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ABSTRACT 

Effects of the molecular, normal optical Woods-Saxoo and squared Woods-Saxon 

(Michel) ~-nucleus potentials on the 27 Al(a.,tf1Si. 21.l9.:w>Si(a.,d)30
.3

1,32P and 21S(a.,p)31P 

reactions have been studied. The parameters of the molecular and Michel a.}' Al potential 

have been generated by fitting the a.-elastic data on 27 AI at the incident energy E«=64.5 

MeV. The potential parameters of molecular, normal optical and Michel potential at 

Ea.=25 MeV have been determined by analyzing of ~-29.JOSi elastic data The elastic fits 

in these cases, seem to be of similar quality for all three forms of potentials. 

Full-finite range (FFR) distorted wave Born approximation (DWBA) calculatiom 

have been performed using the molecular, Michel and normal optical potentials to 

analyze the angular distributioos of cross-section for the 53 transitiom poJXllati.ng the 

bound and unbowtd states of 28Si via the (a.,t) reaction The molecular, Michel and 

optical potentials are found to produce satisfactory fits to the reaction data. For all the 

three potentials in the entrance channel, the deduced /-transfers for the transitions to the 

15.02, 15.85 and 16.11 MeV states, differ from the assigmnents previously reported. The 

extracted spectroscopic factors are compared with shell-model predictions. 

FFR macroscopic and zero-range (ZR) microscopic distorted wave Born 

approximation calculations have been perfonned using molecular, namal optical and 

Michel potentials to analyze the angular distributioos of cross-sectioo for 12 transitions 

populating 0.0, 0.700, 1.454, 1.974, 2.538, 2.72, 2.84, 3.02, 3.93, 4.62, 5.42 and 7.20 

MeV. states of 30p via the (a.,d) reaction Only the molecular potential has been able to 

reproduce satisfactorily the angular distribution and order of magnitude of cross-sections 



v 

for different transitions, but the normal optical potential is fotmd to be inadequate in 

accmm.ting the large angle data. The Michel potential is unsatisfact<X)' in relatioo to both 

reproducing angular distribution at large ~es and the correct order of magnitude of 

cross-section. The macroscopic spectroscopic factocs for the d-cluster transfer have been 

deduced fiom the full fmite-range (FFR) distorted-wave Born approximation (DWBA) 

and compared to the shell-model predictions for the even parity states. The assignment of 

the spin-parity of the 3.93 MeV state is confirmed 

Angular distributions of cross-sections of 9 transitions of 31P populated through 

29Si(a.,d)31P reaction have also been analyzed by both macroscopic FFR DWBA and 

microscopic ZR DWBA using the molecular, normal optical and Michel p<tentials. The 

spectroscopic factors yielded by the maaoscopic calculations have been compared to the 

theoretical spectroscopic factors, calculated from spectroscopic amplitudes of three 

different interactions. Normalization constants for the (a., d) reaction in the ZR DWBA 

calculations have been extracted Spectroscopic factors yielded by molecular potential are 

fotmd to comparable to the corresponding theoretical spectroscopic factors, whereas, 

those fa- normal optical and Michel potentials are fowxl to be 1-2 orders higher in 

magnitude. 

The macroscopic FFR DWBA and miaoscopic ZR DWBA analyses perfooned 

using the molecular, normal optical and Michel potentials for 8 transitions of 3lp excited 

via 30Si( a.,di2P reaction have been compared to the experimental data. The experimental 

spectroscopic factors and normalization constants are extracted from the macroscopic and 

microscopic calculations, respectively. The overall fits using the molecular potential are 

found reasonable. The normal optical and Michel potentials fit reasonably fa- most of the 
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states only at the forward angle region, but underestimates the magnitude of the cross­

sectioos by same order as mentioned in the case of28.29Si( a.,d)30
.3

1P reactioos. 

The best fit value for the fmite-range parameter for the zero-range DWBA 

calculations for (a.,d) reaction has also been deduced and found to be 0.7 fin. 

The 28Si(a.,pi1P differential cross-section at 26 MeV incident energy has been 

analyzed in DWBA with zero and full-fmite range and CCBA. Parameters of deep and 

shallow optical, Michel and molecular potentials in the incident channel are determined 

frcm the elastic scattering data. 1he calculatioos done with the deep optical and Michel 

potentials reproduce the structure of the angular distributions reasonably well, but fail to 

account for the absolute magnitudes by a few orders. The shallow optical one is 

satisfactory up to about 6cm=100°. The molecular potential, on the other hand, reproduces 

both the correct magnitude of absolute cross-sections and the pattern of the angular 

distributions. CCBA calculations improve fits to the data over the DWBA predictions. 
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CHAPTER I 

INTRODUCTION 

1.1. Preamble and Rationale 

1brough the decades, the nucleon transfer reactions have established themselves 

as useful tools in the study of spectroscopy of the nuclei. The interaction of various kinds 

of projectiles with different nuclei as targets have been extensively studied using 

different form of scattering and reaction data. A significant improvement ha1 been 

achieved in the knowledge of the light particle wave functions and of potentials of 

proton, neutron, deuteron, triton and hellion-nucleus system. The situation is, however, 

not satisfactory with the interactions of alpha-particles with other nuclei. and hence still 

leaves some questions to be answered. 

Since the first observation of anomalous large angle scattering (ALAS) by 

Correlli et al [1] in the elastic scattering of a.-particles by 160 and 32S, it ha1 also been 

found to occur in other elastic and non-elastic processes [2-21] induced by a.-particles. 

The nonnal optical model potentials are found to be inadequate in reproducing ALAS in 

elastic, inelastic and transfer reactions involving a.-particles [10-13, 18]. H~n [22] 

ha1 also pointed out the problems to have a really satisfactOI)' global ~nucleus potential. 

The ALAS problem, from the very beginning of its discovery invoked the 

researchers to float different ad hoc models to explain it. But the models suggesting the 

inclusion of Hauser-Feshbach resonance contriootioo [9,23], the use of /-dependent 

absorptioo [10], or the use of atbitrary wsn (n>2) form factoo; [12] have not been able to 

give a consistent and theoretically sound descriptioo of alpha-elastic scattering over a 
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significant range of targets and energies. Two alternative type of potentials have been 

proposed to explain ALAS. The one, advocated by Michel et aL[20-21,24], is a special 

type of optical potential with a squared Woods-Saxoo (WS) geometry. The another one is 

a molerular type of complex potential suggested by Block and Malik [25] and developed 

through a series of works [26-29), having a repulsive core in its real part. Both the 

potentials have been successful in reproducing the ALAS in the scattering of a- particles 

[19- 21, 28- 29) by some 2s-ld nuclei. On the other hand, Schmittroth et aL [16) have 

established that the use of a complex molecular potential could enhance the back angle 

scattering in a single-nucleon transfer reaction involving heavy ion. 

Non-elastic processes have so far been, in most cases, treated within the 

framework of direct reaction theory using the normal optical potential (WS type) in the 

distorted channels. The ALAS in the data of (a,d) and (a,p) reactions oo 21Si (18), have 

been analyzed by Jankowski et aL [18] in terms of incoherent sum of the distorted wave 

Born approximation (DWBA) contribution calculated with the normal optical potentials 

and the ccrnpound nucleus contribution calculated on the basis of the Hauser-Feshbach 

model [30 J. In addition, the elastic and the transfer data could not be fitted with the same 

optical potential. Above all, at the incident enetgy more than 20 MeV, the compound 

nucleus effect is expected to be highly improbable. In spite of all these inconsistencies 

within, the method has, however, enjoyed a limited success. So, the ALAS problem for 

the (a,d) and (a,p) reaction remains yet to be resolved. 
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1.2. Object of the present study 

To the best of our knowledge there is no available report deal~ with the 

description of transfer reactions using either of the molecular and Michel type af 

potentials, although these potentials could reproduce successfully the elastic a-.scattering 

data for a rrumber of 2s-1 d targets [ 19]. But the normal optical potential has failed to 

account for the same. 

The present study is the first attempt to perform a comparative study of the effect 

of three fonns of a -nucleus potentials obtained from the correspond~ elastic scattering 

on the single, two, and three nucleon transfer reactions. There is a well-known contention 

[31] that the potentials capable of produc~ both elastic and transfer processes with the 

same parameter wi II certainly have preference to others, those can cnly produce elastic 

but not the corresponding transfer processes. So, this study is motivated with a view to 

test how far, the two proposed alternative types of potentials capable of analyzing the 

ALAS effect in elastic scattering can account for the one, two and three nucleon transfer 

reactions. 

The present study comprises basically of three steps: 

(1) to generate parameters of three form of alpha-nucleus potentials by fitting a-elastic 

scattering data on the sd-shell targets. 

(2) to analyze the single, two and three nucleon transfer reaction data on the targets 

using the correspond~ potential parameters. 

