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ABSTRACT

Effects of the molecular, normal optical Woods-Saxon and squared Woods-Saxon
(Michel) o-nucleus potentials on the YAl(a.ty*si, **™Si(o,d)™' 2P and *S(a,p)’'P
reactions have been studied. The parameters of the molecular and Michel a-*’Al potential
have been generated by fitting the ai-elastic data on Al at the incident energy Eqo=64.5
MeV. The potential parameters of molecular, normal optical and Michel potential at
Eq«=25 MeV have been determined by analyzing of o-"Si elastic data The elastic fits
in these cases, seém to be of similar quality for all three forms of potentials.

Full-finite range (FFR) distorted wave Born approximation (DWBA) calculations
have been performed using the molecular, Michel and normal optical potentials to
analyze the angular distributions of cross-section for the 53 transitions populating the
bound and unbound states of **Si via the (out) reaction. The molecular, Michel and
optical potentials are found to produce satisfactory fits to the reaction data. For all the
three potentials in the entrance channel, the deduced /-transfers for the transitions to the
15.02, 15.85 and 16.11 MeV states, differ from the assignments previously reported. The
extracted spectroscopic factors are compared with shell-model predictions.

FFR macroscopic and zerorange (ZR) microscopic distorted wave Bom
approximation calculations have been performed using molecular, normal optical and
Michel potentials to analyze the angular distributions of cross-section for 12 transitions
populating 0.0, 0.709, 1454, 1974, 2.538, 2.72, 2.84, 3.02, 393, 462, 542 and 7.20
MeV. states of *P via the (o.d) reaction. Only the molecular potential has been able to

reproduce satisfactorily the angular distribution and order of magnitude of cross-sections



for different transitions, but the normal optical potential is found to be inadequate in
accounting the large angle data. The Michel potential is unsatisfactory in relation to both
reproducing angular distribution at large angles and the correct order of magnitude of
cross-section. The macroscopic spectroscopic factors for the d-cluster transfer have been
deduced from the full finiterange (FFR) distorted-wave Born approximation (DWBA)
and compared to the shell-model predictions for the even parity states. The assignment of
the spin-parity of the 3.93 MeV state is confirmed.

Angular distributions of cross-sections of 9 transitions of *'P populated through
®Si(o,d)’'P reaction have also been analyzed by both macroscopic FFR DWBA and
microscopic ZR DWBA using the molecular, nomal optical and Michel potentials. The
spectroscopic factors yielded by the macroscopic calculations have been compared to the
theoretical spectroscopic factors, calculated from spectroscopic amplitudes of three
different interactions. Nomnalization constants for the (a,d) reaction in the ZR DWBA
calculations have been extracted. Spectroscopic factors yielded by molecular potential are
found to comparable to the comesponding theoretical spectroscopic factors, whereas,
those for nommal optical and Michel potentials are found to be 1-2 orders higher in
magnitude.

The macroscopic FFR DWBA and microscopic ZR DWBA analyses performed
using the molecular, nomal optical and Michel potentials for 8 transitions of *P excited
via *Si(0,d)’P reaction have been compared to the experimental data. The experimental
spectroscopic factors and normalization constants are extracted from the macroscopic and
microscopic calculations, respectively. The overall fits using the molecular potential are

found reasonable. The nommal optical and Michel potentials fit reasonably for most of the



Vi

states only at the forward angle region, but underestimates the magnitude of the cross-
sections by same order as mentioned in the case of ***°Si(c,d)™"'P reactions.

The best fit value for the finite-range parameter for the zero-range DWBA

calculations for (at,d) reaction has also been deduced and found to be 0.7 fm.

The **Si(o,p)"'P differential cross-section at 26 MeV incident energy has been
analyzed in DWBA with zero and full-finite range and CCBA. Parameters of deep and
shallow optical, Michel and molecular potentials in the incident channel are determined
from the elastic scattering data. The calculations done with the deep optical and Michel
potentials reproduce the structure of the angular distributions reasonably well, but fail to
account for the absolute magnitudes by a few orders. The shallow optical one is
satisfactory up to about 0,;=100". The molecular potential, on the other hand, reproduces
both the correct magnitude of absolute cross-sections and the pattern of the angular

distributions. CCBA calculations improve fits to the data over the DWBA predictions.
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CHAPTER 1

INTRODUCTION

1.1. Preamble and Rationale

Through the decades, the nucleon transfer reactions have established themselves
as useful tools in the study of spectroscopy of the nuclei. The interaction of various kinds
of projectiles with different nuclei as targets have been extensively studied using
different form of scattering and reaction data. A significant improvement has been
achieved in the knowledge of the light particle wave functions and of potentials of
proton, neutron, deuteron, triton and hellion-nucleus system. The situation is, however,
not satisfactory with the interactions of alpha-particles with other nuclei, and hence still
leaves some questions to be answered.

Since the first observation of anomalous large angle scattering (ALAS) by
Correlli et al [1] in the elastic scattering of a-particles by "°O and 28, it has also been
found to occur in other elastic and non-elastic processes [2-21] induced by o-particles.
The nomal optical model potentials are found to be inadequate in reproducing ALAS in
elastic, inelastic and transfer reactions involving o-particles [10-13,18]. Hodgson [22]
has also pointed out the problems to have a really satisfactory global a-nucleus potential.

The ALAS problem, from the very beginning of its discovery invoked the
researchers to float different ad hoc models to explain it. But the models suggesting the
inclusion of Hauser-Feshbach resonance contribution [9,23], the use of /-dependent
absorption [10], or the use of arbitrary WS" (n>2) form factors [12] have not been able to

give a consistent and theoretically sound description of alpha-elastic scattering over a



significant range of targets and energies. Two altemative type of potentials have been
proposed to explain ALAS. The one, advocated by Michel et al[20-21,24], is a special
type of optical potential with a squared Woods-Saxon (WS) geometry. The another one is
a molecular type of complex potential suggested by Block and Malik [25] and developed
through a series of works [26-29], having a repulsive core in its real part. Both the
potentials have been successful in reproducing the ALAS in the scattering of a- particles
[19-21, 28-29] by some 2s-1d nuclei. On the other hand, Schmittroth et al [16] have
established that the use of a complex molecular potential could enhance the back angle
scattering in a single-nucleon transfer reaction involving heavy ion.

Non-elastic processes have so far been, in rpost cases, treated within the
framework of direct reaction theory using the normal optical potential (WS type) in the
distorted channels. The ALAS in the data of (c,d) and (c.p) reactions on 2*Si [18], have
been analyzed by Jankowski et al [18] in terms of incoherent sum of the distorted wave
Born approximation (DWBA) contribution calculated with the normal optical potentials
and the compound nucleus contribution calculated on the basis of the Hauser-Feshbach
model [30]. In addition, the elastic and the transfer data could not be fitted with the same
optical potential. Above all, at the incident energy more than 20 MeV, the compound
nucleus effect is expected to be highly improbable. In spite of all these inconsistencies
within, the method has, however, enjoyed a limited success. So, the ALAS problem for

the (o,d) and (o, p) reaction remains yet to be resolved.



1.2. Object of the present study

To the best of our knowledge there is no available report dealing with the
description of ftransfer reactions using either of the molecular and Michel ltype of
potentials, although these potentials could reproduce successfully the elastic ot-scattering
data for a number of 2s-1d targets [19]). But the normal optical potential has failed to
account for the same.

The present study is the first attempt to perform a comparative study of the effect
of three fooms of a-nucleus potentials obtained from the comesponding elastic scattering
on the single, two, and three nucleon transfer reactions. There is a well-known contention
[31] that the potentials capable of producing both elastic and transfer processes with the
same parameter will certainly have preference to others, those can only produce elastic
but not the corresponding transfer processes. So, this study is motivated with a view to
test how far, the two proposed alternative types of potentials capable of analyzing the
ALAS effect in elastic scattering can account for the one, two and three nucleon transfer
reactions.

The present study comprises basically of three steps:

(1) to generate parameters of three form of alpha-nucleus potentials by fitting o-elastic
scattering data on the sd-shell targets.
(2) to analyze the single, two and three nucleon transfer reaction data on the targets

using the corresponding potential parameters.

(3) to extract the spectroscopic information available in the study of the reaction

processes.



1.3. Methodology

One nucleon transfer reactions probe the single particle structure of nuclear states
[32]. The (ot) reaction having large negative Q-value has the special criterion of
populating selectively the states of high angular momentum.

In contrast, two mucleon transfer reactions probe the correlation that exists
between nucleon pairs in the states produced. The nature of this correlation can be best
understood if the structure of the light particles in the reaction is relatively well known. In
that view, it has been shown as a well-known fact that the (o,d) reaction is a valuable
spectroscopic tool for locating two-particle states [33-37]. Because of the large negative
Q-value involved, the reaction favours the transitions to states coupled to the maximum
allowed spin. Moreover, unlike the one-nucleon transfer reaction, the (o,d) reaction
involving two nucleon transfer is dependent on the coherence property, e.g, the signs of
the different components of the wave function. The (a,d) reactions enjoy another
advantage in that they can be analyzed in terms of both the macroscopic (cluster transfer)
and the microscopic approaches in the form factor calculations. The important feature of
the (o,d) reactions lies in populating states with T=0 transfer. Moreover, since the spin
transfer S=1 is unique, the [transfer 1L=J is only allowed for the natural parity states
(assuming the angular momentum in deuteron as /=0), two L-transfers L=J+1 are
permitted for exciting the unnatural parity states.

The three-nucleon transfer e.g, (o,p) reaction involves a complex process. In

addition to contribution from compound nucleus and pre-compound processes, the direct



part of the reaction may comprise of triton stripping, knock-on and heavy particle
stripping. Triton stripping has been found to be the dominant one [42]. Although the
oscillations in the angular distribution can be reproduced reasonably by the DWBA
calculation on the basis of triton-stripping, the absolute magnitude of cross-section are
underestimated by two to three orders in such predictions [43]. However, the (o.p)
reaction has shown to be a valuable spectroscopic tool for locating high-spin states at
higher excitation of the final nucleus because of the ‘high-spin selectivity’ arising from a
strong angular momentum mismatch between entrance and outgoing channels [150]

The experimental data for elastic and reaction processes has been chosen keeping
conformity with the object of the present study. The YAl (cr,0)”’ Al and **Si(c,0t)**Si data
are taken from the references Yasue et al [44] and Jarczyk et al [9] respectively. The
source of **Si(ct,0)**Si data is the reference [45].

For single nucleon-transfer reaction, the present study includes the experimental
data of Yasue et al [44] for the YAl(,t)*Si reaction at Eq= 64.5 MeV leading to 56
transitions with an energ;( resolution of about 35 keV. The DWBA analyses of the work
of Yasue et al [44] use only the normal optical potential. But they did not use the
appropriate form factor as well as full finite-range calculations for the transitions to the
states in the unbound region. In the present study, the scheme is to investigate the effect
of FFR for particle transfer to bound as well as to unbound states using normal optical,
Michel and molecular potentials within the formalism of resonance form factor
formulated by Vincent and Fortune [46,47]. One point of discrepancy in relation to this
experimental data is to be noted here that there are no cross-section data either of elastic

or of reaction beyond the scattering angle greater than 60° (CM). Hence, lack of the data



at the large scattering angle may cause some limitation in shedding deeper insight in
determining the details of the potentials.

For the two-nucleon transfer reaction, the present study is undertaken to examine
the normal optical, molecular and Michel potentials in analyzing the two-nucleon transfer
reactions “'Si(o,d)’P from Jankowski et al. [18] at 26 MeV incident energy and
BXSi(or,d)”' P [48] reactions at 25 MeV probe energy. In the first case, the target is an
o-cluster nucleus and there is a substantial ALAS effect in the angular distributions. For
the latter two non-alpha cluster nuclei, Davis and Nelson [48] could forge reasonable fits
to the reaction data by adjusting the parameters of the normal optical potential obtained
from the elastic fit. So, in the present study, in this case, the a-nucleus potential
parameters for all form factors (nomal optical, Michel and molecular) generated by

fitting the elastic data have been used without any modification to analyze the reaction

data both in macroscopic and microscopic calculations.

For three nucleon transfer reaction, the experimental data of **Si(c,p)”'P from
Jankowski et al [18] has been chosen with the obvious purpose to examine to what
extent, the molecular and Michel potential can account for the ALAS effect observed in
this three nucleon transfer reaction on the nucleus **Si, which is well known for
producing ALAS effect. The experimental data of the **Si(a,p)”P reaction from
Janskowski et al. [18], provides the angular distribution at large scattering angles
(Benr~170°), where the data is expected to be sensitive to the nature of a-nucleus potential.

The present study involves the methodology of Distorted Wave Bom
Approximation (DWBA) for all the cases of one, two and three-nucleon transfer

reactions. In the three reactions resulting angular momentum mismatch due to large



magnitude of the reaction Q-value leads to the dominant contribution from the nuclear
interior and hence to show the sensitivity of the a-potential. For analyzing two-nucleon

transfer reaction data, both the macroscopic (cluster transfer) and microscopic form
factors have been used. The three-nucleon transfer (o,p) reaction is treated with both the

macroscopic DWBA method and CCBA formalism for analyses.

Consequently, the first few chapters present the theoretical formalism, in context
to the present study. Chapter-two contains the theoretical background of the general
formalism of the optical potential giving special attention to present different forms of
alpha-nucleus potentials. Chapter-three is devoted to illustrate the theory of direct
reaction process involving one, two, and three-nucleon transfer. The formalism of
coupled-channels Bom Approximation (CCBA) has been developed in chapter-four.
Chapter-five is engaged in presenting the DWBA analyses of one, two, and three-nucleon
transfer reactions. Chapter-six deals with results and discussion of the study and chapter-
seven summarizes the conclusion

Appendix presents the articles based on the present study, those are published in

the Journal.



CHAPTER 2

OPTICAL MODEL

2.1. Prologue to optical model analysis of elastic scattering

In the theory of DWBA, one of the ingredients of the transition amplitude is the
‘distorted waves’ in the entrance and exit channels. Those are nothing but the elastic
scattering wave functions of the mentioned channels, associated with the relative motions
of the colliding pairs before and after the collision.

These distorted waves are generated from the Schrodinger equation in the optical

model approximation

{v’ +k* —[%’;J [U(r)+ U.(r) }}z =0 1)

To solve the Schrodinger equation, it is necessary to have a complete knowledge

of the forms of optical potential [U(r)+ U, (r)] which includes the Coulomb potential in

addition to nuclear one. The present study involves the o-nucleus potential in the
entrance channel and triton, deuteron and proton-nucleus potential in the exit chamnels.
So, this section will be devoted to underline the general formalism of the optical model
potential as well as its different concrete forms for ot-nucleus system.

The general formalism of optical model has been extensively dealt with for
decades since from its first introduction and truly speaking it is now basically and mostly
the subject matter of text-books. A brief and relevant theoretical aspect of the optical

model has been presented here and the details follows from the references [49-53]



2.2. General formalism of the opfical potential

An optical model is a model of the effective interaction It attempts to replace the
complicated many-body problem posed by the interaction of two nuclei by the much
simpler problem of two particles interacting through a potential. Such a replacement is
only feasible wi&ﬁn a model space containing just one or a few channels. With a one-
channel model, the most common case, only the elastic scattering can be described.
Sometimes, a few particular inelastic channels are also included. This is often referred to
as a ‘generalized’ optical model and leads to coupled-channels problems.

So, the optical model lies on the basis of the assumption that the scattering is
determined by the bulk features of the nuclei and is insensitive to the details of nuclear
structure, and hence it might be possible to describe it by a simple model of the effective
interaction.

To do this , a simplifying assumption is made that all individual nucleon-nucleon
interactions between the projectile and the target nucleus can be replaced by one
effective interaction. The interaction can be replaced by a potential V(r), where r is the
separation of the projectile and the nucleus. This is the same as the assumption
underlying the shell-model.

Now, the question arises, what would be the overall featwre and form of this
potential. A general argument is usually accepted in this formalism that, inside the
nucleus, the projectile is aware only of its nearest neighbors because of the short-range
character of the nuc!em-nmleonlinteractim. Since it is surrounded by nucleons, there is

no net force and the potential V(r) is expected to be uniform inside the nucleus. As the
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nucleon-nucleon force is of short range, it is also expected that the potential will follow
the nuclear matter distribution. Hence the potential begins to fall from its interior value in

the region of nuclear surface.

The potential, thus apprehended by itself will not suffice to account for the
experimental data , because, it is only able to scatter the incident particles; in reality, they
may also be absorbed by the compound nucleus and/or by the other non-elastic processes.
So, the removal of these particle fluxes have a profound effect on the scattering process.

At this point, the optical model makes the use of an analogy between the
scattering and absorption of particles by a nucleus and those of light by a cloudy-crystal
ball. So, analogous to complex refractive index in the optical phenomena, the idea of
complex potential has been introduced to explore the scattering problem in the nuclear
case.

To show that the basic idea of a complex potential, namely , that its imaginary
part has the effect of removing particle flux from elastic channel, we take the

Schrodinger equation for scattering by a complex potential [53]

V’w+%’z‘-(3+u+iw)w= 0 (22)

Multiplying by ', and subtracting the complex conjugate of this equation

multiplied by vy, we get,

(23)

Now the quantum mechanical expression for the density of current is

+ ih( 0y Ay
il (Wl SRS 4 24
J 2;;("” 2V arJ (24)
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and 'y is the probability density, so this equation is equivalent to the classical
continuity equation,

%, divj = —kvp (2.6)
where v is the velocity of the particle inside the nucleus, a steady state has been attained

so that the term %’ in the above equation vanishes. This shows that providing W>0, the

imaginary part of the complex potential has the effect of absorbing flux from the incident
beam.

The total absorption cross-section from the total measured flux can be calculated,

so that, [ 53 ]
T in [ Loy oy )
=||— in@ dé d 2
. !gzpvwar ar ) A
Now, the wave function,
=— (2L+1) P, (cos@) (s,e* —e™ 2.8
v=-2 (2.8)
7 2ikr

where S, = et is the partial scattering amplitude, &, being the phase shift.

Hence,

aA=k ZL] 2L +1) ( |sz|) (2.9)
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and the total cross-section is given by,

0y = E’C—’:Z(an) (ReS,) (2.10)

The differential cross-section for the elastic scattering of the nucleon or group of
nucleons by nuclei can also be described by the optical model potential making use of the
quantum mechanical scattering formalism.

Thus, the optical potential is the extension of the shell-model potential for bound
nucleons to positive energies. It is essentially the same potential, representing the nuclear
mean field, that acts on both bound and scattered particles, and it thus unifies the

understanding of nuclear structure and nuclear reactions.

2.3. The standard forms of different part of the optical potential
2.3.1. Real part of the potential

The real part of the potential is due to the action of all the nucleons in the nucleus
on the incident particle and it is usual to assume, at least for light ions that the interior of
the real potential is flat and attractive (negative) and, because of short range of nuclear
force, rises quickly and monotonically to zero in the surface region.

Many analytic forms have been used for real part of potential that embody the
above assumption [49,50], but the most popular one has been the Woods-Saxon [54], a

particular case of an Eckart [55] potential:

- 1 -1 _(r-R,) X
U(r)=¥7(x) fleo)=le +1)", m =R} @iy
where V, Ry, and a, are known as the well-depth, radius and diffuseness,

respectively.
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2.3.2. Imaginary part of the potential
The imaginary or absorptive potential is assumed to have a ‘volume’ or ‘surface’

form or sometimes a sum of both types. The volume form is usually defined as, [52]

w(r)=w,[(x) flxg)=(e™ +1)", x,=("R% @2.12)
where the radius R, and diffuseness a, need not have the same values as in the real

potential.

The surface absorption is most often taken to be proportional to the derivative of

J) [52)

df(xb)_ efo = _RD
w,(r)= 4w, 2= A, N x,,_(’ %B (2.13)

D e’ +
This has a peak value of — Wp at r=R (hence the factor of 4 in the definition) and a
FWHM of Ax, =3.525. If both surface and volume terms are used, one frequently

assumes R, =R, and a, = a, .

2.3.3. The spin-orbit coupling
The simplest vector spin-orbit coupling has the form similar to predominantly a

surface type of coupling; the phenomenological form that is commonly used [52] is,

Uso(r)=Vso( h ) ldf(xw)ij s Xso =(r_Rm% (2.149)

moc) r dr




2
where the Woods-Saxon function f{x) is defined as usual . The factor [—f } , the
mc

square of the pion Compton wavelength is a relic of the derivation of this term from the
meson theory of nuclear forces; its numerical value is close to 2 fin®. 1t is also to be noted

that when 1 =3, Uy, is frequently defined with I replaced by the Pauli vector o =21/,

the corresponding coefficient V, is then often only half as large. Sometimes it is usual to

allow Ry, # R,, ay, # a,.
2.3.4. Coulomb potential
Coulomb potential ¥,(r) is that of charged particle in the electrostatic field of the

nucleus. This is calculable from the nuclear charge distribution but in practice, it is
sufficiently accurate to use the potential due to a sphere of radius R_with its charge

uniformly spread throughout its volume,

2 2
%‘zﬁ{a—é?J r <R
vV (r): o g (2.15)
P Z.Z g
bt Sl 92U r >RC

"
where Z, and Z, are the charges of the incident particle and target nucleus. R, is

givenby R_= rCAT%.

2.4. Alpha-nucleus potential
The present work investigates the effects of different forms of a-nucleus potential

on ftransfer reactions. It has been already mentioned in the introduction that the



conventional form of optical potential for ot-particle is inadequate in accounting for the

ALAS effect So, theoretical formulation for alternative proposals for o-nucleus

potentials demanding the adequacy in accounting for ALAS is relevant. This section
will be devoted for extracting the necessary aspects of the following forms of o-nucleus
potentials:

1. Usual form of optical potential henceforth called ‘Normal optical potential’.

2. Squared Woods-Saxon potential henceforth called ‘Michel potential’.

3. Molecular type of potential henceforth called ‘Molecular potential’.

2.4.1. Normal optical potential for a-nucleus system

The normmal optical potential for the o-nucleus system including Coulomb term is

given by,

)= 1) 7o) e ), 250 @10

—_rA4¥
where f(x, )= (l+e" )—1 with x,:(r "‘A% and the subscript i =0,WandD .

The Coulomb radius is given by R = rcA”, A is target mass.
2.4.2. The Woods —Saxon Squared Potential (Michel Potential)

The squared Woods —Saxon potential (Michel potential ) was first used for a
successful description of the o-*Ca scattering from 20 to 170 MeV [56]). With the
introduction of an energy dependent Gaussian factor to the real part, it has since been
applied to the o.-'°0 scattering between 20 and 150 MeV [57] and produced excellent fits

with the experimental data. Using this potential, some works have been done in
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describing successfully the alpha cluster structure in *Ti [58,59] and oscillations in the

fusion excitation finction [60]. Adding a slight angular momentum dependence and an

increase in barrier height, it has also been possible to explain low energy data down to 3.5
MeV [61]. This phenomenological form of potential has been found to be very sirﬁilar to
the equivalent local potential obtained in microscopic analysis using the resonating group
(RGM) [62,63].

The Michel potential form including Coulomb term V(r) comprises of the

following [57] real V(r) and Wy(r) parts:

V,(r)= Vo[l + aexp[— (i)z ”{1 + exp[';a’:ﬂ ] }—2 +V,(r) @.17)

Wy (r)= —Wo[l + exp( r;aR, H 2.18)

with V¢(r) and Rc being the same as standard optical potential o and p are two

parameters introduced to take care of the energy dependence of the real part.
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2.4.3. The molecular potential

2.4.3.1. How it has been introduced

The basic theoretical foundation of the molecular potential is embedded in the early
works of Block and Malik [25]. In this paper they proposed it in an one-dimensional fits.
Subsequently, L. Rickertsen et al.[64] fitted '°0-'°O data nicely with the proposed nuclear
molecular potential. The parameters of this potential were estimated from the two-nucleon
potential in a model of the transient nuclear matter.

On the other hand, K.A. Brueckner et al [65] derived this more accurately from
two-nucleon interaction using Energy Density Functional (EDF) formalism using sudden
approximation. But, it had a numerical error. Reichstein and Malik [28] showed that both
in sudden and in adiabatic approximation, non-monotonic potential is expected. The
sudden approximation was close to the one used by Rickertsen et al [64] to fit '%0-1%0
data. The fit was extended to higher energies [66]. That the potential should be really non-
local is discussed in Workshop on High Resolution, Heavy-Ion physics [67]. Subsequently
the >C-"’C elastic data were fitted with molecular potential [68]. That the *C-'2C potential
is molecular is confirmed by N. Ohtsuka et al. [69], M.A. Hooshyar, B. Compani-Tabrizi
and F.B. Malik [70] and Mangdrd et al [29]. Tariq et al[19] could fit ct+**Si elastic
scattering data by a molecular potential which was close to the derived potential from the
EDF approach and also the derived scaled potential from the EDF can explain o+ 2§
elastic data as discussed in the present work.

W .Scheid, R. Lingensa and W. Greiner [71] showed that the calculation using two-
centered shell model also yields a molecular potential. Determination of the C-'*C

potential from an inverse scattering theory also reveals it to be molecular [72].
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Calculation of the imaginary part of molecular potential from two-nucleon phase-
shifts [ 73] led it to be volume like and energy dependent, as is used in the present work.

With an object, to follow and illustrate the methods of parametrization of the
molecular potential, the relevant aspects of EDF is being furnished here in the following
section.
2.4.3.2. Energy density functional (EDF) formalism

The EDF formalism has its root in the statistical theory of nuclear total energy, first
proposed by P. Gombas [74], R.A. Berg and L. Wilets [75], and L.Wilets [76],. They used
simple two-nucleon interaction. Brueckner and his collaborators [77-80] and Bethe [81],
refined this to include realistic two-nucleon interaction having hard-core at short distance.
However, they failed to obtain proper binding energy with the observed density
distribution. |

Following the paper of Hohenberg and Kohn [82] which shows that the energy of
any finite system could be written as a functional of energy density, J. Lombard [83] could
reproduce nuclear masses usmg a density distribution derived in the Hartree-Fock
calculations. However, Malik and Reichstein [84] clearly showed that nuclear masses can
be reproduced using observed density distribution and energy density functional derived
from the realistic Gammel-Thaler two-nucleon potential [80,85]

In this formalism, the total energy of the system is described as a functional of the
local density which comprises of a nuclear matter part along with Coulomb correction as
well as corrections due to non-homogeneity of nuclear density in the form of a term
involving the gradient of the density.

The starting point of this formalism is the energy-density functional
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E(p)=[elp(r)p’r (2.19)

where p is the density which is the function of the relative distance between two colliding

nuclei. So, to calculate the total energy of the system, a consistent and tractable form of
€(p) has to be known. In the works of Brueckner and his collaborators [77-80], €(p) has

been reported in the form,
2
)= )y + p(pia)s )] @up, -0 5o X vp} @20

The first term (K.E)ry is the kinetic energy of the particles in the Thomas- Fermi

approximation, having the following form,

2 2 %
L o _a¥L% '
(K.E.),,,.-_S[ZM 2] 2[(1+azf‘+(1 a?‘}; (2.21)

where M is the nucleon mass and o = Ei-g’- is the neutron excess.

The second term V(p,a)in Eq.(2.20)is the non-Coulomb and nuclear matter
contribution to the functional. It has been calculated within the framework of Brueckner-
Hartree-Fock theory using the Brueckner, Gammel and Thaler [80,85] two nucleon
interaction, and is given by,

Vip.e)= b,(l + alarz)p + bz(] + azaz)px + b,(l + a,a’)p% (2.22)

The parameters a and b are obtained by nuclear matter calculations with variable
neutron excess [80].

The third term in Eq.(2.20) is the Coulomb interaction among protons and &, can

be expressed in relation to proton charge distribution p, as
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@, = [e I’; P—(;')l &7 (2.23)

The fourth term in Eq.(2.20) is the Pauli correction to the third term in the local
density approximation [87].

The last term is the non-homogeneity correction. The coefficient 7 in the density
gradient term incorporates both (a) the Weizsdcker non-homogeneity correction to the
kinetic energy due to variable density distribution, and (b) additional corrections originating
from those correlation between nucleons which are not included in V(p,a).

Using observed density distribution, one can get observed nuclear masses with 77=8.
For example, the calculated binding energies and masses calculated for different nuclei by
Malik et al.[27,88] are exhibited in Tables (2.1-2.3). Now the method can be extended to
calculate the potential V(r) between two nuclei within the framework of the energy density

formalism following the London-Heitler type of approximation as,

V(r)zE'(pi.pz)—E(p, at r-—-co)—E(pz at r=co] (2.24)

E(p1.p2) is the mean energy of the compound system computed using Eq. (2.19),
where density of the system is composed of an overlap of two density distribution py(r),
and py(r) each of which varies continuously as a function of the separation distance r. The
quantities E( p; at r = o0) and E( p, at r = o0) are the energies of the colliding nuclei when
they are far apart.

It is evident from Eq.(2.24) that the parametrization of the interaction potential

depends on the consideration of how the energy density E(p,, p,) is superimposed, when

energy densities p,(7) and p,(r) are known.
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Table-2.1. Calculated total binding energies ( cols. 4 and 5 ) using EDF for y = 8 and 9. Experimental
values given in col. 3 are from [90]. 2pf and 3pfin col. 2 are two and three point Fermi distribution
fimctions from [89]. The last column gives results of liquid drop [91].

DENSITY BE.(MeV) [ BE.(MeV) [B.E.(MeV) | B.E.(MeV)
ELEMENT | FUNCTION EXPT. y=8 y=9 M+S
& & 2pf 922 925 88.0
N 3pf 104.7 111.0 106.9
0 3pf 1276 125.2 1213 123.0
Mg 2pf 1983 194.1 189.3
3pf 194.5 189.9
Si 2pf 236.5 2343 228.5
3pf 239.1 233.3
"Ca 3pf 342.1 340.6 3338 340.0
¥V 2pf 4458 461.5 451.5
“Ni 3pf 506.5 516.5 506.7
"Ge 2pf 610.5 609.1 599.1
®Sr 2pf 768.4 793.5 778.7
"Cd 2pf 972.6 984.1 969.3
i 2pf 1164.8 1184.1 1166.1
™Sm 2pf 1225.4 1229.6 1212.6
™Ho 2pf 13442 1339.4 1321.9
' Au 2pf 1559.4 1592.8 1568.9
"®pb 2pf 1622.3 1630.1 1607.7
"*Pb 2pf 1636.4 1667.8 1642.3 1627.0
U 2pf 1801.7 1808.6 1785.1 1805.0




Table-2.2. Parameters vsed by various
E/A, in MeV, Fermi wave length,
respectively, to refs. * < 99 [80, 88, 79, 83, 92].

22

groups in evaluating muclear masses and binding energy per nucleon

Kz in fm™ and compressibility K, BGT, MR, BBCL, L and NN refer,

Parameters BGT? MR BBCL? L? NN®
h 3.0 10.3 11.955 15.2 7.23
by -717.6 -741.28 -741.28 -818.25 -588.75
b 1142.2 1179.89 1179.89 1371.06 563.56
bs 452.6 -467.54 -467.54 -556.55 160.92
a -0.146 -0.1933 02 0316 0424
a 0.23 03128 0316 0.2 00973
a, 12 1.725 1.646 -1.646 -2.25

E/A -15.23 -16.59 -16.59 -16.0 -15.6
kg 1.433 1.447 1.447 1.36 1.36
k 172.6 184.7 184.7 180.00 250.0

¥ K. A. Brueckner, S. Coon, and J. Dabrowski, Phys. Rev. 168, 1184 (1968 ) [80].
Y 1. Reichstein and F. B. Malik, Condensed Matter Theory, 1, 291 ( 1985 ) [88].
9 K. A. Brueckner, J. R. Buchler, R. C. Clerk and R. J. Lombard, Phys. Rev. 181, 1543 (1969) [79].

YR J. Lombard, Ann. Phys. (N. Y. ) 77, 380 (1973) [83].

“ H. Ngd and Ch. Ng8, Nucl. Phys. A348, 140 (1980) [92)].
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Table-2.3. Calculated masees by various groups in the energy density approximation are compared with the
experimental ones, marked EXPT. and with those obtained from the standard mass formula of Myers and

Swiatecki (MS)®, MR ®, L.”, BBCL ?, and NN ? refer, respectively, to the calculations in Refs.

NUCLEI EXPT MR"” L BBCL? NN? Ms?
50 127.6 1233 128.8 127.6 121.2 123
3 2718 270.1

*Ca 3421 322.0 342 340 3121 340
a 116.0 416.2 122 a2 3489 415
“Fe 4923 4967
“Ni 5269 5321 524 524 5308 524
"7r 783.9 793.4 780 780 792.3 782
pd 9984
22Cd 10333
™ Ce 1172.7 11818 1169 1173 1185.1 1171
™ Ba 1180.3 1185.7
™Ho 13448 1356.1
2%pp 1636.5 1628 8 1627 1630 1639 1627
= 1776.0 1778.0

G 1801.7 17985 1797 1812 1814 1805
Py 1813.4 1811.0
e 4 1804 8

" . Reichstein and F. B. Malik, Condensed Matter Theory, 1, 291 ( 1985 ) [88].

Y R.J. Lombard, Ann. Phys. (N. Y. ) 77, 380 (1973) [83].

9K. A. Brueckner, J. R. Buchler, R. C. Clerk and R. J. Lombard, Phys. Rev. 181, 1543 (1969)[77].
“H.Ngd and Ch. Ngd, Nucl. Phys. A348, 140 (1980) [92].

? W.D. Myers and W. J. Swiatecki, Nucl. Phys. 81. 1 (1966) [91].
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There may be two considerations at this pont [29],
(1) adiabatic approximation,
(ii) sudden approximation.

The adiabatic approximation incorporates the idea that the density function p of
the compound system is generated in such a way that at no point of the compound system
does the density exceed that of the central density of any of the colliding nuclei. That
means , in this case, the densities as they interpenetrate, have enough time to reorient and
readjust and hence the parameters of the density distribution can be obtained by
minimizing the energy with respect to them at every point of separation [28,67,84,93].

In the case of the sudden approximation [78], it is considered that the collision time
of the two nuclei is shorter than the characteristic time of the internal motion of a nucleon
so that the nuclei remain as if, frozen during the collision. And hence one can generate
density p of the composite system by simply adding the densities of the two colliding nuclei
as,

E(p.p,)= E(p+ p,) (2.25)

Thus, once py(r) and p,(r) are specified, E(pl, pz) at a separation distance r can be

obtained from Eq.(2.25).
2.4.3.3. Parametrization of the Molecular Potential

The basic idea of the sudden approximation has been applied to parametrize the
interaction potential in the scattering of two heavy ions [64,69]. The method has been

extended to a-**Si nucleus elastic scattering in the ALAS region [29]. In the early paper
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[84] to make the calculation more tractable, mstead of using usual Fermi distribution for
nuclear density, a trapezoidal form of distribution has been approximated. The result
obtained using Fermi-distribution and trapezoidal approximation are shown to be

satisfactorily close [29], but trapezoidal approximation gives the favourable situation for
calculation avoiding the complexity.

The trapezoidal deneity distribution can be described as, [84],

i X OSrSE
b-r
pri=ipl——| rgrsd (2.26)
b-r,
0 b<r<w

The parameter b determines the surface thickness and r, the range of the constant
density zone. These two parameters are related to the half-density radius C and the 10%-
90% surface thickness parameter t by the relation,

b=C+(%) and r,=C-(%) (2.27)

For generating the alpha-*Si potential a density distribution of « and **Si has been
considered in a consistent way, using actual observed density distribution and the potential
is found to be similar to that of trapezoidal approximation [29]. Based on the total

consideration, the real part of the molecular potential is parametrized as,

V(R)= V1 +exp(R -R,)|"+V, exp[—(ﬂ) j|+VC (2.28)
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with

2 2
(ﬁ@an_&J R<R
= 2 =N

@)=\ R AR

ﬁzf_. R> Rc
R (2.29)

The Coulomb radius (R,) of the composite system can be written as the sum of the

Coulomb radii of the two nuclei separately [69], i.e.,
R =R, +R,, = r(4%+ 4¥) (2.30)

where A; and A, are the atomic masses of the two nuclei and r, is the proportionality

constant,

The imaginary part of the potential, W(R), is of Gaussian type,

W(R)= *W})(E)exp[ [ ; ” (231)

A microscopic calculation of the imagmary part [73] indicates this to be of the

volume type and energy dependent.

Such a potential has been successfully used in the description of the o-**Si elastic

scattering in the ALAS region of 21 to 28 MeV with an energy independent real potential

[19,29].
2.4.3.4. Scaling of the Parameters

Many of the parameters are expected to scale smoothly with mass numbers.

Using the simple scaling procedure,

R, =R, +r4% i=0,1,WandC (2.32)
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and
v=b|a¥+ 4% -(4+4,)%|  i=0and (2.33)
it could also describe reasonably the elastic scattering of alpha particles from *Si and ™S

isotopes [19,94]. Actually scaling is likely to work among adjacent nuclei only and where

the sudden approximation holds.

2.5. Comparative presentation of real parts of different forms of alpha-
nucleus potential

The real part of different forms of a-nucleus potentials excluding the Coulomb part are,

1) Normal optical potential (WS)

The real part of normal optical potential (WS) is given as,
VO G} flag)=le 1), 5 =R ;OR")

where V, Rgand a, are known as the well-depth, radius and diffuseness respectively.
2) Squared-Woods-Saxon (Michel ) potential

The real part of Michel one is,

)= Vo{l ,,,x,“;”} {na (o ]

o and p are two parameters introduced to take care of the energy dependence of the real

part.
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3) Molecular potential

The real part of molecular potential is,
R 2
V(R)=—¥,[1+exp(R-R,)I" +¥, exp[ﬂ[;{} }

The schematic representation of the real parts of different forms of alpha-*Si has been

displayed m the Fig. 2.1.
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CHAPTER 3

THEORY OF DIRECT NUCLEAR REACTION

3.1. A prelude to direct reaction

The goal of achieving an exact theory of nuclear reactions which would involve
the solution of the nuclear many-body problem is yet to be reached. Immense efforts
have been employed to analyze huge accumulation of experimental data related to
nuclear reactions throughout the past decades and the process is on going. Amongst
multifarious models to confront different phenomena, two models of the nuclear reactions
have enjoyed particular success. Those are compound nucleus (CN) model and direct
reactions (DR ) models.

The study of direct nuclear reactions originated from the observation of some
reactions characterized by the forward peaked angular distribution [95] and theories put
forward to explain those observations [97,98]. The question of defining ‘direct’ reactions
is one to which no all- embracing answer can be given. However, extensive review works
have been done on it and it is usual to attnibute the following characteristics to direction
reactions:

(a) In direct reaction the transition from the incident channel to the reaction channel takes
place in one step without the formation of an intermediate state.

(b) The interaction time for occurring direct-reaction is very short (~10% sec).

(c) The direct reaction is a surface process [101,102].

Qualitatively, it is assumed that in direct nuclear reaction, there is a good overlap
between the wave function of the entrance and exit channels where the collision may

occur with a minimum rearrangement of the constituent nucleons. As DR involves a
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single step and only a few degrees of freedom, the reaction amplitudes depend on the

overlap of the initial and final states; consequently direct reaction cross-sections

represents the relations between two nuclear states. In addition, direct reactions are much
more selective in the final states that they populate.
The direct reaction can be usually be classified into:

(i) The inelastic scattering where either one of the nucleons in the target makes a
transition to a state or many nucleons coherently excited result in oscillation or
rotations of the whole nucleus.

(1))  The transfer reactions comprising a transfer of a few nucleons either from the
projectile to the target ( stripping reactions) or from the target to the ejectile( pick-
up reaction)

(1) The knock-on reaction, where a nucleon or a light composite particle is ejected

from the target by the projectile which itself continues to be the part of the residual final

state. These reactions are also known as quasi-free scattering since here the collision
takes place between the projectile and the ejectile, the rest portion of the target remaining

as spectator.
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3.2. Basic principle of the theory of direct nuclear reaction

The direct reaction theory of nuclear reactions can be regarded as an extension of
the optical model [103]). According to the optical model, the elastic interaction between
two nuclei can be described by a complex potential well. The direct reaction theory
accepts the optical potentials as a first approximation, but introduces, as a perturbation an
additional interaction which gives rise to non-elastic processes. This additional
interaction affects some simple intemal degree of freedom of one of the two nuclei
involved in the collision. On the basis of this basic principle of perturbation different
physical phenomena of direct nuclear interaction which includes inelastic, nuclear
transfer (one or more) and the other rearrangement processes can be taken into account.
Through the decades, starting from the models describing the simplest idea of one-
nucleon transfer to more complicated processes of direct nuclear reactions have been
successfully developed [52, 103-107).

