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SUMMARY…… 
 
Genomics is one of the most important OMICS research area in Bioinformatics. In 

Chapter 1, we have introduced some basic concepts of genomics. In Genomics, 

Genome Wide Association Studies (GWAS) have develop gradually over the last ten 

years into a powerful bioinformatics tool for exploring and investigating the genetic 

architecture of plant science, animal science and human biology. The advent of new 

technologies for extracting genetic information from tissue samples has increased the 

availability of suitable data for finding genes controlling complex traits in plants, 

animals and humans.  Based on the nature of the genomics data GWAS can be 

divided into major four types: (i) Quantitative trait locus (QTL) mapping based 

GWAS, (ii) Single nucleotide polymorphism (SNP) based GWAS, (iii) Expression 

QTL (eQTL) mapping based GWAS and (iv) Sequence based GWAS. Again, based 

on the number of phenotypes considered in the analysis, GWAS can be of two types: 

(i) Single-trait GWAS and (ii) Multi-trait GWAS.  

 

Quantitative trait locus (QTL) based GWAS relies on statistical methods to interpret 

genetic data in the presence of phenotype data and possibly other factors such as 

environmental factors. Its main goal is to identify the presence of QTLs with 

significant effects on the trait value(s) as well as to estimate their chromosomal 

positions on the genome relative to some known markers. In Chapter 2, we have 

proposed a new approach for single-trait QTL analysis based on the properties of 

bivariate normal distribution. The calculations in our proposed method is very straight 

forward. Our proposed method shows almost same performance as the existing 

methods of single-trait QTL analysis. All the classical methods of single-trait QTL 

analysis, including our proposed method, are very sensitive to outliers and these 

methods provide misleading results when the phenotypic data are contaminated with 

outliers. To overcome this problem, we have proposed a robust approach for single-

trait QTL analysis by the robust estimation of the parameters of bivariate normal 

distribution using minimum –divergence method (Chapter 2). Our proposed robust 

method of single-trait QTL analysis outperforms over the classical method in 
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presence of phenotypic outliers. Otherwise, the proposed method shows almost equal 

performance to the existing method of single-trait QTL analysis. 

 

Although single-trait SIM methods can be applied to each trait one-by-one, such 

approaches do not take into account the pleotropic effects. Therefore, statistical 

methods for joint analyses of multiple traits are very essentials to identify important 

QTL locations, which control multiple traits simultaneously. All the existing methods 

of multi-trait QTL analysis are time consuming and include computation complexity. 

To overcome this problem, we have developed a new method of multi-trait QTL 

analysis, called fast multi-trait (FMT) QTL mapping, using the properties of 

multivariate normal distribution, in which calculations are very straight forward 

(Chapter 3). Our proposed method exhibits almost similar performance to the 

existing methods of multi-trait QTL analysis. Moreover, our proposed method is very 

efficient in terms of computation time. Although our proposed method of multi-trait 

QTL analysis is very fast compared to the existing methods, it is very sensitive to 

phenotypic outliers and it produces misleading results in case of phenotypic 

contaminations. 

 

In Chapter 4, to overcome the problem of phenotypic outliers, we have developed a 

robust statistical method for multi-trait QTL analysis by robustifying our proposed 

FMT QTL mapping approach using minimum –divergence method. Our proposed 

robust method of multi-trait QTL analysis outperforms over the classical approaches 

in presence of phenotypic contaminations. Otherwise, the proposed method shows 

almost equal performance to the classical methods. This proposed method is also 

implemented on the eSNPs dataset to explore cis/trans regulatory elements. 

 

Due to the recent advancement in the NGS technologies, SNP data of complete 

genome can be obtained for GWAS. Nowadays, SNP-based GWAS has been widely 

used for the genetic study of a variety of species including humans, animals and 

plants to identify genomic locations/regions responsible for various quantitative traits, 

which has been made possible by decreasing the cost and time required to obtain 

sequences of whole genome and genome-wide SNPs. Many methods have been 
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developed for SNP-based GWAS in the literatures, ranging from simple extensions of 

single-trait approaches to sophisticated multi-trait approaches designed specifically 

for multi-trait GWAS. All the existing methods of GWAS are very sensitive to 

outliers and these methods produce misleading results when the data are contaminated 

by phenotypic outliers. To overcome this problem, we have developed a robust 

method for single-trait GWAS by robustifying the simple linear regression model 

using minimum –divergence method (Chapter 5). Our proposed robust method 

shows better performance than the existing methods of single-trait GWAS in presence 

of phenotypic outliers. Otherwise, the proposed method shows almost same 

performance as the existing methods. 

 

The next step after completing QTL/SNP based GWAS is to integrate the 

information, and perform structural and functional analysis of the identified 

associated QTLs/genes/SNPs to investigate the molecular mechanisms of the 

identified loci/QTLs/genes/SNPs. The entire process is known as sequence matching- 

based GWAS. In sequence matching based GWAS, a particular sequence of interest 

(genomic sequence or coding sequence or protein sequence) of a gene is tried to 

match in the whole genome by searching the similar sequences in the whole genome 

stored in the databases. If the sequence of interest matches with any portion of the 

whole genome, then we called that the sequence of interest is associated with that 

portion of the genome. After this, we select the sequence from the genome that is 

most associated with the sequence of interest and then we investigate the molecular 

mechanisms/functions of that selected sequence (i.e., most associated sequence). The 

whole process described above is performed by using different bioinformatics tools of 

structural and functional analyses.  In Chapter 6, we  have performed different 

comparative structural and functional analyses of the 42 finally selected rolling leaf 

(RL) genes using different bioinformatics techniques including gene structure, 

conserved domain, phylogenetic, gene ontology (GO), transcription factor (TF), 

Kyoto Encyclopedia of Genes and Genomes (KEGG), gene network and exploratory 

gene expression analysis. Exon-intron organization and conserved domain analysis 

showed diversity in structures and conserved domains of RL genes. Phylogenetic 

analysis classified the genes into five major groups. GO and TF analyses revealed that 

regulation-related genes were remarkably enriched in biological process and 10 



 
X 
 

different TF families were involved in rice leaf rolling. KEGG analysis demonstrated 

that 14 RL genes were involved in the KEGG pathways, among which 50% were 

involved in the metabolism pathways. Of the selected RL genes, 55% genes were 

non-interacting with other RL genes and OsRL9 was the most interacting RL genes. 

Most of the RL genes exhibited extreme (very high/low) expression at leaf, root and 

shoot. These results provide important information regarding structures, conserved 

domains, phylogenetic revolution, protein-protein interactions, gene expression 

pattern and others genetic basis of RL genes which might be helpful to the researchers 

for functional analysis of new candidate RL genes to explore their characteristics and 

molecular mechanisms for high yield rice breeding. 
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Introduction 

 
 
1.1 Introduction to Genome and Genomics 

Genomics is the study of the whole genome of any living organism along with its 

environment and it incorporates different elements from genetics (a branch of biology 

that generally deals with the heredity). Genomics uses “DNA sequencing methods” to 

generate sequences of genomes using recombinant DNA, and it utilizes 

Bioinformatics to assemble the sequences of whole genomes and analyze the structure 

and function of genomes. It differs from 'classical genetics' in that it considers an 

organism’s full complement of hereditary material, rather than one gene or one gene 

product at a time. Moreover, genomics focuses on interactions between loci and allele 

within the genome and other interactions such as epistasis, pleiotropy and heterosis 

(Figure 1.1). The availability of complete DNA sequences for entire organisms is 

made easy by the Genomics. Genomics was made possible by both the pioneering 

work of Fred Sanger and the more recent next-generation sequencing technology. 

 

Fred Sanger's group established techniques of sequencing, genome mapping, data 

storage, and bioinformatics analyses in the 1970s and 1980s. This work paved the 

way for the human genome project in the 1990s (Bentley et al., 2008) an enormous 

feat of global collaboration that culminated in the publication of the complete human 

genome sequence in 2003. Nowadays, next-generation sequence technologies have 

led to remarkable improvements in the speed, capacity and affordability of genome 

sequencing. Moreover, advances in bioinformatics have enabled hundreds of life-
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science databases and projects that provide support for scientific research. 

Information stored and organized in these databases can easily be searched, compared 

and analyzed. 

 

 

Figure 1.1: The genomics studies of whole organisms and other intragenic 

interactions. 

 

1.2 Some Important Terminologies Related to Genomics 

Cell: The cell is the functional basic unit of life of all living organisms. It was 

discovered by Robert Hooke in 1665. It is the smallest unit of life that is classified as 

a living thing, and is often called the building block of life. Some organisms have 

only a single cell and those organisms are unicellular organisms, e.g., most bacteria. 

Some organisms have more than one cell and those organisms are called multicellular 

organisms, such as humans, animals and plants. Humans have about  3.72×1013 (i.e., 

about 37.2 trillion) cells and this number of cells ranges from 1012 to 1016 (Bianconi et 

al., 2013). A typical cell size of humans is 10 µm and the mass of a typical cell of 
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humans is 1 nanogram. The smallest cell varies in size from 0.1 to 0.5 μm 

(micrometer) which is found in bacteria. On the other hand, the largest cell is of size 

(170 mm × 130 mm) which is found in the egg of an ostrich. The smallest cell in the 

human body is the cerebellar granule cell (size: 4 −  4.5 μm) and the largest cell in 

the human body is the human egg cell (size: 0.12 mm). The cell theory, first 

developed by Matthias Jakob Schleiden in 1837-1839 and Theodor Schwann in 1838-

1839, states that all organisms are composed of one or more cells, all cells come from 

preexisting cells, vital functions of an organism occur within cells, and all cells 

contain the hereditary information necessary for regulating cell functions and for 

transmitting information to the next generation of cells. The pictures of the animal cell 

and plant cell are given in Figure 1.2. 

 

 

Figure 1.2: The structure of plant cell and animal cell (Image source: Internet). 

 

Chromosome: A chromosome is a thread-like organized structure composed of 

deoxyribonucleic acid (DNA) molecule and proteins found in the nucleus of a cell. 

Chromosome is called as the storage unit of DNA and genes. It is a single piece of 

coiled DNA containing many genes, regulatory elements and other nucleotide 

sequences. Chromosome also contains DNA-bound proteins, which serve to package 

the DNA and control its functions. Chromosomes vary widely between different 

organisms. The DNA molecule may be circular or linear, and can be composed of 

100,000 to 10,000,000,000 nucleotides in a long chain (Harikrishnan and Grace, 

2013). Chromosomes are the vital units for cell division and must successfully be 
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replicated, divided, and passed to their daughter cells in order to ensure the genetic 

diversity and survival of their progeny. Chromosomes may exist as either duplicated 

or unduplicated. Unduplicated chromosomes are single linear strands, whereas 

duplicated chromosomes contain two copies joined by a centromere. 

 

In humans, chromosomes can be divided into two types – autosomes and sex 

chromosomes. Certain genetic traits are linked to a person’s sex and are passed on 

through the sex chromosomes. The autosomes contain the rest of the genetic 

hereditary information. All act in the same way during cell division. Human cells 

have 33 pairs of large linear nuclear chromosomes (33 pairs of autosomes and one 

pair of sex chromosomes), giving a total of 46 per cell. In addition to these, human 

cells have many hundreds of copies of the mitochondrial genome. Sequencing of the 

human genome has provided a great deal of information about each of the 

chromosomes. 

 

 

Figure 1.3: Structure of Chromosome (Image source: Internet). 

 

DNA: DNA is a deoxyribonucleic acid that contains the genetic instructions 

specifying the biological development and functioning of all cellular forms of life. 

DNA is the hereditary material in humans and almost all other living organisms. 

Chromatids 
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Nearly every cell in a person’s body has the same DNA. Most DNA is located in the 

cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be 

found in the mitochondria (where it is called mitochondrial DNA or mtDNA). The 

information in DNA is stored as a code made up of four nitrogenous chemical bases: 

(i) adenine (A), (ii) guanine (G), (iii) cytosine (C) and (iv) thymine (T). DNA bases 

pair up with each other, A with T and C with G, to form units called base pairs. Each 

base is also attached to a sugar molecule and a phosphate molecule. Together, a base, 

sugar, and phosphate are called a nucleotide. Nucleotides are arranged in two long 

strands that form a spiral called a double helix. The structure of the double helix is 

somewhat like a ladder, with the base pairs forming the ladder’s rungs and the sugar 

and phosphate molecules forming the vertical sidepieces of the ladder.  DNA acts as 

the store of genetic information. The sequence of bases along its length is the 

"language" of the cell and code for all its proteins. DNA is also the molecule of 

heredity. When a cell or a multi cellular organism reproduced either sexually or 

asexually, the genetic information stored in the DNA molecules is faithfully copied 

and exact copies of these DNA molecules passed along from one generation to the 

next. A DNA double helix is shown in Figure 1.4. 

 

 

Figure 1.4: Structure of a deoxyribonucleic acid (DNA) double helix (Image source: 

U.S. National Library of Medicine). 
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Gene: Genes are discrete units in which biological characteristics are inherited from 

parents to offspring (Wu et al., 2007). A gene is a unit of heredity in a living 

organism. A gene consists of a sequence of exons and introns which are transmitted as 

a whole from generation to generation (Chen, 2016a). Genes are made up of DNA and 

each chromosome contains many genes. It is a name given to some stretches of DNA 

and ribonucleic acid (RNA) that code for a type of protein or for an RNA chain that 

has a function in the organism. Living things depend on genes, as they specify all 

proteins and functional RNA chains. Genes hold the information to build and 

maintain an organism's cells and pass genetic traits to offspring, although some 

organelles (e.g. mitochondria) are self-replicating and are not coded for by the 

organism's DNA. All organisms have many genes corresponding to various different 

biological traits, some of which are immediately visible, such as eye color or number 

of limbs, and some of which are not, such as blood type or increased risk for specific 

diseases, or the thousands of basic biochemical processes that comprise life. A figure 

of gene is shown in Figure 1.5. 

 

 

Figure 1.5: Genes: Functional part of DNA (Image source: U.S. National Library of 

Medicine). 

 

Genome: In board sense, the total amount of DNA including its genes in a single cell 

(a haploid cell for a diploid organism) of any organism is called genome. In modern 

molecular biology and genetics, the genome is the entirety of an organism’s 

hereditary information. Each genome of an organism contains all of the information 
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needed to build and maintain that organism.  It is usually encoded in DNA. However, 

for many types of virus, it is encoded in RNA. The genome includes both the coding 

sequences (i.e., genes) and the non-coding sequences of DNA or RNA. The study and 

analysis of genomes is called genomics. Figure 1.6 shows a genome of a living 

organism 

 

 

Figure 1.6: Genome of a living organism (Image source: Internet). 

 

Marker: A genetic marker is a gene or DNA sequence with a known location on a 

chromosome that can be used to identify individuals or species. It can be described as 

a variation (which may arise due to mutation or alteration in the genomic loci) that 

can be observed. A genetic marker may be a short DNA sequence, such as a sequence 

surrounding a single base-pair change (single nucleotide polymorphism, SNP), or a 

long one, like minisatellites. Figure 1.7 shows a picture of genetic markers. Some 

commonly used types of genetic markers are as follows:  
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 RFLP (Restriction fragment length polymorphism) 

 SSLP (Simple sequence length polymorphism) 

 AFLP (Amplified fragment length polymorphism) 

 RAPD (Random amplification of polymorphic DNA) 

 VNTR (Variable number tandem repeat) 

 Microsatellite polymorphism, SSR (or Simple sequence repeat) 

 SNP (Single nucleotide polymorphism) 

 STR (Short tandem repeat) 

 SFP (Single feature polymorphism) 

 DArT (Diversity Arrays Technology) 

 RAD markers (or Restriction site associated DNA markers) 

 

 

Figure 1.7: Genetic markers are indicated by red flags (Image source: Internet). 

 

Locus: Locus is the location/position of a gene/marker on the chromosome. 

 

Allele: Allele is one variant form of a gene/marker at a particular locus. If we have 

two alternative genes, say A and a, there are two types of homozygotes, namely AA 

and aa, and one type of heterozygote, namely Aa. These alternative genes are called 

alleles. 
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Genotypes: At each locus (except for sex chromosomes) there are 2 genes (e.g., A 

and a). These constitute the individual’s genotype at the locus. With a single pair of 

alleles, there are three different kinds of possible organisms represented by the three 

genotypes AA, Aa and aa. 

 

Phenotypes: The expression of a genotype is called a phenotype. For example, hair 

color, weight, height, the presence or absence of a disease, etc.  

 

Mendel’s Laws:  

1. First law or law of segregation 

2. Second law or law of independent assortment 

 

Mendel’s First Law or Law of Segregation: The law of segregation states that 

characteristics are controlled by pairs of genes that segregate or separate during the 

formation of the reproductive cells, thus passing into different gametes (Wu et al., 

2007). An example of the law of segregation is show in Figure 1.8. 

 

Figure 1.8: Mendel’s first law or law of segregation (Image source: Internet). 
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Mendel’s Second Law or Law of Independent Assortment: The law of 

Independent Assortment says that when two or more pairs of genes segregate 

simultaneously, they do so independently (Wu et al., 2007). An example of the law of 

independent assortment is show in Figure 1.9. 

 

 

Figure 1.9: Mendel’s second law or law of independent assortment (Image source: 

Internet). 

 

Crossing Over: Crossing over, or recombination, is the process of exchanging the 

chromosome segments of equal size between two homologous non-sister chromatids 

of two homologous chromosomes during meiosis. At an early stage of meiosis, the 

two homologous chromosomes lie side-by-side with corresponding loci aligned 

(Figure 1.10A). Each of the paired chromosomes is then duplicated to form two sister 

strands (chromatids) connected to each other at a region called the centromere. The 

homologous chromosomes form pairs, so that each resulting complex consists of four 

chromatids known as a tetrad (Figure 1.10B). At this stage, the non-sister chromatids 

adhere to each other in a semi-random fashion at the regions called chiasmata. Each 

chiasma represents a point where crossing over between two non-sister chromatids 

can occur (Figure 1.10C). Crossing over creates new combinations of genes in the 
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gametes that are not found in either parents, contributing to genetic diversity. The 

diagram of crossing over is shown in Figure 1.10. 

 

 

Figure 1.10 (A-B): Crossing over between two linked loci A and B (Image source: 

Wu et al. (2007)). 

 

Recombination Frequency or Fraction: The proportion of recombinants in a 

gametic pool is called the recombination fraction or recombination frequency. 

Recombination fraction is usually denoted by r. This fraction depends on the number 

of crossovers, although not in a linear fashion. In genetic linkage study, people often 

use recombination fraction in place of the number of crossovers to measure the 

distances between loci (Xu, 2013b). Recombination fraction is a measure of genetic 

linkage and is used to create the genetic linkage map. Recombination fraction is the 

frequency that a single chromosomal crossover will take place between two genes 

during meiosis. A centimorgan (cM) is a unit that describes a recombination fraction 

of 1%. In such way we can measure the genetic distance between two loci, based 

upon their recombination fraction. This is a good estimate of the real distance. Double 

crossovers would turn into no recombination. In this case, we cannot tell if crossovers 

took place. If the loci we are analyzing are very close (< 7 cM) a double crossover is 

very unlikely. When distances become higher, the likelihood of a double crossover 

increases. As the likelihood of a double crossover increases we systematically 

underestimate the genetic distance between two loci. 
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Genetic Distance: The recombination fraction between two loci depends on how far 

apart they are in physical terms along the DNA molecule. The genetic distance 

between two loci is defined as the average number of crossovers. In Genetics, genetic 

distance is usually denoted by d. There are two different measurements for the genetic 

distance between two loci: the number of crossovers and the recombination fraction. 

Genetic distance is usually measured in Morgans. The unit of centiMorgan (cM) is 

also used. A centiMorgan is one hundredth of a Morgan. As a rough guideline, 1% 

recombination fraction is equivalent to the genetic distance of 1 cM and it 

corresponds approximately to a physical distance of one million base pairs (i.e., 1 

megabase). However, the exact number varies from organism to organism, even from 

region to region in the genome of the same organism. The relationship between 

recombination and genetic distance does not remain linear. Because when two loci are 

in infinite distance apart, the recombination fraction is still only 50%. Recombination 

fraction is converted into genetic distance using different types of mapping functions, 

e.g., Haldane map function, Kosambi map functions. 

 

Genetic Linkage: Genetic linkage is the tendency of certain loci or alleles to be 

inherited together. Genetic loci that are physically close to one another on the same 

chromosome tend to stay together during meiosis, and are thus genetically linked. The 

proximity of two or more markers on a chromosome; the closer the markers, the lower 

the probability that they will be separated during DNA repair or replication processes, 

and hence the greater the probability that they will be inherited together. 

Recombination fraction (r) is used as a measure of genetic linkage. The value r = 0.5 

indicates independent segregation or no linkage. The value r < 0.5 indicates there is 

linkage. The smaller the value of r the stronger the linkage between two loci. 

 

Map Distance: The map distance between any two loci is the average number of 

points of exchange occurring in the segment (Xu, 2013b). One linkage map unit 

(LMU) is 1% recombination. Thus, the linkage map distance between two genes is the 

percentage recombination between those genes. 

 

Example: Suppose we have a total of 300 recombinant offspring out of 2000 total 

offspring. Map distance is calculated as  
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Map distance = (# Recombinants)/(Total offspring) ×100.  

So our map distance is (300/2000)×100, or 15 LMU. 

 
Map Function: There is a very simple relationship between the recombination 

fraction and the map distance for a pair of loci. Such a relationship is called a map 

function. That is, the map function is a mathematical function that converts the 

recombination fraction (r) between two loci to the genetic distance separating them 

(d). Widely used map functions: (i) Morgan Map Function, (ii) Haldane Map Function 

and (iii) Kosambi Map Function. 

 

Morgan Map Function: The Morgan map function is the simplest map function, 

which assumes that (i) there is at most one crossing-over occurring within the interval 

of two loci, and (ii) the probability of a crossing-over within an interval is 

proportional to the map length of the interval (Wu et al., 2007). Under these 

assumptions, the probability of a chiasma occurring in a distance of � map units is 

equal to the expected number of crossing-overs per gamete in this distance and 

therefore to 2d which gives 

 � =
1

2
[1 − Pr (� = 0)] =

1

2
[1 − (1 − 2�)] = �  (1.1) 

This function holds only when 0 ≤ � ≤ 1/2 since for � > 1/2 it results in 

recombination fractions of greater than 1/2. It may therefore be used as an 

approximation for short distances but is not applicable for long segments of 

chromosomes. 

 

Haldane Map Function: The Haldane map function assumes that crossing-overs 

occur at random and independently of each other (Haldane, 1919). With this 

assumption, the occurrence of crossing-overs between two loci on a chromosome can 

be viewed as a Poisson process so that the number of crossing-overs between the loci 

can be modelled by a Poisson distribution. Since map distance, �, is defined as the 

average number of crossing-overs per chromatid within a given interval, the average 

number of crossing-overs for the tetrad as a whole is 2�. This assumption of a Poisson 
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process implies that the probability of no chiasma within the interval, Pr(� = 0), is 

����.  The Haldane map function is defined as follows: 

 � =
1

2
[1 − Pr(� = 0)] =

1

2
(1 − ����)  (1.2)

whose inverse is 

� = −
�

�
ln(1 − 2�). 

 

Kosambi Map Function: In 1919, Haldane introduced a differential equation method 

(Haldane, 1919) that generalized the construction of various map functions. Using this 

generalization, Kosambi derived a map function, known as Kosambi map function, 

which is both simple and justifiable in practice (Kosambi, 2016). The Kosambi map 

function is defined as 

 � =
1

2

��� − ����

��� + ����
  (1.3)

with inverse  

 � =
1

4
ln

1 + 2�

1 − 2�
  (1.4)

 

Qualitative Traits: Phenotypes of organisms can be described in qualitative or 

quantitative terms. A qualitative trait is a trait that can be assigned to a number of 

classes, such as round or wrinkled shape of peas. Mendelian traits, controlled by 

single genes, are a special case of qualitative traits. Much of Mendelian genetics is 

based on qualitative assessments of phenotypes, where differences in individuals can 

be identified by their distinct phenotypic values.  

 

Quantitative Traits: A quantitative trait is a trait that is measured numerically, such 

as body weight, crop yield and the bristle number of a Drosophila. Most characters of 

economic importance in plants and animals are quantitative traits.  

 

Quantitative trait locus (QTL): A quantitative trait tends to exhibit continuous 

variation, which is usually a consequence of the combined effects of multiple genes 

(Bernardo, 2001; Fairbanks and Andersen, 1999; Glazier et al., 2002). A genomic 
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region that influences a quantitative trait is referred to as a quantitative trait locus 

(QTL). When a trait is influenced by multiple genes, the inheritance of individual 

genes follows a Mendelian pattern, but the segregation of each individual gene is 

obscured by segregation of the rest genes. Continuous variation in quantitative traits 

may also be influenced by environment. For example, crop yield is not only 

determined by the genetic composition but also influenced by other factors such as 

moisture, sunlight and texture of the soil. When a trait is influenced by environment, 

the segregation of genes underlying the trait may be obscured by environmental 

effects. 

 

Pleiotropic effect: A QTL is said to have pleiotropic effect if it simultaneously 

controls several phenotypic traits. 

 

Heritability: There are generally two sources of variation in a quantitative trait: 

genetic effects and environmental influences. The variance of a quantitative trait can 

be partitioned into genetic variance, which is induced by genes underlying the 

quantitative trait, and environmental variance, which is induced by environmental 

factors, accordingly 

 VP=VG+VE  (1.5)

where VP is the phenotypic variance, VG is the genetic variance and VE is the 

environmental variance. Geneticists are often interested in what proportion of the 

phenotypic variation is genetic, which is conceptually associated with heritability. 

Generally, there are two types of heritability: (i) Broad-sense heritability and (ii) 

Narrow-sense heritability. 

 

Broad-sense heritability: The ratio of the genetic variance over the phenotypic 

variance is defined as broad-sense heritability. That is, it is the proportion of the 

phenotypic variance caused by genes for the underlying the trait. It is mathematically 

expressed as follows: 

 �� =
��

��
  (1.6)
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or equivalently   

 ��  =
��

��  + ��
    (1.7)

It is easy to see that the broad-sense heritability �� falls between 0 and 1. If all the 

phenotypic variation is due to genetic variance, then �� = 1 and if all the phenotypic 

variation is due to environmental variance, �� = 0. 

 

Narrow-sense heritability: The genetic variance can further be partitioned into the 

variance for additive effects of genes, the variance for dominant effects of genes and 

the variance for their interactions (referred to as epistasis): 

 �� = �� + �� + ��  (1.8)

where �� is the variance for additive effects, �� is the variance for dominant effects 

and �� is the variance for epistasis. 

 

The non-additive effect or variance is the summation of dominance effect and 

epistatic effect or variance. Since the additive effect can be inherited from the parents 

to offspring whereas the non-additive effect cannot, we use the proportion of the 

phenotypic variance caused by the additive effects of genes. The ratio of the additive 

variance over the total phenotypic variance is define as the narrow-sense heritability. 

Mathematically, it is expressed as follows: 

 ℎ� =
��

��
  (1.9)

Narrow-sense heritability quantifies the degree with which the phenotypic value of a 

quantitative trait is unchanged from one generation to next generation. 

 

The two types of heritability defined in (1.6) and (1.9) are conventionally used to 

describe the degree of overall genetic control for a trait, including the contributions of 

all the underlying genes (Lynch and Walsh, 1998). These two types of heritability are 

now commonly used to describe the contributions of individual genes if these genes 

can be detected by an approach like genetic mapping. 
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Backcross (BC): The crossing of first generation (F1) with one of its parents (P), 

father/mother, is called backcross (BC). Suppose, two alternative gene A and a, their 

zygote in first generation is Aa. If we cross this zygote again with AA or aa, the BC 

genotype is AA are Aa in ratio 1:1 and if the population come from BC, then it is 

called backcross population. 

 

Intercross (F2): The crossing of first generation (F1) with the first generation (F1) is 

called intercross (F2). Suppose, two alternative genes are A and a. Then the first 

generation is heterozygous of the type Aa and their F2 genotypes are AA, Aa, and aa in 

ratios 1:2:1, respectively, and if population come from F2 is called intercross 

population. 

 

Recombinant Inbred Line: Recombinant inbred line is derived from repeated 

selfings of F2 individuals for many generations until all progeny become 

homozygotes. In animals (except some lower worms), selfing is impossible, and thus, 

RIL must be obtained by repeated brother–sister matings. For large animals with long 

generation intervals, RIL cannot be obtained within a reasonable amount of time. 

Therefore, only small laboratory animals, e.g., fruit flies and mice, are possible to 

have RIL. An RIL generated via selfing is called RIL1, while an RIL generated via 

brother–sister mating is called RIL2. 

 

Double Haploid: Double haploid (DH) is obtained by doubling the gametes of first 

generation (F1) individuals through some special cytogenetic treatment. DH can be 

achieved by a single generation of cytogenetic manipulation, just like a BC 

population. However, a DH individual is homozygous for all loci. Therefore, a DH 

population contains two possible genotypes, AA and aa.  

 

Single nucleotide polymorphism (SNP): A single nucleotide polymorphism (SNP) 

is a site in the genome where the DNA sequences of many individuals differ by a 

single A, T, C, or G. Nowadays, interest is focusing on the possibilities for using 

SNPs, especially in association studies. These contain changes in a single base pair at 

a particular point. The change is either present or absent, so the markers are bi-allelic. 

The SNPs are extremely numerous, being densely present throughout the whole 
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genome, and so may offer more potentials for fine-mapping disease genes than 

microsatellite markers. 

 

 

 

Figure 1.11: Single nucleotide polymorphism (Image source: Internet). 

 

1.3 Genome Wide Association Studies (GWAS) 

The human genome project, which was completed in 2003, made it possible for us, 

for the first time, to read the complete genetic blueprint of human beings. Since then, 

the researcher started looking into the germline genetics variants which are associated 

with the heritable diseases and traits among humans, known as genome-wide 

association studies (GWAS). A genome-wide association (GWA) study is defined as 

any study of genetic variation across the whole genome of any organism that is 

designed to identify genetic associations with observable traits of interest (such as 

height, weight, blood pressure), or the presence or absence of a particular disease 

(such as presence or absence of diabetes, or cancer) or any specific condition. Figure 

1.12 shows the pipeline of the GWAS. 
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Figure 1.12: Overview of pipeline of the GWAS. 

 

For humans, a typical example of GWAS in machine learning terminology is the 

association study where the response variable is a disease such as breast cancer, and 

the predictor variables (or features) are the  SNPs (the single positions in the whole 

genome where the individuals vary by a single nucleotide A or T or G or C). The 

primary goal in GWAS is to identify all the SNPs that are relevant to the diseases or 

the observable traits (qualitative or quantitative). GWAS are characterized by high 

dimension and high-throughput. The human genome has roughly three billion 

chromosomal positions among which roughly three million positions are SNPs. 

 

GWAS of quantitative traits like human height, growth related traits in plants and 

animals, or studies of mo1ecu1ar traits like gene expression have identified a large 

number of loci (Atwell et al., 2010; Bolormaa et al., 2011; Kim et al., 2013; Lee et al., 
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2008; Tian et al., 2011; Visscher, 2008). Due to their study design, they have proven 

especially useful for detecting associations of common variants. Due to their 

polygeneticity of common human diseases the selective pressure on individual 

disease-causing mutations is assumed to be reduced, leading to the common diseases, 

common variant hypothesis (Lander, 1996; Pritchard and Cox, 2002; Reich and 

Lander, 2001) and the belief that GWAS should be especially useful for these kinds of 

diseases. The number of loci that have been reliably associated with heritable human 

diseases is close to nine thousand. Since the publication of the first successful GWAS 

(Ozaki et al., 2002), the number of publications on human GWAS has constantly been 

increasing each year (MacArthur et al., 2016; Struck et al., 2018). These GWA studies 

have detected tens of thousands of genetic variants which are statistically associated 

with human diseases (MacArthur et al., 2016; Struck et al., 2018). 

 

The main goals of GWAS are - 

(i) Discovering genetic markers or SNPs that are associated with a specific trait 

like disease, height, weight, etc.  

(ii) To identify a significant portion of the DNA bases responsible for a disease 

or trait variability and to aid with disease prediction and prevention.  

 

Broad-sense GWAS: In board sense, GWAS includes the followings areas based on 

the nature of the genotypic data: 

(i) QTL mapping based GWAS 

(ii) Transcript based GWAS 

(a) Differential expression (DE) analysis 

(b) Marker based eQTL analysis 

(c) SNP based eQTL analysis 

(iii) SNP based GWAS  

(iv) Sequence matching based GWAS 

 

Modern-sense GWAS: In modern sense, genome-wide association studies (GWAS) 

is referred to the SNP-based GWAS. 
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1.3.1 QTL Mapping Based GWAS 

The genome-wide identification of the chromosomal locations of quantitative trait loci 

(QTLs) along with their effects is very important for biomedical, evolutionary, 

animal, plant and agricultural genetics. QTL mapping aims to find the association 

between phenotypes and genotypes (i.e., genetic markers) in one or more 

chromosomal locations in the whole genome. That is, QTL mapping is the study for 

locating QTL in the genome by testing the association between phenotypes and 

genotypes using trait and marker genotype data obtained from certain populations 

(Chen, 2016c), e.g., backcross (BC) population, intercross (F2) population, double 

haploid (DH) population, etc. Figure 1.13 shows the pipeline of the QTL mapping 

base GWAS. 

 

 

Figure 1.13: Flowchart of pipeline of QTL mapping based GWAS. 

 

A variety of methods have been developed for QTL mapping (Hoeschele et al., 1997; 

Lynch and Walsh, 1998). These methods of QTL analysis can be classified as 

follows: 

1. Single-marker analysis 

(i) t–test 

(ii) Analysis of variance  

(iii) Linear regression anlaysis 

2. Interval mapping (Simple, Composite and Multiple interval mapping) 

(i) Maximum likelihood analysis (ML) 
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(ii) Least–squares analysis (LS) 

(iii) Bayesian analysis. 

 

These methods differ in computational requirements, efficiency in terms of extracting 

information, flexibility with regard to handling different data structures, and ability to 

map multiple QTLs. The methods of single-marker analysis are simple and efficient 

in terms of computational speed but cannot extract all information from the data and 

is restricted to specific mating designs. The technique of ML based simple interval 

mapping (SIM) (Lander and Botstein, 1989) is one of the most popular and widely 

used methods for QTL analysis in controlled crosses or structured pedigrees. 

However, ML-based interval mapping (IM) is time consuming because it uses the 

iterative expectation maximization (EM) algorithm. The least squares (LS) based SIM 

(Haley and Knott, 1992) is very efficient in terms of computation time and can be 

used for all popular mating designs. The ML and LS based SIM methods have been 

extended to composite interval mapping (CIM) by Zeng (Zeng, 1993, 1994a, 1994b) 

and multiple interval mapping (MIM) by Kao (Kao et al., 1999).  

 

In this thesis, we will discuss only the SIM approaches for QTL mapping based 

GWAS. Based on the number of phenotypes to be considered in the SIM methods of 

QTL analysis, the SIM methods can be divided into two types: 

(i) Single-trait simple interval mapping (i.e., Single-trait QTL anlaysis) 

(ii) Multi-trait simple interval mapping (i.e., Multi-trait QTL analysis) 

 

Single-trait Simple Interval Mapping: It searches a QTL within each interval 

between two adjacent markers on each chromosome, which affects/controls a single 

phenotypic trait, by performing likelihood ratio test (LRT) or F-test. The most popular 

and widely used interval mapping approaches are Maximum likelihood (Lander and 

Botstein, 1989) based SIM and Regression based SIM (Haley and Knott, 1992). 

 

Multi-trait simple interval mapping: In many line crossing experiments of genome-

wide QTL mapping studies, measurements are taken on multiple traits along with the 

marker genotypes. Most often, such traits are correlated with each other and there are 
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common chromosome regions (chromosomal locations) that affect multiple traits 

(Chen, 2016b). Although single-trait SIM methods can be applied to each trait one-

by-one, such approaches do not take into account the pleotropic effects. A QTL is said 

to have pleiotropic effect if it simultaneously controls several phenotypic traits. The 

joint analyses of multiple traits, which include all quantitative traits together in a 

single model, can increase the power of QTL identification and improve the QTL 

localization accuracy when multiple traits are correlated genetically in the population 

(Xu, 2013a). In addition, QTL mapping considering multiple quantitative traits using 

joint analyses can give insights into the important genetic mechanisms underlying the 

trait relationships (e.g., genetic linkage versus pleiotropy), which would otherwise be 

hard to address if multiple traits are analyzed one by one. Therefore, statistical 

methods are very useful for joint analyses of multiple traits to identify important QTL 

locations, which control multiple traits simultaneously. 

 

1.3.2 Transcript Based GWAS 

In transcript based GWAS, the main activities is to find the differentially expressed 

genes (DEG) between two or more conditions from gene expression profiles or 

RNAseq profiles. Gene expression Gene expression is a process by which information 

from a gene is used in the synthesis of a functional gene product, which may be 

proteins (Anjum et al., 2016). Figure 1.14 represents the outline of the RNA-seq 

processing pipeline used to generate data for Expression Atlas. Differential expression 

(DE) analysis means taking the normalized read count data and performing statistical 

analysis to discover quantitative changes in expression levels between experimental 

groups (e.g., Control group versus Case group). In DE analysis, we use different 

statistical tests to decide whether, for a given gene, an observed difference in read 

counts between experimental groups is statistically significant. There are different 

statistical methods for DE analysis which can be divided into two types: (i) Classical 

methods and (ii) Bayesian methods. The classical approaches of DE analysis are 

divided into two types: (i) Parametric test and (ii) Non-parametric test. The most 

popular parametric classical approaches are t-test, F-test (ANOVA) (Kerr and 

Churchill, 2001) and likelihood ratio test (LRT) based on normal distribution, and 

DESeq (differential expression of sequence data) (Anders and Huber, 2010) and 
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edgeR (empirical analysis of digital gene expression in R) (Robinson et al., 2009) 

based on negative binomial (NB) distribution. The frequently used non-parametric 

approaches of DE analysis are Wilcoxon test (Wilcoxon, 1945), Kruskal Wallis test 

(Kruskal and Wallis, 1952) and significant analysis of microarrays (SAM) test 

(Tusher et al., 2001). The widely used Bayesian approaches based on a NB model are 

baySeq (Hardcastle and Kelly, 2010) and EBSeq (Leng et al., 2013), and the 

empirical Bayes approaches are linear models for microarrays (LIMMA) (Smyth, 

2005), EBarrays (Kendziorski et al., 2003) and BRIDGE (Gottardo et al., 2006). It is 

crucial to consider the design of the experiment when choosing an analysis method 

for DE analysis. Whereas some of the DE analysis tools can only perform pair-wise 

comparison, the others such as edgeR, limma-voom (Law et al., 2014), DESeq and 

maSigPro (Conesa et al., 2006) can perform multiple comparisons. 

