain the corresponding phase shifts Δ𝑣𝑣+ and Δ𝑣𝑣− as follows: 

Δ𝑣𝑣+ = 𝜀𝜀�𝜕𝜕 + 𝜆𝜆𝑝𝑝𝜕𝜕��𝜉𝜉=0,𝜂𝜂= ∞
- 𝜀𝜀�𝜕𝜕 + 𝜆𝜆𝑝𝑝𝜕𝜕��𝜉𝜉=0,𝜂𝜂=−∞

 = 𝜀𝜀2 12𝐶𝐶𝐿𝐿1
5𝐴𝐴𝑀𝑀1

 

and Δ𝑣𝑣− = 𝜀𝜀�𝜕𝜕 − 𝜆𝜆𝑝𝑝𝜕𝜕��𝜂𝜂=0,𝜉𝜉=∞
- 𝜀𝜀�𝜕𝜕 − 𝜆𝜆𝑝𝑝𝜕𝜕��𝜂𝜂=0,𝜉𝜉=−∞

 = −𝜀𝜀2 12𝐶𝐶1𝐿𝐿
5𝐴𝐴1𝑀𝑀

.  

Therefore,         

Δ𝑣𝑣+ = 𝜀𝜀2
12𝐶𝐶𝐿𝐿1
5𝐴𝐴𝑀𝑀1

, Δ𝑣𝑣− = −𝜀𝜀2
12𝐶𝐶1𝐿𝐿
5𝐴𝐴1𝑀𝑀

  .                                                     (5.33) 
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5.5 Results and discussion 

It is well known that the most important characteristic of solitons after collision is the 

asymptotic maintenance of their structures. A number of researchers [49-51] have studied the 

head-on collision between solitons along with their corresponding phase shift considering unit 

amplitude. But the phase shifts are produced due to non-coherent amplitudes of the interacting 

solitons and so that our main interest is to investigate the effects of plasma parameters such as 

temperature ratio, kinematic viscosity, ion density, relativistic streaming factor on the 

properties as well as on trajectories of ion acoustic shock waves after collision. Besides, the 

coefficients of nonlinearity, dispersion, and dissipation are depended on plasma parameters, 

so it is also important to study the effects of these parameters on the structures of ion acoustic 

shock waves. To study the properties and structures of ion acoustic shock waves, the KdV 

Burger equations are derived both for weakly and highly relativistic regimes considering the 

plasma system composing relativistic warm ions, nonextensive electrons, and positions. The 

effects of plasma parameters on nonlinearity and dispersion coefficients, the evolution of 

electrostatic resonance, and phase shifts, as well as amplitudes and collision processes 

involved, are investigated considering 𝑇𝑇𝑒𝑒= 0.2-140 MeV, 𝑇𝑇𝑝𝑝= 0.2-40 MeV,  and 𝑇𝑇𝑖𝑖 = 2-100 

MeV [39]. The effects of electron to positron temperature ratio (𝑇𝑇𝑒𝑒𝑝𝑝) on the nonlinearity 

coefficient (𝐴𝐴) with the relativistic streaming factor (𝛽𝛽) are displayed in Figs.5.1 (a) and 

5.1(b). It is observed that 𝐴𝐴 increases with increasing 𝑇𝑇𝑒𝑒𝑝𝑝 and 𝛽𝛽 for both weakly and highly 

relativistic regimes. It is noticed that the change in 𝐴𝐴 of the ion acoustic shock waves in the 

highly relativistic regime (HRR) is rather higher than that of the weakly relativistic regime 

(WRR).  Figures 5.1(c) and 5.1(d) show the influence of the nonextensivity parameter (𝑞𝑞) on 

𝐴𝐴 with the ion to the positron temperature ratio (𝑇𝑇𝑖𝑖𝑝𝑝). It is observed from these figures that 𝐴𝐴 

of the ion acoustic shock are also increasing with the increase in 𝑞𝑞 in both weakly  and highly 

relativistic regimes, but 𝐴𝐴 increases with 𝑇𝑇𝑖𝑖𝑝𝑝 [Fig.5.1(c)] only in weakly relativistic regimes, 

and 𝐴𝐴 is insignificant [Fig.1(d)] in highly relativistic regime. 
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Figure 5.2 depicts the influence on the dispersion coefficient (𝐵𝐵) with 𝛽𝛽 for 𝑇𝑇𝑒𝑒𝑝𝑝 =

 1.0,  1.3, and 1.6 [5.2(a) and 5.2(b)] taking the typical values of the remaining plasma 

parameters as 𝑞𝑞 = 0.5, 𝑇𝑇𝑖𝑖𝑝𝑝=2.5, 𝜂𝜂1= 0.09, 𝑝𝑝 = 0.45, and 𝑇𝑇𝑖𝑖𝑝𝑝 = 2.5 for 𝑞𝑞 =  0.5, 0.8, 0.9 

[Figs.5.2(c) and 5.2(d)] and 𝑝𝑝 = 0.45, 𝜂𝜂1= 0.09, 𝛽𝛽 = 0.01, and 𝑇𝑇𝑒𝑒𝑝𝑝 = 1.0. Figures 5.2(a) and 

5.2(b) reveal that 𝐵𝐵 is increasing with the increase in 𝑇𝑇𝑒𝑒𝑝𝑝 in both HRR and WRR, but there is 

no effect observed of 𝛽𝛽 on 𝐵𝐵 in both cases. 𝐵𝐵 is smaller for weakly relativistic than that of 

highly relativistic regimes for 𝑇𝑇𝑒𝑒𝑝𝑝, which indicates that the ion acoustic shock waves 

propagate faster in weakly relativistic regime rather than highly relativistic case. Figures 

5.2(c) and 5.2(d) show that 𝐵𝐵 is increasing with 𝑞𝑞 and 𝑇𝑇𝑖𝑖𝑝𝑝 for HRR and WRR. It is noted that 

𝐵𝐵 is negative; therefore, only negative electrostatic potential of  ion acoustic shock waves are 

Figure 5.1 Effect on 𝐴𝐴 of 𝑇𝑇𝑒𝑒𝑝𝑝  ((a), (b)) with 𝛽𝛽 taking 𝑝𝑝 =  0.6 , 𝑞𝑞 = 0.5, 𝜂𝜂1= 
0.09,and 𝑇𝑇𝑖𝑖𝑝𝑝 = 2.5 and  𝑞𝑞 ((c), (d)) with 𝑇𝑇𝑖𝑖𝑝𝑝, remaining parameters are considered as 
(a), 𝛽𝛽 = 0.01and 𝑇𝑇𝑒𝑒𝑝𝑝 = 1 in case of weakly relativistic (left column) and highly 
relativistic (right column) regimes. 
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investigated. This means that the energy is absorbed by the solitons for the phase shift due to 

collisions without the change of their shapes and velocities.  

Figures. 5.3(a) and 5.3(b) illustrate the effects of kinematic viscosity (𝜂𝜂1) and 𝛽𝛽 on phase 

shifts taking typical values of the remaining plasma parameter as = 0.18, 𝑝𝑝 =  0.3, 𝑇𝑇𝑖𝑖𝑝𝑝 = 2.5, 

and 𝑇𝑇𝑒𝑒𝑝𝑝 = 2. It is found that the phase shifts are decreasing monotonically with increasing 𝛽𝛽. 

On the other hand, the phase shifts are increasing with the increase in 𝜂𝜂1 for both WRR and 

HRR. The increment (decrement) of phase shift depends on the gain (loss) of energy during 

Figure 5.2 Effect on 𝐵𝐵 of 𝑇𝑇𝑒𝑒𝑝𝑝 ((a), (b)) with 𝛽𝛽, other parameters considered as q =0.5, 
𝑇𝑇𝑖𝑖𝑝𝑝=2.5, 𝜂𝜂1= 0.09, and  𝑝𝑝 = 0.45, and 𝑞𝑞 ((c), (d)) with 𝑇𝑇𝑖𝑖𝑝𝑝 remaining parameters are 
considered as (a),𝛽𝛽 = 0.01and 𝑇𝑇𝑒𝑒𝑝𝑝 = 1.0  in the case of weakly relativistic (right 
column) and highly relativistic (left column) regimes.    
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the collisions. 

 

The phase velocity decreases due to the increase in 𝜂𝜂1; as a result, 𝐴𝐴, the coefficient (𝐿𝐿), 

and the dissipation coefficient (𝐶𝐶) turn to increase, which further enhances the phase shift 

(Δ𝑣𝑣+) and the soliton gains energy in the collision processes. Figures 5.3(c) and 5.3(d) 

elucidate the change of phase shifts due to the effects of 𝑝𝑝 and 𝑇𝑇𝑒𝑒𝑝𝑝 considering  𝑝𝑝 = 0.3, 0.4, 

and 0.5, and the remaining parameters are kept constant. From the figures, it is observed that 

the phase shift is decreasing for the effects of both  𝑝𝑝 and 𝑇𝑇𝑒𝑒𝑝𝑝 in WRR and HRR. It is evident 

that the phase shift is positive which dictates that the post collisional part of the soliton moves 

ahead of the initial trajectory. The collision process between two ion acoustic shock waves is 

illustrated in Fig.5.4 for 𝑇𝑇𝑒𝑒𝑝𝑝 = 0.1 [Fig. 5.4(a)] and 𝑇𝑇𝑒𝑒𝑝𝑝 = 0.2 [Fig. 5.4(b)] in WRR, taking 

𝑝𝑝 = 0.6, 𝑞𝑞 = 0.5, 𝛽𝛽 = 0.01, 𝜂𝜂1 = 0.09,  and 𝑇𝑇𝑖𝑖𝑝𝑝 = 2.5.  From these figures, it is seen that the 

Figure 5.3 Effect on ∆𝑣𝑣+ of 𝜂𝜂1 ((a), (b)) with 𝛽𝛽  taking remaining parameters 
𝑞𝑞 =  0.18, 𝑝𝑝 =  0.3, 𝑇𝑇𝑖𝑖𝑝𝑝 = 2.5 and 𝑇𝑇𝑒𝑒𝑝𝑝=2 and 𝑝𝑝 ((c), (d)) with 𝑇𝑇𝑒𝑒𝑝𝑝  taking as(𝑎𝑎),  
𝛽𝛽 = 0.01 and 𝜂𝜂1 = 0.3 in case of HRR (left column) and WRR (right column). 
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width of the ion acoustic shock waves are increasing with increasing 𝑇𝑇𝑒𝑒𝑝𝑝. Figures 5.4(c) and 

5.4(d) represent the contour plot of Fig.5.4 (a) and Fig. 5.4(b),  respectively.  

 

Figures 5.5(a) and 5.5(b) reveal that the widths of the ion acoustic shock waves remain 

unchanged with increasing 𝜂𝜂1 while the widths of the ion acoustic shock waves are increasing 

due to the effect of 𝑇𝑇𝑖𝑖𝑝𝑝 which are shown in Figs. 5.6(a) and 5.6(b) in case of WRR. The 

figures in the right hand columns of Figs. 5.5 and Figs. 5.6 represent the contour plots of the 

left hand columns, respectively.  

The widths of the ion acoustic shock waves in HRR are increasing with increasing 𝑇𝑇𝑒𝑒𝑝𝑝 that 

can be observed from Figs. 5.7(a) and 5.7(b). Similar results are also found for the effect of 𝜂𝜂1 

Figure 5.4 The electrostatic potential (𝜕𝜕(1)) for (a) 𝑇𝑇𝑒𝑒𝑝𝑝 = 0.1, (b) 𝑇𝑇𝑒𝑒𝑝𝑝 = 0.2 , (c) is the 
contour plot of (a), and (d) is the contour plot of (b), respectively, with various values of 
𝜏𝜏  considering q=0.5, p= 0.6, 𝛽𝛽=0.01, 𝜂𝜂1= 0.09, and 𝑇𝑇𝑖𝑖𝑝𝑝=2.5 in the weakly relativistic 
regime.  
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as shown in Figs. 5.8(a) and 5.8(b). Figures 5.7(c), 5.7(d), 5.8(c), and 5.8(d) are the contour 

plots of Figs. 5.7(a), 5.7(b), 5.8(a), and 5.8(b), respectively, in HRR.    

 

Figures 5.9(a) and 5.9(b) display the effect of 𝑇𝑇𝑖𝑖𝑝𝑝 on the electrostatic potential (𝜕𝜕(1)). It is 

observed that the width of the soliton remains unchanged in HRR. Figures 5.9(c) and 5.9(d) 

are also the contour plots of Figs. 5.9(a) and 5.9(b), respectively. It has to be mentioned that 

𝑇𝑇𝑖𝑖𝑝𝑝 plays a crucial role to form ion acoustic shocks in WRR rather than HRR. Besides, only 

the rarefactive electrostatic ion acoustic shocks are found for different values of 𝑇𝑇𝑒𝑒𝑝𝑝, 𝑇𝑇𝑖𝑖𝑝𝑝, and 

𝜂𝜂1 in both the cases of WRR and HRR in the plasmas considered.  

Figure 5.5 The electrostatic potential (𝜕𝜕(1)) for (a) 𝜂𝜂1=0.09, (b) 𝜂𝜂1 = 0.15, and (c) 
is the contour plot of (a), and (d) is the contour plot of (b), respectively, with 
various values of 𝜏𝜏  considering 𝑞𝑞 = 0.5, 𝑝𝑝 =  0.6, 𝛽𝛽 = 0.01, 𝑇𝑇𝑒𝑒𝑝𝑝= 1.0, and 𝑇𝑇𝑖𝑖𝑝𝑝=2.5 
in the weakly relativistic regime. 
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The changes in amplitudes (𝜕𝜕0 = 3𝐶𝐶2 25𝐴𝐴𝐵𝐵⁄ ) are depicted in Figs. 5.10(a)-5.10(f) for 𝛽𝛽, 

𝜂𝜂1, and 𝑝𝑝, taking 𝑝𝑝 = 0.6, 𝑞𝑞 = 0.4, 𝛽𝛽 = 0.001, 𝑇𝑇𝑖𝑖𝑝𝑝 = 2.5, 𝜂𝜂1 = 0.1, and 𝑇𝑇𝑒𝑒𝑝𝑝 = 1, 

respectively. It is seen from Figs. 5.10(a) and 5.10(b) that the amplitudes of ion acoustic 

shock waves are increasing due to the effects of 𝛽𝛽 but are decreasing due to the effect of 𝑇𝑇𝑒𝑒𝑝𝑝 

in both regimes. However, the amplitudes of ion acoustic shock waves are relatively higher 

for HRR than those of WRR due to the increase of 𝛽𝛽 and 𝑇𝑇𝑒𝑒𝑝𝑝. The two- and three-term 

expansions of Lorentz factor are considered for the weakly and highly relativistic cases, 

respectively. Due to the increasing relativistic streaming factor, the nonlinearity (convection) 

in the considered plasma system becomes weaken, and the solitons gain the energies; 

consequently, the peak amplitude of the shock wave grows up.   