The theory of direct nuclear reactions is concerned with calculating the transition
amplitudes for various types of nuclear reactions on the basis of the models describing
the physical situations. Since the direct interaction can be treated as a perturbation, the
transition amplitude is given simply by the matrix element of the direct interaction with
respect to the initial and final states of the wave functions The physical content is
essentially the extension of that carried by the formalism of Bom approximation. Here, a
few subsequent sections will be employed to develop this formalism step by step to

tractable form to elucidate the realistic form of the nucleon transfer reactions.
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3.3. The theory of distorted wave Born approximation (DWBA) for one-

nucleon transfer

3.3.1.Transition amplitude
The DWBA theory of the reaction A(a, b)B is based upon a ftransition amplitude

of the form [38,106]
T = (1" OV |®,1,") 31)
where, @, and ®, denote respectively, the intrinsic states of the two nuclei in the initial

and final channels. The functions y,and y, are the ‘distorted waves’. They are elastic

scattering wave functions which describe the relative motion of the pair a, A before
collision and b, B after the collision respectively. In the optical model approximation the
distorted waves are generated from a Schrédinger equation as mentioned in the previous

chapter,
{V2 +k - (%J [Uer)+uU.(r) }x =0 (3.2)

where, Ufr) is the optical model potential, U.(r) the Coulomb potential and 4 is the
reduced mass of the pair. When the particle a and b have spin, and a spin-orbit coupling
potential is included in the Uyr) in the Eq.(3.2), the functions } become matrices in spin-
space 7,.,.. when m is the z-component of spin. Terms with m’'= m allow the possibility

of spin-flip during the elastic scattering
In application of the distorted-wave Bom approximation to the transition
amplitude Eq. (3.1). a certain pattern having to do with the angular momentum couplings

will emerge each time. The particular factors that go into this, of course, depend on the
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type of reaction under consideration At this point, the general form has been anticipated
and elucidated in the respective concrete cases subsequently. The brackets in Eq.(3.1)
denotes an integration over the position coordinates of all nucleons and a sum over spin
(and iso-spin if used) coordinates. There are (A+a) nucleons, so there are 3(A+a) spatial
coordinates, Three of them will be chosen as cm. coordinates in this system. The
remainder are relative coordinates. For a rearrangement collision (atA) — (a-x) +
(A+x)= b+B, a convenient set of such relative coordinates consists of the 3(A-1), 3(x-1),
and 3(b-1) intrinsic coordinates of A, x, and b together with R and p, as shown in

Fig3.1

Fig.3.1. Schematic representation of the vector coordinates of the single-nucleon stripping reaction

A(a,b)B, where ( B =A+x) and (a =btx; x=1)

which comprise of the correct number 3(A+a) — 3 of relative coordinates. A zero-range
approximation is sometimes employed in nucleon-transfer reactions especially when a is

a light nucleus like a deuteron, triton, or alpha etc. The interaction in this case is taken as

a delta function on the coordinate /. This is convenient because it reduces the number of
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integration variables. Moreover, the distorted waves depend on the channel coordnates

7 and 7,, which in terms of R and 7 are given by,

~Gpp. r=UpR-5 63
In the zero-range approximation,
F >R,

= (%,}? p >0 (3.4)

so that, the channel coordinates are conveniently proportional.

ot

If the zero-range approximation is not made, then it is most convenient to

-

transform R and 5 to 7, and 7,, because the distorted waves are only known
numerically as the solutions to the optical potential Schrodinger equation as shown in
Eq.(3.2).

The transformation involves a non-unit Jacobian

dpdR = JdF,dF,

Where, J is a matrix, indicated symbolically by,

J = oAp.R) [f = )3 3.5)

(F;,'r'b) xA+a

which relates the volume elements in the two coordinate systems.

After integrating over the infrinsic coordinates [104 |, the Eq. (3.1) can be written

as

17 = J [ 6 ) (B 2 L E) did )

fc; and Eb are the relative momenta before and after the collision respectively.
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3.3.2. Multipole expansion of the interaction matrix
The matrix element of the interaction in Eq. (3.6) causing the non-elastic event,

taken between the internal states of the colliding pairs is given by,

(T e )= [ Ry g X))
where, £ represents all the coordinates independent of r,and r,. This factor is function of
r,and r, and plays the role of a effective interaction for the transition between the elastic

scattering states x_  and y,. It contains all the information on nuclear structure, angular

momentum selection rules and even the type of reaction (whether stripping, knock-on
etc.) being considered.
The matrix element Eq. (3.7) can be expanded into terms which correspond to the

transfer to the nucleus of a definite momentum j, which in tum is comprised of an orbital

part I and spin part 5 [108] If the particles a and b have spins 5, and 5, , and the target
and residual nuclear spins are .J 4 and I 5 respectively, we define,
j=J,-J,, ¥=3-3, [=j-3 (3.8)

The multipole series may be written with the Clebsch-Gordon coefficients [110]

corresponding to the vector coupling in Eq. (3.8) as [38],

J(']BA'{B'meb|V1'IAA4A'Sama) = Ef*'%ﬁ(ﬁ:i:'bB-M)
Is)

(1) (T M My~ M 4|J My Y5 5,m,.—m,|sm, — m, )

x (Ism.mﬂ — mb],lMﬁ mMA) (3.9)
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where m=M_,—-M ,+m,—m_, the symbols bB, a4 as arguments of G denotes the

dependence on the various nuclear quantum numbers ( other than z-components of spin).

The function G may be defined by the inverted form of the expression (3.9) as

| B4l
Gigm = ;‘J(__*__} (M sy V' M, 5,m, )

2‘]B +1 MpM gmym,
X (‘Trm (JA]MA’MB 'JMAPBMB> % (Sasbma’—”’hlsma - mb)

x (Ism, m, —my| M , —M ,) (3.10)
The factor #' is included to ensure convenient time reversal properties [110].

It is helpful to write G as the product of two factors
ij,m(;:bra): Alsjfh_;.m(?'b!a) (311)
Aiy 1s the spectroscopic coefficient which includes fractional parentage coefficients for

initial and final nuclear states and interaction strength. fi;» is the form factor.

It is evident from the Eq.(3.6) that the transition amplitude involves an integration
over the space of both r, and n, This six-dimensional integral is difficult in numerical
calculation. Hence, the so called ‘zero-range’ approximation is often introduced , on two
grounds, the interaction potential V has a short range and one or more of the internal
wave functions has a small range. This zero-range assumption has the physical meaning

that particle b is emitted at the same point at which particle a is absorbed, so that

‘

i=lg) 7.

The form factor of the Eq. (3.11) can then be written as
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fE, )= 8 [fz—(AB) ] lfk,,[(é) p]

_F(r) £"*(0,0,) 5 (@—(AB) ] (312)

Now, using the expressions (3.9) and (3.11), the transition amplitude (3.6) may be

written [38],

' = <Eb,J8MB,sbmb[V|l}‘o,JAMA,sama>
= 25+ 1 A (I M My~ MM, ) x B (6, R,)  (3.13)
lsy

where m = M, — M , + m, — m, and the ‘reduced’ amplitude ﬁ‘j""'""' is given by,

@+ 158 Bmme B, )= 5 (tom o, — iy jm —my +m, )

momim'

(ss,,m —my|sm, — mh -y u.jdi:_[d;:rm.m.(kb’ﬁ-)

g oo F ki, () (314)
In the absence of spin-orbit coupling, the z, . becomes diagonal and spin components

m = m'. So, ‘reduced” amplitude f, becomes,

(27+1)y ﬁsj‘”’"""‘ (noso)= (lsm, m, — my|m—m, + ma)

% (5,85, jsm, —my ) x (<P (2141 BT (315)

where,
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(21 + 1) B = [ dr, [ 2 (6 2 ) m G 2 ) (3.16)
This g, will still depend upon s and j, if the form factor f depends upon these quantum

numbers.

3.3.3 Assumptions underlying DWBA formalism
The important assumptions underlying the formalism for making the calculations
more tractable are:
(a) In DWBA theory, it is assumed that the transfer takes place directly from the
target state to the final state by the simple deposit of the transfer particle to or

from the target. Since the interaction potential (V,, ) does not depend on the A

coordinates of the target, the reaction can take place only to the extent they
are in the same state of the motion in the final nucleus; otherwise the matnx
element would vanish.

(b) Another assumption concerns the distorted wave of the entrance and the exit
channels. In practice, they are chosen to be wave functions of optical
potentials whose parameters are chosen to reproduce the elastic cross-section.
Any wave function which has the same phase shifts at large distances yields
the same elastic cross-section. Since there are ambiguities and uncertainties in
the optical model pammeters, there are comesponding uncertainties in the

wave functions in the nuclear region.



40

(c) The interaction potential (Vyy) is assumed to be central.

(d) The internal structure of the transferred particle is assumed to be unchanged
during its transfer from target to the residual nucleus. And for single nucleon
transfer, the parentage expansion may be described in shell-model terms.

(e) In DWBA, the transfer reaction is considered to be so weak that it may be
treated in first order. This assumption may usually be valid, but Rawitscher
and Mukherjee [109] have pointed out that in some reactions cross-sections
are usually large. This implies that there may be other processes involved.
Thus, the inelastic processes especially those involving collective states, are
likely to be generally the more important of the higher order comrections to the
DWBA.

(f) Sometimes it is usually assumed that the interaction potential Vpx (X is the
transferred cluster or particle) has a short range and one or more of the
internal wave functions has a small range. This assumption gives rise to ‘zero-
range approximation’.

Some of these assumptions may be elucidated in more concrete form involved in

the following way:

1) It is mentioned earlier that in the reaction A(ab)B, the projectile is assumed

to be made up of the emitted particle b and another particle x which is captured by the

targert, so that a= b+x and B=A+x.
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The interaction responsible is taken to be Vi, , the potential binding b and x to

form a.
For the present purpose, it is assumed that Vyy is central, that is, scalar in the
separation distance rpy, S0 that b and x are in a s state of relative motion within a.

The nuclear matrix element (3.9) is then explicitly written as [38],
(JDMB' SbmblVlJAMA' Sama>
= [ ¥, (i) Fon () Vi) ¥, (64) ¥om, (i E, dE, dE,

(3.17)
Here £,,£ and £, are the intemal coordinates of the corresponding particle. The
spin transfer s is now the spin of the transferred particle x. [ Since, in general X may be a
cluster of nucleons, s need not be unique].
The precise treatment of the amplitude (3.16) will depend upon the reaction
model being considered.

However, for convenience, the wave function for the residual nucleus may be

expanded in terms of the eigenstates of the target

Ve, (e £i)= T P (EI I NI M) (318)

JIaM
Since, it is assumed that the interaction Vpx does not depend on the coordinates
Ixa, and hence cannot disturb the internal degrees of A only one term of the sum over
J'wM/, in Eq(3.18) will contribute to the matrix element (3.17), namely that
corresponding to the state of the target nucleus, J, =J, and M/ =M, The Clebsch-

Gordon co-efficient in Eq(3.18) takes care of angular momentum coupling. The
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remaining factor (2, is associated with the wave function for the ‘particle’ x. The last

factor (2, may be expanded into spherical harmonics in 1z, the coordinates of the centre

of mass of x with respect to that of A, as,
o (rsty)= Zr F (0ot @ )OS (res ) % (lsm, pr = mi|jps)  (3.19)

In general, the function @that cames angular momentum s with component
(42— m)cannot be factored into functions depending on the radial coordinates r.4 and
the ‘internal’ coordinates £ _ separately. Simple factoring is only feasible if the internal
structure of x does not change during its transfer from a to A and can be ignored
Strictly, it is only true for single-nucleon transfer.

FEven if @ is not simply factorable, the integration over the intemal co-ordinates

&, and £ in Eq. (3.17) may be performed,

(¥, G052 (1 & Ve 8 W, Vs £ ML,

= (s,5m,, p— mlsama )H,sj(ru,rbx) (3.20)

the scalar function H is defined by Eq. (3.20). Using Eq.(3.18), (3.19) and (3.20) in the

matrix element (3.17), and comparing with Eq. (3.9), it may be immediately written as

O (5.2 )= BT 0000 o) (3:21)

Here H is a scalar, the rotational property of G are clear, Further, G carries parity

of (- even without use of zerorange approximation. This is a consequence of the
assumption that b and x are in an s state of relative motion when they form a.

2) For a particular case of single-nucleon transfer, the parentage expansion (3.18)

may be described in shell-model terms [111,112]. Hence, the function f2can be
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identified as the wave function ¥ for the nucleon orbital (J, j), times a spectroscopic
amplitude
2 (rnd)= 0", (rns) (3.22)

The usual spectroscopic factor [112] is then just S, =n(a, Y’( n is the number
nucleons in the orbit ). The sum over ! and s in Eq.(3.19) is now superfluous as s=
onlyand /= j + ] according to parity change, and the function @ is factorable,

D5 (ras6) = "V (ra .o (:) (323)
where, U, is the radial function for the shell-model orbit and ¥, is the nucleon spin
function. Consequently, H,; in Eq. (3.20) is also factorable,
H, (ot )=a U lr. DR, ) (3.24)
where,
(s,smyo|s,m, \D(r;..)
= [0, & Vi 68 WP (e Sl MG, B:29)
If the wave function for a is also factorable that is, if
¥ (i) = B, , (6:) (3.26)
then D in Eq. (3.25) becomes just
D1y ) =V (13 2, (1) (3.27)
where 77 is the value of ¥ in the spin-state ¥
The zero-range approximation is usually obtained by assuming that the function

D(r,. ) is of short-range and may be replaced by a delta function as,
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D(r, )~ D,5(r,.) (3.28)

Since,

o)) (s ) 2
(1) = 5('% “(’%g) ';J (“‘%{MA))_S

so that Jacobian in the expression cancels out from the amplitude.

3.3.4. Differential cross-section
The differential cross-section for unpolarised projectiles projectiles and unpolarized

target nuclei is given [38] by,

fiﬂ_—, Habh Eb_ ZITIZ (3.29)
a2 (2mn?f k, (27,+1)2s, +1)

Where, p, and g, are the reduced masses of the respective particles, and the sum is over

M ,, m,, M, and m, . In terms of the reduced amplitudes (3.14), Eq.(3.29) becomes,

2

(3.30)

n‘_f_?-_ = Juapb ﬁ 2‘]84—1 Z
dQ  (2mn) k, (27, +1)25,+1) jimm,

inmym,
2 A8y

Is

It is to be noted that sum over M, and M, has made different j values incoherent, but

interference between different sand !/ remains. If only one value each of sand /are

important or allowed, Eq. (3.30) may be written as,

2
do _2/,+1 |Ahfl
dQ  2J,+1 ; 25, +1 7,(0) Ll

where the ‘reduced’ cross-section is
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(3.32)

In order to compute the cross-section, it is necessary to have explicit expression for the
‘reduced amplitude” A. It can be done with help of the partial wave expansion of the
distorted wave y. Restricting to the coupling like .S [108], the expansion of the

distorted wave may be written as,

P (E,?) = (%JZ(LWm[N + m)(LsM +m—m',m|[JM + m)

LTI
iy, () * O, " (6,0,) (3.33)
The resultant angular momentum, J=L+5, and its z-component (M +m) are
conserved during scattering by the spin-orbit potential, whereas the individual z-
components of I and § are not. The partial waves are solutions of the Schrodinger

equation

: L(L+1) (2 ]
{?4_’{2” (rz )%[}:—?] (U+UC+ULJ)JZU(k’r):O (3.34)
with y,,(0)=0. For large r, beyond the range of the nuclear potentials, these radial
waves have the form,
20y = HilH (o)~ 5 H () Jexplio, ) (335)

where, H, =G, +iF, is the outgoing-wave Coulomb function [113], and 7] is the

reflection coefficient or scattering matrix element for the (L,J) wave. The ] are
computed by numerically integrating Eq. (3.34) and matching the function and its

derivative to the form (3.35) at large 7. In Eq. (3.34), U(r)is the central optical, U,(r)
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the Coulomb potential and U} (r)the value of the spin-orbit coupling for theZ andJ

wave.

For more general case, the form factor of Eq(3.11) is expanded in spherical

harmonics in 7, and r, separately,
flsj,m ('E!”:!) = ZEEL, ("La LN )YJ.'.J:lr *(gbq,b [:“' (oaq,a)x (LILZMm ‘_M|Im> (336)
The Clebsch-Gordon coefficient ensures that fbehaves like F™* under
rotations. Using this in Eq.(3.13) with the partial wave expansion (3.19), only L, =L,,
L, = L, terms contributes, and we obtain for the ‘finite range’ case, if m >0,

lfnm.m, (9, FR): ”ab(*)m”H._" I-m-my-m, (9’ FR)

s/ s

= Zi"f“"“iaf,b A§<ijmb —mm—m, +m, |Jama)
LiaTdds

X <La.s'cl Oma]Jama )(Lbsb —m, "’bl‘jb"’a - m)

) | ] l 5
(Ly-my )" .
- [(L: + M) PLQ (8 Ja La sa E’J'I'JI (3.3‘7)
Jy Ly s,
where,
, 4 ; . .
Ii“fhm. :mjradrajr;drbzw‘ (kb,rb)F“ﬁL' (rb,ra);(w'(ka,ra), z, is the sign of

k,k,

a

parity change (~)*%; and %= (2x +1)".
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With this explicit form of ‘reduced’ amplitude B, the Eq. (3.16) and (3.17) gives the
expression of differential cross-section.
3.4. Effect of non-locality of the opftical potential

The effect of non-locality of the optical potential is usually considered in all
DWBA treatment. A brief theoretical background has been outlined here. The illustration
follows basically the references [99,106,114]. In most analysis of elastic scattering a
phenomenological optical potential is sought which yields agreement with the data. This
optical potential, UJ,(#), is usually taken to have a simple local form. By local, it is meant
that at the point T, the particle feels the potential only at that point. The Schodinger
equation then reads,

W
[—5!—1\72 +U,(¥)- EJ /(7)=0 (3.38)

The situation in a real scattering problem, is always more complicated than
encompassed by this equation. For example, the incident particle can excite the nucleus.
The true state vector for the system has therefore, many components describing many
things that can happen, and those are coupled to each other by virtue if the mutual
interactions that can connect the various components or channels.

Nonetheless, fundamental theory shows that the complicated problem involving
many channels can be reduced to a simpler one containing few , or only the elastic
channels, provided that the interaction between the scattered particle and the nucleus is
suitably modified This modified, or effective, interaction is, however, a very complicated

object. No really satisfactory calculation of it can be made, and certainly not an exact
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one. It is usual to transmit the effect in the energy dependence and non-locality means

that the term U, (7 }#(7) in Eq. (3.38) must be replaced by

(U7 W (7 ) (3.39)
where  U(f,7’) is the non-local potential. Thus the wave function at point T depends on
conditions at all other points in the range of the non-local potential.

The consequences of a particular separable form of the non-locality have been

explored by Perey and Buck [114]. Their result is

U(r,r')=U(L[F+7)H(F - 7) (3.40)
where, in numerical applications, the function H is taken to be Gaussian.

Two points to be noted here: first, that the equivalent local potential that yielded
the same scattering as the non-local potential is weaker |[U,|< |U,|; and, second, that in
the interior region the wave function of the non-local potential, ¥, (), smaller than the
local potential ¥ (f) which is known as ‘Perey effect’. In fact, when the form of the non-

locality, H(¥ — ') is taken to be Gaussian of range /3, a relationship between these two

wave functions can be found such that

¥, (F) = F(r(7) (341)

where F(r) goes to unity in the exterior region but in the interior region F is less than

F(r)= {1—[’;5: ]L'L(r)}}.S (3.42)

unity and is [99)]
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where, 4 is the reduced mass. The value of A which Perey and Buck found for nucleons

that yields a best fit to the data is f(p)~ 0.85fm, Bla)~0.2fm, B(d)~0.54fm and

Blt)~(0.2-0.3)fm [39].

3.5. Full finite-range DWBA computation

Charlton [149] developed a method to calculate full finite-range DWBA matnx
element. This method is based on plane-wave expansions of the distorted waves, which
allows a separation of coordinates and, in effect, replaces integrals with sums over plane-

wave states.

The differential cross-section for a stripping reaction A(ab)B is given by the Eq.

(3.29) as,

do _ pp, k
a0 - (2,5,:) kb (27, +1)(2s +1 ,,,,,,Z,,}T ) A

where the transition amplitude (Eq. 3.6)

T = J | drdrxf Er) (v v )26 7) (3:44)

Now, the transition matrix can be written in terms of spectroscopic amplitude and
reduced amplitude ( Eq. 3.13) as,

To% - E(z; F 1 A (7,1 JM My — M | T5M )
7

« ek, ) (3.45)
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where m =M, ~M ,+m, +m, ndthe ‘reduced’ amplitude B,"™™ is given by,

(25 +1)47 ”'""’”(k k) 2 (i, mi, — my | jmi’ — i, + )

mymym’

' ' ' ’ y~5q
x (sasbma,ﬂmb|sma ~m, )(«»)"

[, di g, ] x fin G2 (6,07 (3.46)

fion(7,7.) is the form factor given by Eq. (3.36).

a

The coordinates 7 = R —(2]5 and 7, = [%F — p are shown in Fig. (3.1).
a
The distorted waves can be expanded using spherical harmonic as ( Eq. 3.33)

15k, ) (KJZ@Mm'M + m)LsM +m—m',m|JM + m)

JIM

it A W O X2 (6,0,) (3.47)
By using the method proposed by Charlton [149], the radial part of the distorted
wave can be written as,

e @ @
kr Zanuh (3.48)

where j, is a spherical Bessel function, and the expansion is applied over a limited
region of space (for values of the radial coordinate up to R; =20 to 25 ﬁn.) and N(L) is
the number of plane-wave states at the partial wave quantum number state L. The
coefficients a'*) may be found as overlaps of z,, and j,, if the k,’s are chosen in such

a way as to allow the functions to form a complete orthonommal set. This can be
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’

accomplished, by choosing k such that j,(k,R,)=0 or j,(kR,) =0, where prime
denotes derivative with respect to the argument evaluated at R, .

But, Charlton [149] expanded the coefficients aﬁ*[_), to calculate numerically as,

wn(rL)
als = Y NLBE, (3.49)
n'=1
where
Ry
bid, =k [rarg k)i (k,r), (3.50)
0
Lo
and NZ%, :{oﬂ ] (3.51)

where O is a matrix and its elements are

m

R
O = f rdr j, (k)i (k") (3.52)
0

Using the technique of Eq. (7-10), the radial part of Eq. (3.48) can be written as,

@) N(L)N (L) L 5id) o
x5 er) = (kr) 2 3 Ny slkr) (3.53)
With the use of
an(i) 7, X (7) = [, e® 1 (i) (3.54)

the expansion of the radial part of the distorted wave may be expressed as

an) 5, (2 ()= () S 3 NEBE) e T2 () (355)

n=1 n'=1

This form is used in a full finite-range (FIFR) expression of transition matrix element. The

computer code DWUCKS [39] calculates the differential cross-section using this method.
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3.6. The DWBA theory for two-nucleon transfer

3.6.1. Contrast between one and two-nucleon transfer reaction

As described in the previous sections, one-nucleon transfer reactions probe the
single-particle structure of nuclear states. The angular distribution is sensitive to the
orbital angular momentum of the state into which the nucleon is transferred to or
transferred from. For two-nucleon transfer reactions, the angular distribution again is
sensitive to the angular momentum transferred in the reaction. However, here the angular
momentum is carried by a pair of nucleons, so that it does not directly reflect the angular
momenta of the single-particle states into which the nucleons are transferred. Only to the
extent that the two single-particle angular momenta must sum to the transferred angular
momentum is there a constraint. The angular momentum of the pair generally can be
shared between them in many different ways, and nothing in the measurement of the
transferred angular momentum distinguishes between these. Therefore, all such ways that
the angular momentum can be shared, consistent with the structure of the nuclear states
connected by the reaction, must contribute coherently to the reaction. These coherence
can produce large cross-sections in states for which it is constructive and very small ones
in states for which it is destructive. The coherence depends on the correlation between the
two nucleons — the degree to which they are transferred.

Correlation in the motion of a pair of nucleons inside a nucleus depends on two
factors, one, the conservation of the angular momentum and parity and two, the nucleon-
nucleon interaction. The angular momentum and parity of the nuclear state impose a

certain minimum correlation because the motion of the nucleons must be consistent with
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these conserved quantities. It is usually referred as static correlation and the nucleon-

nucleon interaction induces spatial and spin correlation, known as dynamical correlation.
In the language of shell-model, it is the interaction that is responsible for configuration
mixing in the nuclear wave functions.

Consequently, the two-nucleon transfer reactions provide a means of testing
nuclear wave functions in details not accessible to single-particle transfer reactions.
3.6.2. DWBA formalism for two nucleon transfer

It is sensible to develop DWBA formalism for two-nucleon transfer reactions
analogous to that of one-nucleon transfer. We shall consider the two-nucleon transfer

stripping reaction A(a,b)B represented diagrammatically in Fig.3.2a.

& O-OC

Fig.3.2a Schematic diagmm of two-nucleon transfer.

Fig.3.2b. Schematic representation of the vector coordinates used in the stripping reaction A(a,b)B of two-

nucleon transfer. The point labeled B and a comrespond to the c.m. of B(=A +1+2) and a(=b+1+2).
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The DWBA expression for the transition amplitude for two-nucleon transfer can

be written [105,115,116] as,
1,=0%, (250 EniafWhalu-Tu

P N (356)

Vi)

Here J is the Jacobian of transformation to the relative coordinates 7, and 7,,, V,, is
the sum of all two-body interaction potentials between each nucleon in the projectile a

and those in the target nucleus A; U « 15 the optical potential describing elastic scattering

in the incident channel; zg:” and zf,;’” are the distorted waves in the entrance and exit
channels respectively; . ,and w, , are respectively the totally antisymmetrized wave
functions of the (atA) and (b+B) systems. The primes on a and b in vy, ,, ¥y,.

Xo,.0,80d x, . are written to indicate that the comresponding z component of spin

should carry a prime.

Similar to single nucleon transfer reactions, the matrix element

<Wb‘,B|VaA ~U s A) contained the details of the actual interaction, while the distorted

waves characterize the dynamics of the reaction

3.6.3. Exchange Effect on Transition Matrix

The totally antisymmetrized wave function y, , can be expanded [105] as a
linear combination of products of separately antisymmetrized wave finctions y, and

v, e,
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-

A T a
Vo =(a+ ) E(—)"(GI:)PM%WA (3.57)

a ey m

where Py, makes m interchanges of particles between the groups a and 4.

+A4Y)
(a ) is the normalization factor. Similarly, y, , can be expanded as

a
b+B
Vos [ i J Z( )( I],,,,wbw,, (3.58)

The interaction potential which appears in the transition amplitude can be written
more explicitly as,
- a B a —
V,~U,= fZ(V" +Vy, )+ Z?: Ve—-U, (3.59)
=3 J=1k=3

where V, is the two-body potential between nucleons j and k ; the sum k is over all

nucleons in the projectile a, and the sum j over those in the core nucleus 4. Assuming the
‘core-independent’ transition, the second term of the Eq(3.59) becomes zero. So, with

the foregoing assumption, the nuclear matrix element in (Eq.3.56) becomes,

0o

> (Vi + ¥ *%-WJ (3.60)

k=3

(V’b'.ﬂ'Vu ~U

X <V’b'ws

3.6.4. Angular momentum expansion of the nuclear matrix element

Equation (3.60) can be evaluated with the help of nuclear shell model description

of the wave fimctions of g, and y,. For stripping reaction, the first step is to expand the
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final nucleus wave function y,(&,,7,7,) into a core wave function y,(Z,) and a pair
wave function V/{f‘,,Fz) using jj coupling. Integrating over the core coordinates £,, the

following result [105,106] is obtained :

4 %
e a A + 2 LU nyly " . .
<Wb’,B!VaA ”Uu‘ Wa',)!>: ( J [ ) Z[ Al st ]S:IAB[[”]IIJI] ["zlsz ]v'JT]

2 2
L L, L

x(J MMy M,) CNINTN,) L LS
h J» J

% <Wb'V’m’ff;;aT Z(Vu * Vzt) V’a‘> (3.61)

The expansion coefficients known essentially as fractional parentage coefficients (cfp)

are given by,

IAB([n,t,j.] [nzlzjzl'JT) = j[w"’"‘ (£)) w"""”(ﬁ-%)}

MpNp

<Witm, (EnoFy) dE drdF, (3.62)

where the square brackets denote vector coupling, i.e.,
bt e, = 3 MM M,) [N INITN,)

JaTy

XY v (3.63)
The LS-jj transformation bracket [104] in Eq.(3.61) is related to 97 symbol [110].
Now, the integral in Eq.(3.61) can be written in a form which separates the orbital

and spin-isospin wave functions as



57

<V5'V}"2L:J;

Stva) wa.>-—z,u(msxw)

2 a
X3 A s et e Y (3.64)

J=1k=3

Here X} contains only spatial integrals; that is,

X;U _ <¢;,=0¢1,1,j Um(rjk)

co:;‘°> (3.65)

and the general form of the two-body interaction potential is given as

Fig = EmUm(’jt) Q;R; (3.66)

Here Q) (ij) and R}, (.RJ‘*) are spin and isospin singlet (triplet) projection operators
for the pair jk and U ™ (rﬁ) are radial wave functions; the pair wave function is

phir =3 (LASZIM) 044 x5ibs, ., (3.6T)

where @ and y are orbital and spin-isospin wave functions respectively.

For the case of (o.,d) reaction a=4, b=2; s, =0, t, =0and 5, =1, ¢, =0, so the
expansion of y,, is

T 7))

[T 27 4) (3.68)

The two-particle fractional parentage co-efficient has the value

(__)S'H _L 6

‘\/5 S'+T'1
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Evaluating the spin integration as displayed in Eq(3.64) with the method of

Racah algebra [105], the nuclear matrix element can be written as:

o[ e L,

(Wb'a 'Vu - EM

XIAB(["J:L] [’H’zf.zl-JTJ (]AMA‘MPBMB) (TANAWPNBNB)

x (sbab.SE]sdoa.) (tbvbTN]dea) (LASEI.M)

i o4 I
x|1 1 5| itfMET(R L F,) (3.69)
hoJp J

where

I G o) =10 3 (5)UG

ZZUW(’%

}n:] k=3

‘5F+0 1<‘P’°oﬂo¢‘ tht

.;p'-;°> (3.70)

3.6.5. Differential cross-section

Using Eq.(3.69) for nuclear matrix element the transition amplitude can be written

[104,105,112] as

S S P iﬁ[[n,zh] [nzzm]j [(zs,,u) (zm)]%cw;mw,)

x(+ 4 8|8 .. 0) 3.71)
i Fa J
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1
The ‘spectroscopic amplitude’ 3%, is analogous to that used in single stripping theory

[112] namely,
i ) ) A+2 i ) _
(ol boi] 7 )=( 37 1 (W) i 7]
Also, by, is defined by:
bm‘ == (_)b“(g)![Z(ZS-‘_ l)]—%(tbvbmlrava) 5S+1’.l (3-73)

Do ? is essentially the spectroscopic factor for the light particles [104].

= in Eq.(3.71) is given by,

M o,0

(21, +1) (21, +1)

ﬂm'r (0) _ ZI.JJ&J’} il, ~l- L(_)a, -8, +L+8S-J
M o,0 =

(27 +1)
(b= 2) ! ’( ) |

| g | \1,05,0.|j,0,) GAS, —O,l1,: 4 — O,

(lb +zb) ] I bA'b b b|Jb ‘a‘b b
L -, L
x(jao-ajb'j'b - abI'] —-M) 5, 5 s
ja jb J

X P'ah (COS 9)} Wt gy /h ST (3.74)
where, 4, =0, -0, - M,



f 3 4n
I"l’u"'i”‘”=k—’;—J‘[u;m(kb:’La)F%u'hﬂ(raA'rbn) "z.j.(ka'ru) Faa Toplay Al
a’b

(3.75)
and

F.[li,u,!.ST(rM, B ): ZA,A. (LaAaLbA b ILA)

[P T) Fon ) Toullo) s B (3.76)

Using Eq.3.71 the expression for the differential cross-section for two-nucleon transfer

reaction can be written as [105,106],

(g] _ Moty Ky (2, +1)
dﬂ stripping (2ﬂhzf ka (2‘1A+1)

Z;'r e Zl"l‘lh] [mh s JesT

x b S%w (["I’hfl] ["zlzfz] -'JT) (TANAmlrlNl)

L1, L i
| : § 8| By an 3.7
h 5 J

3.6.6. Numerical evaluation of the radial integral

To evaluate ['2""} one must specify the detail of the coordinates with

reference to Fig. (3.3). Defining r, =7, —7 as position vector of the center of mass of
the particle j relative to the center of mass of k, where r; (with one subscript ) is the
position vector of j relative to an (arbitrary ) origin, one can write,

R= 1+ i)

-

Pz%(ﬁb'Fsz)-
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Fia

B=(A+1+2)
a(=b+1+2)

Fig. 3.3. Schematic representation of vector coordinates used in the description of
the direct stripping reaction A(a,b)B. The points labeled A and b correspond to the
center of mass of B(=A+1+2) and a(=b+1+2).
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Denoting all internal coordinates of the nucleide by £, the equation for [

may now be written in the form:

I (Futis)= I‘P 0:0 fb o' (P rz:'R)

a

J=1k=3

where the coordinates £, and 7, are independent of

[iZU( )] “(6,.P7) dt, o,

WioL

(3.78)

and 7,,. However, the

functional form of the intemal wave functions of the transferred pair and the outgoing

ejectile, and that of the interaction potential , are most conveniently expressed using the

relative coordinate and the center of mass coordinates of the respective pair. The Jacobian

of transformation between these coordinates is

i )

So, the expansion coefficients in Eq.(3.76) are given by

FH G Fn) = 3 (LA |LA)

<[ 1 G P, o Wi, g

and hence the Eq. (3.75) can be written as

1‘1‘1“,].-‘1}5 i g"g_']jul,h (ka’rM)FlilzﬂJi (rM.’;’)
b

ot 5" (kba'l'ba )’u’éﬂdrud’i;a

(3.79)

(3.80)

(3.81)
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For reaction (o1,d) integration must be made over four coordinates &, and 7, in

Eq.(3.78), r,, and r,, inEq. (3.81).
Now, the differential cross-section then can be numerically evaluated in terms of

these radial integrals involving the coefficients.

3.6.7. Approximation for simplifying the calculation
1) Zero-range Approximation
Because of the complexity of the problem, a zero-range approximation is usually made. It

essentially reduces f*2" to a finction of one argument and reduces /"2%**» to a single
integral . The equation (3.78) is replaced by [ 105]
14 Guniin) = SPIE Foa i) (382)

The implication of this assumption is that either the intemal wave function of the
incoming projectile a, or the interaction potential has a range short enough that it may
be replaced by a delta function. Referring to the Fig 3.3 the vector P can be written

intemsof #, and 7 ,:

- Ba s
P = o=l 68)

A , ; —r
where y = B Using the expansion the delta function in terms of spherical

harmonics the final expression for zero-range form factor F,"?*(7,) can be written

as,
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Ro)=i [ oe) o) | X0 | ot Pr)

<Y, ,(£,) d&, dFdP dr, (3.84)
This equation is only valid in the zero-range approximation, that is, either the
wave function of a or the interaction potential must be considered sufficiently short

range that a delta function &{7) can be introduced into the Eq, (3.84).

3.6.8. Wave function of the transferred pair of nucleons

The pair wave function @"?/ can be written as a product of single-particle wave
functions as:

PN FaFia)= NY, , GALAILAY (<) RI o™ E e, (389)

where P is an operator which makes m interchanges between the particles 1 and 2.
If [n},/,]=[n,1,/,] the normalization factor N = 1; otherwise N = + 117

Wiyt

Using the wave function, the radial integral /%" may be written as:

a

iZU(rﬁ) ?"

J=1k=3

LAK‘;D‘G 0?’[':{:"" ]wl”:':h

f' il = —IZNZ [1’111222 -oo> (3.86)

Following Glendenning [104], g is defined as g = 2N , where
g =1 if [hj]= b2

2 , otherwise. (3.87)
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The radial integral of the form factor for two-nucleon transfer reaction contains wave

function generated from the product of the single particle shell-model wave functions of

the variables of the separate particles. However, the calculation can be usually be

performed more simply if the wave function is expressed in terms of the relative and

center-of-mass variables of the two particles.

The wave function of the products of the functions of the vanables of the separate

particles can be calculated in the following methods:

a)

b)

A Method has been developed by Talmi [118] and Moshinsky [119] where the
single particle wave functions are assumed to be the infinite harmonic
oscillator wave functions. This method associates Brody and Moshinsky [120]
brackets with the calculation. Glendenning prescribed this method for the two-
nucleon transfer form factor [104,115,121].

Another method of performing the transformation to relative and c.m.
coordinates with the single-particle wave functions of a finite well has been
treated by first expanding the finite well wave functions in terms of harmonic
oscillator wave functions of varying numbers of nodes, and then performing
the Talmi-Moshinsky transformation components [122,123].

The third method introduced by Bayman and Kallio [107], where
transformation has been performed directly with the finite well wave functions
and does not involve the harmonic oscillator expansion. The condition is this
that it is limited to that part of the wave function in which the two-particles
have relative angular momentum zero. The computer code DWUCK uses the

Bayman-Kallio form factor.



d) Another prescription for the two-nucleon form factor is that of Rook and
Mitra [124] which also does not use amy transformation to relative and c.m.

coordinates. The Rook-Mitra form factor treats the transferred pair wave
function as a product of two Woods-Saxon wave functions. In the zero-range
approach the relative motion of the two nucleons is ignored so that the two
wave functions have the same radial argument. A finite range correction can
be made using the local energy approximation, in this case, the wave
functions of the two transferred nucleons have different radial arguments. The
Rook-Mitra form factor is incorporated in the distorted wave computer
program NELMAC [125). Lewis et al [126] have compared the Bayman-
Kallio and Rook-Mitra form factors, but have not been able to identify either
prescription as being superior to the other.
Drisko and Rybicki [122] have emphasized that the proper treatment of transfer process
requires wave functions with the asymptotic behaviour of a finite well as because the
process i1s sensitive to the nuclear wave functions in the vicinity of the nuclear surface
and beyond. Here the methods due to Glendenning and Bayman-Kallio will be presented
in a brief form and in the present study Bayman-Kallio’s method has been followed in

computer computation [ DWUCK4].

3.6.8.1. Glendenning method for two nucleon wave function

The essential steps for the method for evaluation of F,'"* using pure two-nucleon

wave function suggested by Glendenning [104,115] is being outlined here.
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First, the wave functions tp[""”‘]( ,) and @™22l(7 ) in Eq, (3.86) in the previous

section are transformed into functions of relative and center-of-mass coordinates:

LA) gMiil,) olianlz )

Z%(M%
=3 (ALNL' : L]}, d,) (1AL'A|LA)

<o) 0"%(R) (3.88)

where nlA, NL'A" are the quantum numbers describing the relative and center-of-mass
motion of the transferred pair. It is to be noted that the notation n is used as the number of
radial nodes in the wave functions including the origin, but in Eq. (3.88) # =n—1 has
been used according to the definition used by Moshinsky [120,147]. If the single-particle

wave functions are chosen to normalized oscillator functions with the parameter

mm
V= ——:
h
PG = B (72) B, ) G
o5 ) =R, (7,7) [0 (Ba)] (3.89b)
then,
q’f(ﬁ’.l) = an(‘]z“ Wzlz) Elyiz(':u)] (3.90a)

'Pf'y(ﬁ) = R,,L.(ZvRZ) [fL'Y M(R)] (3.90b)

and the transformation coefficients are well known [118-120] and have been tabulated by

Brody and Moshinsky [120].
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Here the oscillator radial function is defined as:
g % l
R(w)[nz—:zf'ﬂ} (wfexp(-1w7) L) @oD)

where

and the harmonic oscillator potential is 1 mw’r”. In this case, the sum in Eq. (3.88) is
restricted according to:

2m+ 4L +2n,+1, =2n+1+2N + L'} 3.92)

L+L,+1+L =even
Following the pure relative s-states for the lLght particles, / is taken to be zero.