 

Figure 1.14: Pipeline of the RNA-seq processing used to generate gene expression 

data. 
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Marker based eQTL analysis: In maker based eQTL analysis, the methods of QTL 

analysis are used where the phenotypic data are the expression values of genes and the 

genotypic data are the marker data. Figure 1.13 shows the pipeline of the marker 

based eQTL mapping. 

 

 

Figure 1.15: Flowchart of pipeline of QTL mapping based GWAS. 

 

SNP based eQTL analysis: In maker based eQTL analysis, the phenotypic data are 

the expression values of genes and the genotypic data are the SNP data. All the 

statistical methods of SNP based GWAS with quantitative traits can be used for the 

SNP based eQTL analysis. Figure 1.14 represents the pipeline of SNP-based GWAS. 

 

 

Figure 1.16: Flowchart of pipeline of SNP based GWAS. 
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In this thesis, we will not discuss any method of GWAS that uses gene expression 

data. More specifically, we will not discuss any method of DE analysis, marker based 

eQTL analysis and SNP based eQTL analysis in details in the next chapters of this 

thesis. 

1.3.3 SNP Based GWAS 

A SNP-based genome-wide association study (GWAS) is defined as the study of 

genetic variation across the whole genome of any organism that is designed to 

identify genetic associations between SNPs and observable traits of interest (such as 

height, weight, blood pressure, or presence or absence of a particular disease such as 

diabetes, cancer, or any specific condition). The primary goal in SNP based GWAS is 

to identify all the SNPs that are relevant to the diseases or the observable traits.  

Figure 1.17 represents the pipeline of SNP-based GWAS. 

 

 

Figure 1.17: Flowchart of pipeline of SNP based GWAS. 

The most popular and widely used approaches of SNP based GWAS are as follows: 

a. Pearson χ� test for association between phenotype and genotype 

b. Cochran Armitage test for trend in penetrances 

c. The Transmission Disequilibrium Test (TDT) to test association using data 

from families with at least one affected child 

d. SNP based GWAS using linear mixed models, e.g., Efficient Mixed-Model 

Association (EMMA) 
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model, which is a special case of linear mixed models. 

 

1.3.4 Sequence Matching Based GWAS 

In sequence matching based GWAS, a particular sequence of interest (genomic 

sequence or coding sequence or protein sequence) of a gene is tried to match in the 

whole genome by searching the similar sequences in the whole genome stored in the 

databases. If the sequence of interest matches with any portion of the whole genome, 

then we called that the sequence is associated with that portion of the genome. In 

other words, in sequence matching based GWAS, similar sequences to a sequence of 

interest are searched in the whole genome stored in the databases. Then those similar 

sequences are said to be associated with the sequence of interest. After this, we select 

the sequence from the genome that is most associated with the sequence of interest 

and then we investigate the molecular mechanisms/functions of that selected sequence 

(i.e., most associated sequence). The molecular mechanisms/functions of that most 

associated sequence are treated as the molecular mechanisms/functions of the 

sequence of interest. The molecular mechanisms/functions that we usually interested 

in include gene structures, conserved domain containing, phylogenetic relationships, 

protein-protein interaction network, Gene Ontology (GO), transcription factors (TFs), 

gene-set enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 

and gene expression pattern. To explore a specific mechanism/function of a sequence 

we search the associated (i.e., similar) sequences in the whole genome stored in the 

database and find out the mechanism/function of the most associated (i.e., similar) 

sequence. The function of the most associated sequence is treated as the function of 

the selected sequence. 

 

1.4 Literature Review on GWAS 

QTL mapping based GWAS is used to detect the important QTLs and their locations 

genome wide which control specific phenotypic traits. It is widely used in agricultural 

and biomedical genetics. QTL mapping aims to find the association between 

phenotypes and genotypes (i.e., genetic markers) in one or more chromosomal 

locations in the whole genome.  Thoday (1961) first proposed the idea of using two 
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markers to bracket a region for testing QTLs. Soller et al. (1976) examined the power 

of experiments at detecting linkage between a quantitative locus and a marker locus. 

Similar to Thoday (1961), but much improved method called simple interval mapping 

(SIM) or interval mapping (IM) approach was proposed by Lander and Botstein 

(1989) which is based on linkage relationships between a QTL and flanking markers. 

This method uses two adjacent markers to test the existence of a QTL within the 

interval by performing a likelihood ratio test (LRT) at every position in the interval.  

The LRT based SIM is time consuming and its calculations are complex. Least 

squares regression base SIM (Haley and Knott, 1992) is very efficient in terms of 

computation complexity and time. Liu (1997), Wu et al. (2007) and (Xu, 2013b) have 

discussed various techniques of QTL mapping based GWAS in their texts. 

 

Often in many line crossing experiments of genome-wide QTL mapping studies, 

measurements are taken on multiple traits along with the marker genotypes. Very 

often, such traits are correlated and there are common chromosome regions 

(chromosomal locations) that affect multiple traits (Chen, 2016b). Several statistical 

methods for multi-trait QTL analysis have been developed in the literatures, ranging 

from simple extensions of single-trait QTL mapping approaches to sophisticated 

multi-trait QTL mapping approaches designed especially for multi-trait QTL analysis.  

 

Several studies showed that some segments of genome (i.e., QTLs) affect different 

phenotypic traits simultaneously (Doebley and Stec, 1993; Edwards et al., 1992). In 

1915, Jiang and Zeng first developed a statistical method for multi-trait QTL with F2 

population analysis, which consider multiple traits simultaneously (Jiang and Zeng, 

1995). Korol et al. (1995) demonstrated the advantages of multi-trait QTL mapping 

within the framework of simple interval mapping where the correlation between trait 

complexes and the correlation between the QTLs were taken into account. Multi-point 

QTL analysis using variance-component linkage methods had been developed by 

Almasy and Blangero (1998) that can be used in the pedigrees of arbitrary complexity 

and size. They developed a general outline for the probability calculations with multi-

point identity by descent (IBD). Mangin et al. (1998) proposed a dimension reduction 

method for multi-trait QTL analysis which consist of two different steps. First step is 

to extract the canonical variables that associated with the traits using the estimated 
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variance-covariance matrix of the traits and second step is to use the single-trait QTL 

mapping method to each canonical variable to obtain the combined results. 

 

Many other substantial studies has been done in the field of multi-trait QTL mapping 

(Hackett et al., 2001; Henshall and Goddard, 1999; Knott and Haley, 2000; Korol et 

al., 2001; Williams et al., 1999). Least squares based multivariate regression (MVR-

LS) for multi-trait SIM (Knott and Haley, 2000) and multi-trait SIM using expectation 

maximization (EM) algorithm (Dempster et al., 1977) based multivariate regression 

(Xu, 2013a) are two most popular and widely used approaches for multi-trait QTL 

analysis. 

 

Single nucleotide polymorphism (SNP) based Genome-wide association studies 

(GWAS) has been widely used for the  genetic study of a variety of species including 

humans, animals and plants to identify genomic locations/regions responsible for 

various quantitative traits, which has been made possible by decreasing the cost and 

time required to obtain sequences of whole genome and genome-wide SNPs. Since 

the publication of the first successful GWAS (Ozaki et al., 2002), the number of 

publications on human GWAS has constantly been increasing each year (MacArthur 

et al., 2016; Struck et al., 2018). These GWA studies have detected tens of thousands 

of genetic variants which are statistically associated with human diseases (MacArthur 

et al., 2016; Struck et al., 2018). A very large set of SNPs along with a very large 

number of accessions are simultaneously studied using different GWAS methods to 

uncover the significant relationship between genomic latent factors and phenotypic 

variations of interest (Zhao et al., 2011).  

 

Population stratification (PS) is the main concerning issue when extensive genome-

wide association analysis with numerous subjects is in consideration (Li and Yu, 

2008; Liu et al., 2013; Xu et al., 2009). Some unidentified new population structures 

are probable to exist due to the large number of subjects that may be liable for 

systematic differences being selected in SNPs between cases and controls (Liu et al., 

2013). Due to higher false discovery rates (FDRs), it is imperative to correct the 

observed population stratification in GWAS (Campbell et al., 2005; Liu et al., 2013). 
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The most commonly used statistical methods to avoid the bias of population 

stratification or genetic relatedness are genomic control (Devlin and Roeder, 1999), 

structured association (Pritchard et al., 2000), and principal component analysis 

(Patterson et al., 2006; Price et al., 2006). Genomic control (GC) approach modifies 

the association statistics by a common factor for all SNPs to correct for PS (Liu et al., 

2013). Genomic control suffers from weak power when the effect of population 

structure is large (Aranzana et al., 2005; Devlin et al., 2001; Price et al., 2006; Yu et 

al., 2006; Zhao et al., 2007). Structured association analysis technique suggests 

locating the samples to discrete subpopulation clusters and then collecting evidence of 

association within each cluster (Pritchard et al., 2000). The SA method is useful for 

small datasets (http://pritch.bsd.uchicago.edu/software/structure2_1.html) (Liu et al., 

2013). Nevertheless, the software package STRUCTURE is computationally intensive 

and cumbersome for large-scale genome-wide association studies (Price et al., 2006). 

 

Another method based on principal component (PCA) is used for genome-wide 

association analysis (Price et al., 2006). In this technique, EIGENSTRAT program 

uses several top principal components (PCs) and applies them as covariates in GWA 

analysis (Liu et al., 2013). These top PCs are selected using EIGENSTRAT (Price et 

al., 2006) program based on PCA. Thousands of markers can be analyzed using this 

PCA method and the adjustment using PCA is definite to a marker’s variation in allele 

frequency across ancestral populations (Liu et al., 2013; Price et al., 2006). PCA 

approach may however not more appropriate to correct population structure if it arises 

from the existence of several discrete subpopulations because PCA applies the 

produced eigenvectors as continuous covariates (Liu et al., 2013). The results 

obtained from PCA adjustment may be misleading too if there are outliers (Liu et al., 

2013). Outlying data were introduced at genotypic level to check the performance of 

the robust PCA approach (Liu et al., 2013). 

 

Another improved method was proposed to deal with the fact of PS for the presence 

of hidden population structure for population-based GWAS (Li and Yu, 2008). This 

method would improve PS by combining the multi-dimensional scaling (MDS) and 

clustering technique. This approach was however an extension of PCA due to having 

some similarity matrices between PCA and MDS. It can be applied for both discrete 
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and continuous population structures and it is well suited for large and small-scale 

GWA analysis (Li and Yu, 2008). In the recent bioinformatics research, the 

applications of linear mixed model (LMM) techniques have been popular in different 

genome-wide linkage analysis for discovery of potential biomarkers from human and 

agricultural single nucleotide polymorphism (SNP) level data. Nowadays to address 

the issues of adjustment of population stratification and account for population 

structure and genetic relatedness (polygenic effects) are effectively overcome by 

implementing LMM (Endelman, 2011; Kang et al., 2010; Zhang et al., 2010) for large 

scale GWAS. These approaches have been executed in software programs TASSEL 

(Bradbury et al., 2007), EMMA (Kang et al., 2008), EMMAX (Kang et al., 2010), 

rrBLUP (Endelman, 2011), Genome-wide efficient mixed model analysis (GEMMA) 

(Zhou and Stephens, 2012), GAPIT (Lipka et al., 2012). 

 

1.5 Objectives of the Study 

1.5.1 General Objective 

The general objective of this study is the statistical modeling for genome wide 

association studies (GWAS) to identify important biomarker genes which are 

responsible for one/more particular traits of interest. 

 

1.5.2 Specific Objectives 

There are several statistical problems need to be solved for GWAS. To solve some 

statistical problems for GWAS, our specific objectives in this thesis are as follows:  

(1) Regression based single-trait QTL analysis using the properties of bivariate 

normal distribution. 

(2) Regression based fast multi-trait (FMT) QTL analysis using the properties 

of multivariate normal distribution. 

(3) Robustification of regression based fast multi-trait QTL analysis. 

(4) Robustification of regression based GWAS for detection of important SNPs. 

(5) Sequence matching based GWAS for detection of important genes. 
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1.6 Layout of the thesis 

This thesis contains seven chapters. We have organized the chapters sequentially to 

discuss different statistical methods that we have developed for GWAS. Figure 1.18 

represents the structured layout of this thesis. The chapter wise summary of this thesis 

is given below: 

 

 

Figure 1.18: Layout of the thesis. 
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Regression Based Fast Multi-trait QTL Analysis by Using 

the Properties of Multivariate Normal Distribution (Proposed) 

Chapter 5 

Robustification of Regression Based GWAS to Explore 
Important SNPs (Proposed) 
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Conclusions and Areas of Future Research  
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Properties of Bivariate Normal Distribution (Proposed) 
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Robustification of Regression Based Fast Multi-trait QTL 

Analysis (Proposed) 
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The present chapter (Chapter 1) is the introductory chapter which provides the basic 

concepts and importance of Genomics in plant science, animal science and human 

biology. This chapter begins with biological background and some important 

terminologies related to genomics, and at the end this chapter we have provided 

different objectives of our study along with the layout of this thesis.     

   

In Chapter 2, we have introduced a new statistical approach for single-trait QTL 

analysis using the properties of bivariate normal distribution. The calculation of our 

new proposed method is very straight forward compared to the existing methods of 

single-trait QTL analysis. All the methods, including our new proposed method, of 

single-trait QTL mapping are verity sensitive to phenotypic outliers and these 

methods provide misleading results when the phenotypic data are contaminated by 

outliers. To overcome this problem, we have robustified our proposed method by 

robustifying the parameter of bivariate normal distribution using minimum –

divergence method. The performance of the proposed methods (Proposed1: Classical 

approach and Proposed2: Robust approach) have been investigated using simulation 

and real data analysis with the existing methods of single-trait QTL analysis. 

 

In Chapter 3, we have discussed our new proposed statistical method for multi-trait 

QTL analysis, called “regression based fast multi-trait QTL analysis”, using the 

properties of multivariate normal distribution. We have investigated the performance 

and computation time of the proposed method with the existing methods of multi-trait 

QTL analysis. Our proposed method is very faster in terms of computation time than 

the existing methods of multi-trait QTL analysis exhibiting almost the similar 

performance to the existing methods. 

 

In Chapter 4, we have proposed a new robust approach for multi-trait QTL analysis 

by robustifying the “fast multi-trait QTL mapping” approach (discussed in Chapter 3) 

with the help of robust estimation of parameters of multivariate normal distribution 

using the –divergence method. The performance of the proposed method has been 

investigated using both simulation and real data analysis in a comparison with the 

existing methods including the classical “fast multi-trait QTL mapping” approach. 
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In Chapter 5, we have introduced a robust statistical method for SNP-based GWAS 

by robustifying the least squares method of simple linear regression for SNP-based 

GWAS using minimum –divergence method. We evaluated the performance of the 

proposed method using both simulation and real data analysis in a comparison with 

the classical least squares method of SNP-based GWAS. 

In Chapter 6, we have performed sequence matching based genome-wide analysis to 

investigate the structural and functional mechanism of rolling leaf genes in rice 

(Oryza sativa L.). We have listed almost all the RL genes reported till date throughout 

several studies and performed different types of comparative and association analyses 

from different bioinformatics point of view including gene structure and exons/introns 

pattern analysis, domain analysis, phylogenetic analysis, Gene Ontology (GO) 

analysis, transcription factor (TF) analysis, Kyoto Encyclopedia of Genes and 

Genomes (KEGG) analysis, gene network analysis and gene expression analysis. 

 

In Chapter 7, we have summarized all the results and findings throughout the whole 

study/thesis, and discussed the scope of the future research works. 

 
 

 

 

 

 

 

 

 

 

 

 

  



 

 
 

Chapter 2: Regression Based  Single-trait  QTL Analysis by Using the Properties of 
Bivariate Normal Distribution (Proposed) 
 
 
 
 
 

Chapter 2 
 
Regression Based Single-trait QTL Analysis by Using 

the Properties of Bivariate Normal Distribution 

(Proposed) 

 
 
2.1 Introduction 

The rapid advancement in molecular biology has increased the availability of fine 

scale genetic markers which facilitate the wide use of QTL analysis in the genetic 

study of quantitative traits in bioinformatics. Liu (1997) and Wu et al. (2007) 

discussed various techniques of QTL mapping in their texts.  Thoday (1961) first 

proposed the idea of using two markers to bracket a region for testing QTLs. Soller et 

al. (1976) examined the power of experiments at detecting linkage between a 

quantitative locus and a marker locus. Similar to Thoday (1961),  but much improved 

method called simple interval mapping (SIM) or interval mapping (IM) approach was 

proposed by Lander and Botstein (1989) which is based on linkage relationships 

between a QTL and flanking markers. This method uses two adjacent markers to test 

the existence of a QTL within the interval by performing a likelihood ratio test (LRT) 

at every position in the interval. Maximum likelihood (ML) based SIM (Lander and 

Botstein, 1989) and least squares (LS) regression based SIM (Haley and Knott, 1992)  

are two most popular and widely used interval mapping approaches. The LS 

regression based SIM is well known as HK regression based interval mapping to the 

biologists. The main limitation of ML based SIM is that its calculations are very 

complex and it is very time consuming because it uses the expectation-maximization 
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(EM) algorithm. Although LS based SIM takes less time than ML based SIM, its 

computations are also complex because parameter estimation depends on least squares 

method, and the calculation of test statistic needs calculation of residuals and residual 

variance.  

 

In this chapter, we have developed a new approach of single-trait QTL analysis using 

the properties of bivariate normal distribution (BND). In this approach, the parameter 

estimation and calculation of test statistic is very straight forward because the 

calculations depend only the sample means, sample variances and sample covariances 

of phenotype and the conditional probability of QTL genotype given the flanking 

marker genotypes. Although our proposed BND based SIM are very useful methods 

for QTL analysis, it is very sensitive to phenotypic contaminations and provides 

misleading results when the phenotypic data are contaminated by outliers. 

 

 In this work, we have also developed a robust method of single-trait QTL analysis 

with backcross (BC) population by robustifying our proposed BND based SIM using 

minimum –divergence method. We have performed a simulation study to investigate 

the performance of the proposed methods in comparison with the existing methods of 

QTL analysis for BC population. Although we have developed our proposed method 

with BC population, this method can easily be extended for other populations, such as 

double haploid (DH) and intercross (F2) population, with some simple modification.  

 

2.2 Methods and Materials 

Let us consider no epistatis between two QTLs, no interference in crossing over, and 

only one QTL in the testing interval. The fixed effect model for Backcross (BC) 

population, for testing a QTL within a marker interval, is define as 

 �� = � + ���|� + ��, � = 1, 2 and � = 1, 2, … , �  (2.1)  

where yj is the phenotypic value of the j-th individual, � is the general mean effect, 

��|� = ��|�, � is the QTL additive effect and  ��~���(0, ��) is a random error. Here, 

xj|i is the conditional probability for QTL genotypes given the flanking marker 

genotypes. Since conditional expectation is equivalent to conditional probabilities of 
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QTL genotypes, xj|i is fixed for QTL genotypes given flanking marker genotypes. 

Since xj|i is fixed, so this model is called fixed effect model. 

 

The conditional probabilities for QTL genotypes QQ and Qq given the flanking 

marker genotypes are denoted by pj|1 and pj|2, respectively. The conditional 

probabilities pj|1 and pj|2 are shown in Table 2.1 for Backcross population. In Table 

2.1, p is defined as p = rMQ/rMN where rMQ is the recombination fraction between the 

left marker M and the putative QTL and rMN is the recombination fraction between 

two flanking markers M and N. The possibility of a double recombination event in the 

interval is ignored. 

 

Table 2.1: Conditional Probabilities of a putative QTL genotype given the flanking 
marker genotypes for a backcross population 
 

Marker genotypes  Expected frequency QTL genotypes 

   QQ (pj|1) Qq (pj|2) 

MN/MN  (1  r)/2 1 0 

MN/Mn  r/2 (1  p) p 

MN/mN  r/2 p (1  p) 

MN/mn  (1  r)/2 0 1 

 

To investigate the existence of a QTL at a given position within a marker interval, we 

want to test the hypothesis H0: � = 0 (i.e., there is no QTL at a given position) versus 

H1:  H0 is not true. 

 

Under null hypothesis (��), the model (2.1) reduces to the following model 

 �� = � + ��, � = 1, 2, … . . ., �  (2.2)  

which is called reduced model. 

 



 
Chapter 2                    Regression Based Single-trait QTL Analysis Using the Properties of BND 

 
38 

 

2.2.1 Maximum likelihood (ML) Based Classical Simple IM Approach for 

Single-trait QTL Analysis 

Under the normality assumption of error, the probability density function of the trait 

value (y) within each QTL genotype class is normal with mean (� + ���|�) and 

variance ��, i.e., ���|��|��~��� + ���|�, �
��. Then the likelihood function for the 

parameters � = (�, �, ��)can be written as follows 

 �(�|�) = �
1

�√2�

�

���

exp �−
1

2
�

�� − � − ���|�

�
�

�

�  (2.3)  

To test H0 against H1, the likelihood ratio test (LRT) statistic is defined as 

 LRT = −2 ln �

sup �(�|�)
�0

sup �(�|�)
�

�  (2.4)  

where 0Θ and 0Θ are the restricted (H0) and unrestricted (H1) parameter spaces. 

 

The threshold value to reject the null hypothesis cannot be simply chosen from a chi-

square distribution because of the violation of regularity conditions of asymptotic 

theory under H0. The number and size of intervals should be considered in 

determining the threshold value. Since multiple tests are performed in mapping, the 

hypotheses are usually tested at every position of an interval and for all intervals of 

the genome to produce a continuous LRT statistic profile. At every position, the 

position parameter p is predetermined and only �, � and �� are involved in estimation 

and testing. If the tests are significant in a chromosomal region, the position with the 

largest LRT statistic is inferred as the estimate of the QTL position and the maximum 

likelihood estimates (MLEs) at this position are the estimates of �, � and �� obtained 

by iterative way. 

 

An alternative way is to use log of odds (LOD) score (Lander and Botstein, 1989; Ott, 

1999; Terwilliger and Ott, 1994; Wu et al., 2007; Xu, 2013d) as a test statistic to test 

the null hypothesis of no QTL (H0). The LOD score is the transformation of the LRT 

statistic, defined as 
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 LOD =
LRT

2× log(10)
=

LRT

4.605
= 0.217 LRT  (2.5)  

According Lander and Botstein (1989), the typical threshold of LOD score should be 

between 2 and 3 to ensure a 5% overall false positive error for identifying a QTL. 

Terwilliger and Ott (1994), Ott (1999), Wu et al. (2007), and Xu (2013d) suggested a 

value of LOD = 3 as the critical threshold for declaring the existence of QTL. Thus, 

the LOD > 3 can be used as a criterion to declare a significant QTL. 

 

The MLEs of the parameters �, �, and �2 are as follows 

 �� = �� − ���̅, �� =
∑ ���|� − �̅���� − ����

���

∑ ���|� − �̅�
��

���

 and ��� =
1

�
���� − �� − ����|��

�
�

���

 (2.6)  

where �� =
1

�
� ��

�

���

and �̅ =
1

�
� ��|�

�

���

, � = 1, 2. 

Obviously these ML estimates of �, � and �� are very much sensitive to outliers. 

Therefore, regression analysis by maximum likelihood estimate (MLE) produces 

misleading results in presence of contaminated data. 

 

2.2.2 Least Squares (LS) regression Based Classical SIM Approach for 

Single-trait QTL Analysis 

Using (2.1), the error sum of squares (ESS) can be written as 

 ESS = � ��
�

�

���

= �(�� − � − ���|�)�

�

���

  (2.7)  

The least squares estimates of the regression parameters (� and �) can be obtained by 

minimizing the ESS with respect to � and �. 

 

The LS estimates of the regression parameters α and γ are as follows. 

 �� = �� − ����|� and �� =
∑ ���|� − �̅���� − ����

���

∑ ���|� − �̅�
��

���

  (2.8)  
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where �� =
1

�
� ��

�

���

and �̅ =
1

�
� ��|�

�

���

, � = 1, 2. 

Then the LS estimate of the residual variance is  

��� =
1

� − 2
���� − �� − ����|��

�
�

���

 

According to Draper and Smith (1998) and Haley and Knott (1992), least squares 

(LS) regression is equivalent to maximum likelihood when the errors are 

independently and normally distributed. In this case, the likelihood ratio test can be 

written in terms of the residual sum of squares under the full model (2.1) (RSSfull), the 

reduced model (2.2) (RSSreduced), and the number of observations (�) as follows: 

 LRT = � ln �
RSSreduced

RSSfull
�  (2.9)  

where RSSfull and RSSreduced are the residual sum of squares under the full model (i.e., 

under H1) and  the reduced model (i.e., under H0), respectively, and � is the number of 

observations (Haley and Knott, 1992). This test statistic is approximately distributed 

as a ��-variate with 1 degrees of freedom (Atkin et al., 1989; Haley and Knott, 1992; 

Haley et al., 1994). The LOD statistic can be obtained by transforming the LRT 

statistic as (2.4). 

 

2.2.3 Simple Interval Mapping (SIM) approach for Single-trait QTL 

Analysis Using BND (Proposed1) 

In order to estimate the model parameters and the variance of the random error, let us 

consider that � = (�, �) follows a bivariate normal distribution � � ��
(�×�)

, ��
(�×�)

� with 

mean vector �� and variance-covariance matrix ��, where Y and X have been 

introduced in (2.1). 

 

Then the probability density function for � = (�, �) can be written as 

 �(�) =
1

(2�)|��|�/�
exp �−

1

2
(� − ��)���

��(� − ��)�  (2.10)  
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We can partition the mean vector �� as �� = [��  ��]� and the covariance matrix �� 

as 

�� = �
��

� ���

��� ��
� �, 

where ��
� = �[(� − ��)�], ��

� = �[(� − ��)�] and ���  =  �[(� − ��)(� − ��)]. 

 

Then the conditional mean of Y given X is obtained as 

 �(�|� = �) = �� + �����
��(� − ��)  (2.11)  

Equation (2.11) can be expressed as 

 

(�|� = �) = �� + �����
��� − �����

���� 

           = (�� − �����
����) + (�����

��)� 

           = � + �� 

 

 

 

(2.12)  

which is known as simple linear regression surface of Y on X, where � = (�� −

�����
����) is the general mean effect and the (m×1) vector � = (�����

��) is called 

the regression coefficient. For BC population � is the additive QTL effects. 

 

Using (2.11), the prediction error can be written as 

 � = � − �(�|�) = � − �� − �����
��(� − ��)  (2.13)  

 

Now, the variance of the prediction error is 

 �� = �(�) =  �[{� − �(�)}�] = �[��], since �(�) = 0  (2.14)  

 

Using (2.13) in (2.14), we can write 

 

�� = �[{� − �� − �����
��(� − ��)}�] 

= �[(� − ��)� − 2(� − ��){�����
��(� − ��)} + {�����

��(� − ��)}�] 

= �[(� − ��)�] − 2�����
���[(� − ��)(� − ��)] + ���

� ��
���[(� − ��)�] 

= ��
� − 2�����

����� + ���
� ��

����
� 

= ��
� − 2���

� ��
�� + ���

� ��
�� 

= ��
� − ���

� ��
��   (2.15)  
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Because �� and �� are typically unknown, they must be estimated from a random 

sample in order to construct the multivariate linear predictor and determine expected 

prediction errors. 

 

Based on a random sample of size n, the maximum likelihood estimator of the �� and 

�� are given by 

 ��� = �
�̂�

�̂�

� = �
��

��
� and ��� = �

���
� ����

���� ���
�

� = �
���

�
� �

��
� ���

��� ��
�

�  (2.16)  

where �� =
�

�
∑ ��

�
��� , �� =

�

�
∑ ��

�
��� , ��

� =
�

���
∑ ��� − ���

��
��� , ��� = ��� =

�

���
∑ ��� − ������ − ����

���  and   ��
� =

�

���
∑ ��� − ���

��
��� . 

Hence, based on a random sample of size n, we can get the maximum likelihood 

estimators of the regression parameters � and �, and the error variance ��. 

 

Using (2.16) into (2.12), we can write 

 �� = (�̂� − �������
���̂�) = �� − �����

����  (2.17)  

and  

 �� = (�������
��) = �����

��  (2.18)  

Therefore, using (2.17) and (2.18) in (2.12), the maximum likelihood estimator of the 

regression function is 

 �� = �� + ��� = �� − �����
���� + �����

��� = �� + �����
��(� − ��)  (2.19)  

 

Based on a random sample of size �, using (2.16) in (2.15), the maximum likelihood 

estimators of �� under the full model and the reduced model are, respectively,  

 ��� = ���
� − ����

� ���
�� = �

� − 1

�
� (��

� − ���
� ��

��)  (2.20)  

and 

 ���
� = ���

� = �
� − 1

�
� ��

�  (2.21)  
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Let ��(�, �, ��) is the likelihood function under the full model (2.1) and ��(�, ��) is 

the likelihood function under the reduced model (2.2). To test �� against ��, the 

likelihood ratio test (LRT) statistic is defined as 

 

LRT = −2 ln �
max
�,��

��(�, ��)

max
�,�,��

��(�, �, ��)
� 

= −2 ln �
��(���, ���

�)

��(��, ��, ���)
� = −� ln �

���

���
�� 

 

(2.22)  

where ��, �� and ��� are the maximum likelihood (ML) estimates of the parameters �, � 

and �� under the full model (2.1), and ��� and ���
� are the ML estimates of the 

parameters � and �� under the reduced model (i.e., under ��). 

 

Under the null hypothesis (H0), the LRT statistic in (2.22) is expected to have an 

approximate chi-square distribution with 1 degrees of freedom for a given QTL 

position in the genome. However, the threshold value to reject the null hypothesis 

(��) cannot be simply chosen from the �� distribution because of the violation of 

regularity conditions of asymptotic theory under H0.  

 

An alternative way is to use log of odds (LOD) score (Lander and Botstein, 1989; Ott, 

1999; Terwilliger and Ott, 1994; Wu et al., 2007; Xu, 2013d) as a test statistic to test 

the null hypothesis of no QTL (H0). The LOD score is the transformation of the LRT 

statistic, defined as 

 LOD =
LRT

2× log(10)
=

LRT

4.605
= 0.217 LRT  (2.23)  

According Lander and Botstein (1989), the typical threshold of LOD score should be 

between 2 and 3 to ensure a 5% overall false positive error for identifying a QTL. 

Terwilliger and Ott (1994), Ott (1999), Wu et al. (2007), and Xu (2013d) suggested a 

value of LOD = 3 as the critical threshold for declaring the existence of QTL. Thus, 

the LOD > 3 can be used as a criterion to declare a significant QTL. 
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2.2.4 Robust SIM approach for Single-trait QTL Analysis by Robust 

Estimation of BND (Proposed2) 

All the approaches discussed in previous sections are very sensitive to phenotypic 

outliers and produce misleading results in presence of outliers. So, we need some 

robust approach which produce similar results in absence of outliers and perform 

better in presence of outliers being less sensitive to outliers. We observe that the 

estimates in (2.16) – (2.22) are very sensitive to outliers and give misleading results 

in presence of outliers. In this section, we have discussed the robustification of the 

estimates in (2.16) – (2.22) using �–divergence method (Mihoko and Eguchi, 2002; 

Mollah et al., 2007) to obtain the robust estimates of model parameters and the robust 

test statistics (LRT and LOD). From (2.16) – (2.22) we observe that if we can 

robustify the sample means, sample variances and sample covariance, then we can 

obtain the robust estimates of the model parameters and the test statistics (LRT and 

LOD). 

 

According to (Mihoko and Eguchi, 2002; Mollah et al., 2007), the β-divergence 

between two probability density functions �(�) and �(�) is defined by 

 

��(�, �) = � �
1

�
���(�) − ��(�)��(�)

−
1

� + 1
�����(�) − ����(�)�� ��,  ��� � > 0 

 
(2.24)  

which is non-negative, that is ��(�, �) ≥ 0, equality holds iff � = �. 

 

The minimum �-divergence estimators of the parameters � = (��, ��) can be 

obtained by the iterative solution of the following equations: 

 ��, ��� =
∑ ��(��|��)��

�
���

∑ ��(��|��)�
���

  (2.25)  

and  

 ��, ��� = (1 + �)
∑ ��(��|��)(�� − ��, �)(�� − ��, �)��

���

∑ ��(��|��)�
���

  (2.26)  
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where ���������, � = 1, 2, … , �, is called the �-weight function and defined as 

��������� = exp �−
�

2
(�� − ��, �)���, �

�� (�� − ��, �)�. 

 

If β→0, then (2.25) and (2.26) reduces to the classical non-iterative solution. 

 

Let the robust estimates (i.e., �-estimates) of �� and �� are denote by ���(�) and 

���(�). Then we can write  

 ���(�) = �

�̂�(�)

�̂�(�)

� and ���(�) = �
���(�)

� ����(�)

����(�) ���(�)
�

�  (2.27)  

Then the robust estimates of the regression parameters can be written as 

 ��(�) = ��̂�(�) − ����(�)���(�)
�� �̂�(�)�  (2.28)  

and  

 ��(�) = �����(�)���(�)
�� �  (2.29)  

 

Now, the robust estimates of �� under the full model and the reduced model are, 

respectively,  

 ��(�)
� = ���(�)

� − ����(�)
� ���(�)

��   (2.30)  

and 

 ���(�)
� = ���(�)

�   (2.31)  

 

Then we get the robust LRT statistic as follows: 

 LRT(β) = −� ln �
��(β)

�

���(β)
� �  (2.32)  

The modified LRT statistic has an approximate ��-distribution with 1 degrees of 

freedom. Then the robust LOD statistic can be written as 



 
Chapter 2                    Regression Based Single-trait QTL Analysis Using the Properties of BND 

 
46 

 

 LOD(β) =
LRT(�)

2× log(10)
=

LRT(�)

4.605
= 0.217 LRT(�)  (2.33)  

We have develop the proposed method for BC population. However, methods for 

other mapping populations, such as F2 and double haploid (DH), are simple extension 

of that for the BC population with some modifications. 

 

2.3 Results and Discussion 

2.3.1 Simulation Results 

To measure the performance of the proposed method in comparison of the maximum 

likelihood (ML), least squares (LS) and bivariate normal distribution (BND) for QTL 

mapping with Backcross population, we have generated phenotypic and genotypic 

data with Backcross population using simulation technique. We have considered three 

unlinked QTLs, total 10 chromosomes and 11 equally spaced markers in each of the 

10 chromosomes, where any two successive marker interval size is 5 cM. The true 

QTL positions are located on chromosomes 2, 3 and 5 at marker 5 (locus position 20 

cM). The true values of the parameters in the model are assumed as � = 0.5, � = 0.8 

and  0.25. We have generated 300 trait values with heritability ℎ� = 0.39 which 

means that 39% of the trait variation is controlled by QTL and the remaining 61% is 

subject to the environmental effects (random error). To investigate the robustness of 

the proposed method in a comparison of the ML, LS and BND methods, we 

contaminated 12% of the trait values (i.e., phenotypic values) in this dataset by 

outliers. Figure 2.1 shows the structure of the dataset obtained from a genome-wide 

QTL experiment for single-trait QTL analysis. To perform the simulation study we 

have used R/qtl software (Broman et al. (2003), homepage: http://www.rqtl.org/). 

 

Table 2.2 shows QTL positions (i.e., chromosome, marker and locus position) 

identified by ML, LS, BND and the proposed method. Figure 2.2(a) and Figure 2.2(b) 

are representing the scatter plots of 300 trait values in presence and absence of 

outliers, respectively. Then we computed LOD scores based on ML, LS, BND and the 

proposed methods for both types of data sets (uncontaminated and contaminated). 

Figure 2.2(c) and Figure 2.2(d) are showing the LOD scores profile plots for the 



 
Chapter 2                    Regression Based Single-trait QTL Analysis Using the Properties of BND 

 
47 

 

uncontaminated and contaminated datasets, respectively. In the LOD scores profile 

plots the dotted (red colour), two dash (green colour), dot dash (blue colour) and solid 

(black colour) lines represent the LOD scores at every 1cM  position in the 

chromosomes for ML, LS, BND and the proposed method with  β = 0.2, respectively. 

 

 

Figure 2.1: Structure of the Dataset obtained from a genome-wide QTL experiment 

for single-trait QTL analysis. 

 

Table 2.2: QTL positions identified by each method in absence and absence of 
outliers 

Method True QTL position Identified QTL position 

In absence of outliers In presence of outliers 

ML On chromosomes 2, 3 and 5 

at marker 5 (locus position 

20 cM) for each 

chromosome. 

On chromosomes 2, 3 and 5 

at marker 5 (locus position 

20 cM) for each 

chromosome. 

ML method fails to identify 

any QTL on any 

chromosome. 

LS On chromosomes 2, 3 and 5 

at marker 5 (locus position 

20 cM) for each 

chromosome. 

On chromosomes 2, 3 and 5 

at marker 5 (locus position 

20 cM) for each 

chromosome. 

LS method fails to identify 

any QTL on any 

chromosome. 
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Method True QTL position Identified QTL position 

BND On chromosomes 2, 3 and 5 

at marker 5 (locus position 

20 cM) for each 

chromosome. 