Figure 5.6 The electrostatic potential (𝜕𝜕(1)) for (a) 𝑇𝑇𝑖𝑖𝑝𝑝 = 2.5 , (b) 𝑇𝑇𝑖𝑖𝑝𝑝 = 3.0, and (c) is 
the contour plot of (a), and (d) is the contour plot of (b), respectively, with various 
values of 𝜏𝜏 considering q=0.5, p= 0.6, 𝛽𝛽=0.01, 𝑇𝑇𝑒𝑒𝑝𝑝= 1.0, and 𝜂𝜂1=0.09 in the weakly 
relativistic regime. 
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As a result, the amplitudes of ion acoustic shock waves are relatively higher for HRR than 

that of WRR due to the increase in 𝛽𝛽.The effects of 𝜂𝜂1 and 𝑞𝑞 on the amplitudes of ion acoustic 

shock waves are presented in Figs.5.10(c) and 5.10(d). It is found that in both cases of WRR 

and HRR, the amplitudes of ion acoustic shock waves are reduced for the effects of both  𝜂𝜂1 

and 𝑞𝑞. Figures 5.10(e) and 5.10(f) show the influence of 𝑝𝑝 and 𝑇𝑇𝑖𝑖𝑝𝑝 on the amplitudes of ion 

acoustic shock waves in the case of WRR and HRR. It is found that the amplitudes are 

decreasing with the increase in  𝑝𝑝 in both cases. It is interesting to note that the amplitudes are 

increasing in WRR, but it is decreasing in HRR due to the effect of 𝑇𝑇𝑖𝑖𝑝𝑝.   

Figure 5.7 The electrostatic potential (𝜕𝜕(1)) for (a) 𝑇𝑇𝑒𝑒𝑝𝑝 = 1.0, (b) 𝑇𝑇𝑒𝑒𝑝𝑝 = 2.0, and 
(c) is the contour plot of (a), and (d) is the contour plot of (b), respectively, with 
various values of 𝜏𝜏 considering q= 0.5, p= 0.6, 𝛽𝛽=0.01,𝜂𝜂1= 0.09, and 𝑇𝑇𝑖𝑖𝑝𝑝 = 2.5 in 
the highly relativistic regime. 
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The reason is that with the increase in 𝑇𝑇𝑖𝑖, the convection exceeds dispersion in the system, 

and consequently, the amplitudes of the solitons are decreasing. Further, the amplitudes of the 

solitons are restraining due to the increase of positron concentration.  In fact, the increase in 

positron concentration can be interpreted as the depopulation of ions due to which the driving 

force (for the ion inertia) decreases. As a result, the amplitudes of the solitons are decreasing, 

and hence, the ion acoustic shock waves are generated. Figures 5.11(a) and 5.11(b) display 

the time evolution potential profiles of the spatial soliton solutions 𝜕𝜕𝜉𝜉
(1) and 𝜕𝜕𝜂𝜂

(1)for numerous 

values of 𝜏𝜏 for the head-on collision. It is observed that the soliton 𝜕𝜕𝜉𝜉
(1)  is traveling toward 

right direction, while  𝜕𝜕𝜂𝜂
(1) towards left direction with increasing time. This result is in good 

agreement with the analytical solution [52].  

Figure 5.8 The electrostatic potential (𝜕𝜕(1)) for (a) 𝜂𝜂1=0.09, (b)𝜂𝜂1= 0.10, and (c) is 
the contour plot of (a), and (d) is the contour plot of (b), respectively, with various 
values of 𝜏𝜏 considering q=0.5, p= 0.6, 𝛽𝛽=0.01, 𝑇𝑇𝑒𝑒𝑝𝑝 = 1.0 and 𝑇𝑇𝑖𝑖𝑝𝑝 = 2.5 in the 
highly relativistic regime. 
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5.6 Conclusions 

The plasma system consisting of relativistic warm ions, nonextensive electrons, and 

positions are considered to investigate the head-on collision between ion acoustic shock 

waves, the change of phase shifts and amplitudes, taking into account the effects of 

nonlinearity and dispersion. To do so, two-sided KdV Burger equations are derived with help 

of ePLK method.  

Figure 5.9 The electrostatic potential (𝜕𝜕(1)) for (a)𝑇𝑇𝑖𝑖𝑝𝑝 = 2.5, (b) 𝑇𝑇𝑖𝑖𝑝𝑝 = 3.0, and 
(c) is the contour plot of (a), and (d) is the contour plot of (b), respectively, with 
various values of 𝜏𝜏  considering 𝑞𝑞 = 0.5, 𝑝𝑝 =  0.6, 𝛽𝛽=0.01, 𝑇𝑇𝑒𝑒𝑝𝑝 = 1.0 and 𝜂𝜂1 =
0.09 in the highly relativistic regime. 
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Two shock waves, one is at 𝜉𝜉 = 0, 𝜂𝜂 → −∞ and the other at 𝜂𝜂 = 0, 𝜉𝜉 → +∞ are traveling 

toward each other and collide at 𝜕𝜕 = 0 and then depart from each other.  It is observed that 

𝑇𝑇𝑒𝑒𝑝𝑝, 𝑇𝑇𝑖𝑖𝑝𝑝, 𝜂𝜂1, 𝑝𝑝, 𝛽𝛽, and 𝑞𝑞 significantly modify the structures of the shock waves. The phase 

shifts are found to change due to the effects of 𝑇𝑇𝑒𝑒𝑝𝑝, 𝛽𝛽, 𝜂𝜂1, and 𝑝𝑝. The results reveal that the 

electrostatic ion acoustic shock waves become rarefactive for the temperature ratios, 

kinematic viscosity, and superthermality in both WRR and HRR.   

Figure 5.10 Effect of 𝑇𝑇𝑒𝑒𝑝𝑝 and 𝛽𝛽 ((a), (b)) taking  𝑝𝑝 =  0.6, 𝜂𝜂1 = 0.1, 𝑇𝑇𝑖𝑖𝑝𝑝  = 2.5, and 
𝑞𝑞 = 0.4, 𝑞𝑞 and 𝜂𝜂1 ((c), (d)) considering 𝑝𝑝 =  0.6,𝑇𝑇𝑒𝑒𝑝𝑝 = 1, 𝛽𝛽 = 0.001, and 𝑇𝑇𝑖𝑖𝑝𝑝 =
2.5, and 𝑇𝑇𝑖𝑖𝑝𝑝and 𝑝𝑝 ((e), (f)) for 𝛽𝛽 =  0.001, 𝑇𝑇𝑒𝑒𝑝𝑝 = 1, 𝑞𝑞 =  0.5, and  𝜂𝜂1 = 0.1on the 
amplitudes of ion acoustic shock waves in case of weakly (left column) and highly 
(right column) relativistic regimes. 
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The amplitudes of ion acoustic shock waves are increasing for WRR but decreasing for 

HRR due to increasing ion thermal velocities. Besides, the amplitudes of the solitons are 

detaining due to the increase in the positron concentration for the depopulation of ions. The 

results obtained may be useful for the clarifications of interactions between ion acoustic shock 

waves in astrophysical, especially in pulsar magnetosphere and laser produced plasmas in 

laboratory where nonextensive electrons, positrons and relativistic ions exist.   

 

 

 

 

Figure 5.11 Effects of 𝜏𝜏, 𝑝𝑝, 𝑞𝑞, 𝛽𝛽, 𝑇𝑇𝑖𝑖𝑝𝑝, and 𝑇𝑇𝑒𝑒𝑝𝑝 on the potential profiles of the soliton  

𝜕𝜕𝜉𝜉
(1)(solid lines) and 𝜕𝜕𝜂𝜂

(1) (dash- dotted lines) for (a) weakly and (b) highly 
relativistic regimes, taking the typical of the parameters as in Fig. 5.9 and 𝑇𝑇𝑖𝑖𝑝𝑝 = 2.5. 
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Abbreviation and Nomenclature:  

KdV = Korteweg-de Vries  

ePLK = extended Poincaré-Lighthill-Kuo 

WRR (HRR) = weakly (highly) relativistic regime 

ASCA = Advanced Satellite for Cosmology and Astrophysics 

ep = electron-positron 

epi = electron-positron-ion 

M eV = mega electron volt 

𝑛𝑛𝑖𝑖(𝑢𝑢𝑖𝑖) = number density (fluid velocity) of relativistic ion 

𝑛𝑛𝑒𝑒�𝑛𝑛𝑝𝑝� = concentration of nonextensive electron (positron) 

𝜕𝜕/Φ = electrostatic potential 

𝐶𝐶𝑠𝑠 = thermal speed 

Γ = Gamma function 

𝑇𝑇𝑖𝑖 = ion temperature  

𝑇𝑇𝑝𝑝 = positron temperature  

𝑇𝑇𝑒𝑒 = electron temperature  

𝑚𝑚𝛼𝛼= mass of 𝛼𝛼 species 

𝑒𝑒𝛼𝛼= charge of 𝛼𝛼 species 

𝑘𝑘𝐵𝐵= Boltzmann constant 

𝑛𝑛𝛼𝛼0 = unperturbed density of 𝛼𝛼 species 

𝑣𝑣𝛼𝛼 = velocity of 𝛼𝛼 species 

𝑇𝑇𝛼𝛼 = temperature of 𝛼𝛼 species 

𝑞𝑞𝑒𝑒 = nonextensive parameter of electron 

𝑞𝑞𝑝𝑝 = nonextensive parameter of positron 

𝑇𝑇𝑖𝑖𝑝𝑝 = temperature ratio of ion to electron temperature 

𝑇𝑇𝑒𝑒𝑝𝑝 = temperature ratio of electron to positron temperature 

𝜆𝜆𝐷𝐷𝑒𝑒 = electron Debye length 

𝜔𝜔𝑝𝑝𝑖𝑖 = ion plasma frequency 

𝜂𝜂𝑖𝑖 = viscosity coefficient of ion 

𝜂𝜂1 = 𝜂𝜂𝑖𝑖 𝜀𝜀⁄  

𝛾𝛾 = Lorentz factor 

𝑝𝑝 = 𝑛𝑛𝑝𝑝0 𝑛𝑛𝑒𝑒0⁄  = density ratio of unperturbed positron to electron density 

𝛽𝛽 = relativistic streaming factor 
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𝜆𝜆𝑝𝑝 = phase velocity of ion acoustic shock waves 

𝐴𝐴 (𝐴𝐴1) = coefficient of nonlinearity in KdVB equation 

𝐵𝐵 (𝐵𝐵1) = coefficient of dispersion in KdVB equation 

𝐶𝐶 (𝐶𝐶1) = coefficient of dissipation in KdVB equation 

𝛻𝛻𝑣𝑣−(𝛻𝛻𝑣𝑣+) = phase shift of right (left) moving soliton 



 
 

Chapter 6 
 

Head-on collision between positron acoustic waves in homogeneous and 
inhomogeneous plasmas 

 

 

6.1 Introduction 

   It is well known that the electron–positron (ep) and electron–positron–ion (epi) plasmas are 

existed in astrophysical and space plasmas, especially in the ionosphere [1], auroral 

acceleration regions [2], solar wind [3], quasar and pulsar magnetosphere [4], active galactic 

nuclei [4], Van Allen radiation belts [5], polar cup of fast rotating neutron stars [6], 

semiconductor plasmas [7], intense laser fields [8] and so on. The ep plasmas are not only 

existed in astrophysical objects, but also produced in laboratory in which the positrons may be 

used to probe the particle transport in tokamak plasmas [9-10]. However, it is not an easy task 

to the researchers for the production of astrophysical or space like plasmas in the laboratory 

for better understanding of the basic characteristics of plasmas. Further, one may frequently 

encounters nonlinear collective influences to the plasmas, which cannot appropriately be 

considered without tedious mathematical techniques. The dispersion and dissipation of waves 

along with nonlinearities are produced several consistent structures in the plasmas, such as 

solitary waves, shock waves, double layer, vortices, etc., which play important roles for 

understanding physical phenomena from both the theoretical and experimental point of views. 

Therefore, the studies of nonlinear wave propagation in the epi plasmas become one of the 

most essential aspects in recent years due to its broad applications and potentiality as 

mentioned earlier. A number of researchers [11-22] have studied the nonlinear wave 

propagation in different epi plasmas. Ghosh and Bharuthram [15] have described the small 

but finite amplitude ion acoustic solitons and double layers in plasmas consisting of 

Boltzmann electrons, Boltzmann positrons, singly charged cold positive ions, and negatively 

charged static dusts and found the existence of both compressive and rarefactive solitons as 

well as double layers in the considered plasma system. Besides, plasmas in space or in 

laboratories may contain substantially high energy particles. The high energy particles may 

arise due to the influence of external forces acting on the natural space plasmas or wave 

particle interactions. Adriani et al. [23] observed the abundance of positrons in the cosmic 
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radiation in the energy range from 1.5–100 GeV through PAMELA satellite. Surko et al. [24] 

carried out experiment for the development of materials for conversion from fast (several 

hundred keV), through either radioactive decay or pair production, to slow (few eV) 

positrons. The annihilation, for the interaction of electrons and positrons, usually occurs at 

much longer characteristic time scales compared to the time of collective interaction between 

the charged particles [25-26]. Yu and Luo [27] have showed that the different species occupy 

different regions of phase space and therefore it is reasonable to consider different 

temperatures of the species in the multi-species plasma model for constructing quasi-

stationary nonlinear structures. Jilani et al. [28] have investigated the properties of fully 

nonlinear electron  acoustic solitary waves in an unmagnetized and collisionless epi plasma 

and considered cold electron density 𝑛𝑛𝑒𝑒0𝑐𝑐 ≈ (0.1 − 0.4)cm−3, positron density 𝑛𝑛𝑝𝑝0 ≈

(1.5 − 3)cm−3, hot electron density 𝑛𝑛𝑒𝑒0ℎ ≈ 1.53 cm−3, temperature of hot electrons 𝑇𝑇𝑒𝑒ℎ ≈

(200 − 1000) eV,and temperature of positrons 𝑇𝑇𝑝𝑝 ≈ (200 − 1000) eV to satisfy various 

plasma systems from laboratory level to astrophysical environments. Moreover, astrophysical 

and space plasmas with an excess of superthermal electrons or positrons are generally 

characterized by a long tail in the high energy region, which can be studied by considering 

generalized Lorentzian or kappa distributions [29-31]. The presence of a significant number 

of superthermal particles follow kappa distribution, but not the Maxwellian one, can 

significantly change the rate of resonant energy transfer between particles and plasma waves 

[32-33]. 