Incorporating Eq. (3.88) and Eq.(3.86), F,"** can be written as:

FJ"’L(FM): i""gZ (ﬁO,I\—/L . L|ﬁ|lvﬁzlz : L)

"I?’!';o'('fb) ¢’n0-(;z1) [ZEU(’}'&):’ 'P"o:o(fa) ?"j —) YEA(;M) dé, fﬁzt dp d;'M

(3.93)
Finally, perfooming the integration over £, and 7, and assuming a Gaussian
form for potential and for the wave function of nucleide a, the differential cross-section

in the absence of the spin-orbit forces, in the zero interaction approximation can be

written as [105,121]:
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(do) - s bl N D)
stripping *

dQ (2at’} K, (27,+1)

2

*| B0 (L r'E R (cos @)h* (3.94)
where,
L L 4
Gn(LS]T): -Qdﬂnzhhhl In:lmlgs.}fa(["lllfll ["zlzfz]"”) '5 lz §
ho o J

x(#O,NL : L|A}, 7, : L),

e et
A

(ZIa +l) (21b+l) "
(’c = A)
(2L +1) [(la +A)] (’bOIaA‘LA) (lbOIaOILO),

(4) 7c,

Jlht = TIII,. (ka,r) RNL(ZWz) ", (kb'-"') dr,
b

a

2, and £, are integrals of the products of the oscillator wave functions ove:‘cfband
7, respectively.

The wave function RNL(ZWZ) in the radial integral is essentially describing the
motion of the center-of-mass of the transferred pair of particles. The energy of this pair of
particles is given by the experimental separation energy. Consequently, the asymptotic
behaviour of the wave function Ry, (2w2) should be exponential in form, exp(-ar), with
the constant o, determined by the separation energy. However, in the treatment given

here, the wave function RM(ZW?') was chosen to an oscillator function To comect for
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this, Glendenning [104] recommends matching a Hankel function onto Ry, (2vr2) at some

suitably large radius.

3.6.8.2. Bayman- Kallio’s method of two-nucleon wave function
Bayman and Kallio [107] started denving two-nucleon wave function from

normalized two-particle shell-model wave function as,

1};;!,;‘, ,n,!u‘,;f,]"(ﬁo,‘, 7o, ) =
, y
[w::z“f‘ (ho) vy (rz.oz)] +(A)’[*‘""-""(a,az) v (o)
; M M (3.95)
[2(”‘5%5:1:,'51. .) ] 4

T is the isobaric spin, zero, if the state is symmetric in the two-particles and unity if the it
is antisymmetric. The bracket notation indicates vector coupling to total angular

momentum T and its z component M. The single particle states (F, a) have the form

J

vi(7.0)= ' (F)r%(o)] (3.962)

P (F)= 10 (r )V, (7) (3.96b)
The radial function wu,(r) are normalized solutions of the radial Schradinger
equation with the chosen single-particle potential.
To find the part of the wave function (3.95) in which the two-particles have zero-

angular momentumn, it is expanded in an LS coupling representation with the help of

normalized 9 symbol [107] as,
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L3
q";’mmfm'l'r(ﬁolv’*’zaz): Z L3
L § 1

{[{ ?" (%) ¢'=(a)] +(—f”*"[¢(e)¢=(a)]‘} lz”(m)z“(az)r}

% . ¥ 397)
[2(1 + 6"1"7 5’1‘1 5!'1}: ]:|

The part of this wave function in which the two-particles have zero relative

angular momentum is permutation symmetric in § and £,. Thus, if T=1, then S=0 term
and if T=0, only the S=1 term is taken.

The relative and center-of-mass coordinates in a symmetric form are defined as

7= (B '935 (3.989)
- (7 +7) 3.98b
R 15 (3.98b)
and an expansion of the form

[@,'3,‘ ) wf.’,(?z)] ; +[¢::, ) wﬁ,(ﬁ)]L

[2(l + 5"1"1611’2 leh x .
- 5 ARy ) @

are envisaged.

Setting R = 7 and integrating Eq. (3.99), f, £(r,R) is obtained as
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R
Ly R) = .
Jor(rR) (2L +1)%
L L
o4,7) o 2)] [rp () ot (r)]
y ; ¥ g (3.100)
—2) [ (1 * 5"1"16'1’:51111) *
1A
a5 Y;(5)25M0(2A+1] d
4rn
1o(F)= —

The “distribution function” f, /(r,R) obtained by performing the integral in Eq. (3.100)
contains all the information about the relative angular momentum zero part of the two
particle wave function.

In zero-range DWBA treatment of stripping into the two-particle state, one need
to evaluate the form factors using this radial part of the wave function in Eq.(3.100)
transformed into a function of relative and center-of-mass coordinates generated from a
finite well single particle wave function.

3.6.9. Selection rules for two-nucleon transfer

A number of general rules known as selection rules arise from the formalism
adopted in the processes of two-nucleon transfer reaction. They come into being from the
properties of the wave functions used to describe

(a) the initial and final states,
(b) the incoming and outgoing particles, and

(c) orbitals of the transferred particles.



73

Let the initial and final nuclei are described by the quantum numbers J,,7, and
Jg, T, respectively, and the two transfered nucleons by the single-particle orbitals

[mlyjy] and [mgly),]; then,

(1) To~T,=0, %1
ljl_jzlsilB_JA,Sjt+j2'
(2) If both the initial and final nuclei are considered to be states of good

seniority and reduced isospin, then

Vo=V, =0, 2
t,—t, =0, £1

where v's and t’s are seniority and reduced isospin quantum numbers respectively.

(3) Let L, S, J and T be the possible quantum numbers of the transferred pair
(ie., l1+1=L etc.); then
T —Tu < T< T+ T,
[Ta—Ju|<T<Tg+],
also

IL-1,|]<L <l +1,

ljl‘“jzl <J< jl *’jz-

(4)The parity change between the initial and final states is given by

ATl = (_)I| +13
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If the transferred particles are in a relative s-state, then 1, +1,+L = even and An = ()"
(5) The restriction on L, S, J and T are derived requiring that the transferred pair should
be anti-symmetric that is,

when, S=0, T=1

5=1, T=0.
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3.7. The DWBA theory for three-nucleon transfer

3.7.1. Transition amplitude with a microscopic form factor
Analogous to single and two-nucleon transfer, the transition amplitude for three-

nucleon transfer reaction in DWBA is given by [127]
T(f:) - Haﬁdﬂzt ). kp’rpﬁxw ngVIW,q) (+)(ka-Fm) (3.101)

In the expression for the transition amplitude the integration is carried out over
the center of mass coordinate R = %(?1 +#+7) and the relative coordinate
r= %(q +7, 4+ 7,)-7, between the ejectile nucleon labeled 4 and the three transferred
nucleons labeled 1, 2, and 3, The distorted wave functions x(.)(ic;,FM)mﬂ 4 (')(Ep ,Fp,)

in the entrance and exit channels are functions of the relative coordinates

m

[+ 4

— — m
Fopis (ﬁ’iJR -F and 7, =R~ (-*-EJF in these channels (Fig. 3.4. ), where m’s are the

masses of the particle indicated in the subscripts.

St =

N23 2

Fig. 3.4. Coordinates used in the three-nucleon reaction.
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3.7.2. Nuclear matrix element

The antisymmetrized nuclear matrix element with the superscript a

(vl lvava) = (:T(A ; 3]i(w“pwa"IV lw.,"wf.) (3.102)

depends on the internal wave functions of the projectile y;, the ejectile y,, the target

1
A+3Ji

1
nucleus y°, and the residual nucleus y?. The binomial coefficients (:Tand [ ;

stem as usual from the antisymmetrization procedure [105]. In order to calculate the
nuclear matrix element (3.102) we need the interaction potential responsible for the three-

nucleon transfer
v = SWalia) (3103
1

which is a sum over the effective nucleon-nucleon potentials ¥,,(7,) between ejectile
nucleon 4 and the three-transferred nucleons 1,2, and 3. The antisymmetrized wave
function for the alpha-particle is also needed, which can be split up into a space and spin-
isospin part

Valsiiéarbands)= ?’a(ﬁr%!?}ra)::;io

sl 2, (3.104)

The wave function for the residual nucleus y; can be expanded in the JT representation

with the wave functions of the target nucleus and the three transferred nucleons as
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valla i :(’MT > 8i(ar)

3 JIATTa p

To

atey ™ cpe ey (3.105)

where the cross-product is defined as

oy ™ vie e ) = X S0 M,

MM NyN
X(TANATNITBNB)W;( p) ;:;r‘ V’:(‘:ugz:‘:z)ﬂ;rn (3.106)

Here p represents all quantum numbers necessary to characterize the three transferred
nucleons. £, and £, are the internal coordinates of the target nucleus A and the residual

nucleus B. The &, =(r,,0,,7,) with i =1, 2 and 3 are the space, spin, and isospin with 7

with respect to the center of mass of the core A. The expansion coefficients Siﬂ(pJT )

are the spectroscopic amplitudes.

The antisymmetrized three-particle wave function can be written as

V(.88 e = N(p)Z(pW, (8,6, ) i (3.107)

N(p) and Z(p) are the normalization and antisymmetrization factors [128]. The three-

particle wave function can be split up into a space and spin-isospin dependent part by

transforming from jj to LS representation using 9j symbols
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/ % hll Ly S Jy
V’:(glrgzré;m :%‘. zs: l IE Lk ';' Ja
- 2 S Jp L S J

JT
X[v’,(ﬁ-%-ﬁ) " x 2,023) "”]w (3.108)
where § = Y is taken for the spin transfer.

By inserting Eqs.(3.105 —3.108) into the expression for the nuclear matrix element

(3.102), this matrix element can be spit up into a space and a spin-isospin part. Hence the

THNE>

(et Jin,) pne ) s, 401,) o)

«(12362) o)

transition amplitude can be reduced to form [127],

1
GUER RO A IR

ll % jl ['IZ Slz Jﬂ

ol T . -

XZ Z(”l)n:;_i(s-'ﬁﬁﬂ:-lg(p) ’2 % J2 l’ % I3
S Ly S, Jo||L 3 J

«Sip(T) [dR digD" (,7,) FERF) 26 7)  3109)

a’ra.il

The configuration factor g(p) comes from the antisymmetrization and normmalization

procedure [128].
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3.7.3. Microscopic form factor for alpha-projectile
The form factor Fj' (ﬁ,i-’) is defined as the space part of the nuclear matrix

element in Eq. (3.109)

%(f?:@%)i) (3.110)

ZVM r4

Fe(R7)= < AR NN

I=1
In order to calculate this form factor the coordinates (%,7,,7,,7,) are to be transformed to
new coordinates R, ¥, ¥, = 7, -7 and 7,,, = 7, - (7 + 7,) (Fig. 3.4).

If the alpha-particle wave function is assumed to have a Gaussian form [127]

CulF P Ty ) = [mq] p[ 73 - )] @G.111)

T i<y

with the size parameter 7= 0.233fm™, which is comelated to the equivalent harmonic
oscillator constant v, =0.434fm™ by 5 = v, and to the rms radius of the alpha particle

by () = o

- =1.61 fm. Performing the coordinate transformation [129],
]

0.7 7 7 N = 00(F) 027, 7ss)

[T e Futer I ] i) | e

The interacting potential is also assumed to have a Gaussian form



i () =V, el 87, -7 ] (3.113)

with U, = 70MeV and £ =0.632 fin'[130]. In terms of the coordinates (7,7,,7,,), (i4)
can be written after applying the Chant-Mangelson approximation [130],

V(7.7 Fis) 2 VOF) YOG Frs)

=Wexp (- 47) { [ TR ,)]+ fexp [ F (%r,i,)] } (3114)
With Glendenning approximation, the potential can be written as,

V(7,7 "123)*’ Vm =3U exp( P r ) (%

The space-part of the three-nucleon wave function is given as

oL

Puln
o FRR)", ={[ ol7) " sv(a)"’] Xw(ﬁ)"} (3.116)

My

with single-particle wave function,

o(7 ) :: u(r ), Fu () where (i=123),

which are calculated in a Woods-Saxon potential.

In order to transform this wave function (3.116) to the new coordinates, the

single-particle wave functions qo(i'; )”’ are expanded in terms of the harmonic oscillator

wave functions with the hamonic oscillator constant v. The expansion coefficients are

denoted by a, , where p, is the radial quantum number of the corresponding harmonic

oscillator wave functions to the above mentioned coordinates using the generalized
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Talmi-Moshinsky [131] bracket (rl'l,nzl2 : Alppt,|NLnl : ).) for particles with different
masses 4, and /s, .
Inserting q’x(‘ﬁ!ﬁZ!F]H)ﬂ V(7 Fipi7rs) and @, (7,75, 7y,) into Eq(3.110), the form

factor split up into three terms, each depending on R, 7, and (F, ,7.,3) Tespectively.

Integrating over the internal coordinates 7,, and F,,, the form factor reduces to

Fi (R ) D(ap) ., Za ap,ap,<plllpzlz -'LizlﬂﬂlNl'sz”'o-'le)
N 1un"n ppapa
% (L, Ly : LR N0 : L), 0l (R) 3.117)

where u is the mass of a nucleon.
The r-dependent finite range normalization factor Dl ")('r' ) is given by

Do)F)=vO(F)pl(F)

=, B‘;] exp [—r’ (ﬂ=+§va)] 3.118)

The radial form factor @™ *{R "( ) is the spherical harmonic oscillator function

?"5(R)= %Hm(-’»ﬂ’ ) RiR) (3.119)

The overlap I,,. is the integral over the internal coordinates 7, and 7,,,.

In the case of Glendenning approximation (3.115) the overlap integral reduces to

1
(2n'+1) H2n"+1) 11
I, =(4v vy

nn

a1 2" 2"
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n'+n"
x(v, + v)'j[:" : :} (3.120)

3.7.4. Zero-range approximation

In the zero-range approximation the normalization factor (3.118) is given as

(127},
DER)(F) = ) 5 p =P5(7) (3.121)
D((,"'-’ ) can be calculated by the integral
Die? = [V O (F )pl)(F) (3.122)

3.7.5. Transition amplitude with a cluster form-factor

In the cluster approximation the interaction potential, projectile wave function,

and residual nucleus wave function in the expressions (3.103-3.105) are replaced

respectively by
vV =Vi7) (3.123)
5.8, )= o) Srale 0 (3.124)

valg ) =[‘“3] 535 8l (LaT)

Mg N
i I, TT, IS

o AT (A (3.125)
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The wave functions are given in the LSJT representation and the cluster space, spin, and
isospin coordinates £, = (R 0,1 ) After performing the spin algebra the transition
amplitude is reduced as [127]

T(f.’:,(A,B)—[;’]ig(JMAJMV,MB)(TANA‘;(%ITBNB)

(L 40, )3 (M, Jne) (3, 1(- M, Joo)

<8l (L17Y) [[ar a7, 7) F2R7) 2i) G120

where the form factor f‘;';“; (ﬁ,f') is given as

AEA)- (008 b0 o))

14

= ) off),, G127

with the radial wave function @, (ﬁ): of triton t calculated in a Woods-Saxon potential

between t and the target nucleus A. Here the radial quantum number is restricted to its
maximum value N, which is given by the conservation of the oscillator quanta in the

Talmi-Moshinsky [118,119] transformation,

Q=2N+ L.—i(2r1,+l,) (3.128)

=]
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3.7.6. Differential cross-section
The differential cross-section for three-nucleon transfer A(o.,p)B can be written as

[127]

5 T4, B) (3.129)

) (Z”h)2 E—(ZJ,{‘FI) M M Mp

(a‘a]_ﬂuﬂpa k, 1
dn

The quantities 41, and 4, are the reduced masses and fc; and I't.’ are the

relative momenta in the entrance and exit channels respectively. M, and M, are the

magnetic quantum numbers of the target and residual nuclei.



CHAPTER 4

CCBA AND CRC FORMALISM

4.1. Introduction to CCBA and CRC

An altemative approach often used to interpret and analyze the expernimental data of
direct reaction is ‘coupled-channels” (CC) method The method usually considered as the
extension of the distorted wave method confronting more complicated situations.

By coupled-channels method it is meant that these are the solutions that include a
relatively small set of coupled equations that results from considering a model wave
functions with a small number of terms. The truncation to a small basis states implies the
use of an effective Hamiltonian and interaction.

When rearrangement is being considered, so that the states from more than one
partition enter, the name ‘coupled-reaction channels’ (CRC) has come into use.

There may be situation of rearrangement collision in which a role is played by
inelastic transitions before and after the reamangement event. When the two sets of
coupled equations are solved for the inelastic transitions before and after the
rearrangement and the rearrangement itself is treated to the first order, the method is
usually known as coupled-channels Born approximation (CCBA).

This chapter will deal with the basic formalism of (CC) necessary and relevant to the
present study. The illustration will basically follow the references [52,132,133).

The Fig. 4.1 illustrate schematically some standard model processes:

(a) Fig. 4.1(a) shows some possible transitions for inelastic scattering, in

particular, it indicates no direct coupling from the ground state A to the
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excited state A** but this state may be excited via A* as an intermediate

state. It also indicates a ‘self-coupling’ term for the A* as an intermediate

state. Solving the coupled equations of the CC method for this system would

correspond to the infinite sum of all possible combinations of the arrows.

(b) Fig. 4.1(b) illustrates an analogous situation for a rearrangement collision;
solving the comesponding CRC equations is equivalent to summing all
possible combinations of arrows.

(c) Fig 4.1(c). represents similar situation to the case of Fig. 4.1(b), but one in
which a third partition has been considered which may supply the
intermediate states. This may also be solved by the first-order (direct) plus
second order (‘two-step’) solution.

(d) Fig 4.1(d ) represents a rearrangement collision in which inelastic transitions
before and after the rearrangement event plays an important role. This
feature is accounted for by the CCBA method as mentioned before.

All the formalism in relation to the basis of the DWBA method applies to the
coupled-channels Bom approximation (CCBA), since the latter is simply an
extension of the former.

The CCBA was proposed by Penny and Satchler and also developed by Iano

and Austemn [133]
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Fig 4.1. A schematic representation of some multi-step processes.
Each arrow represents a matrix element of the interaction.



4.2. Basis of the CC method for inelastic scattering

The total wave function ¥ for a system may be expanded in a complete (and

infinite) set of internal states W, for one particular partition o = @ + 4, as

=3 r(t) v.i) (4.1)

where 7, is the channel coordinate for the o—partition and &, represents the

corresponding internal coordinates. In the usual scattering situation, a boundary condition
is imposed that the finction y for the entrance channel has the asymptotic form of a
plane plus outgoing spherical waves while all the other ¥, have outgoing waves only.

If the form (4.1) is inserted into the Schridinger equation for the system,

(F-H) ¥=0 4.2)

H may be expressed in a form appropriate for the o partition as,

H=H_+k,+V, (43)
Multiplying from the left by one of the ¥, integrating over the internal £, coordinates
and using the orthogonality relation, we get the (infinite) set of coupled equations for the

channel functions y,(7, ), of which a representative one is

| 5h(a bl @) 2le)- Zfa Wl @) ) @

a=a
The interaction matrix elements are integrals over the & alone, so they remain

functions of 7 :
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a']-:-lw,,(:a) VL) vle)) @)

=V (7,) (say) (4.5b)

4.3. CCBA formalism with spinless target, projectile and ejectile
The CCBA formalism with a simple case in which the target, projectile and

emitted particles all have zero-spin and even parity is being considered first. Let us

consider a rearrangement collision A(a,b)B (Fig.4.2).

Fig. 4.2. Schematic diagram for A(a,b)B rearrangement collision.

Inelastic scattering to a single excited state of the target with spin 7 ,is included,
but it is assumed that there is no inelastic effect in the exit channel as shown
schematically in Fig4.2. So, the distorted wave in the exit channel is standard one.
For the general case, the distorted wave will be similar to that in the entrance channel.

In the entrance channel coupling between the ground state and one excited state is

being considered. So, the CC wave may be written as,

Y/a“) = WaOO(x)Za OHO(E' F)+ ME Wrx?n’a (x)ZE{:%A a0 (E' F) (4 6)
A



Where the first term describes purely elastic scattering from the target ground state

V.00 While the second term describes inelastic transitions to the excited state
Var,u, with spin I, and projection M ,. The elastic wave 1‘(,;)_“0 contains both
incoming and while the inelastic wave x() ,, contains outgoing waves only [52].

4.4. The transition amplitude

The CCBA transition amplitude for the transition @ — £ [52,132,133,], in a form

analogous to DWBA can be written as:

T““"~z< 250 vyl (H- E)| 2o va.) @7

The generalized distorted waves are the solutions of the finite sets of the coupled
equations with generalized auxiliary potential U,and U,, which now have non-

vanishing, off-diagonal matrix elements within their chosen sets of closely coupled
states. When the waves from Eq. (4.6) are inserted into Eq. (4.7) for the transition
amplitude, there will have two terms corresponding to the two parts of the wave

Eq.(4.6) as follows:
Tﬁfm(’;ﬂj‘;)ﬂ ] d'}‘fulg r(’;ﬂ'?ﬁ)(marmoo( TpoT )Z.(:?ao
o E” dFﬂd’:rxg)t(’;ﬁ’?b)rﬂ,v,m,u,. ( TarTe )L(z;):, ao(’-‘.a-?a) (48)

=T ﬁfm (direct)+T, (md:rect) (say ).
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where /, and M, are respectively the spin and its projection of the final nucleus in
the channel B and its projection.
The first term describes the usual type of DW amplitude except that the elastic
Wave X ,..0 1S generated by the coupled equations instead of by a one-channel
equation with a simple optical potential.
The second term describes transitions in which the target is excited before transfer
takes place.
For the present purpose, we use the zero-range form for the interaction kernel I,
the @ — f# transfer from the target ground-state (assumed to be zero-spin) is associated
with a unique angular momentumn transfer /=17, (and m=AM,). The comesponding

interaction kemel in Eq. (4.8) has the form [52]:

L = Ly ) = (52 Y 12 G ) 86, - 706,18, (4.9
where y = é[/g

Here a factor (S," )14 have been separated explicitly that is usually called a

spectroscopic amplitude, so that the radial form factor may be chosen to have a simple

normalization:

[ 17 (ryrdr=1 (4.10)
Transfer from the excited state of the target allows more than one angular

momentum transfer /' (unless 7 , = 0):

[, =14 <1, +1, 4.11)



92

The interaction kernel for this &' —» f transfer is,

Iﬂﬂ" = Iﬂshfg AT My (’;fﬂ’ i:r ) = (Sa')%ﬁ'a'(ra) F'Y‘r’(;" )] J(Fﬂ . }ﬁ‘)
x(<J«HAT I My -M | I'm)  (412)

where the (&“)’éare the corresponding spectroscopic amplitudes using the same
normalization as in Eq.(4.10).

With the kemels (4.9) and (4.12) in the amplitude (4.8) with axes chosen with z
along l_c'a and y along Ea xk T and for m > 0, the transition amplitude reduces to,

(L,—m) 1%

1 )80 ZE oy | Gatamolin
o !
xPp (@) lA,L’ “ (direct)+ 4" (indirect); (4.13a)

= (rrem(E, £, ) (413b)

where

A" (direct)=i '—z’_'(LaL,,OOIIO) (SIG)KX:’I' (direct)  (4.14a)

A7 (indirect) = 3i% 7 (L L 00[ 1OV (L, Lou" 11 L, )
'L

x (S;’ )% X ,f':"" (indirect) (4.14b)
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and %=(2x+ )4, L,and Lj’s are orbital angular momenta of the respective

channels.
The radial integrals are given by,
%
X" (direct) = (:‘2 [drx,, (kﬂ,b’) 17 (F)x s, (ko) (4.15a)
la

' x 4
o vt~ L (e ) ) 19
Bra

The first (direct) term is the same as the DWBA expression except the z, partial

waves are here generated from the coupled equations. The second (indirect) describes the

contributions going through the excited state @ >a' — 8.

4.5. The differential cross-section

The expression for the differential cross-section has the usual form:

2

do Mg Kk o
- sen)| s

It is evident from Eq.(4.13) for T" that there occurs interference between the direct
and indirect amplitudes, which may be destructive or constructive. This may be of great
importance in the identification of these processes.

The relative importance of the indirect process depends on, among other things,

the magnitude of the inelastic waves y,., in the vicinity of the nuclei relative to the

elastic waves. This is determined by the strength of the inelastic excitation. The
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importance of the indirect term also depends on the relative sizes of the spectroscopic
1 A1 |
amplitudes (S,")S and (S," )5 If the direct transition is inhibited because (S,")s is small for

some reason of nuclear structure but (S,“')iis not so inhibited , this may allow the indirect

process to compete successfully or even dominate.

4.6. General case including mutual excitation

Using the generalized coupled-channels (CC) wave in channel spin representation
and generalized transfer of interaction kernels, general form of the CCBA transition

amplitude [132,134] can be written in more explicit form as:

T;C,ffa:},u,,af,u,l,y, (Eﬂ’ia): M.ZL'L A::L':’ (";psia)sé(IAIaMAMa SaMa)
X(IBIMB‘Mb‘SﬁMp)

X (Lo M, [ JM 3 (<) 59 (- yfavi-tect

x 1% 8L Sy (LLL, S, S 1)

I B de
5 S; IL,v I; XL‘;:;::J!JD-Lpsl’l’l'-LtScIA’.-LISQIAIl (417)
s 1
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and my=m,+M,+M,-M, -M,.

I, and I, are the spins of light particles, M, and M, are their respective projections.

The second sum in Eq. (4.17) is over

L2 85I E L4 olf,

a

The radial integral X is given by [52],

B paa T .
X,",f,ﬁ' ' :a‘_l’nd’aj’pd’px;'.ﬂ(kp"p)gfrf.%;r;vm(:sr:.)(’w'a)li',a(km’a)

where, g o5 (rﬂ,r) is partial wave form factor for the /#h wave and

a

Az = an(-Yolr, 7o (6, e (6, )] is the angie factor
Using the above transition amplitude the differential cross-section for general case

becomes,

daﬁa _ HaHp fi 1
a2 () k, (21, +1)21, +1

)aﬂ,(a) (4.18)

where, 7, (0)= 3 ISR v usen, g K, and @ is the angle between , and
MMM 4M,

1

The computer computation has been performed using the code CHUCK3 [39].



CHAPTER 5
STUDY OF o.-INDUCED TRANSFER REACTIONS

5.1. Study of (a,1) Reaction

5.1.1. Formalism for DWBA computation
The differential cross-section ( Eq. 3.29) for a transfer reaction with a particular j-

transfer in the DWBA theory [38,52] is given by,

&Y () k (2, +1X2s, +1)

do  mp, k 1 Sy, |z -

Where, J; and s, are the spins of the target and the projectile respectively. g/s and K's are,
respectively, the reduced masses and wave numbers. The subscripts i and frefer to the
incident and outgoing channels, respectively. 2 denotes the sum over all magnetic sub-
states. T} is the transition amplitude given in Eq. ( 3.13).

In the iso-spin representation, the experimental cross-section of the stripping
reaction in full finite-range (FFR) calculations [39] is given by

2F. %1
(48]« itiafde) (5:2)
dod 2J, +1 dS2/ ppucks

exp

(f’.’i means cross-section calculated with the computer code DWUCK.S5, C? is the

MJ DRUCKS

1s0-spin Clebsch-Gordon co-efficient, S and s are respectively the heavy and light particle
spectroscopic factors. J,and J, are the total spins of the final and initial nuclei respectively.

The corresponding expression [39] for zero-range (ZR ) approximation is:
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[9‘53 () Dozczs(ﬂf_) (5.3)

dQ o (27, +1)(2j+1) Y paicre

. -y do . . .
Dy is the normalization constant and (_O) 1s the cross-section cakulated with
DFUCKA

DWUCKA4.

For the analyses of the data for the unbound states of the final nucleus, the
resonance form factor formulated by Vincent and Fortune [46,47] has been applied. 1t is
assumed that the resonance has a Breit-Wigner shape and in such a case the differential
cross-section is given [47] by

do Tk do”

&2 h dQ

5.4

F

Here is the cross-section predicted at the energy of resonance ( the positive energy of

transferred proton relative to the core). I' is the width of the resonance, uis the reduced
mass of the transferred proton and the target nucleus; and k is the wave-number of the

proton at the resonance energy. I is estimated from the relation [47]

2 2p ?' :, G d[Gj
= gpesge w(r) dr+——| —=—||. 3.3
r h%{ol(j 2%k dk\ G &3
Here u(r) is the radial wave function of proton in the field of target core and r = R, is

the distance beyond which nuclear potentials are assumed to be zero. G and G’ are the

rrregular Coulomb function and its derivative at r = R, , respectively.
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5.1.2. DWBA Analysis of *’ Al(a,t)’"Si Reaction

The ZR and FFR DWBA calculations for the angular distributions have been
performed using the computer codes DWUCK4 and DWUCKS5 [39], respectively. Both
the codes are modified to include Michel and molecular potentials. For the ZR calculations,
a Gaussian form of finite range correction in the local energy approximation [32,39] with
the correction parameter R=0.7 fm., has been used. Corrections due to non-locality [39] of
potentials in the conventional form have been applied using the non-locality parameters
B(c)=0.2, B(t)=0.2 and PB(p)=0.85 fm. The FFR analyses have been performed for both
bound and unbound regions using each of the Michel, molecular and normal optical model

types of potentials.

5.1.2.1. Choice of Potential Parameters

For entrance channel, the parameters of the molecular and Michel types of
potential are generated by fitting the angular distributions of elastic data [44] using the Chi-
squared minimization code MINUIT [41] in conjunction with the optical model code
SCAT?2 [135] modified to incorporate the Michel and molecular potentials. The fits to the
elastic data are shown in Fig.5.1. The normal optical-potential-parameter set used in the
present analysis is taken from [136]. The parameters of all three types of potentials are
given in Table 5.1. The parameters of the bound state geometry are also noted in Table

5.1. For a bound state of 2*Si in both the FFR and ZR calculations as well as for the
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bound state of alpha in the FFR calculations, the single proton transfer wave function has

been computed adjusting the WS potential well depth so that its eigenvalue equals the
separation energy [32].

For the triton potential in the exit channel, different sets of triton potential have
been employed. Two sets of triton potentials, labeled set-1 and set-2 in Table 5.1, have
been found to fit the data reasonably well with the molecular, normal optical or Michel
potential in the entrance channel as can be seen in Figs. 5.2a-5.2c. The set-2 of triton
potential produces a slightly better fit at the larger scattering angle region when the
molecular potential has been used in the o-channel (Fig.5.2a). On the other hand, the
normal optical or the Michel potential in the a-channel produces good fit to the data for
the set-1 of triton potential in the exit channel Fig. 5.2b. We have, therefore, finally chosen
the set-2 of triton potential with molecular potential and the set-1 of the triton potential
with the Michel or normal optical potential in the a-channel for the analyses of the data. It
1s to be noted that, the sensitivity of the predicted cross-sections to the triton potential
seems to be much stronger in the case of the normal optical potential in the entrance

(Fig.5.2b) than for cases with the other two potentials.

5.1.2.2. Angular distributions
The FFR DWBA calculations for angular distributions for the best fits to the data

using all three types of a-nucleus potentials for various I-transfers are compared to the

experimental data in Figs. 5.4-5.9 for all levels.
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The comparison of the ZR and FFR DWBA calculations of the angular
distributions for the ground state (g.s.) and the 11.58 MeV state, using the molecular,
Michel and normal optical potentials with the experimental data are shown in Figs. 5.3a—
53¢

The levels in Figs. 5.4-5.9 are grouped according to the associated /-transfers. The
levels populated through the /=2, 3, and 4 transfers are shown in Figs. 5.4-5.6,
respectively. On the other hand, the levels which have been obtained through the
incoherent sum of more than one I-transfers such as I = 0+2, 1+3 and 2+4 are shown,
respectively, in Figs. 5.7-5.9. The DWBA fit to the unresolved group at E,=6.88 MeV has
also been shown in Fig. 5.8 with the total incoherent contribution from /=2+3. In the
previous study, Yasue et al. [44). associated /=3 transfer for fitting 15.02, 15.85 and 16.11
MeV transitions, but, in the present study, it seems to be /=4. The predicted angular
distributions using each of the molecular, Michel and normal optical potentials for both /-
transfers (/=3 and /=4) are compared to the data in Fig. 5.10. Clearly the /=4 transfer is

preferred in all three cases.

5.1.2.3. Spectroscopic strengths
The spectroscopic strengths of a reaction for a transition to a final state (J;T) with

the transferred configuration (lj) is related to the spectroscopic factor §; [139] by

!2.! +1!
=3 2 (5.6)

Gy = (27,+1) <5



101

where C is the Clebsch-Gordon coefficient involving iso-spins of the target and the fmal

nucleus.
The sum rule for the spectroscopic strength in case of the ¥ Al(c.t)**Si reaction can
then be expressed [139] by

2.G,=3(n-holes) for T, =1,

Jl'
= %(p - holes) ~3{n~holes) for T, = 0,
where <p-holes™> and <n-holes> are, respectively, the effective number of proton-holes and
neutron-holes in the orbit (1)).

The total strength comprising transitions with Ty =0 and 1 is then

Z Gy = (p - holes) (5.7)

I Ty

The deduced sum of strengths for all /=2 transitions with j=3/2,5/2 transfers and T=0,1 is

ZG = 2.33. This is almost half of the sum rule strength 5.0, the number of proton

holes in the 1ds, and 1d,, orbits. Similarly, the sum of all /=0 transition strengths for both

T¢0 and 1 has been found to be Z G = 0.96 which is again 50% of the expected sum of
2.0.

The extracted transition strengths for the (67,0) state at E,=11.58 MeV and (67;1)

state at E,=14.36 MeV, which, have stretched configuration (1ds,™,1f55) in the shell

model, are 0.14 and 0.23 respectively, which is small compared to the expected full

strength of 1.08 for each. One may, however, consider the fragmentation of 6~ strengths

is due to the deformed structure of **Si-core, using the following assumptions,
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(1) the vibrational state of the core does not change in the transition, (i) the core has
negative deformation and (i) the proton-hole configuration i the target is | j=5/2,

Or=1/2 > ie. the target has J;=5/2 and K;=1/2,

one may calculate the spectroscopic strength due to deformation, can then be calculated,

using the expression [140,141]

G:(_21,+1
(21, +1)

€S = g’ CH(T K jQlI K, ) Cpo( Quoat)’, (5.8)

where Cy,(Qwa) as defined in [140,141] are the coefficients connecting a deformed

single particle state to spherical eigen-states, g* is unity as K0. The values of these
coefficients have been taken from [142]. Eq. (5.8) with K4 results in a strength of

G=0.083 for each of the (6 ;0) and (6 ;1) states, which is, ndeed, small.
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Table 5.1. Potential parameters used in the DWBA calculations for #’Al(a,t)®Si

Channel at77Al t+288i p+¥Al t+p
Potential Optical Michel Molecular Optical Bound Bound
type X [ Bet-I [Fet-2|  state state
vV, (MeV) 2180 80.20 5281 143.82 | 56.30 V) V)
r,(fin) 1.24 1.617 1.55 1.19 [1.40 1.25 1.25
a,(fm) 0.68 0.60 0.57 0.682| 0.72 0.70 0.65
V,(MeV) 68.46

R,(fim) 2.84

o 7.40

p(fm) 2.90

W (MeV) 25.6 55.20 58.13 31.30] 50.10

r(fin) 1.24 1.53 1.28 | 1.40

ay(fim) 0.68 0.52 0.999(0.72

R, (fin) 335

Wp(MeV)

1p(fin)

ap(fim)

V,.(MeV) 4.65 A=25 A=25
1, , (fm) 0.996

a, ,(fin) 0.280

r.(fm) 1.25 1.25
R, (fm) 5.10 3.90 930 394 (394

Ref . el a) b) ¢ d) d)

V) adinsted to give the separation energy; ¥ Ref. [136], ® Ref. [137] ; © Ref[138], ® Ref.[51]
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Table 5.2. States of **Si observed in the *? Al(o,t)**Si reaction at E,=64.5 MeV and the deduced
spectroscopic factors using different potentials.

(U¢+ 1)C’Ss*

present work
Ex T  Inlj)
(MeV) 1) b) c) d) e)T
gs. 0";0  2(0dsp) 48 45 45 4.6
1.78 250  (0+2) 0.7,1.08 0.84, 1.26 0.672, 1.008 1% 1.2
462 450 (2+49 2.13, 022 2.90, 0.396 2.22,0.117 2.5,0.04
498 050  2(0dsp) 0.42 0.6 0.75 0.48
6.28 350  (0+2 0.138,1.24 0.36, 2.04 0.63, 1.47 0.39, 1.4
6.69 050  2(0dsn) 0.03 0.048 0.048 0.04
6.88} 317:0
(2+3) 0.27, 0.03 0.57, 0.03 0.456, 0.024 0.65,1.1,2.6
6.89 4+;0
+.

7'38} 30 (0+2) 0.06, 0.86 03,1.2 0.276, 1.104 0.15, 0.90
742 2‘*;0
7.80 30 (0+2) 0.26, 0.396 0.357, 0.663 0.315, 0.585 0.22, 0.35
7.93 250 (0+2) 0.27, 0.672 0.63, 1.17 0.441, 0.819 0.7, 0.65, 0.06
8.26 250 (0+2) 0.30, 1.20 0.15, 1.65 0.38, 1.5 0.13, 1.1
8.41 450 (1+3) 0.48, 0.72 09,09 0.9,09 0.45, 1.0
8.54 0 4 0.48 0.78 0.9 0.13
8.59 340 (0+2) 1.0,1.51 2.85, 2.85 1818 0819
8.90 150 (1+3) 0.048, 0.072 0.076, 0.032 0.055, 0.023 0.018, 0.048
8.9 450  (2+4) 0.054,0.023 0.022, 0.086 0.022, 0.086 0.11, 0.06

5.0 or3 0.054 0.066 0.036 0.06
916 450 4 0.02 0.03 .03 0.06
9.32 34| (0+2) 1.176, 0.50 1.95, 1.05 1.365, 0.735 1.5,049
9.38 241 (0+2) 1.33,0.88 3.36, 1.44 3.84, 0.96 1.6,1.0
9.48 250  (0+2) 0.52, 0.90 1.5, 1.5 1.026, 0.054 0.2,0.24
9.70 5:0 3 1.20 1.8 1.8 18
9.76 (2,3);0(1+3) 0.038,0.113 0.576, 0.144 0.385, .096 0.06, 0.17
9.93 (1,2):03 0.60 1.17 0.99 0.11
1021 (22404 .09 0.126 0.126 0.17
1038 31  (0+2) 0.66, 1.98 1.13, 338 0.75, 2.25 0.65, 2.3
1072 1'0H1 (2+4) 0.113, 0.038 1.92, 0.48 0.144, 0.036 0.11, 0.009
1094 + (2+4) 0.70, 0.08 1.37, 0.072 1.083, 0.057 0.32
11.10 (2+4) 0.105, 0.045 0.108, 0.072 0.072, 0.048 0.1, 0.04,
114 2 (2+4) 0.363, 0.297 0.274, 0.068 0.168, 0.042 0.02, 0.06
nas] 2030ANED
11:45} 11 (2+4) 2.96, 0.16 5.99, 0.315 3.99,0.21 3.8 039
1158 6,0 3 1.41 1.86 1.68 2.1

[continued..]
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Table 5.2. [continued..]
(2 + 1)C’Ss*
Ex . T Il present work
M) 5) b 9 @ 9!
1180 + 2+4 0.19, 0.157 0.36, 0.36 0.5,0.22 0.13,0.12
1190 30 (143) 0.4, 008 0.126,0.294 0.099, 0.231 0.49, 0.17
1193 - 143 3.70, 0.195 5.67, 0.63 428,023 4.7
11.97  (2'.49;,0 244 0.59, 0.066 0.972,0.108 0.11, 0.066 0.5, 0.09
or 3;0 orl1+3 0.41, 0.221 0.655, 0.353 0.43,0.23 04,03

1207 (25,0 2+4 0.21, 0.09 0.315, 0.135 0.252, 0.108 0.3,0.09

or3 0.21 0.36 0.24 0.2
1224 3 +4502+4 0.1, 0.06 0.144, 0.216 0.144,0.216 0.27,0.12
1230 250 4 0.39 0.51 0.51 0.06
1233 151 2 0.72 1.32 0.9 0.55
1249 3:0 3 0.84 1.2 1.14 1.0
1266 41 3 3.00 54 42 38
1282 150 143 0.14, 0.32 0.20, 0.46 0.15, 0.36 0.03, 0.32
13.25 51 1 3.30 54 4.2 36
1399 - 3 0.63 1.02 0.78 1.6
1436 6;1 3 2.40 2.8 2.7 3.7
1469 - 3 0.24 0.51 0.33 0.39
1502 - 4 0.15 0.21 0.21 0.70
1538 - 3 0.45 0.78 0.57 0.55
1555 + 4 0.12 0.21 0.15 0.09
1585 - 4 0.11 0.222 0.156 0.36
16.11 4 0.48 0.24 0.48 0.41
16.50 4 0.14 0.24 0.18 0.07

* 8 = 2,018 the light particle spectroscopic factor.
f light particle spectroscopic factor is not mentioned in [44].