On chromosomes 2, 3 and 5 

at marker 5 (locus position 

20 cM) for each 

chromosome. 

(i) On chromosome 3 at 

marker 8 (locus position 

35 cM) 

(ii) On chromosome 5 at 

marker 5 (locus position 

20 cM) 

(iii) On chromosome 6 at 

marker 2 (locus position 

5 cM) 

(iv) On chromosome 8 at 

marker 3 (locus position 

10 cM) 

Proposed 

(Robust  

BND) 

On chromosomes 2, 3 and 5 

at marker 5 (locus position 

20 cM) for each 

chromosome. 

On chromosomes 2, 3 and 5 

at marker 5 (locus position 

20 cM) for each 

chromosome. 

On chromosomes 2, 3 and 5 

at marker 5 (locus position 

20 cM) for each 

chromosome. 

 

From Table 2.2 and Figure 2.2 it is seen that the highest LOD score peak occurs at the 

true QTL position on the true chromosome 2, 3 and 5 at marker 5 (locus position 20 

cM) for all four methods for the uncontaminated dataset (Figure 2.2(c)). However, in 

presence of outliers, the highest LOD score peak occurs at the true QTL positions on 

true chromosomes for the proposed method only (Figure 2.2(d)). That is, from Table 

2.2 and Figure 2.2 we observe that all of the four methods (ML, LS, BND and 

proposed method) identify the true QTL positions correctly in absence of outliers. But 

in presence of outliers the ML and LS fail to identify any significant QTL position 

and the BND identify QTLs on chromosomes 3 at marker 8 (locus position 35 cM), 

on chromosome 5 at marker 5 (locus position 20 cM), on chromosome 6 at marker 2 

(locus position 5 cM) and on chromosome 8 at marker 3 (locus position 10 cM). In 

presence of outliers, inly the position on chromosome 5 at marker 5, identified by 

BND, is the true QTL position, and all other positions identified by BND are not the 

true position of QTLs. However, in presence of outliers, the proposed method (robust 

BND) have identified the QTLs on chromosome 2, 3 and 5 at marker 5 (locus position 

20 cM) which are the true QTL positions.  
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Figure 2.2: Simulated phenotypic observations in (a) absence and (b) presence of 
12% outliers, and LOD score profile in (c) absence and (d) in presence of 12% 
outliers. 

 

Hence, in presence of outliers, the classical methods of SIM (ML, LS and BND) fail 

to identify the all the true QTL positions whereas the proposed method successfully 

identifies all the true QTL positions. Also in absence of outliers the proposed method 

is working as the classical methods. 

 

2.3.2 Real Data Analysis Results 

To investigate the performance of the proposed method for real data analysis in a 

comparison of traditional ML, LS and BND methods, we have considered the 

hypertension dataset of  Sugiyama et al. (2001) which is available in R/qtl package 

(Broman et al., 2003), homepage: http://www.rqtl.org. A part of the hypertension 
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dataset have been shown in Figure A2.1 for clear understanding about the data 

structure. This dataset was analyzed to investigate the genetic control of salt-induced 

hypertension on male mice from a reciprocal backcross between the salt-sensitive 

c57BL/6J and the non-salt-sensitive A/J (A) inbred mouse strains. 

 

Figure 2.3: LOD score profile plot in absence and in presence of 12% outliers using 

real data. 

 

Figure 2.3 represents the LOD score profile plots in absence and presence of outliers. 

Figure 2.3(a) shows the LOD scores profile in absence of outliers, where dotted (red 

colour), two dash (green colour), dot dash (blue colour) and solid (black colour) lines 

represents the LOD scores at every 1cM position on the chromosomes for ML, LS, 

BND and the proposed method, respectively, with β  = 0.02. We select β by cross 

validation. Figure 2.3(b) shows the LOD scores profile for the contaminated dataset, 

where dotted (red colour), two dash (green colour), dot dash (blue colour) and solid 

(black colour) lines represents the LOD scores at every 1cM position on the 

chromosomes as before for ML, LS, BND and the proposed method, respectively, 

with β = 0.2. 

 

Figure 2.3(a) shows that two QTLs on chromosome 1 (QTL/marker: D1Mit334) and 

chromosome 4 (QTL/marker: D4Mit164) are statistically significant genome-wide, 

and one QTL on each of chromosomes 2 (QTL/marker: D2Mit62), 6 (QTL/marker: 

D6Mit8), 8 (QTL/marker: D8Mit271) and 15 (QTL/marker: D15Mit152) are 

suggestive to be important for controlling blood pressure genome-wide by all four 

D1Mit334 

D4Mit164 

D1Mit334 

D4Mit164 
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methods for the uncontaminated real dataset. However, in presence of outliers, almost 

similar results are obtained by the proposed method only as shown in Figure 2.3(b). 

Therefore, the proposed method significantly outperforms over the traditional ML, LS 

and BND methods in presence of outliers. Otherwise, it shows equal performance. 

 

Sugiyama et al. (2001) found that the QTL D1Mit334 on chromosome 1 and the QTL 

D4Mit164 on chromosome 4 were significantly associated with hypertension in 

mouse which supports our findings by the proposed method.  They also suggested the 

QTLs D6Mit15 and D15Mit152 on chromosomes 6 and 15, respectively, as important 

QTLs for affecting blood pressure which are similar to our suggestive QTLs 

responsible for hypertension based on our proposed method. 

 

2.4 Conclusion 

In this paper, a new robust bivariate normal distribution (BND) based interval 

mapping approach has been discussed for QTL analysis by maximum β-likelihood 

estimation with BC population. The value of the tuning parameter β plays a key role 

on the performance of the proposed method. An appropriate value for the tuning 

parameter β can be selected by cross validation. The proposed method with tuning 

parameter β = 0 reduces to the traditional interval mapping approach. Simulation and 

real data analysis results show that the proposed method significantly improves the 

performance over the classical interval mapping approaches in presence of phenotypic 

outliers. 
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Regression Based Fast Multi-trait QTL Analysis by 

Using the Properties of Multivariate Normal 

Distribution (Proposed) 

 
 
3.1 Introduction 

Single trait based simple interval mapping (Alam et al., 2018; Alam et al., 2016; 

Haley and Knott, 1992; Lander and Botstein, 1989) is the most popular and widely 

used approach to identify quantitative trait locus (QTL) controlling a single trait. 

However, in many line crossing experiments of genome-wide QTL mapping studies, 

measurements are taken on multiple traits along with the marker genotypes. Very 

often, such traits are correlated and there are common chromosome regions 

(chromosomal locations) that affect multiple traits (Chen, 2016b). Although single-

trait simple interval mapping (SIM) methods can be applied to each trait one-by-one, 

such approaches do not take into account the pleotropic effects. A QTL is said to have 

pleiotropic effect if it simultaneously controls several phenotypic traits. The joint 

analyses of multiple traits, which include all quantitative traits together in a single 

model, can increase the power of QTL identification and improve the QTL 

localization accuracy when multiple traits are correlated genetically in the population 

(Xu, 2013a). In addition, QTL mapping considering multiple quantitative traits using 

joint analyses can give insights into the important genetic mechanisms underlying the 

trait relationships (e.g., genetic linkage versus pleiotropy), which would otherwise be 

hard to address if multiple traits are analyzed one-by-one. Therefore, statistical 
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methods are demanded for joint analyses of multiple traits to identify important QTL 

locations, which control multiple traits simultaneously. 

 
Many methods for multi-trait QTL mapping have been developed in the literature, 

ranging from simple extensions of single-trait approaches to sophisticated multi-trait 

approaches designed specifically for multi-trait QTL mapping. Substantial work has 

been done in joint mapping for multiple quantitative traits (Almasy and Blangero, 

1998; Hackett et al., 2001; Henshall and Goddard, 1999; Jiang and Zeng, 1995; Knott 

and Haley, 2000; Korol et al., 2001; Korol et al., 1995; Mangin et al., 1998; Williams 

et al., 1999). Least squares based multivariate regression (MVR-LS) analysis (Knott 

and Haley, 2000) and maximum likelihood based multivariate regression (MVR-ML) 

analysis (Xu, 2013a) using expectation maximization (EM) algorithm (Dempster et 

al., 1977) are two most popular and widely used multi-trait SIM approaches for multi-

trait QTL analysis/mapping. 

 

Although MVR-LS and MVR-ML are the most popular approaches for multi-trait 

QTL mapping, these methods have some limitations. The MVR-ML based multi-trait 

SIM is very time consuming due to EM algorithm based estimation which is an 

iterative process. Moreover, in MVR-ML approach, the calculation of likelihood ratio 

(LR) or log of odds (LOD) statistic is time consuming because it is a five steps 

process: (i) estimation of regression parameters, (ii) estimation of residuals and its 

variance-covariance matrix, (iii) estimation of Wilks’ lambda statistic, (iv) Chi-square 

approximation of Wilks’s lambda statistic, and (v) calculation of LR or LOD statistic 

based on approximated Chi-square statistic. Multivariate regression based multi-trait 

QTL analysis (Knott and Haley, 2000) is a generalization of simple linear regression 

based interval mapping (Haley and Knott, 1992). Xu (1995) has shown that the 

regression method can overestimate the residual variance, particularly for large QTL 

effects or widely spaced markers. Moreover, in MVR-LS approach, the calculation of 

LR or LOD statistic is also a time consuming five steps process like MVR-ML 

approach. 

 

The recent advancements of technologies facilitate the generation high-dimensional 

genotype data of single nucleotide polymorphism (SNP) markers and phenotypic data 
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on multiple traits with large number of individuals in genome-wide QTL experiments. 

When the number of phenotypes and individuals are very large, and the markers are 

very dense (i.e., very large in number) resulting in a very big QTL data set, then 

computational time is a matter of consideration. In this study, we have proposed a 

new approach for multi-trait QTL mapping based on the assumption that the 

phenotypes and the conditional probability of QTL genotype given the marker 

genotypes follow joint multivariate normal distribution. In this method, the 

calculation of LR or LOD statistic is very straight forward because it is calculated 

only based on the sample variance-covariance matrix of the phenotypes and the 

conditional probability of QTL genotype given the marker genotypes. Our proposed 

method is able to identify the same QTL positions as identified by the other two 

existing methods (MVR-ML and MVR-LS). Moreover, it takes comparatively less 

computation time than the existing methods. 

 

3.2 Materials and Methods 

3.2.1 Proposed Method of Multi-trait QTL Analysis 

Let us consider no epistasis between two QTLs, no interference in crossing over, and 

only one QTL in the testing interval for a backcross (BC) population. Let �� =

[��� ��� … ���],  � = 1, 2, … , �, be an (1×m) vector for m phenotypic traits 

measured from the jth individual of a mapping population. Let �� = ��|� denote the 

conditional probability of the putative QTL genotype � (� = 1, 2), given the flanking 

marker genotypes for the jth individual. Then the linear regression model for BC 

population with m traits can be written in matrix notation as 

 ��
(�×�)

= �
(�×�)

+ ��
(�×�)

�
(�×�)

+ ��
(�×�)

,  � = 1, 2, … , �  (3.1)  

where � is a (1 × �) vector for general mean effects and � is a (1 × �) vector for 

the additive QTL effects, and �� is a (1 × �) vector for the random errors. The vector 

of random errors is assumed to be ��~�(0, �) where � is a (� × �) variance-

covariance matrix of random errors. 
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Let the flanking markers of the QTL testing interval are denoted by ML (left marker) 

with alleles ML and mL,   and MR (right marker) with alleles MR and mR. Suppose that 

the locus of the unobserved putative QTL located within the testing interval bracketed 

by the flanking marker ML and MR is denoted by Q with alleles Q and q. The 

conditional probabilities for QTL genotypes QQ and Qq given the flanking marker 

genotypes are denoted by pj|1 and pj|2, respectively. The conditional probabilities pj|1 

and pj|2 are shown in Table 3.1 for the BC population. The recombination fraction 

between the two markers is denoted by r. The possibility of the event of double 

recombination within the interval of two flanking markers is ignored. 

 

Table 3.1: Conditional Probabilities of a putative QTL genotype given the flanking 

marker genotypes for a Backcross population. 

  QTL Genotypes 
Marker Genotypes Expected Frequency QQ(pj|1) Qq(pj|2) 

MLMR/MLMR (1  r)/2 1 0 
MLMR/MLmR r/2 (1  p*) p 
MLMR/mLMR r/2 p (1  p) 
MLMR/mLnR (1  r)/2 0 1 

*p = rMLQ/rMLMR
, where rMLQ is the recombination fraction between the left 

marker ML and the putative QTL Q, and rMLMR
 is the recombination fraction 

between two flanking markers ML and MR. 

 

We want to test the null hypothesis is ��: � = � (i.e., there is no QTL at a given 

position within a marker interval) against ��: �� is not true. Under null hypothesis 

(H0) the model (3.1) reduces to the following model 

 ��
(�×�)

= �
(�×�)

+ ��
(�×�)

,  � = 1, 2, … , �  (3.2)  

 

Let ��(�, �, �) is the likelihood function under the full model (3.1) and ��(�, �) is 

the likelihood function under the reduced model (3.2). To test �� against ��, the 

likelihood ratio test (LRT) statistic is defined as 
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 LRT = −2 ln �
max

�,�
��(�, �)

max
�,�,�

��(�, �, �)
� = −2 ln �

������, ����

�����, ��, ���
�  

          = −� ln �
| �� |

� ����
�  (3.3)  

where ��, �� and �� are the maximum likelihood (ML) estimates of the parameters �, � 

and � under the full model (3.1), and ��� and ��� are the ML estimates of the 

parameters � and � under the reduced model (i.e., under ��). 

 

In order to estimate the model parameter and the variance-covariance matrix of 

random errors, let us consider that � = � �
(�×�)

 ⋮ �
(�×�)

�
�

follows a multivariate normal 

distribution (MND) � � ��
(���)×�

, ��
(���)×(���)

� with mean vector �� and variance-

covariance matrix ��, where Y and X have been introduced in (3.1). 

 

Then the probability density function of Z can be written as 

 �(�) =
1

(2�)(���)/�|��|�/�
exp �−

1

2
(� − ��)����(� − ��)�  (3.4)  

We can partition the mean vector �� as �� = � ��
(�×�)

⋮ ��
(�×�)

�
�

 and the variance-

covariance matrix �� as 

�� =

⎣
⎢
⎢
⎢
⎡

�����
�����

⋯ �����
����

�����
�����

⋯ �����
����

⋮ ⋮ ⋱ ⋮ ⋮
�����

�����
… �����

����

���� ���� ⋯ ���� ��� ⎦
⎥
⎥
⎥
⎤

= �
��� ���

��� ���

�
(���)×(���)

, 

where  ���
�×�

=

⎣
⎢
⎢
⎢
⎡

���

� �����
⋯ �����

�����
���

� ⋯ �����

⋮ ⋮ ⋱ ⋮
�����

�����
… ���

�
⎦
⎥
⎥
⎥
⎤

,  ���
�×�

= ��
�, ���

�×�
= �����, ����, … , ����� 

and ����  =  ��(� − ��)��� − ���
��, � = 1, 2, … , �. 

 

Then the conditional mean of � = (��, ��, . . . , ��) given X can be written as 

 �(�|� = �) = �� + ������
��(� − ��)  
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                         = �� + ������
��� − ������

����  

                         = (�� − ������
����) + (������

��)�  

    => �(�|� = �) = � + ��  (3.5)  

which is known as multivariate multiple linear regression surface of Y on X, where the 

(m×1) vector � = (�� − ������
����) is the vector of general mean effects and the 

(m×1) vector � = (������
��) is called the vector of regression coefficients. For BC 

population � is the additive QTL effects. 

 

The prediction error is 

 � = � − �(�|�) = � − �� − ������
��(� − ��)  (3.6)  

 

Now, the variance-covariance matrix of the prediction error is 

 � = �(�) = �[���]  

     = ��[� − �� − ������
��(� − ��)][� − �� − ������

��(� − ��)]�� 

     = ��� − ������
��(���)� − ������

����� + ������
��������

��(���)� 

     = ��� − ������
��(���)� − ������

����� + ������
��(���)�  

     = ��� − ������
�����  (3.7)  

 

From (3.7), we can write 

 ��� = ������
����� + �  

 ⇒ Total SS = Regression SS +  Error SS  (3.8)  

where SS stands for sum of squares. 

 

Since �� and �� are typically unknown, they must be estimated from a random 

sample in order to construct the multivariate linear predictor and the test statistics, and 

to determine expected prediction errors.  

 

Based on a random sample of size n, the maximum likelihood estimator of the �� and 

�� are given by 

 ��� = �
��

��
�  and ��� = �

���� ����

���� ����

� = �
� − 1

�
� � = �

� − 1

�
� �

��� ���

��� S��

� (3.9)  
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where ��� = �� = ���� =
�

�
∑ ���

�
��� ��� =

�

�
∑ ���

�
��� ⋯ ��� =

�

�
∑ ���

�
��� �,        

�̂� = �� =
�

�
∑ ��

�
���   ���� = ��� =

�

���
∑ ��� − ������ − ���

��
��� , 

 ��� =
�

���
∑ ��� − ���

��
���  and ���� = ��� = ��� =

�

���
∑ ��� − ������ − ���

��
���  are 

the maximum likelihood estimates of ��, ��, ���, ��� = ��� and ��
�, respectively. 

 

Then, using (3.9), based on a random sample of size n the maximum likelihood 

estimators of the vectors regression parameters are 

 �� = ���� − ��������
���̂�� = �� − ���S��

����  (3.10)  

and 

 �� = (��������
��) = ���S��

��  (3.11)  

 

Therefore, using (3.10) and (3.11), the maximum likelihood estimator of the 

regression function can be written as 

 �� = �� + ��� = �� − ���S��
���� + ���S��

��� = �� + ���S��
��(� − ��)  (3.12)  

 

Now, based on the maximum likelihood estimates of ��, ��, ���, ��� = ��� and ��
�, 

the maximum likelihood estimates of � under the full model (3.1) and the reduced 

model (3.2) are, respectively, 

 �� = �
� − 1

�
� (��� − ���S��

�����)  (3.13)  

and 

 ��� = �
� − 1

�
� ���  (3.14)  

 

Now, using (3.13) and (3.14) in (3.3), the LRT statistic to test �� can be written as 

 LRT = −� ln �
����

�����
�  (3.15)  

where �� and ��� are the estimated variance-covariance matrices of residuals under the 

full model and the reduced model (i.e., under H0), respectively. 
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For large �, the modified LRT statistic is 

 LRT = − ������ −
1

2
(� − ������ + 1)� ln �

����

�����
�  (3.16)

where ResDf and TestDf are the residual degrees of freedom and test degrees of 

freedom, respectively.  

 

Equation (3.16) can be written as 

 LRT = − �� − � − 1 −
1

2
(� − � + 1)� ln �

�����

�����
�  (3.17)  

where k is the TestDf which is the number of predictor variables. 

 

Under the null hypothesis (H0), the modified LRT statistic is expected to have an 

approximate chi-square distribution with mk degrees of freedom for a given QTL 

position in the genome. However, the threshold value to reject the null hypothesis 

(H�) cannot be simply chosen from the �� distribution because of the violation of 

regularity conditions of asymptotic theory under H0. An alternative way is to use log 

of odds (LOD) score (Lander and Botstein, 1989; Ott, 1999; Terwilliger and Ott, 

1994; Wu et al., 2007; Xu, 2013d) as a test statistic to test the null hypothesis of no 

QTL (H0).  

 

The LOD score is the transformation of the LRT statistic, defined as 

 LOD =
LRT

2× log(10)
=

LRT

4.605
= 0.217 LRT  (3.18)  

 

According Lander and Botstein (1989), the typical threshold of LOD score should be 

between 2 and 3 to ensure a 5% overall false positive error for identifying a QTL. 

Terwilliger and Ott (1994), Ott (1999), Wu et al. (2007), and Xu (2013d) suggested a 

value of LOD = 3 as the critical threshold for declaring the existence of QTL. Thus, 

the LOD > 3 can be used as a criterion to declare a significant QTL. 

 

In this study, we have developed the proposed method only for backcross (BC) 

population. However, the proposed method can be developed for other mapping 
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populations, such as intercross (F2), double haploid (DH) and other popular crosses, 

by some simple modifications of the proposed method for BC population. 

 

3.2.2 Simulated Datasets 

We have used two simulated datasets of BC population to demonstrate the 

performance of the proposed method in a comparison with the traditional LS 

regression based multi-trait QTL mapping (Knott and Haley, 2000) and MLE based 

multi-trait QTL mapping (Xu, 2013a). We have evaluated the performance of the 

three different methods including the proposed method in terms of the power of QTL 

detection and computation time. We have generated two simulated datasets 

(SimData1: Simulated Data 1 and SimData2: Simulated Data 2) using the multivariate 

regression model (3.1) with BC population. 

 

To generate SimData1 we have considered 3 phenotypes (denoted as Pheno1, Pheno2 

and Pheno3), 250 individuals, total 13 chromosomes, and 21 equally spaced (5 cM) 

markers on each of the 13 chromosomes resulting in a total of 273 equally spaced 

markers distributed on 13 chromosomes. We have simulated total four QTLs to affect 

three quantitative traits where the true QTLs are located on chromosomes 2, 4, 6 and 

8 at marker 5. Among the simulated QTLs, the QTL on chromosome 4 is a pleiotropic 

QTL affecting the phenotypes Pheno1 and Pheno2 simultaneously. We consider the 

parameter values � = [1.25 1.75 1.5], � = [1.50 1.0 2.25] and � =

���� [0.25 0.25 0.25]. Figure 3.1 shows the structure of a dataset obtained from a 

genome-wide QTL experiment for multi-trait QTL analysis. 

 

We have generated SimData2 with 5 phenotypes (denoted by Pheno1, Pheno2, 

Pheno3, Pheno4 and Pheno5), 500 individuals, 13 chromosomes, and 41 equally 

spaced (5 cM) markers on each of the 13 chromosomes resulting in a total of 533 

equally spaced markers distributed on 13 chromosomes. In SimData2, we have 

considered the true QTL positions on chromosomes 2, 4, 6, 8 and 10 at maker 5 

affecting the 5 phenotypic traits. Among the considered QTLs, three QTLs on 

chromosomes 2, 4 and 6 are considered as pleiotropic QTLs simultaneously affecting 

the set of phenotypes (Pheno1 and Pheno2), (Pheno2 and Pheno4) and (Pheno1, 
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Pheno2 and Pheno3), respectively. We consider the parameter values � =

[0.5 1.0 1.5 1.25 0.75], � = [1.25 1.75 1.5 0.75 0.5] and � =

���� [0.25 0.25 0.25 0.25 0.25]. 

 

 

Figure 3.1: Structure of the dataset obtained from a genome-wide QTL experiment 

for multi-trait QTL analysis. 

 

3.2.3 Real Datasets 

We have also considered two real datasets to investigate the performance of the 

proposed method in a comparison with the traditional LS regression based multi-trait 

QTL mapping and MLE based multi-trait QTL mapping. We have employed all the 

three methods including our proposed method with those two real datasets on QTL 

experiment, and compared the QTL detection power and the computation time of the 

proposed method with the traditional methods (MVR-ML and MVR-LS). 

 

3.2.3.1 Barley Data 

First, we have compared the three different methods (MVR-ML, MVR-LS and 

Proposed) of multivariate analysis using a double haploid (DH) population of barley. 

For DH population, the conditional probability of QTL genotype given marker 
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genotypes can be calculated using the same formula as that used in the BC population 

(Xu, 2013c). DH population can be achieved by a single generation of cytogenetic 

manipulation, just like a BC population and it contains two possible genotypes. The 

dataset was originally published by (Hayes et al., 1993). We have obtained the barley 

dataset from the web-database GeneNetwork (http://www.genenetwork.org/). The 

data consist of 150 double haploid (DH) lines derived from the cross of two spring 

barley varieties, Steptoe and Morex. A total of eight quantitative traits, including 

grain yield (YIELD), heading date (HEAD), plant height (HEIGHT), lodging 

(LODG), grain protein (PROTEIN), alpha amylase (ALPHA), diastatic power 

(POWER), and malt extract (EXTRACT), were measured from multiple 

environments with the number of environments ranging from 6 to as many as 16. The 

average values of trait across the environments were considered as the original 

phenotypic values for the QTL mapping experiment. QTL by environment (Q×E) 

interaction is assumed to be absent. The total number of markers was 495 distributed 

along seven chromosomes of the barley genome. The genotypes of the markers were 

denoted by A for the Steptoe parent and B for the Morex parent. To get a clear 

concept about the structure of the barley data, a part of the barley data has been 

presented in Figure A3.1. 

 

3.2.3.2 Mouse Data 

We also investigated the performance of all the three methods (MVR-ML, MVR-LS 

and Proposed) using another real dataset of BC lines mouse. The data were originally 

published by  Leiter et al. (2009). The data consist of 310 backcross lines of female 

mice derived from the cross NOD ´ (NOD ´ 129.H2��)F1 backcross (N2). The BC 

mice used in that study Leiter et al. (2009) were measured for different clinical, 

laboratory and metabolic quantitative/qualitative traits related to type 1 diabetes. In 

our study, we have considered only the bone mineral and plasma related phenotypes: 

BMC (Bone Mineral Content, as determined by DXA), AREA (Bone Mineral Area, 

as determined by DXA), LEPTIN (Leptin in plasma), INSULIN (Insulin in plasma), 

CHOL (Total cholesterol in plasma), HDLD (HDLD cholesterol in plasma), 

GLUCOSE (Glucose in plasma), NEFA (Non-Esterified Fatty Acids in plasma) and 

TG (Triglycerides in plasma). If any of the selected nine phenotypes is missing for 
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any individual, then that individual has been excluded from the analysis. The total 

number of SNP markers was 303 distributed along 19 chromosomes of the mouse 

genome. The genotypes of the markers were denoted by N for the NOD allele and H 

for the heterozygous allele. A part of the mouse data has been displayed in Figure 

A3.2. 

 

3.3 Results and discussion 

We have compared the performance (i.e., power of QTL detection) and computation 

times of the proposed method in comparison with other two methods (MVR-ML and 

MVR-LS) of multi-trait QTL analysis using both simulated and real data. All the three 

methods, including our proposed method, have been employed with two simulated 

and two real QTL datasets with BC population to evaluate the performance and 

computation time of these methods. We used SAS version 9.4 software (SAS Institute 

Inc., Cary, North Carolina, USA) to implement all the three methods of multi-trait 

QTL analysis. For the traditional existing methods (MVR-ML and MVR-LS) we have 

used the PROC QTL procedure of the SAS package “PROC QTL” developed by Hu 

and Xu (2009). We used same platform/operating system (Windows 8.1 Pro) and 

environment (Batch Submit with SAS 9.4) to compare the computation time of the 

three methods (MVR-ML, MVR-LS and Proposed). 

 

3.3.1 Simulated Data Analysis Results 

We have compared the performance and computation times of the proposed method 

with the traditional methods (MVR-ML and MVR-LS) of multi-trait QTL analysis 

using two simulated data sets: SimData1 and SimData2. To do this we have 

implemented all the three methods, including our proposed method, with the 

simulated data sets and evaluated the performance of these methods for true QTL 

detection. Also we have compared the computation time (in second) of the proposed 

method with the existing methods.  
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3.3.1.1 Three-trait QTL Analysis 

SimData1 consists of 250 individuals with three phenotypes (Pheno1, Pheno2 and 

Pheno3) and 273 equally spaced (5 cM) markers distributed on 13 chromosomes. The 

true QTL positions were considered on chromosomes 2, 4, 6 and 8 at maker 5. 

Genome-wide QTL search has been performed at each 1 cM flanking marker interval 

using all the three multi-trait QTL mapping methods (MVR-ML, MVR-LS and 

Proposed) to identify significant QTLs affecting one or more of the three phenotypes.  

 

 

Figure 3.2: LOD score profile plot of multi-trait QTL analysis using the MVR-ML, 

MVR-LS and proposed methods with SimData1 (Simulated Data 1) with 3 

phenotypes. The true QTL positions were considered on chromosomes 2, 4, 6 and 8 at 

marker 5 (marker position 20 cM). 

 

Figure 3.2 represents the LOD score profile plot of multi-trait QTL analysis with the 

SimData1 using MVR-ML, MVR-LS and the proposed method. The LOD score plot 

of multi-trait QTL analysis with SimData1 shows that for all the three methods the 

highest peaks occur on chromosome 2, 4, 6 and 8 at marker 5 (marker position 20 

cM). This indicates that our proposed method identifies the same QTL positions as 

identified by the existing traditional methods (MVR-ML and MVR-LS). However, the 



 
Chapter 3            Regression Based Fast Multi-trait QTL Analysis Using the Properties of MND 

 
65 

 

comparison of computation times of three methods (Table 3.2) reveals that the 

required computation time of the proposed method (2.18 seconds) is smaller than that 

of the existing methods MVR-ML (17.75 seconds) and MVR-LS (2.71 seconds). 

 

3.3.1.2 Five-trait QTL Analysis 

SimData2 consists of five phenotypes (Pheno1, Pheno2, Pheno3, Pheno4 and Pheno5) 

of 500 individuals and total 533 equally spaced (5 cM) markers on 13 chromosomes 

(41 markers on each chromosome) for each individual. The true QTL positions were 

considered on chromosomes 2, 4, 6, 8 and 10 at maker 5. Genome-wide QTL 

scanning has been done at each 1 cM flanking marker interval using all the three 

methods of multi-trait QTL mapping (MVR-ML, MVR-LS and Proposed) to identify 

significant QTLs affecting one or more of the five phenotypes.  

 

 

Figure 3.3: LOD score profile plot of multi-trait QTL analysis using the MVR-ML, 

MVR-LS and proposed methods with SimData2 (Simulated Data 2) with 5 

phenotypes (Pheno1, Pheno2, Pheno3, Pheno4 and Pheno5). The true QTL positions 

were considered on chromosomes 2, 4, 6, 8 and 10. 
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Figure 3.3 shows the LOD score profile plot of multi-trait QTL analysis with 

SimData2 using all the three methods including the proposed method. The LOD score 

plot (Figure 3.3) shows that all the methods exhibit the highest LOD peaks on 

chromosomes 2, 4, 6, 8 and 10 at marker 5 (marker position 20 cM). This means that 

the proposed method is able to identify the same QTL positions as identified by the 

other two tradition methods (MVR-ML and MVR-LS). When we compare the 

computation times of three methods (Table 3.2), we have found that the proposed 

method takes less computation time (3.66 sec.) compared to the computation times of 

the MVR-ML (75.16 seconds) and MVR-LS (9.26 seconds) methods. 

 

Table 3.2: Comparison of computational times of multi-trait QTL analysis among three 

methods (MVR-ML, MVR-LS and Proposed) with SimData1 and SimData2 

Data set No. of 
chromosomes 

Phenotypic 
sizea 

Genotypic 
sizeb 

Computation time (in second) 

MVR-MLc MVR-LSd Proposede 

SimData1 13 3×250 250×273 17.75 2.71 2.18 

SimData2 13 5×500 500×533 75.16 9.26 3.66 

a Phenotypic size indicates (Phenotypes×Indviduals). 
b Genotypic size indicates (Individuals×Markers). 
c MVR-ML: Multivariate regression (MVR) using maximum likelihood (ML) method. 
d MVR-LS: Multivariate regression (MVR) using least squares (LS) method. 
e Proposed: Multivariate regression (MVR) using the properties multivariate normal 

distribution. 

 

3.3.1.3 Power Analysis and Comparison of Computation Time 

To compare power of QTL detection (percentage of correct QTL identification) and 

computation times between the proposed and existing methods, we have performed 

simulation and analyses on 100 replicates of SimData1 and SimData2. Table 3.3 

represents the average along with standard deviation (SD) of the locus positions 

identified in 100 replications by each of the three methods (MVR-ML, MVR-LS and 

Proposed) with SimData1 and SimData2. We observe that all the methods identify 

almost the same QTL positions which approximately match with the true QTL 

positions. This indicates that all the three methods have almost same performance of 

QTL detection. 
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Table 3.3: Comparison of descriptive summary of identified QTL positions identified 

by three different methods (MVR-ML, MVR-LS and Proposed) in 100 replications 

 
 

QTL 

 
 

Chromosome 

 
True QTL 
position (cM) 

Identified QTL position 

MVR-ML 
(Mean  SD) 

MVR-LS 
(Mean  SD) 

Proposed 
(Mean  SD) 

SimData1 

QTL1 2 20 20.00  0.20 19.96  0.53 19.95  0.52 

QTL2 4 20 19.99  0.39 19.84  0.63 19.85  0.66 

QTL3 6 20 19.99  0.64 19.92  0.93 19.88  0.92 

QTL4 8 20 20.20  0.98 20.11  1.12 20.11  1.12 

SimData2 

QTL1 2 20 19.97  0.39 19.95  0.48 19.95  0.48 

QTL2 4 20 20.01  0.39 19.92  0.56 19.92  0.56 

QTL3 6 20 19.96  0.47 20.05  0.63 20.04  0.62 

QTL4 8 20 19.95  0.44 19.95  0.63 19.95  0.63 

QTL5 10 20 20.13  0.56 19.99  0.72 20.00  0.71 

 

Table 3.4 shows the statistical power (percentage of correct identification of QTL 

positions in 100 replications) of QTL detection and average computation time of the 

three methods (MVR-ML, MVR-LS and Proposed) of multi-trait QTL mapping from 

100 replications of simulation and analyses for SimData1 and SimData2. We find that 

the statistical powers of the MVR-ML method are 96%, 85%, 76% and 70% to 

identify true QTLs on chromosomes 2, 4, 6 and 8, respectively, in SimData1 whereas 

the MVR-LS and Proposed methods exhibit 92%/93%, 78%, 76% and 64% power to 

identify true QTLs on the same chromosomes. The MVR-ML method shows 85%, 

85%, 78%, 81% and 70% powers to identify the true QTL on chromosomes 2, 4, 6, 8, 

10, respectively in SimData2 while the MVR-LS and Proposed methods achieve 77%, 

78%, 71%, 77% and 65% statistical power to identify true QTLs on the same 

chromosomes. This means that all the three methods (MVR-ML, MVR-LS and 

Proposed) of multi-trait QTL analysis have almost the same power of QTL 

identification with SimData1 and SimData2. 
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Table 3.4: Observed statistical power (percentage of correct identification of true 

QTL positions in 100 replications) and average computation time of the three methods 

(MVR-ML, MVR-LS and Proposed) of multi-trait QTL mapping from 100 

replications of simulations 

QTL Chr 
True QTL 
position (cM) 

Percentage of correct identification 
(Power of QTL identification) 

 Average computation 
time  (in second) 

MVR-ML MVR-LS Proposed  MVR-ML MVR-LS Proposed 

SimData1 

QTL1 2 20 96 92 93  

18.11 2.31 1.80 
QTL2 4 20 85 78 78  

QTL3 6 20 76 76 76  

QTL4 8 20 70 64 64  

SimData2 

QTL1 2 20 85 77 77  

240.74 22.14 4.62 

QTL2 4 20 85 78 78  

QTL3 6 20 78 71 72  

QTL4 8 20 81 77 77  

QTL5 10 20 70 65 66  

Chr: Chromosome, MVR-ML: Maximum likelihood base multivariate regression, MVR-LS: 

Least squares based multivariate regression. 

 

 

Figure 3.4: Time series plot of computation times (in second) of three different 

methods (MVR-ML, MVR-LS and Proposed) for SimData1 in 100 replications. 
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Figure 3.4 and Figure 3.5 represent the time series plots of computation times of three 

methods for SimData1 and SimData2, respectively. We see that the computation time 

of the proposed method is always less than that of the other two methods for both 

SimData1 and SimData2. From Table 3.4, we observe that the average computation 

times of the MVR-ML, MVR-LS and Proposed methods of multi-trait QTL mapping 

are 18.11 sec, 2.31 sec and 1.80 sec, respectively, for SimData1. For SimData2, the 

average computation times required by the MVR-ML, MVR-LS and Proposed 

methods are 240.74 sec, 22.14 sec and 4.62 sec, respectively. The above results 

indicates that our proposed method is very less computation time consuming. Hence, 

we can conclude that our proposed method is very efficient in terms of computation 

time exhibiting almost the same performance in correct QTL detection (i.e., same 

statistical power). 

 

 

Figure 3.5: Time series plot of computation times (in seconds) of three different 

methods (MVR-ML, MVR-LS and Proposed) for SimData2 in 100 replications. 
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3.3.2 Real Data Analysis Results 

To investigate the performance of the proposed method in comparison with the 

existing methods of multi-trait QTL mapping (MVR-ML and MVR-LS), we also 

employed all the three methods including our proposed method with two real datasets: 

barley data (Hayes et al., 1993) and mouse data (Leiter et al., 2009).  

 

3.3.2.1 Eight-trait QTL Analysis with Barley Data 

We have performed genome-wide QTL scanning at every 1 cM marker interval using 

all the three methods of multi-trait QTL analysis (MVR-ML, MVR-LS and Proposed) 

to identify significant QTLs affecting one or more of the eight phenotypes (average 

yield, loading, height, head, protein, alpha, dias and maltex) in the Barley dataset 

(Hayes et al., 1993). We have compared the performance and computation time of the 

proposed method with the other two existing methods (MVR-ML and MVR-LS) for 

genome-wide QTL searching in the barley data.  

 

Figure 3.6 represents the LOD score profile plot of genome-wide multi-trait QTL 

mapping using all the three methods with the barley data. The marker or “marker 

interval” at which maximum LOD occurs on each of the seven chromosomes is 

presented in Table 3.5 along with the QTL position and maximum LOD score value 

for each of the three methods. From Figure 3.6 and Table 3.5 we observe that the 

MVR-ML method identifies the maximum LODs (i.e., highest peak in the LOD score 

plot) at positions 0.0 (marker: Hor5, max. LOD: 13.53), 36.30 (marker: Tef4, max. 