(3) to extract the spectroscopic information available m the study of the reaction 

processes. 
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1.3. Methodology 

One nucleon transfer reactions probe the single particle structure of nuclear states 

[32]. The (a.,t) reaction h~ large negative Q-value has the special aitmon of 

populating selectively the states of high angular momentwn. 

In contrast, two nucleon transfer reactioos probe the correlation that exists 

between nucleon pairs in the states produced. The nature of this correlation can be best 

understood if the structure of the light particles in the reaction is relatively well known In 

that view, it has been shown as a well-known fact that the (a.,d) reaction is a valuable 

spectroscopic tool for locating two-particle states [33- 37]. Because of the large negative 

Q-value involved, the reaction favours the transitions to states coupled to the maximum 

allowed spin. Moreover, unlike the one-nucleon transfer reaction, the (a.,d) reaction 

invo~ two nucleon transfer is dependent on the coherence property, e.g., the signs of 

the different components of the wave fimction. The (a., d) reactions enjoy another 

advantage in that they can be analyzed in terms of both the macroscopic (cluster transfer) 

and the microscopic approaches in the form factor calrulations. The important feature of 

the (a., d) reactions lies in populating states with T=O transfer. Moreover, since the spin 

transfer S=l is unique, the 1-transfer L=J is only allowed for the natural parity states 

(assuming the angular momentum in deuteron as 1=0), two L-transfers L = J ± 1 are 

permitted for exciting the unnatural parity states. 

The three--nucleon transfer e .g, (a.,p) reaction involves a complex process. In 

addition to contribution from compound nucleus and pre-compound processes, the direct 
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part of the reactioo may compnse of tritoo stripping, knock-on and heavy particle 

stripping. Triton stripping has been found to be the dominant ooe [42]. Although the 

oscillations in the angular distributioo can be reproduced reasonably by the DWBA 

calculation on the basis of triton-stripping. the absolute magnitude of craJS-section are 

wtderestimated by two to three orders in such predictions [43]. However, the (a,p) 

reaction has shown to be a valuable spectroscopic tool for locating hiW1-spin states at 

higher excitation of the fmal nucleus because of the 'high-spin selectivity' arising from a 

strong angular momentum mismatch between entrance and outgoing channels [ 150] 

The experimental data for elastic and reaction processes has been cltooen keeping 

conformity with the object of the present study. The 27 AI (a,ai7 AI and 11Si(a,af'Si data 

are taken from the references Yasue et aL [44] and Jarczyk et aL [9] respectively. The 

source of19.30Si(a,af9.30si data is the reference [45]. 

Foc single nucleon-transfer reaction, the present study includes the experimental 

data of Yacrue et al (44] for the 27Al(a,ti8Si reaction at Ea.= 64.5 MeV leading to 56 

transitions with an energy resolutioo of about 35 ke V. The DWBA analyses of the work 

of Yasue et aL [44] use only the nocmal optical potential. But they did not use the 

appropriate focm factor as well as full finite-range calculations for the transitioos to the 

states in the tm.bowtd region. In the present study, the scheme is to investigate the effect 

of FFR for particle transfer to bound as well as to unbound states using nocmal optical, 

Michel and molecular potentials within the focmalism of resonance form factoc 

focmulated by Vincent and Fortune (46,47]. One point of discrepancy in relation to this 

experimental data is to be noted here that there are no croos-section data either of elastic 

or of reaction beyond the scattering angle greater than 6d' (CM). Hence, lack of the data 
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at the large scattering angle may cause some limitation in shedding deeper insight in 

detennining the details of the potentials. 

For the two-nucleon transfer reaction, the present study is undertaken to examine 

the nonnal optical, molecular and Michel potentials in analyzing the twc:rnucleon transfer 

reactions 28Si(a,d)30p from Jankowski et aL [18] at 26 MeV incident energy and 

29,.30Si(a,d)31
..1

2P [48) reactions at 25 MeV probe energy. In the first case, the target is an 

a-cluster nucleus and there is a substantial ALAS effect in the ~lar distributicm. For 

the latter two non-alpha cluster nuclei, Davis and Nelson [48] could fcxge reasonable fits 

to the reaction oota by adjusting the parameters of the normal optical potential obtained 

from the elastic fit. So, in the present study, in this case, the a-nucleus potential 

parameters for all form factors (normal optica~ Michel and molerular) generated by 

fitting the elastic data have been used without any modification to analyze the reaction 

data both in macroscopic and microscopic calculations. 

For three nucleon transfer reaction, the experimental data of 21Si(a,p)31P from 

Jankowski et aL [18) has been chosen with the obvious purpose to examine to what 

extent, the molecular and Michel potential can account for the ALAS effect observed in 

this three nucleon transfer reaction on the nucleus 18S~ which is well known for 

producing AlAS effect. The experimental data of the 18
Si( a,p l 1P reaction from 

Janskowski et al. [18], provides the angular distribution at large scattering qles 

(9c:n1' 170°), where the data is expected to be sensitive to the nature of a-nucleus potential. 

The present study involves the methodology of Distorted Wave Bern 

Approximation (DWBA) for all the cases of one, two artd three-nucleon transfer 

reactions. In the three reactions resulting angular momentum mismatch due to large 
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magnitude of the reaction Q-value leads to the dominant contribution from the nuclear 

interior and hence to show the sensitivity of the a-p<tential. For anal~ tw<rnucleon 

transfer rear.tion data. both the macroscopic (cluster transfer) and microscopic form 

factors have been used The three-nucleon transfer (a.,p) reaction is treated with both the 

macroscopic DWBA method and CCBA formalism for analyses. 

Consequently, the first few chapters present the theoretical formalism, in context 

to the present study. Chapter-two contains the theoretical background of the general 

formalism of the optical potential giving special attention to present different forms of 

alpha-nucleus potentials. Chapter-three is devoted to i1lustrate the theory of direct 

reaction process involving one, two, and three-nucleon transfer. The formalism of 

coupled-channels Born Approximation (CCBA) has been developed in chapter-four. 

Chapter-five is engaged in presenting the DWBA analyses of one, two, and three-nucleon 

transfer reactions. Chapter-six deals with results and discussion of the study and chapter­

seven summarizes the conclusion 

Appendix presents the articles based on the present study, those are published in 

the Journal. 



CHAPTER2 

OPTICAL MODEL 

2.1. Prologue to optical model analysis of elastic scattering 

In the theory of DWBA, one of the ingredients of the transition amplitude is the 

'distorted waves' in the entrance and exit marmels. Those are nothing but the elastic 

scattering wave fi.mctions of the mentioned channels, associated with the relative motiom 

of the colliding pairs before and after the collision 

These distorted waves are generated from the Schrodinger equation in the optical 

model approximation 

{v'+k' -(~) [u(r)+U<(r) ]}x=O (2.1) 

To solve the Schrodinger equation, it is necessmy to have a complete knowl~e 

of the forms of optical potential [ U(r) + U c (r )] which includes the Coulomb potential in 

addition to nuclear one. The present study involves the a.-nucleus potential in the 

entrance charmel and triton, deuteron and proton-nucleus potential in the exit channels. 

So, this section will be devoted to underline the general formalism of the optical model 

potential as well as its different concrete forms for a.-nucleus system. 

The general formalism of optical model has been ~tensively dealt with for 

decades since from its ftrst introduction and truly speaking it is now basically and mostly 

the subject matter of text-books. A brief and relevant theoretical aspect of the optical 

model has been presented here and the details follows from the references [49-53] 
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2.2. Generalfonnalism of the optical potential 

An optical model is a model of the effective interaction It attempts to replace the 

complicated many-body problem posed by the interaction of two nuclei by the much 

simpler problem of two particles interacting through a potential. Such a replacement is 

only feasible within a model space containing just one or a few channels. With a one­

channel model, the most common case, only the elastic scattering can be described. 

Sometimes, a few particular inelastic channels are also included. This is often referred to 

as a 'generalized' optical model and leads to coupled-channels problems. 

So, the optical model lies on the basis of the assumption that the scattering is 

determined by the bulk features of the nuclei and is insensitive to the details of nuclear 

structure, and hence it might be possible to describe it by a simple model of the effective 

interaction. 

To do this , a simplifying assum}Xion is made that all individual nucleon-nucleon 

interactions between the projectile and the target nucleus can be replaced by one 

effective interaction. The interaction can be replaced by a potential V(r). where r is the 

separation of the projectile and the nucleus. This is the same as the assum]Xion 

underlying the shell-model. 

Now, the question ariSes, what would be the overall feature and form of this 

potential. A general argument is usually accepted in this formalism that, inside the 

nucleus, the projectile is aware only of its nearest neighbors because of the short-range 

character of the nucleon-nucleon interaction. Since it is surrounded by nucleons, there is 

no net force and the potential V(r) is expected to be uniform inside the nucleus. As the 
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nucleon-nucleon force is of short range, it is also expected that the potential will follow 

the rruclear matter distribution Hence the potential begins to fall from its interioc value in 

the regioo of rruclear surface. 