Y Ref. [151]; ® Optical, © Michel, ® Molecular, ?. Ref. [44].
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Table 5.3. Comparison of the deduced spectroscopic strengths to the shell model predictions.

G= (27;+1) C'S

Ex ;T  Inlj)
(MeV) 1) present work » shell-model ©
gs. 00  2(0dsp) 0375 0.53
1.78 250 (0+2) 0.06, 0,08 0.38, 0.06
4.62 4% 0 @2+49 0.19, 0.01 0.33, 0.00
4.98 00  2(0dsy) 0.06 0.05
628 350 (0+2) 0.05, 0.12 0.34, 0.14
669 00 2( 0dss) 0.004 0.005
688 37:0 3 0.002 0.0
689 4+ 2 0038 027
738 20

; (0+2) 0.02, 0.09 0.02, 0.17
742 2*-'0
7.80 350 (0+2) 0.03, 0.05 0.357, 0.663
7.93 250  (0+2) 0.04, 0.07 0.00, 0.13
8.59 350 (0+2) 0.15, 0.15 0.035, 0.21
9.32 31 0+2) 0.11, 0.06 0.38, 0.06
9.38 21 0+2) 0.32,0.08 0.23, 0.05
1038 31 0+2) 0.06, 0.19 0.01, 0.20
1072 17,041 (2+4) 0.012, 0.006 0.015, 0.00
1158 6.0 3 0.14 0.083 7
1436 6 :1 3 0.23 0.083%

Y Ref[151]; * Molecular potential, © Ref. [143]; ® Deformed shell-model [140,141].
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5.2. Study of (a,d) Reaction

5.2.1. Formalism for DWBA computation
In absence of spin-orbit interactions, the differential cross-section for a (a,d)

reaction with a particular J-transfer in the DWBA theory [105] is given by,

2

( ) i & L
do Ml kj 2, +1 1/2 JO 11 1 |BE 59
—_— gt d X S f ; -~ = .9)
2 (e k, (2.]'.+1)§p§ﬁ lpipyio} ]2 ]2 ; 8 (

1 J2

Where, s and ks are, respectively, the reduced masses and wave numbers. The
subscripts 7 and f refer to the mncident and outgoing channels, respectively. p, = [n,l1 j1]
and p, = [n,'i2 .fz] denote the orbital quantum numbers for the transferred nucleons in the
final nucleus. A" [p‘ Vo X 0] are the spectroscopic amplitudes in the jj-coupling for an

angular momentum transfer J and an isospin transfer T=0. [ ] refers to the normalized 9-)

symbol, the LS-jj transformation factor [104]. B, describes the kinematic aspects of the

reaction. In Eq.(5.9) the light particle spectroscopic factor ¢’s= 1.0 for (o, d) reactions has

been used.
In the macroscopic DWBA calculations, no information on the structure of the

cluster is required except the quantum numbers(N,L) as defined by

2(nl+n2)+ll+lz=2N+L ...... (5.10)

where the quantum numbers v =0 and A = 0 are assumed for the relative Os-state internal

motion of the transferred cluster.
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In Eq.(5.10), only one N —value is considered to contribute, the two nucleons in
the cluster bemg in the relative Os-state.

The structure amplitude G,, for two nucleon transfer, as defined by Glendenning

[104] is expressed as

L L L
i e 2(2 i %,)m B[y, 70 % Ji 1|Q,, (00, NL:L|n,,n,1,:L)  ...(5.11)
ol ]
B Ja

In Eq.(5.11), Q,,denotes the overlap of the spatial wave function of relative

motion of the two particles in the transferred cluster with the corresponding part in the
incident o particle. ( | > represents the Brody-Moshinsky bracket [104,105,147].

The expression for cross section in terms of the cluster quantum numbers (N,L)
parallel to Eq.(5.9) can be written in the notation of Glendenning [104] as an incoherent

sum over L and M as:

do _ ppy k27, +1) :
dQ (2,,;,2)’ k, (27 +1)§|G”m“ 1%

Denoting the cross sections calculated for an L-transfer and a J-transfer with the

Ly
FFR code DWUCKS [39] by [%J and taking advantage of the incoherent sum over

DW5

the L-transfer(s), one can write the experimental cross section as,
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27, +1 o
[.‘iij = (___f_h)z,qu(_dﬂ) (5.13)
dQ),, (2,+1)F “\d2 )y,
In the cases of ®"Si J, =0, so the transferred total angular momentum J is

unique, but for ey J [ = % , the transferred total angular momentum are restricted to two

values J=/J, and J, . The spm transfer being unity in the (o,d) reaction, one of the J-
transfers, say J; mvolves two orbital angular momentum transfers L=L, and L;. On the
other hand, J, associates only one L=L; which is equal to one of L, and L,, say L,, such
that L;=L,.

Thus, the above equation can be written explicitly as,

(g%] = g{::)){(x:z, ), [%J::s +(4,, ),,(3‘%):’ +(a, ),,[%)::J (5.14)

Jep

do \"" (do )"
Now, assuming [—-—] ~ [—) which is valid in absence of any spin-orbit
d ) s \dS2

DW 5

interaction and denotng A, = (A“)J| + (AL: )J ., A, = (AL, )J and taking off superscript

1 1

da_ [‘l“r?
], on (—-—) , Eq. (5.14) can be written as,

Dw's
on L2

[45) (27, 1) An(d_a) . An[i‘{] (5.15)
s ), (27, +1) did } s d{2 ) pys

On the other hand, the experimental cross-sections related to the microscopic cross-

d L
sections (f)) which has been calculated by the ZR code DWUCK4 [39] are given by,

DW4
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(fg) (2J u) | (da) 5.16)

)., (2,+1) 2.1+1)Ld0

% in Eq. (5.16) is the normalization constant for the (o,d) reactions. The form of
Eq.(5.15) showsthat 4, and A, are the spectroscopic factors [37,150] for the L, and L,
transfers, respectively. The cross sections in Eq. (5.15) being incoherent sum of the
contributions from the two L-values (for natural parity transitions only one L-transfer L=]
permitted) L =.J +1, the spectroscopic factor [150] Ay, for each of the L-transfers and the
normalization constant ¥ can be extracted from Eq.(5.15) and Eq.(5.16) respectively by

fitting the experimental cross sections.

5.2.2. DWBA analysis of *’Si(,d)’’P reaction

The microscopic zero-range and macroscopic full finite-range (FFR) DWBA
calculations for the angular distributions have been performed using the computer codes
DWUCK4 and DWUCKS [39], respectively. Both the codes are modified to inclide the
Michel potential. Corrections due to non-locality [32,39] of potentials in the conventional
form have been applied using the non-locality parameters [(c)=0.2, p(d)=0.54 and
B(p)=0.85 fm. In both the microscopic ZR and macroscopic FFR calculations, the
molecular, Michel, and normal optical types of o-"Si potential and the optical d-*P
potential have been employed. The parameters of the molecular and Michel potentials are
taken from the work of Tarig et al [19]). The a-*Si elastic fits are furnished in Fig.

5.11.The parameters of the normal shallow optical potentials for the incident channel are
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from Jankowski et al. [18]. Several sets of the d-"P optical potentials including that from

[18] have been tried, but only the one from the work of Fitz et al.[148] produces the best
fit. All the potential parameters employed in the present analyses are displayed i
Table.5.4. i
5.2.2.1. Macroscopic DWBA calculations

The macroscopic analyses have been performed using the full finite-range DWBA
code DWUCKS [39). The parameters for the bound-state geometry of the d-d and d-*Si
Woods-Saxon (WS) potentials, shown in Table 5.4 are taken from [18]. The bound state
wave functions for the transferred deuteron-cluster in alpha as well as the final nucleus
have been generated by adjusting the deuteron separation energies. At the start of
calculations, the accuracy parameters used in the code DWUCKS have been assigned
appropriate values, to define effective width of wave numbers [39,149] in the expansion
of the distorted waves n terms of plane waves for making the zero-range calculations
identical to those from the code DWUCK4 [39]. This ensures the necessary “convergence”
for the integral for the zero-range form-factor, defined in Eq.(3.9) of Charlton [149].

The cluster configurations of the transferred deuteron for the different states of
excitation are shown in Table 5.5. For the final states with natural parity, populated by one
L-transfer, the DWBA predictions are normalized to the data to yield the relevant
spectroscopic factor A; as defmed in Eq. (5.15). On the other hand, for the transitions
involving  two L-transfers, leading to the final states with unnatural parity, the

spectroscopic factors are obtained by minimizing the y? defined by
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he Z{%(e')_ U?w(el)}z (5.17)

do

where UW(H,):(EE(O,)] and Aom(ﬁi) are, respectively, the experimental cross
ep

section, as defined n Eq. (5.15), and its error at the scattering angle ©, . UDW(Bi) is the
cross section predicted by the DWBA theory.

The DWBA predictions with the molecular (solid curves), normal optical (broken
curves), and Michel (dotted curves) potentials are compared to the data of the ground
(1%, 0.709 (1*), 1.454 (2*), 2.72 (2') and 3.02 MeV (2') states in Fig. 5.12; to the data
of the 1.974 (3"), 2.538 (3"), and 2.84 MeV (3") states in Fig. 5.13; and to the data of the
3.93 (27), 4.63 (3") and 5.42 MeV (2') states of P in Fig. 5.14. It is amply clear from
Figs. 5.12-5.14 that the calculations with the molecular potential produces the best fits to
data for all the transitions. Furthermore, the Michel potential generates cross sections,
which are lower by 1 to 2 orders of magnitude than those predicted by either the normal
optical or the molecular potential Table 5.6 gives the comparison of the total
spectroscopic factors for the cluster transfer for the three types of potentials.

The compiled work of Endt and van der Leun [151] suggests alternative spin-
parity for the 3.93 MeV state as J"=1",2" or 3'. While de Meijer et al. [37] assigned J"=3"
for the state, Jankowski et al [18] suggested 2. The DWBA calculations with the
molecular potential for both I"=2" and 3", are compared to the experimental cross section
in Fig.5.15. The J® = 27 assignment is clearly favored, confirming the observation of

Jankowski et al. [18].
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5.2.2.2 Microscopic DWBA calculations
The microscopic ZR DWBA calculations have been performed using the zero-
range code DWUCKA4 for the positive parity states with the transferred particles stripped to

the sd-shell. The present analyses make use of three sets of spectroscopic amplitudes p'?,

two sets based on the FPSDI and MSDI Hamiltonians as defined in Wildenthal et al
[144] and the shell-model wave functions of the *Si and *°P nuclei given by Wildenthal et
al. [144,145] and the third one, labeled by CW [37], derived from the wave functions of
Chung and Wildenthal referred to in [37]. The FPSDI and CW amplitudes are taken from
de Meijer et al. [37], while the MSDI amplitudes are from Jankowski et al. [18]. All the
three sets of spectroscopic amplitudes are calculated m the model space of 0dsy-15y,-0dyp.
The spectroscopic amplitudes are presented in the Table (5.8-5.10). Since the codes
DWUCK4 and DWUCKS assume that the spherical harmonics carry a time reversal phase
of i', a factor not used in the phase conventions adopted in the calculations of the
spectroscopic amplitudes [37], the amplitudes have been multiplied by an extra phase of
i"*5! before feeding these to the codes.

The bound state wave functions for each of the transferred nucleons have been
generated by assuming a real Woods-Saxon well with the geometry parameters r,=1.25 fm.
and a,= 0.65 fm. and the depth adjusted to produce the binding energy equal to half the
separation energy of the transferred deuteron. A Thomas-Fermi spin-orbit term with A=25

has also been used for the bound state wave functions.
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A Gaussian form of finite range correction in the local energy approximation [39]
has been mvestigated. Fig. 5.16 compares the microscopic DWBA calculations for the

molecular type of o-"*Si potential using R=0.0 fm. (broken curves), 0.7 fm. (solid curves)
and 0.85 fm. (dotted curves) to the experimental data for the ground (1%), 2.53 (3"), 2.84
(3") and 3.02 MeV (27) states. The finite-range correction with R=0.7 fm improves the fits
to the data.

The effect of the three types of the o-**Si potential on the microscopic DWBA
calculations has also been examined using the spectroscopic amplitudes " calculated
from the FPSDI interaction. Fig. 5.17 displays the DWBA predictions for the molecular
(solid curves), normal optical (broken curves) and Michel (dotted curves) potentials,
compare to the data for the ground (1), 0.71 (1*), 1.45 (2") and 1.97 MeV (3") states of
°P. As in the case of the macroscopic analyses, the molecular potential provides the best
description of the data and the Michel gives the worst. Moreover, the predicted cross
sections with the Michel potential are so small that they need normalization factors (Table
5.6), larger by orders of magnitude compared to those for the molecular and normal optical
potentials.

Figs. 5.18 and 5.19 display the comparison of the microscopic DWBA calculations
with finite-range parameter R=0.7 fm. and the molecular o-**Si potential, for the FPSDI
(solid curves), CW (broken curves) and MSDI (dotted curves) interactions. The

calculations with the three interactions produce more or less the same quality fits to the
data for the ground (1%), 0.709 (1%), 1.454 MeV (2") states (Fig.5.18). The FPSDI and

CW amplitudes produce identical predictions for the 2.72 MeV (2") state (Fig. 5.18) and
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2.84 MeV (3') state (Fig. 5.19) and the same quality fits to the 1.97 (3") and 2.538 (3")
MeV states (Fig. 5.17). For the 3.02 MeV state, FPSDI gives a better description at large
scattering angles than CW does (Fig. 5.18). Nonetheless, the spectroscopic amplitudes
; from the three interactions produce completely different spectroscopic factors S, as listed
in Table 5.5. Moreover, the experimental cross sections for the reaction leading to the
ground (1'). 0.709 (1), 1.454 (2"), 1.974 (3"), 2.538 (3"), 2.72 (2"), 2.84 (3") and 3.02
MeV (1) states of P, need normalization constants as listed in Table 5.7, which are

widely different and inconsistent .

The 7.20 MeV (7') state is considered to have a pure stretched (0f;)*

configuration leading to the spectroscopic amplitude for the (o,d) reaction as B"?=1.0

[35,37]. This model independent value of B"? has been used to deduce the normalization

constant for the reaction as =722 + 25, which compares closely with ¥=870+ 20 and
650+ 20 obtained, following two methods for calkculating the form-factors, by de Meijer et
al. [37]. But only a few of the extracted ¥ -values for other states given in Table 5.7 are
close to the model independent-value, deduced from the reaction data for the 7.20 MeV
state. All the normalization constants extracted using molecular, normal optical and Michel
potentials are exhibited in Tables (5.8-5.10) along with the corresponding spectroscopic
amplitudes for three interactions. None of the FPSDI, CW and MSDI interactions produce
a consistent set of values for the normalization constant.

5.2.2.3. Calculation of the spectroscopic factors

The model dependent spectroscopic factors are calculated from the FPSDI, CW

and MSDI spectroscopic amplitudes A'"? by the method outlined in [37]. Since the
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spectroscopic factor for the 7.20 MeV state is unity, the spectroscopic factor for other

transitions can be given by

o _l6ul
Si = G (7.20) (5.18)

where the structure factor Gy, is expressed through Eq. (5.11) and G ,(7.20) = 0.56Q,,
denotes the value of the structure factor for the 7.20 MeV state.
The total spectroscopic factor §¢ for a transition is then given by

3% w87 (5.19)
L

The SY values, which are listed in Table 5.5, are calculated using the FPSDI and
CW spectroscopic amplitudes taken from de Meijer ef al. [37]. For the MSDI interaction,
the S; values are calculated using Eq. (5.18) from the MSDI spectroscopic amplitudes

from Jankowski et al. [18]. The predicted spectroscopic factors 7 and S are compared

in Tables 5.5 and 5.6. to the experimental spectroscopic factors 4, and 3’ 4, respectively,

deduced from the macroscopic analyses.
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Table 5.4.. Potential parameters used in the DWBA calculations for **Si(a,d)*P reaction. V is adjusted
to give the separation energy.

Channel o+Si d+% d+d d+°si
Type Molecular®  Michel" Optical” Optical® Bound state”

Vo (MeV) 27.0 25.0 50.42 102.7 \' A%

Ry (fin) 3.52 5.20 - - - -

rp (fm) - - 1.699 1.07 1.05 0.935

ap (fm) 0.34 0.46 0.505 0.852 0.50 0.997

Vi (MeV) 425 2 - .
R, (fm) 2.90 g - 2
o - 7.12 - -
p (fm) - 6.45 = .
Wo (MeV) 17.0 34.0 10.34 -
Ry (fm) 4.1 4.05 - s
r; (fin) - - 1.699 -
ar(fm) - 0.65 0.505 -
Wp (MeV) - - - 16.10
rp (fm) - - - 1.53
ap (fm) . - . 0.574
Vso(MeV) - - - 6.0
I, (fim) - B - 1.07
0.852
1.13 1.25 1.3

a,, (fm)
re (fm)
Rc(fm) 9.35 = = 5 = -

'
—
L
)
(3]
(=]

* Ref. [19].
* Ref. [18].
* Ref. [148]
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Table 5.5.. Chister spectroscopic factors of the Si(c,d)* P reaction are com pared to the theoretical shell-
model factore for the FPSDI, CW and MSDI interactions. FPSDI and CW spectroscopic factors are taken

from Ref[37]. MSDI factors are calculated from the spectrocopic amplitudes 3% of Ref.[18] by the

method outlined in [37]. Sf values are normalized to the value of IG;‘,mlz for the 7.20 MeV state.

E, ™ Chster Chuster Spectroscopic Factor Shell-model S pectroscopic
Config. Factor
a 2 202
57 =|6.| /65"
(MeV) N.L At ALb Ar* FPSDI Cw MSDI
0.0 1+ 2,0 0.23+0.07 1.76+0.20 0.28 0.448 0.043 0.168
1,2 0.23+0.07 4 0.56 0.237 0.121 0.031
0.709 I 2.0 0.16+0.07 1.4540.20 - 0.029 0.030 0.020
1 0.24+0.08 4 0.85 0.617 0.274 0.038
1.454 2% 1,2 0.25+0.05 0.2040.04 0.32 0.372* 0081 7.8x10"
1974 3¢ 13 0.11+0.04 0.7240.13 - 0.041 0.078 0.004
0,4 0.09+0.03 0.4740.20 - 61x10* 0134 15x10?3
2538 3t 1,2 0.16+0.04 0.6740.14 - 0.015 0.165 .
0,4 0.07+0.03 <025 - 0.426 0.076 -
2.72 2t 1,2 0.2840.05 0.1240.02 0.34 0.058 0.045 -
2.84 3* 12 0.08+0.02 0.1640.07 - 0.007 0.007 -
04 0.09+0.02 0.3340.11 - 0.334 0.254 -
302 ) ld 2,0 0.03+0.02 0.5140.15 0.27 97x 104 0319 -
1,2 0.3240.05 0.06+0.10 0.35 1.4x10°  0.021 .
3.93 ) 2.1 0.1140.04 - 0.32 - - s
I3 0.18+0.04 - - - - -
3H (1,2 (0.06+0.05)  (0.1440.05) - - - -
(0,4) (0.08£0.05)  (0.05+0.06) - - - -
4.62 a 2,1 0.15+0.04 0.1740.02 0.30 . - "
5.42 2 2.1 0.54+0.09 - - - - -
1,3 0.06+0.03 - 0.86 . . "
* Present work.
b Ref. [37].
“Ref. [18].

4Too small a value to quote.
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Table 5.6. Comparison of deduced total spectroscopic factors of the *Si(c,d)*°P reaction from the

macroscopic and the nommalization factors for the microscopic FPSDI calculations using the molecular,
normal optical and Michel potentials. Total spectroscopic factor is the sum of the spectroscopic factors for
the two L-transfers for the unnatural parity states.

E, » L Total spectroscopic factors 3° 4, Normalization constant ¥
(MeV) Macroscopic calculations Microscopic calculations
Molecular | Optical Michel Molecular | Optical Michel
0.0 g 0+2 0.46 0.74 234 280 480 7000
0.709 1" 0+2 0.40 1.33 30.0 70 85 8000
1.454 2 2 0.25 0.50 11.0 270 950 1800
1.974 3 2+4 0.20 0.57 20.0 1500 2000 35000
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Table 5.7.Normalization constant & for the microscopic zero-range calculations of **Si(e,d)*°P for
different shell-model interactions. ¥, is therelative normalization constant to the model independent
=722 for the 7.20 MeV state.

E, F L Normalization constant ¥ Relative normalization constant ¥,

(MeV) Interaction Interaction
| FPSDI cw MSDI FPSDI CcCwW MSDI

0.0 1t 02 280 4000 800 0.388 5.540 1.108
0.709 I 0+2 70 180 1500 0.096 0.249 2.08
1.454 3 2 270 850 5500 0.374 1.177 7.618
1.974 3 2+4 1500 500 7000 2.077 0.692 9.965
2.538 3f 2+4 220 900 - 0.304 1.246 -
2.72 - 2 550 4500 - 0.762 6.233 -
284 3 2+4 350 450 - 0.484 0.623 s
3.02 1 0+2 14000 450 - 19.39 0.623 -
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Table 5.8. Spectroscopic amplitudes and normalization constant for transitions in the **Si(a.,d)*°P reaction using molecular potential

Spectroscopic amplitudes Normalization constants
E, )
(MeV) I” Interaction  dspds); dsjo8sp dsppdap S128112 $112d3p2 dspds, Nepspr Nosor New et
0 g FPSDI ® -0.1291 - -0.0576 -0.7264 -0.3659 +0.2000 280.0 - - 0.350
MSDI @ -0.09593 - +0.03974 -0.40482 -0.13899 +0.08527 - 800 - 1.000
cw® -0.1071 2 -0.2557 -0.3346  -0.1859 +0.1727 - - 4000.0 6.00
071 17 FPSDI +0.0130 - -0.0737 -0.3089 +(0.7348 -0.1835 70.0 - - 0.087
MSDI -0.03825 - +0.04540 -0.14308 +0.16475 -0.07733 - 1500.0 - 1.88
CW -0.0054 - -0.0070 -0.2429 +0.4729 -0.1418 - - 180.0 0.225
145 2* FPSDI - +0.0556 +0.0044 - +0.7385 - 270 - - 0.340
MSDI - -0.15183 -0.00501 - +0.16456 - - 5500 - 6.874
Ccw - +0.0173 -0.1422 - +0.4527 - - - 850 1.06

[Continued...]
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Table 5.8. [continued..

Spectroscopic amplitudes and normalization constant for transitions in the **Si(o,d)*°P reaction using molecular potential

Spectroscopic amplitude Normalization constants**
B
(MeV) T* [nteraction  dspdsy ds28572 dszdsp 81128172 812d3z dapdap Nepspr Nyspr New N™
1.97 3* FPSDI -0.0001 -0.2131 -0.0329 - - +0.0098 1500.0 - - 1.875
MSDI +0.08666 -0.08176 +0.05548 - - - - 7000.0 - 8.750
Ccw +0.0700 +0.2618 -0.0445 - - +0.3502 - - 500 6.00
254 3 FPSDI -0.0105 -0.0458 +0.0829 - - +0.6726 220.0 - - 0.274
Cw +0.1005  +0.3200 -0.0807 - - -0.2881 - - 900.0 1.124
293 ¢ FPSDI - -0.0723 +0.1274 - -0.3415 - 550.0 - - 0.686
Cw - +0.0506 -0.3035 - -01072 - - - 4500 5.624

[Continued...]
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Table 5.8. [continued..]

Spectroscopic amplitudes and normalization constants for transitions in the **Si{c,d)*°P reaction using molecular potential

Spectroscopic amplitude Normalization Constants **
E.Y
MeV " Interaction  dspdsz  dspsse dspzdsn $128112 Sipdsz  diedap Nrpsor Nusor New  Nea
284 3 FPSDI -0.0081 +0.0914 -0.1004 - - +0.5200 350.0 - - 0.438
CwW +0.0174 -0.0506 +0.2130 - - -0.3979 - - 450.0 0.562
302 1 FPSDI +0.0004 - -0.0499 -0.0392 -0.0121 -0.1595 1.40x10* - - 17.51
CW +0.2574 - -0.3648 +0.2212 +0.0859 -0.2665 - - 450.0 0.562

a) P. M. Endt and C. van der Leun, Nucl. Phys. A310(1978)1.[151]
b) R.I.de Meijer, L. W. Put, J. J. Akerman, J. C. Vermenlen, and C. R. Bingham, Nucl. Phys. A386(1982)200.[37]
¢) K. Jankowski, A. Grzeszuk, M. Siemaszko, A. Surowiec, W. Zipper, A. Budzanowski, and E. Kozik, Nucl. Phys. A426(1984)1-19.[18]

**Nepspr = Normalization Constant using molecular potential and Spectroscopic amplitudes extracted from FPSDI interaction;
Nyspr= Normalization Constant using molecular potential and Spectroscopic amplitudes extracted from MSDI interaction,
New= Normalization Constant using molecular potential and Spectroscopic amplitudes extracted from CW interaction
N..,= Nommalization Constants relative to the Normalization Constant= 800.0 obtained for the Ex=7.20 MeV, J*=7" state assuming a 1.000(1f;,,)?
spectroscopic ampiitude.
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Table-5.9. Spectroscopic amplitudes and normalization constants for transitions in the *®Si(c.,d)*°P reaction using optical potential

Spectroscopic amplitudes

Normalization constants ~

E‘ a)
MeV) T Interaction  dsppds), dspoBsp dsjpdar 81128112 sy2dap dspdsz Nepspr Nuysor New N7
0 I* FPSDI® -0.1291 - -0.0576 -0.7264 -0.3659 +0.2000 480.0 - - 0.80
MSDI © -0.09593 - +0.03974 -0.40482 -0.13899 +0.08527 - 1000- 1.295
cw?® -0.1071 - -0.2557 -0.3346 -0.1859 +0.1727 - B 5000.0 6.29
g7r 1r FPSDI +0.0130 - -0.0737 -0.3089 +0.7348 -0.1835 85.0 - - 0.100
MSDI -0.03825 - +0.04540 -0.14308 +0.16475 -0.07733 - 1800.0 - 2.25
CwW -0.0054 - -0.0070 -0.2429 +0.4729 -0.1418 B - 180.0 0.263
145 2* FPSDI - +0.0556 +0.0044 - +0.7385 - 280 - - 0.352
MSDI - -0.15183 -0.00501 - +0.16456 - - 9000 - 11.25
CWwW B +0.0173 -0.1422 - +0.4527 - - - 950 1.188

[Continued...]
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Table 5.9. [continued.. ]

Spectroscopic amplitudes and normalization constant for transitions in the **Si(c,d)*°P reaction using optical potential

Spectroscopic amplitude Normalization constants™™
E.”
MeV) I” Interaction  ds;pdsp; dsp8si dsradare 81128112 sioday  dapadap Nepspr Nusor New N™
197 3 FPSDI -0.0001 -0.2131 -0.0329 - - +0.0098 2000.0 - - 2.5
MSDI +0.08666 -0.08176 +0.05548 - - - - 8000.0 - 10.0

Ccw +0.0700 +0.2618 -0.0445 - - +0.3502 - - 800 1.0
254 3* FPSDI -0.0105 -0.0458 +0.0829 - - +0.6726 10.0 - - 0.125

CW +0.1005 +0.3200 -0.0807 - B -0.2881 - - 1100.0 1375
292 7t FPSDI - -0.0723 +0.1274 - -0.3415 - 600.0 - - Q.75

CW - +0.0506 -0.3035 - -01072 - - - 5500 6.88

[Continued...]
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Table 5.9. [continued..]

Spectroscopic amplitudes and normalization constant for transitions in the “%Si(a.,d)*°P reaction using optical potential

Spectroscopic amplitude Normalization Constants **
E,”
MeV) I” Interaction  dspds;z  dspsse dszdap $128172 Si2dsp  dapdap Nepspr Nuspr New N
2.84 3* FPSDI -0.0081 +0.0914 -0.1004 - - +0.5200 9200 - - 11.5
CcwW +0.0174 -0.0506 +0.2130 - - -0.3979 - - 12000 15.0
3.02 1" FPSDI +0.0004 - -0.0499 -0.0392 -0.0121 -0.1595 - - -
CwW +0.2574 - -0.3648 +0.2212 +0.0859 -0.2665 - - -

a) P.M. Endtand C. van der Leun, Nucl. Phys. A310(1978)1 [151].
b) R.J. de Mener, L. W. Put, J. J. Akerman, J. C. Vermenlen, and C. R. Bingham, Nucl. Phys. A386(1982)200 [37].
c) K. Jankowski, A. Grzeszuk, M. Siemaszko, A. Surowiec, W. Zipper, A. Budzanowski, and E. Kozik, Nucl. Phys. A426(1984)1-19 [18].

**Nepspr = Normalization Constant using optical potential and Spectroscopic amplitudes extracted from FPSDI interaction,
Nyspr= Normalization Constant using optical potential and Spectroscopic amplitudes extracted from MSDI interaction;
Ncw= Normalization Constant using optical potential and Spectroscopic amplitudes extracted from CW interaction
N.,;= Nomalization Constants relative to the Normalization Constant= 800.0 obtained for the Ex=7.20 MeV; JI*=7" state assuming a 1.000(1f5,,)*

spectroscopic amplitude.



137

Table 5.10. Spectroscopic amplitudes and normalization constant for transitions in the **Si(c.,d)*°P reaction using Michel potential

E.”

Spectroscopic amplitudes

Normalization constants ~

MeW) I Interaction  dspdsy, dsjo8sp dspda, S8 812d3p2 d3;dsz  Nepspr Nuspr New N™
0 " FPSDI ® -0.1291 - -0.0576 -0.7264 -0.3659 +0.2000 7000 - - 8.75
MSDI ¢ -0.09593 - +0.03974 -0.40482 -0.13899 +0.08527 - - - -
cw?® -0.1071 - -0.2557 -0.3346  -0.1859 +0.1727 - - 70000.0 87.5
0.71 17 FPSDI +0.0130 - -0.0737 -0.3089 +0.7348 -0.1835 8000.0 - 10.0
MSDI -0.03825 - +0.04540 -0.14308 +0.16475 -0.07733 - - -
CW -0.0054 - -0.0070 -0.2429 +0.4729 -0.1418 - - 6000 7.5
1.45 2°F FPSDI - +0.0556 +0.0044 - +0.7385 - 1800 - 2.25
MSDI - -0.15183 -0.00501 - +0.16456 - - - -
CW - +0.0173 -0.1422 - +0.4527 - - - 18000 225

[Continued...]
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Table 5.10. [continued.. |

Spectroscopic amplitudes and normalization constant for transitions in the “*Si(a,d)*°P reaction using Michel porential

Spectroscopic amplitude Normalization constants™*

E”
MeV) " [nteraction  dspdsp dsp8sp dsjadarg 8128112 Siadsy  dapdsn Nrpso1 Nusor New N
tor 3F FPSDI -0.0001 -0.2131 -0.0329 - - +0.0098 35000 - - 43.75
MSDI +0.08666 -0.08176 +0.05548 - - - = 4 ~ .
CcwW +0.0700 +0.2618 -0.0445 - - +0.3502 - - 1500018.75
254 37 FPSDI -0.0105 -0.0458 +0.0829 - - +0.6726 7000 - - 8.75
CwW +0.1005 +0.3200 -0.0807 - - -0.2881 - - 17000 21.258
2z 27 FPSDI - -0.0723 +0.1274 - -0.3415 - 300.0 - - 0.375
CcW - +0.0506 -0.3035 - -01072 - - - 90000 11.25

[Continued...]
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Table 5.10. [continued..]

Spectroscopic amplitudes and normalization constant for transitions in the “*Si(c,d)*°P reaction using Michel potential

Spectroscopic amplitude Normalization Constants **
E.?
MeWV) " Interaction dspdsy  dspesp dspday 81728112 Sy2dary  dapdsas Nrpspr Nusor New  Nea
2.84 3° FPSDI -0.0081  +0.0914 -0.1004 E - +0.5200 2.9x10* - - 36.25
CwW +0.0174 -0.0506 +0.2130 - - -0.3979 - - 1.9x10°237.5
3.02 17 FPSDI +0.0004 - -0.0499 -0.0392 -0.0121 -0.1595 - - - -
CwW +0.2574 - -0.3648  +0.2212 +0.0859 -0.2665 - - - -

a) P. M. Endtand C. van der Leun, Nucl. Phys. A310(1978)1 [151].
b) R.J.de Meijer, L. W. Put, J. . Akerman, J. C. Vermenlen, and C. R. Bingham, Nucl. Phys. A386(1982)200 [37].
¢) K. Jankowski, A. Grzeszuk, M. Siemaszko, A. Surowiec, W. Zipper, A. Budzanowski, and E. Kozik, Nucl. Phys. A426(1984)1-19[18].

**Nepspr = Normalization Constant nsing Michel potential and Spectroscopic amplitudes extracted from FPSDI interaction;
Nyspr= Nommalization Constant using Michel potential and Spectroscopic amplitudes extracted from MSDI interaction;
New= Normalization Constant using Michel potential and Spectroscopic amplitudes extracted from CW interaction
N,.;= Nomalization Constants relative to the Normalization Constant= 800.0 obtained for the Ex=7.20 MeV; J"™=7" state assuming a 1.000(1£5,,)?

spectroscopic amphtude.
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5.2.3. DWBA analysis of the “Si(a,d)’'P reaction.

Both the macroscopic full finite-range DWBA and microscopic zero-range
DWBA calculations have been performed in the case of the *Si(ct,d)”P using the
computer code DWUCKS and DWUCK4 [39] respectively. Corrections due to the non-
locality [32,39] of potentials have been applied using the non-locality parameters

B(c)=0.2, B(d)=0.54 and P(p)=0.85 fm. In both the macroscopic FFR and the microscopic

ZR calculations, the molecular, Michel and normal optical types of a-si potential used,
have been generated in the present work by fitting the elastic data [45], as shown in Fig
5.20. The d-"'P optical potential parameters are taken from the work of Fitz et al [148].

All the potential parameters used are displayed in Table 5.11.

5.2.3.1. Macroscopic DWBA Calculations

The macroscopic analyses have been performed using full finite-range DWBA.
The parameters of bound-state geometry for the d-d and d-*Si Woods-Saxon (WS)
potential, shown in the Table 5.11 are taken from [18]. The bound-state wave functions
for the transferred deuterons in alpha as well as in the final nucleus have been generated
by adjusting the deuteron separation energies. The accuracy parameters used in the
computer code DWUCKS5 have been assigned in the same way as performed in the study
of the *Si(c,d)™P reaction.

The cluster configurations of the transferred deuteron for the different states of
excitation are shown in Table 5.12. It is to be noted that for the (c.,d) reaction on *Si,
there are two possible values of the total transferred angular momentum J for odd J and

even parity or an even J and odd parity. For the final states populated by more than one
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L-transfers for a single J transfer, the cross-sections are added incoherently and the

spectroscopic factors A4, are deduced from Eq. (5.15) coupled with the minimization of

y" defined in Eq. (5.17). On the other hand, for the transitions, involving more than one

J transfer , use of Eq. (5.15) along with the minimization of »* leads to the extraction of
the total spectroscopic factor for the same L, but different J transfers. The deduced
spectroscopic factors are listed in Table 5.12.

The DWBA predictions with the molecular (solid curves ), standard optical
( broken curves ) and Michel ( dotted carves) potentials are compared to the data of the
ground (1/2" ), 1.27 (3/2"), and 2.23 (5/2") MeV states in Fig 5.21; to the data of 3.13
(1/2"),3.30 (5/2") and 3.41 (7/2") MeV states in Fig 522 and tothe data of

3.51(3/2"),4.19 (5/2"), and 4.26 (3/2") MeV states of *'P in Fig.5.23.

5.2.3.2. Microscopic DWBA calculations

The microscopic calculations have been performed using the zero-range code
DWUCK4. The present analyses make use of three sets of spectroscopic amplitudes B2,
based on MSDL RIP, and KB hamiltonians [48]. These three sets of amplitudes are
obtained from Ref. [45] and are furnished in Tables (5.14-5.16) along with the respective
normalization constants deduced from fitting the experimental data from Ref [48 ]. The
phase conventions used are similar to that used in the analyses of the **Si(a,d)P
reaction.

The bound state wave functions for each of the transferred nucleons have been
generated by assuming a real Woods-Saxon well with the geometry parameters r=1.25

fm. and a,=0.65 fm and the depth adjusted to produce the binding energy equal to half
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the separation energy of the transferred deuteron. A Thomas-Fermi spin-orbit term with
2.=25 has also been used for the bound state wave function

A Gaussian form of the finite-range correction in the LEA [39] has been
investigated Fig. 524 compares the microscopic DWBA calculations for the molecular
type of a-”’Si potential using R=0.0 fm. (broken lines), 0.7 fm. (solid lines) and 0.8 fm.
(dotted lines) to the experimental data for ground (1/2%), 1.27(3/2"), and 2.23 (5/2") MeV
states of 'P. The finite range parameter R= 0.7 fm. seems to give the best fit to the data.

The effect of three types of the a-”Si potential on the microscopic DWBA
calculations has been examined using the spectroscopic amplitudes B'? calculated from
MSDI, RIP and KB interactions. Figs. 5.25-5.27 display the DWBA predictions for the
molecular potential using spectroscopic amplitudes B2 from MSDI (solid curves ), RIP
(broken curves) and KB (dotted curves ) interactions compared to the data for the ground
state (172 1), 1.27 (3/2Y), 2.23 (5/2), 3.13(1/29), 3.30 ( 5/2%), 3.41 (7/2%), 3.51(3/2Y),
419(5/2") and 426 (3/2") MeV states. Similarly, Figs. 5.28-530 show the same for
normal optical and Figs. 531-5.33 for Michel potentials. Figs. 534 —-5.36 display in a
comparative manner, the DWBA predictions compared to the data using molecular,

normal optical and Michel potentials and spectroscopic amplitudes B of MSDL

5.2.3.3. Calculations of theoretical spectroscopic factors

Skwirczynska et al. [150], calculated the spectroscopic factor from the expression

L L L
S; =Z[ZAlppis0] |1 L1 (5.20)
ho I J
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Comparison of Eq. (5.20), which occurs in Eq. (5.9), with the expression (Eq. 5.11) for

structure factor G,,, which is associated with the expression for the macroscopic cross-

section in Eq. (5.12), suggests that the kinematic part By in Eq. (5.9) is still not free of
microscopic quantum numbers. Hence, Eq. (5.20) does not represent in total the

macroscopic spectroscopic factor, although it may give the right order. On the other hand,

the spectroscopic factor defined [37] in Eq. 5.18 in terms of the structure factor G, (Eq.
5.11) is complete in itself. Therefore, the value of ]G,_,[2 relative to that for any state with

spectroscopic amplitude % =land with a stretched configuration, can yield a real
measure of spectroscopic strength of a state populated through the transfer (L,J). Thus, if

it is assumed that there exists a state in the final nucleus populated via J* = 7" through

the transfer configuration (fi»)* and the target configuration does not involve the orbital
fin, then one can deduce the spectroscopic factors relative to the |G, |’ as done in the
analysis of the **Si(a,d)™P reaction with the observed state at Ex = 7.20 MeV using Eq,

5.18. Thus, the spectroscopic factors are estimated using the expression

2

G
§0 =3y Fw
‘ ; 10,562,

(5. 21)

where G, = 0.5642,, represents the structure factor for an unobserved state populated

with the J™ = 7" transfer % =1.0. The sum over J encompasses the cases where the

target spin is non-zero.
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The total spectroscopic factors §¢ for a transition is then obtained by the Eq. (5.19)

The spectroscopic factors S;and S, using three sets of spectroscopic

1
amplitudes A° from the MSDI, RIP and KB interactions [45] have been calculated and
noted in Tables 5.12 and 5.13. These theoretically predicted spectroscopic factors are also
compared to experimentally deduced values using three (molecular, normal optical and

Michel) types of potentials in Tables 5.12 and 5.13.
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Table 5.11. Potential parameters used in the DWBA calculations for *Si(c,d)*'P. V is adjusted to give the
separation energy.