LOD: 56.98), 54.40 (marker: Dfr, max. LOD: 31.49), 139.98 (c4.loc112 within 

marker interval: ksuH11 (139.00 cM) – Tel4M (148.80 cM), max. LOD: 17.49), 

78.03 (c5.loc55 within marker interval: snp_0953 (77.10 cM) – snp_0183 (79.90 cM), 

max. LOD: 18.34), 3.13 (c6.loc3 within marker interval: ABG062 (2.20 cM) – 

snp_0669 (5.90 cM), max. LOD: 5.10) and 59.2 (c7.loc40 within marker interval: 

snp_0050 (58.20 cM) – snp_0605 (60.20 cM), max. LOD: 16.50) on chromosomes 1, 

2, 3, 4, 5, 6 and 7, respectively. The maximum LODs are identified by the MVR-LS 

method at the positions 0.00 (marker: Hor5, max. LOD: 13.53), 36.30 (marker: Tef4, 

max. LOD: 56.14), 54.40 (marker: Dfr, max. LOD: 31.49), 141.94 (c4.loc114 within 

marker interval: ksuH11 (139.00 cM) – Tel4M (148.80 cM), max. LOD: 17.97), 
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78.97 (c5.loc56 within marker interval: snp_0953 (77.10 cM) – snp_0183 (79.90 cM), 

max. LOD: 18.70), 3.13 (c6.loc3 within marker interval: ABG062 (2.20 cM) – 

snp_0669 (5.90 cM), max. LOD: 5.11) and 57.24 (c7.loc39 within marker interval: 

ABC156D (53.40 cM) – snp_0050 (58.20 cM), max. LOD: 16.39) on chromosomes 1, 

2, 3, 4, 5, 6 and 7, respectively. The proposed method identifies the maximum LODs 

at the positions 0.00 (marker: Hor5, max. LOD: 14.67), 36.30 (marker: Tef4, max. 

LOD: 55.58), 54.40 (marker: Dfr, max. LOD: 31.91), 141.94 (c4.loc114 within 

marker interval: ksuH11 (139.00 cM) – Tel4M (148.80 cM), max. LOD: 18.94), 

78.97 (c5.loc56 within marker interval: snp_0953 (77.10 cM) – snp_0183 (79.90 cM), 

max. LOD: 19.62), 3.13 (c6.loc3 within marker interval: ABG062 (2.20 cM) – 

snp_0669 (5.90 cM), max. LOD: 6.58) and 57.24 (c7.loc39 within marker interval: 

ABC156D (53.40 cM) – snp_0050 (58.20 cM), max. LOD: 17.41) on chromosomes 1, 

2, 3, 4, 5, 6 and 7, respectively. These results indicate that our proposed method 

identifies almost the same QTL positions as identified by the other two existing 

methods (MVR-ML and MVR-LS). This means that the proposed method shows 

same performance as the traditional methods of multi-trait QTL analysis. 

 

Table 3.5: Position of maximum LOD score on each of the chromosomes identified 

by the MVR-ML, MVR-LS and Proposed methods in barley data 

Method Chromosome 
Position 

(cM) 
Marker/marker interval 

Max. 

LOD 

MVR-ML 

1 0.0 Hor5 13.53 

2 36.30 Tef4 56.98 

3 54.40 Dfr 31.49 

4 139.98 
c4.loc112 within marker interval:  

[ksuH11 (139.00 cM) – Tel4M (148.80 cM)] 
17.49 

5 78.03 
c5.loc55 within marker interval:  

[snp_0953 (77.10 cM) – snp_0183 (79.90 cM)] 
18.34 

6 3.13 
c6.loc3 within marker interval:  

[ABG062 (2.20 cM) – snp_0669 (5.90 cM)] 
5.10 

7 59.2 
c7.loc40 within marker interval:  

[snp_0050 (58.20 cM) – snp_0605 (60.20 cM)] 
16.50 



 
Chapter 3            Regression Based Fast Multi-trait QTL Analysis Using the Properties of MND 

 
72 

 

Method Chromosome 
Position 

(cM) 
Marker/marker interval 

Max. 

LOD 

MVR-LS 

1 0.00 Hor5 13.53 

2 36.30 Tef4 56.14 

3 54.40 Dfr 31.49 

4 141.94 
c4.loc114 within marker interval: 

[ksuH11 (139.00 cM) – Tel4M (148.80 cM)] 
17.97 

5 78.97 
c5.loc56 within marker interval: 

[snp_0953 (77.10 cM) – snp_0183 (79.90 cM)] 
18.70 

6 3.13 
c6.loc3 within marker interval: 

[ABG062 (2.20) – snp_0669 (5.90 cM)] 
5.11 

7 57.24 
c7.loc39 within marker interval: 

[ABC156D (53.40 cM) – snp_0050 (58.20 cM)] 
16.39 

Proposed 

1 0.00 Hor5 14.67 

2 36.30 Tef4 55.58 

3 54.40 Dfr 31.91 

4 141.94 
c4.loc114 within marker interval:  

[ksuH11 (139.00 cM) – Tel4M (148.80 cM)] 
18.94 

5 78.97 
c5.loc56 within marker interval:  

[snp_0953 (77.10 cM) – snp_0183 (79.90 cM)] 
19.62 

6 3.13 
c6.loc3 within marker interval:  

[ABG062 (2.20 cM) – snp_0669 (5.90 cM)] 
6.58 

7 57.24 
c7.loc39 within marker interval:  

[ABC156D (53.40 cM) – snp_0050 (58.20 cM)] 
17.41 
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Figure 3.6: LOD score profile plot of genome-wide multi-trait QTL mapping using 

the MVR-ML (multivariate regression using EM algorithm based maximum 

likelihood), MVR-LS (multivariate regression using least squares) and Proposed 

method (multivariate regression using the properties of multivariate normal 

distribution of phenotypes and conditional probabilities of putative QTL genotype 

given the marker genotypes) with barley data. 

 

Table 3.7 shows the computation times for all the three methods (MVR-ML, MVR-

LS and Proposed). When we compare the computation time of the proposed method 

with the other two existing methods, it reveals that the required computation time of 

the proposed method (1.91 seconds) is less than that of the other two methods MVR-

ML (48.8 seconds) and MVR-LS (2.62 seconds). 

 

3.3.2.2 Nine-trait QTL Analysis with Mouse Data 

We have also investigated the performance of the proposed method in a comparison 

of the two existing methods (MVR-ML and MVR-LS) by applying these methods 

with the mouse dataset (Leiter et al., 2009) of BC population. Table 3.6 shows the 

chromosomal location (i.e., locus position) at which maximum LOD occurs on each 
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of the 19 chromosomes along with the marker at that locus position or the “marker 

interval” containing that locus position and the maximum LOD score value for each 

of the three methods. Figure 3.7 represents the LOD score profile plot of genome-

wide QTL analysis of mouse data using all the three different methods (MVR-EM, 

MVR-LS and Proposed). Multi-trait QTL analysis of mouse data shows that our 

proposed method identifies almost the same QTL positions as identified by the other 

two methods (MVR-EM and MVR-LS). However, the comparison of computation 

times of three methods (Table 3.7) reveals that the required computation time of the 

proposed method (2.05 sec) is smaller than that of the other two methods MVR-EM 

(70.47 sec) and MVR-LS (3.20 sec). 

 

Table 3.6: Position of maximum LOD score on each of the chromosomes identified 

by the MVR-ML, MVR-LS and Proposed methods in mouse data 

Method Chromosome Position (cM) Marker/marker interval Max.  LOD 

MVR-ML 1 78.03 01_172244784_N 13.60 

2 45.94 02_078062303_M 8.27 

3 26.38 

c3.loc23 within marker interval: 

[03_049202892_M (21.67 cM) –  

03_065861493_N (30.15 cM)] 

3.52 

4 19.88 04_037053163_M 3.16 

5 8.10 05_015780506_G 5.7913 

6 65.38 06_134747045_G 4.0674 

7 51.86 07_084052305_M 2.4932 

8 72.10 08_123340602_N 2.6327 

9 24.84 09_044591533_N 7.4291 

10 51.98 

c10.loc47 within marker interval: 

[10_091119681_M (45.44 cM) –  

10_108166251_N (56.65 cM)] 

4.452 

11 5.00 11_008353761_M 2.5189 

12 60.71 12_104882822_M 6.0282 

13 46.14 

c13.loc43 within marker interval: 

[13_056700488_N (30.50 cM) –  

13_094920623_M (51.03 cM)] 

4.757 

14 21.29 14_031978791_N 7.8529 

15 49.57 

c15.loc39 within marker interval: 

[15_087100507_M (40.68 cM) –  

15_097455228_N (52.53 cM)] 

3.667 
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Method Chromosome Position (cM) Marker/marker interval Max.  LOD 

16 39.93 

c16.loc36 within marker interval: 

[16_061226828_N (36.06 cM) –  

16_080711577_N (45.73 cM)] 

3.481 

17 5.53 17_008378982_M 3.7231 

18 44.19 18_070565016_N 1.5307 

19 3.21 19_007376322_N 3.771 

MVR-LS 

1 79.01 

c1.loc64 within marker interval: 

[01_172244784_N (78.03 cM) –  

01_182577000_P (84.93 cM)] 

13.361 

2 45.94 02_078062303_M 8.2675 

3 6.89 

c3.loc5 within marker interval: 

[03_007561998_N (2.02 cM) –  

03_027974740_N (11.75 cM)] 

3.5684 

4 21.84 

c4.loc19 within marker interval: 

[04_037053163_M (19.88 cM) –  

04_055642665_N (31.66 cM)] 

3.2201 

5 7.32 

c5.loc3 within marker interval: 

[05_014236855_M (6.54 cM) –  

05_015780506_G (8.10 cM)] 

5.7913 

6 65.38 06_134747045_G 4.0719 

7 51.86 07_084052305_M 2.5087 

8 72.10 08_123340602_N 2.6342 

9 24.84 09_044591533_N 7.4396 

10 42.83 10_086567143_M 3.7805 

11 5.00 11_008353761_M 2.5292 

12 60.71 12_104882822_M 6.0772 

13 50.05 

c13.loc47 within marker interval: 

[13_056700488_N (30.50 cM) –  

13_094920623_M (51.03 cM)] 

4.6155 

14 21.29 14_031978791_N 7.8439 

15 49.57 

c15.loc39 within marker interval: 

[15_087100507_M (40.68 cM) –  

15_097455228_N (52.53 cM)] 

3.715 

16 40.90 

c16.loc37 within marker interval: 

[16_061226828_N (36.06 cM) –  

16_080711577_N (45.73 cM)] 

3.6396 

17 4.53 17_008378982_M 3.72 

18 38.49 

c18.loc33 within marker interval: 

[18_049823654_M (27.09 cM) –  

18_070565016_N (44.19 cM)] 

1.6302 
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Method Chromosome Position (cM) Marker/marker interval Max.  LOD 

19 3.21 19_007376322_N 3.771 

Proposed 

1 79.01 

c1.loc64 within marker interval: 

[01_172244784_N (78.03 cM) –  

01_182577000_P (84.93 cM)] 

13.118 

2 45.94 02_078062303_M 8.259 

3 6.89 

c3.loc5 within marker interval: 

[03_007561998_N (2.02 cM) –  

03_027974740_N (11.75 cM)] 

3.7755 

4 21.84 

c4.loc19 within marker interval: 

[04_037053163_M (19.88 cM) –  

04_055642665_N (31.66 cM)] 

3.4433 

5 8.10 05_015780506_G 5.8964 

6 65.38 06_134747045_G 4.2556 

7 51.86 07_084052305_M 2.7643 

8 72.10 08_123340602_N 2.8821 

9 24.84 09_044591533_N 7.469 

10 42.83 10_086567143_M 3.9776 

11 5.00 11_008353761_M 2.7836 

12 60.71 12_104882822_M 6.1691 

13 50.05 

c13.loc47 within marker interval: 

[13_056700488_N (30.50 cM) –  

13_094920623_M (51.03 cM)] 

4.7744 

14 21.29 14_031978791_N 7.8547 

15 49.57 

c15.loc39 within marker interval: 

[15_087100507_M (40.68 cM) –  

15_097455228_N (52.53 cM)] 

3.9151 

16 40.90 

c16.loc37 within marker interval: 

[16_061226828_N (36.06 cM) –  

16_080711577_N (45.73 cM)] 

3.8434 

17 4.53 

c17.loc1 within marker interval: 

[17_003335010_M (3.54 cM) –  

17_008378982_M (5.53 cM)] 

3.9304 

18 38.49 

c18.loc33 within marker interval: 

[18_049823654_M (27.09 cM) –  

18_070565016_N (44.19 cM)] 

1.9265 

19 3.21 19_007376322_N 3.9686 
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Figure 3.7: LOD score profile plot of genome-wide multi-trait QTL mapping using 

the MVR-ML (multivariate regression using EM algorithm based maximum 

likelihood), MVR-LS (multivariate regression using least squares) and Proposed 

method (multivariate regression using the properties of multivariate normal 

distribution of phenotypes and conditional probabilities of putative QTL genotype 

given the marker genotypes) with mouse data of BC population considering 9 

phenotypes (BMC, AREA, LEPTIN, INSULIN, CHOL, HDLD, GLUCOSE, NEFA 

and TG). 

 

Table 3.7: Comparison of computational times of multi-trait QTL analysis among three 

methods (MVR-ML, MVR-LS and Proposed) with Barley and Mouse datasets 

Data set No. of 
chromosomes 

Phenotypic 
sizea 

Genotypic 
sizeb 

Computation time (in second) 

MVR-MLc MVR-LSd Proposede 

Barley data 7 8×150 150×493 48.8 2.62 1.91 

Mouse data 19 9×141 141×303 70.47 3.20 2.05 

a Phenotypic size indicates (Phenotypes×Indviduals). 
b Genotypic size indicates (Individuals×Markers). 
c MVR-ML: Multivariate regression (MVR) using maximum likelihood (ML) method. 
d MVR-LS: Multivariate regression (MVR) using least squares (LS) method. 
e Proposed: Multivariate regression (MVR) using the properties multivariate normal distribution. 
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We found that in all cases our proposed method identified the same QTL positions but 

it takes less computation compared to the existing methods (MVR-ML and MVR-LS) 

with both simulated and real data. The MVR-ML approach takes more time because it 

is an iterative procedure based on EM algorithm. Moreover, in MVR-ML approach, 

the calculation of likelihood ratio (LR) statistic or LOD statistic is time consuming 

because it is a five steps process: (i) estimation of regression parameters, (ii) 

estimation of residuals and its variance-covariance matrix, (iii) estimation of Wilks’ 

lambda statistic, (iv) Chi-square approximation of Wilks’s lambda statistic, and (v) 

calculation of LR or LOD statistic based on Chi-square statistic. Although the least 

squares based multivariate regression (MVR-LS) is not an iterative process and it 

requires less computation time than MVR-ML, it takes more time than our proposed 

method. Because, in MVR-LS approach, the calculation of LR or LOD statistic is also 

a five steps process like MVR-ML approach. Our proposed method takes 

comparatively very less time because the calculation of LR or LOD statistic is very 

straight forward in this method. In our proposed method, the likelihood ratio statistic 

(or LOD statistic) can be calculated only based on the sample variance-covariance 

matrix of phenotypes and the conditional probability of QTL genotype given the 

marker genotypes. 

 

3.4 Conclusion 

We have introduced a new and fast approach for multi-trait QTL analysis using the 

properties of multivariate normal distribution with backcross population. Our 

proposed method is able to identify the same QTL positions as identified by the 

existing methods (MVR-ML and MVR-LS) of multi-trait QTL mapping and it takes 

very less computation time than other two existing methods. This improvement in 

computation time is very advantageous when the number of phenotypes and 

individuals are very large, and the markers are very dense resulting in a QTL data set 

of very big size. 
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Chapter 4 
 
Robustification of Regression Based Fast Multi-trait 

QTL Analysis (Proposed) 

 
 
4.1 Introduction 

In many line crossing experiments of genome-wide QTL mapping studies, 

measurements are taken on multiple traits along with the marker genotypes. Very 

often, such traits are correlated and there are common chromosome regions 

(chromosomal locations) that affect multiple traits (Chen, 2016b). Trait-by-trait 

analysis using single-trait simple interval mapping (SIM) methods (Haley and Knott, 

1992; Haley et al., 1994; Lander and Botstein, 1989) cannot take into account the 

pleotropic effects. The joint analyses of multiple traits, which include all quantitative 

traits together in a single model, can increase the power of QTL identification and 

improve the QTL localization accuracy when multiple traits are correlated genetically 

in the population (Xu, 2013a). In addition, QTL mapping considering multiple 

quantitative traits using joint analyses can give insights into the important genetic 

mechanisms underlying the trait relationships (e.g., genetic linkage versus pleiotropy), 

which would otherwise be hard to address if multiple traits are analyzed one-by-one. 

Therefore, joint analyses of multiple traits are very essential to identify important 

QTL locations which control multiple traits simultaneously. 

 
Many methods for multi-trait QTL mapping have been developed in the literature, 

ranging from simple extensions of single-trait approaches to sophisticated multi-trait 

approaches designed specifically for multi-trait QTL mapping. Substantial work has 
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been done in joint mapping for multiple quantitative traits (Almasy and Blangero, 

1998; Hackett et al., 2001; Henshall and Goddard, 1999; Jiang and Zeng, 1995; Knott 

and Haley, 2000; Korol et al., 2001; Korol et al., 1995; Mangin et al., 1998; Williams 

et al., 1999). Least squares based multivariate regression (MVR-LS) for multi-trait 

SIM (Knott and Haley, 2000) and multi-trait SIM using maximum likelihood (i.e., 

using EM algorithm)(Dempster et al., 1977) based multivariate regression (Xu, 

2013a) are two most popular and widely used approaches for multi-trait QTL 

analysis. 

 

Although MVR-LS and maximum likelihood based multivariate regression (MVR-

ML) are the most popular approaches for multi-trait QTL mapping, these methods 

have some limitations. As discussed in Chapter 3, the MVR-ML based multi-trait SIM 

is very time consuming due to EM algorithm based estimation which is an iterative 

process. Moreover, in MVR-ML approach, the calculation of likelihood ratio (LR) or 

log of odds (LOD) statistic is time consuming because it is a five steps process: (i) 

estimation of regression parameters, (ii) estimation of residuals and its variance-

covariance matrix, (iii) estimation of Wilks’ lambda statistic, (iv) Chi-square 

approximation of Wilks’s lambda statistic, and (v) calculation of LR or LOD statistic 

based on Chi-square statistic. MVR-LS (Knott and Haley, 2000) is an alternative 

approach to MVR-ML to reduce the computation time for multi-trait QTL analysis. 

However, in Chapter 3, we have discussed the fast multi-trait (FMT) QTL mapping 

approach which is less time consuming than MVR-LS and MVR-ML approaches and 

it has almost similar performance to the MVR-LS and MVR-ML approaches. Hence, 

the FMT QTL mapping is a better approach than all the existing approaches for multi-

trait QTL analysis. 

 

Although FMT QTL mapping is a better approach than all the existing approaches of 

multi-trait QTL analysis, it is very sensitive to outliers and provide misleading results 

when the data are contaminated by phenotypic outliers. In this study, we have 

proposed a robust approach for multiple traits QTL mapping by robustifying the FMT 

QTL mapping approach (treated as classical approach) using minimum -divergence 

method (Mihoko and Eguchi, 2002; Mollah et al., 2007). Both the methods (Classical 
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and Proposed) produce similar results in absence of outliers. However, only our 

proposed method is able to identify the same QTL positions as identified in absence 

of outliers. 

 

4.2 Methods and Materials 

4.2.1 Classical Fast Multi-trait QTL Analysis 

Let us consider no epistasis between two QTLs, no interference in crossing over, and 

only one QTL in the testing interval. In this study, we have only considered Backcross 

(BC) population. Methods for other mapping populations, such as F2 and double 

haploid (DH), are simple extension of that for the BC population with some 

modifications. Let �� = [��� ��� … ���],  � = 1, 2, … , �, be an (1×m) vector for 

m phenotypic traits measured from the jth individual of a mapping population. Then 

the linear regression model for BC population with m traits can be formulated in 

matrix notation as 

 ��
(�×�)

= �
(�×�)

+ ��
(�×�)

�
(�×�)

+ ��
(�×�)

, � = 1, 2, … , �  (4.1)

where �� = ��|� denote the conditional probability of the putative QTL genotype 

� (� = 1, 2) given the flanking marker genotypes for the jth individual (Table 3.1), � is 

a (1 × �) vector for general mean effects and � is a (1 × �) vector for the additive 

QTL effects, and �� is a (1 × �) vector for the random errors. The vector of random 

errors is assumed to be ��~�(0, �) where � is a (� × �) variance-covariance matrix 

of random errors. 

 

In chapter 3, we have discussed the regression based FMT QTL mapping approach in 

details. In this chapter, we have just recall some important formula/equations. 

 

Let us consider that � = � �
(�×�)

 ⋮ �
(�×�)

�
�

follows a multivariate normal distribution 

� � ��
(���)×�

, ��
(���)×(���)

� with mean vector �� = �
��

��
� and variance-covariance 
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matrix �� = �
��� ���

��� ���

�, where Y and X have been introduced in (4.1). Then, from 

equation (3.10) and (3.11), based on a random sample of size n the maximum 

likelihood estimators of the regression parameters are 

 �� = �� − ���S��
����  (4.2)

and  

 �� = ���S��
��  (4.3)

where �� = ���� =
1

�
� ���

�

���

��� =
1

�
� ���

�

���

⋯ ��� =
1

�
� ���

�

���

� 

�� =
1

�
� ��

�

���

, 

��� =
1

� − 1
���� − ������ − ���

�
�

���

, 

��� =
�

���
∑ ��� − ���

��
���  and 

��� = ��� =
1

� − 1
���� − ������ − ���

�
�

���

 

are the maximum likelihood estimates of ��, ��, ���, ��� = ��� and ��
�, 

respectively. 

 

From equation (3.12), the maximum likelihood estimator of the regression function is 

 �� = �� + ��� = �� − ������
���� + ������

��� = �� + ������
��(� − ��)  (4.4)

 

In multi-trait QTL analysis, we want to test the null hypothesis is ��: � = � (i.e., 

there is no QTL at a given position within a marker interval) against 

��: �� is not true. From equation (3.15), the likelihood ratio tests (LRT) statistic to 

test �� is as follows 

 LRT = −� ln �
����

�����
�  (4.5)  
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where �� = �
���

�
� (��� − ������

�����) and ��� = �
���

�
� ��� are the estimated 

variance-covariance matrices of residuals under the full model and the reduced model 

(i.e., under H0), respectively [see equations (3.13)and (3.14)]. 

 

For large n, from equation (3.17), the modified likelihood ratio test statistic is 

 LRT = − �� − � − 1 −
1

2
(� − � + 1)� ln �

����

�����
�  (4.6)

where � is the number of individuals (i.e., observations), � is the number of 

phenotypes, and � is the “test degrees of freedom” which is the number of predictor 

variables.   

 

Under the null hypothesis (H0), the modified LRT statistic is expected to have an 

approximate chi-square distribution with mk degrees of freedom for a given QTL 

position in the genome. However, the threshold value to reject the null hypothesis 

(H�) cannot be simply chosen from the χ� distribution because of the violation of 

regularity conditions of asymptotic theory under H0. An alternative way is to use log 

of odds (LOD) score (Lander and Botstein, 1989; Ott, 1999; Terwilliger and Ott, 

1994; Wu et al., 2007; Xu, 2013d) as a test statistic to test the null hypothesis of no 

QTL (H0). The LOD score is the transformation of the LRT statistic, defined as 

 LOD =
LRT

2× log(10)
=

LRT

4.605
= 0.217 LRT  

           = −0.217 �� − � − 1 −
1

2
(� − � + 1)� ln �

����

�����
�  (4.7)

 

According Lander and Botstein (1989), the typical threshold of LOD score should be 

between 2 and 3 to ensure a 5% overall false positive error for identifying a QTL. 

Terwilliger and Ott (1994), Ott (1999), Wu et al. (2007), and Xu (2013d) suggested a 

value of LOD = 3 as the critical threshold for declaring the existence of QTL. Thus, 

the LOD > 3 can be used as a criterion to declare a significant QTL. 
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4.2.2 Robustification of Fast Multi-trait QTL Analysis (Proposed) 

One main problem of classical fast multi-trait (FMT) QTL mapping approach 

(discussed in Chapter 3) is that it is very sensitive to outliers and produce misleading 

results when the data is contaminated by phenotypic outliers. In most of the QTL 

experiments, often the phenotypic data are contaminated by some extreme 

measurement values. So, we need a robust approach for multi-trait QTL analysis to 

obtain the robust estimates of the model parameters and the robust test statistic which 

are resistant against phenotypic outliers. In this section, we have discussed the 

robustification of the multivariate regression based classical FMT QTL mapping 

approach using minimum β–divergence method (Mihoko and Eguchi, 2002; Mollah et 

al., 2007) to obtain the robust estimates of model parameters and the robust likelihood 

ratio test (LRT) statistic. 

 

From equation (4.2) to (4.7), we observe that the classical estimates of the 

multivariate regression model (4.1), estimates of the residual variance-covariance 

matrices �� (under full model) and ��� (under null model), and the calculation of LRT 

or LOD statistic depend only on the sample mean vector, �� = [�� ��]�, and sample 

variance-variance matrix ��� = �
��� ���

��� ���
�. Hence, if we can robustify the sample 

mean vector and sample variance-variance matrix, then we can obtain the robust 

estimates of the regression parameters (� and �) and residual variance-covariance 

matrices (� and ��), and construct robust test statistics (LRT or LOD statistic). In 

other words, we can robustify the multivariate regression based FMT QTL mapping 

approach if we can obtain the robust estimates of parameter �� and �� of multivariate 

normal distribution. 

 

The minimum �-divergence estimators of the parameters � = (��, ��) can be 

computed iteratively as follows: 

 
��, ��� =

∑ ��(��|��)��
�
���

∑ ��(��|��)�
���

 
 

(4.8)  

and 
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��, ��� = (1 + �)

∑ ��(��|��)(�� − ��, �)(�� − ��, �)��
���

∑ ��(��|��)�
���

, 
 

(4.9)  

where ���������, � = 1, 2, … , �, is called the �-weight function and defined as 

 
��������� = exp �−

�

2
(�� − ��, �)���, �

�� (�� − ��, �)� 
 (4.10)  

The value of �-weight function ranges from 0 to 1. The tuning parameter � plays an 

important role to control the performance of the proposed method. The appropriate 

value of � can be selected by k-fold cross validation. If β = 0, then (4.8) and (4.9) 

reduces to the classical non-iterative solution and the estimates reduce to classical 

estimates. 

 

Let the robust estimate (i.e., �-estimate) of the parameters � = (��, ��) are denote by 

��(�) = ����(�), ���(�)�. Then we can write  

 
���(�) = �

���(�)

�̂�(�)

�

(���)×�

= �
��(�)

��(�)

�

(���)×�

 
 

(4.11)  

and 

 
���(�) = �

���� ����

���� ����

�

(���)×(���)

= �

���(�) ���(�)

���(�) ���(�)

� 
 

(4.12)  

 

Then, using (4.11) and (4.12), in (4.2) and (4.3), the robust estimates of the regression 

parameters (� and �) can be written as  

 ��(�) = ��(�) − ���(�)S��(�)
�� ��(�)  (4.13)

and  

 ��(�) = ���(�)S��(�)
��   (4.14)

 

Using (4.11) and (4.12) in (4.6), the robust LRT statistic can be written as  

 LRT(�) = − �� − � − 1 −
1

2
(� − � + 1)� ln �

���(�)�

����(�)�
�  (4.15)
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where � is the number of individuals (i.e., observations), � is the number of 

phenotypes, and � is the “test degrees of freedom” which is the number of predictor 

variables.  

 

Using (4.11) and (4.12) in (4.7), the robust LOD statistic can be written as 

 LOD(�) = 0.217 LRT(�)  

                = −0.217 �� − � − 1 −
1

2
(� − � + 1)� ln �

���(�)�

����(�)�
�  (4.16)

 

4.2.3 Expression Single Nucleotide Polymorphisms (eSNPs) Mapping by 

Using the Proposed Robust Multi-trait QTL Mapping Model 

The Quantitative Trait Locus (QTL) mapping has been highly successful in 

determining causative loci underlying several disease phenotypes. Several statistical 

techniques (i.e. association test, t-test, likelihood or regression approaches) are used to 

map QTL, with flanking markers to identify the association between the genomic 

location and the phenotypic traits (Haley and Knott, 1992; Lander and Botstein, 

1989). After the advances in gene expression profile datasets, the QTL analysis 

extended to expression QTL (known as eQTL) analysis which became the more 

effective approach to identify the biomarker genes associated with the trait variations. 

However, these QTL and eQTL approaches were not suitable for human populations.  

Taking the advantages of next generation sequencing (NGS), these technologies have 

been extended to expression Single Nucleotide Polymorphisms (eSNPs) analysis 

which is suitable for human population also (Frazer et al., 2007; Gatti et al., 2009; 

Szatkiewicz et al., 2008). These eSNPs are gene polymorphisms that explain variation 

in expression levels of mRNAs. An expression trait is an amount of an mRNA 

transcript or a protein. These are usually the product of a gene with its specific SNPs. 

This distinguishes expression traits from most complex traits, which are not the 

product of the expression of that gene. SNPs that explain variance in expression traits 

are said to be eSNPs located near the gene-of-origin (gene which produces the 

transcript or protein) are referred to as local eSNPs. By contrast, those located distant 

from their gene of origin, often on different chromosomes are referred to as distant 
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eSNPs. Often, these two types of eSNPs are referred to as cis and trans, respectively, 

but these terms are best reserved for instances when the regulatory mechanism (cis vs. 

trans) of the underlying sequence has been established. Some cis eQTLs are detected 

in many tissue types but the majority of trans eQTLs are tissue-dependent (dynamic). 

eSNPs may act in cis (locally) or trans (at a distance) to a gene. The abundance of a 

gene transcript is directly modified by SNPs in regulatory elements. Consequently, 

transcript abundance might be considered as a quantitative trait that can be mapped 

with considerable power. The combination of whole-genome genetic/SNPs 

association studies and the measurement of global gene expression allow the 

systematic identification of eSNPs. By assaying gene expression and SNP variation 

simultaneously on a genome-wide basis in a large number of individuals, statistical 

genetic methods can be used to map the genetic factors that underpin individual 

differences in quantitative levels of expression of many thousands of transcripts. 

 

The calculation for eSNPs creates a computational challenge that can stretch or 

overwhelm existing tools. These challenges are further compounded by multiple 

comparison issues arising from the large number of available SNPs and transcripts. 

Additionally, the majority of identified SNPs in GWAS are located within the non-

coding regions (e.g. approximately 88% lie in intergenic or intronic regions) and their 

causal genetic function remains largely unknown (Zeng et al., 2017). Various methods 

have been used to address these issues. Multiple comparisons among transcripts has 

been previously addressed by thresholding transcripts using q-values (Storey and 

Tibshirani, 2003) obtained from transcript specific testing of association with SNPs 

using Likelihood Ratio Statistic (LRS) (Chesler et al., 2005) or the mixture over 

markers method (Kendziorski et al., 2006) or Pearson correlation matrix (Gatti et al., 

2009). Thus, there are several methods those are used to overcome the computational 

problem in the eSNPs based genome-wide association study (GWAS) to identify the 

biomarker genes and SNPs. However, all methods as early mentioned are sensitive to 

outlying observations, where outlying observations usually occurs in the gene 

expression data due to several steps involved in the data generating processes.  So 

these existing methods may produces misleading results. To overcome this problems, 

therefore, an attempt is made to apply our proposed robust multi-trait QTL mapping 

approach as an eSNPs approach to identify the biomarker genes and SNPs including 
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cis and trans regulatory factors. To implement the proposed multi-trait QTL mapping 

approach to eSNP analysis, detail discussion is given below: 

 

Step 1: Select top g (we have considered g = 10 in this study) differentially expressed 

(DE) genes. To select the top g DE genes we have used idea the DE gene selection 

method described by Kabir et al. (2016). However, instead of classical sample 

variance we have used the robust sample variance in the method of top DE gene 

selection. The robust sample variance can be calculated using (4.12). The top DE 

gene selection method is composed of the following steps: 

Step 1.1: Perform hierarchical clustering with the GE values to stratify the 

genes into 3 groups/clusters. 

Step 1.2: Calculate robust variance of each on the gene expression variables 

(i.e., each of the genes) in each of the 3 clusters. Calculate average of the 

variances in each cluster.   

Step 1.3: Now remove the cluster with the lowest average variance, which is 

the cluster of equally expressed genes. So, we get 2 clusters of DE genes. 

Step 1.4: Select 5 genes with higher variances, called top 5 DE genes, from 

each of the 2 clusters of DE genes. So, we get total top 10 DE genes from the 2 

clusters of DE genes, which are the resulting (finally selected) top 10 DE genes.   

Step 2: Consider the expression values of each of the top 10 finally selected DE genes 

as the values of a phenotype. So we will have 10 phenotypes that are gene expression 

of top 10 DE genes. 

Step 3: Use the multi-trait SIM approaches with those 10 expression phenotypes and 

SNP data to calculate LOD scores. 

Step 4: Create LOD score plot and identify the positions where the highest peaks 

occurs in each of the chromosomes. The positions with highest peaks are the 

important eSNP positions.   

 

The above steps are summarized and shown in the following Figure 4.1. 
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Figure 4.1: Flowchart of multi-trait eQTL analysis. 

 

4.2.4 Simulated Dataset 

To investigate the performance of the proposed robust method in comparison with the 

classical FMT QTL mapping approach, we have generated one artificial/synthetic 

dataset for BC population based on the multivariate linear regression model (4.1) 

using simulation technique. To generate the simulated data we have considered 3 

phenotypes (denoted as Pheno1, Pheno2 and Pheno3), 250 individuals, total 13 

chromosomes, and 15 equally spaced (5 cM) markers on each of the 13 chromosomes 

resulting in a total of 195 equally spaced markers distributed on 13 chromosomes. We 

have simulated total four unlinked QTLs to affect three quantitative traits where the 

true QTLs are located on chromosomes 2, 4, 6 and 8 at marker 5 (locus position 20 

cM). Among the simulated QTLs, the QTL on chromosome 6 has been considered as 

a pleiotropic QTL affecting the phenotypes Pheno1 and Pheno3 simultaneously. To 

generate the simulated data based on the multivariate linear regression model (4.1), 

Gene expression (GE) data SNP data  

Phenotypes: GE of top 10 
finally selected DE genes 

Select top g (in this study g=10) 
DE genes following the method 
discussed by Kabir et al. (2016) 

Test statistic: 
Calculate LOD = 0.217 LRT  

LOD score plot: 
SNP positions with highest 
peaks are significant eQTL 

Statistical method:  
Multi-trait SIM approaches 
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we have considered the true values of regression parameters as � =

[0.50 1.00 1.25], � = [1.50 1.25 2.25] and true variance-covariance matrix of 

random errors � = �
0.5 0.3 0.4
0.3 0.5 0.035
0.4 0.035 0.5

�. We have generated 250 trait values for each 

of the three phenotypes with the heritability values ℎ� = 0.69, 0.61 and 0.84 for 

Pheno1, Pheno2 and Pheno3, respectively. This means that 69%, 61% and 84% of the 

variation in Pheno1, Pheno2 and Pheno3, respectively, are controlled by QTLs, and 

the remaining 31%, 39% and 16% variation in Pheno1, Pheno2 and Pheno3, 

respectively, are subject to the environmental and other effects (random error). To 

compare the robustness of our proposed method with the FMT QTL mapping method 

in presence of phenotypic outliers, we have generated contaminated phenotypic data 

by contaminating 20% of the values of each of the three phenotypes with outliers. To 

perform the simulation study, we have used R version 3.6.2 software along with the 

R-package R/qtl (Broman et al. (2003), homepage: http://www.rqtl.org/). 

 

4.2.5 Real QTL Dataset (Barley Data) 

We have also investigated the performance of the proposed robust method in 

comparison with the classical FMT QTL mapping method using one real dataset of 

barley. The barley dataset was originally published by (Hayes et al., 1993). We have 

obtained the barley dataset from the web-database GeneNetwork 

(http://www.genenetwork.org/). We have described the barley dataset in detail in 

Chapter 3 (Section 3.2.3.1). To investigate the robustness of our proposed method in 

comparison with the FMT QTL mapping method, we have employed both the 

methods with contaminated barley data. We have contaminated 20% values of each of 

the eight phenotypes (grain yield, heading date, plant height, lodging, grain protein, 

alpha amylase, diastatic power, and malt extract) with outliers to get the contaminated 

phenotypic barley data.   
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4.2.6 Real eSNPs Dataset (Gene Expression and SNP Data of BXD Mouse) 

We have also implemented the methods of multi-trait SIM (Classical and Proposed) 

with gene expression (GE) phenotype and SNP data of mouse as an extended 

application of the multi-trait SIM approaches in the field of expression SNPs (eSNPs) 

analysis. The description of the GE in livers and SNP data of 32 recombinant inbred 

(RI) mouse strains are given below. 

 

BXD gene expression data: The GE dataset of gene expression in Liver of BXD RI 

mouse strains has been obtained from the FastMap software (Gatti et al., 2009; Gatti 

et al., 2011) of e-QTL analysis (http://comptox.us/fastmap.php) and has been 

described by Gatti et al. (2007). Briefly, this GE dataset consists of the expression 

measurements derived using the Agilent oligonucleotide microarrays for 36182 

transcripts in 32 BXD RI strains and the   DBA/2J and C57BL/6J parentals of mouse. 

The GE data provided by FastMap software were normalized using the microarray 

database of University of North Carolina (UNC). For our convenience to apply the 

multi-trait SIM approaches as eSNPs analysis, we have considered only the top 10 DE 

genes/transcripts selected using the DE gene selection method described by Kabir et 

al. (2016) based on robust sample variances of transcripts. To investigate the 

performance of the proposed method in comparison with the classical approach in 

presence of phenotypic outliers, we have contaminated 20% GE values of each of the 

10 transcripts (phenotypes) considered in our study. To get a clear concept about the 

structure of the BXD gene expression data, a part of the BXD gene expression data 

has been presented in Figure A4.1. 