      Positron acoustic waves are mainly acoustic-type, where the inertia is provided by the cold 

positron mass and the restoring force is provided by the thermal pressure of hot positrons and 

electrons. Besides, the phase speed between the thermal speed of hot positrons (𝑣𝑣ℎ𝑝𝑝) or 

electrons (𝑣𝑣𝑒𝑒) and cold positrons (𝑣𝑣𝑐𝑐𝑝𝑝) is considered as 𝑣𝑣𝑐𝑐𝑝𝑝 ≪ 𝜔𝜔 𝑘𝑘⁄ ≪ 𝑣𝑣ℎ𝑝𝑝,𝑒𝑒 and their 

frequency is much higher than ion plasma frequency. This phenomenon is allowed us to 

consider the dynamics of inertial cold positrons, non-Maxwellian hot positrons and electrons, 

and stationary ions. For instance, Tribeche et al. [34], Tribeche [35] and Sahu [36] have 

investigated the nonlinear positron acoustic solitary waves and double layers dynamics of 

mobile cold positrons in four-component epi plasmas consisting of immobile positive ions, 

mobile cold positrons, and Maxwell-Boltzmann distributed hot positrons and electrons. El-

Shamy et al. [26] have studied the head-on collision between two positron acoustic solitary 
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waves by deriving two-sided KdV equations. Recently, Alam et al. [37] have studied the 

positron acoustic KdV solitary waves, mKdV solitary waves, Gardner solitary waves, and 

double layers in the epi  plasmas composing immobile positive ions, mobile cold and hot 

positrons, and superthermal hot electrons, in unmagnetized homogeneous plasmas and have 

found that the kappa distributed electrons and positrons significantly modify amplitudes, 

widths, polarity, and phase speed of positron acoustic KdV solitary waves, mKdV solitary 

waves, Gardner solitary waves, and double layers in the plasmas. The nonlinear dynamics of 

positron acoustic waves in epi plasmas are considered for describing the physical issues in 

astrophysical and space environments [38-41]. Shah and Rakha [41] have studied the solitary 

waves excited by positron showers in naturally doped superthermal astrophysical plasmas. 

Shah et al. [42] have studied the nonlinear positron acoustic shock waves in astrophysical 

plasmas. They have mentioned that positron acoustic wave propagation is useful for better 

understanding the behaviors of several astrophysical objects, such as neutron starts [43], 

pulsar magnetosphere [4], active galactic nuclei [6], and so on. Very recently, Saha et al. [40] 

have investigated nonlinear excitations of positron acoustic waves in auroral acceleration 

regions. Saha [44] has studied qualitative changes in the dynamics of nonlinear small 

amplitude and fully nonlinear arbitrary amplitude positron acoustic waves in solar wind, 

ionosphere, lower part of magnetosphere, and auroral acceleration regions. Saha and Tamang 

[45] have analyzed positron acoustic waves in epi plasmas for understanding the qualitative 

behavior of the cosmic rays. However, the head-on collisions between KdV and mKdV 

solitary waves with their corresponding phase shifts, subsequently the production of rogue 

waves in unmagnetized homogeneous as well as KdV and mKdV solitary waves in 

inhomogeneous plasmas are considered for understanding the unrevealed physical issues in 

the plasma system [37]. When two solitary waves interact, they exchange their energies, and 

consequently produce phase shifts [46]. The phase shift, can be either positive or negative, 

depends on the velocity during the collision stage. Collision occurs in two ways: the 

overtaking collision [47] occurs when the angle between the interacting waves is zero, while 

the head-on collision [48-50] occurs when the angle between the interacting solitons is π. In 

such collision, the nonlinear evolution equations can be derived using the extended Poincaré-

Lighthill-Kuo (ePLK) method [51].The solitary wave solutions of these equations are useful 

for better understanding the electrostatic resonance phenomena that are observed in plasma 

experiments [52]. Being motivated, for the significance of the problems related to the 
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astrophysical and laboratory plasmas, the head-on collision among KdV solitary waves, 

mKdV solitary waves and rogue waves (RWs) in unmagnetized homogeneous plasmas 

consisting of immobile positive ions, mobile cold positrons, and kappa distributed hot 

positrons and electrons are investigated. The influence of plasma inhomogeneity on the 

propagation of positron acoustic KdV solitary waves and mKdV solitary waves are also 

investigated in the considered plasmas. In sequence of introduction, theoretical model and 

derivations of two-sided KdV and mKdV equations  with their corresponding phase shifts are 

presented in Section 6.2. Derivation of nonlinear Schrödinger equation (NLSE) along with its 

rational function solution is displayed in Section 6.3. Formations of KdV and mKdV 

equations in inhomogeneous plasmas with analytical solutions are presented in Section 6.4. 

The results and discussion are described in Section 6.5. Finally, the conclusion is drawn in 

section 6.6. 

6.2 Governing equations 

6.2.1 Model equations 

    Let us consider a four-component plasma system consisting of immobile positive ions, 

mobile cold positron, and kappa distributed hot positrons, and hot electrons. The charge 

neutrality condition is as 𝑛𝑛𝑒𝑒0 =  𝑛𝑛𝑝𝑝𝑐𝑐0 +  𝑛𝑛𝑝𝑝ℎ0 +  𝑛𝑛𝑖𝑖0, where  𝑛𝑛𝑖𝑖0 ,𝑛𝑛𝑒𝑒0,  𝑛𝑛𝑝𝑝𝑐𝑐0  ,and  𝑛𝑛𝑝𝑝ℎ0 are the 

unperturbed  number density of ions, electrons, cold positrons, and hot positrons, respectively. 

The nonlinear dynamics of positron acoustic waves in the plasmas [37], the normalized 

hydrodynamic fluids can be written as  
𝜕𝜕𝑛𝑛𝑝𝑝𝑐𝑐
𝜕𝜕𝜕𝜕

+
𝜕𝜕 
𝜕𝜕𝜕𝜕

(𝑛𝑛𝑝𝑝𝑐𝑐  𝑢𝑢𝑝𝑝𝑐𝑐) = 0 ,                                                                                       (6.1) 

𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐
𝜕𝜕𝜕𝜕

+  𝑢𝑢𝑝𝑝𝑐𝑐
𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

,                                                                                      (6.2) 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕2

= − 𝑛𝑛𝑝𝑝𝑐𝑐 − 𝜇𝜇𝑝𝑝ℎ �1 +
𝜎𝜎1𝜙𝜙

𝛫𝛫𝑝𝑝 −
3
2
�

−𝛫𝛫𝑝𝑝+
1
2

+ 𝜇𝜇𝑒𝑒 �1 −
𝜎𝜎2𝜙𝜙

𝛫𝛫𝑒𝑒 −
3
2
�

−𝛫𝛫𝑒𝑒+
1
2

− 𝜇𝜇𝑖𝑖 . (6.3) 

Here,  𝑛𝑛𝑝𝑝𝑐𝑐 is the cold positron number density normalized by  𝑛𝑛𝑝𝑝𝑐𝑐0  ,𝑢𝑢𝑝𝑝𝑐𝑐 is the cold positron 

fluid speed normalized by positron acoustic speed 𝐶𝐶𝑝𝑝𝑐𝑐 = �𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒𝑒𝑒/𝑚𝑚𝑝𝑝�
1/2

, ϕ is the 

electrostatic wave potential normalized by 𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒𝑒𝑒/𝑒𝑒, 𝜎𝜎1 = 𝑇𝑇𝑒𝑒𝑒𝑒/𝑇𝑇𝑝𝑝ℎ, 𝜎𝜎2 = 𝑇𝑇𝑒𝑒𝑒𝑒/𝑇𝑇𝑒𝑒, 𝜇𝜇𝑝𝑝ℎ =

𝑛𝑛𝑝𝑝ℎ0/𝑛𝑛𝑝𝑝𝑐𝑐0, 𝜇𝜇𝑒𝑒 = 𝑛𝑛𝑒𝑒0/𝑛𝑛𝑝𝑝𝑐𝑐0 , 𝜇𝜇𝑖𝑖 = 𝑛𝑛𝑖𝑖0/𝑛𝑛𝑝𝑝𝑐𝑐0, where 𝑇𝑇𝑒𝑒𝑒𝑒 = 𝑇𝑇𝑒𝑒𝑇𝑇𝑝𝑝ℎ/(𝜇𝜇𝑒𝑒𝑇𝑇𝑝𝑝ℎ + 𝜇𝜇𝑝𝑝ℎ𝑇𝑇𝑒𝑒) is the 
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effective temperature, 𝑘𝑘𝐵𝐵 is the Boltzmann constant, 𝑚𝑚𝑝𝑝 is the positron mass, e is the 

magnitude of electron charge and 𝜅𝜅𝑒𝑒(𝑝𝑝) > 3 2⁄  is the superthermal parameter for hot electrons 

(positrons), respectively. The time t is normalized by the period 𝜔𝜔𝑝𝑝𝑐𝑐−1 = �𝑚𝑚𝑝𝑝/4𝜋𝜋𝑛𝑛𝑝𝑝𝑐𝑐0𝑒𝑒2�
1/2

 of 

cold positron plasma and the space x is normalized by the positron Debye length 𝜆𝜆𝐷𝐷𝐷𝐷 =

�𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒𝑒𝑒/4𝜋𝜋𝑛𝑛𝑝𝑝𝑐𝑐0𝑒𝑒2�
1/2

. 

6.2.2 Formation of two-sided KdV equations and phase shift  

    In order to investigate the resonance of electrostatic potential and their corresponding phase 

shift, one needs to transform the normalized fluid Eqs. (6.1)-(6.3) considering the following 

coordinate [51] that give away the separation of variables and allows successful elimination of 

the seculars terms from the desired evolution equations:  

𝜉𝜉 = 𝜀𝜀�𝜕𝜕 − 𝜆𝜆𝑝𝑝𝜕𝜕� + 𝜀𝜀2𝑃𝑃0(𝜉𝜉, 𝜂𝜂, 𝜏𝜏) + ⋯
𝜂𝜂 = 𝜀𝜀�𝜕𝜕 + 𝜆𝜆𝑝𝑝𝜕𝜕� + 𝜀𝜀2𝑄𝑄0(𝜉𝜉, 𝜂𝜂, 𝜏𝜏) + ⋯

𝜏𝜏 = 𝜀𝜀3𝜕𝜕  
� ,                                                                (6.4) 

 where 𝜉𝜉 and 𝜂𝜂 are the trajectories of solitons traveling toward to each other, and 𝜆𝜆𝑝𝑝 is the 

unknown phase velocity of positron acoustic waves and 𝜀𝜀 is the proper fraction parameter 

measuring the limitation of the dispersion. The other variables 𝑃𝑃0(𝜉𝜉, 𝜂𝜂, 𝜏𝜏) and 𝑄𝑄0(𝜉𝜉, 𝜂𝜂, 𝜏𝜏) 

involved in Eq. (6.4) will be evaluated later. The dependent perturbed quantities are expanded 

taking the small deviations from the equilibrium state [51] as  

ℋ = ℋ0 + �𝜀𝜀𝑖𝑖ℋ(𝑖𝑖)
∞

𝑖𝑖=1

                                                                                             (6.5) 

where ℋ = (𝑛𝑛𝑝𝑝𝑐𝑐 𝑢𝑢𝑝𝑝𝑐𝑐 𝜙𝜙)′, ℋ0 = (1 0 0)′ and ℋ(𝑖𝑖) = �𝑛𝑛𝑝𝑝𝑐𝑐
(𝑖𝑖) 𝑢𝑢𝑝𝑝𝑐𝑐

(𝑖𝑖) 𝜙𝜙(𝑖𝑖)�′. Inserting 

Eqs.(6.4) and (6.5) into Eqs. (6.1)-(6.3) and separating the quantities with the different power 

of 𝜀𝜀, one can obtain the set of coupled equations in terms of 𝜀𝜀. To the lowest order of 𝜀𝜀 yeilds  

−𝜆𝜆𝑝𝑝
𝜕𝜕𝑛𝑛𝑝𝑝𝑐𝑐

(1)

𝜕𝜕𝜉𝜉
+ 𝜆𝜆𝑝𝑝

𝜕𝜕𝑛𝑛𝑝𝑝𝑐𝑐
(1)

𝜕𝜕𝜂𝜂
+
𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐

(1)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐

(1)

𝜕𝜕𝜂𝜂
= 0,                                                       (6.6) 

−𝜆𝜆𝑝𝑝
𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐

(1)

𝜕𝜕𝜉𝜉
+ 𝜆𝜆𝑝𝑝

𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐
(1)

𝜕𝜕𝜂𝜂
+ �

𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜂𝜂
� = 0,                                                 (6.7) 

𝑛𝑛𝑝𝑝𝑐𝑐
(1) = �

𝜇𝜇𝑝𝑝ℎ �𝜅𝜅𝑝𝑝 −
1
2� σ1

𝜅𝜅𝑝𝑝 −
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+
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2

�𝜙𝜙(1) .                                           (6.8) 
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One may define the physical relations along with the different quantities, say 𝜙𝜙𝜉𝜉
(1)(𝜉𝜉, 𝜏𝜏) ≈