Channel ot ’si d+"'P d+td  d+”si
Type Molecular®  Michel” Optical’ Optical’ Bound state*

Vo (MeV) 26.3 31.41 182.45 102.7 v \

Ry (fm) 5.45 483 - . . 3

ro (fm) s . 1.15 1.07 105 0935

2o (fm) 0.34 0.55 0.76 0.852 0.50  0.997

Vi (MeV) 425 - - -

R, (fin) 2.90 " : :
o . 7.39 : ;

p (fm) s 6.45 ; .

W, (MeV)  17.92 34.91 13.5 ;

Ry (fin) 4.1 4.06 : )

ry (fim) - - 1.51 -

ar(fm) - 0.64 0.70 -

Wy, (MeV) g . ; 16.10

tp (fm) : . : 1.53

ap (fm) : . s 0.574

Veo(MeV) i . . 6.0

I,, (fm) - - - 1.07

a,, (fm) - E - 0.852

rc (fim) - 1.30 1.30 115 1.25 1.3
R (fin) 9.45 . 5 p 2 -

* Present work.
® Ref. [48].
‘ Ref. [18].



Table 5.12. Chister spectroscopic factors for the **Si(o,d)*'P extracted by molecular, normal optical and
Michel potentials are com pared to the theoretical shell-model factors for the MSDL RIP and KB

interactions. Factors are calculated from the spectroscopic amplitudes [3”2 of Ref[45] by the method

outlined m [37].
E, Jx  Cluster Chister gpecﬁoscopic Factor Shell-model S pectroscopic
Config, Factor S f
(MeV) N.L Ay Ay A MSDI RIP KB
(molecular) (optical) (Michel)

0.0 12" 2,0 0.1840.06 12.6+2.62 7.2+1.44 0.611 0.027 0.024
1,2 0.12+0.04 8.4+1.68 4.8+0.96 0.006 0.053 0.011

| £ nt 2,0 0.0525+0.01 3.0406 1.8+0.36 0.007 0.009 0.006
1.2 0.298+0.09 4.5+0.9 2.740.54 0.597 0.176 0.060
1,2

223 572 1,2 0.1425+0.04 5.03+1.05 1.5840.32 0.112 0.220 0.013
1,2
0,4 0.0075£0.002  0.265+0.07  0.084+.02 0.000 0.004 0.003

i ort 2,0 0.052+0.02 0.90+0.27 0.76+0.15 0.021 0.009 0.171
1,2 0.078+0.02 1.5040.30 1.14+0.23 0.229 0.036 0.026

3.30 5/2* 1,2 0.085510.03 4.08+0.81 3.8+0.80 0.084 0.006 0.002
1.2
0.4 0.0045+0.001 0.215+0.05 0.240.05 0.000 0.011 0.067

3 7t 1,2 0.260+0.08 13.043.9 52413 0.005 0.031 0.002
0,4 0.0325+0.01 3.2540.65 1.3£0.33 0.143 0.020 0.101
0.4

st 2,0 0.058510.02 1.840.36 1.5+0.38 0.001 0.060 0.002
1,2
1,2 0.1365+0.04 4.240.84 3.5£0.88 0.169 0.012 0.200

4.19 502t 1,2 0.088+0.03 4.0+0.80 4.4+1.1 0.058 0.077 0.010
1,2
0,4 0.022+0.006 1.040.25 1.1+0.26 0.014 0.029 0.061

426 32t 2,0 0.070+0.02 2.840.70 2.240.55 0.002 0.004 0.002
1,2 0.135+40.04 4.2+1.05 3.3+0.83 0.005 0.052 0.011

1,2
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Table 5.13. Total epectroscopic factors of ?Si(c,d)’'P reaction deduced from the macroscopic calculation
using the molecular, nommal optical and Michel potentials are compared to the corresponding total

spectroscopic factors calculated with the spectroscopic amplitudes ﬂ% of three interactions (MSDI, RIP

and KB) taken from Ref.[45] by the method outlined in Ref. [37].

E, r L Total spectroscopic factors 24, Total spectroscopic factors S
(MeV) Macroscopic calculations Microscopic calculations
Molecular | Optical Michel MSDI RIP KB
0.0 125 | o2 0.40 21.0 12.0 0.617 0.080 0.35
1.27 32t 042 0.35 1.5 45 0.604 0.185 0.066
223 5/2% | 2+4 0.15 5.04 16.64 0.112 0.224 0.016
3.13 1/2% | 042 0.13 24 1.90 0.250 0.045 0.197
3.30 5124 | 2+4 0.09 430 4.00 0.084 0.017 0.069
3.41 72t | 244 0.29 16.25 6.50 0.148 0.051 0.103
3.51 nt 0+2 0.20 6.00_ 5.00 0.170 0.072 0.202
4.19 5/2* 2+4 0.11 5.00 5.50 0.072 0.106 0.071
4.26 312 0+2 0.21 7.00 5.50 0.007 0.056 0.013
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Table 5.14. Spectroscopic amplitndes and normalization constant for transitions in the **Si(c,d)*'P reaction using molecular potential

Spectroscopic amplitudes 2 Normalization constants ~
B
MeV) " I Interaction  dspdsp ds/28172 dspdap  Sisie 8172d372 dipdsz Nusor Nep Ngs
0 /27 MSDI +0.220 - -0.128 +0.725 +0.013 -0.144 55 - -
RIP -0.385 - -0.242 -0.168 -0.048 +0.097 - 100
KB -0.011 - -0.111  -0.239 -0.037 +0.093 - - 2200
127 32~ MSDI -0.122 - -0.046 -0.016 -0.562 +0.236 500 -
RIP -0.093 - +0.044 -0.013 -0.265 +0.105 - 1700 -
KB +0.091 - -0.021 +0.002 +0.151 -0.122 - - 8000
2 MSDI - 0.012 0.055 - +0462 -
RIP - 0.047 -0.013 - +0357 -
KB - -0.015 0.010 - -0.171 -
223 52t 2 MSDI - -0.089 +0.063 - -0276 - 400 - -
RIP - -0.133 +0.063 - +0.053 - - 460
KB - -0.055 +0.170 - +0.020 - - - 3000
3 MSDI +0.088 -0.305 -0.040 - - -0.008
RIP -0.289 -0.374 -0.032 - - +0.005
KB -0.050 -0.089 -0.029 - - -0.073

[Continued...]
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Table 5.14 (Continued..)

Spectroscopic amplitudes and normalization constant for transitions in the **Si(c,d)’'P reaction using molecular potential

Spectroscopic amplitudes

Normalization constants ~

-

E,
MeV) " I, [nteraction dspdsy, dsnsin dspdap 8128112 8124372 dspds;  Nuspr Nep Nxs
0 MSDI -0.151 - -0.122 -0.163 -0.380 +0.120 80 - -
RIP -0.161 - +0.057 +0.026 -0.136 +0.102 - 610
KB +0.094 - -0.070 +0.464 -0.086 +0.204 - - 50
3.30 S5/2° 2 MSDI - +0.063 -0.144 - -0.324 - 180 - -
RIP - -0.028 -0.218 - +0.129 - - 270 -
KB - +0.002 +0.087 - -0.027 - - - 2300
3 MSDI -0.036 -0.035 0.102 - - +0.039
RIP -0.038 -0.025 0.102 - - -0.066
KB -0.040 -0.010 -0.051 - - +0.231
3.41 7R2° 3 MSDI -0.047 +0.064 -0.151 - E +0.258 800 - -
RIP +0.023 +0.087 -0.253 - - -0.045 - 18000
KB +0.021 +0.006 -0.036 - - -0.311 - - 1100
4 MSDI - - +0.121 - - -
RIP - - +0.086 - - -
KB B - +0.215 - -

[Continued...]
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Table 5.14 (Continued..)

Spectroscopic amplitudes and normalization constants for transitions in the **Si(c,d)*'P reaction using molecular potential

)

Spectroscopic amplitudes Normalization constants

E,
MeV) I Tova Interaction  dspdsp dsja812 dspdin  Sypdip 812d372 d3pdzy Nuyspr Nep Nzsp
3.51 372 1 MSDI +0.055 - +0.037 +0.020 +0.112 -0.107 11000 - -
RIP -0.186 - +0.180 -0.061 -0.079 +0.092 - 700
KB -0.088 - -0.050 +0.011 -0.301 +0.215 - - 1300
7 MSDI - -0.083 +0.070 - +0.519 -
RIP - +Q0.032 +0.003 - -0.088 -
KB - +0.010 -0.061 - +0.285 -
4.19 5/12* 2 MSDI - +0.058 -0.038 - -0.116 - 38000 - -
RIP - -0.050 +0.022 - -0.051 - - 4500 -
KB - -0.027 +0.052 - -0.132 - - - 1500
3 MSDI -0.030 +0.183 -0.169 - - -0.196
RIP -0.071 -0.169 +0.269 - - -0.068
KB -0.038 +0.082 -0.005 - - +0.239
426 31t 1 MSDI +0.075 - +0.120 +0.023 -0.100 -0.309 590 - -
RIP -0.017 - +0.088 -0.002 +0.137 +0.015 - 2500
KB +0.037 - -0.051 +0.005 +0.087 +0.022 - - 3400
2 MSDI - +0.058 0.109 - +0.033 -
RIP - -0.001 -0.264 - -0.050 -
KB - -0.019 -0.105 - -0.019 -

a) Ref. [45]. ** Normalization constants using molecular potential.
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Table 5.15. Spectroscopic amplitudes and normalization constants for transitions in the **Si(c.,d)’'P reaction using normal optical potential

Spectroscopic amplitudes Normalization constants —
E,
MeV) I Jra  Interaction dspdsp dsn2s12 dspdsn  s1810 8112d3r2 dapds,  Nusor Nep Ngs
0 1/2* 1 MSDI +0.220 - -0.128 +0.725 +0.013 -0.144 9.0x10° - -
RIP -0.385 - -0.242 -0.168 -0.048  +0.097 - 9.5x10° -
KB -0.011 - -0.111  -0.239 -0.037 +0.093 - 1.5x10°
1.27 3/12° 1 MSDI -0.122 - -0.046 -0.016 -0.562 +0.236 6.0x10° - -
RIP -0.093 - +0.044 -0.013 -0.265 +0.105 - 2.2x10° -
KB +0.091 - -0.021 +0.002 +0.151 -0.122 - - 8.9x10°
2 MSDI - 0.012 0.055 - +0462 - - - -
RIP - 0.047 -0.013 - +0357 - - - -
KB - -0.015 0.010 - -0.171 - - - -
2.23 5127 2 MSDI - -0.089 +0.063 - -0.276 - 6.5x10° - -
RIP - -0.133 +0.063 - +0.053 - - 7.3x10° -
KB - -0.055 +0.170 - +0.020 - - - 5.0x10*
3 MSDI +0.088 -0.305 -0.040 - - -0.008 - - -
RIP -0.289 -0.374 -0.032 - - +0.005 - - -
KB -0.050 -0.089 -0.029 - - -0.073 - - -
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Table 5.15. (Continued..)

Spectroscopic amplitudes and normalization constants for transitions in the **Si(a,d)’'P reaction using normal optical potential

Spectroscopic amplitudes o Normalization constants —
E,
MeV) ™ I, Interaction  dspds), dsp281/2 dspday 81812 8y2dap ds;pdss Nagspr Nap Ngs
313 12° 1 MSDI -0.151 - -0.122 -0.163 -0.380 +0.120 1.2x10° - -
RIP -0.161 - +0.057 +0.026 -0.136 +0.102 - 1.5x10%
KB +0.094 - -0.070 +0.464 -0.086  +0.204 - - 5.0x10%
3.30 527 2 MSDI - +0.063 -0.144 - -0.324 - 4.0x10° - -
RIP - -0.028 -0218 - +0.129 - - 9.0x10* -
KB - +0.002 +0.087 - -0.027 - B - 8.0x10*
3 MSDI -0.036 -0.035 0.102 - - +0.039
RIP -0.038 -0.025 0.102 - E -0.066
KB -0.040 -0.010 -0.051 - B +0.231
3.41 72* 3 MSDI -0.047 +0.064 -0.151 - - +0.258 1.4x10* - -
RIP +0.023 +0.087 -0.253 - - -0.045 - 2.8x10°
KB +0.021 +0.006 -0.036 - - -0.311 - - 2.0x10*
4 MSDI - B +0.121 - - -
RIP - - +0.086 - - -
KB - - +0.215 - - -

[Continued...]
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Table 5.15 (Continued..)

Spectroscopic amplitudes and normalization constants for transitions in the **Si(a.,d)*'P reaction using normal optical potential

Spectroscopic amplitudes o Normalization constants
E,
MeV) I Jra Interaction dspdsp dsi23812 dspds, 818102 8y2d3p d3pdin Nusor Nep Ngs
3.51 3/7* 1 MSDI +0.055 - +0.037 +0.020 #0132 -0.107 1.5x10* - -
RIP -0.186 - +0.180 -0.061 -0.079 +0.092 - 1.1x10* -
KB -0.088 - -0.050  +0.011 -0.301 +0.215 - - 1.6x10°
2 MSDI - -0.083 +0.070 - +0.519 -
RIP - +0.032 +0.003 - -0.088 -
KB - +0.010 -0.061 - +0.285 -
419 512 2 MSDI - +0.058 -0.038 : -0.116 - 5.0x10° - -
RIP - -0.050 +0.022 - -0.051 - - 5.0x10°
KB - -0.027 +0.052 - -0.132 - - - 1.8x10*
3 MSDI -0.030 +0.183 -0.169 - - -0.196
RIP -0.071 -0.169 +0.269 - - -0.068
KB -0.038 +0.082 -0.005 - - +0.239
426 3/2* 1 MSDI +0.075 - +0.120 +0.023 -0.100 -0.309 1.1x10* - -
RIP -0.017 - +0.088 -0.002 +0.137 +0.015 - 4.0x10*
KB +0.037 - -0.051 +0.005 +0.087 +0.022 - - 5.8x10*
2 MSDI - +0.058 -0.109 - +0.033 - - - -
RIP - -0.001 -0.264 - -0.050 - - - -
KB - -0.019 -0.105 - -0.019 -
a) Ref. [45]. ** Normalization constants using optical potential.
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Table 5.16. Spectroscopic amplitudes and normalization constant for transitions in the **Si(c,d)*'P reaction using Michel potential

Spectroscopic amphitudes

a)

Normalization constants

E,
MeV) T I Interaction  dspdss; ds;28112 dspdsn 318 s12d32 dadz; Nuspr Nerp Ngs
0 2l | MSDI +0.220 - -0.128 +0.725 +0.013 -0.144  5.5x10° . -
RIP -0.385 - -0.242 -0.168 -0.048  +0.097 - 7.0x10°
KB -0.011 - -0.111  -0.239 -0.037 +0.093 - . 1.2x10°
1.27 32 1 MSDI -0.1272 5 -0.046 -0016 -0.562 +0.236 3.2x10° -
RIP -0.093 - +0.044 -0.013 -0.265 +0.105 - 1.1x10° -
KB +0.091 E 0.021 +0.002 +0.151 -0.122 - - 4.0x10*
2 MSDI . 0.012 0.055 - +0462 - - - -
RIP s 0.047 -0.013 - +0357 - 3 = =
KB - -0.015 0.010 - -0.171 - - - -
223 sk 2 MSDI ~ -0.089 +0.063 2 -0.276 3 1.9x10° =
RIP - -0.133 +0.063 - +0.053 - . 2.1x10%
KB = -0.055 +0.170 - +0.02 = - . 1.7x10*
3 MSDI +0.088 -0.305 -0.040 2 - -0.008 - - -
RIP -0289  -0374 -0.032 - . +0.005 - - -
KB -0.050 -0.089 -0.029 - - -0.073 -
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Table 5.16 (Continued..)

Spectroscopic amplitudes and normalization constants for transitions in the **Si(c,d)*'P reaction using Michel potential

a)

Spectroscopic amplitudes Normalization constants

E,
MeV) I 1, Interaction  dsjdsp, dsp842 dspday 818112 8124372 dapdy,  Nysor Newp Ngs
3.1y 17t MSDI -0.151 - -0.122 -0.163 -0.380 +0.120 5.5x10° - -
RIP -0.161 - +0.057 +0.026 -0.136 +0.102 - 1.9x10* -
KB +0.094 - -0.070 +0.464 -0.086 +0.204 - - 3.0x10°
3.30 5727 2 MSDI - +0.063 -0.144 - -0.324 - 2.2x103 - -
RIP - -0.028 -0.218 - +0.129 - - 4.4x10° -
KB - +0.002  +0.087 = -0.027 - - - 4.3x10*
3 MSDI -0.036 -0.035 0.102 - - +0.039 - - -
RIP -0.038 -0.025 0.102 - - -0.066 - - -
KB -0.040 -0.010 -0.051 - - +0.231 - - -
3.41 72t 3 MSDI -0.047 +0.064 -0.151 - - +0.258 8.0x102 -
RIP +0.023 +0.087 -0.253 - - -0.045 - 4.0x10* -
KB +0.021 +0.006 -0.036 - - -0.311 - - 1.0x10°
4 MSDI - - +0.121 - - - - - -
RIP - - +0.086 - - - - B -
KB - - +0.215 - - - - -
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Table 5.16. (Continued..)

Spectroscopic amplitudes and normalization constant for transitions in the **Si(o.,d)*'P reaction using Michel potential

)

Spectroscopic amplitudes ) Normalization constants

E,
MeV) I ) A Interaction  dspdsp dsp2812 dspdan  Sy28112 8124312 dipdsz  Nusor Nar Ngzs
3.51 3/27 1 MSDI +0.055 - +0.037 +0.020 +0.112 -0.107 8.0x10* - -
RIP 0.186 - +0.180 -0.061 -0.079 +0.092 - 7.0x10° -
KB -0.088 - -0.050 +0.011 -0.301 +0.215 - - 8.0x10°
2 MSDI - -0.083 +0.070 - +0.519 - - - -
RIP - +0.032 +0.003 - -0.088 - - - -
KB - +0.010 -0.061 - +0.285 - - - -
4.19 5127 2 MSDI - +0.058 -0.038 - -0.116 - 2.2x10* - -
RIP - -0.050 +0.022 - -0.051 - - 3.0x10* -
KB - -0.027 +0.052 - -0.132 - - - 1.0x10*
3 MSDI -0.030 +0.183 -0.169 - - -0.196 - - -
RIP -0.071 -0.169 +0.269 - - -0.068 - - -
KB -0.038 +0.082 -0.005 - - +0.239 - - -
426 3/2° 1 MSDI +0.075 - +0.120 +0.023 -0.100 -0.309 5.9x10° - -
RIP -0.017 - +0.088 -0.002 +0.137 +0.015 - 2.5x10*
KB +0.037 - -0.051 +0.005 +0.087 +0.022 - - 3.4x10*%
2 MSDI - +0.058 -0.109 - +0.033 - - - -
RIP - -0.001 -0.264 - -0.050 - - - -
KB - -0.019 -0.105 - -0.019 - - - - -

a) Ref. [ 45]. ** Normalization constants using Michel potential.
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Fig. 5. 20. Fits to the o-22Si elastic scattering data at 25 MeV (lab) with the Michel,

molecular and normal optical potentials. Data are from [45]
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Fig. 5.21. Comparison of the full finite-range macroscopic DWBA calculations

for the Si(a,d)*'P reaction at 25 MeV leading to ground (1/2"), 1.27(3/2") and
223 (5/2") MeV states of *'P to the differential cross-section data. The solid,
dotted and broken curves are the predictions using the molecular, normal optical
and Michel a-zgsi, Michel a-29Si potentials.Data are from [48].
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Fig. 5.22. Comparison of the full finite-range macroscopic DWBA calculations for the

2i(0,d)*'P reaction at reaction at 25 MeV leading to the 3.13(1/2"), 3.30(5/2"), 3.41712")
MeV states of 31 P to the differential cross-section data. The solid, dotted and broken curves

are the predictions using the molecular, normal optical and Michel 0.-298i potentials

respectively. Data are from [48].
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Fig. 5.23. Same as in Fig.5.21 for 3.51 (3I2+). 4.19(5f2+) and 4.26(3f2+)MeV
states of 9 P. Data are from [48].
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Fig.5. 24. Comparison of the zero-range microscopic DWBA calculations using the MSDI spectroscopic

amplitudes and the molecular potential in the a—channel for the 298i(a,d)31p reaction at 25 MeV leading
to the ground (1/2+), 1.27(3!2+), and 2.23(5!2+) MeV states of 31F’ to the differential cross-section data.
The solid curves are the predictions using the finite-range (FR) correction with R=0.7 fm. The broken

and the dotted curves are the predictions with R=0.0 and 0.85 fm, respectively. Data are from [48]
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Fig. 5.25. Comparison of the zero-range microcopic DWBA calculations with FR correction
(R=0.7 fm.) and the molecular potential in the a-channel for Si(a,d)*'P reaction leading to the
g.s. (112%), 1.27 (312") and 2.23(512%) MeV states of 3'P to the differential cross-section data.
The solid, broken and dotted curves are the predictions using the MSDI, RIP, and KB

interactions respectively. Data are from [48].
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Fig. 5.26. Same as in Fig. 5.25 for 3.13(1/2"), 3.30(1/2") and 3.41(512") Mev

states of > P. Data are from [48].
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Fig. 5.30. Same as in Fig.5. 27 using normal optical potential.
Data are from [48].
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Fig. 5. 33. Same as in Fig.5.27 using Michel potential. Data are from [48].
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Fig. 5.34. Comparison of the zero-range microscopic DWBA calculations using the MSDI
spectroscopic amplitudes and the molecular, normal optical and Michel potentials in the
a-channel for the 22Si(a,d)> P reactions at 25 MeV leading to the ground (112), 1.27(3/2"),
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Fig. 5.35. Same as in Fig. 5.34. for 3.13(1/2"), 3.30(5/2") and 3.41(7/2") MeV states.
Data are from [48].
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5.2.4. DWBA analysis of the *'Si(a,d)*’ P reaction

The microscopic zero-range (ZR) DWBA and macroscopic full finite-range (FFR)
calculations for analyzing the “Si(c,d)”P reaction data have been performed using
DWUCKA4 and DWUCKS [39] respectively.

As before, cormrections due to non-locality [32,39] of potentials in the conventional
form have been applied using the non-locality parameters B(a)=0.2, P(d)=0.54 and
B(p)=0.85 fm. In both the microscopic ZR and macroscopic FFR calculations, the
molecular, standard and Michel types of o-*’Si potential in the entrance channel and the
standard optical d-7P in the exit channel have been employed The parameters of the
molecular , standard, and Michel potentials are generated by fitting the elastic data [45]
of o-*Si as shown in the Fig.5.37. The d-"’P standard optical potentials used has been
procured from the work of Fitz et al [148]. All the potential parameters used are
displayed in Table 5.17.

5.2.4.1. Macroscopic DWBA calculations

The bound state geometry for d-d and d-*’Si Woods Saxon (WS) potential shown
in Table 517 are taken from [I18]. As usual, the bound-state wave functions for the
transferred deuteron in alpha as well as in the final nucleus have been generated by
adjusting the deuteron separation energy. The accuracy parameters used in the code has
been assigned using the method as mentioned before ( Sec. 5.2.2.1 ) in the analysis of the

. E -
reaction on *Si.
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The cluster configuration of the transferred deuteron for the different states of

excitations are shown in Table 5.18. For the final states with natural parity states

populated by one L-transfer, the DWBA predictions are compared to the data to yield the
relevant  spectroscopic factors A;, as defined in Eq. 5.15. On the other hand, for the
transitions involving two [L-transfers leading to final states with unnatural parity
spectroscopic factors A; are extracted by using Eq. (5.15) and minimizing y* in Eq.
(5.17). The deduced spectroscopic factors are noted in Tables 5.18 and 5.19.

The DWBA predictions with molecular (solid curve), normal (dotted curve ) and
Michel ( broken curves ) potentials are compared to the data of the ground ", 0.08
(29, 1.15(1"), and 1.32 (2") MeV states in Fig 538 and to the data of 1.75 (3"), 2.66(2"),

2.74(1") and 3.00 (3') MeV states of >’P in Fig, 5.39.

5.2.4.2. Microscopic DWBA calculation

The present microscopic analyses make use of three sets of spectroscopic
amplitudes B, based on different nucleon-nucleon interactions. All three sets of
spectroscopic amplitudes are obtained from [45]. The first set (MSDI) have been
extracted using the modified surface delta interaction [152]; another set ( RIP) have been
calculated based on an effective interaction found by fitting to experimentally observed
nuclear energy levels [153]. The third set (KB) which have been calculated assuming a
Hamada-Johnston scattering potential [154]. All three amplitudes are furnished in Tables
(520 — 5.22) along with the respective normalization constants deduced using Eq. (5.16)
after fitting the experimental data using all three (molecular, normal optical and Michel)

potentials.
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All three sets of spectroscopic amplitudes are calculated in the model space of

1dsn2s1n1dhn. The phase corrections to the spectroscopic amplitudes for inputting to the

computer DWUCK4 are same as discussed in Sec. 5.2.2.2.

The bound-state wave finctions for each of the transferred nucleons have been
generated by assuming a real Woods-Saxon well with the geometry parameters rp=1.25
fm and a,=0.65 fm and the depth adjusted to reproduce the binding energy equal to the
half of the separation of the transferred deuteron A Thomas-Fermi spin-orbit term with
A=25 has also been used for the bound state wave functions.

A Gaussian form of the finite range correction in the LEA [39] has been
investigated. Fig. 540 compares the microscopic DWBA calculations for the molecular
type of 0-*'Si potential using R=0.0 fim (dotted curves), 0.7 fin (solid curves) and 0.8 fm
(broken curves) to the experimental data for ground (1), 0.08(2"), 1.15 (1") and 132 (2"
MeV states. As observed in the analysis of the reaction on ***°Si, R=0.7 fin gives the best
overall fits to the data

The effect of the three types of the a-’Si potentials on the microscopic zero-
range DWBA calculations with finite range correction R=0.7 fm has also been examined
under the spectroscopic amplitudes calculated for all three interactions. Figs. 5.41-542
display the DWBA predictions for the molecular potentials using all three interactions
MSDI (solid lines), RIP (dotted lines ), and KB (broken lines ). Figs. 5.43-5.44 and Figs.
545-546 exhibit in a similar way the DWBA predictions for the standard optical and
Michel potentials using all three interactions.

Figs. 547 and 548 compare the experimental data with the microscopic DWBA

predictions using the molecular ( solid lines), standard optical ( broken lines) and Michel
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( dotted lines) potentials. In all the cases, the finite-range corrections using R =0.7 fm and

spectroscopic amplitude due to MSDI have been used.

5.2.4.3. Calculations of the spectroscopic factors:
In case of the *Si(c,d)”’P reaction the theoretical spectroscopic factors §7 for a

state populated through (L,J) transfer are deduced using the Eq. (5.18), such as,

Sg = IGU ’ 2
10.56.42,,|

Here G, =0.5642,, represents the structure factor for an unobserved state with J} = 7",

which has the stretched configuration (f;,)’, and the spectroscopic amplitude A% =1.0
with the assumption that the target does not have a component () in its wave function.

The total spectroscopic factors are calculated from Eq. (5. 19).

The spectroscopic factors S7 and the total spectroscopic factors S¢, using three

1 : :
sets of spectroscopic amplitudes f? from the MSDI, RIP and KB interactions [45] have
been calculated and noted in Tables 518 and 5.19. The theoretically predicted
spectroscopic factors are also compared to the experimentally deduced values using all

three ( molecular, normal optical and Michel ) types of potentials in Tables 5.18 and 5.19.
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Table 5.17. Potential parameters used in the DWBA calculations for the *’Si(c..d)™P reaction. V is the
depth of the potential adjusted to give the separation energy.

Channel at™Si d+’P  dtd  d+"Si
Type Molecular®  Michel" Optical® OpticalF Bound state*

Vo (MeV) 27.0 25.0 190.84 102.7 \" A

Ro (fm) 5.52 5.20 - " % %

to (fm) : : 1.15 1.07 105 0935

ay (fm) 0.34 0.46 0.73 0.852 0.50 0.997

Vy (MeV) 42.5 ; . ]

R, (fm) 2.90 . . i

o - 7.12 - -

p (fm) - 6.45 . .

W, (MeV) 17.0 34.0 13.0 -

Ry (fm) 4.1 4.05 - -

ry(fm) - - 1.51 ¢

ay (fim) . 0.65 0.87 =

Wp (MeV) - . . 16.10

p (fim) - - - 1.53

ap(fm) - - - 0.574

Vso(MeV) - - - 6.0

I, (fim) - - - 1.07

a5, (fim) - - - 0.852

re (fim) - 1.30 1.20 1.15 1.25 1.3
Re (fin) 9.46 . . " : -

* Present work.
® Ref. [48].
“ Ref. [18].
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Table 5.18. Chister spectroscopic factors of the *Si(o,d)*?P reaction extracted by molecular, optical and
Michel potentials are compared to the theoretical shell-model factors for the MSDI, RIP and KB

interactions. Factore are calculated from the spectroscopic amplitudes B” 2 of Ref[45] by the method
outlined m [37].

E J*  Chaster Choster Spectroscopic Factor Shell-model Spectroscopic
Config. Factor Sf
(MeV) N,L Ap Ay A MSDI RIP KB

(molecular) (optical) (Michel)

0.0 )F 2,0 0.60+0.18 19.80+4.95 12.0043.6 0.007 0.079 0.0004
1.2 0.40+0.12 13.00+3.25 8.0042.4 0.210 0.089 0.014

>

0.08 2* 1.2 0.24+0.07 0.90+0.23 1.4040.42 0.083 0.017 0.002

1.15 b 2,0 0.25+0.08 1.00+0.22 6.67+2.1 0.014 0.001 0.025
1.2 0.25+0.08 1.00+0.25 6.67+2.1 0.001 0.011 0.061

1.32 3 3 0.09+0.03 2.60+0.70 1.40+0.42 0.0001 0.008 0.007

1.75 3* 1.2 0.481+0.14 1.2940.32 7.8942.40 0.015 0.041 0.0002
0.4 0.32+0.09 0.8510.26 5.26+1.60 0.078 0.029 0.116

2.26 2r 1,2 0.16+0.05 4.00+1.10 4.00+1.30 0.002 0.002 0.005

2.74 1 2,0 0.18+0.05 1.06+0.27 5.06+1.50 0.014 0.012 0.009
1,2 0.294+0.09 1.601+0.32 7.60+2.30 0.154 0.018 0.030

3.00 3 0,4 0.02+0.006 0.2110.05 0.29+0.09 0.006 0.037 0.007
1,2 0.1410.04 1.9240.48 1.9310.58 0.042 0.001 0.020
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Table 5.19. Total spectroscopic factors of the *°S¥0,d)*?P reaction deduced from the macroscopic
calculation using the molecular, normal optical and Michel potentials are compared to the total
spectroscopic factors calculated with the spectroscopic amplitudes f % of three interactions (MSDI, RIP
and KB) from Ref. [45] by the method outlined in Ref. [37].

E, - L Total spectroscopic factors 2.4, Total spectroscopic factors Y
(MeV) Macroscopic calculations Microscopic calculations

Molecular | Optical Michel MSDI RIP KB
0.0 1t 042 1.00 32.80 20.00 0.217 0.168 0.014
0.08  ig 2 0.24 0.90 1.40 0.083 0.017 0.002
1.15 1* 0+2 0.50 2.00 13.34 0.015 0.012 0.086
1.32 2t 2 0.09 2.60 1.40 0.0001 0.008 0.007
1.75 3t | 244 0.80 2.14 13.15 0.093 0.070 0.116
2.66 2t 2 0.16 4.00 4.00 0.002 0.002 0.005
2.74 1t 0+2 0.47 2.66 12.66 0.168 0.030 0.039
3.00 i 2+4 0.16 213 2.22 0.048 0.038 0.027
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Table 5.20. Spectroscopic amplitudes and normalization constant for transitions in the *°Si(c,d)*?P reaction using molecular potential

Spectroscopic amplitudes Y Normalization constants
E,
(MeV) : Interaction  ds;odsp; dspssy dsjadas S12812 $12d3p2 dzpdae Nusor Nz Ngs
0 i MSDI +0.117 . +0.056 +0.029 +0.337  -0.215 4.0x10° - -
RIP -0.228 & +0.122 -0.097 -0.008 +0.204 a 2.5x10° -
KB +0.011 - +0.028 +0.015 -0.170 -0.091 - x 4.0x10°
0.08 2° MSDI +0.074 - -0.063 - -0.401 - 6.0x10% - -
RIP +0.062 - +0.244 - -0.044 - . 1.5x10° -
KB -0.020 - -0.026 - +0.098 - - - 6.0x10°
.45 1* MSDI 0.067 = -0.050 0220 0.054 -0.275 4.0x10° - -
RIP +0.137 - -0.061 +0.017  +0.033 +0.380 5 3.5x10°
KB +0.005 . -0.002 +0.219  -0.207 +0.123 . 5 4.0x10*
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Table 5.20. [continued..]

Spectroscopic amplitudes and normalization constant for transitions in the *°Si(c,d)*?P reaction using molecular potential

Spectroscopic amplitude 5

Normalization constants**

E,
MeV) T Interaction  dsjpdsp; dspsap dsppdsp S1128112 812dsp  dippdapy Nysor Nep Ngp
132 2 MSDI 5 -0.057  -0.091 = +0.124 - 2.3x10° - -
RIP g -0.056 -0.015 . -0.064 % 2 4.6x10° 2
KB 5 -0.019  +0.049 s -0.129 2 ” 5 1.4x103
175 3t MSDI +0.011 -0.061 +0.140 - @ +0.344 3.8x10° . -
RIP -0.040 -0.115 +0.258 - - -0.067 - 8.0x10° -
KB -0.021 +0.017 -0.001 - - +0.388 ) - 2.8x10°
2.66 2° MSDI . -0.027 -0.160 . +0.188 - 7.0x10? - -
RIP . +0.048 -0.013 = -0.084 % - 2.1x10* -
KB - +0.001 -0.139 - +0.000 3 5 5 6.0x10°
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Table 5.20. [continued..]

Spectroscopic amplitudes and normalization constant for transitions in the *°Si(a,d)**P reaction using molecular potential

Spectroscopic amplitude 2 Normalization Constants **

E,
MeV) I Interaction  dspdey  dspdin depdag  Sidin 12z, dappdap Nusor Nem Ngp
278 1F MSDI -0.045 +0.032 - -0.040 -0.309 +0.243 1.7x10° - -

RIP +0.039 -0.111 - +0.044 +0.173 +0.31 - 1.8x10° -

KB +0.049 -0.031 - +0.104 +0.233 +0.142 - - 9.8x10°
3.00 3° MSDI +0.028 -0.115  -0.084 - - +0.173 1.5x10° - .

RIP +0.121 +0.154 +0.019 - - +0.004 - 1.5x10* -

KB +0.028 +0.100 +0.120 - - -0.086 - - 3.0x10°

a) [45]

**Nuspr = Normalization Constant using molecular potential and Spectroscopic amplitudes extracted from MSDI interaction;
Nyp= Nommalization Constant using molecular potential and Spectroscopic amplitudes extracted from RIPinteraction;
Ngz= Normalization Constant using molecular potential and Spectroscopic amplitudes extracted from KB interaction
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Table 5.21. Spectroscopic amplitudes and normalization constant for transitions in the *°Si(o.,d)*?P reaction using normal optical potential

Spectroscopic amplitudes 9 Normalization constants —
E. ‘
MeV) I Interaction  ds;pdspy dsp8sp depdsn 81031 1243 dapdsp, Nusor Nap Ngs
0 o8 MSDI +0.117 X +0.056 +0.029 +0.337  -0.215 4.8x10% = -
RIP -0.228 = +0.122 -0.097 -0.008 +0.204 - 3.0x10% -
KB +0.011 - +0.028 +0.015 -0.170 -0.091 - - 5.8x10%
0.08 2° MSDI +0.074 . -0.063 - -0.401 - 6.0x10° - -
RIP +0.062 - +0244 - -0.044 - - 1.6x10* -
KB -0.020 - -0.026 - +0.098 - - - 7.0x10*
1,15 1* MSDI -0.067 - -0.050 -0.220  -0.054 -0.275 4.0x10* z -
RIP +0.137 = -0.061 +0.017  +0.033 +0.380 - 6.0x10* -
KB +0.005 - -0.002 +0.219 -0.207 +0.123 - = 3.0x10*
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Table 5.21. [continued..]

Spectroscopic amplitudes and normalization constant for transitions in the *°Si(c,d)**P reaction using normal optical potental

)

Spectroscopic anrplimdea Normalization constants**

E,
MeV) I™ Interaction  dsppds), dsp8y2 dspdsp 812812 S12dsp  dappdap Nyspr Nep Ngz
132 3* MSDI - -0.057  -0.091 5 +0.124 = 2.0x10* - -
RIP - -0.056 -0.015 5 -0.064 - - 4.2x10* =
KB - -0.019  +0.049 s -0.129 - 9 5 1.2x10*
178 3* MSDI +0.011 -0.061 +0.140 - - +0.344 8.0x10° - -
RIP -0.040 -0.115 +0.258 - - -0.067 - 2.2x10* -
KB -0.021 +0.017 -0.001 g - +0.388 . 4 2.8x10°
2.66 2* MSDI - -0.027 -0.160 5 +0.188 - 7.0x10° . -
RIP - +0.048 -0.013 - -0.084 - = 2.0x10° 3
KB = +0.001 -0.139 = +0.000 - - - 6.5x10*
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Table 5.21. [continued.. ]

Spectroscopic amplitudes and normalization constant for transitions in the *°Si(a,d)**P reaction using normal optical potential

Spectroscopic amplitude » Normalization Constants **

E,
MeV) I [nteraction dsppdsy;  dspsy dsppdar 812812 Sidz;  dapdap Nusor Nem Nga
274 17 MSDI -0.045 +0.032 - -0.040 -0.309 +0.243 1.5x10* - -

RIP +0.039 -0.111 - +0.044 +0.173  +0..31 - 1.5x10* -

KB +0.049 -0.031 - +0.104 +0.233 +0.142 - - 1.0x10*
3.00 37 MSDI +0.028 -0.115 -0.084 - - +0.173 7.0x10° - -

RIP +0.121 +0.154 +0.019 - - +0.004 - 9.0x10* -

KB +0.028 +0.100 +0.120 - - -0.086 - E 2.2x10°

a) [45]

**Nwsp1 = Normalization Constant using normal optical potential and Spectroscopic amplitudes extracted from MSDI interaction;
Nrp= Normalization Constant using normal optical potential and Spectroscopic amplitudes extracted from RIP interaction;
Ngp= Nomalization Constant using normal optical potential and Spectroscopic amplitudes extracted from KB interaction
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Table 5.22. Spectroscopic amplitudes and normalization constant for transitions in the *°Si(c.,d)**P reaction using Michel potential

Spectroscopic amplitudes b Normalization constants
E,
MeV) I Interaction  ds;pdspy dspoBsra dspds, 8181 8172427 d3;pdsp, Nusor Nep Nzz
0 ) il MSDI +0,L17 - +0.056 +0.029 +0.337 -0.215 6.0x10* - -
RIP -0.228 - +0.122 -0.097 -0.008 +0.204 - 3.9x10%
KB +0.011 - +0.028 +0.015 -0.170 -0.091 - - s.2x10*
0.08 2* MSDI +0.074 - -0.063 - -0.401 - 8.0x10° - -
RIP +0.062 - +0.244 - -0.044 - - 2.2x10* -
KB -0.020 - -0.026 - +0.098 - - - 6.0x10*
1% 42 MSDI -0.067 - -0.050 -0.220 0.054 -0.275 6.0x104 - -
RIP +0.137 - -0.061 +0.017 +0.033 +0.380 - 6.0x10*
KB +0.005 - -0.002 +0.219 -0.207 +0.123 - - 4.0x10*



197

Table 5.22. [continued..]