The potentiaL thus apprehended by itself will not suffice to account foc the 

experimental data , because, it is only able to scatter the incident particles; in reality, they 

may also be absocbed by the cocnpound nucleus and/or by the other noo-elastic }X"ocesses. 

So, the removal of these particle fluxes have a profound effect on the scattering process. 

At this point, the optical model makes the use of an analogy between the 

scattering and absorption of particles by a nucleus and those of light by a cloudy-crystal 

ball. So, analogous to complex refractive index in the optical phenomena, the idea of 

complex potential has been introduced to explore the scattering fKOblem in the nuclear 

case. 

To show that the basic idea of a complex potential, namely , that its imaginmy 

part has the effect of removing particle flux from elastic channel, we take the 

SchrOdinger equation for scatterir@ by a complex potential [53] 

(2.2) 

Multiplying by \V • , and subtracting the complex conjugate of this equation 

multiplied by \V, we get, 

·vz ,;vz • 4i,uW • 
'If 'If - ., y 'If = -~ 'lf'lf (2.3) 

Now the quantum mechanical expression for the density of current is 

~ ill ( • a'~' a'~'·) J = - 'If - - 'l'-
2,u ar ar 

(2.4) 
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(2.5) 

and 'I"• 'I" is the probability density, so this equation 1s equivalent to the classical 

continuity equation, 

op d. ~ 1cv - + IVJ = - 'P at (2.6) 

where v is the velocity of the particle inside the nucleus, a steady state has been attained 

so that the term op in the above equation vanishes. This shows that providing W>O, the 
Ot 

imaginary part of the complex potential has the effect of absorbing flux from the incident 

beam. 

The total absorption cross-section from the total measured flux can be calculated, 

so that, [ 53 ] 

Now, the wave fimction, 

where S, = e2161 is the partial scatt~ amplitude, bL being the phase shift. 

Hence, 

(2.9) 
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and the total cross-section is given by, 

(2.10) 

The differential cross-section for the elastic scattering of the nucleon or group of 

mxleons by truclei can also be des<ribed by the optical model potential making use of the 

quantum mechanical scattering formalism. 

Thus, the optical potential is the extension of the shell-model potential for bound 

nucleons to positive energies. It is essentially the same potential, representing the nuclear 

mean field, that acts on both bound and scattered particles, and it thus unifies the 

understanding of truclear structure and nuclear reactions. 

2.3. The stnndardfo17ttS of different part of the optical potential 

2.3.1. Realpartofthepotential 

The real part of the potential is due to the action of all the nucleons in the nucleus 

on the incident particle and it is usual to assume, at least for light ions that the interior of 

the real potential is flat and attractive (negative) and, because of short range of truclear 

force, rises quickly and monotonically to zero in the surface region 

Many analytic forms have been used for real part of potential that embody the 

above assumption [49,50), but the most popular one has been the Woods-Saxon [541 a 

partirular case of an Eckart [55) potential : 

u(r)= -J:J"(.x;,} (2.11 )' 

where V, ~ and ao are known as the well-depth, radius and diffuseness. 

respectively. 
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2.3.2. Imaginary part of the potential 

The imaginary or absorptive potential is asswned to have a 'volwne' or 'surface' 

form or sometimes a swn of both types. The volume form is usually defined as, [52] 

W(r) = Wvf(.x;,.} (2.12) 

where the radius Rw and diffuseness aw need not have the same values as in the real 

potential. 

The surface absorption is most often taken to be proportional to the derivative of 

f(x) [521 

(2.13) 

This h~ a peak value of - W v at r = R0 (hence the factor of 4 in the definition) and a 

FWHM of illc.0 = 3.525 . If both sUiface and volwne tenns are used, one frequently 

asswnes R D = R,. and aD = a,. . 

2.3.3. 11re spin-orbit coupling 

The simplest vector spin-orbit coupling has the fonn similar to tyeck>minantly a 

surface type of coupling; the phenomenological form that is commonly used [52] is, 

U ( ) - V. (~)
2

1 df(xso)L- 1- _ (r-Rso~ so r - &o · , Xso -
~c r b ~o 

(2.14) 
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where the Woods-Saxon fimctioo f(x) ts defmed a'; usual . The factor (~ J
2

, the 
mwc 

square of the pion Compton wavelength is a relic of the derivation of this term from the 

meson theory of nuclear forces; its mnnerical value is close to 2 fin1
. It is also to be noted 

that when I = t, U so is frequently defined with I replaced by the Pauli vectoc u = 2/; 

the corresponding coefficient Vso is then often only half as large. Sometimes it is usual to 

2.3.4. Coulomb potential 

Coulomb potential Vc(r) is that of charged particle in the electrostatic field of the 

nucleus. This is calculable from the nuclear charge distribution but in practice, it is 

sufficiently accurate to use the potential due to a sphere of radius Rc with its charge 

tmiformly spread throughout its volume, 

Z 1Zre
2 

( 3 _ __c_) 
2~ R c2 

ZrZrez 
(2.15) 

r 

where Z 1 and Zr are the charges of the incident particle and target nucleus. R c IS 

2.4. Alpha-nucleus potential 

The present work investigates the effects of different forms of a.-nucleus potential 

on transfer reactions. It has been already mentioned in the introduction that the 
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conventional fonn of optical potential for a.-particle is inadequate in accounting foc the 

ALAS effect So, theoretical fonnulation for alternative prqx>sals foc a.-nucleus 

potentials demanding the adequacy in accounting for ALAS is relevant. This section 

will be devoted for extract~ the necessary aspects of the following fonns of a-nucleus 

potentials: 

1. Usual form of optical potential henceforth called 'Normal optical potential'. 

2. Squared Woods-Saxoo potential henceforth called 'Michel potential'. 

3. Molecular type of potential henceforth called 'Molecular potential'. 

2.4.1. Normal optical potential for a-nucleus sy&tem 

The nonnal optical potential for the a.-nucleus system incl~ Coulomb tenn ts 

given by, 

(2.16) 

where f(x , )= (1 + e~' t' with x1 =~-'iA~}/ andthesubscript i=O,WandD . /at 

The Coulomb radius is given by Rc = ~A~, A is tatget mass. 

2.4.2. The Woods -Saxon Squared Potential (Michel Potential) 

The squared Woods - Saxon potential (Michel potential ) was frrst used for a 

successful descriptioo of the a.-40Ca scattering from 20 to 170 MeV [56]. With the 

introduction of an energy dependent Gaussian factor to the real part, it has since been 

applied to the a.-
16

0 scattering between 20 and 150 MeV [57] and produced excellent fits 

with the experimental data. Using this potential, some works have been dooe in 
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describ~ successfully the alpha cluster structure in 44Ti [58,59] and oscillations in the 

fusioo excitation fimction [60]. Adding a slight angular momentum dependence and an 

increase in barrier height, it has also been possible to explain low energy data down to 3.5 

MeV [ 61]. This phenomenological form of potential ha-; been found to be very similar to 

the equivalent local potential o~ined in microscopic analysis using the resonating gro~ 

(RGM) [62,63]. 

The Michel potential form including Coulomb term V c(r) compnses of the 

following [57] real V~r) and WM(r) parts: 

VM(r) = V,{l +aex{-(: )']}{~+ex{ r;Q:R) r + VC(r) 

WM(r) = -W,[l + ex{';a~' )J' 

(2.17) 

(2.18) 

with Vc(r) and R c being the same as standard optical potential. a. and p are two 

parameters introduced to take care of the energy dependence of the real part. 



2.4.3. The molecular potential 

2.4.3.1. How it has been introduced 
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The basic theoretical foundation of the molecular potential is embedded in the early 

works of Block and Malik [25]. In this paper they proposed it' in an one-dimensional ftts. 

Subsequently, L. Rickertsen et aL[64] fitted 160-160 data nicely with the proposed nuclear 

molecular potential. The parameters of this potential were estimated from the two-nucleon 

potential in a model of the transient nuclear matter. 

On the other hand, K.A. Brueckner et al [65] derived thi<J more accurately from 

two-nucleon interaction using Energy Density Functional (EDF) formalism using sudden 

approximation. But, it had a numerical error. Reichstein and Malik [28] showed that both 

in sudden and in adiabatic approximation, non-monotonic potential is expected. The 

sudden approximation was close to the one used by Rickertsen et al [64] to fit 160}60 

data. The fit was extended to higher energies [ 66]. That the potential should he really non­

local is discussed in Workshop on High Resolution, Heavy-Ion physics [67]. Subsequently 

the 12C-12C elastic data were fitted with molecuJar potential [68]. That the 12c-11C potential 

is molecular is confirmed by N . Ohtsuka et aL [69], M.A. Hooshyar, B . Compani-Tabrizi 

and F.B. Malik [70] and Mang!rd et al [29]. Tariq et aL [19] could frt a+28Si elastic 

scattering data by a molecular potential which was close to the derived potential from the 

EDF approach and also the derived scaled potential from the EDF can eKplain a+ 30
•
31S 

eJastic data as discussed in the present work. 