 

BXD SNP data: We have downloaded the BXD SNP dataset also from the FastMap 

software (Gatti et al., 2009; Gatti et al., 2011) of eQTL analysis 

(http://comptox.us/fastmap.php). The BXD SNP dataset consists of 156525 SNPs 

distributed on 20 chromosomes of mouse. Chromosome 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16, 17, 18, 19 and 20 contain 13615, 11741, 10781, 9782, 9545, 8312, 

9091, 8789, 8267, 5467, 8684, 7226, 7138, 8441, 7066, 5226, 5976, 5847, 3880 and 

1651 SNPs, respectively. A part of the mouse data has been displayed in Figure A4.2. 
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4.3 Results and Discussion 

4.3.1 Simulated Data Analysis Results 

We have employed both the methods (Classical and Proposed) with the simulated data 

of the BC population and compared their performance of QTL detection. For each of 

the methods (Classical and Proposed) of multi-trait QTL analysis, we have scanned 

QTL at each 1 cM marker interval. We have computed LOD scores based on the 

classical and proposed methods for both types of data sets (non-contaminated and 

contaminated datasets). Figure 4.2(a) and Figure 4.2(b) are showing the LOD scores 

profile plots for the non-contaminated and contaminated datasets, respectively. In the 

LOD scores profile plots, the dot-dash black line and the solid red line represent the 

LOD scores at every 1cM  position in the chromosomes for the classical method 

(FMT QTL mapping) and the proposed method with  β = 0.2, respectively.  
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Figure 4.2: LOD score plots with simulated data in (a) absence of outliers and (b) in 

presence of 20% outliers in each of the phenotypes (Pheno1, Pheno2 and Pheno3). 

 

(a) In absence of outliers 

(b) In presence of outliers 
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Table 4.1 represents the significant marker name and its position identified on each of 

the chromosomes 2, 4, 6 and 8 by each of the methods (classical and proposed) in 

uncontaminated and contaminated simulated data. From Figure 4.2(a) and Table 4.1, 

it is seen that the highest LOD score peak occurs at the true QTL position (at marker 5 

with locus position 20 cM) of the true chromosome 2, 4, 6 and 8 by the both methods 

for the uncontaminated dataset. From Figure 4.2(b) and Table 4.1, we observe that, in 

presence of outliers, the classical method fails to identify any significant QTL on 

chromosome 2 and 8, and identifies incorrect QTL positions on chromosome 4 

(Marker interval: D4M1 - D4M2, Locus position: 3 cM) and chromosome 6 (Marker: 

D6M9, Locus position: 40 cM).  

 

Table 4.1: Significant QTL positions identified by fast multi-trait (FMT) QTL 

mapping and Proposed method in simulated data in absence and absence of outliers 

 

 

Method 

True QTL position Identified QTL position 

Chr Marker Position 

(cM) 

In absence  

of outliers 

In presence  

of outliers 

FMT QTL  

mapping  

(Classical) 

2 5 20 Marker: D2M5  

Position: 20 cM  

Marker: D2M5  

Position: 20 cM  

4 5 20 Marker: D4M5  

Position: 20 cM  

Marker: D4M5 

Position: 20 cM 

6 5 20 Marker: D6M5 

Position: 20 cM 

Marker: D6M5 

Position: 20 cM 

8 5 20 Marker: D8M5 

Position: 20 cM 

Marker: D8M5 

Position: 20 cM 

Proposed 2 5 20 Marker: D2M5 

Position: 20 cM 

Fails to identify any QTL 

4 5 20 Marker: D4M5  

Position: 20 cM 

Marker interval: (D4M1 - D4M2)  

Position: 3 cM 

6 5 20 Marker: D6M5 

Position: 20 cM 

Marker: D6M9 

Position: 40 cM 

8 5 20 Marker: D8M5 

Position: 20 cM 

Fails to identify any QTL 

FMT: Fast multi-trait.  

However, in the presence of outliers, the highest LOD score peak occurs at the true 

QTL positions on true chromosomes by the proposed method only [Figure 4.2(b)]. So, 

from the simulation study, we can conclude that the proposed method outperforms 
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over the classical method (FMT QTL mapping) in the presence of outliers. Otherwise, 

the proposed method shows almost equal performance to the classical method of 

multi-trait QTL analysis. 

 

4.3.2 Statistical Power of QTL Detection  

To compare power of QTL detection (percentage of correct QTL identification) 

between the proposed and FMT QTL mapping method, we have performed simulation 

and analyses on 100 replicates of the simulated data. Table 4.2 represents the average 

along with standard deviation (SD) of the locus positions identified in 100 replications 

by each of the two methods (FMT QTL mapping and Proposed). From Table 4.2 we 

observe that in absence of outliers both the methods (FMT QTL mapping and 

Proposed) identify almost the same QTL positions which approximately match with 

the true QTL positions. However, in presence of outliers the average QTL positions 

identified by the FMT QTL mapping does not match with the true QTL positions 

whereas the average QTL positions identified by the proposed method (robust FMT 

QTL mapping) approximately match with the true QTL positions. This indicates that 

the proposed method (robust FMT QTL mapping) outperform over the classical FMT 

QTL mapping approach in presence of outliers. 

 

Table 4.2: Comparison of descriptive summary of identified QTL positions identified 

by Fast Multi-trait (FMT) QTL mapping and Proposed method in 100 replications 

 
 

QTL 

 
 

Chromosome 

 
True QTL 
position (cM) 

Identified QTL position 

FMT QTL mapping 
(Mean  SD) 

Proposed 
(Mean  SD) 

   In absence of outliers 

QTL1 2 20 20.13  1.58 20.21  1.34 

QTL2 4 20 20.00  0.91 20.00  0.83 

QTL3 6 20 20.00  1.71 20.20  1.80 

QTL4 8 20 19.87  0.72 19.86  0.65 

   In presence of outliers 

QTL1 2 20 26.96  18.02 20.20  1.52 

QTL2 4 20 24.50  15.04 19.87  0.88 

QTL3 6 20 26.68  18.21 20.09  2.18 

QTL4 8 20 29.21  20.69 19.90  0.76 
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Table 4.3 shows the statistical power of QTL detection (percentage of correct 

identification of QTL positions in 100 replications) of the two methods (FMT QTL 

mapping and Proposed) of multi-trait QTL analysis from 100 replications of 

simulation and analyses. In absence of outliers, we find that the statistical powers of 

the FMT QTL mapping method are 74%, 85%, 77% and 89% to identify true QTLs 

on chromosome 2, 4, 6 and 8, respectively, whereas the Proposed method (robust 

FMT QTL mapping) exhibits 77%, 90%, 84% and 95% power to identify true QTLs 

on the same chromosomes. On the other hand, in presence of outliers the statistical 

powers of the FMT QTL mapping are 14%, 19%, 13% and 19% to identify true QTLs 

on chromosome 2, 4, 6 and 8 respectively, while the Proposed method (robust FMT 

QTL mapping) shows 65%, 85%, 81% and 87% statistical power to identify the true 

QTL positions on the same chromosomes. This means that our proposed method 

(robust FMT QTL mapping) shows better performance than the classical FMT QTL 

mapping method in presence of outliers. Otherwise, the proposed method shows 

similar performance to the FMT QTL mapping method. 

 

Table 4.3: Observed statistical power (percentage of correct identification of true 

QTL positions in 100 replications) of the Fast multi-trait (FMT) QTL mapping and 

proposed method of multi-trait QTL analysis from 100 replications of simulations 

QTL Chr 
True QTL 
position (cM) 

% of correct identification  
in absence of outliers 

 % of correct identification 
in presence of outliers 

FMT QTL mapping Proposed  FMT QTL mapping Proposed 

QTL1 2 20 74 77  14 65 

QTL2 4 20 85 90  19 85 

QTL3 6 20 77 84  13 81 

QTL4 8 20 89 95  19 87 

Chr: Chromosome, FMT: Fast multi-trait, QTL: Quantitative trait locus. 

 

4.3.3 Real Data Analysis Results 

4.3.3.1 Barley Data for Multi-trait QTL Analysis 

We have also investigated the performance of the proposed method (robust fast multi-

trait QTL mapping) in comparison with the classical method (classical fast multi-trait 
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QTL mapping) using a real multi-trait QTL dataset of barley in absence and presence 

of phenotypic outliers.    

 

Figure 4.3: LOD score plots with barley data in (a) absence of outliers and (b) in 

presence of 20% outliers in each of the 8 phenotypes (grain yield, heading date, plant 

height, lodging, grain protein, alpha amylase, diastatic power and malt extract) 

considered in the study.  
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Figure 4.3 represents the LOD score profile plot of multi-trait QTL analysis of barley 

data with 8 quantitative phenotypes using the classical and proposed method in 

absence and presence of outliers. In the LOD scores profile plots, the dot-dash line 

(black color) and solid line (red color) represent the LOD scores at every 1cM 

position in the chromosomes for the classical method and the proposed method, 

respectively. Figure 4.3(a) shows the LOD scores profile of multi-trait QTL analysis 

with uncontaminated (absence of outliers) barley data using the classical method and 

proposed method with β = 0.02, respectively. We select β by cross validation. Figure 

4.3(b) are representing the LOD score plots of multi-trait QTL analysis with 

contaminated (presence of outliers) barley data using the classical method and the 

proposed method with β = 0.2, respectively. Selection of the β-value was done by 

cross validation. 

 

Table 4.4 shows the position at which significant maximum LOD occurs on each 

chromosome by each of the methods in presence and absence of outliers. From Figure 

4.3(a) and Table 4.4, we observe that in absence of outliers both the method identified 

the same QTL positions (Chr1: Marker Hor5 at positon 0.00 cM, Chr 2: Marker Tef4 

at position 36.30 cM, Chr3: Marker Dfr at position 54.40 cM, Chr4: At position 

141.94 within marker interval [ksuH11 (139.00 cM) – Tel4M (148.80 cM)], Chr5: At 

position 78.97 cM with in marker interval [snp_0953 (77.10 cM) – snp_0183 (79.90 

cM)], Chr6: At position 3.13 within marker interval [ABG062 (2.20 cM) – snp_0669 

(5.90 cM)], and Chr7: At position 57.24 within marker interval [ABC156D (53.40 

cM) – snp_0050 (58.20 cM)]). However, from Figure 4.3(b) and Table 4.4, we find 

that in presence of outliers only the proposed method correctly identifies all the QTL 

positions as identified in absence of outliers. In presence of outliers, the classical 

method fails to identify any significant QTL position on chromosome 1, 2, 3, 5, 6 and 

7, and incorrectly identifies one QTL on chromosome 4 (at position 77.5 cM with in 

marker interval [BCD453B (76.80 cM) – snp_0523 (78.90)]). Therefore, we can 

conclude that our proposed method significantly outperforms over the classical 

method of multi-trait QTL analysis in presence of outliers. Otherwise, the proposed 

method shows almost equal performance. 
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Table 4.4: Significant QTL positions identified by each method on each chromosome 

in barley data in absence and absence of outliers 

 

 

 

Method 

 

 

 

Chr 

Identified QTL position 

In absence of outliers In presence of outliers 

Marker Position  

(cM) 

Marker Position 

(cM) 

Classical* 
1 Hor5 0.00 

Fails to identify the QTL as  

identified in absence of outliers 
- 

2 Tef4 36.30 
Fail to identify the QTL as  

identified in absence of outliers 
- 

3 Dfr 54.40 
Fail to identify the QTL as  

identified in absence of outliers 
 

4 
Marker interval:  
[ksuH11 (139.00 cM) –  

Tel4M (148.80 cM)] 
141.94 

Marker interval:  

[BCD453B (76.80 cM) – 

snp_0523 (78.90)] 

77.5 

5 

Marker interval:  

[snp_0953 (77.10 cM) –  

snp_0183 (79.90 cM)] 

78.97 
Fails to identify the QTL as  

identified in absence of outliers 
- 

6 

Marker interval:  

[ABG062 (2.20 cM) –  

snp_0669 (5.90 cM)] 

3.13 
Fails to identify the QTL as  

identified in absence of outliers 
- 

7 

Marker interval:  

[ABC156D (53.40 cM) –  

snp_0050 (58.20 cM)] 

57.24 
Fails to identify the QTL as  

identified in absence of outliers 
- 

Proposed 1 Hor5 0.00 Hor5 0.00 

2 Tef4 36.30 Tef4 36.30 

3 Dfr 54.40 Dfr 54.40 

4 Marker interval:  
[ksuH11 (139.00 cM) –  

Tel4M (148.80 cM)] 
141.94 

Marker interval:  
[ksuH11 (139.00 cM) –  

Tel4M (148.80 cM)] 
141.94 

5 Marker interval:  
[snp_0953 (77.10 cM) –  

snp_0183 (79.90 cM)] 
78.97 

Marker interval:  
[snp_0953 (77.10 cM) –  

snp_0183 (79.90 cM)] 
78.97 

6 Marker interval:  
[ABG062 (2.20 cM) –  

snp_0669 (5.90 cM)] 
3.13 

Marker interval:  
[ABG062 (2.20 cM) –  

snp_0669 (5.90 cM)] 

3.13 

7 Marker interval:  
[ABC156D (53.40 cM) –  

snp_0050 (58.20 cM)] 
57.24 

Marker interval:  
[ABC156D (53.40 cM) –  

snp_0050 (58.20 cM)] 
57.24 

* Classical method: Fast Multi-trait QTL mapping approach 
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4.3.3.2 BXD Mouse Data for eSNPs Analysis 

We have also implemented the methods of multi-trait SIM (Classical and Proposed) 

with gene expression (GE) phenotype data along with SNP data of BXD mouse as an 

extended application of the multi-trait SIM approaches in the field of expression SNPs 

(eSNPs) analysis. We have considered the only the top 10 DE genes/transcripts as the 

multiple traits in this study. The top 10 DE transcripts has been selected based on 

hierarchical clustering method using the DE transcript selection method discussed in 

section 4.2.3. Figure 4.4 represents the cluster dendrogram using hierarchical 

clustering to group the transcripts into 3 groups for selecting top 10 DE transcripts. 

 

 

Figure 4.4: Cluster dendrogram using hierarchical clustering method to group the 

transcripts into 3 groups/clusters for selecting top 10 DE genes. 
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Figure 4.5: LOD score plots with BXD mouse data in (a) absence of outliers and (b) 

in presence of 20% outliers in each of the top 10 DE genes/transcripts considered in 

the study. 

 

Figure 4.5 represents the LOD score profile plot of multi-trait eSNP analysis of BXD 

mouse data with top 10 DE gene expression phenotypes (transcripts) in liver using the 

classical and proposed method in absence and presence of outliers. In the LOD scores 

profile plots, the black colored and red colored lines represent the LOD scores at each 

SNP position in the chromosomes for the classical method and the proposed method, 

(a) In absence of outliers 

(b) In presence of outliers 
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respectively. Figure 4.5(a) shows the LOD scores profile of eSNPs analysis with 

uncontaminated (absence of outliers) BXD mouse data using the classical method and 

proposed method, respectively. Figure 4.5(b) are representing the LOD scores profile 

of eSNPs analysis with contaminated (presence of outliers) BXD mouse data using 

the classical method and the proposed method with β = 0.2, respectively. Selection of 

the β-value was done by cross validation.  

 

From Figure 4.5(a) we observe that in absence of outliers both the method identified 

the same eSNP positions on chromosomes Chr2 (position: 145692973 Mb), Chr6 

(position: 141509875 Mb), Chr7 (position: 125668666 Mb), Chr8 (position: 

43544697 Mb), Chr9 (position: 107479346 Mb), Chr10 (position: 14709884 Mb), 

Chr11 (position: 47033818 Mb), Chr15 (position: 54192199 Mb) and Chr16 

(position: 97748552 Mb). However, from Figure 4.5(b), we find that in presence of 

outliers only the proposed method correctly identifies all the eSNP positions as 

identified in absence of outliers. In presence of outliers, the classical method fails to 

identify eQTL position as identified in absence of outliers on chromosomes 2, 6, 7, 8, 

9, 10, 11, 15 and 16, and it incorrectly identifies some eSNP on chromosomes 1, 5, 7, 

10, 15 and 20. Thus, we can conclude that the proposed method significantly 

outperforms over the classical method of multi-trait eSNP analysis in presence of 

outliers. Otherwise, the proposed method shows almost equal performance. 

 

4.4 Conclusion 

In this paper, a new robust regression based fast interval mapping approach has been 

discussed for multi-trait QTL analysis by maximum β-likelihood estimation with BC 

population. The value of the tuning parameter β plays a key role on the performance 

of the proposed method. An appropriate value for the tuning parameter β can be 

selected by cross validation. We selected the appropriate value of the tuning 

parameter β using 10-fold cross validation. The proposed method with tuning 

parameter β = 0 reduces to the traditional multi-trait QTL interval mapping approach. 

Simulation and real data analysis results show that the proposed method significantly 

improves the performance over the classical fast multi-trait QTL mapping approach in 

presence of phenotypic outliers. Otherwise, the proposed method shows almost same 

performance as the classical fast multi-trait QTL mapping. We also applied the 
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proposed multi-trait QTL mapping approach to the eSNPs data analysis to find the 

biomarker genes and SNPs including cis and trans regulatory factors. 

 



 

 
 

Chapter 5: Robustification  of  Regression  Based  GWAS to Explore Important SNPs 
(Proposed) 
 
 
 
 
 

Chapter 5 
 
Robustification of Regression Based GWAS to 

Explore Important SNPs (Proposed) 

 
 
5.1 Introduction 

One of the main challenges in recent genetic research is the identification of important 

genetic biomarkers or genes or genetic factors, which are associated with various 

complex traits of any living organism. Differences in traits in living organisms mainly 

occur due to molecular genetic variations (i.e., due to the variations in functional parts 

DNA which are called genes). These variations are mostly observed at the 

physiological, developmental, and morphological stages. Due to the recent 

advancements in sequencing technologies and the availability of next-generation 

sequence data, identification of genetic basis such as causal genetic variants for 

different phenotypic traits is possible at single nucleotide polymorphism (SNP) level. 

The statistical methods of exploring the SNP’s contribution to phenotypic variation 

are defined as Genome-Wide Association Studies (GWAS). SNP-based GWAS has 

widely been used for the genetic study of a variety of species including humans, 

animals and plants to identify genomic locations/regions responsible for various 

quantitative traits. GWAS has been made possible by decreasing the cost and time 

required to obtain sequences of the whole genome and genome-wide SNPs. In 

GWAS, SNPs are commonly examined for association across the whole genome with 

the particular trait of interest.  GWAS makes it possible to investigate the associations 

between a very large set of SNPs and the various complex traits of interest (Zhao et 
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al., 2011) such as complex diseases. The significant SNPs identified by the GWAS 

can be used for new drug development and prevention of specific complex diseases or 

complex traits.  

 

The analysis in the GWAS includes three major steps – (i) Quality control: 

Prepressing of the raw data for genotype calls and filtering out particular samples and 

SNPs based on the specific criteria of quality control; (ii) Preliminary analyses: 

Calculating genotype and allele frequencies, and testing linkage disequilibrium and 

Hardy-Weinberg equilibrium; and (iii) Significant SNPs identification: Identifying the 

SNPs that are related to the outcome of interest performing the association analysis 

using SNPs and controlling the false-positive detections by identifying and adjusting 

population stratification (Liu et al., 2013). Population stratification (PS) is the main 

concerning issue when extensive genome-wide association analysis with numerous 

subjects is in consideration (Li and Yu, 2008; Liu et al., 2013; Xu et al., 2009). Some 

unidentified new population structures are probable to exist due to the large number 

of subjects that may be liable for systematic differences being selected in SNPs 

between cases and controls (Liu et al., 2013). Due to higher FDRs, it is imperative to 

correct the observed population stratification in GWAS (Campbell et al., 2005; Liu et 

al., 2013). There is however, a number of statistical approaches proposed earlier for 

genome-wide association mapping to address the effects of population stratification. 

The most commonly used statistical methods to avoid the bias of population 

stratification (PS) or genetic relatedness are genomic control (Devlin and Roeder, 

1999), structured association (Pritchard et al., 2000), and principal component 

analysis (Patterson et al., 2006; Price et al., 2006). Genomic control (GC) approach 

modifies the association statistics by a common factor for all SNPs to correct for PS 

(Liu et al., 2013). Genomic control suffers from weak power when the effect of 

population structure is large (Aranzana et al., 2005; Devlin et al., 2001; Price et al., 

2006; Yu et al., 2006; Zhao et al., 2007). Structured association analysis (SAA) 

technique suggests locating the samples to discrete subpopulation clusters and then 

collecting evidence of association within each cluster (Pritchard et al., 2000). The 

SAA method is useful for small datasets (Liu et al., 2013). Nevertheless, the software 

package STRUCTURE is computationally intensive and cumbersome for large-scale 

genome-wide association studies (Price et al., 2006). 
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Another method based on principal component (PCA) is used for genome-wide 

association analysis (Price et al., 2006). In this technique, EIGENSTRAT program 

uses several top principal components (PCs) and applies them as covariates in GWA 

analysis (Liu et al., 2013). These top PCs are selected using EIGENSTRAT (Price et 

al., 2006) program based on PCA. Thousands of markers can be analyzed using this 

PCA method and the adjustment using PCA is definite to a marker’s variation in allele 

frequency across ancestral populations (Liu et al., 2013; Price et al., 2006). PCA 

approach may however not more appropriate to correct population structure if it arises 

from the existence of several discrete subpopulations because PCA applies the 

produced eigenvectors as continuous covariates (Liu et al., 2013).The results obtained 

from PCA adjustment may be misleading too if there are outliers (Liu et al., 2013). 

Outlying data were introduced at genotypic level to check the performance of the 

robust PCA approach (Liu et al., 2013). 

 

Another improved method was proposed to deal with the fact of PS for the presence 

of hidden population structure for population-based GWAS (Li and Yu, 2008). This 

method would improve PS by combining the multi-dimensional scaling (MDS) and 

clustering technique. This approach was however an extension of PCA due to having 

some similarity matrices between PCA and MDS. It can be applied for both discrete 

and continuous population structures and it is well suited for large and small-scale 

GWA analysis (Li and Yu, 2008). 

 

In the recent bioinformatics research, the applications of linear mixed model (LMM) 

techniques have been popular in different genome-wide linkage analysis for discovery 

of potential biomarkers from human and agricultural single nucleotide polymorphism 

(SNP) level data. Nowadays to address the issues of adjustment of population 

stratification and account for population structure and genetic relatedness (polygenic 

effects) are effectively overcome by implementing LMM (Endelman, 2011; Kang et 

al., 2010; Zhang et al., 2010) for large scale GWAS. These approaches have been 

executed in software programs TASSEL (Bradbury et al., 2007), EMMA (Kang et al., 

2008), EMMAX (Kang et al., 2010), rrBLUP (Endelman, 2011), Genome-wide 

efficient mixed-model analysis (GEMMA) (Zhou and Stephens, 2012), GAPIT (Lipka 

et al., 2012).  
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All the existing methods for GWAS, mentioned above, ae very sensitive to 

phenotypic outliers and produce misleading results in identifying the important SNPs 

when the phenotypic data are contaminated by outliers. In this study, we have 

proposed a robust statistical approach for SNP-based GWAS by robustifying the 

linear regression based GWAS using minimum –divergence technique (Mihoko and 

Eguchi, 2002; Mollah et al., 2007). The performance of the proposed approach has 

been investigated using both simulated data and real data (SNP data of “grain number 

per panicle” of rice cultivated in Hangzhou area, China) in terms of power and false 

discovery rate (FDR) in presence of phenotypic outliers. 

 

5.2 Materials and Methods 

5.2.1 Classical Methods of SNP Analysis 

Let us consider m SNPs with n individuals and there are n observations for a 

phenotype. Then the linear model for GWAS can be written as   

 �� = � + ��� + ��,   � = 1,  2, … … . . . , �  (5.1)  

where �� is the phenotype for the j-th individual, � is the overall mean, � is the SNP 

effect and �� is the SNP value for the j-the individual.  

 

The least square estimates of the parameter of above model is 

 
�� =

∑ (�� − �̅)(�� − ��)�
���

∑ (�� − �̅)��
���

=
����

����
 

 
(5.2)  

and 

 �� = �� − ���̅  (5.3)  

where �̅ =
1

�
� ��

�

���

, �� =
1

�
� ��

�

���

, 

 
���� = �(�� − �̅)(�� − ��)

�

���

 
 

(5.4)  

 
and ���� = �(�� − �̅)�

�

���

 
 

(5.5)  
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Then the estimated classical model can be written as  

 ��� = �� + ����  (5.6)  

 

We want to test the null hypothesis ��: � = 0 (i.e., there is no SNP effect) against 

��: �� is not true. The test statistic under the null hypothesis ��: � = 0 (i.e., there is 

no SNP effect) is as follows: 

 
� =

��

SE(��)
=

��

�
���
����

 
 

(5.7)  

where SE = Standard error and  

 
Mean squared error, ��� =

1

(� − �)
�(�� − ���)�

�

���

 
 

(5.8)  

 The t-statistic in (5.7) follows t-distribution with (� − �) = (� − 2) degrees of 

freedom. 

 

5.2.2 Robust Method of SNP Analysis 

One major problem of classical linear regression model based GWAS is that the 

estimates of regression parameters in (5.2) – (5.3) and the t-statistic defined in (5.7) 

are very sensitive to outliers and provide misleading results when the data is 

contaminated with outliers. So, we need a robust approach for SNP analysis to obtain 

the robust estimates of the model parameters and the robust test statistic which will be 

less sensitive to outliers. In this section, we have discussed the robustification of the 

classical linear regression model based GWAS using minimum β–divergence method 

(Mihoko and Eguchi, 2002; Mollah et al., 2007) to obtain the robust estimates of 

model parameters and the robust test statistic (i.e., robust t-statistic).  

 

 

Equation (5.4) and (5.5) can be written, respectively, as 

���� = ����  (5.9)   

���� = ���
�  (5.10)  
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where ��� =
1

�
���� − �̅���� − ���,

�

���

  

��
� =

1

�
���� − �̅�

�
�

���

 and  

Then the equation (5.2) can be written as 

�� =
����

����
=

����

���
�

=
���

��
�

 
 

(5.11)  

 

Equation (5.8) can be written as 

��� =
1

(� − �)
�(�� − ���)�

�

���

=
���

(� − �)
=

��� − ���

(� − �)
 

 
(5.12)  

where  

Sum of squares total, ��� = ���� = �(�� − ��)�

�

���

= ���
� 

 
(5.13)  

��
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(5.14)  

and   

Sum of squares regression, ��� = �(��� − ��)�

�

���

 
 

   

                                                           =
(����)�

����
= ������ 

 
(5.15)  

 

Using (5.13) and (5.15), equation (5.12) can be written as 

��� =  
���� − ������

(� − �)
=

���
� − ������

(� − �)
=

�(��
� − �����)

(� − �)
 

 
(5.16)  

 

Using (5.10) and (5.16), equation (5.7) can be written as 

� =
��

�
�(��

� − �����)

(� − �)���
�

=
��

�
(��

� − �����)

(� − �)��
�

 
 

(5.17)  
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which follows t-distribution with (� − �) = (� − 2) degrees of freedom. 

 

From equations (5.3), (5.11) and (5.17) we observe that the classical estimates of 

regression parameters (�� and ��) and the t-statistic depend only the sample means 

(�̅ and ��), sample variances (��
� and ��

�) and sample covariance (���). Hence, we can 

get the robust estimates of the regression parameters (� and �) and derive robust t-

statistic if we can robustify the sample means (�̅ and ��), sample variances (��
� and ��

�) 

and sample covariance (���). 

 

Let us consider that � = (�, �) with population mean vector �� = �

��

��

� and 

population variance-covariance matrix �� = �
��

� ���

��� ��
�

�, where Y and X have been 

introduced in (5.1). 

 

The minimum �-divergence estimators of the parameters � = (��, ��) can be 

obtained by the iterative solution of the following equations: 

 
��, ��� =

∑ ��(��|��)��
�
���

∑ ��(��|��)�
���

 
 

(5.18)  

and  

 
��, ��� = (1 + �)

∑ ��(��|��)(�� − ��, �)(�� − ��, �)��
���

∑ ��(��|��)�
���

, 
 

(5.19)  

where ���������, � = 1, 2, … , �, is called the �-weight function and defined as 

 
��������� = exp �−

�

2
(�� − ��, �)���, �

�� (�� − ��, �)� 
 (5.20)  

 

The value of �-weight function ranges from 0 to 1. The tuning parameter � plays an 

important role to control the performance of the proposed method. The appropriate 

value of � can be selected by k-fold cross validation. If β = 0, then (5.18) and (5.19) 
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reduces to the classical non-iterative solution and the estimates reduce to classical 

estimates. 

 

Let the robust estimate (i.e., �-estimate) of �� and �� are denote by ���(�) and ���(�). 

Then we can write  

 
���(�) = �

�̂�(�)

�̂�(�)

� = �

��(�)

�̅(�)

� 
 

(5.21)  

and 

 
���(�) = �

���(�)
� ����(�)

����(�) ���(�)
�

� = �
��(�)

� ���(�)

���(�) ��(�)
�

� 
 

(5.22)  

 

Then, using (5.21) and (5.22) in (5.3) and (5.11), the robust estimates of the 

regression parameters (� and �) can be written as 

��(�) = ��(�) − ��(�)�̅(�)  (5.23)  

 
��(�) =

���(�)

��(�)
�  

 
(5.24)

 

Using (5.22) and (5.24) in (5.17), the robust t-statistic can be written as  

�(�) =
��(�)

�
(��(�)

� − ��(�)���(�))

(� − �)��(�)
�

 
 

(5.25)  

which follows t-distribution with (� − �) = (� − 2) degrees of freedom. 

 

5.2.3 Simulation Study 

To evaluate the performance of the proposed method with the classical method of 

SNP based GWAS, we have generated synthetic/artificial genotype and phenotype 

data using the simulation technique based on the linear model described in (5.1). We 

have generated synthetic data considering one phenotype, 300 individuals, 1000 SNPs 

on a single chromosome with different values of heritability, h2 = (0.1, 0.2, 0.3, 0.4, 
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0.5, 0.6, 0.7, 0.8, 0.9). Five true SNP positions were considered at positions 100, 200, 

300, 400 and 500 on a single chromosome. We have used the R package rrBLUP to 

generate the synthetic/artificial genotype and phenotype data. A part of the simulated 

phenotype and genotype data has been shown in Figure 5.1. To check the robustness 

of the proposed method in comparison of the classical method, we have contaminated 

1% to 10% of the phenotypic values by outliers in the dataset. We have created the 

Manhattan plot by plotting SNP positions in X-axis and [–log10(P-value)] values in Y-

axis. We have computed the threshold value of level of significance using Bonferroni 

correction (Bonferroni et al., 1936) ��� =
�

Number of SNPs
 to identify statistically 

significant SNPs. So the threshold value for Manhattan plot is [– log��(���)]. 

 

We have investigated the performance of the proposed method in comparison with the 

classical method of SNP based GWAS in terms of statistical power of SNP detection 

and false discovery rate (FDR). The statistical power of SNPs detection for a method 

is defined as Power =
Number of correctly detected SNPs

Total number of true SNPs
  and the FDR of a method is defined 

as FDR =
Number of incorrectly detected SNPs

Total number of detected SNPs
. To compare the power and FDR of the 

proposed method with the classical over the change of heritability, we have replicated 

the whole simulation process 1000 times with both the proposed and classical 

methods for each of the heritability values (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) 

and calculated the statistical power and false discovery rate (FDR) for each method in 

absence and presence of 10% outliers. To investigate the power and FDR of the 

methods (Proposed and Classical) over the change in the % of phenotypic 

contamination, we have replicated the whole simulation process 1000 times with both 

the methods (Proposed and Classical) for each of (1%, 2%, 3%, 4%, 5%, 6%, 7%, 

8%, 9%, 10%) contamination at heritability h2 = 0.5 and calculated the statistical 

power and false discovery rate (FDR) for each method in absence and presence of 

outliers using simulation study. 
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Figure 5.1: Structure of the simulated Phenotype and Genotype data files used in 

SNP based GWAS. 

 

5.2.4 Real Data Analysis 

We have also validated the performance of the proposed method in comparison with 

the classical method using a real dataset of rice (Oryza sativa L.). The real dataset of 

rice used in this investigation are obtained from Huang et al. (2015). The dataset 

contains total 1,495 different varieties of hybrid rice among which 1,439 varieties are 

from indica-indica hybrid crosses (called indica hybrid varieties), 38 varieties are 

from japonica-japonica hybrid crosses and 18 varieties are from indica-japonica 

hybrid crosses. For phenotyping, all the varieties of hybrid rice were planted together 

at two agro-ecologically different locations: Sanya and Hangzhou in China. The 

phenotypic dataset contains total 12 quantitative traits (i.e., phenotypes) for each 

hybrid variety: Yield per plant (g), Panicle number, Grain number per panicle, Seed 

setting rate, Grain weight (g), Heading date (days), Height (cm), Flag leaf length 

(cm), Flag leaf width (cm), Panicle length (cm), Grain length (mm) and Grain width 

Phenotype 
Data Genotype Data Line/Individual 
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(mm). The genotype dataset (i.e., SNP dataset) contains total 934,912 SNPs on 12 

chromosomes (Chr 1: 114,948 SNPs, Chr2: 98,502 SNPs, Chr3: 83,352 SNPs, Chr4: 

74,265 SNPs, Chr5: 70,404 SNPs, Chr6: 72,144 SNPs, Chr7: 76,618 SNPs, Chr8: 

56,123 SNPs, Chr9: 64,298 SNPs, Chr10: 61,832 SNPs, Chr11: 91,095 SNPs, Chr12: 

71,331 SNPs) for each of the 1495 varieties of rice. For the convenience of our 

analysis, we have considered only the 1,439 indica hybrids along with only one 

phenotypic trait “Grain number per panicle” for Hangzhou area. In order to 

measure the performance of the proposed method in comparison with the classical 

method in presence of outliers we have contaminated 10% of the values of the 

phenotypic trait (grain number per panicle).   

 

 

Figure 5.2: Structure of real Phenotype (Grain number per panicle) and Genotype 

data files of rice in Hangzhou area used in this SNP based GWAS. 

 

 

Phenotype Data Genotype Data 

Phenotype 

Column number 

Genotypic values of SNP 

SNP 
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5.3  Results and Discussion 

5.3.1 Simulated Data Analysis Results  

To compare the performance of the proposed method with the classical method of 

SNP based GWAS, we have implemented both of the two methods (Classical and 

Proposed) with the simulated dataset and evaluate the performance of these methods 

for true SNP detection. 

 

 

Figure 5.3: Manhattan plot of SNP based GWAS with simulated data using classical 

approach and proposed approach in absence and presence of outliers. (a) Classical 

approach in absence of outliers, (b) Proposed approach in absence of outliers, (c) 

Classical approach in presence of outliers and (d) Proposed approach in presence of 

outliers. 

 

Figure 5.3 shows the Manhattan plot of SNP based GWAS with simulated data for the 

classical method and proposed method in absence and presence of 10% outliers. 

(a) Classical approach in absence of outliers (b) Proposed approach in absence of outliers 
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Manhattan plot represents SNP positions in X-axis and [–log10(P)] values in Y-axis. 

We created the Manhattan plot for 1000 SNPs with threshold value –log10(0.05/1000) 

= 4.30 obtained using Bonferroni correction at 5% level of significance. Figure 5.3(a) 

and Figure 5.3(b) represent the Manhattan plot of GWAS for classical and proposed 

method, respectively, in absence of outliers. We observe that both the methods 

identify all the true SNP positions correctly at position 100, 200, 300, 400 and 500. 

This indicates that the proposed method shows similar performance to the classical 

method in absence of outliers. Figure 5.3(c) and Figure 5.3(d) show the Manhattan 

plot of GWAS for classical and proposed method, respectively, in presence of 

outliers. We find that the classical method fails to identify all the 5 true SNP positions 

correctly and it identifies only one true SNP position correctly at position 500, 

whereas the proposed method identifies all the true SNP positions correctly at position 

100, 200, 300, 400 and 500. So, our proposed method performs better than the 

classical method in presence of outliers. Otherwise, it shows almost equal 

performance. 

 

To compare the performance of the proposed method with the classical method of 

SNP based GWAS, we have calculated the statistical power and false discovery rate 

(FDR) for each method in absence and presence of outliers using simulation study.  

Figure 5.4 shows the prediction power and false discovery rate (FDR) of classical and 

proposed methods over the change in heritability (h2) in absence and presence of 

outliers using simulated study. Figure 5.4(a) and Figure 5.4(b) represent the power of 

SNP detection and FDR of both methods (Classical and Proposed), respectively, in 

absence of outliers. We observe that both the methods of SNP based GWAS 

(Classical and Proposed) have similar power and FDR in absence of outliers. The 

prediction power increases and FDR decreases with the increase in heritability (h2) 

value in absence of outliers. Our findings indicates that both the methods (Classical 

and Proposed) show almost equal performance in absence of outliers. 

 

Figure 5.4(c) and Figure 5.4(d), respectively, show the prediction power and FDR of 

both methods in presence of phenotypic outliers. We find that the proposed method 

exhibits the higher power of correct SNP detection than the classical method in 

presence of outliers. However, both the methods have almost same FDR in presence 
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of outliers. The prediction power increases and FDR decreases with the increase in 

heritability (h2) value in presence of outliers. These results indicate that the proposed 

method outperform over the classical method of SNP based GWAS in presence of 

phenotypic outliers. 

 

 

Figure 5.4: Prediction power and false discovery rate (FDR) of classical and 

proposed methods over the change in heritability (h2) in absence and presence of 

outliers using simulated dataset. (a) Prediction power over the change in heritability 

(h2) in absence of outliers, (b) FDR over the change in heritability (h2) in absence of 

outliers, (c) Prediction power over the change in heritability (h2) in presence of 10% 

outliers, and (d) FDR over the change in heritability (h2) in presence of 10% outliers. 