Spectroscopic amplitudes and normalization constant for transitions in the *°Si(c,d)’*P reaction using Michel potential

Spectroscopic amplitude B

Normalization constants**

E,
MeV) I Interaction  dspds), ds812 dspdan, 8128172 812d3;  d3pdag Nusor Nzp Ngzp
142, & MSDI . -0.057  -0.091 - +0.124 . 3.0x10% - -
RIP - -0.056 -0.015 = -0.064 - C 6.0x10% -
KB s -0.019  +0.049 - -0.129 - - - 2.0x10*
178 3F MSDI +0.011 -0.061 +0.140 5 2 +0.344 6.0x10° = -
RIP -0.040 -0.115 +0.258 = - -0.067 - 1.4x10* -
KB -0.021 +0.017 -0.001 - s +0.388 = . 4.1x10°
.66 & MSDI . -0.027 -0.160 = +0.188 - 1.5x10* - -
RIP - +0.048 -0.013 . -0.084 . - 5.0x10° -
KB - +0.001 -0.139 - +0.000 . - 5 1.7x10°

[Continued...]
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Table 5.22. [continued.. ]

Spectroscopic amplitudes and normalization constant for transitions in the “°Si(c,d)*?P reaction using Michel potential

Spectroscopic amplitude " Normalization Constants **
E,
MeV) J* Interaction  dspds,  dspdin dspdsy  Sy28ip Sipday dapdap Nusor Nem Ngp
274 17 MSDI -0.045 +0.032 - -0.040 -0.309 +0.243 2.5x10* - -
RIP +0.039 -0.111 - +0.044 +0.173 +0..31 - 3.0x10* -
KB +0.049 -0.031 - +0.104 +0.233 +0.142 - - 1.8x10*
3.00 3" MSDI +0.028 -0.115  -0.084 . . +0.173 3.0x10° - -
RIP +0121 +0.154 +0.019 - - +0.004 - 1.5x10° -
KB +0.028 +0.100  +0.120 - - -0.086 - - 6.0x10°
a) [45]

**Nwuspr = Normalization Constant using Michel potential and Spectroscopic amplitudes extracted from MSDI interaction;
Nzp= Normalization Constant using Michel potential and Spectroscopic amplitudes extracted from RIP interaction;
Ngz= Normalization Constant using Michel potential and Spectroscopic amplitudes extracted from KB interaction
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Table 5.23. Comparison of the normalization constants extracted by zero-range DWBA
calculations for *Si(ct,d)"'P and *Si(cr,d)”P reactions by using the spectroscopic
amplitudes of MSDI, RIP, and KB interactions.

(a) Normalization Constants for °Si(o,d)’'P Reaction

Ex Molecular Normal optical Michel
MeV, Nusor Nrrp Nez Nusor Nerp Ngs Numsot | Nae | Nis
0.0 55 100 2200 900 9500 1500 550 | 7000 | 12000
1.27 500 1700 8000 6000 2200 8900 | 3200 | 1100 | 40000
23 400 460 3000 6500 7300 50000 | 1900 | 2100 | 17000
ENEK) 80 610 50 1200 1500 500 550 | 15000 | 300
3.30 180 270 2300 | 4000 90000 8000 | 2200 | 4400 | 43000
341 800 18000 1100 14000 | 280000 | 20000 | 800 | 40000 | 1000
351 1100 700 1300 15000 | 11000 | 16000 | 80000 | 7000 | 8000
419 3800 4500 1500 500000 | 500000 | 18000 | 22000 | 30000 | 10000
4.26 590 2500 3400 11000 | 40000 | 58000 | 5900 | 25000 | 34000

(b) Normalization Constants for *'Si(o,d)”’P Reaction.

Ex Molecular Normal optical Michel
MeV, Nuspr Npp Ngp Nuspr Nrp Ngg Nuspr | Nap | Ngp
0.0 4000 2500 4000 48000 | 30000 | 58000 | 60000 | 39000 | 52000
0.08 600 1500 6000 6000 16000 | 70000 | 8000 | 22000 | 60000
115 4000 3500 40000 40000 | 60000 | 30000 | 60000 | 60000 | 40000
K] 2300 4600 1400 20000 | 42000 | 12000 | 30000 | 60000 | 20000
1.75 3800 8000 2800 8000 22000 2800 | 6000 | 14000 | 4100
2.66 700 21000 6000 7000 | 200000 | 65000 | 15000 | 5x1(° | 170000
274 | 1700 - 1800 980 15000 15000 10000 | 30000 | 25000 | 30000
3.0 1500 15000 3000 7000 90000 2200 | 3000 | 150000 [ 6000
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5.2.5. DWBA analysis of the **Si(a,p)’' P reaction

The zero-range DWBA calculations have been performed using the code
DWUCK4 [39]. The potential parameters in the distorting incident channel used in the
DWBA calculations are noted in Table 524 for all four potentials. The bound state wave
function for the transferred triton, considered as a point cluster, has been generated by
assuming a real Woods-Saxon well with its depth adjusted to reproduce the separation
energy. These parameters along with the proton optical potenfial are also noted in Table
5.43. Corrections due to non-locality [32,39] of potential in the conventional form have
been applied using the non-locality ranges PB(a)=0.2, PB(t)=0.2 and P(p)=0.85 fm. The
correction in the triton-bound state form-factor is found to produce little effect on the
cross-section.  The calculations using all four potentials for the **Si(o.p)”'P reaction
leading to the ground 172", 1.266 MeV 3/2" and 2234 MeV 5/2" states are compared
with the data of Jankowski et al.[ 18] in Fig 5.49.

To test the validity of using the molecular potential, the full finite-range DWBA
calculations have been carmried out using the code DWUCKS [39]. The (t+p) bound state
geometry for the FFR calculations i1s shown in Table 524 The FFR predictions are
compared to the data in Fig. 5.50. The spectroscopic factors S for the cluster transfer have

been deduced from the expression [39]

2J,+1
(%), - feesl®)
a/ ,,  (27,+1 dY s
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d d
Here (d%) and (;1%) are, respectively, the experimental cross-section and that

ept DWUCKS

predicted by DWUCKS. J; and J; are the total spins of the final and initial nuclei,

respectively. s=2.0 is the light particle spectroscopic factor. C? is the isospin Clebsch-

Gordon coefficient. The deduced S-values are listed in Table 5.25. The normalization
constant D,” for the t-cluster transfer in the ZR calculations has been estimated from the

expression [39].

() ) pag(20) 52

d/ ., (27, +1)25+1) O S—

do
Here ( J predicted cross-section by DWUCK4. The deduced D’ values and

dQ DWUCK4
the average D, = 2.25 x 10"MeV? fm’ have been shown in Table 5.25.
It is evident, from Fig.5.50, that the FFR calculations do not improve fits over the

ZR predictions and reduce the cross-sections at larger reaction angles even more.

Nevertheless, the FFR calculations allow us to extract the spectroscopic factors.

5.2.6. CCBA analbysis of the **Si(a,p)’' P reaction

The CCBA calculations using the molecular potential have been carried out using
the code CHUCK3 [39]. The coupling scheme which associates the deformation
parameters B, = -0.18 and B, = +0.08 for *Si is shown in Fig5.51. In the CCBA
calculations, the depth of the imaginary part of the molecular potential (Table 5.24) has
been decreased to 10.5 MeV in order to reproduce the angular distribution for the elastic

scattering  All possible relative phases and various relative transition amplitudes a,_ in the
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rearrangement paths have been tried in the simplest possible coupling scheme. The
transition strength in a two-step path is proportional to the square of |ﬂJR|. The CCBA
predictions using the relative spectroscopic amplitudes noted in Table 5.25 for the ground

(12, 1.266 (32", 2.234 (5/2') and 3415 (72') MeV state transitions have been

compared to the data in Fig 5.50.
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Table 5.24. Parameters of the a-2*Si potentials used in the DWBA calculations for *Si(o,p)*'P reaction are
given in columns 1 to 5. The parameters of proton optical-model potential, and bound states of (t+?*Si) and

(t+p) systems are noted in columns 6-8, respectively. V is adjusted to give the separation energy.

Channel o+ 2sj p+ P t+2si t+p
Potential | Molecular®  Michel ¥ Deep Shallow Optical Bound® | Bound®
| Type Optical Optical State State
V,(MeV) 26.0 21.0 216.0 55.0 533-0355E, A Vv
R, (fin) 5.35 5.00 370 5.16 - - -
1, (fm) - - - - 1.25 0.929 1.05
a, (fm) 0.340 0.60 0.67 0.505 0.65 0.921 0.50
V,(MeV) 420 - - - - - -
R, (fin) 2.80 - - - - - -
o - 8.39 - - - - -
p (fm) - 6.25 - - - - -
W, (MeV) 145 331 224 8.64 - - -
R; (fin) - 1.85 398 5.16 - - -
a; (fm) - 0.65 0.67 0.505 - - -
Ry (fin) 4.00 - - - 5 = -
Wp(MeV) - - - - 135 - -
p (fim) E - - - 1.25 - -
Ay (fim) - - - - 0.47 - -
Re (fm) 9.35 3.95 407 3.95
r. (fm) 1.30 1.30 1.25
a) Ref [19]
b) Ref[18].

c) Ref[156].
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Table 5.25. Cluster transfer configurations (n: number of nodes, L: angular momentum) used in the CCBA
are shown in colimns 3 to 6. Column 7 indicates the relative spectroscopic factors used m calculations of
the 2Si(o,p)’'P.

E, I Chuster transfer configuration Spect. D x 10!
¢'p) One-step Two-step Relative Spect. Factor MeV? fm’
nL, nLy, nly, | nk; | Amplitudes N
0.0 1/2* 38 1G - - +01:+15 0.070 2.00 + 0.50
1.266 nt 2D 2D 35 - +01:+05:-05 0.031 2.56 + 0.64
2.234 512 2D 2D 38 1G | +01:401:+02:-01 0.004 -
3.415 T2 2G iD 45 - +01:406:+02 0.003 -
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®Si(a,p)’'P, E, =26 MeV
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Fig. 5. 49. Zero-range DWBA predictions are compared to the angular distribution of

cross-sec:ions for the 28Si a,p)31 P reaction at 26 MeV leading to the ground{112+).
1.27 (3/2 ), and 2.234 (5/2 ) MeV states. Solid, dotted, dashed and dash-dotted curves
are the predictions for the molecular, Michel, deep and shallow normal optical
potentials respectively, in the a-channel. Data are from [18].
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®Si(a,p)"'P, E_= 26 MeV
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Fig 5.50. Zero-range (solid), full finite-range(dotted lines) and CCBA (dashed lines)
predictions of the transfer reaction using the molecular potential are compared to
the data for the 28Si(ct,p)“P reaction at 26 MeV leading to the ground (1/2"),

1.27 (3/2%), 2.23 (5/2"), 3.42 (7/2") MeV states. Data are from [18].
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CHAPTER 6

RESULTS AND DISCUSSION

The molecular and Michel potential fits to the *Al(a,0t)’Al data (Fig 5.1) as
well as fits to the **°Si(c,0)”°Si data using the molecular, normal optical and Michel
potential in the present work (Figs. 5.20, 5.37) are more or less of the same quality. All
three cases lack experimental data at the large angles. But, the elastic data on *Si has a
wide angular range. The large angle behaviour of angular distribution including ALAS
which cannot be accounted for by the normal (WS) optical potential [4,9], has been
shown to be a sensitive probe for determining the o-nucleus potential [6,19-21,28,29,56].
However, the initial potential parameters for elastic scattering on *7°Si are scaled from
the parameters of the o-’'Si potential deduced on the basis of seven-point angular
distributions spanning the 14.47-45.0 MeV incident energy range and covering a wide
angular range in the elaborate work of Tariq et al [19]. So, the parameters of the o-"’Si
potential parameters are expected to be reasonable. On the other hand, the molecular and
Michel o-’Al potentials, deduced in the present work on the basis of a narow angular
distribution (0, < 80" ) at one-point incident energy of 64.5 MeV which is outside the
energy range of the work of Tariq et al [19], may not be final. In spite of the possible
limitations of the o-”Al potential, the DWBA analyses in the present work on the
AN oL si, P Si(0,d)™Si and ®Si(a,p)"'P reactions using the parameters of all

three (molecular, normal optical and Michel) form of potentials reveal some valuable
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facts. The following sections exhibit step by step the results and the relevant discussion

on these.

6.1. The " Al(a,1)**Si reaction

In the present study, 53 transitions have been analyzed with all three types of
potentials. The analyses involve: (i) 4 transitions with the /=2 transfers (Fig 5.4) leading
to the ground, 498 and 6.69 MeV states with the unique j=5/2 transfer and the 12.33
MeV state which is assumed to be populated via j=3/2, (i) 11 transitions with /=3
(Fig.5.5), (iii) 9 transitions with /=4 (Fig 5.6); (iv) 11 transitions with the admixture
1=0+2 (Fig. 5.7), (v) 7 transitions with the admixture /=1+3 (Fig. 5.8), (vi) 1 transition
with =243 (Fig. 5.8) populating probably two unresolved states with opposite parities at
about E; =6.88 MeV and (vii) 11 transitions with the admixture /=2+4 (Fig. 5.9). The
data of the transition to the 11.97 MeV state are compared to the DWBA predictions
twice, one in Fig. 5.8 for the /=1+3 transfer and another in Fig. 59 for the [=2+4
transfer, as both transfers produce similar quality and acceptable fits to the data.

In Fig 5.3 the FFR and 7R calculations are compared to the angular distribution
data for transitions to the ground and E,= 11.58 MeV states. The improvement of the fits
due to predictions of the former over those of the latter underlines the importance of the
FFR calculations.

It is evident from Figs. 54-5.9 that the full finite-range DWBA analyses using the
molecular and normal optical potentials, fit quite satisfactorily the experimental data of

the 44 transitions out of 53 with 9 other states fitted moderately. In general, the fits with
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the molecular and normal optical potentials seem to be of the same quality, but the fits

with the Michel potential are comparatively poor. At forward scattering angles < 20” or
so, all three potentials yield, to some extent, the same results. But, at larger scattering
angles, for the bound state transitions with the excitation energies up to 11.58 MeV, the
molecular potential provides a better fit, although the normal optical potential competes
reasonably well and the Michel potential seems to be inferior. However, all three types of
potentials reproduces the absolute cross-sections, as reflected in the deduced
spectroscopic  factors [Table 5.2]. For the continuum states with the excitation energies
above 1158 MeV both the molecular and normal optical potentials yield again
comparable results with quite reasonable fits to the data, but the Michel potential seems
inadequate. At reaction angles larger than 30° the difference in the predictions due to the
three distorting o-nucleus potentials, becomes very prominent and increases with the
reaction angle. It is also to be mentioned that for transitions to the 4.98, 6.69, 8.54, 10.21
and 12.24 MeV states, neither of the three types of potentials could produce good fits to
the angular distributions, indicating the probable contribution of reaction mechanisms
other than the direct one that may be involved in these cases.

Yasue et al. [44] reported that an admixture of /=1, 2 and 3 was needed to fit the
data of the levels at Ex = 6.88 and 6.89 MeV, but in the present study an admixture of /=2
and 3 suffices to fit satisfactorily the angular distributions of these unresolved levels (Fig
5.8). Furthermore, they [44] used the I=0+2+4 admixture for the 7.93 and 8.26 MeV
transitions, while in the present work /=0+2 seems to be sufficient to fit the data quite

well (Fig. 5.7). Moreover, as mentioned eatlier, Yasue et al. [44] associated the 15.02,
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1585 and 16.11 MeV transitions with the /=3 transfer, but the comparison of the
predictions in the present analyses for /=3 and 4 in Fig. 5.10 for each of the three
potentials, show that the angular distributions for these transitions are better fitted by the
I=4 transfer. It is also obvious from Fig. 5.10 that the predictions with the molecular
potential bring out the difference more distinctly between the angular pattemns for the /=3
and /=4 transfers.

The spectroscopic factors (Table 5.2) extracted using the molecular potential are
comparable to those obtained using the normal optical potential, but are a bit larger for
some cases. In general, the spectroscopic factors deduced from using the Michel
potential are even larger. Considering the quality of fits, the spectroscopic factors
obtained with the Michel potential are expected to be less reliable.

The spectroscopic strengths extracted from the use of the molecular potential are
compared to those calculated from the shell-model [143] in Table 5.3. The predicted and
deduced strengths agree for most of the /=2 transitions except that for the the 6.89 MeV
state. The extracted strengths for the /=0 transitions to the 1.78, 6.28 and 9.32 MeV
states are much weaker than the predicted values. This may partly be ascribed to the fact
that the matching I-transfer, |kR; - kR4 (k's and R’s are respectively the momenta and
interaction distances in the reaction channels) lies in the range 2-4 over E; = 0.0 - 14.36
MeV of the final nucleus and hence /=0 is a mismatched transfer. Furthermore, /=0 shell-
model wave functions used in [143] may not be good due to truncation.

The extracted sum of strengths for all =2 as well as for all /=0 transitions has a

factor of 2 missing from the expected magnitude e g the effective number of proton-
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holes in the transfer-orbits. This is surprising when one considers the states of i,
resulting from the j* = 1/2', 3/2", 5/2" transfers in the reaction, are highly improbable to
exist at Ex > 16.50 MeV. The spherical shell-model cannot probably take up the whole of
the transition strength and some of the strength drains off as a result of deformation. For
the transition to each of the 6 states at E,=11.58 MeV and 14.36 MeV, the predicted
strength G=0.083, calculated on the basis of deformed shell-model [140,141], is not
adequate enough to explain the observed values (Table 5.3). The band mixing effects due
to Coriolis coupling [146] may have significant effects on these transition strengths and is

worth further investigation..

6.2. The *’Si(a,d)*’P reaction

Both the molecular and Michel types of a-nucleus potential have been used, for
the first time, for the analyses of the data for the two-nucleon transfer (o,d) reaction. The
data for the even-parity states up to Ex=3.02 MeV, have been analyzed both in terms of
the FFR DWBA with the cluster form-factor and the ZR DWBA with the microscopic
form-factors. In the latter calculations, the FPSDI and CW [37] as well as MSDI [18]
spectroscopic amplitudes derived from the wave functions of Wildenthal and his
collaborators [144,145] and Ref. [20] cited in the work of de Meijer et al [37]. The data
of the odd-parity states are analyzed only in terms of the macroscopic FFR calculations.

In both microscopic and macroscopic DWBA calculations, the molecular
potential (Figs. 5.12-5.14 and 5.17-5.19) produces the best description of the data for all

the transitions studied The Michel potential, which has been shown to describe
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satisfactorily the elastic a+?°Si data [19], is found inadequate not only in accounting for
the pattern of the angular distributions (Figs. 5.12-5.14, 5.17), but also in reproducing the
right order of magnitude for the cross section data. The normal optical potential, on the
other hand, which can fit the angular distribution at forward reaction angles and predicts
the same order of cross sections as the molecular one does, is found inadequate in
describing the data at large scattering angles (Figs. 5.12-5.14, 5.17).

The finite-range correction to the ZR microscopic calculations produces
significant effects on the pattemn of the angular distributions and improves substantially
the fits to the data as can be seen in Fig 5.16. This confirms the observation made by
Bencze and Zimanyi [157]. The best-fit value for the finite-range parameter found is
R=0.70 fm for the reaction.

In the literature, an ambiguity in the spin-parity assignment for the 3.93 MeV
state is noted. The comparison of the macroscopic DWBA predictions for J"=2" (solid
curve) and 3* (dotted curve) in Fig. 5.15 with the experimental data favours the former,
confirming the assignment of Jankowski et al [19] and opposing that of de Meijer et al
[37].

The macroscopic spectroscopic factors Ay, for the transitions to the final states up
to Ex=542 MeV are deduced by comparing the macroscopic DWBA calculations to the
data. Table 5.5 compares the deduced spectroscopic factors A;, to those obtained at the 50
MeV incident energy by de Meijer et al [37] and also to those extracted using the same
data as of the present work by Jankowski et al [18] The results of Jankowski et al[18]

are not expected to be reliable as they included the compound nucleus contributions in
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the analyses. The results of de Meijer ef al are based on the zero-range calculations.

Nevertheless, their A; values for the transitions involving one L-transfer leading to,
particularly, the 1.454 (2) and 462 MeV (3)) states are remarkably close to those of the
present work.

The Ap values for the even-parity states have been compared to the model dependent
theoretical spectroscopic factors S in Table 5.5. It can be noticed that apart from the

ground state (11), 1.454 (2") and 2.72 MeV (2") transitions, the total spectroscopic factors

ZAL agrees with the calculated total Y for the CW amplitudes. On the other hand, the

FPSDI predictions for the S values are closer to the experimental » A, for the
ground and 1.45 MeV states. Neither of the FPSDI and CW amplitudes reproduces the
experimental Ay for the 2.72 MeV state. It can also be noticed from Table 5.5 that FPSDI
yields larger spectroscopic strengths compared to CW. This is also reflected in the
deduced values of relative normalization constants N,q in Table 5.7, where FPSDI needs
in general smaller ¥-values to get to the data. None of the three interactions viz. FPSDI,
CW and MSDI has been able to yield consistent values of the normalization constants for
transitions to the even-parity states. However, the model-independent W=722+25 is
obtained from the data of the 7.20 MeV (7') state, where the spectroscopic amplitude is

believed to be unity.

6.3. The *’Si(m.d)*' P reaction
The macroscopic FFR DWBA calculations performed for *Si(c,d)™'P reaction

using all three potentials e.g. molecular, normal optical and Michel potentials have been
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compared to the experimental data in Figs. 5.21-5.23. It is evident from Fig 5.21 that for

ground (1729, 127 (3/2"), and 2.23 (5/2") MeV states of "'P, the quality of fits are
moderate for all three potentials. For the ground state transition, the molecular and
normal potentials generate a bit better fit in the large angle region in comparison to that in
the forward angles, whereas, the Michel potential reproduces the angular distribution up
to Bem= 40™-50" in a better way, but beyond that it is unable to reproduce satisfactorily.
For both 1.27 (3/2%) and 2.23 (5/2") MeV states, the normal optical and Michel potentials
yield a bit better fit at the forward-angle region in comparison to the molecular one. The
macroscopic DWBA predictions by the molecular potential reproduce the experimental
data for the 3.13 (1/2%), 3.30 (512", 3.51(3/2%), 4.19 (5/2") and 426 (3/2") MeV states
(Fig. 5.22-5.23) in an excellent way over the whole range of angular distribution. On the
other hand, the DWBA fits due to the normal optical and Michel potentials for these
states are comparable to those of the molecular one at forward angles only, but not of the
same quality at the more backward angles. For the 3.41 (7/2") MeV state the fit to the
experimental data is not satisfactory for any of the three potentials.

The effect of finite-range correction to the ZR DWBA microscopic calculations
using the molecular potential and the MSDI spectroscopic amplitudes for the ground
(172", 1.27 (3/2") and 2.23 (5/2") MeV states has been exhibited in Fig. 5.24. The finite-
range parameter value R=0.7 fm improves the fits to the data substantially.

The microscopic ZR DWBA calculations with finite range correction (R=0.7 fm.)
using the molecular potential (Figs. 5.25-5.27), normal optical (Figs. 5.28-5.30) and

Michel (Figs. 5.31-5.33) potentials and the MSDIL, RIP and KB spectroscopic amplitudes
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are compared to the experimental data. Fig. 5.25 shows that the fits to the data of the 1.27

(3/2") and 2.23 (5/2') MeV states are quite reasonable for the molecular potential using
the spectroscopic amplitudes from all three MSDI, RIP, and KB intemctions. But the
molecular potential fits using the RIP and KB amplitudes are not so satisfactory for the
ground (1/2") state (Fig. 5.25); but the same potential using MSDI accounts for the data
of the state in a bit better way. For the 3.13 (1/2") and 3.30 (5/2") MeV states (Fig. 5.26)
the fits from the molecular potential using all three interaction amplitudes are very good
with MSDI doing again the best. But for the 3.41 (7/2") MeV state, the fits from the
molecular potential for all three interactions are moderate. The fits to the 3.51 (3/2{),
419 (5/2") and 426 (312") MeV states (Fig 5.27) are excellent over the whole range of
angular distribution using the molecular potential and the spectroscopic amplitudes of all
three MSDI, RIP, and KB interactions. So, it is observed that in the ZR DWBA
microscopic calculations, the molecular potential successfully reproduce the expenimental
data of almost all the positive parity states using the spectroscopic amplitudes of all three
interactions. It is not easily possible to distinguish the preference of any one of the
interactions to the other. Nevertheless, a careful scrutiny will give MSDI a favour.

From Fig. 5.28, it is obvious that the nommal optical potential accounts for the
ground state (1/2") reasonably well at far backward angles but fails to do so at the
forward angles. For the 127 (3/2") and 223 (5/2") MeV states (Fig. 5.28), the fits are
satisfactory at the forward angles, but not good at the backward angles. For the 3.13
(1/2%, 330 (5/2") and 341 (7/2") MeV states (Fig. 5.29) as well as for the 3.51 (3/2"),

4.19 (5/2") and 4.26 (3/2") MeV states (Fig. 5.30), the fits are as good as those due to the
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molecular potential except at the backward angles for some rstates. As noted earlier, the
reaction data have been reproduced satisfactorily by the potential parameters without
adjustments over those generated by fitting elastic data as shown in Fig. 5.20. It can be
seen from the Figs. 5.28-530 that the microscopic ZR DWBA calculations using the
normal optical potential without adjustment of amy parameter reproduce at least the same
quality fits, if not better compared to the previous study [48], where some of the potential
parameters are changed over those from the fitting the elastic data, to forge fits to the
reaction data.

Fig. 5.31 shows that, the ZR DWBA fits to the ground (1/2") state data is not so
satisfactory using the Michel potential with any of the three interactions. For the 1.27
(3/2") and 223 (5/2") MeV states (Fig. 5.31) the fits are moderate at the forward angles,
but worse at the more backward angles. The fits to the data of the 3.13 (1/2%), 3.30 (5/2"),
3.51 (312"), 419 (5/2%) and 4.26 (3/2") MeV states (Figs. 5.32-5.33), using the Michel
potential and the spec!roécopic amplitudes of all three MSDI, RIP, and KB interactions
are quite good; but the fit to the 3.41 (7/2") MeV state (Fig. 5.32) is not satisfactory.

Figs. 534-536 compare the fits of the microscopic DWBA calculations to the
experimental data of all the positive parity states of *'P using the molecular (solid lines),
normal optical (broken lines) and Michel (dotted lines) potentials, each coupled to the
MSDI spectroscopic amplitudes. It is evident without ambiguity from Figs. 5.34-5.36 that
the molecular potential reproduces a better overall fit to angular distribution data in

comparison to the other two potentials.
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The spectroscopic factors (Tables 5.12-5.13) deduced from the macroscopic

calculations using all the three molecular, normal optical and Michel potentials when
compared to the theoretical spectroscopic factors calculated from the MSDI, RIP and KB
spectroscopic amplitudes with the method outlined in [150], give some distinct features
of the potential used. The total spectroscopic factors X4, for each of the transitions
deduced using the molecular potential agrees well with the calculated total spectroscopic
factor S, although the individual A, values have some differences with S| for the
corresponding transitions. On the other hand, both the normal optical and Michel
potentials could not reproduce the right order of differential cross-sections. The
calculated cross-sections from these two potentials are underestimated by one to two
orders of magnitude. This is reflected in the magnitude of the experimental spectroscopic
factors for both the normal optical and Michel potentials, which are overestimated by the
same orders over the theoretical spectroscopic factors §(Tables 5.12-5.13). In this
connection, it is also to be noted that the theoretical spectroscopic factors S (Table
5.12) using the spectroscopic amplitudes of MSDI, RIP, and KB interactions are not also
consistent with one another. So, it is not possible to decide which interaction is capable of
reproducing the correct order of cross-sections.

The normalization constants in Eq. (5.16) extracted by comparing the theoretical
cross-sections with the experimental ones using three potentials for all the states are
noted in Table 523a Two inferences come out from the deduced nommalization
constants. Firstly, the normalization constants yielded by neither of the potentials is equal

for all the transitions and secondly, the nommalization constants generated by the normal
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optical and Michel potentials are higher than those by the molecular potential for the
corresponding  transitions by 12 orders of magnitude, again reflecting the
underestimation of the predicted cross-sections by the latter two potentials. No
conclusive inference can be drawn for the normalization constant of the (o,d) reaction
from the inconsistency in the deduced values.

6.4. The ”Si( a,d)”’ P reaction

The predictions from the macroscopic FFR DWBA analyses performed using the
molecular, normal optical and Michel potentials are compared to the experimental data in
Figs. 5.38-539. It is obvious from Figs. 538-539 that the fits using the molecular
potential, to data of the ground (1%) and 1.75 (3") MeV states are excellent over the
whole range of angular distribution. The DWBA predictions using the molecular
potential for the 0.08 (29, 1.15 (1, 1.32 (2"), 2.66 (2), 2.74 (1") and 3.00 (3") MeV
states are also in very good agreement with the experimental data.

On the other hand, both the normal optical and Michel potentials seem to be
inadequate in reproducing the experimental data of the ground (1*) and 0.08 (2') MeV
states. For the 1.15 (1), 1.32 (2"), 1.75 3", 2.66 (2", 2.74 (1") and 3.00 (3") MeV
states, the normal optical and Michel potentials produce reasonable fits at forward angles,
but can not do so at the more backward angles.

The finite-range correction to the ZR microscopic calculations for the ground (17),
0.08 (2+), 1.15 (1) and 132 (2") MeV states are shown in Fig 540. The best-fit value
for the finite-range parameter found is R=0.70 fm which conforms to the value obtained

for the reaction on 2**°Si.
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Figs. 541-542 show the comparison of the microscopic ZR DWBA predictions
using the molecular potential and spectroscopic amplitudes due to the MSDI, RIP, or KB
interaction with the experimental data. It is evident from Fig 541 that for the ground (1h
state, the DWBA calculations using the molecular potential coupled with MSDI
amplitudes gives better agreement with the experimental data than those with the RIP and
KB amplitudes. The calculations for the molecular potential coupled with either of the
three MSDI, RIP, and KB amplitudes reproduce the data for the 0.08 (2°), 1.15 (1", 1.32
(2, 274 (1" and 3.00 (3") MeV states reasonably well. The fits to the 1.75 (3") and
266 (2') MeV states are unsatisfactory, although the data for the latter two states are
satisfactorily described by the macroscopic calculations (Fig. 539). Nevertheless,
considering the overall situation, it is evident that the MSDI spectroscopic amplitudes
provide a better description of the data compared to the other two.

Figs. 5.43-544 show the microscopic DWBA predictions due to the normal
optical potential using the MSDI, RIP and KB spectroscopic amplitudes. It is to be noted
here that the potential parameters generated from the elastic fit have been used here
unaltered. For the ground (1') state, the fits are not satisfactory beyond the scattering
angle O.m= 80°. The fits to the 0.08 (2), 1.25 (2%, 1.32 (2"), 2.66 (2", 2.74 (1") and 3.00
(3") MeV states are quite good up to the angle of about 120°. For the 1.75 ( 3') MeV state
the fit is moderate.

Figs. 5.45-5.46 display the microscopic calculations using the MSDI, RIP and KB
amplitudes coupled with the Michel potential. For the ground state (1%), the MSDI and

KB amplitudes using the Michel potential describe the data well, whereas, the RIP
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amplitudes do poorly at forward angles. The DWBA calculations for the 0.08 (21, 1.15
(19, 132 (2%, 2.74 (1") and 3.00 (3") MeV states, using all three MSDI, RIP, and KB
amplitudes and the same potential reproduce the data reasonably well up to about Bcm =
120°. The fits tothe 1.75 (3) and 2.66 ( 2") MeV states are not satisfactory.

The comparison of the fits for all the states using the molecular, standard optical
and Michel potentials coupled with the MSDI amplitudes for each of the potentials (Figs.
5.47-5.48) obviously show that the nommal optical potential produces a lesser quality fits
on the whole in comparison to those using the molecular and Michel potential.

The experimental spectroscopic factors A4, deduced from the macroscopic
calculations using the molecular, normal optical and Michel potentials are tabulated along
with the theoretical spectroscopic factors S¢ in (Tables 5.18-5.19). It is obvious from the
tables that the calculated theoretical shell-model spectroscopic factors due to all three
MSDI, RIP and KB amplitudes are different by orders of magnitude. The values of the

total spectroscopic factors S extracted from both the RIP and KB amplitudes are lesser
compared to those from the MSDI ones. The experimental spectroscopic factors deduced
for the molecular potential are comparable with those calculated from the MSDI
spectroscopic amplitudes for the =2 transition to the ground (1" and 2.74 (1Y) MeV
states. For all other states, the experimentally deduced spectroscopic factors due to the
molecular potential are a bit higher but comparable to the theoretical ones. On the other

hand, the total spectroscopic factors X4, deduced using the nommal optical and Michel

potentials are one to two orders higher than the theoretical S wvalues for all the

transitions. This means that the macroscopic DWBA predictions using both the normal
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optical and Michel potentials underestimate the magnitude of cross-sections by one to
two orders for the different final states.

Tables 5.20-5.23 containing the spectroscopic amplitudes from the three MSDI,
RIP and KB interactions and the comresponding nommalization constants for different
transitions reveal two facts. (1) The normalization constants are not consistent and not
same for all states and not even for the same final state for different distorting o-nucleus
potentials and interactions responsible for the spectroscopic amplitudes. (2) The
normalization constants deduced from the data of any state using the normal optical and
Michel potentials are larger by one to two orders of magnitude than the comesponding

ones due to the molecular potential.

6.5. The **Si (a,p)"'P reaction

The present work reports for, the first time, the analyses of a three-nucleon
transfer reaction using both the molecular, deep WS and shallow WS and Michel
potentials. The DWBA calculations for the three-nucleon transfer (o,p) reaction to the
ground (1/2%), 1.27 MeV (3/2") and 223 MeV (5/2") states of the final nucleus, using the
molecular potential reproduce the data both in magnitude and in angular dependence,
rather well. The calculations using the deep optical and Michel potentials are
underestimated by 2 to 4 orders of magnitude in each case, although the angular patterns
are reasonably reproduced The calculations using the shallow potential reproduce the

magnitude of cross-sections up to 100° or so, but then predict a sharp decrease at large
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angles. Thus, the molecular potential is the only one to account for the data for the

ground (1/2Y), 1.27 MeV (3/2") and 2.23 MeV (5/2") final states over the entire angular
distributions. Moreover, the present analysis indicates that the data for the reaction can be
successfully described without the addition of any compound nucleus contribution, which
has been included in the analysis by Jankowski et al [18], but is highly improbable at the
incident energy considered. Furthermore, the fits to the data are reproduced without
having to adjust any of the parameters of the molecular potential, obtained from the
elastic data.

The CCBA calculations for the 2*Si(o,p)’'P reaction using the molecular potential
improve the fits over the ZR and FFR calculations (Fig. 5.50). The inelastic 4" state at E,
= 4618 MeV in **Si plays a major role in the CCBA calculations in reproducing the
ground state data. The coupling to the inelastic 2" state to the ground state of **Si is also
significant in improving the data for the 1.266 and 2234 MeV states of >'P. The CCBA
calculations confirm the deformed shape of the **Si nucleus.

6.6. Summing up

One may summarize the discussion on the study of the *Al(ot)’Si,
BEDsi(0,d)y* P and *Si(or,p)”'P reactions in the following way:

The one-nucleon transfer (o,t) reaction on “Al at the 64.5 MeV incident energy
can be reasonably described by the molecular and Michel potentials. The performance of
these two types of potential is as satisfactory as the normmal WS potential in the
description of the reaction data at forward angles. However, the substantial difference in

the DWBA predictions for those three types of potential occurs at large reaction angles
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suggesting that the large angle data for the reaction may be used as a sensitive probe to

decide the nature the o-nucleus potential.

The macroscopic FFR DWBA and microscopic ZR DWBA analyses of the (o,d)
on the alpha-cluster **Si nucleus and the non-alpha-cluster **’Si nuclei bring out clearly
three facts. (1) The compound nucleus effect is insignificant at the energy considered as
opposed to that reported by Jankowski et al [18]. (2) The molecular potential reproduces
the experimental data of the (o,d) reactions quite reasonably and convincingly without
having to adjust any of the parameters of the potential obtained from elastic fit. (3) The
Michel potential, which can account for the ALAS effect of the o-*Si elastic scattering
as good as the molecular one if not better, could not reproduce, like the normal optical
potential, the angular distribution as well as magnitude of cross-sections of the (o,d)
reactions on the silicon-isotopes at the energy considered.

The analyses of the **Si(o.,p)’'P reaction ensure emphatically that the molecular
potential shows its clear preference to the normmal optical and Michel potentials. It also
affirms the conjecture that the compound nucleus effect is least probable at the incident
energies near to E,=26 MeV. The molecular potential reproduces the experimental data
of the **Si(c,p)’'P reaction reasonably well in magnitude and angular oscillations.

Now, a pertinent question arises as to why the Michel potentials which has been
so successful in accounting for ALAS in the elastic scattering on many targets [56-61],
seems to fail in reproducing the data of the ***Si(a,d) P and *Si(o,p)’'P
reactions. The reason of success of molecular and apparent failure of Michel potentials

may lie within the following facts.
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The molecular and Michel potentials have two distinctive features. The Michel

(square-Woods-Saxon) potential is a deep and monotonic potential and on the other hand,
the molecular potential is a shallow and non-monotonic one. The molecular potential
model has its root in a many body theory utilizing the Energy Density Functional (EDF)
formalism, which incorporates the effects of Pauli’s exclusion principle [28]. As a
consequence, the molecular potential may have inherent strength of describing the
physical situation of ca-nucleus interaction in more details. The success of the molecular
potential conforms to Baye’s [160] assertion that amongst the phase equivalent potentials,
the shallow one with a singularity, which is borne by the molecular potential with its the
repulsive core, eliminates the states forbidden by the Pauli principle and is, therefore,
expected to give better result in the descniption of transfer reactions. On the contrary, the
Michel potential concentrates on and emphasizes the physical phenomena related to
surface processes and hence may lack the ability of describing the processes dependent
on the nuclear interior. So, although the two potentials widely divergent in their forms,
provide a more or less equally good description of o-elastic scattering from light nuclei
in the ALAS energy-region as well as at higher energies, because the effective part of the
potentials responsible for elastic scattering are similar. But, when the non-elastic
processes like the (a,d) and (o,p) reactions come into the scenario, a more detailed
contribution from the nuclear interior may dominate the feature. The molecular potential
represents a more realistic situation of the phenomena.

Furthermore, one may also note that the two potentials differ significantly in

defining the Coulomb radius. In case of the molecular potential, the Coulomb radius R is
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the distance where **Si barely touches the o particle. The observed density distribution,

plr) for **Si is given by [90]

r—c¢
)= p(0)|:1 + exp—d—]

with ¢=3.14 fm and d=0.537 fin. Thus, at =6 fm, this leads to p(r)=0.005p(0). A
32
reasonable density distribution function for o particle is 4(—3;—) exp(— yrz)with Y

=0.5 [158]. This is about 0.001 at r=3.35 fm. Thus, a reasonable value of R. is
(6.00+3.35) =9.35 fm, which is used in the molecular potential. The Michel potential, on
the other hand, uses R-= 3.95 fm. At this distance, the two nuclei have inter-penetrated
each other substantially. In the DWBA theory, the stripped particles from the projectile
are assumed to drop on the nuclear surface and hence, the treatment may be somewhat
sensitive to the actual value of Re.

The present study of the “Al(o,ty’®Si, ***Si(c,dy™"™P and *Si(a,p)”'P
reactions strengthens Satchler's contention [31] that the real test of a potential generated
from the analysis of elastic scattering data lies in its ability in reproducing the non-elastic
data. Hence, the success of the molecular oi-nucleus potential in describing the angular

distributions of the (o.,d), and (o,p) reactions on the silicon-isotopes and the one-

nucleon transfer (out) reaction on YAl in addition to the elastic scattering on various

targets in different mass regions, justifies its clear-cut superiority over the normal WS

and the Michel potentials.
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CONCLUSION

The present study reveals some convincing successes of the molecular potential
and inadequacy of the Michel one in describing o-induced two-nucleon transfer (ot,d) and
three-nucleon transfer (o,p) reactions on the mid sd-shell targets, although both are
strong contenders to explain the ALAS effects in the -elastic scattering and to account
for the angular distribution of one-nucleon transfer (ot) reaction. It is worth mentioning,
in this relation, that the normal optical potential has been proven inadequate in describing
the ALAS effect in the o-elastic scattering on targets of different mass regions.

Although, the molecular and Michel types of a-nucleus potentials produce more
or less the same quality fits to the ’Al(o,,o0)’Al scattering (Fig 5.1) and both of them are
able to describe reasonably the data of the ¥ Al(o.t)**Si reaction at small reaction angles,
they lead to significantly different scenario in generating the predictions at large reaction
angles. The three potentials generate diverse predictions at large angles, offering the
large-angle data of the one-nucleon transfer reaction as a sensitive probe of the a-nucleus
potential.