W .Scheid, R. Lingensa and W. Greiner [71] showed that the calculation using two­

centered shell model also yields a molecular potential. Determination of the ~2C}2C 

potential from an inverse scattering theory also revea1s it to be molecular [72]. 
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Calculation of the imaginary part of molecular potential from two-nucleon phase­

shifts [73] led it to be volume like and energy dependent, as is used in the present work. 

With an object, to follow and illustrate the methods of parametrization of the 

molecular potentiaL the relevant aspects of EDF is being furnished here in the following 

section. 

2.4.3.2. Energy density functional (EDF) formalism 

The EDF formalism has its root in the statistical theory of nuclear total energy, fJrSt 

proposed by P. Gombas [74], R.A. Berg and L. Wilets [75), and L.Wilets [76),. They used 

simple two-nucleon interaction. Brueckner and his collaborators [77-80) and Bethe [81), 

refmed this to include realistic two-nucleon interaction having hard-core at short distance. 

However, they failed to obtain proper binding energy with the observed density 

distribution. 

Following the paper of Hohenberg and Kohn [82] which shows that the energy of 

any fmite system could be written as a functional of energy density, J. Lombard [83] could 

reproduce nuclear masses using a density distribution derived in the Hartree-Fock 

calculations. However, Malik and Reichstein [84] clearly showed that nuclear masses can 

be reproduced using observed density distribution and energy density functional derived 

from the realistic Gammel-Thaler two-nucleon potential (80,85] 

In this formalism, the total energy of the system is described as a functional of the 

local density which comprises of a nuclear matter part along with Coulomb correction as 

well as corrections due to non-homogeneity of nuclear density in the form of a term 

involving the gradient of the density. 

The starting point of this formalism is the energy-density functional 
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(2.19) 

where p is the density which is the function of the relative distance between two colliding 

nuclei. So, to calculate the total energy of the system, a consistent and tractable form of 

&(p) has to be known. In the works of Brueckner and his collaborators [77-80], &(p) has 

been reported in the form, 

(2.20) 

The frrst term (K.E)TF is the kinetic energy of the particles in the Thomas- Fermi 

approximation, having the following form, 

(2.21) 

where M is the nucleon mass and a. = N- z is the neutron excess. 
A 

The second term V(p,a.) in Eq.(2.20) is the non-Coulomb and nuclear matter 

contribution to the functional h has been calculated within the framework of Brueckner-

Hartree-Fock theory using the Brueckner, Gammel and Thaler [80,85] two nucleon 

interaction, and is given by , 

(2.22) 

The parameters a and b are obtained by nuclear matter calculations with variable 

neutron excess [80]. 

The third term in Eq.(2.20) i<; the Coulomb interaction among protons and <I>. can 

be expressed in relation to proton charge distribution PP as 
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,., = J Pp(r) dJ ... , 
<v, e I .... I r r-r (2.23) 

The fourth term in Eq. (2. 20) is the Pauli correction to the third term in the local 

density approximation (87] . 

The last term is the non-homogeneity correction. The coefficient 71 in the density 

gradient term incorporates both (a) the WeizsAcker non-homogeneity correction to the 

kinetic energy due to variable density distribution, and (b) additional corrections originating 

from those correlation between nucleons which are not included in V(p,a.). 

Using observed density distribution, one can get observed nuclear masses with ,=8. 

For example, the calculated binding energies and masses calculated for different nuclei by 

Malik et aL[27,88] are exhibited in Tables (2.1- 2.3). Now the method can be extended to 

calculate the potential V(r) between two nuclei within the framework of the energy density 

formalism following the London-Heitler type of approximation as, 

(2.24) 

E(Pt.Pl) is the mean energy of the compound system computed using Eq. (2.19), 

where density of the system is composed of an overlap of two density distribution Pt(r), 

and rz(r) each of which varies continuously as a fi.Ulction of the separation distance r. The 

quantities E( P1 at r = oo) and E( P2 at r = oo) are the energies of the colliding nuclei when 

they are far apart 

It is evident from Eq.(2.24) that the parametrization of the interaction potential 

depends on the consideration of how the energy density E(p1,pJ) is superimposed. when 

energy densities p1(r) and P2(r) are known. 
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Table-2.l. Calculated totsl bindins energiee ( coJs. 4 and 5 ) lUing EDF fory = 8 and 9. Experimental 
values given in col. 3 are from [90). 2pf and 3pf in col. 2 are two and three point Fenni distribution 
fimctiorul from [89). The last colmnn gi.vet resultll of liquid drop [91). 

DENSITY B.E. (MeV) B.E. (MeV) B . E . (MeV) B. E . (MeV) 
ELEMENT FUNCTION EXPT. r= s y=9 M+S 

'"'C 2pf 92.2 92.5 88.0 
'"N 3pf 104.7 111.0 106.9 
J.Oo 3pf 127.6 125.2 121.3 123.0 
~g 2pf 198.3 194.1 189.3 

3pf 194.5 189.9 
.:"Si 2pf 236.5 234.3 228.5 

3pf 239.1 233.3 
""Ca 3pf 342.1 340.6 333.8 340.0 
;)'v 2pf 445.8 461.5 451.5 
;)"Ni 3pf 506.5 516.5 506.7 
fUGe 2pf 610.5 609.1 599.1 
aasr 2pf 768.4 793.5 778.7 

11"Cd 2pf 972.6 984.1 969.3 
'""La 2pf 1164.8 1184.1 1166.1 

1
"

11
Sm 2pf 1225.4 1229.6 1212.6 

•olio 2pf 1344.2 1339.4 1321.9 
JY'Au 2pf 1559.4 1592.8 1568.9 
A!Opb 2pf 1622.3 1630.1 1fiJ7. 7 
lU"Pb 2pf 1636.4 1667.8 1642.3 1627.0 
""'"U 2pf 1801.7 1808.6 1785.1 1805.0 
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Table-2.2. Parametenr used by vario118 ~in evalua~ rmclear muse. and binding energy pet nucleon 
E/A, in MeV, Fenni wave length, KF in rm- and compressibility IC, BOT, MR, BBCL, Land NN refer, 
respectively, to refs. a). b). e). 4). e) (80, 88, 79, 83, 92). 

Pararneten Baf"> MRb> BBCL•> Ld) NN") 

1b 8.0 10.3 11.955 15.2 7.23 

ht -717.6 -741.28 -741.28 -818.25 -588.75 
b 1142.2 1179.89 1179.89 1371.06 563.56 

b;, -452.6 -467.54 -467.54 -556.55 160.92 
8t -0.146 -0.1933 0.2 -0.316 -0.424 
az 0.23 0.3128 0.316 0.2 -0.0973 
83 1.2 1.725 1.646 -1.646 -2.25 

E/A -15.23 -16.59 -16.59 -16.0 -15.6 
kp 1.433 1.447 1.447 1.36 1.36 
k 172.6 184.7 184.7 180.00 250.0 

a) K. A Brueckner, S. Coon, and J. DBbroW111ki, Phyw. Rev. 168, 1184 (1968) [fl>). 
b) I. Reichstein and F. B. Malik, Condensed Matter Theory, I, 291 ( 1985) [88). 
•> K. A Brueckner, J. R. Buchler, R C. Oerk and R. J. Lombard, Phyl. Rev. 181, 1543 (1969) (79). 
4J R J. Lombard, Ann. Phyw. (N. Y. ) 77,380 (1973) [83). 
•> H. Ng6 and Ch. Ng6, Nucl. Phyl. A348, 140 (19fl>) [92). 
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Table-2.3. Calculated mM11e11 by various groups in the energy density approximation are compared with the 
experimental ones, marked EXPT. smd with those obtained from the mmdBrd mass formula ofMyen and 
Swiatecki ( MS) •>., MR •>, L bl, BBCL •>, and NN d) refer, ret~pCCtively, to the calculatio111 in Reti. 