𝜙𝜙𝜉𝜉
(1) and 𝜙𝜙𝜂𝜂

(1)(𝜂𝜂, 𝜏𝜏) ≈ 𝜙𝜙𝜂𝜂
(1) as   

𝜙𝜙(1) = 𝜙𝜙𝜉𝜉
(1) + 𝜙𝜙𝜂𝜂

(1),𝑛𝑛𝑝𝑝𝑐𝑐
(1) = 𝑅𝑅1 �𝜙𝜙𝜉𝜉

(1) + 𝜙𝜙𝜂𝜂
(1)� ,𝑢𝑢𝑝𝑝𝑐𝑐

(1) =
1
𝜆𝜆𝑝𝑝
�𝜙𝜙𝜉𝜉

(1) − 𝜙𝜙𝜂𝜂
(1)� ,       (6.9) 

with 

𝑅𝑅1 = �
𝜇𝜇𝑝𝑝ℎ �𝜅𝜅𝑝𝑝 −

1
2� σ1

𝜅𝜅𝑝𝑝 −
3
2

+
𝜇𝜇𝑒𝑒 �𝜅𝜅𝑒𝑒 −

1
2� σ2

𝜅𝜅𝑒𝑒 −
3
2

�, 

which stratifies Eqs. (6.6)-(6.8). Here, 𝜙𝜙𝜉𝜉
(1) and 𝜙𝜙𝜂𝜂

(1) denote the two-sided electrostatic 

solitary waves, one of which 𝜙𝜙𝜉𝜉
(1) propagates to the right and 𝜙𝜙𝜂𝜂

(1) propagates to the left 

directions. Using the solvability condition, the phase velocity can be obtained as 𝜆𝜆𝑝𝑝 = �1/𝑅𝑅1. 
To the second order of 𝜀𝜀 gives 

−𝜆𝜆𝑝𝑝
𝜕𝜕𝑛𝑛𝑝𝑝𝑐𝑐

(2)

𝜕𝜕𝜉𝜉
+ 𝜆𝜆𝑝𝑝

𝜕𝜕𝑛𝑛𝑝𝑝𝑐𝑐
(2)

𝜕𝜕𝜂𝜂
+
𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐

(2)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐

(2)

𝜕𝜕𝜂𝜂
+
𝜕𝜕
𝜕𝜕𝜉𝜉
�𝑛𝑛𝑝𝑝𝑐𝑐

(1)𝑢𝑢𝑝𝑝𝑐𝑐
(1)� +

𝜕𝜕
𝜕𝜕𝜂𝜂

�𝑛𝑛𝑝𝑝𝑐𝑐
(1)𝑢𝑢𝑝𝑝𝑐𝑐

(1)� = 0, (6.10) 

−𝜆𝜆𝑝𝑝
𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐

(2)

𝜕𝜕𝜉𝜉
+ 𝜆𝜆𝑝𝑝

𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐
(2)

𝜕𝜕𝜂𝜂
+

1
2
𝜕𝜕
𝜕𝜕𝜉𝜉
�𝑢𝑢𝑝𝑝𝑐𝑐

(1)�
2

+
1
2
𝜕𝜕
𝜕𝜕𝜂𝜂

�𝑢𝑢𝑝𝑝𝑐𝑐
(1)�

2
+ �

𝜕𝜕𝜙𝜙(2)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝜙𝜙(2)

𝜕𝜕𝜂𝜂
� = 0, (6.11) 

                −𝑛𝑛𝑝𝑝𝑐𝑐
(2) + 𝑅𝑅1𝜙𝜙(2) − 𝑅𝑅2�𝜙𝜙(1)�2 = 0 ,                                                                     (6.12) 

where 𝑅𝑅2 = �
𝜇𝜇𝑝𝑝ℎ�𝜅𝜅𝑝𝑝−

1
2��𝜅𝜅𝑝𝑝+

1
2�𝜎𝜎1

2

2�𝜅𝜅𝑝𝑝−
3
2�
2 −

𝜇𝜇𝑒𝑒�𝜅𝜅𝑒𝑒−
1
2��𝜅𝜅𝑒𝑒+

1
2�𝜎𝜎2

2

2�𝜅𝜅𝑒𝑒−
3
2�
2 �, which can be simplified with the help of 

Eq. (6.9) along with the different quantities, say 𝜙𝜙𝜉𝜉
(2)(𝜉𝜉, 𝜏𝜏) ≈ 𝜙𝜙𝜉𝜉

(2) and 𝜙𝜙𝜂𝜂
(2)(𝜂𝜂, 𝜏𝜏) ≈ 𝜙𝜙𝜂𝜂

(2) as   

𝜙𝜙(2) = 𝜙𝜙𝜉𝜉
(2) + 𝜙𝜙𝜂𝜂

(2) + 𝜙𝜙(2)�

𝑛𝑛𝑝𝑝𝑐𝑐
(2) =

1
𝜆𝜆𝑝𝑝2
�𝜙𝜙𝜉𝜉

(2) + 𝜙𝜙𝜂𝜂
(2)� +

3
2𝜆𝜆𝑝𝑝4

��𝜙𝜙𝜉𝜉
(1)�

2
+ �𝜙𝜙𝜂𝜂

(1)�
2
� + 𝑛𝑛𝑝𝑝𝑐𝑐

(2)�

𝑢𝑢𝑝𝑝𝑐𝑐
(2) =

1
𝜆𝜆𝑝𝑝
�𝜙𝜙𝜉𝜉

(2) − 𝜙𝜙𝜂𝜂
(2)� +

1
2𝜆𝜆𝑝𝑝3

��𝜙𝜙𝜉𝜉
(1)�

2
− �𝜙𝜙𝜂𝜂

(1)�
2
� + 𝑢𝑢𝑝𝑝𝑐𝑐

(2)�
⎭
⎪
⎬

⎪
⎫

                       (6.13) 

Equations (6.13) are coupled through  

−�
3

2𝜆𝜆𝑝𝑝4
+ 𝑅𝑅2� �𝜙𝜙𝜉𝜉

(1)�
2

= −�
3

2𝜆𝜆𝑝𝑝4
+ 𝑅𝑅2� �𝜙𝜙𝜂𝜂

(1)�
2

= 0                                   (6.14) 

and 
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𝜕𝜕2

𝜕𝜕𝜉𝜉𝜕𝜕𝜂𝜂
𝜙𝜙(2)� − 𝜆𝜆𝑝𝑝2 �𝑅𝑅2 +

1
2
𝑅𝑅1�

𝜕𝜕𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉
𝜕𝜕𝜙𝜙𝜂𝜂

(1)

𝜕𝜕𝜂𝜂
−
𝜆𝜆𝑝𝑝4

4
(𝑅𝑅12 − 2𝑅𝑅2) �𝜙𝜙𝜂𝜂

(1) 𝜕𝜕
2𝜙𝜙𝜉𝜉

(1)

𝜕𝜕𝜉𝜉2
+ 𝜙𝜙𝜉𝜉

(1) 𝜕𝜕
2𝜙𝜙𝜂𝜂

(1)

𝜕𝜕𝜂𝜂2
� = 0.  

It is observed from Eq. (6.14) that there can arise two cases, such as 𝜙𝜙𝜉𝜉
(1) = 𝜙𝜙𝜂𝜂

(1) = 0 which is 

the generic case and  3
2𝜆𝜆𝑝𝑝4

+ 𝑅𝑅2 = 0. Considering the generic case, Eq. (6.13) are converted to  

𝜙𝜙(2) = 𝜙𝜙𝜉𝜉
(2) + 𝜙𝜙𝜂𝜂

(2),𝑛𝑛𝑝𝑝𝑐𝑐
(2) = 𝑅𝑅1 �𝜙𝜙𝜉𝜉

(2) + 𝜙𝜙𝜂𝜂
(2)� ,𝑢𝑢𝑝𝑝𝑐𝑐

(2) =
1
𝜆𝜆𝑝𝑝3
�𝜙𝜙𝜉𝜉

(2) − 𝜙𝜙𝜂𝜂
(2)� .    (6.15) 

The third order of  𝜀𝜀 gives    

−𝜆𝜆𝑝𝑝
𝜕𝜕𝑛𝑛𝑝𝑝𝑐𝑐

(3)

𝜕𝜕𝜉𝜉
+ 𝜆𝜆𝑝𝑝

𝜕𝜕𝑛𝑛𝑝𝑝𝑐𝑐
(3)

𝜕𝜕𝜂𝜂
+
𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐

(3)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐

(3)

𝜕𝜕𝜂𝜂
= 0

−𝜆𝜆𝑝𝑝
𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐

(3)

𝜕𝜕𝜉𝜉
+ 𝜆𝜆𝑝𝑝

𝜕𝜕𝑢𝑢𝑝𝑝𝑐𝑐
(3)

𝜕𝜕𝜂𝜂
+ �

𝜕𝜕𝜙𝜙(3)

𝜕𝜕𝜉𝜉
+
𝜕𝜕𝜙𝜙(3)

𝜕𝜕𝜂𝜂
� = 0

𝑛𝑛𝑝𝑝𝑐𝑐
(3) = 𝑅𝑅1𝜙𝜙(3) ⎭

⎪⎪
⎬

⎪⎪
⎫

.                                           (6.16)  

Since the variables involved in Eqs.(6.16) will not occur for the fourth order in 𝜀𝜀, thus one 
may consider  𝑛𝑛𝑝𝑝𝑐𝑐

(3) = 𝑢𝑢𝑝𝑝𝑐𝑐
(3) = 𝜙𝜙(3) = 0. Finally, the fourth order of 𝜀𝜀 gives the following 

relation: 

��
𝜕𝜕𝜙𝜙𝜉𝜉

(2)

𝜕𝜕𝜏𝜏
+ 𝐴𝐴𝜙𝜙𝜉𝜉

(2) 𝜕𝜕𝜙𝜙𝜉𝜉
(2)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵

𝜕𝜕3𝜙𝜙𝜉𝜉
(2)

𝜕𝜕𝜉𝜉3 �𝑑𝑑𝜂𝜂 + ��
𝜕𝜕𝜙𝜙𝜂𝜂

(2)

𝜕𝜕𝜏𝜏
− 𝐴𝐴𝜙𝜙𝜂𝜂

(2) 𝜕𝜕𝜙𝜙𝜂𝜂
(2)

𝜕𝜕𝜂𝜂
− 𝐵𝐵

𝜕𝜕3𝜙𝜙𝜉𝜉
(2)

𝜕𝜕𝜂𝜂3 �𝑑𝑑𝜉𝜉

+ ���𝐶𝐶
𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

− 𝐷𝐷𝜙𝜙𝜂𝜂
(2)�

𝜕𝜕2𝜙𝜙𝜉𝜉
(2)

𝜕𝜕𝜉𝜉2
− �𝐶𝐶

𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

− 𝐷𝐷𝜙𝜙𝜉𝜉
(2)�

𝜕𝜕2𝜙𝜙𝜂𝜂
(2)

𝜕𝜕𝜂𝜂2

+
𝜕𝜕2

𝜕𝜕𝜉𝜉𝜕𝜕𝜂𝜂
�𝐶𝐶𝜙𝜙(2)� + 4𝐷𝐷𝜙𝜙𝜉𝜉

(2)𝜙𝜙𝜂𝜂
(2)�� 𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂 = −2𝜆𝜆𝑝𝑝2𝑢𝑢𝑝𝑝𝑐𝑐

(4),                            (6.17) 

where  𝐴𝐴 = � 3
2𝜆𝜆𝑝𝑝

+ 𝑅𝑅2𝜆𝜆𝑝𝑝3  �, 𝐵𝐵 = 𝜆𝜆𝑝𝑝3

2
, 𝐶𝐶 = 2𝜆𝜆𝑝𝑝 and 𝐷𝐷 = � 1

2𝜆𝜆𝑝𝑝
− 𝑅𝑅2𝜆𝜆𝑝𝑝3�.  

The integrands in the first and second terms in the left hand side of (6.17) do not 

depend on 𝜂𝜂 and 𝜉𝜉, respectively. So, all the terms of the first two expressions in the left hand 

side of Eq. (6.17) become secular, which should be eliminated in order to avoid unexpected 

resonances. Hence, one can derive the following two-sided KdV equations:  

                                                      
𝜕𝜕𝜙𝜙𝜉𝜉

(2)

𝜕𝜕𝜕𝜕
+ 𝐴𝐴𝜙𝜙𝜉𝜉

(2) 𝜕𝜕𝜙𝜙𝜉𝜉
(2)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵

𝜕𝜕3𝜙𝜙𝜉𝜉
(2)

𝜕𝜕𝜉𝜉3
= 0,        (6.18) 
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𝜕𝜕𝜙𝜙𝜂𝜂

(2)

𝜕𝜕𝜕𝜕
− 𝐴𝐴𝜙𝜙𝜂𝜂

(2) 𝜕𝜕𝜙𝜙𝜂𝜂
(2)

𝜕𝜕𝜂𝜂
− 𝐵𝐵

𝜕𝜕3𝜙𝜙𝜉𝜉
(2)

𝜕𝜕𝜂𝜂3
= 0.       (6.19) 

The stationary solutions of the two-sided KdV equations obtained can be written as 

𝜙𝜙𝜉𝜉
(2) = 𝜙𝜙0 sech2 �

(𝜉𝜉 − 𝑈𝑈0𝜏𝜏)
𝑊𝑊0

�  ,𝜙𝜙𝜂𝜂
(2) = 𝜙𝜙0sech2 �

(𝜂𝜂 + 𝑈𝑈0𝜏𝜏)
𝑊𝑊0

�  ,                  (6.20) 

where 𝜙𝜙0 = (3𝑈𝑈0/𝐴𝐴) and 𝑊𝑊0 = �((4𝐵𝐵/𝑈𝑈0) are the amplitudes and widths of the solitary 

waves traveling in the opposite direction from their initial positions and 𝑈𝑈0 is the constant 

velocity of the reference frame. It is also seen that the third term in Eq. (6.17) is dependent on 

both 𝜉𝜉 and 𝜂𝜂, except 𝜏𝜏, provides 

�𝐶𝐶
𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

− 𝐷𝐷𝜙𝜙𝜂𝜂
(2)�

𝜕𝜕2𝜙𝜙𝜉𝜉
(2)