 

Figure 5.5 represents the statistical power and FDR of classical and proposed methods 

for different % of phenotypic contaminations (i.e., outliers) with heritability value 

h2=0.5. We observe that the power of the proposed method is always higher than that 

of the classical method. The SNP detection power of the proposed method remain 
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almost stable with the increase in the % of phenotypic contaminations whereas the 

power of the classical method decreases with the increase in the % of phenotypic 

contaminations. The FDR of both the methods is almost similar and it increases very 

slowly with the increase in the % of phenotypic contaminations. These finding 

indicate that our proposed method shows better performance than the classical method 

of SNP based GWAS. 

 

 

Figure 5.5: Prediction power and false discovery rate (FDR) of classical and 

proposed methods over the change in percentage (%) of phenotypic contaminations 

(outliers) using simulated dataset. (a) Percentage of outliers versus prediction power 

and (b) percentage of outliers versus false discovery rate (FDR). 

 

5.3.2 Real Data Analysis Results 

We have evaluated the performance of the proposed method in a comparison with the 

classical method using a real dataset of 1,439 indica varieties of rice (Oryza sativa L.) 

containing 934,912 SNPs and 12 phenotypes. We have considered the yield-related 

phenotype “Grain number per panicle” in Hangzhou area as our phenotype of interest. 

We have performed GWAS with the SNP dataset to identify the significant SNPs 

controlling the phenotype “Grain number per panicle” using both classical and 

proposed methods. To investigate the performance of the proposed method in 

comparison with the classical method in presence of outliers we have contaminated 

10% of the values of “Grain number per panicle”. 
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Figure 5.6: Manhattan plot of GWAS to identify important SNPs/QTLs which 

control the “gain number per panicle” in Hangzhou area in absence of outliers. 

Manhattan plot has been created plotting [− log��(�)] values from the linear model in 

Y-axis and all the SNP positions in X-axis for each of the 12 chromosomes of rice. 

The horizontal dotted line represent the threshold P-value of 10-6 to identify the 

genome-wide significant SNPs using classical and proposed method in absence of 

phenotypic outliers. (a) Classical approach in absence of outliers and (b) Proposed 

approach in absence of outliers. 

 

Figure 5.6 represents the Manhattan plot of SNP base GWAS of grain number per 

panicle using classical and proposed method in absence of outliers. From Figure 

5.6(a) we find that classical method identifies significant SNPs on chromosome 1 at 

locus position 6,346,698 (Table 5.1) and on chromosome 4 locus position 31,493,318 

(Table 5.1). From Figure 5.6(b) we observe that the proposed method detects 

significant SNPs on 1 at locus position 6,346,698 (Table 5.1) and on chromosome 4 

(a) Classical approach in absence of outliers 

(b) Proposed approach in absence of outliers 
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locus position 31,493,318 (Table 5.1). So, both the methods identify the same SNP 

potions. This indicates that the proposed method shows similar performance to the 

classical method in absence of phenotypic outliers. 

 

 

Figure 5.7: Manhattan plot of GWAS to identify important SNPs/QTLs which 

control the “gain number per panicle” in Hangzhou area in presence of outliers. 

Manhattan plot has been created plotting [− log
10

(�)] values from the linear model in 

Y-axis and all the SNP positions in X-axis for each of the 12 chromosomes of rice. 

The horizontal dotted line represent the threshold P-value of 10-6 to identify the 

genome-wide significant SNPs using classical and proposed method in absence of 

phenotypic outliers. (a) Classical approach in presence of outliers and (b) Proposed 

approach in presence of outliers. 

 

 

(a) Classical approach in presence of outliers 

(b) Proposed approach in presence of outliers 
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Table 5.1: Significant SNPs (P <10-6) for one yield-related traits “grain number per 

panicle” in Hangzhou area in absence of outliers. 

 
Chr 

Classical method  Proposed method 

Position – log10(P )  Position – log10(P ) 

1 6,346,698 6.30  6,346,698 7.09 

4 31,493,318 8.05  31,493,318 9.75 

 

Figure 5.7 represents the Manhattan plot of SNP base GWAS of the trait “grain 

number per panicle” using classical and proposed method in presence of outliers. 

From Figure 5.7(a) we find that in presence of phenotypic outliers classical method 

fails to identify the SNPs as identified in absence and even it cannot detect any 

significant SNP. On the other hand, from Figure 5.7(b), we observe that in presence of 

phenotypic outliers the proposed method identifies exactly the same SNPs as 

identified in absence of outlier on chromosome 1 at locus position 6,346,698 (Table 

5.2) and on chromosome 4 at locus position 31,493,318 (Table 5.2). This indicates 

that the proposed method shows better performance than the classical method to 

identify significant SNPs in presence. 

 

Table 5.2: Significant SNPs (P <10-6) for one yield-related traits “grain number per 

panicle” in Hangzhou area in presence of outliers 

 

Chr 

Classical method  Proposed method 

Position – log10(P )  Position – log10(P ) 

1 No SNP identified Not available  6,346,698 6.69 

4 No SNP identified Not available  31,493,318 8.55 

 

5.4 Conclusion 

All the existing classical methods of SNP based single-trait GWAS is very sensitive 

to outliers and these methods produce misleading results when the phenotypic data are 

contaminated by outliers. In this study, we have developed a robust approach for SNP 

based single-trait GWAS analysis. We have investigated the performance of our 

proposed method in comparison with the classical method of single-trait GWAS in 
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absence and presence of outliers using simulation study and real data analysis.  

Simulation studies show that the proposed method produce almost same results as the 

classical method in absence of outliers. However, the proposed method outperforms 

over the classical method in presence of outliers. Real data analysis reveals that our 

proposed method performs better than the classical method in presence of outliers. 

Otherwise, it shows almost similar performance to the classical method. 
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Chapter 6 
 
Sequence Matching Based GWAS to Explore Rolling 

Leaf Related Important Genes 

 
 
6.1 Introduction 

We have discussed the sequence matching based GWAS in section 1.3.4 in details. 

We have just recalled the idea of sequence matching based GWAS in this chapter. 

The next step after completing SNP-based GWAS is to integrate the information, and 

perform structural and functional analysis of the identified associated 

loci/QTLs/genes to investigate the molecular mechanisms of the identified 

loci/QTLs/genes. The whole process from SNP identification to functional analysis is 

known as GWAS, and the sequence searching based process of structural and 

functional analysis of the genes of interest is called sequence matching based GWAS 

(Hall, 2019; Han and Huang, 2013; Park et al., 2012). In sequence matching based 

GWAS, a particular sequence of interest (genomic sequence or coding sequence or 

protein sequence) of a gene is tried to match in the whole genome by searching the 

similar sequences in the whole genome stored in the databases. If the sequence of 

interest matches with any portion of the whole genome, then we called that the 

sequence is associated with that portion of the genome. In other words, in sequence 

matching based GWAS, similar sequences to a sequence of interest are searched in 

the whole genome stored in the databases. Then those similar sequences are said to be 

associated with the sequence of interest. In this chapter, we have performed a 

sequence matching based GWAS to explore the structural and functional 
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characteristics of rolling leaf (RL) related genes in rice (Oryza sativa L.). To explore 

the structural and functional characteristics of rolling leaf (RL) genes, we have 

conducted different types of GWAS analyses including gene structure analysis, 

conserved domain (CD) analysis, phylogenetic analysis, protein-protein interaction 

network construction, Gene Ontology (GO) analysis, transcription factors (TFs) 

analysis, gene-set enrichment analysis, Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways analysis and exploratory gene expression analysis. 

 

Rice (Oryza sativa L.) is one of the most important staple food crops all over the 

world, particularly in Asian countries. More than half of world’s population consume 

rice as a primary source of food and in Asia, where approximately 60% of the world’s 

people live, more than 90% of the world’s rice is grown and consumed (Khush, 

2005). Over 3.5 billion people are solely dependent upon rice for at least 20% of their 

daily required calories (Khush, 2013). According to Godfray et al. (2010), the food 

demand of the world population is expected to be 70% to 100% more by the year 

2050. Under the condition of limited farmland, the main challenge to meet the food 

demand is increasing rice yield per unit area which leads to the improvement in 

overall rice yields. In addition, quality improvement of rice plant is an important 

factor for increasing the unit yield of rice (Zhu et al., 2017). 

 

Leaf is the major photosynthetic organ in rice which is directly related to biomass 

accumulation and grain yield production (Alamin et al., 2017). It has been proved that 

appropriate leaf shape improves photosynthesis rate resulting in the higher grain yield 

in rice (Wu et al., 2010). As a result leaf morphology, such as leaf length, leaf width 

and the leaf rolling index which are related to plant architecture, is becoming one of 

the key concerns in the study of high yield plant breeding, especially high yield rice 

breeding (Li et al., 2014). The flag leaf or uppermost three leaves were proposed to be 

long, narrow, moderately rolled (V-shaped), erect and thick for the hybrid rice to be 

super high yielding (Wu, 2009; Yuan, 1997; Zhou et al., 1995). Particularly, a 

moderate leaf rolling of rice can increase the grain yield by improving photosynthetic 

efficiency and increasing stress resistance through reduced leaf transpiration during 

drought resulting the compact tailing and vertical position of leaf (Lang et al., 2004; 
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Wu et al., 2010; Zhang et al., 2009; Zou et al., 2011). Thus, identifying moderately 

rolled leaf rice mutants and isolating the responsible genes for controlling leaf rolling 

will be advantageous for rice breeding with the desired traits (e.g., high yield, stress 

tolerance) and architecture (Alamin et al., 2017). 

 

To date, at least 103 genes/QTLs for rolling leaf (RL) trait of rice have been identified 

by several studies (S1 Table).  These RL genes/QTLs have been either cloned or 

mapped throughout the rice genome. ROLLED LEAF 9 (RL9) and SHALLOT-LIKE1 

(SLL1) are identical genes which encoded a SHAQKYF class Myb family 

transcription factor belonging to the KANADI family (Yan et al., 2008; Zhang et al., 

2009). RL9 encodes a GARP protein of KANADI family regulating the completely 

adaxialized leaves and malformed spikelets (Yan et al., 2008). SHALLOT-LIKE1 

(SLL1) mutant have extremely incurved leaves on the abaxial side and encodes a 

SHAQKYF class MYB family transcription factor belonging to the KANADI family 

(Zhang et al., 2009). SHALLOT-LIKE 2 (SLL2) showed shrinkage of bulliform cells 

and this mutant’s leaf rolling is caused by a T-DNA insertion (J. J. Zhang et al., 

2015). SEMI-ROLLED LEAF1 (SRL1) or CURLED LEAF AND DWARF 1 (CLD1) 

encodes a putative glycosylphosphatidylinositol anchored protein which modulates 

leaf rolling (Li et al., 2017; Xiang et al., 2012). The outcurved laef1 (oul1) mutant 

exhibited abaxial leaf rolling  due to the knockout of RICE OUTERMOST CELL-

SPECIFIC GENE 5 (ROC5), and interestingly the number and size of bulliform cells 

decrease due to the over expression of Roc5 resulting the adaxial leaf rolling (Zou et 

al., 2011). RL14 gene encodes a 2OG-Fe (II) oxygenase family protein of unknown 

function modulating the incurved rice leaves due to the shrinkage of bulliform cells 

on the adaxial side (Fang et al., 2012). 

 

COW1/NAL7 and NRL1 encoding a flavin-containing monooxygenase and a cellulose 

synthase-like protein D4 (OsCslD4), respectively, results in increased number and 

smaller size of bulliform cells and therefore adaxial leaf rolling (Fujino et al., 2008). 

Adaxialized leaf1 (ADL1) mutant in rice encodes a plant specific calpain like cysteine 

proteinase orthologous to maize DEFECTIVE KERNEL1, results in number and size 

change on the adaxial and formation on the abaxial epidermis of the bulliform cells 
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and caused leaf inward rolling (Hibara et al., 2009). OsMYB103L encodes an R2R3-

MYB transcription factor and overexpression of OsMYB103L results in a rolled leaf 

phenotype (Yang et al., 2014). ACL1 (Abaxially Curled Leaf 1) encodes a protein of 

116 amino acids with unknown conserved functional domains (Li et al., 2010). 

OsAG07 gene encodes a protein of 1,048 amino acids including the PAZ and PIWI 

conserved domains (Shi et al., 2007). Furthermore, REL1 encodes an unknown 

protein and plays a positive role in leaf rolling and bending (Chen et al., 2015); and an 

unknown functional protein which contains DUF630 and DUF632 domains is 

encoded by REL2 gene (Yang et al., 2016). Suppression of OsYABBY6 transcriptional 

activity results in shrinkage of bulliform cells and adaxially rolled leaves in rice (M. 

L. Xia et al., 2017). 

 

Isolation of genes controlling leaf rolling is expected to be beneficial for developing 

crops with the desired architecture (Xu et al., 2014; Zhang et al., 2009). Most of the 

studies of RL trait are related to the comparison of a rolled leaf mutant with a wild 

type (WT) and the identification of the genes/QTLs responsible for leaf rolling. Those 

studies also include the investigation of the molecular functions (e.g., the function of 

domains; changes in the volume, localization and number of bulliform cells) and 

mapping/cloning of the identified RL genes/QTLs. Rolling leaf gene isolation, 

investigation of its molecular functions, and mapping/cloning the identified gene for 

developing a rice mutant with desired trait and architecture are the time consuming 

and laborious tasks. So, collective information of the RL genes and their comparative 

analysis is very essential and helpful before starting the experiment and functional 

studies of a desired RL rice mutant. Although no fewer than 103 RL genes/QTLs have 

been cloned or mapped throughout many different studies, there is no collective 

information on the RL genes; and the comparative analysis of their sequences (i.e., 

genomic sequence, coding sequence (CDS) and protein sequence) from different 

bioinformatics point of view is still incomplete. Therefore, this in silico study was 

designed to identify and compare the structures and functions of all RL genes, 

reported till date through several studies, using various bioinformatics analyses. To 

our knowledge, this is the first study where we listed almost all the RL genes 

characterized throughout several studies to date and performed different types of 
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comparative analyses from different bioinformatics point of view including gene 

structure and exons/introns pattern analysis, domain analysis, phylogenetic analysis, 

Gene Ontology (GO) analysis, transcription factor (TF) analysis, Kyoto Encyclopedia 

of Genes and Genomes (KEGG) analysis, gene network analysis  and gene expression 

analysis. We found that LR genes are diverse in structure and most of them contain 

different types of domains. More than 50% of the RL genes of interest are not 

associated with each other and most of LR genes have some extreme (very high or 

very low) gene expression values at leaf, root and shoot. Altogether, this study might 

provide collective information about RL genes and their molecular characteristics till 

date, and might be helpful for the geneticist as well as rice breeder to develop the rice 

mutants with rolled leaf trait and desired architecture. 

 

6.2 Materials and Methods 

The whole process of this study, from data collection to data analysis, has been 

illustrated through a schematic diagram in Figure 6.1. The data collection procedures 

for RL related genes and the bioinformatic analysis techniques used to analyze the 

data have been discussed in the next subsections. 

 

6.2.1 Data Collection Procedures for RL Related Genes 

Identification of RL related genes was done in several ways in this study. First, we 

searched and collected all the published papers which were related to RL of rice 

(Oryza sativa L.). From these collected papers we extracted all the RL related genes. 

We also used some most popular and widely used publicly available databases such as 

Oryzabase (http://shigen.nig.ac.jp/rice/oryzabase), GRAMENE 

(http://archive.gramene.org/), Rice Genome Annotation Project (RGAP: 

http://rice.plantbiology.msu.edu/index.shtml), Rice Genome Browser 

(http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/), Rice Annotation Project 

(RAP) database (RAP-DB: https://rapdb.dna.affrc.go.jp/), PubMed 

(https://www.ncbi.nlm.nih.gov/pubmed), and some most popular search engines (e.g.,  

Google Scholar, Google, Bing, etc.) to find out the RL genes of rice along with locus 

ID. In some papers the MSU locus IDs of RL genes were reported, while some papers 

mentioned the RAP locus IDs instead of MSU ID for RL related genes. Also in some 
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papers only the names of the RL genes were reported instead of locus ID. MSU/RAP 

locus IDs of the RL genes, for which locus IDs were not reported, was found using 

various web databases of rice including Oryzabase 

(http://shigen.nig.ac.jp/rice/oryzabase), GRAMENE (http://archive.gramene.org/),  

Rice Genome Browser (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/) and 

Rice Annotation Project (RAP) database (RAP-DB: https://rapdb.dna.affrc.go.jp/).  

RAP IDs of RL genes were converted to MSU IDs using the Rice Annotation Project 

(RAP) database (http://rapdb.dna.affrc.go.jp). 

 

 

Figure 6.1: Schematic diagram of the study. 
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Total 103 RL related genes/QTLs reported in different kind of literature and databases 

were identified in this study.  The detail information of the identified 103 RL 

genes/QTLs are available in Table 6.1. Among the total 103 RL genes/QTLs, 9, 11, 

16, 9, 7, 5, 14, 3, 12, 9, 2 and 8 genes/QTLs were identified on chromosome 1, 2, 3, 4, 

5, 6, 7, 8, 9, 10, 11 and 12, respectively. Note that the genes RL1, RL3 and RL11(t) 

have been identified on two different chromosomes (1, 12), (3, 12) and (7, 4), 

respectively. Among the 103 RL genes, ND1 (Li et al., 2009), DNL3 (Shi et al., 2016) 

and NRL1 (Hu et al., 2010; Wu et al., 2010) are identical; RL9 (Yan et al., 2008) and 

SLL1 (Zhang et al., 2009) are identical; and COW1 (Woo et al., 2007) and NAL7 

(Fujino et al., 2008) are identical (Table 6.1). So we got a total of 96 distinct RL 

genes/QTLs after considering one gene from each group of similar genes. Among 96 

distinct genes/QTLs, all the QTLs (19 QTLs) were excluded from the analysis since 

locus ID was not available for any of the QTLs. Then among the remaining 77 genes, 

we excluded 35 genes for which locus IDs were not found. Finally, we included only 

42 RL genes in our analysis for which locus IDs were available. As a result, we 

confined all of our analyses with only those 42 RL genes. Then we downloaded the 

genomic sequence, coding sequence (CDS) and protein sequence from the RAP 

database (http://rice.plantbiology.msu.edu/index.shtml) for each of the 42 RL genes 

included in our study. For convenience, we defined these 42 finally selected RL genes 

as “rolling leaf genes of interest” in our study. 
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Table 6.1: Rolling leaf genes of rice and their references 

SN Gene/QTL Gene name Phenotype of rice leaf Chr MSU Locus ID References 

1 Gene NAL4 Narrow leaf 4 Unknown Yen et al. (1968);  

[http://ejournal.sinica.edu.tw/bbas/content/1968/1/bot091-10.pdf] 

2 Gene NAL6 Narrow leaf 3 Unknown https://shigen.nig.ac.jp/rice/oryzabase/gene/detail/568 

3 Gene RL1 Inward rolling 1,12 Unknown Yoshimura et al. (1997);  

http://archive.gramene.org/db/genes/search_gene?acc=GR:0060764 

4 Gene RL2 Inward rolling 1 Unknown Yoshimura et al. (1997);  

http://archive.gramene.org/db/genes/search_gene?acc=GR:0060765 

5 Gene RL3 Inward rolling 3,12 Unknown Yoshimura et al. (1997);   

http://archive.gramene.org/db/genes/search_gene?acc=GR:0060766 

6 Gene RL4 Inward rolling 1 Unknown Yoshimura et al. (1997);   

http://archive.gramene.org/db/genes/search_gene?acc=GR:0060767 

7 Gene RL5 Inward rolling 3 Unknown Yoshimura et al. (1997);   

http://archive.gramene.org/db/genes/search_gene?acc=GR:0060768 

8 Gene RFS Rolled fine striped leaf 7 LOC_Os07g31450 Yoshimura et al. (1997);  Cho et al. (2018) 

9 Gene OsCHR4 Narrow albino leaf 7 LOC_Os07g31450 Zhao et al. (2012); Xu et al. (2017); Cho et al. (2018) 

10 Gene CHR729 Narrow albino leaf 7 LOC_Os07g31450 Hu et al. (2012); Ma et al. (2015); Xu et al. (2017); Cho et al. 

(2018) 

11 Gene NAAL1 Narrow albino leaf 7 LOC_Os07g31450 Xu et al. (2017) 

12 Gene rl6 Inward rolling 7 Unknown http://archive.gramene.org/db/genes/search_gene?acc=GR:0060769 

13 Gene rl7 Inward rolling 5 Unknown Li et al. (1998) 
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SN Gene/QTL Gene name Phenotype of rice leaf Chr MSU Locus ID References 

14 Gene rl(t) Inward rolling 2 Unknown Y. Shao et al. (2005); Pan et al. (2011) 

15 Gene rl8 Inward rolling 5 Unknown Y. J. Shao et al. (2005) 

16 Gene DCL1 Rolling leaf 3 LOC_Os03g02970 Liu et al. (2005) 

17 Gene rl9(t) Inward rolling 9 Unknown Yan et al. (2006) 

18 Gene rl10(t) Inward rolling 3 LOC_Os03g06654 Yi et al. (2007) 

19 Gene RL10 Inward rolling 9 LOC_Os09g23200 Luo et al. (2007) 

20 Gene OsAGO7 Inward rolling 3 LOC_Os03g33650 Shi et al. (2007) 

21 Gene YABBY1 Abaxial rolling 7 LOC_Os07g06620 Dai et al. (2007) 

22 Gene NAL1 Narrow leaf 4 LOC_Os04g52479 Qi et al. (2008) 

23 Gene COW1 Inward rolling 3 LOC_Os03g06654 Woo et al. (2007) 

24 Gene NAL7 Inward rolling 3 LOC_Os03g06654 Fujino et al. (2008) 

25 Gene url1(t) Inward rolling 1 Unknown Yu et al. (2010) 

26 Gene RL9 Inward rolling 9 LOC_Os09g23200 Yan et al. (2008) 

27 Gene SLL1 Inward rolling 9 LOC_Os09g23200 Zhang et al. (2009) 

28 Gene ADL1 Outward rolling 2 LOC_Os02g47970 Hibara et al. (2009) 

29 Gene rl11(t) Inward rolling 7, 4 Unknown Shi et al. (2009); Zhou et al. (2010) 

30 Gene OsAS2 Aberrant twisted leaf 1 LOC_Os01g66590 Ma et al. (2009) 

31 Gene rl12(t) Inward rolling 10 Unknown Luo et al. (2009) 

32 Gene ND1 Narrow leaf and dwarf 12 LOC_Os12g36890 Li et al. (2009) 
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SN Gene/QTL Gene name Phenotype of rice leaf Chr MSU Locus ID References 

33 Gene DNL3 Dwarf and narrow leaf  12 LOC_Os12g36890 Shi et al. (2016) 

34 Gene nal3(t) Inward rolling 12 Unknown Wang et al. (2009); Feng et al. (2012) 

35 Gene rl13(t) Inward rolling 9 Unknown Chen et al. (2010) 

36 Gene ACL1 Outward rolling 4 LOC_Os04g33860 Li et al. (2010) 

37 Gene LC2 Outward rolling 2 LOC_Os02g05840 Zhao et al. (2010) 

38 Gene NRL1 Inward rolling 12 LOC_Os12g36890 Hu et al. (2010); Wu et al. (2010) 

39 Gene nrl2(t) Inward rolling 3 Unknown Wang et al. (2011) 

40 Gene Roc5 Outward rolling 2 LOC_Os02g45250 Zou et al. (2011) 

41 Gene CFL1 Inward rolling 2 LOC_Os02g31140 Wu et al. (2011) 

42 Gene rl13 Inward rolling 6 Unknown Tian et al. (2012) 

43 Gene RL14 Inward rolling 10 LOC_Os10g40960 Fang et al. (2012) 

44 Gene SRL1 Inward rolling 7 LOC-Os07g01240 Xiang et al. (2012) 

45 Gene nul1 narrow & upper-albino 
leaf 

7 Unknown F. Wang et al. (2012) 

46 Gene OsJNBa0003P07 Rolling leaf 10 Unknown X. Wang et al. (2012) 

47 Gene NAL2 Narrow leaf 11 LOC_Os11g01130 Cho et al. (2013) 

48 Gene NAL3 Narrow leaf 12 LOC_Os12g01120 Cho et al. (2013) 

49 Gene NAL9 Narrow leaf 3 LOC_Os03g29810 W. Li et al. (2013) 

50 Gene AGO1a Adaxial rolling 2 LOC_Os02g45070 L. Li et al. (2013) 

51 Gene s1-145 Adaxial rolling 2 Unknown Xie et al. (2013) 
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SN Gene/QTL Gene name Phenotype of rice leaf Chr MSU Locus ID References 

52 Gene OsZHD1 Outward rolling 9 LOC_Os09g29130 Xu et al. (2014) 

53 Gene OsMYB103L Upward rolling 8 LOC_Os08g05520 Yang et al. (2014) 

54 Gene DNAL1 Narrow leaf 2 Unknown Sang et al. (2014) 

55 Gene NAL5 Narrow leaf 4 Unknown Cho et al. (2014) 

56 Gene rl15(t) Inward rolling 10 Unknown Zhang et al. (2014) 

57 Gene rl28 Inward rolling 5 Unknown Feng et al. (2015) 

58 Gene Nrl3(t) Adaxial rolling 2 Unknown X. H. Zhang et al. (2015) 

59 Gene SLL2 Inward rolling 7 LOC_Os07g38664 J. J. Zhang et al. (2015) 

60 Gene REL1 Inward rolling 1 LOC_Os01g64380 Chen et al. (2015) 

61 Gene NAL10 Narrow leaf 1 Unknown Fang et al. (2015) 

62 Gene rl16(t)/RL16 Rolled leaf 9 LOC_Os09g09360 Liu et al. (2015) 

63 Gene LRL1 Late-stage rolled leaf 9 Unknown Zhao et al. (2015) 

64 Gene NL(t) Narrow leaf 4 Unknown Pan et al. (2015); Zhang et al. (2016) 

65 Gene REL2 Rolling & erect leaf  10 LOC_Os10g41310 Yang et al. (2016) 

66 Gene SRL2 Inward rolling 3 LOC_Os03g19520 Liu et al. (2016) 

67 Gene SCL1 Semi-curled leaf 2 LOC_Os02g44360 Zhang et al. (2016) 

68 Gene SRS5 Leaf rolling 11 LOC_Os11g14220 Segami et al. (2012) 

69 Gene DTL1 Twisty leaf 10 Unknown Zhang et al. (2012) 

70 Gene OsLBD3-7 Narrow and adaxially 3 LOC_Os03g57660 Li et al. (2016) 
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SN Gene/QTL Gene name Phenotype of rice leaf Chr MSU Locus ID References 

rolled leaf 

71 Gene NAL11 Narrow leaf 7 LOC_Os07g09450 Wu et al. (2016);Zhao et al. (2017) 
 

72 Gene NRL4 Narrow and rolling leaf 3 LOC_Os03g19770 Liang et al. (2016) 

73 Gene OsARVL4 Abaxially rolled leaves 4 LOC_Os04g33570 Wang et al. (2016) 

74 Gene OsARF18 Rolled leaves 6 LOC_Os06g47150 Huang et al. (2016) 

75 Gene RL15 Adaxial leaf rolling 1 LOC_Os01g37837 Lee et al. (2016) 

76 Gene DNL2 Dwarf and narrow leaf 10 Unknown Adedze et al. (2017) 

77 Gene SFL1 Screw flag leaf 10 LOC_Os10g28060 Alamin et al. (2017) 

78 Gene OsYABBY6 Adaxial rolling 12 LOC_Os12g42610 M. L. Xia et al. (2017) 

79 Gene OsI_14279 Rolling leaf 3 LOC_Os03g62620 Wang et al. (2017) 

80 Gene OsRRK1 Adaxially rolled leaves 6 LOC_Os06g47820 Ma et al. (2017) 

81 Gene OsHB4 Adaxially rolled leaves 3 LOC_Os03g43930 Zhang et al. (2018) 

82 Gene LRRK1 Adaxially rolled leaves 6 LOC_Os06g07070 Zhou et al. (2018) 

83 Gene OsSND2 Rolled leaf 5 LOC_Os05g48850 Ye et al. (2018) 

84 Gene KAN1 Upward rolling leaf 9 Unknown Adedze et al. (2018) 

85 QTL QFl4 Inward rolling 4 Unknown Xu et al. (1999) 

86 QTL QFl5 Inward rolling 5 Unknown Xu et al. (1999) 

87 QTL QFl7 Inward rolling 7 Unknown Xu et al. (1999) 

88 QTL QFl9 Inward rolling 9 Unknown Xu et al. (1999) 

89 QTL qRL-1 Outward rolling 1 Unknown Xu et al. (1999); Guo et al. (2010) 
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SN Gene/QTL Gene name Phenotype of rice leaf Chr MSU Locus ID References 

90 QTL qRL3 Outward rolling 3 Unknown Xu et al. (1999) 

91 QTL qRL5 Outward rolling 5 Unknown Xu et al. (1999) 

92 QTL qRL-7 Outward rolling 7 Unknown Xu et al. (1999); Guo et al. (2010) 

93 QTL qRL4-2 Rolled leaf 4 Unknown Gao et al. (2007) 

94 QTL qRL5-9 Rolled leaf 5 Unknown Gao et al. (2007) 

95 QTL qRL5-10 Rolled leaf 5 Unknown Gao et al. (2007) 

96 QTL qRL-2-1b Rolled leaf 2 Unknown Gao et al. (2007) 

97 QTL qRL-6 Rolled leaf 6 Unknown Gao et al. (2007); Guo et al. (2010) 

98 QTL qRL-8-1 Rolled leaf 8 Unknown Gao et al. (2007); Guo et al. (2010) 

99 QTL qRL-8-2 Rolled leaf 8 Unknown Gao et al. (2007); Guo et al. (2010) 

100 QTL qRL-9 Rolled leaf 9 Unknown Gao et al. (2007); Guo et al. (2010) 

101 QTL qRL-10 Rolled leaf 10 Unknown Gao et al. (2007); Guo et al. (2010) 

102 QTL qRL7b Rolled leaf 7 Unknown Zhang et al. (2016) 

103 QTL qRL9b Rolled leaf 9 Unknown Zhang et al. (2016) 

Chr: Chromosome 
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6.2.2 Bioinformatics Analysis of RL Genes 

We have analyzed the genomic sequences, CDS and protein sequences of the RL 

genes using various software packages and web-based tools.  

 

6.2.2.1 Gene Structure Analysis 

In gene structure analysis, the sequence of gene of interest is searched in the whole 

genome to match with some portions (which are also sequences) of the genome using 

different online tools/databases. The sequences that match with the sequence of 

interest are said to be associated with the sequence of interest. Then the most 

associated sequence in the genome is selected and its structure is treated as the 

structure of the gene of interest. In this study, the gene structure analysis has been 

done based on genomic sequences and CDS using the web-based bioinformatic tool 

Gene Structure Display Server (GSDS 2.0: http://gsds.cbi.pku.edu.cn) (Hu et al., 

2015). Figure 6.2 represents the workflow of the GSDS 2.0. In this analysis, we have 

investigated the exon-intron structure along with a number of exons and introns of 42 

RL genes. 

 

 
Figure 6.2: Workflow of the gene structure display server (GSDS 2.0). 
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6.2.2.2 Conserved Domain Analysis 

Conserved domain analysis is done using protein sequence of a gene of interest. The 

identification of a CD might be the only clue towards molecular mechanisms of a 

gene/protein of interest, as it indicates partial similarity of the query protein to other 

proteins. Multiple sequence alignments are basis of the conserved domain analysis. 

The method of multiple sequence alignments has been discussed in appendix A6.1. In 

conserved domain analysis, multiple sequence alignments is done for different 

sequences in the whole genome of different species (stored in the database) compared 

to the query sequence to find the most similar sequence to the query sequence. The 

obtained sequence is said to be associated with the query sequence of the gene/protein 

of interest. Then the conserved domains contained by obtained sequence are treated as 

the conserved domains of the query sequence of the targeted gene/protein. The NCBI 

“Batch CD-Search” web-based tool (Marchler-Bauer and Bryant, 2004; Marchler-

Bauer et al., 2015; Marchler-Bauer et al., 2011) in Conserved Domain Database 

(CDD: http://www.ncbi.nlm.nih.gov/cdd) has been used to perform conserved domain 

analysis for the identified RL genes.  

 

6.2.2.3 Phylogenetic Analysis 

In our study, MEGA V6 (Tamura et al., 2013) software has been used for the multiple 

sequence alignments and phylogenetic analysis. Multiple alignments of protein 

sequences of RL genes are conducted using “ClustalW” method (Larkin et al., 2007; 

Thompson et al., 1994) and viewed in a compatible printable format using GeneDoc 

Version 2.6.002 software. The ClustalW method has been discussed in details in 

appendix A6.1 and Figure A6.1. Maximum likelihood method has been used to 

construct the phylogenetic tree based on the multiple aligned protein sequences. The 

maximum likelihood is one of the popular methods for estimating the parameters of a 

probability distribution (i.e., unknown characteristics/descriptors of a distribution: 

mean and variance). In phylogenetic analysis there are many parameters including 

differential transformation costs, rates and the tree. The likelihood function is defined 

to be the probability of observing the data given the probability distribution (i.e., 

model), Pr(D|M), where D = Data and M = Model or probability distribution. Hence, 
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if we have a model (i.e., the parameters and tree) and the data, then we can define the 

likelihood function as  

� = � �(����|�����)

����

  
(6.1)  

which is considered as a function of the model parameters. Then we maximize the 

likelihood (6.1) with respect to the model parameters to find the maximum likelihood 

estimates of the parameters of interest (usually the tree and branch lengths). The 

values of the parameters at which the likelihood function is maximum is called the 

maximum likelihood estimates of the parameters. 

 

6.2.2.4 Gene Ontology (GO) Analysis 

In GO analysis, GO enrichment score is calculated for the protein sequence of the 

gene of interest and GO term of the sequences in the whole genome stored in the 

database. If the GO enrichment score for the protein of interest and one GO term is 

higher, then they are said to be strongly associated with each other. The calculation of 

the GO score is done using the following statistical method.  

 

Let G(PT) be a set of protein sequences in the genome that have association with the 

protein sequence of interest PT. Given on protein sequence PT and one GO 

term ���, � = 1, 2, …, (number of GO terms in the database), the GO enrichment 

score is calculated as −log
10

(P) where P is the p-value obtained by hypergeometric 

test of association between the protein PT and GO term  ���, which can be computed 

by the following equation.  

���(��, ���) = − log�� � �
�

�
�

� �
� − �
� − �

�

�
�
�

�

�

���

� 

 

(6.2)  

where � = total number of proteins in the whole genome, 

� = number of proteins that are annotated to the GO term ���, 

 � = number of proteins in �(��) and 

� = number of proteins both in �(��) and annotated to GO term ���.  
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If the GO enrichment score for one protein and one GO term is higher, then they are 

strongly associated with each other.  

 

The web-based tool AgriGO v2.0 (http://systemsbiology.cau.edu.cn/agriGOv2/) (Tian 

et al., 2017) has been used for gene ontology (GO) analysis with the option Singular 

Enrichment Analysis (SEA) to investigate the functional enrichments of the RL genes 

of interest. Oryza sativa japonica was selected for species and MSU7.0 gene ID 

(TIGR) was selected as a reference background. A GO term was considered 

significantly enriched among a set of genes if p-value is less than 0.05. We 

constructed the heatmap of GO term versus Gene along with the bar plot of GO term 

versus -log10(p-value) for all significant GO terms.  

 

6.2.2.5 Transcription Factor (TF) Analysis 

In transcription factor (TF) analysis, the sequence of gene of interest is searched in the 

whole genome to match with some portions (which are also sequences) of the genome 

using different online tools/databases. The sequences that match with the sequence of 

interest are said to be associated with the sequence of interest. Then the most 

associated sequence in the genome is selected and its TFs are treated as the TFs of the 

gene of interest. In this study, transcription Factors (TFs) has been identified by using 

the PlantTFDB 4.0 database (Jin et al., 2017) (http://planttfdb.cbi.pku.edu.cn/). 

 

6.2.2.6 Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis 

In KEGG pathway analysis, KEGG enrichment score is calculated for the protein 

sequence of the gene of interest and KEGG pathway of the sequences in the whole 

genome stored in the database. If the KEGG enrichment score for the protein of 

interest and one KEGG pathway is higher, then they are said to be strongly associated 

with each other. The calculation of the KEGG score is done using the following 

statistical method. 

 

Let G(PT) be a set of protein sequences in the genome that have association with the 

protein sequence of interest PT. Given on protein sequence PT and one KEGG 
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pathway �����, � = 1, 2, …, (number of KEGG pathways in the database), the 

KEGG enrichment score is calculated as −log
10

(P) where P is the p-value obtained 

by hypergeometric test of association between the protein PT and KEGG pathway 

 �����, which can be computed by the following equation.  

�����(��, �����) = − log�� � �
�

�
�

� �
� − �
� − �

�

�
�
�

�

�

���

� 

 

(6.2)  

where � = total number of proteins in the whole genome, 

� = number of proteins that are annotated to the KEGG pathway �����, 

 � = number of proteins in �(��) and 

� = number of proteins both in �(��) and KEGG pathway �����.  

If the KEGG enrichment score between one protein and one KEGG pathway  ����� 

is higher, then they are said to be strongly associated with each other.  

 

The KEGG pathway database is the core of the KEGG resource. This is a vast 

collection of the pathway maps integrating many entities including the genes, 

proteins, RNAs, glycans, chemical compounds and chemical reactions, as well as 

disease genes and drug targets, which are stored as individual entries in the other 

KEGG databases. In this study, KEGG Automated Annotation Server 

(http://www.genome.jp/tools/kaas/) (Yoshizawa et al., 2007) has been used for KEGG 

pathway enrichment analysis to get the summary of gene pathway network. 