The macroscopic FFR DWBA and microscopic ZR DWBA analyses of the (o,d)
reaction on “*Si establish convincingly the fact that the molecular potential reproduces
the experimental data in magnitude and in angular oscillations quite satisfactorily. The
Michel and normal optical potentials, on the other hand, underestimate the cross-sections
by one to two orders of magnitude in addition to giving poorer fits to the angular

distribution. The molecular potential can also give adequate accounts of the absolute
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magnitude and angular pattern of the three-nucleon transfer (or,p) reaction on Si. The
Michel potential underestimates the cross-section of the reaction by 2-4 orders of

magnitude. The normal optical WS potential cannot simultaneously reproduce the
absolute magnitude of cross-sections and the angular distribution, in conformity with the
observation of Brnunner et al. [161] and Hamill and Kunz [162].

In addition, the present work strongly put forward some important observations.
Firstly, this study in conjunction with the previous studies of o-elastic scattering on **Mg
and *Si by Tariq et al. [19] supports the observations asserted by Budzanowski et al.
[159] that elastic data of either at forward angle or at backward angles only are
insufficient to determine the potential parameters. So, the present work emphasizes the
essentiality of the elastic and non-elastic scattering data of wide angular range extending
to the large backward angles to determine the parameters of potentials more reliably.
Secondly, the present study conforms to Satchler’s contention [31] that the real test of a
potential set generated from the analyses of elastic scattering data lies in its ability to
reproduce the non-elastic data.

Both the (o,d) and (o,p) reactions, because of their high negative Q-value, are
spin-selective and favour the transitions to maximum spins. However, since these
reactions have large angular momentum mismatch, there will be a substantial
contribution from the nuclear interior, resulting in sensitivity of the calculated cross-
sections to the nature of the o-nucleus interaction. The molecular-type potential gives
satisfactory account of the (o,d) and (o,p) reactions even for the large angle data. Thus,
the present work suggests that the molecular potential paves the way for more prolific use

of these two reactions for spectroscopic studies.
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The present study also invoke some endeavour to dig into the deeper essence of
the fact that while the Michel potential enjoys so much successes in accounting for the

ALAS effect in the elastic processes on various targets of different nuclear mass regions
[57,61], the cluster structure in *“Ti [58,59] and oscillations in the fusion excitation
function [60,163 ], it is found inadequate in describing the (o,d) and (o.,p) reactions. The
success of molecular potential, on the other hand, lays a strong foothold for the Energy
Density Functional formalism. This may pave the way for introducing newer steps in the
hope of resolving some astrophysical problems, related to neutron star density [164].

The success of molecular potential in accounting for the a-elastic and o-induced
non-elastic data, is certainly a leap forward and ushers in the long cherished hope of
Hodgson [22] for obtaining a satisfactory global a-nucleus potential. But even then, the
present work suggests that the molecular potential with its simple parametrization needs
further examination with targets in other mass regions before being accepted as a global

one.
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Iffect of e-nucleus potential on the A1 (ev,t) ™St reaction
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Full finite-range distorted-wave Boin approximation caleulations have been performed using molecular,
Michel, and normal optical potentials to analyze the angular distiibutions of cross sections [or the 53 transitions
populating the bound and unbound states of 2*Si via the (a.1) reaction. The parameters of these thiee potentials
have been determined from analyses of the clastic scattering data in the entiance channel at the incident encigy
involved. The molecular and optical potentials are found to produce satisfactory fits to the dua, but the Michel
potential seems to he inadequate. For all thice potentials in the entiance channel, the deduced / transfers for the
transitions to the 15.02, 15.85, and 16.11 McV states differ from the assignments previously reported. The
extracled specltioscopic faclors are compared with shell-model predictions. [S0556-2813(99)02510-8]

PACS number(s): 25.55.Ci, 21.10.Jx, 24.10 Iiq, 24.50.1 g

L INTRODUCTION

Since the first observation of anomalous Lirge angle scat-
tering (ALAS) by Correlli ef al. [1] in the elastic scattering
of o particles by "0 and *S, it has also been found to occur
in other elastic and nonelastic processes [2-4] induced by o
particles. The normal optical-model potentials are found to
be consistently inadequate in reproducing ALAS in elastic
and inelastic scattering as well as transfer 1eactions induced
by a particles [S-9]. Two alternative types of potential have
been proposed to explain ALAS. The lirst one, advocated by
Michel ef al. [10,11], is a special type ol optical polential
with a squared Woods-Saxon (WS) geomelry. The second
one is a molecular type of complex potentials [ 12-14], hav-
ing a repulsive core in ils real part. Both potentials have been
successlul in reproducing ALAS in the elastic scattering of
particles [10-15] by some 2s-1d nuclei. Nonclastic pro-
cesses have so far been, in most cases, treated within the

ramework of direct-reaction theory using normal optical po-

tentials in the distorted channels. The anomalies in the data
of (er,d) and (ar,p) 1eactions on 2*Si [9] have, so far, been
analyzed in terms of an incoherent sum of the distorted-wave
Boin approximation (DWBA) contribution calculated with
normal optical potentials and the compound nucleus contri-
bution calculated on the basis of the Hauser-Feshbach model
[16]. The method has enjoyed a limited success. In paiticu-
lar, the elastic and transfer data could not be fitted with the
same optical polential. To the best of our knowledge there is
no available report dealing with the single particle transfer
processes using both the molecular- and Michel-type poten-
tials, although these potentials could explain successfully the
elastic a-scattering data for a number of 2s- 1d targets [15].
The normal optical model, on the other hand, has failed to
explain these data. One may also note that the molecular type
of potential has been able reasonably to reproduce [17] the
angular  distributions  of the cross section for (he
SiCa,p)'P 1eaction leading to the ground and excited
states. The present study is motivated with a view fo test the

0556-2813/99/60(4)/044617(14)/$15.00
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two potentials in analyzing the one-nucleon transfer reaction
on a larget, as o part ol a series of investigations (o find the
nature of the a-nucleus interaction which can explain all col-
lision processes involving a-particles including paiticle
transfer reactions. With this objective in mind we have cho-
sen the experimental data of Yasue e¢fal. [I18] for the
YAl(er,1)*Si 1eaction at £, =64.5 McV'icading to 56 (ran-
sitions with an energy resolution of about 35 keV. The
DWBA analyses in the woirk ol Yasue er al. [ 18] do not use
the appropriate form [actor as well as the Tull finite-range
(FFR) calculations for the transitions to states in the unbound
region. We have investipated the clffcct of a FIFR using the
normal optical, Michel-type, and molccular potentials for
particle translers to bound as well as the unbound states us-
ing the resonance form [actor, formulated by Vincent and
Fortune [19,20]. One may note, however, the lack of reaction
data in the analysis at scattering angles preater than aboul
60” (c.m.) which might be important in determining the de-
tails of the potentials. The form of the three types of

10Y g T T T T T [T T T T Py

2 \J 27’\‘((!.")2?.’\' ol 64,5 MoV

v’\,.\

\/ .. molacular fit
- N

R

10

Safd() (movsn
5

. Michel it
. n\x lo_a

e b Lo Do Do b oo e b
0 20 40 00 80 100 120 140 160 180

Angla 6, (deg)

FIG. 1. Fits to the a-?"Al clastic scallering data at 64.5 McV
with molecular and Michel potentials. Data are lrom [ 18],

@1999 The Ametican I'hysical Socicty
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TABLE 1. Potential Parameters. Vo adjusted to give the separation encipy.

Channel a 1Al t+7Si p Al tp
Optical
Potential Bound Nound
lype Optical Michel Molccular set | set 2 slale stale
Vo (McV) 218.0 80.20 52.81 143.82 56.30 1% 1%
ro (Tm) 1.24 1.617 1.55 .19 1.40 L2y 1.25 o
aq (fm) 0.68 0.60 0.57 0.682 0.72 0.70 0.65
Vi (MeV) 684G '
Ry (fm) 2.84
o ) 7.40
p (fm) 2.90
Wq (MeV) 25.6 55.20 58.13 31.30 50.10
ry (fm) 1.24 1.53 1.28 1.40
ay; (fn) 0.68 0.52 0.999 0.72
R, (fm) J.A5
¥, (MeV)
rp (fm)
ap (fm) v
Vi (MeV) 4.65 A=25 A=25
Fyo (M) 0.996
a,, (Im) 0.280
4 r. (fm) 1.25 1.25
‘ R_(fm) 5.10 3,90 9.30 3.94 19
a b (& d d
"Reference [34].
"Reference [35].
“Reference [36].
"Reference [27).
e-nucleus potential used in the present work is discussed in A r?
Sce. Il Section 11 gives briclly the salient aspects ol the Vor)= IR ’3" E" (for r=R,) 3
DWBA theory relevant to the present analyses. The DWBA ‘ &
analyses are lurnished in Scc. V. Section V discusses the [
transfers involved in populating the various final states, in EiZqe®

patticular I assignments that differ from the previously re-
ported values [18] for some of the transitions. The conclu-
sions are given in Sec. VI.

1L a-NUCLEUS POTENTIALS

The squared WS Michel potential [10,11] including the
Coulomb term V () is comprised of the following foims
[10] of the real V(r) and imaginary W(r) parts:

y b
l-’M(r)——VO{I I-rrcxp(—(f—l) ”

r—~Rp e l
x| 1 'CXP(—ZF) + V. (r), (1)

[ (rHR,)} -2
H’M('.): o ‘Vﬂ | E cxp —-é-uA . (?)

(y

wilh

(for r>R,), (4)

where Re=r¢A ;-” is the Coulomb radius.

This phenomenological form of the potential has been
shown (o be approximately similar to the equivalent local
potential [21] obtained from the microscopic analysis using
resonating group method (21,22,

The molecular potential is embedded in the early works ol
Block and Malik [23] and others [24,25] who recognized this
as the manifestation of the role of the Panli exclusion prin-
ciple in heavy ion scattering. The potential is obtained [rom
a many body theory utilizing the encrgy-density lunctional
method [25,26]. This potential has the [ollowing forms [14]
for the real, V, (1), and imaginary, W, (r), pals:

e L |
V,(r)=~- \’,,[ |+ cxp(l——ﬁ) ]

g

FVyexp
1

r 2
ﬁ(ﬁm) J'l Vr(")ﬁ (5)
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FIG. 2. Full finite-range DWBA predictions compared o data [18] for thiee transitions using (a) molecular, (b) normal optical, and (c)
Michel potentials with set | and set 2 (Table I) of tiiton potentials in the exit channel.

r P
W (1)=—W, cxpl - E#} . (6)

w

Thus the real part is nonmonotonie with a short-range repul-

sion. The Cnllloml) radius is scaled [14,15] according to
Re=R,VreAy £ R, being the contribution liom a par-
ticles.

‘The normal optical potential for the a-nucleus system in-
cluding the Coulomb term is given by [27]

V() =V, = Vf(xp) =i W[ (ry)—aW n f(‘n)l (7)

where f(x)=(14e")"" with x;=(r- :‘,A'“)Iu,- and the
subscript i=0, W, and D. The Coulomb radius is given by

= 113
Re=reAys.

HI. THEORY OIF DWBA FORMALISM
The differential cross section for a transfer reaction with a

particular j transfer in the DWBA theory [28] is given by

d(r

d(l

fLibty kf
T Quhh k, (27,4 I)(2r

Z 17,02 (8)

where J; and s, are the spins of the target and the projectile,
tespectively. g's and k's are, respectively, the reduced
masses and wave numbers. The subscripts i and freler to the

incident and outgoing channels, respectively. £ denoles the
sum over all magnetic substates. 7 is the transition ampli-
tude, having the form

T,,:de":-,,f d"rb,\-}"“‘(k,,,r,,)Vl,(r),\':."(k".rﬂ)
J (9)

lHeie J is the Jacobian nf the transformation to the relative
coordinales. ,\'f' and \,r ) are the distorted waves in the
initial and linal channels, l(“ép(,‘(ll\’("y, with outgoing and
incoming boundary conditions, r, and r;, are lhe coordinates
ol the outgoing and incoming patticles a and b relative to the
center of mass of the system, k, and k;, are the momenta of
the projectile and ejectile, 1espectively. The distorted waves
yer) are generated from the Schrdédinger equation [28]

{v’-u k?—(;’;)[vm-u v,(r)l],\(k_.-)—n, (10)

where V(r) is the distorting polential and e is the reduced
mass of the pair. The distorting potential may be the normal
optical, Michel, or molecular potential. The V; is the transi-
tion matrix having the form [28]

‘/r_ ("'}'I’bl VI'/’r'J"n) (} I)
Equation (11) can be, under cettain circumstances, lactored
into (i) the overlap intepral (a/fj|ajr,-) containing the spectio-
scopic amplitude and the information on the nuclear struc-

044617-3
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FIG. 3. Full finite-range (solid curves) and zero-range (dotted curves) DWBA predictions using (a) molecular, (b) normal optical, and (c)
Michel potentials for the g.s. and £, = 11.58 McV transitions are compared to data. Data me from [ 18],

ture and (ii) the eflective interaction (o/rﬂl'l’|-,’:,,} responsible
for the transition from the initial channel to the linal channel
[28). In the analysis of single nucleon stripping reactions, it
is assumed that the transferred nucleon is picked up from the
projectile and deposited into a shell-madel state of the final
nocleus. Thus the DWBA calculations in the present analysis
involve the single patticle proton wave function in the final
nucleus as well as that in the incident e particle.

In the isospin representation, ey (8) can be reduced into a
mote tiactable form for the caleulation of the cross section of
the stripping teaction in FIFR calculations [30]:

u’_u_ :24’!1- 1 7
dfl i
expl

20,41
(! dS2) ywuers means the cross section caleulated with the
computer code bwucks, C? is the isospin Clebsch Gordon
coelficient, and § and s are, respectively, the heavy and light
particle spectioscopic factors. J, and J; are the total spins of
the final and initial nuclei, respectively. The cotresponding
expression [30] for a zero-range (ZR) approximation is

(’(f

pTH) (12)

) DWIICKS

do 2J 1) deor
(5] ~mraies(E]
expl 24+ D)(2j+1) ‘”‘1 DWIHCKA

(13)

DI is the normalization constant, and (dear/d 1) pwucka is the
cross section calculated with DWUCKA.

For the analyses of the data for the unbound states of the
final nucleus, the resonance form factor formulated by Vin-
cent and Fortune [19,20] is applied. 1t is assumed that the
resonance has a Breit-Wigner shape, and in such a case the
differential cross section i given [20] by

10?

ffTT]T L l TTTT l'l YYTI"TT'I"]“ 'l'l"l"l

= VAN )" 1=2 :

10' g molecular -
\ ------ oplical
100 L —— —— Michel
10!
E
S 100
3 3
he
10‘ :"
10% -
10° k-
107, el Lo koo bege Lo
;o 10 20 30 40 50 60 70
) Angle 0, (deg)

FIG. 4. Full finite-range DWBA predictions using molecular
(solid curves), normal optical (dotted curves), and Michel (dashed
curves) potentials for the tiansitions with [ values indicated are
compared to data (solid or open citcles). The triton potential of sel
I has been used with the normal optical and Michel potentials, and
that of set 2 with the molecular potential in the a channel. Data are

from [18].
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do I /lk do®

. h d i
Hete da”1dS) is the cross section predicted at the energy of
resonance (the positive energy of the transferred proton rela-
tive to the core). 1" is the width of the resonance, g is the
reduced mass of the tansferred proton and the tagel
nucleus, and k is the wave number ol the proton at the reso-
nance energy. 1" is estimated lrom (he relation [20]

2;¢ e G d[G'
[[ [ee(r)] et 7 fk( )} (15)

Here u(r) is the radial wave function of proton in the field of
targel core and r= R, .. is the distance beyond which nuclear

potentials are assumed to be zero. G and G are the irregular
Coulomb Tunction and its derivative at r=2R .. respec-
lively.

IV. DWBA ANALYSIS

The ZR and 'R DWBA calculations for the angular
distributions have been performed using the computer
codes DWUCK4 and DWUCKS [30], respectively. Both codes
are modilied to include Michel and molecular potentials.
For the ZR ecalculations, a Gaussian form of [linite-range
cortection in the local encipgy approximation [29.30] with
the correction parameter R=0.7 [in has been uscd. Correc-
tions due to the nonlocality [30,31] of potentials in the
conventional form have heen applied using the nonlocality
parameters A(a) =0.2 and A(p)=0.85 fin. The IR analyses
have been performed for both bound and unbound regions

044617-5
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using the Michel, molecular, and normal optical model
types ol potentials.

A. Choice of potential parameters

For the entrance channel, the parameters of the moleculas
and Michel types of potential are generated by fitting the
angular distributions of elastic data [18] using the chi-
squared minimization code MiNUIT [32] in conjunction with
the optical-model code SCAT2 [33] modificd to incorporate
the Michel and molecular potentials. The [its to the clastic
data are shown in Fig. I. The normal optical-potential-
parameler sel used in the present analysis is taken from [34].
The parameters of all thice types of potentials arc given in
Table 1. The bound state geometry paramelers are also noted
in Table 1. For a bound state of ?*Si for both the FIFR and ZR

calculations, as well as for the bound state of the e« for the
IFIER caleulations, the single proton transfer wave function
has been computed adjusting the WS potential well depth so
that its cigenvalue equals the sepmation energy [29].

For the triton potential in the exit channel, different sels
of witon potentials have been tried. Two scis of triton poten-
tials, labeled set 1 and set 2 in Table I, have been found to fit
the data reasonably well with the molecular, normal oplical,
or Michel potential in the entrance channel as can be scen in
Figs. 2(a)-2(c). Set 2 of triton potentials produces a slightly
better fit at the larger scattering angle 1egion when the mo-
lecular potential is employed in the o channel [Fig. 2(a)]. On
the other hand, the normal optical potential in the e channel
produces a good [it to the data for set | of triiton potentials in
the exit channel [Fig. 2(b)]. We have, therefore, finally cho-
sen set 2 of triton potentials with the molecular potential and
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Michel (dashed curves) potentials for the transitions with [ values indicated are compared 1o data (filled or open citcles). Data are from [18].

set 1 of the triton potentials with the Michel or normal opti-
cal potential in the a channel for the analyses ol the data, It
is to be noted that the sensitivity of the predicted cross scc-
tions to the triton potential seems to be much stronger in the
case of the normal optical potential in the entrance [Fig.
2(b)] than for cases with the other two potentials.

B. Angular distributions

The comparison of the ZR and FIFR DWBA calculations
of the angular distributions for the ground state (g.s.) and the
state at the excitation energy 2 = 11.58 McV using the mo-
lecular, Michel, and normal optical potentials for the best lils
to the experimental data are shown in Figs. 3(a)-3(c).

The I'I'R DWBA calculations for angular distributions for
the best fits to the data vsing all three types of a-nucleus
potentials for various [ transfers are compared to the experi-
mental data in Figs. 4-9 for all levels. The levels in Fips.
4-9 are grouped according to the associated I ansfers. The

levels populated thiough the =2, 3, and 4 wransfers are
shown in Figs. 4-6, respectively. On the other hand, the
levels which have been obtained through the incoherent sum
of more than one [ transfer such as [=01+2, 1+3, and 2
44 are shown, respectively, in Figs. 7--9. The DWBA it to
the unresolved group at £ = 6.88 MeV is also shown in Fig.
8 with the total incoherent contiibution from =2+ 3. In the
previous study, Yasue ef al. associated an [=13 transler for
fitting 15.02, 15.85, and 16.11 MeV transitions, but in the
present study, it seems to be =4, The predicted angular
distributions using each of the molecular, Michel, and nor-
mal optical potentials for both [ translers (1=3 and [ =4) are
compared to the data in Fig. 10. Cleatly, the /=4 transfer is
preferred in all thiee cases.

C. Speclroscopic strengths

The spectroscopic stiengths ol a reaction for a transition
to a final state (J,17) with the translerred confliguration (1)
is related to the spectioscopic factor §;; [38] by

044617-7
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p

(27;+1) ,
G'}—(_z.,"" ]) C Su.

(16)

where C is the Clebsch-Gordon coelficient involving iso-
spins of the targel and the final nucleus.

The sum rule for the spectroscopic strength in the case of
the 2’Al(a,r)™Si reaction can then be expressed [38] by

|
;E G'fz-i(” holes)  (for 7,=1)
[ >

1 |
=~2—(p holes)—i(n holes) (for szo)'

where {p holes) and {n holes) are, respectively, the elfective
number of proton holes and neutron holes in the orbit ().

The total strength comprising transitions with 7,=0 and
1 is then

2 Gy=(p holes). (17)
s

The deduced sum of strengths for all =2 transitions with
J=32.5/2 transfers and T,=0,1 is G =2.33. This is almost
halfl of the sum rule strength 5.0, the number of proton holes
in the Ids; and 1dy, orbits. Similarly, the sum of all I=0
transition strengths for both 7,=0 and 1 has been found to
be £G =0.96, which is again 50% of the expected sum of
2.0,
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The extracted transition strengths for the (6 7;0) state at
E,=11.58MeV and (67:1) state at E, = 14.36 MeV, which
have the stretched configuration (1d g™ " 1f7) in the shell
model, are 0.14 and 0.23, respectively, which is small com-
pared to the expected full strength of 1.08 for each. I one
considers, however, the fragmentation of 6~ strengths as due
to the deformed structure of the **Si core, using the assump-
tions that (i) the vibrational state of the core does not change
in the transition, (ii) the core has negative deformation, and
(iii) the proton-hole configuration in the target is |j;=5/2,
0,=1/2)—i.e., the target has J,=5/2 and K;= |/2—one may
caleulate the spectroscopic strength due to deformation using
the expression [39,40]

(214 1)

=GN C25= g CXJ K i1 K ) Cpyy(wan)?,

(18)

where Cpy(f2wa) as defined in [39,40] are the cocllicients
connecting a deformed single particle state to spherical
eigenstates, and el is unity as K, #0. The values of these
coellicients have heen taken from [41]. Equation (18) with
Ky=4 results in a strength of G =0.083 for each of the
(67;0) and (67;1) states, which is, indeed, small.

V. DISCUSSION

In the present study, 53 tiansitions have been analyzed
with all three types of potentials. ‘The analyses involve (i) 4
transitions with the =2 tansfers (Fig. 4), leading 1o the
ground, 4.98, and 6.69 MeV slates with the unique j=5/2
transfer and the 12.33 MeV state which is assumed lo be
populated via j=3/2, (i) 11 tansitions with [=3 (Fig. 5),
(iii) 9 tansitions with =4 (Fig. 6), (iv) 11 tansitions with
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the admixtwe =042 (Fip. 7), (v) 7 tansitions with the
acdmixture [= 143 (Fig. R), (vi) 1 transition with {=2+3
(FFig. 8) populating probably two unresolved states with op-
posite parities at about &£,=06.88 MeV, and (vii) 11 transi-
tions with the admixture I=2+4 (Fig. 9) transfer. The data
ol the transition to the 11.97 MeV state are compared to the
DWRBA predictions twice, once in Fig. 8 for the /=143
transfer and again in Fig. 9 for the [=2 14 ransfer as both
transfers produce acceptable fits to the data,

In Fig. 3 the FFR and ZR calculations are compared to the
angular distribution data for ransitions to the g.s. and the
state al £ = 11.58 MeV. The improvement of the fits due to
predictions of the former over those ol the latter underlines
the importance of the FFFR calculations,

It is evident from Ligs. 4-9 that the full finite-range
DWBA analyses using the molecular and normal optical po-
tentials fils quite satisfactorily the experimental data of the
44 tiansitions out of 53 with 9 other states fitted moderately.
In general, the fits with the molecular and normal optical
potentials seem to be ol the snme quality, but the fits with the
Michel potential are comparatively poor. At forward seatter-
ing angles <20° or so, all three potentials yicld, to some
extent, the same results. Bul at larger scattering angles, for
the bound state transitions with excitation encrgics up to
[1.58 McV, the molecular potential provides a better fit, al-
though the normal optical potential compeles reasonably

well, while the Michel potential fails completely. For the
continuum states with excitation energics above 11.58 MeV
both molecular and normal optical potentials yield again
comparable results with quite reasonable fits to the data, but
the Michel potential fails again. At reaction angles larger
than 30°, the dilference in the predictions due to the thice
distorting a-nucleus potentials becomes very prominent and
increases with the reaction angle. It is also to be mentioned
that for some transitions, e.p., the 4.98, 6.69, 8.54, 10.21, and
12.24 MeV stales, neither of the thiee types ol potentials
could produce good fits to the angular distributions, indicat-
ing probably that reaction mechanisms other than the direct
one may be involved in these cases.

Yasue ef al. [18] repoited that an admixture of [=1, 2,
and 3 was needed to fit the data of the level 6.88 and 6.89
MeV, but in the present study an adimixture of [=2 and 3
sulfices to (it satisfactorily the angular distiibutions of these
untesolved levels (Fig. 8). Fuithermore, they [18] used the
[=012+4 admixture for the 7.93 and 8.26 MeV transi-
tions, while in the present work /=02 seems to be suflfi-
cient to fit the data quite well (Fig. 7). Moreover, as men-
tioned earlicr, Yasue ef al. [ 18] associated the 15.02, 15.85,
and 16.11 MeV transitions with the /=3 transfer, but the
comparison of the predictions in the present analyses for [
=3 and 4 in Fig. 10 for each of the three potentials shows:
that the angular disttibutions for these tansitions are better
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TABLE I1. States of 2*Si obscrved in the Al(a.1) reaction at F,=64.5 McV.

(20, % HC'ss®
Present work

I, Vig
(MeV) b 1(nlj) c d [ leg
gs 0':0 2(0dyy) 4.8 4.5 4.5 4.6 '
.78 2%0 (012) 0.7, 1.08 084, 126  0.672, 1.008 17,12
462 40 (214) 2,13, 0,022 2.90, 0.396 2.22,0.117 2.5, 0.04
498  0';0 2(0dy,) 042 0.6 0.75 0.48
628 30 (0+2) 0.138, 1.24 0.36, 2.04 0.63, 1.47 0.39, 1.4
669 0%:0 2(0dy;)  0.03 0.048 0.048 0.04
6B  37:0
G689 40 (2+3) 0.27, 0.03 0.57, 0.03 0.456, 0.024  0.65, 1.1, 2.6
;:g ;. :g (01 2) 0.006, 0.86 03,1.2 0.276, 1.104 0.15, 0.90
7.80 30 (012) 0.26, 0.396 0.357.0.663  0.315,0.585  0.22, 0.35
7.93 210 (0+2) 0.27, 0.672 0.63, 1.17 0441, 0.819 0.7, 0.65, 0.06
826 2%:0 (0+2) 0.30, 1.20 0.15, 1.65 0.38, 1.5 0.13, 1.1
g4l 4730 (1+3) 0.48, 0.72 0.9, 0.9 0.9, 0.9 0.45, 1.0
854  6';0 4 0.48 0.78 0.9 0.13
859 30 (0+12) 1.0, 1.51 2.85, 2.85 1.8, 1.8 08, 1.9
890 17:0 (1+3) 0.048, 0.072  0.076, 0.032  0.055, 0.023  0.018, 0.048
894 . 4';0 (214) 0.054, 0023 0.022,0086 0022, 0.086  0.11, 0.06
57,0 or 3 0.054 0.066 0.036 0.06
9216 4';0 4 0.02 0.03 0.03 0.06
932 3% (012) 1.176, 0.50 1.95, 1.05 1.365, 0.735 1.5, 0.49
938 21 (012) 1.33, 0.88 3.36, 1.44 3.84, 0.96 1.6, 1.0
948 2%:0 (0+2) 0.52, 0.90 1.5, 1.5 1.026, 0.054 0.2, 0.24
970  57:0 3 1.20 1.8 1.8 1.8
976 (2,370 (1+3) 0.038, 0.113  0.576, 0.144  0.385, .096 0.06, 0.17
993  (1.2)7:0 3 0.60 1.17 -0.99 0.11
10.21 (2-4)":0 4 0.096 0.126 0.126 0.17
10.38 3t (0+2) 0.66, 1.98 1.13, 3.38 0.75, 2.25 0.65, 2.1
10,72 140481 (214) 0.113,0038  1.92, 048 0.144, 0.036  0.11, 0.009
1094+ (21 4) 0.70, 0.08 1.37, 0.072 1.081, 0.057  0.32
11.10 (214) 0.105, 0045  0.108,0.072 0072, 0043 0.1, .04,
11.14 it (2+4) 0.363, 0.297 0.274, 0.068 0.168, 0.042 0.02, 0.06
4 + L
:::: f.q: ki (214) 2.96, 0.16 5.99, 0.315 3.99, 0.21 3.8, 0.39
11.58  6°;0 3 141 1.86 1 68 20
11.80 4 214 0.19. 0.157 0.36, 0.36 0.5, 0.22 0.13,0.12
11.90  37;0 (143 0.4, 0.08 0.126,0.294  0.099, 0.231  0.49, 0.17
1193 - 143 3.70, 0.195 5.67, 0.63 4.28, 0.23 4.7
1197 (2*4%0 214 0.59, 0.066 0.972,0.108  0.11, 0.066 0.5, 0.09
or3 ;0 or | +3 041, 0.221 0.655, 0.353 0.43, 0.23 0.4, 03
1207 (2%):0 244 0.21, 0.09 0315, 0135 0.252,0.108 0.3, 0.09
or 3 0.21 0.36 0.24 0.2
1224 3'+4%0 244 0.1, 0.06 0.144, 0216 0.144, 0216 0.27, 0.12
12,30, - 2% 4 0.39 0.51 0.51 0.06
1233 1"l 2 0.72 1.32 0.9 0.55
1249  37;0 3 0.84 1.2 1.14 1.0
1266 471 3 3.00 5.4 4.2 38
1282 17;0 143 0.14, 0.32 0.20, 0.46 0.15, 0.36 0.03, 032
1325 5751 3 3.30 5.4 1.2 3.6
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QI DE7ss"

Present work

E, =T

(McV) b [(nl)) c d c g

13.99 s ] 0.63 1.02 0.78 1.6

14.36 671 ) 2.40 2.88 2.1 33

14.69 = 3 0.24 0.51 0.33 0.39
15.02 - 4 0.15 0.21 0.21 0.70
15.38 . = 3 0.45 0.78 0.57 0.55
15.55 I 4 0.12 0.21 0.15 0.09
15.85 - 4 0.11 0.222 0.156 0.16
16.11 = 4 0.48 0.24 0.48 041
16.50 - 4 0.14 0.24 0.18 0.07

"s=2.0is the light particle spectioscopic faclor.
"Reference [37).

“Optieal.

“Michel.

“Molecular.

"Reference [18]

FLight particle spectioscopic factor is not mentioned in [ 18],

fitted by the I'=4 transfer. It is also obvious from Fig. 10 that
the predictions with the molecular potential bring out the
difference more distinctly in the angular patteins for (=3
and [=4, '

The spectioscopic factors (Table 11) extracted using the
molecular potential are comparable to those obtained using
the normal optical potential, but are a bit larger lor some
cases. In gencral, those deduced from using the Michel po-
tential are even larger. Considering the quality of the fits, the
spectroscopic Tactors oblained with the Michel potential are
expected to be less reliable.

The spectroscopic strengths extracted [rom the use of the
molecular potential are compared to those calculated lrom
the shell model [42] in Table 111, The predicied and deduced
strengths agree for most of the [=2 transitions except that
for the 6.89 MeV state. The extracted strenpths for the [
=0 transitions to the 1.78, 6.28, and 9.32 McV siale aie
much weaker than the predicted values. This may be partly
ascribed to the fact that the matching [ transfer [k;R;
=kR,| (k's and R’s are, respectively, the momenta and in-
leraction distances in the reaction channels) lies in the range
2-4 over E,=0.0-14.36 McV of the final nucleus and hence
[=0 is a mismatched transfer. The =0 shell-model wave
functions used in [42] may not be good due to truncation.

The extracted sum of strengths for all [=2 as well as lor
all I=0 transitions has a factor ol 2 missing lrom the ex-
pected magnitude, e.g., the elfective number of proton holes
in the transfer orbits. This is surprising when one considers
that the states of 2Si resulting from the j"= 112", 3/2*,
5/2" transfers in the reaction are highly improbable 1o exist
al £,>16.50MeV. The spherical shell model cannot prob-
ably take up the whole of the transition strength, and some of
the strength drains off as a result of deformation. For the

transition to each of the 67 states at £,=11.58 and 14.36

TABLE 11 Compatison of the deduced spectroscopic strengths
to the shell-madel predictions.

G=(z.r,-| n,
(27;+1)

£, I%T
(MeV) a I(nlj) Mresent work”  Shell model®
B-S. 0':.0 2(0dgy) 0375 0.53
1.78 2':0 (012)  0.06, 0.08 0.38, 0.06
4.62 4':0 (214) 019,001 0.33, 0.00
4,98 0':0 2(0dg;y)  0.06 0.05
6.28 %0 (01:2) 0.05, 0.12 034,014
6.69 0':0 2(0dgy)  0.004 0.005
6.88 370 3 0.002 0.0
6.89 40 2 0.038 0.27
7.38 250
244 ap (01:2) 002, 0.09 0.02, 0.17
7.80 30 (012) 003,005 0.357, 0.663
7.93 2';0 (012)  0.04,0.07 0.00, 0.13
8.59 3%:0 (0+2) 0.15,0.15 0.035, 0.21
9.32 3t (0142)  0.11,006 0.38, 0.06
9.38 241 (012) 032, 008 0.23, 0.05
1038 31 (012)  0.06 0.19 0.01, 0.20
1072 1041 (214)  0012,0006 0015 0.00
11.58 6730 3 0.14 0.083¢
1436 671 3 0.23 0.083"

*Reference (37).

*Molccular potential.

“Reference [42].
“Deformed shell model (39,40).
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MeV, the predicled strength ¢ =0.083, calculated on the ba-
sis of delormed shell model [39,40], is not adequate enough
to explain the observed values (Table T11). The band mixing
clfects due to Coriolis coupling [43] may have significant
" elfects on these transition strenpths and is worth [wither in-
vestigation,

VI. CONCLUSIONS

In the present work, both the molecular and Michel types
of a-nucleus potential producing the same quality (it 1o the
a-"'Al elastic dala have been used to analyze one-nucleon
transfer data to the bound and unbound states of *Si. The
present work shows that full finite-range DWDBA analyses
with the molecular potential can describe the angular distri-
butions of the transitions to the bound and unbound states in
Si at least as satisfactorily, if not somewhat better, as those
obtained using the normal oplical potential. On the other
hand, the Michel potential is, in general, inadequate to ex-
plain the data. Furthermore, at renction angles preater than

MIYSICAL REVIEW C 60 044617

about 30°, the DWBA caleulations using the thiee types of
a-nucleus  potentials become  signilicantly  dillerent and,
hence, the experimental data at larger angles nppear to be
essential to decide the natme of the a-nucleus potential. To
determine the parameters of the potential more accurately,
clastic scattering data at large angles would also be helplul.

..
'
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Microscopic and macroscopic distorted wave Born approximation calculations have been per-
formed using molecular, Michel and normal optical potentials to analyze the angular distributions
of cross-sections for 12 transitions populating the 0.0, 0.709, 1.454, 1.974, 2.538, 2.72, 2.84, 3.02,
3.93. 4.62, 5.42 and 7.20 MeV states of *°P via the (o, d) reaction. Only the molecular potential is
able to produce satisfactory fits to the data, but the normal optical potential is found to be inad-
equate in accounting for the large-angle data and the Michel potential is just unsatisfactory. The
spectroscopic factors for the d-cluster transfer are deduced from the full finite-range distorted-wave
Born approximation and compared to the shell-model predictions for the even-parity states.The
spin-parity assignment of the 3.93 MeV state is confirmed. The best-fit value for the finite-range
parameter for the zero-range DWBA calculations is also deduced.

PACS number(s): 25.55.Fm, 24.50.+g, 21.10.Jx

I. INTRODUCTION

Since the early observation of an unusual enhancement of cross section at large angles, commonly known as anoma-
lous large angle scattering (ALAS), by Corelli et al. [1] in a elastic scattering by %0 and 3?S nuclei, it has also been
noted in other elastic [2-8] as well as the non-elastic [7-13] processes involving a-particles. The normal optical poten-
tials are found to be consistently inadequate in reproducing ALAS in the similar phenomena induced by « particles
[13-17). Two simple local potentials [18], with a minimum number of varying parameters, have been proposed to
explain ALAS. The first one with a squared Woods-Saxon (WS) geometry, advocated by Michel and his collaborators
[19-22], is a special type of optical potential, which is referred to as Michel potential [18]. The second one is a
molecular type of complex potential [18,23,24] having a repulsive core in its real part. Both the potentials have been
successful in reproducing ALAS in the elastic scattering of a-particles [18-24] by some sd-shell nuclei. Non-elastic
processes have so far been, in most cases, treated within the framework of direct-reaction theory using the normal
optical potentials in the distorted channels, except a recent study by Das et al. [25] who have examined the effects of
the molecular and Michel potentials in one-nucleon transfer reaction to the states of 288i.

ALAS, observed in (a,d) and (a,p) reactions on 8Si [17] and (e, d) on 27Al [26] have, so far, been analyzed in
terms of an incoherent sum of the distorted-wave Born approximation (DWBA) contribution calculated with normal
optical potentials and the compound nucleus contribution predicted on the basis of the Hauser-Feshbach model [27].
The method has, however, enjoyed a limited success. In particular, the elastic and transfer-data could not be fitted
with the same optical potential.

The (a,d) reaction has been shown to be a valuable spectroscopic tool for locating two-particle states [28-32].
Because of the large negative Q-value involved, the reaction favors the transitions to states coupled to the maximum
allowed spin. Moreover, unlike the one-nucleon transfer reaction, the (a,d) reactions involving two-nucleon transfer
are dependent on the coherence property e.g. the relative signs of the different components of the wave-functions.
The (a,d) reactions enjoy another advantage in that these can be analyzed in terms of both the macroscopic (cluster
transfer) and the microscopic approaches in the form-factor calculations. Another important feature of the (a,d)
reactions lies in populating states with the T = 0 transfer. Moreover, if the relative angular momentum of the two
transferred nucleons is 0 and remains so in the reaction process only the L-transfer L = .J is allowed for the natural
parity states, but two L-transfers L = J & 1 are permitted for exciting the unnatural parity states, the spin transfer
S =1 being unique.

The present study is undertaken to examine the influences of the normal optical, molecular and Michel potentials
in analyzing the two-nucleon transfer reaction 28Si(ar, d)**P at 26 MeV incident energy, with the target and energy
chosen for the substantial ALAS effect [18]. The latter two potentials have not been tested for a two-nucleon transfer
reaction. The work is a part of a series of investigations on other non-elastic processes including the (a,f) on *7Al
[25], the (e, p) on ?%Si [33] and the (,a’) on 2'Mg and *Si [34] to find the nature of the a-nucleus interaction which



can explain all the collision processes involving a-particles. In Sec. II, the forms of the three a-nucleus potentials used
in the present work, is presented. The DWBA formalism and analyses are dicussed in Secs. III and 1V, respectively.
Section V deals with the discussion on the results of the analyses. The conclusion is given in Sec. VI.

II. a-NUCLEUS POTENTIALS

The squared WS Michel potential [20,21] including the Coulomb term V¢ (r) comprises of the following forms [18,20]
of the real Vyy(r) and imaginary Wy (r) parts:

Vam(r) = Vo [1 + aezp{- (r*/p’)}] [1 + ezp {(r — RR) [2ar}] 2 4 Ve(r) (1)
W (r) = =Wy [1 + exp {(r — Ry) [2a;}] 2, (2)
with
[—Lﬁ"'— ] [3 -r] for r < Re (3)
ES ?J-Z;’i— for r > Re. (4)

In Eqs. (1)-(4) R; = r,'A,:r/a with 1 = I, I and C, has been defined in terms of the usual radius parameter.
The molecular potential, which is generated from a many-body theory utilizing the energy-density functional method
[23,24), has the following forms [18,24,25] for the real, V;,,(r) and imaginary, W,, () parts:

Vin(r) = =Vo [1 + ezp {(r — Ro) Jao}] ™" + Viezp {~ (r?/R?)} + Ve(r) (5)

Wi(r) = =Woeap {~ (r?/R%,)} . (6)

Thus, the real part is non-monotonic with a short-range repulsion. The Coulomb and nuclear radii are scaled [18,24]
according to By = Rai + roAY® with i =0,1,C, W and ry = 1.35 fm.