𝜕𝜕𝜉𝜉2
− �𝐶𝐶

𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

− 𝐷𝐷𝜙𝜙𝜉𝜉
(2)�

𝜕𝜕2𝜙𝜙𝜂𝜂
(2)

𝜕𝜕𝜂𝜂2
+

𝜕𝜕2

𝜕𝜕𝜉𝜉𝜕𝜕𝜂𝜂
�𝐶𝐶𝜙𝜙(2)� + 4𝐷𝐷𝜙𝜙𝜉𝜉

(2)𝜙𝜙𝜂𝜂
(2)� = 0 (6.21) 

The first and second terms in the left hand side of Eq. (6.21) may become secular in the next 

power of 𝜀𝜀 and provide the following relations: 

                              𝑃𝑃0 = 𝐷𝐷
𝐶𝐶 ∫ 𝜙𝜙𝜂𝜂

(1)(𝜒𝜒, 𝜏𝜏)𝑑𝑑𝜒𝜒𝜂𝜂
−∞  ;𝑄𝑄0 = 𝐷𝐷

𝐶𝐶 ∫ 𝜙𝜙𝜉𝜉
(1)(𝜒𝜒, 𝜏𝜏)𝑑𝑑𝜒𝜒𝜉𝜉

∞   .                  (6.22) 

It is clearly seen that the leading phase functions in Eq. (6.22) due to the weak interactions 

among the solitons can be obtained with the help of Eq. (6.20) as  

𝑃𝑃0 =
𝐷𝐷
𝐶𝐶
𝜙𝜙0𝑊𝑊0 �tanh �

𝜂𝜂 + 𝑈𝑈0𝜏𝜏
𝑊𝑊0

� + 1�  ,𝑄𝑄0 =
𝐷𝐷
𝐶𝐶
𝜙𝜙0𝑊𝑊0 �tanh �

𝜉𝜉 − 𝑈𝑈0𝜏𝜏
𝑊𝑊0

� − 1� . (6.23) 

Therefore, the trajectories of the two positron acoustic solitary waves for weak head-on 

collision are obtained up to the order of 𝜀𝜀2 as:   

𝜉𝜉 = 𝜀𝜀�𝜕𝜕 − 𝜆𝜆𝑝𝑝𝜕𝜕� + 𝜀𝜀2
𝐷𝐷
𝐶𝐶
𝜙𝜙0𝑊𝑊0 �tanh �

𝜂𝜂 + 𝑈𝑈0𝜏𝜏
𝑊𝑊0

� + 1�   + ⋯ ,                         (6.24) 

𝜂𝜂 = 𝜀𝜀�𝜕𝜕 + 𝜆𝜆𝑝𝑝𝜕𝜕� + 𝜀𝜀2
𝐷𝐷
𝐶𝐶
𝜙𝜙0𝑊𝑊0 �tanh �

𝜉𝜉 − 𝑈𝑈0𝜏𝜏
𝑊𝑊0

� − 1� + ⋯    .                        (6.25) 

In order to obtain the phase shift after the head-on collision between two solitons, say 𝑆𝑆𝑅𝑅 and 

𝑆𝑆𝐿𝐿, one can assume that the solitons 𝑆𝑆𝑅𝑅 at 𝜉𝜉 = 0, 𝜂𝜂 → −∞  and 𝑆𝑆𝐿𝐿 at 𝜂𝜂 = 0, 𝜉𝜉 → +∞  are 

asymptotically far away from each other at the initial time (𝜕𝜕 → −∞). After collision (𝜕𝜕 →
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+∞), 𝑆𝑆𝑅𝑅 is far to the right of 𝑆𝑆𝐿𝐿, that is, 𝑆𝑆𝑅𝑅 is at 𝜉𝜉 = 0, 𝜂𝜂 → +∞  and 𝑆𝑆𝐿𝐿 is at 𝜂𝜂 = 0, 𝜉𝜉 →

−∞ .Using Eqs. (6.24) and (6.25), one can obtain the corresponding phase shifts as   

𝛻𝛻𝑃𝑃0 = −2𝜀𝜀2
𝐷𝐷
𝐶𝐶
𝜙𝜙0𝑊𝑊0,𝛻𝛻𝑄𝑄0 = 2𝜀𝜀2

𝐷𝐷
𝐶𝐶
𝜙𝜙0𝑊𝑊0  .                                                     (6.26) 

On the other hand, the dispersion coefficient (𝐵𝐵) of the coupled KdV equations is always 

positive. Therefore, the positron acoustic waves are obtained compressive for 𝐴𝐴 > 0 and 

rarefactive for 𝐴𝐴 < 0 depanding on the physical parameters. It is clearly seen that the 

amplitudes of the two-sided KdV solitons of Eqs. (6.18) and (6.19) and their corresponding 

magnitudes of phase shifts approaches to infinity, when 𝐴𝐴 → 0. Under this condition, the 

validity of the reductive perturbation technique breaks down. In order to find the parametric 

regimes for which the compressive and rarefactive electrostatic potential of the solitary waves 

may exist, one can obtain the following condition for 𝜇𝜇𝑝𝑝ℎ = 𝜇𝜇𝑐𝑐 taking 𝐴𝐴(𝜇𝜇𝑝𝑝ℎ = 𝜇𝜇𝑐𝑐) = 0 into 

account:  

𝜇𝜇𝑝𝑝𝑐𝑐 = 𝜇𝜇𝑐𝑐 = −
�2𝜅𝜅𝑝𝑝 + 1�

6�2𝜅𝜅𝑝𝑝 − 1�
−
�2𝜅𝜅𝑝𝑝 − 3�(2𝜅𝜅𝑒𝑒 − 1)𝜇𝜇2𝜎𝜎2
�2𝜅𝜅𝑝𝑝 − 1�(2𝜅𝜅𝑒𝑒 − 3)𝜎𝜎1

+
�2𝜅𝜅𝑝𝑝 + 1�(−2𝜅𝜅𝑒𝑒 + 3)
6�2𝜅𝜅𝑝𝑝 − 1�(2𝜅𝜅𝑒𝑒 − 3)

+
𝜎𝜎1�𝑔𝑔1 + �𝑔𝑔2

6�2𝜅𝜅𝑝𝑝 − 1�(2𝜅𝜅𝑒𝑒 − 3)𝜎𝜎1
,                                                                    (6.27) 

where 𝑔𝑔1 = 12�2𝜅𝜅𝑝𝑝 + 1�(2𝜅𝜅𝑒𝑒 − 3)(4𝜅𝜅𝑒𝑒2 − 8𝜅𝜅3 + 3)𝜇𝜇2𝜎𝜎2 and 

 𝑔𝑔2 = 12�−2𝜅𝜅𝑝𝑝 + 3�2(4𝜅𝜅𝑒𝑒2 − 1)𝜇𝜇2𝜎𝜎22 . For instance, one can obtain the critical values from 

the above relation, say 𝜇𝜇𝑝𝑝𝑐𝑐 = 𝜇𝜇𝑐𝑐 ≅ 0.0818 taking  𝜇𝜇𝑒𝑒 = 0.2, 𝜎𝜎1 = 1, 𝜎𝜎2 = 0.8, 𝜅𝜅𝑒𝑒 = 3 and 

𝜅𝜅𝑝𝑝 = 10 for which the coefficient 𝐴𝐴 of the KdV equations vanishes. In such case, one can 

consider the higher order nonlinearity to study the head-on collision between two solitary 

waves and their phase shift around the critical values in the plasmas. 

6.2.3 Derivation of two-sided mKdV equations and phase shift 

       It is found that the coefficient of quadratic nonlinearity in Eqs. (6.18) and (6.19) are 

vanishes at the critical values  𝜇𝜇𝑝𝑝ℎ = 𝜇𝜇𝑐𝑐 as mentioned in Eq. (6.27). In order to study the 

head-on collision between the solitary waves propagating toward each other and phase shift 

around the critical values  𝜇𝜇𝑐𝑐. One may insert  𝜙𝜙𝜉𝜉
(2) = 𝜙𝜙𝜂𝜂

(2) = 0 and 𝜙𝜙(2)� ≠ 0 [51] and Eqs. 

(6.13) can be converted to  
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𝑛𝑛𝑝𝑝𝑐𝑐
(2) = 3

2
𝑅𝑅12 ��𝜙𝜙𝜉𝜉

(1)�
2

+ �𝜙𝜙𝜂𝜂
(1)�

2
�, 𝑢𝑢𝑝𝑝𝑐𝑐

(2) = 1
2𝜆𝜆𝑝𝑝3

��𝜙𝜙𝜉𝜉
(1)�

2
− �𝜙𝜙𝜂𝜂

(1)�
2
�              (6.28) 

where  � 3
2𝜆𝜆𝑝𝑝4

+ 𝑅𝑅2� = 0. 

Finally, combining the contributions around the critical region as obtained in Eqs. (6.28) for 

the third order term of 𝜀𝜀 yield the following relation: 

��
𝜕𝜕𝜙𝜙𝜉𝜉

(1)

𝜕𝜕𝜏𝜏
+ 𝛼𝛼𝐵𝐵 �𝜙𝜙𝜉𝜉

(1)�
2 𝜕𝜕𝜙𝜙𝜉𝜉

(1)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵

𝜕𝜕3𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉3 �𝑑𝑑𝜂𝜂                                                      

+ ��
𝜕𝜕𝜙𝜙𝜂𝜂

(1)

𝜕𝜕𝜏𝜏
− 𝛼𝛼𝐵𝐵�𝜙𝜙𝜂𝜂

(1)�
2 𝜕𝜕𝜙𝜙𝜂𝜂

(1)

𝜕𝜕𝜂𝜂
− 𝐵𝐵

𝜕𝜕3𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂3 �𝑑𝑑𝜉𝜉

+ ��𝐶𝐶
𝜕𝜕𝑃𝑃0
𝜕𝜕𝜂𝜂

− 𝐷𝐷∗�𝜙𝜙𝜂𝜂
(1)�

2
�
𝜕𝜕2𝜙𝜙𝜉𝜉

(1)

𝜕𝜕𝜉𝜉2
𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂

−��𝐶𝐶
𝜕𝜕𝑄𝑄0
𝜕𝜕𝜉𝜉

− 𝐷𝐷∗ �𝜙𝜙𝜉𝜉
(1)�

2
�
𝜕𝜕2𝜙𝜙𝜂𝜂

(1)

𝜕𝜕𝜂𝜂2
𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂 + ⋯ = −2𝜆𝜆𝑝𝑝2𝑢𝑢𝑝𝑝𝑐𝑐

(3),   (6.29) 

where,    𝛼𝛼 = � 15
2𝜆𝜆𝑝𝑝6

− 3𝑅𝑅3� ,𝐷𝐷∗ = �3𝑅𝑅3 −
1
2𝜆𝜆𝑝𝑝6

� 𝐵𝐵, 

𝑅𝑅3 = �
𝜇𝜇𝑝𝑝ℎ �𝜅𝜅𝑝𝑝 −

1
2� �𝜅𝜅𝑝𝑝 + 1

2� �𝜅𝜅𝑝𝑝 + 3
2� 𝜎𝜎1

3

6�𝜅𝜅𝑝𝑝 − 3 2⁄ �3
+
𝜇𝜇𝑒𝑒 �𝜅𝜅𝑒𝑒 −

1
2� �𝜅𝜅𝑒𝑒 + 1

2� �𝜅𝜅𝑒𝑒 + 3
2� 𝜎𝜎2

3

6(𝜅𝜅𝑒𝑒 − 3 2⁄ )3 �. 

Since, all the terms of the first two expressions in the left hand side of Eq. (6.29) become 

secular and should be eliminated in order to avoid unexpected resonances around the critical 

values. Hence, one can obtain the following two-sided coupled mKdV equations:  

𝜕𝜕𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜏𝜏
+ 𝛼𝛼𝐵𝐵 �𝜙𝜙𝜉𝜉

(1)�
2 𝜕𝜕𝜙𝜙𝜉𝜉

(1)

𝜕𝜕𝜉𝜉
+ 𝐵𝐵

𝜕𝜕3𝜙𝜙𝜉𝜉
(1)

𝜕𝜕𝜉𝜉3
= 0,                                                     (6.30) 

𝜕𝜕𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜏𝜏
− 𝛼𝛼𝐵𝐵�𝜙𝜙𝜂𝜂

(1)�
2 𝜕𝜕𝜙𝜙𝜂𝜂

(1)

𝜕𝜕𝜂𝜂
− 𝐵𝐵

𝜕𝜕3𝜙𝜙𝜂𝜂
(1)

𝜕𝜕𝜂𝜂3
= 0.                                                      (6.31) 

The stationary solutions of the two-sided mKdV equations can be written as 

𝜙𝜙𝜉𝜉
(1) = 𝜙𝜙1sech �

(𝜉𝜉 − 𝑈𝑈0𝜏𝜏)
𝑊𝑊1

�  ,𝜙𝜙𝜂𝜂
(1) = 𝜙𝜙1sech �

(𝜂𝜂 + 𝑈𝑈0𝜏𝜏)
𝑊𝑊1

�  ,                      (6.32) 

where 𝜙𝜙1 = ��6𝑈𝑈0/𝛼𝛼𝐵𝐵� and 𝑊𝑊1 = 𝜙𝜙1�(𝛼𝛼/6) are the amplitudes and widths of the mKdV 

solitary waves approaching each other from their initial positions. On the other hand, the third 



HOC between positron acoustic waves in homogeneous and inhomogeneous plasmas 
 
 

 

Plasma Science and Technology Lab, EEE, RU  131 
 

and fourth terms in the left hand side of Eq. (6.29) will become secular in the next higher 

order of 𝜀𝜀 and provides the following relations 

𝑃𝑃0(𝜂𝜂, 𝜏𝜏) =
𝐷𝐷∗

𝐶𝐶
��𝜙𝜙𝜂𝜂

(1)(𝜒𝜒, 𝜏𝜏)�
2
𝑑𝑑𝜒𝜒

𝜂𝜂

−∞

 ,𝑄𝑄0(𝜉𝜉, 𝜏𝜏) =
𝐷𝐷∗

𝐶𝐶
��𝜙𝜙𝜉𝜉

(1)(𝜒𝜒, 𝜏𝜏)�
2
𝑑𝑑𝜒𝜒

𝜉𝜉

∞

  .    (6.33) 

Finally, one can obtain the phase shifts after weak head-on collision between two mKdV 

solitons having equal amplitudes propagating in opposite directions as  

                        𝛻𝛻𝑃𝑃0 = −2𝜀𝜀2 𝐷𝐷
∗

𝐶𝐶
𝜙𝜙1𝑊𝑊1,𝛻𝛻𝑄𝑄0 = 2𝜀𝜀2 𝐷𝐷

∗

𝐶𝐶
𝜙𝜙1𝑊𝑊1  .                                      (6.34) 

6.3 Derivation of NLS equation with rogue wave solution  

       The envelope of the soliton is investigated theoretically [53-54] and observed 

experimentally [55] in the multi-component plasmas for the determination of critical value for 

typical plasma parameters by deriving the NLSE from the mKdV equation. Further, a new 

type of unstable soliton, so called the peregrine solitons or RWs, has been predicted in multi-

component plasmas to obtaion critical value considering certain parameters. A few authors 

[54, 56-59] have shown that the behavior of weakly nonlinear wave packets can be studied by 

employing the NLSE, which can be derived from the mKdV equation at critical plasma 

parameter. 