NUCLEI EXPT MR•l Lbl BBCL•> N1(9 
160 127.6 123.3 128.8 127.6 121.2 
'<s 271.8 270.1 

"vCa 342.1 342.0 342 340 342.1 
""Ca 416.0 416.2 422 422 348.9 
""Fe 492.3 496.7 
""Ni .526.9 .532.1 .524 .524 .530.8 
90z.r 783 .9 793.4 780 780 792.3 
••opd 998.4 
'" Cd 1033.3 
••vee 1172.7 1181.8 1169 1173 118.5 .1 
'"'Ba 1180.3 118.5.7 
,o,Ho 1344.8 13S6. l 
208pb 1636 . .5 1628.8 1627 1630 1639 
' "'U 1776.0 1778.0 
''"U 1801.7 1798 . .5 1797 1812 1814 
••vPo 1813.4 1811.0 
•· Cf 1804.8 

•> I. Reichtrtein and F. B. Malik, Condensed Matter Theory, 1, 291 ( 1985) (88). 
b) R. J. Lombard, Ann. Phyw. ( N. Y. ) 77,380 (1 973) [83]. 
•> K. A. Brueckner, J. R Buchler, R. C. Clerk and R J. Lombard, Phy1. Rev. 181, 1543 (1969)(77] . 
dl H. Ngll and Ch. Ng6, Nucl. Phys. A348, 140 (1980) [92). 
•> W. D. Mye111 and W. J. Swiatecki, Nucl. Phys. 81. l (1966) [91). 

Ms•> 
123 

340 
41.5 

.524 
782 

1171 

1627 

180.5 
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There may be two considerations at this point [29], 

(i) adiabatic approximation, 

(ii) sudden approximation. 

The adiabatic approximation incorporates the idea that the density function p of 

the compound system is generated in such a way that at no point of the compound system 

does the density exceed that of the central density of any of the colliding nuclei. That 

means , in this case, the densities as they interpenetrate, have enough time to reorient and 

readjust and hence the parameters of the density distribution can be obtained by 

minimizing the energy with respect to them at every point of separation [28,67,84,93]. 

In the case of the sudden approximation [78], it is considered that the collision time 

of the two nuclei is shorter than the characteristic time of the internal motion of a nucleon 

so that the nuclei remain as if, frozen during the collision. And hence one can generate 

density p of the composite system by simply adding the densities of the two colliding nuclei 

as, 

(2.25) 

Thus, once Pt(r) and J)l(r) are specified, E(Pt.PJ at a separation distance r can be 

obtained from Eq.(2.25). 

2.4.3.3. Parametrization of the Molecular Potential 

The basic idea of the sudden approximation has been applied to parametrize the 

interaction potential in the scattering of two heavy ions [64,69]. The method has been 

extended to a.-28Si nucleus elastic scattering in the ALAS region [29]. In the early paper 
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[84) to make the calculation more tractable, instead of using usual Fermi d~tribution for 

nuclear density, a trapemidal form of distribution has been approximated. The result 

obtained using Fermi-distribution and trapewidal approximation are shown to be 

satisfactorily close [29], hut trapewidal approximation gives the favourable situation for 

calculation avoiding the complexity. 

The trnpezoidal denPity distribution can be descnbed as, [84], 

Po 0 ::;; r::;; r0 

p( r) = p{: ~;, ) r0 ,; r ,; b (2.26) 

0 b::;;r$oo 

The parameter b determines the surface thickness and r0 the range of the constant 

density zone. These two parameters are related to the half-density radius C and the l 0%-

90% surface thickness parameter t by the relation, 

(2.27) 

For generating the alpha-28Si potential a density distribution of a and 28Si has been 

considered in a consistent way, using actual observed density distribution and the potential 

is found to be similar to that of trapezoidal approximation [29]. Based on the total 

consideration, the real part of the molecular potential is parametrized as, 

V(R) = -V,[l +exp(R - R,)j' + V.., -( ~)}v. (2.28) 
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with 

( z,z2• } _ R:) R ~ Rc 

~ (R)= 2Rc Rc 
2 z1z2e 

R 2 Rc 
R (2.29) 

The Coulomb radius (R,) of the composite system can be written as the sum of the 

Coulomb radii of the two nuclei separately (69], i.e., 

(2.30) 

where A1 and A2 are the atomic masses of the two nuclei and r c is the proportionality 

constant. 

The imaginary part of the potential, W(R), is of Gaussian type, 

W(R)= -W,(E)ex{ - ( ~)'] (2.31) 

A microscopic calculation of the imaginary part (73] indicates this to be of the 

volume type and energy dependent. 

Such a potential has been successfully used in the description of the a.-28Si elastic 

scattering in the ALAS region of 21 to 2R MeV with an energy independent real potential 

[19,29]. 

2.4.3.4. Scaling of the Parameters 

Many of the parameters are expected to scale smoothly with mass numbers. 

Using the simple scaling procedure, 

R . = R .+ r A ).{ 
I Ill I = 0, 1, Wand C (2.32) 
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and 

i = 0 and 1 (2.33) 

it could also describe reasonably the elastic scattering of alpha particles from 32Si and 14S 

isotopes [19,94]. Actually scaling is likely to work among adjacent nuclei only and where 

the sudden approximation holds. 

2.5. Comparative presentation of real parls of different forms of alpha-

nucleus poterrtial 

The real part of different forms of a-nucleus potentials excluding the Coulomb part are, 

1) Normal optical potential (WS) 

lhe real part of normal optical potential (WS) is given as, 

where V, ~and ao are known as the well-depth, radius and diffuseness respectively. 

2) Squared-Woods-Saxon (Michel) potential 

The real part of Michel one is, 

a and p are two parameters introduced to take care of the energy dependence of the real 

part. 
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3) M okcultu potential 

The real part of molecular potential is, 

The schematic representation of the real parts of different forms of alpha-28Si has been 

d~played in the Fig. 2.1. 
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CHAPTER3 

THEORY OF DIRECT NUCLEAR REACTION 

3.1. A prehule to direct reaction 

The goal of achieving an exact theory of nuclear reactions which would involve 

the solution of the nuclear many-body problem is yet to be reached. Immense efforts 

have been employed to analyze huge accumulation of experimental data related to 

nuclear reactions throughout the past decades and the process is on going. Amongst 

multifarious models to confront different phenomena, two models of the nuclear reactions 

have enJoyed particular success. Those are compotmd nucleus (CN) model and direct 

reactions (DR) models. 

The study of direct nuclear reactions originated from the observation of some 

reactions characterized by the forward peaked angular distribution (95] and theories put 

forward to explain those observations (97,98]. The question of defining 'direct' reactions 

is one to which no all- embracing answer can be given However, extensive review works 

have been done on it and it is usual to attribute the follow~ characteristics to direction 

reactions: 

(a) In direct reaction the transition from the incident channel to the reaction channel takes 

place in one step without the formation of an intenned.iate state. 

(b) The interaction time for occurring direct-reaction is very short ( -1 o·12 sec). 

(c) The direct reaction is a surface process [I 01, I 02]. 

Qualitatively, it is assumed that in direct nuclear reaction, there is a good overlap 

between the wave function of the entrance and exit channels where the collision may 

occur with a minimum rearrangement of the constituent nucleons. As DR involves a 
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single step and only a few degrees of freedom, the reaction amplitudes depend on the 

overlap of the initial and final states; consequently direct reaction cross-sections 

represents the relations between two nuclear states. In addition, direct reactions are much 

more selective in the final states that they populate. 

The direct reaction can be usually be classified into: 

(i) The inelastic scattering where either one of the nucleons in the target makes a 

transition to a state or many nucleons coherently excited result in oscillation or 

rotations of the whole nucleus. 

(ii) The transfer reactions comprising a transfer of a few nucleons either from the 

projectile to the target ( stripping reactions) or from the target to the ejectile( pick­

up reaction) 

(iii) The knock-on reaction, where a nucleon or a light composite particle is ejected 

from the target by the projectile which itself oontinues to be the part of the residual fmal 

state. These reactions are also known as quasi-free scattering since here the collision 

takes place between the projectile and the ejectile, the rest portion of the target remaining 

as spectator. 



32 

3.2. Basic principle of the theory of direct nile/ear reaction 

The direct reaction theory of nuclear reactions can be regarded as an extension of 

the optical model [ 1 03 J. According to the optical model, the elastic interaction between 

two nuclei can be described by a complex potential well. The direct reaction theory 

accepts the optical potentials as a first approximation, but introduces, as a perturbation an 

additional interaction which gives rise to non-elastic processes. This additional 

interaction affects some simple internal degree of freedcm of one of the two nuclei 

involved in the collision. On the basis of this basic principle of pertuibation different 

physical phenomena of direct nuclear interaction which includes inelastic, nuclear 

transfer (one or more) and the other rearrangement processes can be taken into account. 

Through the decades, starting from the models describing the simplest idea of one­

nucleon transfer to more complicated processes of direct nuclear reactions have been 

successfully developed (52, 1 03- l 07). 