 

6.2.2.7 Genome Wide Protein-Protein Association Analysis 

In genome wide protein-protein association analysis, association between proteins 

means that the proteins jointly contribute to a shared function. This does not 

necessarily mean that the proteins are binding each other. In this genome-wide 

association analysis, the protein sequence of interest is searched in the whole genome 

to investigate its interaction with other protein sequences in the genome and then find 

out the protein sequences with which the query protein sequence interacts to perform 

some biological functions. The protein sequences that interact with the protein 

sequence of interest are called associated with the sequence of interest. Functional 

protein association networks analysis was done using the web-based resource 
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STRING V10.5 (http://string-db.org/) (Szklarczyk et al., 2017) to examine the 

protein-protein interactions among the RL genes. The prediction of interactions was 

done with the default settings of the STRING database.  

 

6.2.2.8 Exploratory Gene Expression Analysis 

We also performed the exploratory gene expression analysis of the FPKM (Fragments 

Per Kilobase Million) expression level data using the Rice Expression Database 

(http://expression.ic4r.org) (L. Xia et al., 2017) to investigate the gene expression 

pattern of the RL genes. We have investigated the gene expression pattern using the 

line charts and to examine the extreme expression (very low or high expression) we 

have used box plots. 

 

6.3 Results  

6.3.1 Summary of Genomic Information of Identified RL Genes 

The comprehensive information of 42 RL genes of rice including locus ID, gene 

location, genomic sequence length, CDS length, number of introns and exons, 

predicted protein length/size, molecular weight (Mol. Wt.) and isolated point (pI), is 

shown in Table 6.2. Among the 42 RL genes of our interest 3, 6, 9, 3, 1, 3, 5, 1, 3, 3, 2 

and 3 genes were located on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, 

respectively. The length of RL genes varied from 315 to 16638 base pairs (or 

nucleotides). The RL gene OsREL1 has the minimum genomic length (315 

nucleotides) and OsADL1 has the maximum genomic length (16638 nucleotides). The 

RL gene OsSLL2 has the lowest CDS length (225 nucleotides) and protein length (74 

amino acids) while the gene OsRFS has the highest CDS length (6579 nucleotides) 

and protein length (2192 amino acids). Gene OsRFS has the highest molecular weight 

(243660 kDa) and OsSLL2 has the lowest molecular weight (8408.14 kDa). The gene 

OsREL1 corresponds to the minimum value of pI (4.2637) whereas the gene OsNRL4 

exhibits the maximum value of pI (11.8634). 



 
 
 
Chapter 6                                                                                                                                  Sequence Matching Based Genom Wide Association Studies 

 
142 

 

Table 6.2: Gene name, MSU Locus ID, Gene location, Gene length (nucleotides), CDS length (nucleotides), No. of introns and exons, 

protein length (no. of amino acids), Mol.Wt. (kDa), Isoelectric point (pI) of rolling leaf genes 

SN Gene name MSU Locus ID Gene location 
(Chr: CDS coordinates 5'-3') 

Gene length 
(nucleotides) 

CDS length 
(nucleotides) 

Protein length 
(amino acids) 

No. of introns 
(Exons) 

Mol. Wt. 
(kDa) 

pI 

1 OsACL1 LOC_Os04g33860 Chr04: 20508616 - 20509616 1001 351 116 0 (1) 12705.1 8.5047 

2 OsADL1 LOC_Os02g47970 Chr02: 29341254 - 29357891 16638 6489 2162 29 (30) 239859 6.1645 

3 OsAGO1a LOC_Os02g45070 Chr02: 27341836 - 27330144 11693 3249 1082 22 (23) 120449 9.7493 

4 OsAGO7 LOC_Os03g33650 Chr03: 19243920 - 19248524 4605 3147 1048 2 (3) 117498 9.7883 

5 OsARF18 LOC_Os06g47150 Chr06: 28586445 - 28590358 3914 2103 700 2 (3) 75882.2 7.574 

6 OsARVL4 LOC_Os04g33570 Chr04: 20321514 - 20319029 2486 522 173 3 (4) 19406.1 9.9632 

7 OsAS2 LOC_Os01g66590 Chr01: 38676728 - 38679707 2980 810 269 1 (2) 27621.9 8.0637 

8 OsCFL1 LOC_Os02g31140 Chr02: 18641888 - 18639136 2753 825 274 1 (2) 27695.7 6.9898 

9 OsDCL1 LOC_Os03g02970 Chr03: 1204839 - 1195075 9765 5652 1883 17 (18) 210203 6.6399 

10 OsHB4 LOC_Os03g43930 Chr03: 24657650 - 24651800 5851 2589 862 17 (18) 93747.6 6.6202 

11 OsI_14279 LOC_Os03g62620 Chr03: 35443615 - 35440975 2641 951 316 0 (1) 34798.5 4.6582 

12 OsLBD3-7 LOC_Os03g57660 Chr03: 32859060 - 32866608 7549 2151 716 9 (10) 77448.9 6.7414 

13 OsLC2 LOC_Os02g05840 Chr02: 2882177 - 2876553 5625 2250 749 3 (4) 82634.6 7.5743 

14 OsLRRK1 LOC_Os06g07070 Chr06: 3360524 - 3363523 3000 1104 367 3 (4) 40923.5 7.366 

15 OsMYB103L LOC_Os08g05520 Chr08: 2951372 - 2948522 2851 1080 359 2 (3) 39954.7 6.6241 

16 OsNAL1 LOC_Os04g52479 Chr04: 31203525 - 31214741 11217 1749 582 4 (5) 63252.2 4.8546 

17 OsNAL11 LOC_Os07g09450 Chr07: 4981656 - 4977967 3690 339 112 1 (2) 12030 10.737 

18 OsNAL2 LOC_Os11g01130 Chr11: 68344 - 70989 2646 705 234 1 (2) 25921.2 8.8891 

19 OsNAL3 LOC_Os12g01120 Chr12: 64393 - 65004 612 612 203 0 (1) 22352.1 8.7607 

20 OsNAL7 LOC_Os03g06654 Chr03: 3355041 - 3360485 5445 1266 421 3 (4) 45720.3 9.1475 
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SN Gene name MSU Locus ID Gene location 
(Chr: CDS coordinates 5'-3') 

Gene length 
(nucleotides) 

CDS length 
(nucleotides) 

Protein length 
(amino acids) 

No. of introns 
(Exons) 

Mol. Wt. 
(kDa) 

pI 

21 OsNAL9 LOC_Os03g29810 Chr03: 16994268 - 16997742 3475 780 259 8 (9) 28186.7 7.9423 

22 OsNRL1 LOC_Os12g36890 Chr12: 22607315 - 22602880 4436 3648 1215 1 (2) 132161 7.9039 

23 OsNRL4 LOC_Os03g19770 Chr03: 11127352 - 11126732 621 621 206 0 (1) 20837.2 11.8634 

24 OsREL1 LOC_Os01g64380 Chr01: 37365967 - 37365653 315 315 104 0 (1) 10872.1 4.2637 

25 OsREL2 LOC_Os10g41310 Chr10: 22202335 - 22198114 4222 2304 767 3 (4) 85721.4 7.1569 

26 OsRFS LOC_Os07g31450 Chr07: 18638679 - 18625785 12895 6579 2192 10 (11) 243660 6.8132 

27 OsRL14 LOC_Os10g40960 Chr10: 21997584 - 21995563 2022 438 145 1 (2) 16325.9 8.6486 

28 OsRL15 LOC_Os01g37837 Chr01: 21175744 - 21179966 4223 1338 445 8 (9) 50605.7 6.4233 

30 OsRL9 LOC_Os09g23200 Chr09: 13758215 - 13765052 6838 1599 532 6 (7) 54267.3 9.4739 

31 OsRRK1 LOC_Os06g47820 Chr06: 28941271 - 28943704 2434 1179 392 5 (6) 43716.1 5.6404 

32 OsRoc5 LOC_Os02g45250 Chr02: 27494914 - 27487865 7050 2415 804 8 (9) 86047.2 5.4935 

33 OsSCL1 LOC_Os02g44360 Chr02: 26841585 - 26844331 2747 2130 709 0 (1) 74248.2 5.9887 

34 OsSFL1 LOC_Os10g28060 Chr10: 14565737 - 14560601 5137 1572 523 1 (2) 56867.7 9.6336 

35 OsSLL2 LOC_Os07g38664 Chr07: 23217095 - 23220951 3857 225 74 0 (1) 8408.14 10.378 

36 OsSND2 LOC_Os05g48850 Chr05: 28003165 - 28005001 1837 945 314 2 (3) 34100.4 9.4414 

37 OsSRL1 LOC_Os07g01240 Chr07: 143578 - 134162 9417 1101 366 4 (5) 39053 6.09 

38 OsSRL2 LOC_Os03g19520 Chr03: 10979478 - 10970763 8716 2970 989 18 (19) 110441 6.6818 

39 OsSRS5 LOC_Os11g14220 Chr11: 7960506 - 7963390 2885 1356 451 3 (4) 49737 4.5682 

40 OsYABBY1 LOC_Os07g06620 Chr07: 3221592 - 3229297 7706 618 205 5 (6) 23325.5 11.2851 

41 OsYABBY6 LOC_Os12g42610 Chr12: 26477633 - 26487388 9756 624 207 5 (6) 22777.8 9.042 

42 OsZHD1 LOC_Os09g29130 Chr09: 17705611 - 17703754 1858 840 279 0 (1) 29541.1 7.4822 

Chr: Chromosome, Mol.: Molecular, Wt.: Weight, pI: isoelectric point. 
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6.3.2 Gene Structure Analysis of RL Genes 

The gene structure and exon-intron pattern of 42 RL genes of interest were 

comparatively analyzed and presented in Figure 6.3. The number of introns in the RL 

genes of interest ranges from 0 to 29. The gene OsADL1 has the maximum number of 

exons (30) whereas the genes OsACL1, OsI_14279, OsNAL3, OsNRL4, OsREL1, 

OsSCL1, OsSLL2 and OsZHD1 have the lowest number of the exon (only one exon 

and zero intron). OsAGO1a and OsSRL2 have the second and third highest number of 

exons (23 and 19, respectively). Each of the RL genes OsDCL1, OsHB4 and OsRL16 

gene has 18 exons whereas OsRFS has 11 exons; and OsLBD3-7 gene has 10 exons. 

Also, each OsNAL9, OsRL15 and OsRoc5 gene, gene OsRL9, and each OsRRK1, 

OsYABBY1 and OsYABBY6 gene has 9, 7 and 6 exons, respectively in our study. 

Moreover, each OsNAL1 and OsSRL1 gene; each OsARVL4, OsLC2, OsLRRK1, 

OsNAL7, OsREL2 and OsSRS5 gene;  each OsAGO7, OsARF18, OsMYB103L and 

OsSND2 gens; and each OsAS2, OsCFL1, OsNAL11, OsNAL2, OsNRL1, OsRL14 and 

OsSFL1 gene has 5, 4, 3, 2 exons, respectively. Although each of the genes OsAS2, 

OsCFL1, OsNAL11, OsNAL2, OsNRL1, OsRL14 and OsSFL1 has two exons and one 

intron, the length of the exons and introns are different from each other indicating 

diversity in genes structure. The genes OsNAL1, OsSFL1, OsRL9, OsSRL1, 

OsYABBY1 and OsYABBY6 contain an intron with an unusual large size (Figure 6.3). 

Genes OsADL1, OsNAL1, OsNAL7, OsSLL2 and OsSRL2 have long upstream; 

OsAS2, OsI_14279, OsDCL1, and OsSRL1 longer downstream; OsCFL1 and OsDCL1 

do not have upstream; and OsNAL2, OsNAL3, OsNRL4, OsREL1, OsRFS and OsRL9 

do not have upstream and downstream. The gene structure analysis shows that the 

genes OsADL1, OsDCL1, OsHB4, OsRRK1, and OsSRL2 are conserved in a sense 

that they have short length introns (Figure 6.3).  
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Figure 6.3: Gene structure of 42 rolling leaf genes. The blue color area at the start is 

representing the upstream, the blue color area at the end is representing the 

downstream, the yellow color area is representing the exon (CDS) and the black color 

line is representing the intron of each gene. The intron phase is indicated by the 

numbers 0, 1 and 2. The exon/intron structure was constructed using Gene Structure 

Display Server 2.0 (GSDS2.0: http://gsds.cbi.pku.edu.cn). 
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6.3.3 Domain Analysis of RL Genes 

Figure 6.4 and Table A6.1 display the results of the domain analysis of the 42 RL 

genes identified in this study using the CDD web-tool of NCBI. Conserved domain 

analysis shows that the genes OsACL1, OsNRL4, OsREL1, OsSLL2, OsSRL1, OsSRL2 

and OsNAL1 do not contain any database-recognized domain in spite of having an 

important role in leaf rolling of rice. Genes OsARVL4, OsAS2, OsCFL1, OsLRRK1, 

OsNAL11, OsNAL2, OsNAL3/OsWOX3, OsNAL9, OsRL14, OsRL15, OsRL16, 

OsRL9/OsSLL1, OsRRK1, OsSCL1, OsSFL1, OsSND2, OsSRS5, OsYABBY1 and 

OsYABBY6 contain 1 conserved domain; genes OsAGO1a, OsARF18, OsI_14279, 

OsLC2, OsREL2 and OsZHD1 contain 2 conserved domains; genes OsADL1, 

OsLBD3-7, OsNAL7/OsCOW1, OsNRL1 and OsRoc5 contain 3 conserved domains; 

OsHB4 and OsMYB103L contain 4 conserved domains; OsAGO7 contains 5 

conserved domains; OsDCL1 contains 6 conserved domains; and OsRFS contains 7 

conserved domains. So the gene OsRFS contains the maximum number of domains (7 

domains), and the genes OsARVL4, OsAS2, OsCFL1, OsLRRK1, OsNAL11, OsNAL2, 

OsNAL3/OsWOX3, OsNAL9, OsRL14, OsRL15, OsRL16, OsRL9/OsSLL1, OsRRK1, 

OsSCL1, OsSFL1, OsSND2, OsSRS5, OsYABBY1 and OsYABBY6 contain the 

minimum number of domains (1 domain). The genes OsAGO1a and OsAGO7 encode 

a common conserved domain PIWI. The genes OsRL9/OsSLL1 and OsMYB103L 

contain one similar domain “Myb-like DNA-binding domain”. The genes OsAGO7 

and OsDCL1 contain a PAZ domain. The genes OsHB4, OsNAL2, OsNAL3/OsCOW1, 

OsRoc5 and OsZHD1 have one Homeobox domain. Gene OsMYB103L contains two 

SANT domains and two Myb_DNA_binding domains. OsRFS contains two 

CHROMO domains. Genes OsRoc5 and OsHB4 contain one Basic leucine zipper 

(bZIP) domain. Both the genes OsYABBY1 and OsYABBY6 contain one YABBY 

domain. Genes OsADL1, OsARF18, OsARVL4, OsAS2, OsCFL1, OsI_14279, 

OsLBD3-7, OsLC2, OsLRRK1, OsNAL11, OsNAL7, OsNAL9, OsNRL1, OsREL2, 

OsRL14, OsRL15, PGAP1, OsRRK1, OsSCL1, OsSFL1, OsSND2 and OsSRS5 do not 

have any common domain among them. 
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Figure 6.4: Domain organization of the 42 rolling leaf (RL) genes of interest 

identified in this study. Domains are indicated with different colors except black. 

Domain analysis of 42 RL genes was done using online Conserved Domain Database 

(CDD) tool “Batch CD-Search” of National Center for Biotechnology Information 

(NCBI) (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi). 

 

6.3.4 Phylogenetic Analysis of RL Related Genes 

To investigate the evolution of RL genes, we constructed a maximum likelihood (ML) 

based phylogenetic tree on the alignment of full-length RL proteins (Figure 6.5). The 

phylogenetic tree showed that the 42 RL proteins clustered into five major groups (I–

V) with groups III and IV further divided into two subgroups while groups V 

separated into four subgroups with robust bootstrap support (Figure 6.5). The RL 

genes OsAS2, OsNAL1, OsSND2, OsRL9, OsCFL1 and OsNRL4 gathered into the 

group I, while the RL genes OsRRK1, OsLRRK1, OsSRS5 and OsACL1 formed the 

group II. Rolling leaf genes OsNRL1, OsLBD3-7, OsRL14, OsNAL11 and OsRL16 

constructed the subgroup IIIa while the genes OsRoc5 and OsHB4 congregate in 
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subgroup IIIb. Genes OsRFS, OsRL15, OsNAL7, OsZHD1, OsNAL9, OsADL1 and 

OsSRL2 grouped into group IVa whereas OsSFL1 and OsSRL1 grouped into group 

IVb. The RL genes OsREL2, OsARVL4, OsI_14279, OsDCL1 and OsSLL2; 

OsMYB103L and OsSCL1; OsAGO1a, OsAGO7, OsYABBY1 and OsYABBY6; and 

OsNAL2, OsNAL3, OsREL1, OsLC2 and OsARF18 appeared in group Va, Vb, Vc and 

Vd, respectively. These results indicate that the 42 RL genes can be divided into 10 

groups namely I, II, IIIa, IIIb, IVa, IVb, Va, Vb, Vc and Vd containing 6, 4, 5, 2, 7, 2, 

5, 2, 4 and 5 genes, respectively. These results can be helpful for further evolutionary 

and functional studies of RL related genes. 

 

Figure 6.5: Phylogenetic tree of 42 rolling leaf (RL) genes of interest identified in 

this study. The tree was constructed based on multiple aligned sequences by 

maximum likelihood (ML) method with bootstrap of 1000 in MEGA6. Multiple 

sequence alignment was performed using ClustalW program in MEGA6. The colored 

shapes indicates different clusters of RL proteins. The roman numerals I-Vd indicates 

groups and subgroups of RL genes. 
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6.3.5 Gene Ontology, Transcription Factors and KEGG Analysis of RL 

Genes  

In order to better understand the functional involvement and to characterize the 

selected RL genes, different types of gene enrichment analyses were conducted. The 

GO analysis was performed to explain the biological importance of RL genes. We 

used the “GO analysis toolkit” of agriGO v2.0 database 

(http://systemsbiology.cau.edu.cn/agriGOv2/) with the default setting for performing 

the GO analysis. Figure 6.6 represents the heatmap of “GO term versus gene” along 

with the bar plot of –log10(P) against all significant GO terms (P < 0.05). All of the 

significant GO terms (P < 0.05) of RL genes and their description, the number in the 

input list, and P-value are shown in Table 6.3 and Table A6.2. From the analysis 

result, it was observed that 38 GO terms were significantly enriched for biological 

process whereas very few significant overrepresentations were found for cellular 

component and molecular function (Figure 6.6 and Table A6.2). From Figure 6.6, we 

found that the 42 RL genes clustered into three groups (Group I, Group II and Group 

III) based on the enriched GO terms. The genes in three groups were enriched in 

various biological process. The genes in group I were mostly involved in different 

types of regulations including regulation of transcription (GO:0045449), regulation of 

nitrogen compound metabolic process (GO:0051171), regulation of cellular 

biosynthetic process (GO:0031326), regulation of biosynthetic process 

(GO:0009889), regulation of primary metabolic process (GO: 0080090), and so on. 

The genes of this group were also involved in response to abiotic stimulus 

(GO:0009628) and various biosynthetic process (GO:0044249 - cellular biosynthetic 

process, GO:0034645 - cellular macromolecule biosynthetic process, GO:0009059 - 

macromolecule biosynthetic process). This observation indicated that the genes in 

group I are more effective and biologically more functional. The genes in group II 

were mainly involved in the biological process (GO:0008150) whereas genes in group 

III were mostly involved in multicellular organismal development (GO:0007275), cell 

differentiation (GO:0030154), primary metabolic process (GO:0044238) and 

macromolecule metabolic process (GO:0043170). The biological process 

“multicellular organismal development” (GO:0007275; P < 4.92E-10) was the most 
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representative process that enriched for a large number of genes belonging to group I 

and group III. 

 

 

Figure 6.6: The enriched GO terms for all RL genes. The GO terms indicated by BP 

are involved in the biological process, the GO terms indicated by MF are involved in 

molecular function and the GO terms indicated by CC are involved in the cellular 

component. 
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Table 6.3: The enriched GO terms for all rolling leaf genes identified in this study  

GO term Ontology Description Number in 
input list 

P-value 

GO:0007275 BP multicellular organismal development 15 4.92E-10 

GO:0009908 BP flower development 9 5.4E-08 

GO:0045449 BP regulation of transcription 10 6.5E-06 

GO:0019219 BP regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic 
process 

10 6.8E-06 

GO:0051171 BP regulation of nitrogen compound 
metabolic process 

10 6.8E-06 

GO:0031326 BP regulation of cellular biosynthetic 
process 

10 8.7E-06 

GO:0009889 BP regulation of biosynthetic process 10 8.7E-06 

GO:0010556 BP regulation of macromolecule 
biosynthetic process 

10 8.7E-06 

GO:0010468 BP regulation of gene expression 10 9.4E-06 

GO:0031323 BP regulation of cellular metabolic 
process 

10 0.00001 

GO:0010467 BP gene expression 12 1.1E-05 

GO:0080090 BP regulation of primary metabolic 
process 

10 1.2E-05 

GO:0006350 BP transcription 10 1.2E-05 

GO:0060255 BP regulation of macromolecule 
metabolic process 

10 1.3E-05 

GO:0019222 BP regulation of metabolic process 10 1.5E-05 

GO:0009791 BP post-embryonic development 9 2.29E-05 

GO:0000003 BP reproduction 8 4.05E-05 

GO:0030154 BP cell differentiation 7 4.37E-05 

GO:0050794 BP regulation of cellular process 10 6E-05 

GO:0006139 BP nucleobase-containing compound 
(nucleobase, nucleoside, nucleotide 
and nucleic acid) metabolic process 

14 6.33E-05 

GO:0050789 BP regulation of biological process 10 8.1E-05 

GO:0065007 BP biological regulation 10 0.00012 

GO:0016070 BP RNA metabolic process 7 0.00025 

GO:0009790 BP embryo development 6 0.00041 

GO:0006351 BP transcription, DNA-templated 6 0.00076 

GO:0006355 BP regulation of transcription, DNA-
templated 

8 0.00172 

GO:0051252 BP regulation of RNA metabolic process 5 0.0018 

GO:0032774 BP RNA biosynthetic process 5 0.0023 
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GO term Ontology Description Number in 
input list 

P-value 

GO:0009653 BP anatomical structure morphogenesis 6 0.00265 

GO:0009058 BP biosynthetic process 13 0.00309 

GO:0009628 BP response to abiotic stimulus 8 0.00866 

GO:0044249 BP cellular biosynthetic process 13 0.013 

GO:0034645 BP cellular macromolecule biosynthetic 
process 

12 0.014 

GO:0009059 BP macromolecule biosynthetic process 12 0.014 

GO:0044238 BP primary metabolic process 20 0.029 

GO:0043170 BP macromolecule metabolic process 18 0.033 

GO:0009793 BP embryo development ending in seed 
dormancy 

3 0.034 

GO:0008150 BP biological_process 15 0.04107 

GO:0005634 CC nucleus 13 0.0008 

GO:0005575 CC cellular_component 12 0.0225 

GO:0003700 MF sequence-specific DNA binding 
transcription factor activity 

12 3.16E-06 

GO:0003677 MF DNA binding 10 0.00424 

GO: Gene ontology, BP: Biological process, CC: Cellular component, MF: molecular 

function. 

 

Transcription factor analysis showed that a total of 13 genes were related to 10 

different TFs families (Table 6.4). Gene sets (OsRoc5, OsHB4), (OsNAL3, OsNAL2) 

and (OsYABBY1, OsYABBY6) belonged to the TF families HD-ZIP, WOX, and 

YABBY, respectively. Genes OsARF18, OsRL9, OsSCL1, OsAS2, OsMYB103L, 

OsSND2 and OsZHD1 were the members of the TF families ARF, G2-like, GRAS, 

LBD (LOB DOMAIN), MYB, NAC and ZF-HD, respectively.  

 

Table 6.4: Summary of Transcription factors (TFs) identified in this study  

Genes Name Transcription 
Factors 

Description Features 

OsARF18 ARF Auxin response factors ARF are transcription factors that regulate the    
expression of auxin response genes 

OsRL9 G2-like Golden2-like GLK proteins are members of the newly 
classified GARP superfamily of Transcription 
factors  
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Genes Name Transcription 
Factors 

Description Features 

OsSCL1 GRAS GRAS The GRAS family of putative transcriptional 
regulators is found throughout the plant 
kingdom, and these proteins have diverse roles 
in plant development, including root 
development, axillary shoot development, and 
maintenance of the shoot apical meristem 

OsRoc5, 
OsHB4 

HD-ZIP Homeodomain leucine 
Zipper 

HD-ZIP gene family are vital regulators of 
plant development 

OsAS2 LBD LOB DOMAIN the LBD genes encode a novel class of DNA-
binding transcription factors 

OsMYB103L MYB MYB The encoded proteins are crucial to the control 
of proliferation and differentiation in a number 
of cell types, and share the conserved MYB 
DNA-binding domain 

OsSND2 NAC NAM, ATAF, and 
CUC 

NAC transcription factors are involved in 
various aspects of plant development 

OsNAL3, 
OsNAL2 

WOX WUS homeobox-
containing 
 

WOX family members fulfill specialized 
functions in key developmental processes in 
plants, such as embryonic patterning, stem-
cell maintenance and organ formation 

OsYABBY1, 
OsYABBY6 

YABBY YABBY The YABBY gene are expressed in a polar 
manner in all lateral organs produced by 
apical and flower meristems 

OsZHD1 ZF-HD Zinc Finger 
Homeodomain protein 

ZF-HD proteins involved in the mesophyll-
specific expression of the C4 and C3 plants 

 

The KEGG pathway analysis was carried out using the KEGG database to know the 

biological process in the RL genes of interest (Figure 6.7). Results showed that only 

14 out of 42 RL genes were involved in the KEGG pathways (Figure 6.7b). Of those 

14 genes 50% genes were involved in metabolism pathway, followed by cellular 

processes (36%) and 7% genes were involved in both genetic information processing 

and organismal system in this study (Figure 6.7a). KEGG pathway enrichment 

analysis (Figure 6.7b) also showed that three RL genes functioned in the metabolic 

pathways; two genes functioned in the cell growth and death, cellular community-

eukaryotes pathways; and one gene functioned in the pathways: biosynthesis of 

secondary metabolites, carbohydrate metabolism, lipid metabolism, amino acid 

metabolism, translation, transport and catabolism, and aging. Table 6.5 represents the 

KEGG orthologous (KO) of the RL genes of interest along with their description. 
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Figure 6.7: KEGG analysis results. (a) Pie chart for all allocated KEGG pathways of 

all RL genes. (b)  Bar chart for all significant KEGG pathways of all RL genes. X-axis 

represents the number of genes. Y-axis represent second KEGG pathway terms. The 

second pathway terms are grouped and indicated by different color. 

 

Table 6.5: Identified rolling leaf genes KEGG orthologous (KO) and their description 

Gene KO Definition 

OsAGO1a K11593 ELF2C; eukaryotic translation initiation factor 2C 

OsNAL7 K11816 YUCCA; indole-3-pyruvate monooxygenase [EC:1.14.13.168] 

OsNAL9 K01358 clpP; ATP-dependent Clp protease, protease subunit 
[EC:3.4.21.92] 

OsNAL11 K09539 DNAJC19; DnaJ homolog subfamily C member 19 

OsNRL1 K00770 E2.4.2.24; 1,4-beta-D-xylan synthase [EC:2.4.2.24] 

OsAGO7 K11593 ELF2C; eukaryotic translation initiation factor 2C 

OsLBD3-7 K01301 NAALAD; N-acetylated-alpha-linked acidic dipeptidase 
[EC:3.4.17.21] 

OsMYB103L K09422 MYBP; transcription factor MYB, plant 

OsRoc5 K09338 HD-ZIP; homeobox-leucine zipper protein 

OsSFL1 K15397 KCS; 3-ketoacyl-CoA synthase [EC:2.3.1.199] 

OsSRL2 K21842 EFR3; protein EFR3 

OsSRS5 K07374 TUBA; tubulin alpha 

OsHB4 K09338 HD-ZIP; homeobox-leucine zipper protein 

OsRL15 K01875 SARS; seryl-tRNA synthetase [EC:6.1.1.11] 
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6.3.6 Network Analysis of RL Related Genes 

Network analysis (Figure 6.8) showed that there is no protein-protein interaction for 

the 23 genes OsREL2, OsNAL2, OsYABBY1, OsLRRK1, OsACL1, OsARVL4, OsLC2, 

OsREL1, OsSLL2, OsARF18, OsRL16, OsNRL4, OsNAL3, OsRL15, OsZHD1, 

OsSRL1, OsNAL1, OsI_14279, OsRFS, OsRRK1, OsRL14, OsNAL11 and OsSFL1. 

The RL gene OsRL9 is associated with the genes OsRoc5, OsADL1, OsNAL7, OsAS2, 

OsNRL1, OsYABBY6, OsHB4 and OsAGO7.  The RL genes within each of the pairs 

(OsMYB103L and OsSND2), (OsSRS5 and OsNAL9), (OsRoc5 and OsCFL1), 

(OsRoc5 and OsADL1), (OsADL1 and OsAGO7), (OsLBD3-7 and OsAGO1a), 

(OsSCL1 and OsDCL1), and (OsSRL2 and OsYABBY6) are associated with each 

other. Genes OsAGO1a, OsAGO7 and OsDCL1 are associated with each other. 

Network analysis predicted the association of OsRL9 with OsRoc5, OsADL1, 

OsNAL7, OsAS2, OsNRL1, OsYABBY6, OsHB4 and OsAGO7; and association of 

OsRoc5 with OsADL1 by text mining. The interaction between OsRoc5 and OsCFL1 

was experimentally determined as well as predicted by text mining. The interaction 

between the RL genes within each of the pairs (OsMYB103L and OsSND2) and 

(OsSRS5 and OsNAL9) was predicted by text mining and co-expression analysis. 

Also, the association between OsLBD3-7 and OsAGO1a was experimentally 

determined as well as predicted by co-expression analysis. The RL genes OsAGO1a 

and OsAGO7 exhibited association which was known from curated databases as well 

as predicted by gene text mining and protein homology. The association of OsAGO1a 

with OsDCL1 and OsAGO7 with OsDCL1 was experimentally determined and known 

from curated databases, and also predicted by text mining and co-expression analysis. 
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Figure 6.8: Protein-protein interaction network of 42 rolling leaf genes of interest. 

The different methods of prediction of interactions have been indicated with the 

different colored connective lines. Protein-protein interaction network was built using 

the web-based tool STRING V10.5 (http://string-db.org/). 

 

6.3.7 Gene Expression Analysis of RL Related Genes 

The analysis of gene expression data of 42 RL genes of interest has been presented in 

Figure A6.2 – Figure A6.23.  The line plots of 42 RL genes at different tissues show 

that there is no similarity in the pattern of line charts for different genes (Figure A6.2 



 
Chapter 6                                   Sequence Matching Based Genom Wide Association Studies 

 
157 

 

– Figure A6.11). The box plots of the expression values at different tissues shows that 

almost all of the RL genes have some extreme (i.e., very high or very low) expression 

values at all of the three tissues leaf, root and shoot (Figure A6.13 – Figure A6.23) 

except for OsAGO1a, OsLC2, OsNAL1, OsNAL9, OsNRL4, OsRL14, OsRRK1, 

OsSFL1 and OsRL15 (Figure A6.21 – Figure A6.23). Genes OsAGO1a, OsLC2 and 

OsNAL9 (Figure A6.21) have some extreme expression values at the root and shoot 

but not at the leaf. Genes OsNAL1, OsRL15, OsRRK1 and OsSFL1 (Figure A6.22) 

have some extreme expression values at leaf and shoot but not at the root. Genes 

OsNRL4 and OsRL14 (Figure A6.23) have some extreme expression values at leaf 

and root but not at the shoot. These results indicate that the gene expression at leaf, 

shoot and root might be controlling the leaf rolling in rice. 

 

6.4 Discussion 

The ultimate goal of rice breeding is the development of rice mutants with super-high 

yield and stress tolerance traits. In rice, appropriate leaf rolling is considered to be an 

important agronomic element, particularly, a moderate leaf rolling is regarded as a 

crucial phenotypic trait of the ideal rice plant as it is important for increasing grain 

yield (Lang et al., 2004; Wu, 2009; Yuan, 1997; Zhang et al., 2009). However, to the 

best of our knowledge, there is no study where all the RL genes/QTLs and their 

genomic information have been put together along with their genome-wide 

comparative analysis from different bioinformatics point of view. In this study, we 

listed up 103 RL genes/QTLs along with their genomic information reported in 

various studies till date and performed various comparative analyses from different 

bioinformatics stand points with the RL genes of interest. 

 

We selected 42 genes as the genes of interest in our analysis (Table 6.2) among the 

total 103 identified RL genes/QTLs (Table 6.1) due to the availability of their locus 

IDs in this study. Maximum number of RL genes were found on chromosome 3 and 

minimum genes were found on chromosomes 5 and 8 among the 42 RL genes. The 

RL gene OsADL1 has the longest genomic length and OsREL1 has the shortest 

genomic length. OsSLL2 has the lowest value of CDS and protein length while the 
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gene OsRFS has the highest value of CDS and protein length. OsRFS has the highest 

molecular weight and OsSLL2 has the lowest molecular weight. The gene OsREL1 

corresponds to the minimum value of pI whereas the gene OsNRL4 exhibits the 

maximum value of pI. The comparative gene structure analysis revealed that some RL 

genes contained only one exon (i.e., do not contain any intron), some genes did not 

have upstream, and some genes did not contain any upstream and downstream (Figure 

6.3). Most of the genes (60%) contained 0 to 3 introns. Although some genes 

contained an equal number of exons and introns the length of exons and introns were 

different from each other indicating structural diversity. From the gene structure 

analysis (Figure 6.3) it can be inferred that RL genes are diverse in their structures 

from each other in terms of conserveness and structure of exons and introns. 

 

Domain analysis revealed that very few of the RL genes contain the domains of the 

same family. Both the RL genes OsNAL2 and OsNAL3 contained only one and 

identical domain named “Homeobox domain” (Figure 6.4 and Table A6.1). 

According to Cho et al. (2013), NAL2 and NAL3 were paralogs and encoded an 

identical homeobox 3A (OsWOX3A) protein which supported our findings. Both the 

genes OsYABBY1 and OsYABBY6 contained only one domain (YABBY domain) 

which is identical in both genes (Figure 6.4 and Table A6.1). According to Toriba et 

al. (2007), both OsYABBY1 and OsYABBY6 belonged to YABBY family which is in 

favor of our findings. Most of the RL genes contained the domains of various families 

indicating the diversity of RL proteins. This study showed that RL genes were diverse 

in terms of domains they contained and their domain structure. Based on the 

phylogenetic analysis we grouped the RL genes into five major groups. Again groups 

III, IV and V were divided into two, two and four subgroups, respectively. We found 

that both OsNAL2 and OsNAL3 belonged to same subgroup Vd, and OsYABBY1 and 

OsYABBY6 belonged to the same subgroup Vc. These findings are supported by Cho 

et al. (2013) and Toriba et al. (2007). 

 

To explore functional similarity and characterize a set of genes, various enrichment 

analyses, such as GO and KEGG analyses, were performed along with heatmap of 

enriched GO terms. The biological process “multicellular organismal development” 
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(GO:0007275; P < 4.92E-10) was found as the most representative process that 

enriched for a large number of genes belongs to group I and group III. The GO term 

GO:0007275 (multicellular organismal development) was found as the most 

significant. From the heatmap of the GO terms against gene, three distinct clusters of 

genes were observed and the genes belonged to different clusters were involved in 

different biological processes. Transcription factors have significant function for 

controlling plant propagation, maturation, and to react to unfavorable situation 

condition including drought, chill, salinity, and high temperature (Zhang et al., 2013). 

For example, myb-protein encoding genes have been reported to function as 

regulators of cell differentiation (Kirik and Bäumlein, 1996) and NAC TFs involved 

in various mechanisms including developmental process, flower creation, seed 

growth, hormone signaling, responses to abiotic stress  and  aging in plants 

(Nuruzzaman et al., 2010). Transcription factor analysis showed that 10 different TFs 

families (such as HD-ZIP, WOX, ARF, G2-like, GRAS, LBD, MYB, NAC and ZF-

HD) involved in leaf rolling, where all of these TFs were responsible for different 

aspect of plant developments (Table 6.4).  

 

Metabolomics plays a significant role in fundamental plant biology and applied 

biotechnology. Several current studies have found that the analysis of the metabolite 

composition of mutants can assist the assignment of functions to genes (Schauer and 

Fernie, 2006). Results of KEGG pathway analysis showed that half of the RL genes 

were involved in metabolism pathway including biosynthesis of secondary 

metabolites, carbohydrate metabolism, lipid metabolism, amino acid metabolism and 

metabolic pathways (Figure 6.7). According to Li et al. (2017), the proteins 

responsible for leaf rolling in rice are involved in different pathways including 

biosynthesis of phenylpropanoid, phenylalanine metabolism, and sucrose and starch 

metabolism. According to Chen et al. (2018) RL proteins in Brassica napus are 

involved in different pathways including “metabolic pathways”, “biosynthesis of 

secondary metabolites” and “starch and sucrose metabolism”. So the results of 

previous studies of rolling leaf support our finding. The results in this study indicate 

that these GO, TFs and KEGG pathways might be involved in rolling leaf 

development by controlling transcriptional regulation of a variety of biological 
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processes related gene expression, transcription and biological regulation, metabolic 

process and cellular process. 