  In order to study the behavior of weakly nonlinear wave packets in the plasmas, one 

needs to derive the NLSE considering the mKdV Eq. (6.30). For simplicity, one has to 

transform the variables [60] as   

𝜙𝜙(𝜉𝜉, 𝜏𝜏) = � 𝜀𝜀𝐷𝐷
∞

𝐷𝐷=1

� 𝜙𝜙𝑙𝑙𝐷𝐷(𝜉𝜉, 𝜏𝜏)𝑒𝑒𝑖𝑖𝑙𝑙(𝑘𝑘𝜉𝜉−𝜔𝜔𝜕𝜕)
𝐷𝐷

𝑙𝑙=−𝐷𝐷

,𝑋𝑋 = 𝜀𝜀�𝜉𝜉 − 𝑣𝑣𝑔𝑔𝜏𝜏�,𝑇𝑇 = 𝜀𝜀2𝜏𝜏  ,    (6.35) 

where 𝜙𝜙 = 𝜙𝜙𝜉𝜉
(1), 𝑘𝑘 is the wave number, 𝜔𝜔 is the angular frequency, and 𝑣𝑣𝑔𝑔 is the group 

velocity of the nonlinear ion acoustic waves. Inserting Eq. (6.35) to the mKdV Eq. (6.30), 

collecting and equating the terms with equal order of 𝜀𝜀. The lowest order approximation for 

𝑚𝑚 = 1 with the first harmonic 𝑙𝑙 = 1 gives the dispersion relation of electrostatic waves as 

𝜔𝜔 = −𝐵𝐵𝑘𝑘3. The second order approximation for 𝑚𝑚 = 2 with 𝑙𝑙 = 1 predicts 𝑣𝑣𝑔𝑔 = −3𝐵𝐵𝑘𝑘2. 

Finally, the compatibility condition can be found solving the equations considering the next 

higher order approximation (𝑚𝑚 = 3) with first harmonic (𝑙𝑙 = 1) yields the NLSE as  
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𝑖𝑖
𝜕𝜕Ψ
𝜕𝜕𝑇𝑇

+
1
2
𝑃𝑃
𝜕𝜕2Ψ
𝜕𝜕𝑋𝑋2

+ 𝑄𝑄Ψ|Ψ|2 = 0 ,                                                                         (6.36) 

where 𝜙𝜙𝜉𝜉
(1) ≈ Ψ, 𝑃𝑃 = −6𝐵𝐵𝑘𝑘 and 𝑄𝑄 = −𝛼𝛼𝐵𝐵𝑘𝑘. It is known that the stability or instability of the 

envelope for external perturbations depends on the ratio of 𝑃𝑃/𝑄𝑄 = 6/𝛼𝛼, which indicates that 

the plane wave becomes stable for 𝛼𝛼 < 0 and unstable for 𝛼𝛼 > 0. One can study the profiles 

of rogue waves within the modulational unstable region (𝛼𝛼 > 0) considering the rational 

function solution of Eq. (6.36) as 

Ψ(𝑋𝑋,𝑇𝑇) = �
𝑃𝑃
𝑄𝑄 �

4(1 + 2𝑖𝑖𝑃𝑃𝑇𝑇)
1 + 4𝑃𝑃2𝑇𝑇2 + 4𝑋𝑋2

− 1� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 .                                            (6.37) 

On the other hand, one can derive NLS equation (6.36) to the KdV equation taking Eq. (6.35) 

into account. In such case, the dispersive coefficients (𝑃𝑃) and nonlinearity (𝑄𝑄) coefficients are 

obtained as 𝑃𝑃 = 6𝐵𝐵𝑘𝑘 and 𝑄𝑄 = −(𝐴𝐴2/6𝐵𝐵𝑘𝑘).  It is seen that the ratio of 𝑃𝑃 and 𝑄𝑄 obtained is 

always negative, that is 𝑃𝑃/𝑄𝑄 = −1/𝐴𝐴2. Moreover, the weakly nonlinear theory predicts that 

the quasi-monochromatic wave packets are always modulationally stable and the rogue waves 

cannot propagate due to the existence of the negative nonlinear coefficient terms in the NLSE. 

This indicates that the NLSE that obtained from the KdV equation does not support the rogue 

wave solution. 

6.4 Derivation of KdV and mKdV equations with variable coefficients  

To study the effects of plasma inhomogeneity on the propagation of positron acoustic waves, 

one can consider stretched variables which applicable for spatially inhomogeneous plasmas 

[61] as  

𝜉𝜉 = 𝜀𝜀1/2 ��
𝑑𝑑𝜕𝜕
𝑉𝑉
− 𝜕𝜕� ,𝑋𝑋 = 𝜀𝜀3/2𝜕𝜕,                                                                        (6.38) 

where, 𝑉𝑉 is the speed of wave propagation and the perturbed quantities can be expanded 

according to the well known reductive perturbation method as   

ℋ = �𝜀𝜀𝑖𝑖ℋ(𝑖𝑖)
∞

𝑖𝑖=0

 ,                                                                                                    (6.39) 

taking only spatial gradients 𝜕𝜕ℋ
(0)

𝜕𝜕𝜉𝜉
= 0 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜉𝜉
= 0, where ℋ(0) = �𝑛𝑛𝑝𝑝𝑐𝑐

(0) 𝑢𝑢𝑝𝑝𝑐𝑐
(0) 𝜙𝜙(0)�

′
. 
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Substituting Eqs.(6.38) and (6.39) into Eqs. (6.1)-(6.3) and collecting the quantities based on 

the equal powers of 𝜀𝜀, one can obtain a set of equations in terms of 𝜀𝜀. The first order of 𝜀𝜀 

gives the following relations: 

𝑛𝑛𝑝𝑝𝑐𝑐
(1) =

𝑛𝑛𝑝𝑝𝑐𝑐
(0)𝜙𝜙(1)

�𝑉𝑉 − 𝑢𝑢𝑝𝑝𝑐𝑐
(0)�

2 ,𝑢𝑢𝑝𝑝𝑐𝑐
(1) =

𝜙𝜙(1)

�𝑉𝑉 − 𝑢𝑢𝑝𝑝𝑐𝑐
(0)�

,

𝑛𝑛𝑝𝑝𝑐𝑐
(0)/�𝑉𝑉 − 𝑢𝑢𝑝𝑝𝑐𝑐

(0)�
2
− 𝑅𝑅1 + 2𝑅𝑅2𝜙𝜙(0) − 3𝑅𝑅3�𝜙𝜙(0)�

2
= 0⎭

⎪
⎬

⎪
⎫

.                              (6.40) 

Finally, eliminating 𝑛𝑛𝑝𝑝𝑐𝑐
(2), 𝑢𝑢𝑝𝑝𝑐𝑐

(2), and 𝜙𝜙(2) from the set of equations that can be obtained taking 

the next higher order of 𝜀𝜀,one can derive the following partial differential equation (PDE) 

with variable coefficients as  

𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝑋𝑋
+
𝐴𝐴3
𝐴𝐴2

𝜙𝜙(1) 𝜕𝜕𝜙𝜙
(0)

𝜕𝜕𝑋𝑋
+
𝐴𝐴1
𝐴𝐴2

𝜙𝜙(1) 𝜕𝜕𝜙𝜙
(1)

𝜕𝜕𝜉𝜉
+

1
𝑉𝑉2𝐴𝐴2

𝜕𝜕3𝜙𝜙(1)

𝜕𝜕𝜉𝜉3
= 0

  
,                     (6.41) 

where 𝐴𝐴1 = 𝑅𝑅2 − 2𝑅𝑅3𝜙𝜙(0) +
6𝑛𝑛𝑝𝑝𝑝𝑝

(0)

�𝜕𝜕−𝑢𝑢𝑝𝑝𝑝𝑝
(0)�

4, 𝐴𝐴2 =
2𝜕𝜕2𝑛𝑛𝑝𝑝𝑝𝑝

(0)

�𝜕𝜕−𝑢𝑢𝑝𝑝𝑝𝑝
(0)�

3,  𝐴𝐴3 =
𝜕𝜕𝑛𝑛𝑝𝑝𝑝𝑝

(0)(𝜕𝜕−3𝑢𝑢𝑝𝑝𝑝𝑝
(0))

�𝜕𝜕−𝑢𝑢𝑝𝑝𝑝𝑝
(0)�

3
�𝑢𝑢𝑝𝑝𝑝𝑝

(0)�
2. 

To obtain the solitary wave solution of Eq. (6.41), one can convert Eq. (6.41) considering the 

transform 𝜙𝜙(1) = 𝜑𝜑(𝜉𝜉,𝑋𝑋)𝑒𝑒(−𝐴𝐴3/𝐴𝐴2)𝜙𝜙(0)as  

𝜕𝜕𝜑𝜑
𝜕𝜕𝑋𝑋

+ 𝐿𝐿𝜑𝜑
𝜕𝜕𝜑𝜑
𝜕𝜕𝜉𝜉

+ 𝑀𝑀
𝜕𝜕3𝜑𝜑
𝜕𝜕𝜉𝜉3

= 0
  

,                                                                                  (6.42) 

where 𝐿𝐿 = 𝐴𝐴1
𝐴𝐴2
𝑒𝑒(−𝐴𝐴3/𝐴𝐴2)𝜙𝜙(0) and 𝑀𝑀 = 1

𝜕𝜕2𝐴𝐴2
. For the sake of simplicity for mathematical 

development, the variations of the coefficients 𝐿𝐿 and 𝑀𝑀 are assumed insignificant as 

compared to the scale length or it is supposed that all parameters are locally constant. 

Therefore, the solitary wave solutions of Eq. (6.42) can be obtained as  

𝜑𝜑 = 𝜑𝜑𝑣𝑣0sech2 �
𝜒𝜒
𝑊𝑊𝑣𝑣0

� ,𝜒𝜒 = 𝜉𝜉 − 𝑈𝑈0𝑋𝑋 ,                                                                 (6.43) 

where 𝜑𝜑0 = (3𝑈𝑈0/𝐿𝐿) and 𝑊𝑊𝑣𝑣0 = �(4𝑀𝑀/𝑈𝑈0) are the amplitudes and widths of KdV solitary 

waves. It is found that the amplitudes of the KdV solitary waves approach to infinity when 

𝐿𝐿 → 0  at the critical density ratio of hot and cold positrons where the validity of the 
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perturbation technique breaks down. In such case, the structures of positron acoustic solitary 

waves around the critical densities are studied considering the higher order nonlinear PDE in 

weakly inhomogeneous multi-components plasmas. To do so, one needs to convert the 

stretched variables of (6.38) as  

𝜉𝜉 = 𝜀𝜀 ��
𝑑𝑑𝜕𝜕
𝑉𝑉
− 𝜕𝜕� ,𝑋𝑋 = 𝜀𝜀3𝜕𝜕 .                                                                               (6.44) 

Using Eqs.(6.39) and (6.44) into Eqs. (6.1)-(6.3), one can obtain the same values of 𝑛𝑛𝑝𝑝𝑐𝑐
(1), 𝑢𝑢𝑝𝑝𝑐𝑐

(1), 

and the dispersion relation as mentioned in Eq. (6.40). To the next higher order of 𝜀𝜀 gives  

𝑛𝑛𝑝𝑝𝑐𝑐
(2) =

3𝑛𝑛𝑝𝑝𝑐𝑐
(0)�𝜙𝜙(1)�

2

2�𝑉𝑉 − 𝑢𝑢𝑝𝑝𝑐𝑐
(0)�

4 +
𝑛𝑛𝑝𝑝𝑐𝑐

(0)𝜙𝜙(2)

�𝑉𝑉 − 𝑢𝑢𝑝𝑝𝑐𝑐
(0)�

2 ,𝑢𝑢𝑝𝑝𝑐𝑐
(2) =

�𝜙𝜙(1)�
2

2�𝑉𝑉 − 𝑢𝑢𝑝𝑝𝑐𝑐
(0)�

3 +
𝜙𝜙(2)

�𝑉𝑉 − 𝑢𝑢𝑝𝑝𝑐𝑐
(0)�

 , (6.45) 

�
𝑛𝑛𝑝𝑝𝑐𝑐

(0)

�𝑉𝑉 − 𝑢𝑢𝑝𝑝𝑐𝑐
(0)�

2 − 𝑅𝑅1 + 2𝑅𝑅2𝜙𝜙(0) − 3𝑅𝑅3�𝜙𝜙(0)�
2
�𝜙𝜙(2)                                                            

+
1
2�

𝑅𝑅2 − 2𝑅𝑅3𝜙𝜙(0) +
6𝑛𝑛𝑝𝑝𝑐𝑐

(0)

�𝑉𝑉 − 𝑢𝑢𝑝𝑝𝑐𝑐
(0)�

4� �𝜙𝜙
(1)�

2
= 0.                             (6.46) 

Finally, combining a set of equations that can be obtained considering the next higher order of 

𝜀𝜀, one can derive the following PDE with variable coefficients as 

𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝑋𝑋
+
𝐴𝐴5
𝐴𝐴2

𝜙𝜙(1) 𝜕𝜕𝜙𝜙
(0)

𝜕𝜕𝑋𝑋
+
𝐴𝐴4
𝐴𝐴2

�𝜙𝜙(1)�
2 𝜕𝜕𝜙𝜙(1)

𝜕𝜕𝜉𝜉
+

1
𝑉𝑉2𝐴𝐴2

𝜕𝜕3𝜙𝜙(1)

𝜕𝜕𝜉𝜉3
= 0

  
,                 (6.47) 

where 𝐴𝐴4 = 3
2
�

𝑛𝑛𝑝𝑝𝑝𝑝
(0)

�𝜕𝜕−𝑢𝑢𝑝𝑝𝑝𝑝
(0)�

2 +
2(1+𝑛𝑛𝑝𝑝𝑝𝑝

(0))

�𝜕𝜕−𝑢𝑢𝑝𝑝𝑝𝑝
(0)�

6 + 2𝑅𝑅3�,  𝐴𝐴5 =
𝜕𝜕𝑛𝑛𝑝𝑝𝑝𝑝

(0)(2𝑢𝑢𝑝𝑝𝑝𝑝
(0)−𝜕𝜕)

�𝜕𝜕−𝑢𝑢𝑝𝑝𝑝𝑝
(0)�

3
�𝑢𝑢𝑝𝑝𝑝𝑝

(0)�
2.  