The theory of direct nuclear reactions is concerned with calculating the transition 

amplitudes for various types of nuclear reactions on the basis of the models describing 

the physical situations. Since the direct interaction can be treated as a perturbation, the 

transition amplitude is given simply by the matrix element of the direct interaction with 

respect to the initial and fmal states of the wave functions . The physical content is 

essentiaUy the extension of that carried by the formalism of Born approximation. Here, a 

few subsequent sections will be employed to develop this formalism step by step to 

tractable form to elucidate the realistic form of the nucleon transfer reactions. 
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3.3. The tlteory of tftstorled wave Bom approximation (DWBA) for one­

nllcleon tJ·mr.~fer 

3.3.1. Transition amplitude 

The DWBA theory of the reaction A(a. b)B is based upon a transition amplitude 

of the form [38, 1061 

(3.1) 

where, <t> 
8 

and <t> A denote respectively, the intrinsic states of the two nuclei in th.e initial 

and fmal charmels. The fimctions zaand Xt> are the 'distorted waves'. They are elastic 

scattering wave functions which describe the relative motion of the pair a, A before 

collision and b, B after the collision respectively. In the optical model approximation the 

distorted waves are generated from a Schrodinger equation as mentioned in the previous 

chapter, 

{v'+ k' -(~) [u(r) +UJrJ] }x=O (3.2) 

where, U(r) is the optical model potential, Uc(r) the Coulomb potential and p is the 

reduced mass of the pair. When the particle a and b have spin, and a spin-orbit coupling 

potential is included in the U(r) in the Eq.(3.2), the functions X become matrices in spin-

space Xm•m, when m is the z-cornponent of spin. Terms with m' = m allow the possibility 

of spin-flip during the elastic scattering 

In application of the distorted-wave Born approximation to the transition 

amplitude E q. (3.1 ), a certain pattern having to do with the angular momentum coupling.c; 

will emerge each time. The particular factors that go into this, of cotn"Se, depend on the 
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type of reaction tmder consideration At this point, the general form h~ been anticipated 

and elucidated in the respective concrete c~es subsequently. The brackets in Eq.(3. 1) 

denotes an integration aver the position coordinates of all nucleons and a sum over spin 

(and iso..spin if used) coordinates. There are (A+a) nucleoos, so there are 3(A+a) spatial 

coordinates. Three of them wilt be chosen as c.m. coordinates in this system. The 

remainder are relative coordinates. For a rearrangement collision (a+A) --. (a-x) + 

(A+x) = b+B, a convenient set of such relative coordinates consists of the 3(A-l), 3(x-l), 

and 3(b-l ) intrinsic coordinates of A, x, and b together with R and p, as shown in 

Fig.3. 1 

Fig.3.1. Schematic repre!lentation of the vector coordinates of the Bingle-nucleon stripping reaction 

A(a,b)B, where ( B = A+x) and (a = b+x; x=l ) 

which comprise of the correct number 3(A+a) - 3 of relative coordinates. A zero-range 

approximation is sometimes employed in nucleon-transfer reactioos especially when a is 

a light nucleus like a deuteron, triton, or alpha etc. The interaction in this case is taken as 

a delta function on the coordinate p. This is convenient because it reduces the number of 
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integration variables. Moreover, the distorted waves depend on the channel coocdinates 

riJ and r,, which in tenns of R and p are given by, 

... - (AI \ri ... rb - / Br - p (3.3) 

In the zero-range approximation, 

(3.4) 

so that, the channel coordinates are conveniently proportional. 

If the zero-range approximation is not made, then it ts most convenient to 

... 
transform R and p to riJ and ~, because the distorted waves are only known 

numerically as the solutions to the optical potential Schrodinger equation as shown in 

Eq.(3.2). 

The transformation involves a non-unit Jacobian 

Where, J is a matrix, indicated symbolically by, 

(3.5) 

which relates the volume elements in the two coordinate systems. 

After integrating over the intrinsic coordinates [ 104 ], the Eq. (3.1) can be written 

as 

kiJ and kb are the relative momenta before and after the collision respectively. 
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3.3.2. Multipole expansion of the interaction matrix 

The matrix element of the interaction in Eq. (3.6) causing the non-elastic event, 

taken between the internal states of the colliding pairs is given by, 

(3.7) 

where,~ represents all the coordinates independent of ra and rb . This factor is fimction of 

ra and rb and plays the role of a effective interaction for the transition between the elastic 

scattering states X a and zb . lt contains all the infonnation on nuclear structure, angular 

momentum selection rules and even the type of reaction (whether stripping, knock-on 

etc.) being considered 

The matrix element Eq. (3.7) can be expanded into terms which ccnespood to the 

transfer to the nucleus of a defmite momentum j, which in tum is c<mprised of an orbital 

part 1 and spin parts [108J. If the particles a and b have spins sa and sb' and the target 

and residual nuclear spins are J A and J 8 , respectively, we define, 

(3.8) 

Ibe multipole series may be written with the Clebsch..QQrdon coefficients (110] 

corresponding to the vector coupling in Eq. (3. 8) as (381 

(3.9) 



37 

where m = M 8 - M .A + mb - ma, the symbols bB, aA as arguments of G denotes the 

dependence on the various nuclear quantum mnnbers ( other than z-components of spin). 

The function G may be defined by the inverted form of the expression (3.9) as 

(3.10) 

The factor l is included to ensure convenient time reversal properties [ ll 0). 

It is helpful to write G as the product of two factors 

(3.11) 

AlsJ is the spectroscopic coefficient which includes fractional parentage coefficients for 

initial and final nuclear states and interaction strength. .lisJ.m is the form factor. 

It is evident from the Eq.(3.6) that the tramition amplitude involves an integration 

over the space of both r. and n,. This six-dimensional integral is difficult in numerical 

calculation. Hence, the so called 'zero-range' approximation is often introduced , oo two 

grounds, the interaction potential V has a short range and one or more of the internal 

wave functions has a small range. This zero-range assumption has the physical meaning 

that particle b is emitted at the same point at which particle a is aooorbed, so that 

The form factor of the Eq. (3.11) can then be written as 



38 

Now, using the expressions (3.9) and (3.11), the transition amplitude (3.6) may be 

written [381 

= L(2J +l)iA,.1(JA;MA,MB -MA~sM"8 ) x ~•"'·~b,fa} (3.13) 
Is; 

where m = M 8 - M A + mb - m
0 

and the 'reduced' amplitude p,
1 
u-..... is given by, 

(2J + 1 ';51 /J'sj• 111
• ~b• ka )= L: (Ism' , m~ - mt,vm - mb + ma) 

m~m~m' 

(3.14) 

In the absence of spin-orbit coupling, the X,· becomes diagonal and spin components 

m = m' . So, 'reduced' amplitude P,1 becomes, 

where, 
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(3.16) 

This PsJ will still depend upon s and j , if the fonn factor f depends upon these quantum 

numbers. 

3.3.3 Assumptions underlying D WBAformalism 

The important assumptions underlying the formalism for making the calculations 

more tractable are: 

(a) In DWBA theory, it is assumed that the transfer takes place directly from the 

target state to the final state by the simple deposit of the transfer particle to or 

from the target. Since the interaction potential (vbx) does not depend on the A 

coordinates of the target, the reaction can take place only to the extent they 

are in the same state of the motion in the final nucleus; otherwise the matrix 

element would vanish. 

(b) Another assumption concems the distorted wave of the entrance and the exit 

channels. In practice, they are chosen to be wave functions of optical 

potentials whose pru-ameters are chosen to reproduce the elastic cross-section. 

Any wave function which has the same phase shifts at large distances yields 

the same elastic cross-section. Since there are ambiguities and uncertainties in 

the optical model parameters, there are corresponding uncertainties in the 

wave functions in the nuclear region. 
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(c) The interaction potential (Vt,J is ~sumed to be central. 

(d) The internal structure of the transferred particle is assumed to be wx:hanged 

during its transfer from target to the residual nucleus. And for single nucleon 

transfer, the parentage expansion may be described in shell-model terms. 

(e) In DWBA, the transfer reaction is considered to be so weak that it may be 

treated in flrst order. This assumption may usually be valid, but Rawitscher 

and Mukherjee [109] have pointed out that in some reactioos cross-sections 

are usually large. This implies that there may be other Jiocesses involved. 

Thus, the inelastic processes especially those involving collective states, are 

likely to be generally the more important of the higher order corrections to the 

DWBA. 

(f) Sometimes it is usually assumed that the interaction potential Vbx (x is the 

transferred cluster or particle) has a short range and one or more of the 

internal wave functions has a small range. This assumption gives rise to 'zero­

range approximation'. 

Some of these assumptions may be elucidated in more conaete fonn involved in 

the following way: 

1) It is mentioned earlier that in the reactioo A(a,b)B, the projectile is assumed 

to be made up of the emitted particle b and another particle x which is captured by the 

targert, so that a= b+x andB=A+x. 
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The interaction responsible is taken to be V bx , the potential binding b and x to 

forma. 