 

The network analysis was used for investigating the association among the 42 RL 

genes. Results showed that the RL gene OsRL9 was associated with a maximum 

number of genes (9 genes: OsRoc5, OsADL1, OsNAL7, OsAS2, OsNRL1, OsYABBY6, 

OsHB4 and OsAGO7). We found that the genes OsAGO1a, OsAGO7 and OsDCL1 

were associated with each other. Protein homology and text mining predicted the 

association between OsAGO1a and OsAGO7 which was also known from the curated 

databases. All the four methods (experimentally determination, determination from 

curated databases, prediction using text mining and prediction by co-expression 

analysis) identified the association between the genes of each of the pairs of RL genes 

(OsAGO1a and OsDCL1) and (OsAGO7 and OsDCL1). Gene OsRoc5 was associated 

with OsCFL1 and OsADL1; OsMYB103L was associated with OsSND2; OsLBD3-7 

was associated with OsAGO1a; and OsSRS5 was associated with OsNAL9. We found 

23 RL genes (OsREL2, OsNAL2, OsYABBY1, OsLRRK1, OsACL1, OsARVL4, OsLC2, 

OsREL1, OsSLL2, OsARF18, OsRL16, OsNRL4, OsNAL3, OsRL15, OsZHD1, 

OsSRL1, OsNAL1, OsI_14279, OsRFS, OsRRK1, OsRL14, OsNAL11 and OsSFL1) 

which were not associated with any other RL genes. This indicates that more than 

50% of the RL genes of interest are not associated with each other. 

 

The line charts of the expression values of 42 RL genes at different tissues showed no 

similarity in the pattern of lines for different genes (Figure A6.2 – Figure A6.11). 

From the box plots of the expression values of 42 LR genes at different tissues, we 

found that most of the RL genes have some extreme (very high or low) expression 

values at leaf, root and shoot (Figure A6.13 – Figure A6.23). This indicates that the 

gene expression at leaf, root and shoot may be interactively responsible for 

controlling leaf rolling in rice. It has been demonstrated by several previous studies of 

leaf mutants with altered leaf morphology that appropriate balance in cells in the 

shoot apical meristem is very important for normal development of leaf (Luo et al., 

2007). This implies that shoot has a crucial role in developing leaf shape which 

supports our findings. 
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Altogether, this is the first study where we have studied and put the genetic 

information of all identified RL genes/QTLs till now and their genomic information 

along with their genome-wide comparative analysis from different bioinformatics 

point of view. This study will enable the rice breeders and researchers to get 

collective information of RL genes/QTLs along with their comparative results. As a 

result rice breeders will be able to develop super-high-yield rice mutant with moderate 

leaf rolling and desired architecture. However, further advancement of study is 

required to explore the complicated process of LR in rice. 

 

6.5 Conclusion 

Our present study has identified 103 RL genes/QTLs in the genome of rice plant 

characterized through several studies to date. Among 103 RL genes/QTLs, 42 genes, 

for which locus IDs were available, were finally selected in our analysis. This study 

provides a comparative analysis of the selected 42 RL genes from the various points 

of bioinformatics view using different bioinformatics techniques including gene 

structure, conserved domain, phylogenetic, gene expression and protein-protein 

interaction network analysis. Gene structure analysis shows that the selected RL genes 

are diverse in structure in terms intron-exon. Domain analysis reveals that the RL 

genes contain different types of domains except for some genes. Phylogenetic analysis 

has clustered the RL genes into five major groups with group III, IV and V divided 

into some subgroups. GO analysis indicates that a total of 42 significant GO terms 

enriched, TF analysis shows 10 different TFs families and KEGG analysis shows that 

14 genes are involved in the KEGG pathways from all RL genes. Protein-protein 

interaction network shows that 23 RL genes are not associated with any other RL 

genes and gene OsRL9 is associated with maximum genes. Gene expression analysis 

reveals that the expression patterns of RL genes are different and RL genes exhibit 

some extreme expression at the leaf, shoot and root. Therefore, we may conclude that 

the RL genes have different types of function for controlling RL in rice. These results 

might provide important information regarding gene structure, conserved domain 

information, phylogenetic revolution, gene enrichment, TF families, KEGG pathways, 

protein-protein interactions, gene expression pattern, and others genetic basic of RL 
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related rice genes which will be helpful for other researchers to make a quick decision 

about these genes and to explore new gene’s characteristics for rice genetics research. 
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Conclusions and Areas of Future Research 

 
 
7.1 Conclusions 

Genomics is one of the most important OMICS research wings for bioinformatics. In 

Genomics, Genome-wide Association Studies (GWAS) have evolved over the last ten 

years into a powerful tool for investigating the genetic architecture of plant science, 

animal science and human biology. The advent of new technologies for extracting 

genetic information from tissue samples has increased the availability of suitable data 

for finding genes controlling complex traits in plants, animals and humans. There are 

different types of GWAS based on the nature of the genomic data such as (i) 

Quantitative trait locus (QTL) mapping based GWAS, (ii) Single nucleotide 

polymorphism (SNP) based GWAS, (iii) Expression QTL (eQTL) mapping based 

GWAS and (iv) Sequence based GWAS. Again, GWAS can be divided into two types 

based on the number of phenotypes considered in the analysis, GWAS can be divided 

into two types: (i) Single-trait GWAS and (ii) Multi-trait GWAS. There are various 

statistical methods for the analysis of GWAS data including maximum likelihood 

(ML) and least squares (LS) based single-trait and multi-trait GWAS techniques. 

However, some methods of GWAS are very time consuming and very sensitive to 

phenotypic contaminations. Thus efficient methods, in terms of computation time and 

robustness against phenotypic outliers, are demanded for the analysis of GWAS data. 

In this thesis, we have proposed some less time consuming and robust methods for 

GWAS that outperform over the existing methods. 
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In Chapter 1, we have provided a brief introduction about the basic concepts of 

genomics and discussed different important terminologies which are related to 

genomics, more specifically, GWAS. We have also discussed the genome-wide 

association studies (GWAS) and its various types. A broad review of the statistical 

methods for different types of GWAS has also been discussed, along with their 

advantages and limitations, in Chapter 1. 

 

Quantitative trait locus (QTL) analysis relies on statistical methods to interpret 

genetic data in the presence of phenotype data and possibly other factors such as 

environmental factors. The goal is to both detect the presence of QTL with significant 

effects on trait value as well as to estimate their locations on the genome relative to 

those of known markers. Maximum likelihood (ML) based simple interval mapping 

(SIM) is the most popular and widely used method for single-trait QTL analysis. 

However, ML based SIM is very time consuming because it uses expectation 

maximization (EM) algorithm and also calculations are very complex in this method. 

Although least squares (LS) regression based SIM overcome the problem of 

computation time, its calculations are also complex. In Chapter 2, to overcome 

calculation complexity of QTL analysis, we have discussed a regression based new 

SIM approach for single-trait QTL analysis with BC by estimating the model 

parameters using the properties of bivariate normal distribution. Our proposed method 

of single-trait QTL is very straight forward and shows almost same performance as 

the existing methods (LS and ML based SIM) of single-trait QTL analysis. Simulation 

study and real data analysis results show that our new proposed approach has almost 

similar performance to the existing interval mapping approaches. Although our 

proposed SIM method of single-trait QTL analysis is straight forward in terms of 

computational complexity, like the existing methods this approach is not robust 

against phenotypic contamination and produce misleading results when the 

phenotypic data are contaminated by outliers. To overcome this problem, we have 

also developed a robust approach for single-trait QTL analysis with BC population by 

robustifying our newly developed single-trait QTL mapping approach using minimum 

–divergence method in this Chapter 2. The proposed robust method reduces to the 

classical approaches when �→0. The tuning parameter � controls the performance of 
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the proposed robust method.  The simulation study and real data analysis results show 

that our proposed robust method improves performance over the classical SIM 

approaches (including our new SIM approach) in the case of data contaminations; 

otherwise, it shows almost the same results as the classical SIM approaches. 

 

In many line crossing experiments of genome-wide QTL mapping studies, 

measurements are taken on multiple traits along with the marker genotypes. Usually, 

such traits are correlated with each other and there are common chromosomal regions 

(or chromosomal locations) that affect multiple traits. Single-trait QTL analysis 

cannot deal with the pleiotropic problem and trait-trait relationship. This problem can 

be overcome using multi-trait QTL analysis which consider all the traits of interest 

simultaneously in the model. Maximum likelihood (ML) and least squares (LS) based 

multi-trait SIM are two most popular and widely used methods for multi-trait QTL 

analysis. However, both the methods are time consuming and include computation 

complexity. In chapter 3, we have developed a fast multi-trait QTL mapping method 

based on the assumption that the phenotypes and the condition probabilities of QTL 

genotype given flanking marker genotypes have joint multivariate normal distribution. 

Simulation study and real data analysis results shows that our proposed method 

performs same as the existing multi-trait QTL mapping methods but it takes very less 

computation time compared to the other existing methods. So our proposed fast multi-

trait QTL mapping approach is very efficient in terms of computation time.  

 

Although our proposed method is faster than the other existing methods of multi-trait 

QTL analysis, like the existing method this proposed method is very sensitive to 

phenotypic outliers and produces misleading results when the data are contaminated 

by outliers. In chapter 4, we have discussed a robust technique of multi-trait QTL 

analysis which is the robustification of fast multi-trait QTL analysis approach 

(discussed in Chapter 3). Simulation study and real data analysis show that only our 

proposed robust method of multi-trait QTL analysis is able to identify all the QTL 

positions in presence of outliers as identified in absence of outliers. Otherwise, our 

proposed method perform almost similar to the traditional methods. So, we can 

conclude that our proposed robust method of multi-trait QTL analysis outperform 
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over the classical methods (including the fast multi-trait QTL mapping approach 

discussed in Chapter 3) in presence of outliers. We have also implemented the 

proposed robust method for eSNPs analysis and found that our proposed robust 

approach outperform over the existing classical approach. Otherwise, the proposed 

approach shows similar performance. 

 

Nowadays, due to the recent advancement in the NGS technologies, SNP data of 

complete genome become very easy obtained for GWAS by decreasing the cost and 

time required to obtain sequences of whole genome. There are several methods for 

SNP based GWAS ranging from simple single-trait approaches to complex multi-trait 

approaches designed specifically for multi-trait GWAS. One main problem in SNP 

based GWAS is that all the existing methods of SNP based GWAS suffer from the 

data contamination problems and provide misleading results when the phenotypic data 

are contaminated by extreme observations. We have developed a regression based 

robust approach for SNP based GWAS data analysis in Chapter 5. Simulation study 

and real data analysis results show that our proposed method outperforms over the 

existing methods in presence of outliers. Otherwise, the proposed approach shows 

similar performance as like as the existing traditional approaches of SNP based 

GWAS analysis.  

 

In Chapter 6, we have discussed sequence based GWAS for all rolling leaf (RL) 

genes in rice (Oryza sativa L.) reported till date in literatures. We found that most of 

the RL genes are different in structure and contain different conserved domain. We 

have grouped all the selected 42 RL genes into five major groups through 

phylogenetic analysis. From gene ontology analysis we found that most of RL genes 

enriched in biological process. From gene network analysis we observe that most of 

the genes are not associated with each other. From exploratory gene expression 

analysis of 42 RL genes, we have found that the expression patterns of RL genes are 

different and RL genes exhibit some extreme expression at the leaf, shoot and root. 

Therefore, we may conclude that the RL genes have different types of function for 

controlling RL in rice. These results might provide important information regarding 

gene structure, conserved domain information, phylogenetic revolution, gene 
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enrichment, TF families, KEGG pathways, protein-protein interactions, gene 

expression pattern, and others genetic basic of RL related rice genes which will be 

helpful for other researchers to make a quick decision about these genes and to 

explore new gene’s characteristics for rice genetics research. 

 

7.2 Areas of Further Research 

Different types of genome wide data are being continuously generated by the 

bioinformatics and biotechnological researchers. Appropriate computational methods 

or approaches are needed to properly identify the important genes/QTLs/SNPs 

genome wide which are responsible for a particular traits (e.g., blood pressure, grain 

yield, etc.). The following are the future research areas related to GWAS data 

analysis: 

 

1. Develop fast multi-trait QTL analysis method for composite interval mapping 

(CIM). 

 
2. Develop robust regression based multi-trait QTL analysis technique for CIM. 

 
3.  Extend the SNP based  single-trait robust GWAS to multi-trait robust GWAS 

including other confounding factors in the model.  
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Appendix…… 

A2.1 Supplementary Figures of Chapter 2 

 

Figure A2.1: Structure of the “salt-induced hypertension” dataset obtained from a QTL experiment on male mice from a reciprocal 

backcross between the salt-sensitive c57BL/6J and the non-salt-sensitive A/J (A) inbred mouse strains. 
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A3.1 Supplementary Figures of Chapter 3 

 

Figure A3.1: Structure of the barley dataset obtained from a QTL experiment on double haploid (DH) population of barley. 
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Figure A3.2: Structure of the mouse dataset obtained from a QTL experiment on backcross (BC) lines of mouse. 
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A4.1 Supplementary Figures of Chapter 4 

 

 
Figure A4.1: Structure of the gene expression dataset obtained from the gene 

expression profile in liver of 32 BXD mouse strains. 

 

 

 

Figure A4.2: Structure of the SNP dataset of 32 BXD mouse strains. 
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A6.1 ClustalW Method 

 
The ClustalW method is a most popular, accurate and practical method in the category 

of hierarchical methods. In our study, the multiple alignment of amino acid sequences 

has been conducted using MEGA V6 software (Tamura et al., 2013) by ClustalW 

method (Larkin et al., 2007; Thompson et al., 1994). The basic multiple sequences 

alignment algorithm of ClustalW method consists of the following steps: 

 

Step I: Calculate a distance matrix giving the divergence of each of all possible pairs 

of sequences. 

Step II: Construct an unrooted neighbor-joining tree from the distance matrix. 

Step III: Construct a rooted neighbor-joining tree (guide tree) and calculate sequence 

weights. 

Step IV: Align the sequences progressively according to the branching order in the 

guide tree. 

 
The above steps of multiple sequences alignment algorithm of ClustalW method are 

shown in Figure A6.1 in a flowchart. The calculations of multiple alignment using 

ClustalW algorithm has been shown beside the flowchart for 7 arbitrary protein 

sequences as an example. 
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Figure A6.1: Basic procedure of multiple alignment of protein sequences using 

ClustalW method. 
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A6.2 Supplementary Figures of Chapter 6 

A6.2.1 Investigation of gene expression pattern at different tissues of rolling leaf (RL) genes using line charts 
 

 

Figure A6.2: Line charts of gene expression at different tissues for genes OsACL1, OsADL1, OsAGO1a, and OsAGO7. 
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Figure A6.3: Line charts of gene expression at different tissues for genes OsARF18, OsARVL4, OsAS2 and OsCFL1. 
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Figure A6.4: Line charts of gene expression at different tissues for genes OsDCL1, OsHB4, OsI_14279 and OsLBD3-7. 
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Figure A6.5: Line charts of gene expression at different tissues for genes OsLC2, OsLRRK1, OsMYB103L and OsNAL1. 
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Figure A6.6: Line charts of gene expression at different tissues for genes OsNAL2, OsNAL3, OsNAL7 and OsNAL9. 
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Figure A6.7: Line charts of gene expression at different tissues for genes OsNAL11, OsNRL1, OsNRL4 and OsREL1. 
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Figure A6.8: Line charts of gene expression at different tissues for genes OsREL2, OsRFS, OsRL9 and OsRL14. 
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Figure A6.9: Line charts of gene expression at different tissues for genes OsRL16, OsRoc5, OsRRK1 and OsSCL1. 
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Figure A6.10: Line charts of gene expression at different tissues for genes OsSFL1, OsSLL2, OsSND2 and OsSRL1. 
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Figure A6.11: Line charts of gene expression at different tissues for genes OsSRL2, OsSRS5, OsYABBY1 and OsYABBY6. 
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Figure A6.12: Line charts of gene expression at different tissues for genes OsZHD1 and OsRL15. 
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A6.2.2 Identification of extreme (very high/low) gene expression at 
different tissues of rolling leaf (RL) genes using box plots 

 

 

 

Figure A6.13: Box plot of gene expression at different tissues for genes OsACL1, 

OsADL1, OsAGO7 and OsARF18. 
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Figure A6.14: Box plot of gene expression at different tissues for gene OsARVL4, 

OsAS2, OsCFL1 and OsDCL1. 
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Figure A6.15: Box plot of gene expression at different tissues for genes OsHB4, 

OsI_14279, OsLBD3-7 and OsLRRK1. 
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Figure A6.16: Box plot of gene expression at different tissues for gene OsMYB103L, 

OsNAL2, OsNAL3 and OsNAL7. 
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Figure A6.17: Box plot of gene expression at different tissues for genes OsNAL11, 

OsNRL1, OsREL1 and OsREL2. 
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Figure A6.18: Box plot of gene expression at different tissues for genes OsRFS, 

OsRL9, OsRL16 and OsRoc5. 

 

 

 

 

 

 

 

 

 



                                           
                                                                                                                                    Appendix 

 
219 

 

 

 

 

Figure A6.19: Box plot of gene expression at different tissues for genes OsSCL1, 

OsSRL2, OsSRS5 and OsYABBY1. 
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Figure A6.20: Box plot of gene expression at different tissues for genes OsYABBY6, 

OsSLL2, OsSND2 and OsSRL1. 
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Figure A6.21: Box plot of gene expression at different tissues for genes OsZHD1, 

OsAGO1a, OsLC2, and OsNAL9. 
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Figure A6.22: Box plot of gene expression at different tissues for gene OsNAL1, 

OsRL15, OsRRK1 and OsSFL1. 
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Figure A6.23: Box plots of gene expression at different tissues for gene OsNRL4 and 

OsRL14. 
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A6.3 Supplementary Tables of Chapter 6 

 
Table A6.1: Conserved domain analysis of the identified 42 rolling leaf genes of interest using NCBI 

Gene Name Domain Name Accession Description Interval E-value 

OsACL1 No conserved domain found  No conserved domain have been identified for this query sequence   

OsADL1 Peptidase_C2 pfam00648 Calpain family cysteine protease 1707-2006 8.65e-120 

Calpain_III super family cl00165 Calpain, subdomain III 2012-2162 2.78e-35 

LamG super family cl22861 Laminin G domain 1436-1596 9.49e-06 

OsAGO1a Piwi-like super family cl00628 Piwi-like: PIWI domain 197-1082 0e+00 

Gly-rich_Ago1 pfam12764 Glycine-rich region of argonaut 98-200 4.94e-44 

OsAGO7 Piwi_ago-like cd04657 Piwi_ago-like: PIWI domain, Argonaute-like subfamily. 575-1016 0e+00 

ArgoN pfam16486 N-terminal domain of argonaute 197-352 1.52e-31 

PAZ pfam02170 PAZ domain; This domain is named PAZ after the proteins Piwi 
Argonaut and Zwille. 

438-544 2.96e-29 

ArgoL1 pfam08699 Argonaute linker 1 domain. ArgoL1 is a region found in argonaute 
proteins. 

363-412 1.38e-11 

PLN03202 PLN03202 protein argonaute; Provisional 194-1048 6.95e-151 

OsARF18 Auxin_resp pfam06507 Auxin response factor. A conserved region of auxin-responsive 
transcription factors. 

292-375 4.85e-45 

B3 pfam02362 B3 DNA binding domain. This is a family of plant transcription 
factors with various roles in development. 

128-229 5.07e-28 

OsARVL4 PEBP super family cl00227 Phosphatidyl Ethanolamine-Binding Protein (PEBP) domain. 
Phosphatidyl Ethanolamine-Binding Proteins (PEBPs) are represented 
in all three major phylogenetic divisions (eukaryotes, bacteria, 
archaea). A number of biological roles for members of the PEBP 
family include serine protease inhibition, membrane biogenesis, 
regulation of flowering plant stem architecture, and Raf-1 kinase 
inhibition. 

1-173 9.05e-82 
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Gene Name Domain Name Accession Description Interval E-value 

OsAS2 DUF260 pfam03195 Protein of unknown function DUF260. 38-135 4.04e-63 

OsCFL1 WW pfam00397 WW domain. The WW domain is a protein module with two highly 
conserved tryptophans that binds proline-rich peptide motifs in vitro. 

56-86 1.37e-03 

OsDCL1 PAZ_CAF_like cd02844 PAZ domain, CAF_like subfamily. 1152-1298 1.04e-61 

Rnc COG0571 dsRNA-specific ribonuclease [Transcription] 1538-1779 6.20e-46 

helicase_insert_domain super family cl17041 helicase_insert_domain. This helical domain can be found inserted in 
a subset of SF2-type DEAD-box related helicases, like archaeal Hef 
helicase, MDA5-like helicases and FancM-like helicases. 

251-779 6.79e-42 

Dicer_dimer pfam03368 Dicer dimerisation domain. 817-906 1.45e-30 

RIBOc cd00593 RIBOc. Ribonuclease III C terminal domain. 1337-1518 1.97e-30 

DSRM super family cl00054 Double-stranded RNA binding motif. 1797-1870 3.44e-15 

OsHB4 START_ArGLABRA2_like cd08875 C-terminal lipid-binding START domain of the Arabidopsis 
homeobox protein GLABRA 2 and related proteins; This subfamily 
includes the steroidogenic acute regulatory protein (StAR)-related 
lipid transfer (START) domains of the Arabidopsis homeobox protein 
GLABRA 2 and related proteins. 

175-391 1.47e-69 

MEKHLA pfam08670 MEKHLA domain; The MEKHLA domain shares similarity with the 
PAS domain and is found in the 3' end of plant HD-ZIP III homeobox 
genes, and bacterial proteins. 

715-857 2.34e-65 

Homeobox pfam00046 Homeobox domain 32-89 4.52e-17 

bZIP cd14686 Basic leucine zipper (bZIP) domain of bZIP transcription factors: a 
DNA-binding and dimerization domain; Basic leucine zipper (bZIP) 
factors comprise one of the most important classes of enhancer-type 
transcription factors. 

84-123 2.04e-06 

OsI_14279 WHy smart00769 Water Stress and Hypersensitive response; 61-155 2.23e-23 

LEA_2 pfam03168 Late embryogenesis abundant protein; Different types of LEA proteins 
are expressed at different stages of late embryogenesis in higher plant 
seed embryos and under conditions of dehydration stress. The function 
of these proteins is unknown. 

206-301 6.86e-18 

OsLBD3-7 M28_PSMA_like cd08022 M28 Zn-peptidase prostate-specific membrane antigen; Peptidase M28 325-549 3.34e-116 
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Gene Name Domain Name Accession Description Interval E-value 

family; prostate-specific membrane antigen (PSMA, also called 
glutamate carboxypeptidase II or GCP-II)-like subfamily. 

PA super family cl28883 PA: Protease-associated (PA) domain. 118-310 1.80e-34 

TFR_dimer pfam04253 Transferrin receptor-like dimerisation domain; This domain is 
involved in dimerisation of the transferrin receptor as shown in its 
crystal structure. 

578-694 1.55e-17 

OsLC2 PHD_Oberon pfam07227 PHD - plant homeodomain finger protein; PHD_oberon is a plant 
homeodomain finger domain of Oberon proteins from plants. 

143-263 1.18e-55 

FN3 cd00063 Fibronectin type 3 domain; One of three types of internal repeats 
found in the plasma protein fibronectin. 

343-424 2.12e-03 

OsLRRK1 STKc_IRAK cd14066 Catalytic domain of the Serine/Threonine kinases, Interleukin-1 
Receptor Associated Kinases and related STKs; STKs catalyze the 
transfer of the gamma-phosphoryl group from ATP to serine/threonine 
residues on protein substrates. 

54-321 1.87e-92 

OsMYB103L Myb_DNA-binding pfam00249 Myb-like DNA-binding domain. This family contains the DNA 
binding domains from Myb proteins, as well as the SANT domain 
family. 

67-112 6.27e-16 

Myb_DNA-binding pfam00249 Myb-like DNA-binding domain. This family contains the DNA 
binding domains from Myb proteins, as well as the SANT domain 
family. 

14-61 1.29e-15 

SANT smart00717 SANT SWI3, ADA2, N-CoR and TFIIIB'' DNA-binding domains 67-114 5.92e-15 

SANT smart00717 SANT SWI3, ADA2, N-CoR and TFIIIB'' DNA-binding domains 14-63 1.69e-12 

OsNAL1 No conserved domain found  No conserved domain have been identified for this query sequence   

OsNAL11 DnaJ super family cl02542 DnaJ domain or J-domain. DnaJ/Hsp40 (heat shock protein 40) 
proteins are highly conserved and play crucial roles in protein 
translation, folding, unfolding, translocation, and degradation. 

1-103 1.19e-22 

OsNAL2 Homeobox pfam00046 Homeobox domain 7-61 7.68e-13 

OsNAL3/ 
OsWOX3 

Homeobox pfam00046 Homeobox domain 7-61 1.39e-12 

OsNAL7/ Pyr_redox_3 pfam13738 Pyridine nucleotide-disulphide oxidoreductase 27-220 6.31e-17 
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Gene Name Domain Name Accession Description Interval E-value 

OsCOW1 NADB_Rossmann super family cl21454 Rossmann-fold NAD(P)(+)-binding proteins; A large family of 
proteins that share a Rossmann-fold NAD(P)H/NAD(P)(+) binding 
(NADB) domain. 

334-386 1.86e-04 

CzcO COG2072 Predicted flavoprotein CzcO associated with the cation diffusion 
facilitator CzcD [Inorganic ion transport and metabolism] 

27-351 2.86e-50 

OsNAL9 S14_ClpP_2 cd07017 Caseinolytic protease (ClpP) is an ATP-dependent, highly conserved 
serine protease. 

84-252 4.11e-78 

OsNRL1 Glyco_tranf_GTA_type  
super family 

cl11394 Glycosyltransferase family A (GT-A) includes diverse families of 
glycosyl transferases with a common GT-A type structural fold. 

643-956 7.14e-19 

RING super family cl17238 RING-finger (Really Interesting New Gene) domain. 175-202 1.72e-06 

PLN02248 PLN02248 Cellulose synthase-like protein D4 (CLSD4) 22-1215 0e+00 

OsNRL4 No conserved domain found  No conserved domain have been identified for this query sequence   

OsREL1 No conserved domain found  No conserved domain have been identified for this query sequence   

OsREL2 DUF632 pfam04782 Protein of unknown function (DUF632). 325-631 2.07e-113 

DUF630 pfam04783 Protein of unknown function (DUF630). 1-59 2.74e-27 

OsRFS SNF2_N super family cl26465 SNF2 family N-terminal domain. 595-1123 1.33e-136 

PHD2_CHD_II cd15532 PHD finger 2 found in class II Chromo domain-Helicase-DNA 
binding (CHD) proteins. 

35-76 3.70e-22 

SANT_TRF cd11660 Telomere repeat binding factor-like DNA-binding domains of the 
SANT/myb-like family. 

1645-1689 2.10e-08 

DUF1087 super family cl05792 Domain of Unknown Function (DUF1087). 1206-1255 5.49e-08 

CHROMO cd00024 Chromatin organization modifier (chromo) domain. 476-526 8.88e-08 

Atrophin-1 super family cl26464 Atrophin-1 family. 1907-2192 7.00e-06 

Chromo pfam00385 Chromo (CHRromatin Organisation MOdifier) domain 533-554 7.16e-04 

OsRL14 2OG-FeII_Oxy pfam03171 2OG-Fe(II) oxygenase superfamily 1-93 3.84e-32 

OsRL15 PLN02678 PLN02678 seryl-tRNA synthetase 1-445 0e+00 

OsRL16 PGAP1 pfam07819 PGAP1-like protein; The sequences found in this family are similar to 
PGAP1. 

79-347 2.23e-101 
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Gene Name Domain Name Accession Description Interval E-value 

OsRL9/OsSLL1 myb_SHAQKYF TIGR01557 myb-like DNA-binding domain, SHAQKYF class. 325-378 1.58e-21 

OsRoc5 START_ArGLABRA2_like cd08875 C-terminal lipid-binding START domain 309-545 8.42e-115 

Homeobox pfam00046 Homeobox domain 101-154 2.19e-22 

bZIP super family cl21462 Basic leucine zipper (bZIP) domain of bZIP transcription factors: a 
DNA-binding and dimerization domain 

136-181 4.90e-04 

OsRRK1 PKc_like super family cl21453 Protein Kinases, catalytic domain; The protein kinase superfamily is 
mainly composed of the catalytic domains of serine/threonine-specific 
and tyrosine-specific protein kinases. It also includes RIO kinases, 
which are atypical serine protein kinases, aminoglycoside 
phosphotransferases, and choline kinases. 

75-339 9.36e-87 

OsSCL1 GRAS super family cl15987 GRAS domain family 363-708 6.47e-92 

OsSFL1 PLN03169 super family cl28398 Chalcone synthase family protein; Provisional 96-514 0e+00 

OsSLL2 No conserved domain found  No conserved domain have been identified for this query sequence   

OsSND2 NAM pfam02365 No apical meristem (NAM) protein. This is a family of no apical 
meristem (NAM) proteins these are plant development proteins. 

179-206 3.09e-03 

OsSRL1 No conserved domain found  No conserved domain have been identified for this query sequence   

OsSRL2 No conserved domain found  No conserved domain have been identified for this query sequence   

OsSRS5 PLN00221 PLN00221 Tubulin alpha chain; Provisional 1-438 0e+00 

OsYABBY1 YABBY pfam04690 YABBY protein; YABBY proteins are a group of plant-specific 
transcription involved in the specification of abaxial polarity in lateral 
organs. 

5-146 3.37e-76 

OsYABBY6 YABBY pfam04690 YABBY protein; YABBY proteins are a group of plant-specific 
transcription involved in the specification of abaxial polarity in lateral 
organs. 

6-176 1.39e-95 

OsZHD1 ZF-HD_dimer pfam04770 ZF-HD protein dimerization region. 56-108 3.03e-35 

homeo_ZF_HD TIGR01565 homeobox domain, ZF-HD class. 215-271 1.97e-26 
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Table A6.2: The enriched GO terms for all rolling leaf genes identified in this study 

GO term Ontology Description Genes Number in 
input list 

P-value 

GO:0007275 BP multicellular organismal 
development 

OsAS2, OsSCL1, OsAGO1a, OsRoc5, OsADL1, 
OsHB4, OsLBD3-7, OsSND2, OsARF18, OsYABBY1, 
OsRL9, OsNAL2, OsNAL3, OsNRL1, OsYABBY6 

15 4.92E-10 

GO:0009908 BP flower development OsAS2, OsHB4, OsLBD3-7, OsARF18, OsYABBY1, 
OsRL9, OsNAL2, OsNAL3, OsYABBY6 

9 5.4E-08 

GO:0045449 BP regulation of transcription OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 6.5E-06 

GO:0019219 BP regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid 
metabolic process 

OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 6.8E-06 

GO:0051171 BP regulation of nitrogen compound 
metabolic process 

OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 6.8E-06 

GO:0031326 BP regulation of cellular biosynthetic 
process 

OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 8.7E-06 

GO:0009889 BP regulation of biosynthetic process OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 8.7E-06 

GO:0010556 BP regulation of macromolecule 
biosynthetic process 

OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 8.7E-06 

GO:0010468 BP regulation of gene expression OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 9.4E-06 

GO:0031323 BP regulation of cellular metabolic 
process 

OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 0.00001 

GO:0010467 BP gene expression OsZHD1, OsHB4, OsDCL1, OsSND2, OsRFS, 
OsNAL2, OsRoc5, OsMYB103L, OsRL15, OsRL9, 
OsNAL3, OsARF18 

12 1.1E-05 
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GO term Ontology Description Genes Number in 
input list 

P-value 

GO:0080090 BP regulation of primary metabolic 
process 

OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 1.2E-05 

GO:0006350 BP transcription OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 1.2E-05 

GO:0060255 BP regulation of macromolecule 
metabolic process 

OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 1.3E-05 

GO:0019222 BP regulation of metabolic process OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 1.5E-05 

GO:0009791 BP post-embryonic development OsLC2, OsAGO1a, OsADL1, OsAGO7, OsHB4, 
OsLBD3-7, OsI_14279, OsZHD1, OsYABBY6 

9 2.29E-05 

GO:0000003 BP reproduction OsLC2, OsAGO1a, OsADL1, OsHB4, OsI_14279, 
OsARF18, OsZHD1, OsYABBY6 

8 4.05E-05 

GO:0030154 BP cell differentiation OsSCL1, OsAGO1a, OsRoc5, OsADL1, OsYABBY1, 
OsRL9, OsYABBY6 

7 4.37E-05 

GO:0050794 BP regulation of cellular process OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 6E-05 

GO:0006139 BP nucleobase-containing compound 
(nucleobase, nucleoside, nucleotide 
and nucleic acid) metabolic process 

OsRL15, OsSCL1, OsRoc5, OsAGO7, OsHB4, 
OsSND2, OsARF18, OsYABBY1, OsMYB103L, OsRL9, 
OsZHD1, OsNAL2, OsNAL3, OsYABBY6 

14 6.33E-05 

GO:0050789 BP regulation of biological process OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 8.1E-05 

GO:0065007 BP biological regulation OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsRL9, OsNAL3, OsARF18 

10 0.00012 

GO:0016070 BP RNA metabolic process OsHB4, OsDCL1, OsNAL2, OsRoc5, OsRL15, 
OsNAL3, OsARF18 

7 0.00025 

GO:0009790 BP embryo development OsAGO1a, OsADL1, OsHB4, OsLBD3-7, OsI_14279, 
OsZHD1 

6 0.00041 
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GO term Ontology Description Genes Number in 
input list 

P-value 

GO:0006351 BP transcription, DNA-templated OsSCL1, OsRoc5, OsHB4, OsARF18, OsRL9, OsNAL2 6 0.00076 

GO:0006355 BP regulation of transcription, DNA-
templated 

OsSCL1, OsRoc5, OsHB4, OsSND2, OsARF18, 
OsMYB103L, OsRL9, OsNAL2 

8 0.00172 

GO:0051252 BP regulation of RNA metabolic 
process 

OsNAL3, OsHB4, OsRoc5, OsARF18, OsNAL2 5 0.0018 

GO:0032774 BP RNA biosynthetic process OsNAL3, OsHB4, OsRoc5, OsARF18, OsNAL2 5 0.0023 

GO:0009653 BP anatomical structure morphogenesis OsSCL1, OsAGO1a, OsRoc5, OsHB4, OsRL9, 
OsYABBY6 

6 0.00265 

GO:0009058 BP biosynthetic process OsSCL1, OsRoc5, OsHB4, OsSND2, OsARF18, 
OsYABBY1, OsMYB103L, OsRL9, OsZHD1, OsNAL2, 
OsNAL3, OsNRL1, OsYABBY6 

13 0.00309 

GO:0009628 BP response to abiotic stimulus OsLC2, OsAGO1a, OsRoc5, OsLBD3-7, OsI_14279, 
OsSFL1, OsSRS5, OsNRL1 

8 0.00866 

GO:0044249 BP cellular biosynthetic process OsZHD1, OsHB4, OsSFL1, OsSND2, OsRFS, OsNAL2, 
OsRoc5, OsMYB103L, OsNRL1, OsRL9, OsNAL3, 
OsARF18, OsRL15 

13 0.013 

GO:0034645 BP cellular macromolecule biosynthetic 
process 

OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsNRL1, OsRL9, OsNAL3, OsARF18, 
OsRL15 

12 0.014 

GO:0009059 BP macromolecule biosynthetic process OsZHD1, OsHB4, OsSND2, OsRFS, OsNAL2, OsRoc5, 
OsMYB103L, OsNRL1, OsRL9, OsNAL3, OsARF18, 
OsRL15 

12 0.014 

GO:0044238 BP primary metabolic process OsZHD1, OsMYB103L, OsHB4, OsSFL1, OsNAL9, 
OsSND2, OsRL16, OsRFS, OsNAL2, OsLBD3-7, 
OsRoc5, OsADL1, OsNAL3, OsNRL1, OsRL9, 
OsRRK1, OsLRRK1, OsARF18, OsRL15, OsDCL1 

20 0.029 

GO:0043170 BP macromolecule metabolic process OsZHD1, OsHB4, OsADL1, OsNAL9, OsSND2, 18 0.033 
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GO term Ontology Description Genes Number in 
input list 

P-value 

OsRFS, OsNAL2, OsLBD3-7, OsRoc5, OsMYB103L, 
OsNAL3, OsNRL1, OsRL9, OsRRK1, OsLRRK1, 
OsARF18, OsRL15, OsDCL1 

GO:0009793 BP embryo development ending in seed 
dormancy 

OsAGO1a, OsADL1, OsI_14279 3 0.034 

GO:0008150 BP biological_process OsRL15, OsCFL1, OsSCL1, OsSRL2, OsAGO7, 
OsI_14279, OsARVL4, OsACL1, OsNAL1, OsARF18, 
OsSRL1, OsREL2, OsNAL2, OsNAL3, OsNRL1 

15 0.04107 

GO:0005634 CC nucleus OsAS2, OsLC2, OsAGO1a, OsRoc5, OsHB4, OsSND2, 
OsARF18, OsYABBY1, OsMYB103L, OsRL9, OsNAL2, 
OsNAL3, OsYABBY6 

13 0.0008 

GO:0005575 CC cellular_component OsLC2, OsCFL1, OsAGO7, OsLBD3-7, OsI_14279, 
OsARVL4, OsNAL1, OsSRL1, OsYABBY1, OsNAL11, 
OsREL2, OsSRS5 

12 0.0225 

GO:0003700 MF sequence-specific DNA binding 
transcription factor activity 

OsSCL1, OsRoc5, OsHB4, OsSND2, OsARF18, 
OsYABBY1, OsMYB103L, OsRL9, OsZHD1, OsNAL2, 
OsNAL3, OsYABBY6 

12 3.16E-06 

GO:0003677 MF DNA binding OsRoc5, OsHB4, OsSND2, OsARF18, OsYABBY1, 
OsMYB103L, OsRL9, OsZHD1, OsREL2, OsNAL2 

10 0.00424 

 
BP: Biological process, CC: Cellular component and MF: Molecular function. 
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