 To study the electrostatic potential structures, one can reduce Eq. (6.47) considering 𝜙𝜙(1) =

𝜑𝜑(𝜉𝜉,𝑋𝑋)𝑒𝑒(−𝐴𝐴5/𝐴𝐴2)𝜙𝜙(0)as  

𝜕𝜕𝜑𝜑
𝜕𝜕𝑋𝑋

+ 𝐿𝐿1𝜑𝜑2
𝜕𝜕𝜑𝜑
𝜕𝜕𝜉𝜉

+ 𝑀𝑀
𝜕𝜕3𝜑𝜑
𝜕𝜕𝜉𝜉3

= 0
  

,                                                                              (6.48) 
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Where 𝐿𝐿1 = 𝐴𝐴4
𝐴𝐴2
𝑒𝑒(−𝐴𝐴5/𝐴𝐴2)𝜙𝜙(0). Equation (6.48) is the well known mKdV equation. Therefore, 

the solitary wave solutions of Eq. (6.48) can be obtained as 

𝜑𝜑 = 𝜑𝜑1sech �
𝜒𝜒
𝑊𝑊4
� , 𝜒𝜒 = 𝜉𝜉 − 𝑈𝑈0𝑋𝑋 ,                                                               (6.49) 

where 𝜑𝜑1 = (6𝑈𝑈0/𝐿𝐿1) and 𝑊𝑊4 = �(𝑀𝑀/𝑈𝑈0) are the amplitude and width of mKdV PA solitary 

waves. 

6.5 Results and discussion 
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To investigate the unrevealed physical issues concerned in the homogeneous plasma, such as temporal 

evolution of electrostatic resonances and phase shifts due to the head-on collision of solitons, and 

modulational instability, two-sided KdV, mKdV, and NLSEs are derived. Besides, the KdV and 

mKdV equations with variable coefficients are derived to study the propagation characteristics of 

positron acoustic waves in a weakly inhomogenous collisionless multi-component considered plasmas. 

The effects of plasma parameters on the structures and propagation characteristics of solitons are 

considered taking into account the typical ranges 𝜇𝜇𝑒𝑒 = 0.1 − 0.8, 𝜎𝜎1 = 1 − 6, 𝜎𝜎2 = 0.1 − 0.9, 
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and 𝜅𝜅𝑒𝑒,𝑝𝑝 = 3 − 100 which are consistent with space and laboratory plasmas [1-3,7-8] and are 

described below: Initially, the solitons 𝑆𝑆𝑅𝑅 is at 𝜉𝜉 = 0, 𝜂𝜂 → −∞  and 𝑆𝑆𝐿𝐿 is at 𝜂𝜂 = 0, 𝜉𝜉 → +∞  

are asymptotically far away from each other. After collision (𝜕𝜕 → ∞), the soliton 𝑆𝑆𝑅𝑅 is far to 

the right of 𝑆𝑆𝐿𝐿, that is, 𝑆𝑆𝑅𝑅 is at 𝜉𝜉 = 0, 𝜂𝜂 → +∞, while 𝑆𝑆𝐿𝐿 is at 𝜂𝜂 = 0, 𝜉𝜉 → −∞ , such collisional 

phenomena between the solitons are displayed in Figs.6.1. It is clearly seen from Figs.6.1 that 

the negative (Fig.6. 1(a)) and positive (Fig. 6.1(b)) electrostatic positron acoustic KdV 

solitary waves are propagating from each other and asymptotically divided away. During the 

whole processes of collision, one can obtain the motionless composite structure within −∞ <
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𝜕𝜕 < +∞. It is found from these figures that two solitons are propagating along the trajectories 

that are deviated from their initial position; such deviations are due to the phase shifts for two 

colliding solitons. It is seen from Eq. (6.26) that each soliton has phase shifts in its direction  

of propagation due to collision, which means that the velocities of positron acoustic solitary 

waves are reduced during their collision stages. Figures 6.2(a), (b), and (c) show the effects on 

phase shifts ∇𝑄𝑄0 with regards to 𝜅𝜅𝑒𝑒 and 𝜅𝜅𝑝𝑝, 𝜎𝜎1,and 𝜎𝜎2, and  𝜇𝜇ℎ𝑝𝑝 and 𝜇𝜇𝑒𝑒 after head-on collision 

between the KdV solitons with equal amplitudes propagating in the  
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opposite directions. It is seen from Figs.6. 2 that the phase shifts are increasing with the 

increase of 𝜅𝜅𝑝𝑝, 𝜎𝜎2, and 𝜇𝜇𝑒𝑒, but decreasing with the increase of 𝜅𝜅𝑒𝑒, 𝜎𝜎1, and 𝜇𝜇ℎ𝑝𝑝. This 

phenomenon indicates that the hot positrons and hot electrons interact more actively with the 

cold positrons with the decrease of hot electron temperature and cold positron density. Thus, 
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the restoring force, as produced by hot positrons and electron pressure, reduce with increasing 

hot electron temperature and cold positron density, and hence the magnitude of phase shift is 

decreasing. Besides, with the increase in ion density can be interpreted as depopulation of 

ions from the plasma system as a result of the driving force (provided by cold positrons 

inertia) of positron acoustic solitary waves decreases. 

  
 

Figure 6.5 Effects of (a) 𝑛𝑛𝑝𝑝𝑐𝑐
(0) taking 𝜇𝜇𝑝𝑝ℎ = 0.05, 𝜅𝜅𝑒𝑒,𝑝𝑝 = 3, 𝜇𝜇𝑒𝑒 = 0.6, 𝜎𝜎1 = 3, 

𝜎𝜎2 = 0.5, 𝜙𝜙(0) = 0.4, and 𝑢𝑢𝑝𝑝𝑐𝑐
(0) = 0.6, (b) 𝜇𝜇𝑒𝑒 taking the typical values of (a) 

except 𝑛𝑛𝑝𝑝𝑐𝑐
(0) = 0.2 and 𝜙𝜙(0) = 0.3, (c) 𝜅𝜅𝑒𝑒,𝑝𝑝 taking the typical values of (a) except 

𝜇𝜇𝑝𝑝ℎ = 0.1, 𝑛𝑛𝑝𝑝𝑐𝑐
(0) = 0.2, and 𝜙𝜙(0) = 0.3, and (d) 𝜎𝜎1 taking the typical values of (b) 

except 𝜇𝜇𝑒𝑒 = 0.8 on the electrostatic potential of positron acoustic KdV solitary 
waves in weakly inhomogeneous plasmas. 
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On the other hand, the amplitude of the two-sided KdV solitons and their corresponding phase 

shifts approach to infinity at the critical value 𝜇𝜇ℎ𝑝𝑝 = 𝜇𝜇𝑐𝑐, where the validity of the reductive 

perturbation technique breaks down. To avoid such difficulty, the two-sided mKdV Eqs. 

(6.30) and (6.31), and their corresponding phase shifts as in Eq. (6.34) are obtained 

considering the higher order nonlinearity. Another salient feature of mKdV solitons (Eq. 

(6.32)) is that if the head-on collision takes place at around the critical  value which divulges a 

combination of only positive solitons with their changing phases as depicted in Figs.6.3. 

Figure 6.6 Effects of (a) 𝑛𝑛𝑝𝑝𝑐𝑐
(0), (b) 𝜇𝜇𝑒𝑒, (c) 𝜅𝜅𝑒𝑒,𝑝𝑝, and (d) 𝜎𝜎1 along with 𝜒𝜒 on the 

electrostatic mKdV positron acoustic solitary waves in  weakly inhogogeneous  
plasmas considering the typical values as in Fig. 6.5.   
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Figure 6.3(a) reveals that the electrostatic mKdV positron acoustic solitary waves are 

propagating away from each other and asymptotically divided. The changes of phase shift are 

enhanced with the increase of 𝜇𝜇𝑒𝑒 and decreased with the increase of 𝜅𝜅𝑒𝑒.This phenomenon can 

be ascribed as the solitons absorb energy due to collision without changing the shape and 

velocity. Thus the absorption of energy increases (suppesses) smoothly with the enhancement 

of plasma parameters for the rarefactive (compressive) positron acoustic solitary waves. 

Besides, the solitons change their polarities near the critical value, where they absorb 

maximum energy due to the change of maximum phase shifts. It is found that the phase 

velocity is slower after collision due to the positive phase shift. It is observed that the NLSE 

obtained from the KdV equation does not support rogue waves due to modulational stability 

of the quasi-monochromatic wave packets. But, the NLSE obtained from the mKdV equation 

supports the rogue wave for the considered plasma parameters. The solution Eq. (6.37) of the 

NLS equation (6.36) provides the profiles of rogue waves within the modulationally unstable 

region 𝛼𝛼 > 0, where a significant amount of energy accumulated within a relatively small 

area and therefore the rogue waves produce in the considered plasmas. Figures 6.4 show the 

effect of plasma parameters on the characteristics of rogue waves. The amplitudes of rogue 

waves are decreasing with increasing 𝜇𝜇𝑒𝑒 and 𝜇𝜇ℎ𝑝𝑝 due to the reduction of nonlinearity, which 

indicates that the rogue wave does not absorb energy and make the envelope shorter. On the 

other hand, the amplitudes of the rogue waves are increasing with the increase of 𝜅𝜅𝑒𝑒 and 𝜎𝜎1 

due to the absorption of energy in the plasmas. 

 Further, the electrostatic positron acoustic solitary waves are studied by deriving the 

KdV equation with variable coefficients in the considered weakly inhomogeneous plasmas 

using the reductive perturbation method. Figures 6.5 show the electrostatic positron acoustic 

KdV solitary waves for different values of 𝑛𝑛𝑝𝑝𝑐𝑐0 , 𝜇𝜇𝑒𝑒, 𝜅𝜅𝑒𝑒, and 𝜎𝜎1 considering the remaining 

parameters constant. It is seen from Figs. 6.5 that the amplitude of positron acoustic solitary 

waves are decreasing with the increase of 𝑛𝑛𝑝𝑝𝑐𝑐0 , 𝜇𝜇𝑒𝑒, 𝜅𝜅𝑒𝑒 and 𝜎𝜎1. The nonlinear term (𝐿𝐿1) of 

mKdV equation increases due to the enhancement of electron kappa parameters as a result the 

amplitudes of the positron acoustic solitary waves decrease. The driving force, due to the 

inertia of the cold positron, also decreases with increasing positron density, consequently the 

solitary waves are generated as well as the amplitudes of the positron acoustic solitary waves 

decrease. It is also found that the KdV equation supports both compressive for  𝐴𝐴1 < 0 and 
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rarefactive for 𝐴𝐴1 > 0 solitons depending on the plasma parameters in the inhomogeneous 

plasmas. Besides, the KdV equation does not support the positron acoustic solitary waves in 

the weakly inhomogeneous plasmas at the critical unperturbed densities 𝑛𝑛𝑝𝑝𝑐𝑐
(0) = �𝑉𝑉 −

𝑢𝑢𝑝𝑝𝑐𝑐
(0)�

4
�𝑅𝑅2 − 2𝑅𝑅3𝜙𝜙(0)�/6. In such case, the mKdV equation with variable coefficients is 

derived considering further higher order nonlinearity terms to investigate the positron acoustic 

solitary waves around the critical densities. Figures 6.6 display the effect of 𝑛𝑛𝑝𝑝𝑐𝑐0 , 𝜅𝜅𝑒𝑒, 𝜅𝜅𝑝𝑝,  and 

𝜎𝜎1 along with 𝜒𝜒 on the electrostatic positron mKdV solitary waves considering the remaining 

parameters constant. It is seen from Figs. 6.6 that the amplitudes of mKdV positron acoustic 

solitary waves are increasing with the increase of 𝑛𝑛𝑝𝑝𝑐𝑐0 , 𝜅𝜅𝑒𝑒, and 𝜅𝜅𝑝𝑝, and decreasing with the 

increase of 𝜎𝜎1. It is interesting to note that the mKdV equation supports only the compressive 

solitons depending on the inhomogeneous plasma conditions. This result is in good agreement 

with the findings of [37] in homogeneous plasmas. From the above discussions, having in 

mind that an increase in 𝑛𝑛ℎ𝑝𝑝0 would lead to a decrease in 𝑛𝑛𝑖𝑖0 by virtue of the charge 

neutrality, one can conclude that ion depletion favors the propagation of solitary positron 

acoustic waves. Thus, the obtained results in the considered plasmas may be useful for 

understanding the unraveled physical properties of nonlinear positron acoustic waves in space 

plasmas [1-8].  

6.6 Conclusions  

The interaction between the positron acoustic solitary waves, subsequently generation of 

their phase shifts, and production of rogue waves are investigated deriving the KdV, mKdV 

and NLSEs in homogeneous, collisionless, unmagnetized plasmas composing immobile 

positive ions, mobile cold positron, and kappa distributed hot positrons and hot electrons. 