For the present pwpose, it is assumed that Vbx is central, that is, scalar in the 

separation distance rbx. so that b and x are in a s state of relative motion within a. 

The nuclear matrix element (3.9) is then explicitly written as [38], 

(3.17) 

Here ~A,~ x and ~ b are the internal coordinates of the corresponding particle. The 

spin transfer s is now the spin of the transferred particle x. [ Since, in general x may be a 

cluster of nucleons, s need not be unique]. 

The precise treatment of the amplitude (3.16) will depend upon the reaction 

model being considered. 

However, for convenience, the wave function for the residual nucleus ~ay be 

expanded in terms of the eigenstates of the target 

(3.18) 

Since, it is assumed that the interaction Vbx does not depend on the coordinates 

rxA.. and hence cannot disturb the internal degrees of A only one term of the stnn over 

J ~ ,M ~ in Eq.(3.18) will contribute to the matrix element (3.17), namely that 

correspooding to the state of the target nucleus, J ~ = J A and M ~ = M A . The Clebsch-

Gordon co-efficient in Eq.(3.18) takes care of ~ar momentum coupling. The 
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remaining factor n
1
P is associated with the wave fimction for the 'particle' x. The last 

factor {}}Jl may be expanded into spherical harmonics. in TxA., the coordinates of the centre 

of mass of x with respect to that of A, as, 

n;: (r xA•c;x) = 2:>1 ylm (BxA, (/JxA 'fPs~-m (r xA ,c;x) X (ism, p - mlfp) (3.19) 
Ism 

In general, the function (/J that cames angular rnornentwn s with component 

(p - m) cannot be factored into functions depending on the radial coordinates rrA and 

tlae 'internal' coordinates c;" separately. Sunple factoring is only feasible if the internal 

structure of x does not daange during its transfer from a to A and can be ignored 

Strictly, it is only true for single-nucleon transfer. 

Even if (/J is not simply factorable, the integration over the internal co-ordinates 

c;b and c;x in Eq. (3.17) may be performed, 

(3.20) 

the scalar function H is defmed by Eq. (3 .20). Using Eq.(3.18), (3.19) and (3.20) in the 

matrix element (3. I 7), and comparing with Eq. (3.9), it may be immediately written as 

(3.21) 

Here H is a scalar, the rotational property of G are clear. Further, G carries parity 

of (-j even without use of zero-range approximation This is a consequence of the 

assumption that b and x are in an s state of relative motion when they form a. 

2) For a particular case of single-nucleon transfer, the parentage expansion (3.18) 

may be described in shell-model terms [Ill, 112]. Hence, the function n can be 



43 

identified as the wave ftmction fJf for the nucleon orbital (Z, j ), times a spectroscopic 

amplitude 

(3.22). 

The usual spectroscopic factor [112) is then just slj = n(alj)2
( n is the number 

nucleons in the orbit ). The sum over I and s in Eq.(3 . l9) is now supedluous as s = f 

only and I = j ± t according to parity change, and the fimction (/J is factorable. 

(3.23) 

where, U lJ is the radial fimction for the shell-model orbit and 'Fu, is the nucleoo spin 

fimction Consequently, H uJ in Eq. (3.20) is also factorable, 

(3.24) 

where, 

(sbsnvrlsama)D(rbx ) 

= Jf'Fs•m• *(4b)'F&u *(4r Ybx (rbx, 4b4x ~.m. (rbx,4b4Jd4b4x (3.25) 

If the wave function for a is also factorable that is, if 

~.m. (rbx, ~b~J = tPa (rbx~.m. (~b~x) 

then D in Eq. (3 .25) becomes just 

D(rbx ) = v;:· >(rbx JPa (rbx ) 

where v<s.) is the value of v in the spin-state sa . 

(3.26) 

(3.27) 

The zero-range awroximation is usually obtained by assuming that the fWlCtion 

D(rbx) is of short-range and may be replaced by a delta functim as, 
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(3.28) 

Since, 

so that Jacobian in the expression cancels out from the amplitude. 

3.3.4. Differential cross-section 

The differential cross-section for Wlpolarised projectiles projectiles and Wlpolarized 

target nuclei is given [38] by, 

(3.29) 

Where, Pa and f.Jb are the reduced mas.c;es of the respective particles, and the swn is over 

M A, rna, M 8 and mb . In terms of the reduced amplitudes (3.14), Eq.(3.29) becomes, . 

It is to be noted that sum over M A and M 8 has made different j values incoherent, but 

interference between different s and I remains. If only one value each of s and I are 

important or allowed, Eq. (3.30) may be written as, 

da 
a!2 

where the 'reduced' cross-section is 

(3.31) 
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(3.32) 

In order to compute the cross-section, it is necessary to have explicit expression for the 

'reduced amplitude' f3. It can be done with help of the partial wave expansion of the 

distorted wave X . Restricting to the coupling like L.§ [108], the expansion of the 

distorted wave may be written as, 

xi~~(k.r) = (4.n-).L:(LsM"mj.JM + m)(LsM" + m - m',m'~ + m) 
kr JIM 

(3.33) 

The resultant angular momentum, J = L + s , and its z-component (M + m) are 

conserved during scattering by the spin-orbit potential, whereas the individual z-

components of i and s are not. The partial waves are solutions of the Schrodinger 

equation 

(3.34) 

with Xu (0) = 0. For large r , beyond the range of the nuclear potentials, these radial 

waves have the form, 

(3.35) 

where, H£ = GL +iF£ is the outgoing-wave Coulomb fW1Ction (113], and 'I~ J.S the 

reflection coefficient or scattering matrix element for the (L,J) wave. The ,: are 

computed by m..nnerically integrating Eq. (3.34) and matching the functioo and its 

derivative to the fonn (3.35) at large r . In Eq. (3.34), U(r)is the central optical Uc(r) 
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the Coulomb potential and u: (r) the value of the spin-orbit coupling foc theL andJ 

wave. 

For more general case, the form fact<X" of Eq.(3 .11) is expanded m spherical 

harmonics in ra and rb separately, 

The Clebsch-Gordon coefficient ensures that f behaves like ~m • under 

rotations. Using this in Eq.(3.13) with the partial wave expansion (3.19), oo.ly ~ = Lb, 

L2 = La terms contributes, and we obtain for the 'fmite range' case, if m ~ 0 , 

(3.37) 

where, 

l~;.v. = k4: Jradra JrbdrbzL•J•(kb,rb~~L.(rb,ra)xc..;.(k0 ,ra}, nab 1s the s1gn of 
a b 
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With this explicit fimn of 'reduced' amplitude p, the Eq. (3.16) and (3.17) gives the 

expression of differential cross-section. 

3.4. Effect of non-locality of the optical potential 

The effect of non-locality of the q>tical p<Xential is usually considered in all 

DWBA treatment. A brief theoretical backgrmmd h~ been outlined here. The illustration 

follows basically the references (99,106, 114]. In most analysis of elastic scattering a 

phenomenological optical potential is sought which yields agreement with the data. This 

optical potential, U L (r) , is usually taken to have a simple local form. By local, it is meant 

that at the point r , the particle feels the potential only at that point. The SchOdinger 

equation then read'), 

(3.38) 

The situation in a real scattering problem, is always more complicated than 

encompassed by this equation. For example, the incident particle can excite the nucleus. 

The true state vector for the system has therefore, many components describing many 

thing; that can happen, and those are coupled to each other by virtue if the mutual 

interactions that can connect the various components or channels. 

Nonetheless, fundamental theory shows that the complicated problem involving 

many channels can be reduced to a simpler one containing few , or only the elastic 

channels, provided that the interaction between the scattered particle and the nucleus is 

suitably mooified This modified, or effective, interaction is, however, a very complicated 

object. No really satisfactory calculation of it can be made, and certainly not an exact 
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one. It is usual to transmit the effect in the energy dependence and non-locality means 

that the tenn UL(r)'P(r) in Eq. (3.38) must be replaced by 

J u(r,r'JP(r')af' (3.39) 

where U(r,f') is the non-local potential. Thus the wave function at point 1 depends oo 

cooditioos at all other points in the range of the noo-local potential. 

The consequences of a particular separable fonn of the non-locality have been 

explored by Perey and Buck [114). Their result is 

u(r,r') = u /iir + r'I)H(r - r') (3.40) 

where, in numerical applications, the function H is taken to be Gaussian 

Two points to be noted here: first, that the equivalent local potential that yielded 

the same scattering as the non-local potential is weaker p d < IV ol ~ and, secood, that in 

the interior region the wave function of the non-local potentiaL 'I' NL (r), smaller than the 

local potential lf'(r) which is known as 'Perey effect'. In fact, when the form of the non­

locality, H(r - r') is taken to be Gaussian of range p, a relationship between these two 

wave functions can be found such that 

(3.41) 

where F( r) goes to unity in the exterior region but in the interioc region F is less than 

unity and is [99] 

(3.42) 
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where, f.1 is the reduced mass. The value of fJ which Perey and Buck found for nucleons 

that yields a best fit to the data is p(p) ';:j 0. 85 fm, p(a) ';:j 0. 2fm, p(d) r:$ 0. 54 fm and 

P(t) ';:j (0.2- o.3)fin [39). 