The normal optical potential for the alpha-nucleus system including the Coulomb term is given by [27]

V() = Vo - V(@) = [Wf(aw) = 4Wp 5 1(zp)| (7

where, f(z;) = (1+€%) " with z; = (r — r;A'/%) /a; and the subscript i = 0, W and D.

III. THEORY OF DWBA FORMALISM

In absence of spin-orbit interactions, the differential cross-section for an (a,d) reaction on a spin-0 target with a
particular J-transfer in the DWBA theory [35] is given by,

do mitty kg S lf lf < I 2
— = oL (2] + 1) B [p1pa; JO] 7 2 L Byl (8)
dt (orn?)” ki LM |me nogJ

where, pt's and k’s are, respectively, the reduced masses and wave numbers. The subscripts i and f refer to the
incident and outgoing rhannels respectively. p; = [nil171] and ps = [n2l2j2] denote the orbital quantum numbers for
the transferred nucleons in the final nucleus. §'/? [p1p2; JO] are the spectroscopic amplitudes in the jj-coupling for
an angular momentum transfer J and an isospin transfer T = 0. The large square brackets in Eq. (8) refer to the
normalized 9-j symbol, the LS-jj transformation factor [36]). Bj, describes the kinematical aspects of the reaction.
In Eq. (8) the light particle spectroscopic factor ¢*s = 1.0 for (e, d) reactions has been used.

In the macroscopic DWBA calculations, no information on the structure of the cluster is required except the
quantum numbers (N, L) as defined by

2(n1+ng)+l|+12=2N+L, (9)



where the quantum numbers v = (0 and X = 0 are assumed for the relative Os-state internal motion of the transferred
cluster. The expression for cross section in terms of the cluster quantum numbers (N, L) parallel to Eq. (8) is given
36] by

do _ pipy Ky L f?
=L ST LY Gk, (10)
0 (gnp2)? ki ;l |

In Eq. (10), only one N-value is considered to contribute, the two nucleons in the cluster being in the relative Os-state.
The structure amplitude Gz, as defined by Glendenning [36] is expressed as

_ i o L
G“:Z(2—6,,1,,,)'/2[}‘/2[;71;)2;.1(}} 111 | Qoo(00,NL : L | ngly,naly : L). (11)
rpa jl ji! J

In Eq. (11), 9o denotes the overlap of the spatial wave function of relative motion of the two particles in the
transferred cluster with the corresponding part in the incident a particle. ( | ) represents the Brody-Moshinsky
bracket [35-37].

Denoting the macroscopic cross sections calculated for the L-transfer with the FFR code DWUCKS5 [38] by (42) ?)ws
and taking advantage of the incoherent sum over the L-transfer(s) as in Eqs. (8) and (10), one can write the
experimental cross sections for this reaction as

L L2
do ) do do
—_— = (2J+ 1) A (—) + Apq (—) (12)
(dQ exp df DW5 df DW5
On the other hand, the experimental cross-sections are related to the microscopic cross-sections ("—ﬁ);')w 4 calculated

with the ZR code DWUCKA4 [38] by

(:i%),,p = (ggﬁ) — (13)

¥ in Eq. (13) is the normalization constant for the (a, d) reactions. The form of Eq. (12) shows that Ay, and Ay,
are the spectroscopic factors [26,32] for the L1 and L2 transfers, respectively. The spectroscopic factor [26] Ay, in
Eq. (12) for each of the L-transfers and the normalization constant ¥ in Eq. (13) can be extracted from fitting the
experimental cross sections.

IV. DWBA ANALYSIS

The microscopic zero-range and macroscopic full finite-range (FFR) DWBA calculations for the angular distributions
have been performed using the computer codes DWUCK4 and DWUCKS5 [38], respectively. Both the codes are
modified to include the Michel potential. Corrections due to non-locality [38,39] of potentials in the conventional form
have been applied using the non-locality parameters (a) = 0.2 and 8(p) = 0.85 fm. In both the microscopic ZR and
macroscopic FFR calculations, the molecular, Michel, and normal optical types of a-?%Si potential and the optical
d-*"P potential have been employed. The parameters of the molecular and Michel potentials are taken from the work
of Tariq et al. [18], and those of the normal optical potentials for the incident channel are from Jankowski et al. [17].
Several sets of the d-*"P optical potentials including that from Ref. [17] have been tried, but the one from the work
of Fitz et al. [40] produces the best fit. All the potential parameters employed in the present analyses are displayed
in Table 1.

A. Macroscopic DWBA calculations

The macroscopic analyses have been performed using the full finite-range DWBA code DWUCKS5 [38]. The bound-
state geometries for the d-d and d-?®Si Woods-Saxon (WS) potentials, shown in Table I are taken from [17]. The
bound state wave funtions for the transferred deuteron in alpha as well as the final nucleus have been generated by
adjusting the deuteron separation energies. At the start of calculations, the accuracy parameters used in the code
DWUCKS have been assigned appropriate values, to define effective width of wave numbers [38,41] in the expansion



of the distorted waves in terms of plane waves for making the zero-range calculations identical to those from the code
DWUCK4 [38]. This ensures the necessary covergence for the integral for the zero-range form-factor, defined in Eq.
(3.9) of Charlton [41].

The cluster configurations of the transferred deuteron for the different states of excitation are shown in Table IL
For the final states with natural parity, populated by one L-transfer, the DWBA predictions are normalized to the
data to yield the relevant spectroscopic factor A;, as defined in Eq. (12). On the other hand, for the transitions
involving two L-transfers, leading to the final states with unnatural parity, the spectroscopic factors are obtained by
minimizing the value of x? defined by

Oex (9 - OpwW (9i) :
X' = Z [ ’ Ao zp (65) t e

where 0,2, (0;) = (é%)up (6;) and Ao..p (8;) are, respectively, the experimental cross section, as defined in Eq. (12),

and its error at the scattering angle 6;. apw (6;) is the cross section predicted by the DWBA theory.

The DWBA predictions with the molecular (solid curves), normal optical (broken Lurveq) and Michel (dotted
curves) potentials are compared to the data of the ground (1+), 0.709 (1), 1.454 (2*), 2.72 (2*) and 3.02 MeV (2%)
states in Fig. 1; to the data of the 1.974 (3+), 2.538 (3%), and 2.84 MeV (3") in Fig. 2; and to the data of the 3.93
(27), 4.63 (3*) and 5.42 MeV (2*) states of *°P in Fig. 3. It is amply clear from Figs. 1-3 that the calculations
with the molecular potential produces the best fits to data for all the transitions. Furthermore, the Michel potential
generates cross sections, which are lower by 1 to 2 orders of magnitude than those predicted by either the normal
optical or the molecular potential. Table ITI gives the comparison of the total spectroscopic factors for the cluster
transfer for the three types of potentials.

The compiled work of Endt and van der Leun [44] suggests alternative spin-parity for the 3.93 MeV state as
J® = 1%,27 or 3*. While de Meijer et al. [32] assigned J™ = 3" for the state, Jankowski et al. [17] suggested 2~.
The DWBA calculations with the molecular potential for both J™ = 2~ and 3%, are compared to the experimental
cross sections in Fig. 4. The J™ = 2~ assignment is clearly favored, confirming the observation of Jankowski et al.

B. Microscopic DWBA calculations

The microscopic calculations have been performed using the zero-range code DWUCKA4 for the positive parity states
with the transferred particles stripped to the sd-shell. The present analyses make use of three sets of spectroscopic
amplitudes f'/2, two sets based on the FPSDI and MSDI hamiltonians as defined in Wildenthal et al. [42] and the
shell-model wave functions of the ?®Si and °P nuclei given by Wildenthal et al. [42,43] and the third one, labeled
by CW [32], derived from the wave functions of Chung and Wildenthal referred to in [32]. The FPSDI and CW
amplitudes are taken from de Meijer et al. [32], while the MSDI amplitudes are from Jankowski et al. [17]. All
the three sets of spectroscopic amplitudes are calculated in the model space of Ods/o-18,/9-0d3/e. Since the codes
DWUCK4 and DWUCKS5 assume that the spherical harmonics carry a time reversal phase of i, a factor not used
in the phase conventions adopted in the calculations of the spectroscopic amplitudes [32], the amplitudes have been
multiplied by an extra phase of i"'+/2=F before feeding these to the codes.

The bound state wave functions for each of the transferred nucleons have been generated by assuming a real Woods-
Saxon well with the geometry parameters ro = 1.25 fm and ap = 0.65 fm and the depth adjusted to produce the
binding energy equal to half the separation energy of the transferred deuteron. A Thomas-Fermi spin-orbit term with
A = 25 has also been used for the bound state wave functions.

A Gaussian form of finite range correction in the local energy approximation [38] has been investigated. Fig. 5
compares the microscopic DWBA calculations for the molecular type of a-?®Si potential using the range parameter
R = 0.0 fm (broken curves), 0.7 fm (solid curves) and 0.85 fm (dotted curves) to the experimental data for the transfer
to the ground (11), 2.53 (3%), 2.84 (3*) and 3.02 MeV (21) states. The finite-range correction with R = 0.7 fm
improves the fits to the data.

The effect of the three types of the a-22Si potential on the microscopic DWBA calculations has also been examined
using the spectroscopic amplitudes calculated from the FPSDI interaction. Fig. 6 displays the DWBA predictions
for the molecular (solid curves), normal optical (broken curves) and Michel (dotted curves) potentials, which are
compared to the data for the ground (1t), 0.71 (1), 1.45 (2*) and 1.97 MeV (3") states of 3°P. As in the case of
the macroscopic analyses, the molecular potential provides the best description of the data and the Michel gives the
worst. Moreover, the predicted cross sections with the Michel potential are so small that they need normalization
factors (Table IIT), larger by orders of magnitude compared to those for the molecular and normal optical potentials.



Figs. 7 and 8 display the comparison of the microscopic DWBA calculations with the finite-range parameter 12 = 0.7
fm and the molecular a-?%Si potential, for the FPSDI (solid curves), CW (broken curves) and MSDI (dotted curves)
interactions. The calculations with the three interactions produce more or less the same quality of fits to the transfer
data to the ground (1), 0.709 (1*), 1.454 MeV (2*) states (Fig. 7). The FPSDI and CW amplitudes produce
identical predictions for the 2.72 MeV (2%) state (Fig. 7) and 2.84 MeV (3") state (Fig. 8) and the same quality of
fits to the 1.97 (3*) and 2.538 (3*) MeV states (Fig. 8). For the 3.02 MeV state, FPSDI gives a better description at
large scattering angles than CW does (Fig. 7). Nonetheless, the spectroscopic amplitudes from the three interactions
produce completely different spectroscopic factors Sy, as listed in Table II. Moreover, the experimental cross sections

for the reaction leading to the ground (11), 0.709 (1*), 1.454 (2), 1.974 (3%), 2.538 (3*), 2.72 (2), 2.84 (37)
and 3.02 MeV (1*) states of **P, need normalization constants as listed in Table 1V, which are widely different and
inconsistent. y

The 7.20 MeV (71) state is considered to have a pure stretched (U fr /2) configuration leading to the spectroscopic
amplitude for the (o, d) reaction as #'/? = 1.0 [30,32]. This model independent value of 3'/? has been used to deduce
the normalization constant for the reaction as ® = 722 + 25, which compares closely with ¥ = 870 4 20 and 650 4 20
obtained, following two methods for calculating the form-factors, by de Meijer et al. [32]. But only a few of the
extracted N-values for other states given in Table IV are close to the model independent-value, deduced from the
reaction data for the 7.20 MeV state. None of the FPSDI, CW and MSDI interactions produce a consistent set of
values for the normalization constant.

C. Spectroscopic factors

The model dependent spectroscopic factors are calculated from the FPSDI, CW and MSDI spectroscopic amplitudes
B'/? by the method outlined in [32]. Since the spectroscopic factor for the 7.20 MeV state is unity, the spectroscopic
factors for other transitions are obtained by

G
R e e, 10
|Ger(7.20)|

where the structure factor G is expressed through Eq. (11) and Gg7(7.20) = 0.56Q, denotes the value of the
structure factor for the 7.20 MeV state. The Sy, values, which are listed in Table II, are taken from de Meijer et al.
[32] for the FPSDI and CW spectroscopic amplitudes. For the MSDI interaction, the S, values are calculated using
Eq. (15) from the MSDI spectroscopic amplitudes from Jankowski et al. [17). The theoretical spectroscopic factors
S, are compared to the experimental spectroscopic factors Ay, deduced from the macroscopic analysis in Table II.

(15)

V. DISCUSSION

In the present work, both the molecular and Michel types of a-nucleus potential have been used, for the first time,
for the analyses of two-nucleon transfer data. The data for the even-parity states up to F, = 3.02 MeV, have been
analyzed both in terms of the FFR DWBA with the cluster form-factor and the ZR DWBA with the microscopic
form-factors. In the latter calculations, the FPSDI and CW [32] as well as MSDI [17] spectroscopic amplitudes derived
from the wave functions of Wildenthal and his collaborators [42,43] and Ref. [20] cited in the work of de Meijer et al.
[32]. The data of the odd-parity states are analyzed only in terms of the macroscopic FFR calculations.

In both microscopic and macroscopic DWBA calculations, the molecular potential [Figs. 1-3 and 7,8] produces the
best description of the data for all the transitions studied. The Michel potential, which has been shown to describe
satisfactorily the elastic a+?#Si data (18], is found inadequate not only in accounting for the pattern of the angular
distributions [Figs. 1-3, 6], but also in reproducing the right order of magnitude for the cross section data. The
normal optical potential, on the other hand, which can fit the angular distribution at forward scattering angles and
predicts the the same order of cross sections as the molecular one does, is found inadequate in describing the data at
large scattering angles [Figs. 1-3, 6].

The finite-range correction to the ZR microscopic calculations produces substantial effects on the pattern of the
angular distributions and improves substantially the fits to the data as can be seen in Fig. 5. This confirms the
observation made by Bencze and Zimanyi [45]. The best fit value for the finite-range parameter found is R = 0.70 fm
for the reaction.

In the literature, an ambiguity in the spin-parity assignment for the 3.93 MeV state is noted. The comparison of
the macroscopic DWBA predictions for J™ = 27 (solid curve) and 3" (dotted curve) in Fig. 4 to the experimental
data favors the former, confirming the assighment of Jankowski et al. [17] and opposing that of de Meijer et al. [32].



The spectroscopic factors Ay, for the transitions to the final states up to E; = 5.42 MeV are deduced by comparing
the macroscopic DWBA calculations to the data. Table Il compares the deduced spectroscopic factors Ay, to those
obtained at 50 MeV incident energy by de Meijer et al. [32] and those extracted using the same data as of the present
work by Jankowski et al. [17]. The results of Jankowski et al. are not reliable as they included the compound nucleus
contributions in their analyses. The results of de Meijer et al. are based on the zero-range calculations. Nevertheless,
their Aj, values for the transitions involving one L-transfer leading to, particularly, the 1.454 (2*) and 4.62 MeV (37)
states are remarkably close to those of the present work.

The Ay, values for the even-parity states and the model dependent theoretical spectroscopic factors Sy, defined in
Fq. (15), are compared in Table I1. It can be noticed that apart from the ground state (1*), 1.454 (2*) and 2.72 MeV
(2') transitions, the total spectroscopic factors )  A;, agree with 3.5, for the CW interactions. On the other hand,
the FPSDI predictions for }_ S, values are closer to the experimental }_ A, for the ground and 1.45 MeV states.
Neither of the FPSDI and CW interactions reproduces the experimental A;, for the 2.72 MeV state. It can also be
noticed from Table 111 that FPSDI yields larger spectroscopic strengths compared to CW. This is also reflected in the
deduced values of relative normalization constants ®,,; in Table IV, where FPSDI needs in general smaller R-values
to get to the data. None of the three interactions viz. FPSDI, CW and MSDI is able to yield consistent values to
account, for the even-parity states. However, the model-independent ® = 722 & 25 is obtained from the data of the
7.20 MeV (71) state, where the spectroscopic amplitude is believed to be unity.

VI. CONCLUSION

Both the macroscopic and microscopic DWBA analyses suggest that the molecular type of the a-?8Si potential is
undoubtedly the best of the three types of potentials considered. The success of the present analyses lies in observing
that the experimental cross-sections for all the transitions are reproduced over the entire angular range without the
addition of compound nucleus contributions, which are unlikely to happen at the incident energy considered herein.

The present work in conjunction with the previous studies of the a-elastic scattering on Mg and ?#:3%Si by Tariq
et al. [18], of the (o, t) reaction on ?7Al [25] and the («, p) reaction on ?8Si [33] by Das et al., and of the a-inelastic
scattering on ?*Mg and ?8Si by Rahman et al. [34] confirms that the molecular potential is the best of the three types
of a-nucleus interactions including the Michel and the normal optical potentials, in describing the elastic, inelastic and
rearrangement collision processes on the sd-shell nuclei. This ushers in hopes for finding a global a-nucleus potential,
as observed by Hodgson [46]. It remains to be examined whether the molecular type of potentials are capable of
accounting for collision processes involving e particle and other light and medium-light nuclei. For this purpose,
it would be extremely helpful to have complete angular distributions for different processes involving a particular
nucleus.
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TABLE L. Potential parameters for DWBA calculations. The potential depth V' for the bound states is adjusted to give the
separation energy.

Channel o + *Si d + *°p d+d d + **Si
Potential type Molecular® Michel” Optical” Optical® Bound state®
Vo (MeV) 26.0 21.0 50.42 102.7 % 1%
Ry (fm) 5.35 5.00 % = : -
ro (fm) - - 1.699 1.07 1.05 0.935
ao (fm) 0.34 0.60 (.505 0.852 0.50 0.997
Vi (MeV) 120 . . : . .
Ry (fm) 2.80 - - - - -
o - 5.82 - - - -
p (fm) - 6.25 - - - -
Wo (MeV) 15.0 28.9 10.34 - - -
Rw (fm) 4.0 3.85 - - - -
1 (fm) 2 : 1.699 = . -
a; (fm) - 0.65 0.505 - - -
W (MeV) . . " 16.10 > .
rp (fm) - - - 1.53 - -
ap (fm) = - - 0.574 - -
Vso (MeV) - - - 6.0 - -
rso (fm) " - - 1.07 . ’
aso (fm) - - - 0.852 = <
re (fm) . 1.30 1.30 1.15 1.25 13
Re (fm) 9.35 . - . . .
o Ref. [18].
b Ref. [17].
¢ Ref. [40].



TABLE I1. Cluster specstroscopic factors are compaared to the theoretical shell-model factors for the FPSDI, CW and MSDI
interactions. FPSDI and CW spectroscopic factors are taken from Ref. [32]. MSDI factors are calculated from the spectroscopic
amplitudes B'/% of Ref. [17] by the method outlined in Ref. [32]. Sy, values are normalized to the value of |G§'72°r for the 7.20
MeV state.

E; Jr Cluster Cluster spectroscopic factor Shell model spectroscopic factor

configuration S, =|GLs|*/ !G;f"lz
(MeV) N,L AL® Af AL FPSDI CW MSDI
0.0 1T 2,0 0.23 £0.07 1.76 £ 0.20 0.28 0.448 0.043 0.168
1,2 0.23 4 0.07 ’ 0.56 0.237 0.121 0.031
0.709 it 2,0 0.16 + 0.07 1.45 + 0.20 - 0.029 0.030 0.020
1,2 0.24 4 0.08 . 0.85 0.617 0.274 0.038
1.454 ot 1,2 0.25 + 0.05 0.20 + 0.04 0.32 0.372° 0.081 78x107*
1.974 g 1,2 0.11 4+ 0.04 0.72+0.13 - 0.041 0.078 0.004
0,4 0.09 + 0.03 0.47 + 0.20 - 6.1 x10°* 0.134 1.5 % 1072
2.538 1 1,2 0.16 + 0.04 0.67 +0.14 & 0.015 0.165 -
0,4 0.07 +0.03 <0.25 - 0.426 0.076 -
2.72 2+ 1,2 0.28 + 0.05 0.12  0.02 0.34 0.058 0.045 -
2.84 3t i3 0.08 + 0.02 0.16 + 0.07 - 0.007 0.007 -
0,4 0.09 + 0.02 0.33 4 0.11 3 0334 0.254 -
3.02 1+ 2,0 0.03 + 0.02 0.5140.15 0.27 9.7x10°* 0.319 =
1,2 0.32 + 0.05 0.06 + 0.10 0.35 1.4 x 1072 0.021 s
3.03 2- 2,1 0.11 + 0.04 - 0.32 2 - -
1,3 0.18 + 0.04 5 2 - = .
(3%) (1,2) (0.06 + 0.05) (0.14 + 0.05) - - - -
(0,4) (0.08 + 0.05) (0.05 & 0.06) . - - -
4.62 3~ 2,1 0.15 + 0.04 0.17 + 0.02 0.30 = s -
5.42 o 21 0.54 + 0.09 - 5 z . -
1,3 0.06 & 0.03 5 0.86 = - z
@ Present work.
b Ref. [32].
© Ref. [17].

4 Too small a value to quote.

TABLE I1I. Comparison of deduced total specstroscopic factors from the macroscopic and normalization factors for the
microscopic FPSDI calculations using the molecular, normal optical and Michel potentials. Total spectroscopic factor is the
sum of the spectroscopic factors for the two L-transfers for the unnaturalparity states.

E, g L Total spectroscopic factors Normalization constant R
(MeV) Macroscopic calculations Microscopic calculations
Molecular Optical Michel Molecular Optical Michel
0.0 ¥ 042 0.46 0.74 234 28() 480 7000
0.709 17 0+2 0.40 1.33 30.0 70 85 8000
1.454 ot 2 0.25 0.50 11.0 270 950 1800

1.974 3t 2+4 0.20 0.57 20.0 1500 2000 35000




TABLE IV. Normalization constant R for the microscopic zero-range calculations for different shell-model interactions. ¥,

is the value relative to the model independent ® = 722 for the 7.20 MeV state.

J O I L Normalization constant N Relative normalization constant R,
(MeV) Interaction Interaction
FPSDI CW MSDI FPSDI Cw MSDI
0.0 1t 0+2 280 4000 800 0.388 5.540 1.108
0.709 1t 042 70 180 1500 0.096 0.249 2.08
1.454 2+ 2 270 850 5500 0.374 1.177 7618
1.974 3t 244 1500 500 7000 2.077 0.692 9.965
2.538 3t 244 220 900 - 0.304 1.246 .
272 ot 2 550 4500 . 0.762 6.233 -
2.84 3t 244 350 450 . 0.484 0.623 -
0.623 -

3.02 1t 0+2 14000 450 - 19.39
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The differential cross-section of the *Si(a, p)*' P reaction for 26 MeV incident energy has been
analyzed in DWBA with zero and full-finite range using a deep and shallow optical, Michel and
molecular potentials in the incident channel and a usual optical model potential for proton in the
final channel. The parameters of potential in the entrance channel are determined from the elastic
scattering data. The calculations done with the deep optical and Michel potentials reproduce the
structure of the angular distributions reasonably well, but fail to account for the absolute magnitudes
by a few orders. The shallow optical one is satisfactory up to about 6., = 100”. The molecular
potential, on the other hand, reproduces both the absolute cross-sections and the pattern of the
angnlar distributions. CCBA calculations improve fits to the data over the DWBA predictions.

PACS number(s) : 25.55.Hp, 21.10.Jx, 24.50.+g, 27.30.+t

I. INTRODUCTION

Anomalous large angle scattering (ALAS), observed in the elastic scattering of alpha-particles by light and medium-
light nuclei [1-3], have recently been analyzed successfully for 2*Mg, ?8Si, 393§ targets in terms of a complex molecular
[4,5] and a special type of optical potential with a squared Woods-Saxon geometry, advocated by Michel and his
collaborators [6,7]. The latter is, henceforth, referred to as the Michel potential. Both of these potentials describe
equally well the elastic scattering data in a wide energy range with a small set of parameters changing systematically
with energies.

The ALAS effects have also been observed in the non-elastic processes [2,3,8-13]. Schmittroth et al. [11] have
established that the use of a complex molecular potential could enhance the back angle scattering in a single-nucleon
transfer reaction involving heavy ion. Similarly, ALAS has also been observed by Jankowski et al. [14] in the two-
and three-particle transfer reactions on the ?®Si target. The large-angle behavior of the data in the latter work
has been analyzed in terms of an incoherent sum of the distorted-wave Born approximation (DWBA) contribution
calculated with the normal optical potentials and the compound nucleus contribution predicted on the basis of the
Hauser-Feshbach model [15]. The method has, however, enjoyed a limited success.

The three-nucleon transfer in (e, p) reactions is a complex process. In addition to probable contributions from
compound nucleus, pre-compound and multi-step sequential transfer processes, the direct part of the reaction mech-
anism may comprise triton stripping, knock-on and heavy-particle stripping [16-18]. Of these triton stripping has
been found to be the dominant one [16]. Although calculations in DWBA using the usual optical potential in the
incident channel can, quite often, reproduce the general pattern of angular distribution, but the absolute cross-section
is understimated by two to three orders of magnitude [19]. The normalization problem also persists in (a, p) reactions
[20-23). Walz et al.’s [24] claim to reduce the discrepancy between the data and calculation to 20% for the (p, a)
case using a double-folded a-nucleus potential, has been contradicted by Kajihara et al. [25], who failed to reproduce
the Walz et al’s calculations and found an enhancement factor ¢ = 4 instead of 1.2, The purpose of the present
study is, therefore, to examine the extent to which the molecular, Michel and optical potentials can account for the
pattern, magnitude and ALAS observed in the three-nucleon transfer (a,p) reaction on ?Si. The study is also a part
of our broader goal of finding the nature of a-nucleus potential capable of explaining a number of physical phenomena
involving an alpha particle and a light nucleus, in this case ?8Si. As evidenced from a number of investigations in-
cluding the single-nucleon (o, p) transfer reaction on ?Si by Das et al. [12], it is important to select data having fairly
complete angular distributions in order to differentiate the effects of a-nucleus potential on a reaction process. With
this in mind, we have selected the experimental cross-section data of Jankowski et al. [14] for the **Si(a, p)*' P reaction
covering a wide range in angular distribution including those at large angles, which are expected to be sensitive to
the nature of a-nucleus potential.

The investigation has been carried out within the framework of zero-range (ZR) DWBA formalism with a simple
process of triton-cluster transfer using shallow, deep, Michel and molecular optical potentials in the incident alpha-
channel. The full finite-range (FFR) DWBA and the coupled-channels Born approximation (CCBA) calculations for



the molecular potential have also been performed to determine the viability of the latter two potentials. This inves-
tigation further reinforces the past assertion that data having a wide range of angular distribution are important for

understanding the physical process involving e-particle and light nuclei.
Section 11 discusses the a-nucleus potentials used in the analyses. The DWBA and CCBA analyses are furnished
in Sections I1I and 1V respectively. Section V deals with the discussion and the conclusions.

IT. a-NUCLEUS POTENTIALS

Vin(r), the real and W, (r), the imaginary parts of the complex molecular potential, which has its root in the
energy-density functional study of the reaction [4,26] are given by

Vin(r) = =Vo [1 + exp {(r — Iy) /aﬂ}]—l + V;eav'p{g (r"!/[?f)} i
Win(r) = ~Waeap {~ (*/ Riy) }

The real Vay(r) and imaginary Wy (r) parts, of the Michel potential which is an approximate form of the non-local
potential expected from the resonating group method (RGM) as applied to the a-cluster system [27,28] are given by

Va(r) = =Vo [1 + aexp{— (r*/p?) }] 1 + exp {(r — %) [2a0}] "

Wa(r) = —Wo [l + exp{(r — Rs) [2as}) * -
The real and imaginary parts of the normal optical potential, V(r) and W (r) are given, respectively, by
V(r) = Vo [1 4 exp {(r — Ro) Jao}] ™’ .
W(r) = —Wo [L + ezp {(r — R;) Jas}]”" -
The Coulomb part for all three types of potentials is given by
Ve(r) = [Z%f—l?fj] [3 - ﬁ;c] for r < Re (4)
= ?-kzrﬂi forr > Re (5)

In case of the Michel and optical potentials, [ is quite often written as = rg A;/ 3, where A is the target mass
number. On the other hand, in case of the molecular potential, R is the sum of the alpha and ?#Si radii when they
barely touch each other.

Although the normal optical model has not been very successful in reproducing the elastic scattering data over the
energy range investigated by Jankowski ef al. [14] and Jarczyk ef al. [10], it is possible to find a set of parameters
producing a reasonable fit to the elastic scattering data at 26 MeV. Observing that the energy-density functional
approach in the special adiabatic approximation may lead to a shallow optical potential [26], a search for such a
potential has also been made and included in the study.

The parameter search has been carried out using the code SCAT2 [29] modified by us to incorporate molecular and
Michel potentials. The parameters obtained from the best fit to the elastic scattering data of a-particle by 2*Si at 26
MeV incident energy are listed in Table I. The fits to the elastic data are shown in Fig. 1. In general, the fits with all
four potentials are reasonable, although the shallow optical potential fit is somewhat poorer than those of the rest.
Parameters of the molecular and Michel potentials are the same as the ones in Ref. [5].

III. DWBA ANALYSIS

The zero-range DWBA calculations have been performed using the code DWUCK4 [30] which has been modified to
include the Michel potential in the distorting channels. The potential parameters in the distorting incident channel
used in the DWBA calculations are noted in Table 1 for all four potentials. The bound state wave function for the
transferred triton, considered as a point cluster, has been generated by assuming a real Woods-Saxon well with its
depth adjusted to reproduce the separation energy. These parameters along with the proton optical potential are
also noted in Table 1. Corrections due to non-locality [31] of potential in the conventional form have been applied



using the non-locality ranges A(a) = 0.2, B(p) = 0.85 and ((t) = 0.2 fm. The correction in the triton-bound state
form-factor is found to produce little effect on the cross-section. The calculations using all four potentials for the
28Gi(ar, p)*' P reaction leading to the 1/2+ ground, 1.266 MeV 3/2% and 2.234 MeV 5/2% states are compared with
the data of Jankowski et al. [14] in Fig. 2.

To test the validity of using the molecular potential, the full finite-range DWBA calculations have been carried out
using the code DWUCKS5 [22]. The (t+p) bound state geometry for the FFR calculations is shown in Table 1. The
FFR predictions are compared to the data in Fig.3. The spectroscopic factors S for the cluster transfer have been
deduced from the expression [30]

d -
(ﬁ.) - .%Lf_i‘fgzss (_di) (6)
dsd expt 2Ji+1 d) pwycks
Here (g—g)empt and (42) pwuoks 318 respectively, the experimental cross-section and that predicted by DWUCKS.

Jy and J; are the total spins of the final and initial nuclei, respectively. s = 2.0 is the light particle spectroscopic
factor. C? is the isospin Clebsch-Gordon coeflicient. The deduced S-values are listed in Table 2, The normalization
constant D for the t-cluster transfer in the ZR calculations has been estimated from the expression [22]

do (2J¢ + 1) e (dz‘r)
el - » D5C*S | —
(dﬂ)empt (2Ji +1) (27 + 1) E dQ /) pwucka

are, respectively, the experimental cross-section and that predicted by DWUCKA4.

(7)

d: d
Here (55 —— (%) pwucks
The deduced D3 values and the average D2 = 2.25 x 10* MeV? fm? have been shown in Table 2. It is evident, from
Tig.3, that the FFR calculations do not improve fits over the ZR predictions and reduce the cross-sections at larger

reaction angles even more. Nevertheless, the FFR calculations allow us to extract the spectroscopic factors.

IV. CCBA ANALYSIS

The CCBA calculations using the molecular potential have been carried out using the code CHUCK3 [30], with
the coupling scheme shown in Fig.4 and the deformation parameters f; = —0.18 and 84 = +0.08 for ?8Si. In the
CCBA calculations, the depth of the imaginary part of the molecular potential (Table 1) has been decreased to 10.5
MeV in order to reproduce the angular distribution for the elastic scattering. All possible relative phases and various
relative transition amplitudes ag in the rearrangement paths have been tried in the simplest possible coupling scheme.
The transition strength in a two-step path is proportional to the square of fag. The CCBA predictions using the
relative spectroscopic amplitudes given in Table 2 for the 1/2+ ground, 1.266 MeV 3/2%, 2.234 MeV 5/2* and 3.415
MeV 7/2% state transitions have been compared to the data in Fig. 3. The CCBA calculations improve the fits over
the ZR and FFR calculations. The inelastic 4t state at E, = 4.618 MeV in ?8Si plays a major role in the CCBA
calculations in reproducing the ground state data. The coupling to the inelastic 2+ state to the ground state of ?®Si
is also significant in improving the fits to the data for the 1.266 and 2.234 MeV states of *' P. The CCBA calculations
seem to confirm the deformed shape of the 2®Si nucleus.

V. DISCUSSION AND CONCLUSION

The present work reports, for the first time, the analyses of a three-nucleon transfer reaction using the molecular
type potential. While the patterns of the angular distributions for the reaction to the ground (1/2%), 1.27 MeV
(3/2%) and 2.23 MeV (5/21) states of the final nucleus, are reasonably reproduced by the DWBA calculations using
the deep optical and Michel potentials, the predicted cross-sections are off by 2 to 4 orders of magnitudes in each case.
This agrees with the results of Refs. [21,23] for the calculation with the deep optical potential and those of Xiumin et
al. [36] who failed to reproduce the data for the **Ca(a,p)*3Sc reaction with the squared WS potential used by the
Michel group [32]. However, the DWBA and CCBA calculations using the molecular potential and assuming a simple
triton-cluster transfer mechanism, reproduce not only the angular oscillations more satisfactorily, but also the correct
order of absolute cross-sections for each of the four final states including the one at 3.42 MeV excitation of 3 P. The
calculation using the shallow potential reproduces the magnitudes up to 100° or so, but then decreases sharply at
large angles. Thus, the molecular potential is the only one to account for the data for the ground (1/2%), 1.27 MeV
(3/2%) and 2.23 MeV (5/2%) final states over the entire angular distributions. Furthermore, the present analysis



indicates that the data for the reaction can be successfully described without any compound nucleus contribution, as
included by Jankowski et al. [14], which is highly improbable at the incident energy considered here.

A pertinent question arises as to why the Michel potential, which has been so successful in accounting for ALAS
in the elastic scattering on many targets [6,7,32,33] including ?®Si in the present work, fails to reproduce the data of
the 28Si(a, p)*' P reaction. The Michel potential has also been found to be inadequate for the one-nucleon transfer
reaction [12]. Aside from the fact that the Michel potential is monotonic, whereas the molecular is non-monotonic,
one may note that the two potentials differ significantly in defining the Coulomb radius. In case of the molecular
potential, the Coulomb radius It¢ is the distance where 2®Si barely touches the a particle. The observed density
distribution, p(r) for ?2Si is given by [34]

=4
p(r) = p(0) [1 + efcpr_;(f] (8)

with ¢ = 3.14 fm. and d = 0.537 fm. Thus, at r = 6 fm., p(r) = 0.005p(0). A reasonable density distribution for a

particle is 4 (}r)s/%xp(—qr"") with y=0.5 [35]. This is about 0.001 at r=3.35 fm. Thus, a reasonable value of R is
(6.004-3.35)=9.35 fin., which is used in the molecular potential. The Michel, on the other hand, uses Ix=3.95 fm.
At this distance, the two nuclei have inter-penetrated each other substantially. In the DWBA theory, the stripped
particles from the projectile are assumed to drop on the nuclear surface and hence, the treatment may be somewhat
sensitive to the actual value of Re.

One may summarize from the displays in Figs. 1 to 3 that, while the molecular, the Michel with the squared WS
geometry and the normal optical potentials produce more or less the similar quality of fits to the elastic data, their use
in describing the transfer data for the (a,p) reactions leads to significantly different results, with only the molecular
one accounting for the observed data in terms of both absolute cross-sections and angular distribution. This supports
Satchler’s contention [37] that the real test of a potential set generated from the analysis of elastic scattering data
lies in its ability in reproducing the non-elastic data. The present work seems to suggest preference for the molecular
potential over other forms of the alpha-nucleus potential in describing the angular distribution of the (a, p) reaction
on ?8Si at 26 MeV. The finding demands further investigation with other targets.
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TABLE 1. Parameters of the a-*"Si potentials given by Eqs. (1), (2) and (3) used in the calculations shown in Fig. 1 are
given in columns 1 to 5. The parameters of proton optical-model potential, and bound states of (t+°*Si) and (t+p) systems
are noted in columns 6-8, respectively. V is adjusted to give the separation energy.

Channel a + ?8i p+3P t + ?*Si t+p
Potential Type  Molecular®  Michel*  Deep Optical ~ Shallow” Optical Optical® Bound State”  Bound State®
Vo (MeV) 26.0 21.0 216.0 ' 55.0 53.3 - 0.55E, Vv v
Ro (fm) 5.35 5.00 3.70 5.16 - - -
ro (fm) - - - - 1.25 0.929 1.05
ap {fm) 0.34 0.60 0.67 0.505 0.65 0.921 0.50
Vi (MeV) 42.0 - - - - - -
Ry (fm) 2.80 . - . . . .
o - 8.39 - - - - -

p (fm) - 6.25 - - - - -
Wo (MeV) 14.5 33.1 22.4 8.64 - - .
R; (fm) - 3.85 3.98 5.16 - - -
a;y (fm) 5 0.65 0.67 0.505 : - .
Rw (fm) 4.00 - - - - - -
Wn (MeV) " - . - 13.5 . -
rp (fm) - - - - 1.25 - -
ap (fm) - - - - 0.47 - -
Re (fm) 9.35 3.95 4.07 3.95 - - -
re (fm) - - - - 1.30 1.30 1.25
"Ref. [5].

"Ref. [14].

“Ref. [31].

TABLE II. Cluster transfer configurations (n: number of nodes, L: angular momentum) used in the CCBA are shown in
columns 3 to 6. Column 7 indicates the relative spectroscopic amplitudes used in calculations shown in Fig. 3. Columns 8 and
9 are, respectively, the spectroscopic factors deduced from the FFR. calculations and the normalization constant for the (a,p)
reaction for the DWBA calculations.

F. JF Cluster transfer configuration Spect. DE x 10*
zc'r) One-step Two-step Relative Spect. Factor MeV? fm?
MeV nlLy ‘nly, nly, nlig Amplitudes S

0.0 1/2+ 35 1G = = +01:415 0.070 2.00+0.50
1.266 g/2+ 2D 2D as = +01:405:-05 0.031 2.56+0.64
2.234 5/2- 2D 2D 38 1G +01:401:402:-01 0.004 -
3.415 Tf2 2G 3D 45 = +01:406:402 0.003 -
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Fig.1. Fits to the a-ZBSi elastic scattering data at 26 MeV (lab.) with the molecular, Michel,
deep and shallow normal optical potentials. Data are from [9]

E T r T T LS T I T T T T T T s T T T T ) T i

: Si(o,0)*°Si at 26 MeV 3
. 1
3 Molecular

E 00o 00

: x 1073 Michel

]

3

F \660 % :
1 " x 107 Shallow Opt. o
. 0%, o
3 o OOOW 0%, ° of 5
E (e} QO o OO (o] E
e (0] 00 o) E

i i L L L 1 1 1 L L 1 | L L 1 L L | i i L L i | i i 1 i i 1 i i L " ]

0 30 60 90 120 150 180



”Si(a,p)”'P, E, = 26 MeV

AT N L LEC L WAL L R N L ST N
Molecular

-------- Michel

==+ === Ghallow Optical

—— —= — Deep Optical
o Jankowski
o —— =
g g 9 a0 == DRI SESPRETI TS,
X Q P50 og @ o
‘-\.
N AT N
%
o
= L —i._ G0 D ™
E o_‘\r_g-b 7 —an"——-Tn_o'_tr“ﬂ o200
g : - .
Fomp 0T i I T e e

107 =0, %gp@ o 9% @000 0gg wog o

- = " o a
104 Lf‘q'-'-'n\-—\_/‘.—‘__—_____———
FHAE ;i — e 1IN

- TR ~

i I e e i i e
P Y =
10"
in* ST (ST e ST [ PO T JT TS (U BV O BT S S

a 20 40 60 80 100 120 140 160 180
Angle ©_, (deg)
Fig.2 Zero-range DWBA predictions are compared to the angular distribution of
cross-sections for the 2BSi(a.p)31P reaction at 26 MeV leading to the ground(112+),
127 (3/2"), and 2.234 (5/2") MeV states. Solid, dotted, dashed and dash-dotted curves
are the predictions for the molecular, Michel, deep and shallow normal optical
potentials respectively, in the a-channel. The data are from [14].
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Fig. 4. Coupling scheme in the CCBA calculations..