Besides, the KdV and mKdV equations with variable coefficients are derived to investigate 

the nonlinear positron acoustic waves in a weakly inhomogeneous plasmas. It is found that the 

plasma parameters significantly affect the phase shifts after head-on collision and rouge wave 

in homogeneous, and nonlinear positron acoustic solitary waves in inhomogeneous plasma 

systems. The rogue waves are found within the modulational unstable region (𝛼𝛼 > 0) that  

supports only the mKdV equation. It is remarkable to note that the KdV equation admits both 

compressive and rarefactive solitons, but only compressive solitons are found from the mKdV 

equations both in homogeneous and inhomogeneous plasmas. Further, it is observed that the 
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maximum amplitude of solitons are obtained around the critical value in both cases. In 

conclusion, the results obtained in this study might be useful for understanding the qualitative 

changes in the dynamics of the positron acoustic waves of various astrophysical and space 

plasmas like in auroral acceleration regions [40], solar wind [3], naturally doped superthermal 

astrophysical plasmas [41], cosmic rays [45] etc. as well as in laboratory plasmas [62]. 
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Abbreviation and Nomenclature:  

KdV= Korteweg-de Vries  

mKdV = modified Korteweg-de Vries  

ePLK = extended Poincaré-Lighthill-Kuo 

NLS = nonlinear Schrödinger 

NLSE = nonlinear Schrödinger equation 

RWs = rogue waves  

PAMELA= Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics 

𝑛𝑛𝑖𝑖0 = density of unperturbed immobile positive ion 

𝑛𝑛𝑒𝑒0 = density of unperturbed hot electron 

𝑛𝑛𝑝𝑝𝑐𝑐0 = density of unperturbed mobile cold positron 

𝑛𝑛𝑝𝑝ℎ0 = density of unperturbed kappa distributed hot positron 

𝑛𝑛𝑝𝑝𝑐𝑐 = cold positron number density 

𝑢𝑢𝑝𝑝𝑐𝑐 = cold positron fluid speed 

𝐶𝐶𝑝𝑝𝑐𝑐 = positron acoustic speed 

𝜙𝜙 = electrostatic potential 

𝑇𝑇𝑒𝑒ℎ = hot electron temperature 

𝑇𝑇𝑝𝑝ℎ = hot positron temperature 

𝜎𝜎1 = temperature ratio of effective temperature to hot positron temperature  

𝜎𝜎2 = temperature ratio of effective temperature to electron temperature  

𝑇𝑇𝑒𝑒𝑒𝑒 = effective temperature = 𝑇𝑇𝑒𝑒𝑇𝑇𝑝𝑝ℎ �𝜇𝜇𝑒𝑒𝑇𝑇𝑝𝑝ℎ + 𝜇𝜇𝑝𝑝ℎ𝑇𝑇𝑒𝑒�⁄  

𝜇𝜇𝑝𝑝ℎ = density ratio of unperturbed density of hot to cold positron 

𝜇𝜇𝑒𝑒 = density ratio of unperturbed density of electron to cold positron 

𝜇𝜇𝑖𝑖 = density ratio of unperturbed density of ion to cold positron 

𝑣𝑣𝑝𝑝ℎ = thermal speed of hot positrons 

𝑣𝑣𝑒𝑒 = thermal speed of electrons 

𝑣𝑣𝑝𝑝𝑐𝑐 = thermal speed of cold positrons 

𝜔𝜔 = angular frequency 

𝑘𝑘 = wave number 

𝑘𝑘𝐵𝐵= Boltzmann constant 

𝑣𝑣𝑔𝑔 = group velocity of nonlinear IA waves  
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𝑒𝑒 = electronic charge 

𝜅𝜅𝑒𝑒(𝑝𝑝)= superthermal parameter of hot electrons (positron) 

𝜔𝜔𝑝𝑝𝑐𝑐 = period of cold positron plasma  

𝜆𝜆𝐷𝐷𝐷𝐷 = positron Debye length 

𝜙𝜙𝑜𝑜 = amplitude of KdV solitary waves in homogeneous plasma 

𝑊𝑊𝑜𝑜 = width of KdV solitary waves in homogeneous plasma 

𝑈𝑈𝑜𝑜  = constant velocity of the reference frame 

𝜉𝜉, 𝜂𝜂, 𝜏𝜏 = stretched coordinates 

∇𝑄𝑄0(∇𝑃𝑃0) = phase shift of right (left) moving soliton 

𝜙𝜙1 = amplitude of mKdV PA solitary waves in homogeneous plasma 

𝑊𝑊1 = width of mKdV PA solitary waves in homogeneous plasma 

𝜑𝜑𝑣𝑣0 = amplitude of KdVPA solitary waves in inhomogeneous plasma 

𝑊𝑊𝑣𝑣0 = width of KdV PA solitary waves in inhomogeneous plasma 

𝑉𝑉 = speed of wave propagation  

𝜑𝜑1= amplitude of mKdV PA solitary waves in inhomogeneous plasma 

𝑊𝑊4 = width of mKdV PA solitary waves in inhomogeneous plasma 

𝐴𝐴 = coefficient of nonlinearity of KdVE in homogeneous plasma 

𝐵𝐵 = coefficient of dispersion of KdVE in homogeneous plasma 

𝐿𝐿 = coefficient of nonlinearity of KdVE in inhomogeneous plasma 

𝑀𝑀 = coefficient of dispersion of KdVE/mKdVE in homogeneous /inhomogeneous plasma 

𝐿𝐿1 = coefficient of nonlinearity of mKdVE in inhomogeneous plasma 

𝑃𝑃 = coefficient of dispersion of NLSE in homogeneous plasma 

𝑄𝑄 = coefficient of nonlinearity of NLSE in homogeneous plasma  

 
 



 

Chapter 7 
 

Conclusions and Recommendation 

 

    The collisionless unmagnetized multi-species plasmas are considered to study the salient 

features of electrostatic solitary wave or solitons and shock wave due to interactions in 

different plasma conditions. The considered plasma system is homogeneous and/or 

inhomogeneous, relativistic and/or non-relativistic. To do so, the nonlinear evolution 

equations are derived employing extended Poincaré-Lighthill-Kue (ePLK) method. The 

production of rogue waves  is also studied in different plasma environment. The results found 

in this works are summarized below. 

The interactions between the ion acoustic solitons, their phase shifts, and the production of 

rogue waves are investigated by considering the soliton solution of the two-sided KdV 

equations and the rational function solution of the NLSE, respectively. It is found that the 

quantum parameters become prominent due to the Bohm potential, which significantly 

modifies the propagation characteristics, due to the interactions of the small amplitude long-

lived solitons as well as large amplitude short-lived rogue waves in the plasmas.  The results 

obtained in this study might be useful for the understanding of the effects of electrostatic 

resonance and phase shifts after weak interaction between multi-solitons and rogue waves for 

astrophysical compact objects, e.g., white dwarfs, neutron stars, etc., and for laboratory 

plasmas like intense laser–solid matter interaction experiments.  

  The electrostatic nonlinear propagation and head-on collision of ion acoustic solitary 

waves are investigated taking different plasma parameters into account both for the weakly 

and highly relativistic regimes by deriving the two-sided KdV equations employing the ePLK 

method. The phase shift is observed in terms of plasma parameters considering the stationary 

solutions of the KdV equations. It is found that the change in phase shift, magnitude of 

amplitude and width of collision of ion acoustic solitary waves are decreasing with the 

increase of positron concentration, ion-electron temperature ratio, electron-positron 

temperature ratio, but increasing with the increase of relativistic streaming factor. On the 

other hand, the nonlinear propagation characteristics of electrostatic collision of ion acoustic 

solitary waves are almost same for 𝛽𝛽 ≤ 0.1 and slightly larger for 𝛽𝛽 > 0.1  in HRR rather 
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than WRR. It is concluded that the collision of ion acoustic solitary waves are propagating 

faster in highly relativistic rather than weakly relativistic plasmas. The results revel that the 

propagation characteristics including electrostatic resonances of ion acoustic solitary waves 

are useful for understanding the physical issues of highly energetic nonthermal particles with 

relativistic warm ions in astrophysical and laboratory plasmas, especially in pulsar 

magnetosphere, laser produced, inertial confinement plasmas, pulsar relativistic winds with 

supernova ejecta, etc. This work is done to study the interaction of collision of ion acoustic 

solitary waves and their corresponding phase shift derived from two-sided KdV equations. It 

is to be noted that there can be a possibility of producing instabilities due to higher order 

nonlinearity that may require further investigation.  

To study the propagation characteristics due to the interactions among the dust 

acoustic solitons composed of negatively charged mobile dust, Boltzmann-distributed 

electrons, and two-temperature nonthermal cold and hot ions, occupying two different regions 

of velocity phase space are considered. The KdV equations are derived using the ePLK 

method. The analytical solutions for solitons are constructed using the well established Hirota 

bilinear method. The phase shifts due to head-on collisions among the dust acoustic single-, 

double-, and triple-solitons are determined analytically from the solutions of the two-sided 

KdV equations. The effects of plasma parameters on the head-on collisions among the 

electrostatic dust acoustic single-and multi-solitons and their corresponding phase shifts are 

discussed. The compressive and rarefactive scattered two-,four-, and six- dust acoustic waves 

are obtained for 𝐴𝐴 > 0 and 𝐴𝐴 < 0, respectively. The phase shifts due to head-on collision of 

dust acoustic single- and multi-solitons are strongly dependent on the plasma parameters and 

the wave numbers, are increasing with increasing  𝜇𝜇𝑖𝑖1, 𝜇𝜇𝑖𝑖2,  𝜎𝜎1, and 𝑞𝑞 and are decreasing with 

the increase of   𝜎𝜎2, and 𝛽𝛽 . One may conclude that the results obtained in this investigation 

might be useful for understanding electrostatic resonance disturbances and phase shifts after 

weak head-on collision among the solitons in space and laboratory plasma systems, such as 

Saturn’s E-ring, Saturn’s F-ring, noctilucent clouds, Halley’s comet, interstellar molecular 

clouds in cosmic dust-laden plasma, laboratory dusty plasmas, etc., where major plasma 

species are negatively charged massive mobile dust, Boltzmann distributed electrons, and 

two-temperature ions following the nonthermal distributions. This work is done to study the 

interaction of dust acoustic solitons and their corresponding phase shift (time delay) through 

the two-sided KdV equations. The quadratic nonlinearity of the KdV equations may disappear 

for a certain critical value; in such case, one may study the interactions among solitons using 

modified KdV equations.  
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The plasma system consisting of relativistic warm ions, nonextensive electrons and 

positions are considered to investigate the head-on collision between ion acoustic shock 

waves, the change of phase shifts and amplitudes taking into account the effects of 

nonlinearity and dispersion. To do so, two-sided KdV Burger equations are derived with help 

of ePLK method. Two shock waves, one is at 𝜉𝜉 = 0, 𝜂𝜂 → −∞ and the other at 𝜂𝜂 = 0, 𝜉𝜉 → +∞ 

are traveling toward each other and collide at 𝑡𝑡 = 0 and then depart from each other.  It is 

observed that 𝑇𝑇𝑒𝑒𝑒𝑒, 𝑇𝑇𝑖𝑖𝑒𝑒, 𝜂𝜂1, 𝑝𝑝, 𝛽𝛽, and 𝑞𝑞 significantly modify the structures of the shock waves. 

The phase shifts are found to change due to the effects of 𝑇𝑇𝑒𝑒𝑒𝑒, 𝛽𝛽, 𝜂𝜂1, and 𝑝𝑝. The results reveal 

that the electrostatic ion acoustic shock waves become rarefactive for the temperature ratios, 

kinematic viscosity and superthermality in both WRR and HRR. The amplitudes of ion 

acoustic shock waves are increasing for WRR but decreasing for HRR due to increasing ion 

thermal velocities. Besides, the amplitudes of the solitons are detaining due to the increase of 

positron concentration for the depopulation of ions. The results obtained may be useful for the 

clarifications of interactions between ion acoustic shock waves in astrophysical, especially in 

pulsar magnetosphere and laser produced plasmas in laboratory where nonextensive electrons, 

positrons and relativistic ions exist.  

The interaction between the positron acoustic solitary waves, subsequently generation 

of their phase shifts, and production of rogue waves are investigated deriving the KdV, mKdV 

and NLSEs in homogeneous, collisionless, unmagnetized plasmas composing immobile 

positive ions, mobile cold positron, and kappa distributed hot positrons and hot electrons. 

Besides, the KdV  and mKdV equations with variable coefficients are derived to investigate 

the nonlinear positron acoustic waves in a weakly inhomogeneous plasmas. It is found that the 

plasma parameters significantly affect the phase shifts after head-on collision and rouge wave 

in homogeneous, and nonlinear positron acoustic solitary waves in inhomogeneous plasma 

systems. The rogue waves are found within the modulational unstable region (𝛼𝛼 > 0) that 

supports only the mKdV equation. It is remarkable to note that the KdV equation admits both 

compressive and rarefactive solitons, but only compressive solitons are found from the mKdV 

equations both in homogeneous and inhomogeneous plasmas. Further, it is observed that the 

maximum amplitude of solitons is obtained around the critical values in both cases. In 

conclusion, the results obtained in this study might be useful for understanding the qualitative 

changes in the dynamics of the positron acoustic waves of various astrophysical and space 

plasmas like in auroral acceleration regions, solar wind, naturally doped superthermal 

astrophysical plasmas, cosmic rays etc. as well as in laboratory plasmas. 
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        The finite but small amplitude ion acoustic solitary-, ion acoustic shock-, and dust 

acoustic- waves are considered to investigate the interaction phenomena of unmagnetized 

plasmas. In each case the solitons preserved their original identities due to collisions. But the 

sufficiently large amplitude ion acoustic solitary-, ion acoustic shock-, and dust acoustic -

waves do not retain their original size and shape after collisions. Thus, it is suggested to study 

the interaction phenomena in such cases using particle-in cell simulation method. Finally, 

laboratory experiments can be carried out to test the presented theory in this work.    
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