3. 5.Full [mite-rangeD WBA computation 

Charlton [149] developed a method to calculate full finite-range DWBA matrix 

element. This methcxi is based on plane-wave expansions of the distorted waves, which 

allows a separation of coordinates and, in effect, replaces integrals with sums over plane-

W!JVe states. 

The differential cross-section for a stripping reaction A(a,b)B is given by the Eq. 

(3.29) as, 

(3.43) 

where the transition amplitude (Eq. 3.6) 

(3.44) 

Now, the transition matrix can be written in terms of spectrosoopic amplitude and 

reduced amplitude ( Eq. 3.13) as, 

(3.45) 
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where m = M 8 - M A + mb + ma and the 'reduced' amplitude P~';·"'• is given by, 

(3.46) 

ftsm(r,,;;,) is the form factor given by Eq. (3 .36). 

The ooordinates ;;, = R - ( ~ ).o and ~ = ( ~ r -p are shown in Fig. (3.1 ). 

The distorted waves can be expanded using spherical harmooi.c as ( Eq. 3.33) 

.l~~~(f,r)= (4n)2:(LsMmi.JM + mXLsJvJ + m- m',m'J.IM + m) 
kr JCM 

.L (±)(k )J.·M (e )rM +m+"''(e ) X I Xu ,rl'L k~k L r~r (3.47) 

By using the method p:oposed by Charlton (149], the radial part of the distorted 

wave can be written as, 

N(L) 

x~>(k, r) = (kr) L a~2;Ak,r) (3.48) 

where jL is a spherical Bessel fimction, and the expansion is applied over a limited 

region of space (for values of the radial coordinate up toRr =20 to 25 fin.) and N(L) is 

the number of plane-wave states at the partial wave quantum number state L. The 

coefficients a!:;5 may be found as overlaps of .lu and JL, if the k, 's are chosen in such 

a way as to allow the functions to fonn a oomplete orthononnal set. This can be 
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' ~omplished, by choosing knsuch that JL(kJ?J=O or JL(k,ftJ =0, where prime 

denotes derivative with respect to the argument evaluated at R L . 

But, Charlton [149] expanded the coefficients a~~ to calculate numerically as, 

N(L) 
a (t) = ~ N L .b(t) 

nl.l .t..J m n' Ll (3.49) 
n'• t 

where 

Rr 

b!~& = k-1 J rdrxt>(kr)JL(k"r) , (3.50) 
0 

and N:_.=(0' 1. (3.51) 

where (jL is a matrix and its elements are 

R 

O!. = J r 2dr JL(k"r)JAk".r) (3.52) 
0 

Using the teclmique ofEq. (7- 10), the radial part ofEq. (3.48) can be written as, 

(3.53) 

With the use of 

(3.54) 

the expansion of the radial part ofthe distorted wave may be expressed as 

(
. )L . ( )YM (A) ( )N(L)N(L) L (±)I A fl •. , Jl(A ) 

41! z J L kr L r = kr L: L: N "".b"'u ciJc"e YL k" (3.55) 
rt• l rt' = l 

This form is used in a full finite-range (FFR) expression of transitioo matrix element. The 

computer code DWUCK5 [39] calculates the differential cross-section using this method 
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3.6. The DWBA theory for two-nucleon ttansfer 

3.6.1. Contrast between one and two-nucleon transfer reaction 

As described in the previous sections, one-nucleon transfer reactions probe the 

single-particle structure of nuclear states. The angular distribution is sensitive to the 

orbital angular momentwn of the state into which the nucleon is transferred to or 

transferred from. For two-nucleon transfer reactio~ the angular distribution again is 

sensitive to the angular momentum transferred in the reaction However, here the angular 

momentum is carried by a pair of nucleons, so that it does not directly reflect the angular 

momenta of the single-particle states into which the nucleons are transferred OnJy to the 

extent that the two single-particle angular momenta must sum to the transferred angular 

momentum is there a constraint. The angular momentwn of the pair generally can be 

shared between them in many different ways, and nothing in the measurement of the 

transferred angular momentum distinguishes between these. Therefore, all such WtrfS that 

the angular momentum can be shared, consistent with the structure of the nuclear states 

connected by the reaction, must contribute coherently to the reaction. These coherence 

can produce large cross-sections in states for which it is constructive and very small ooes 

in states for which it is destructive. 1be coherence depends on the correlation between the 

two nucleons - the degree to which they are transferred 

Correlation in the motion of a pair of nucleons inside a nucleus depends on two 

factors, one, the conservation of the angular momentum and parity and two, the nucleon­

nucleon interaction. The angular momentum and parity of the nuclear state impose a 

certain minimum correlation because the motioo of the nucleons must be consistent with 
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these consetved quantities. It is usually referred as static correlation and the nucleon­

nucleon interaction induces spatial and spin correlation, known as dynamical oorrelation 

In the language of shell-model, it is the interaction that is responsible for configuration 

mixing in the nuclear wave functions. 

Consequently, the two-nucleon transfer reactions provide a means of testing 

nuclear wave functions in details not accessible to si~e-particle transfer reactiom. 

3.6.2. DWBAformalismfor two nucleon transfer 

It is sensible to develop DWBA formalism for two-nucleon transfer reactions 

analogous to that of one-nucleon transfer. We shall consider the two-nucleon transfer 

stripping reaction A(a,b )B represented diagrammatically in Fig3.2a. 

Fig.3.2a.Schematic diagram of two-nucleon transfer. 

2 

A b 

Fig.3.2b. Schematic representation of the vector coordinate~ 11.11ed in the &tripping reaction A(a,b)B of two­

nucleon tmnsfer. The point labeled Band a correspond to the c.m. of B(=A + 1 +2) and a(=b+ 1 +2). 



The DWBA expresston for the transition amplitude for two-nucleon transfer can 

be written [1 05, 115, 116) as, 

(3.56) 

Here J is the Jacobian of transformation to the relative coordinates faA and fM, V aA is 

the sum of all two-body interaction potentials between each nucleon in the projectile a 

and those in the target nucleus A; U aA is the optical potential describq elastic scattering 

in the incident channel; x~+.) and x~-.) are the distorted waves in the entrance and exit 
• ,cr 111 6 . .. . 

channels respectively; 'l/a' ,A and f//11.8 are respectively the totally antisymmetrized wave 

fimctions of the (a+A) and (b+B) systems. The primes on a and b in 'lfa ,A' 'lfti,B • 

XCT,·CT, and x(T •. (T. are written to indicate that the corresponding z component of spin 

should carry a prime. 

Similar to single nucleon transfer reactions, the matrix element 

waves characterize the dynamics of the reaction 

3. 6.3. Exchange Effect on Transition Matrix 

The totally antisymmetrized wave :fimction If/ a.A can be expanded [ 1 05] as a 

linear combination of products of separately anti symmetrized wave fimctions f// a and 

If A , t.e., 
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(a+A)-i a (aXA) 
'lfa,A = L(- )"' PaA'Ifa'I'A 

a m=O m m 
(3.57) 

where P aA'If a 'If A makes m interchanges of particles between the groups a and A. 

(
a+ A)-~ 

a is the normalization factor. Similarly, 'lfb,s can be expanded as 

(b +B)-~ b (BXb) 
'l'b,B = b ~(-)" n n Pbslf/b'l's (3.58) 

The interaction potential which appears in the transition amplitude can be written 

more explicitly as, 

(3.59) 

where ~k is the two-body potential between IRJcleons j and k ; the sum k is over all 

nucleons in the projectile a, and the stnn j over those in the core nucleus A. Assuming the 

'core-independent' transition, the second term of the Eq.(3.59) becomes zero. So, with 

the foregoing asstnnption, the nuclear matrix element in (Eq.3.56) becomes, 

3. 6. 4. Angular momentum expansion of tile nuclear matrix element 

Equation (3.60) can be evaluated with the help of IRlclear shell model description 

of the wave functions of If! A nnd f/1 8 . For stripping reaction, Ute ftrst step is to expand Ute 



final nucleus wave function 11f8 (~,p~,r2 ) into a core wave function filA(~_.) and a pair 

wave function 'I'(~, r2 ) using jj coupling. Integrating over the core coordinates ~A, the 

following result [ 105, I OC>] is obtained : 

x (J_M_lM~sMs) (TAN_/NjTBNB) r~ 
JJ 

12 L] 
! s 
2 

iz J 

(3.61) 

The expansion coefficients known essentially ~ fractional parentage coefficients (cfp) 

are given by, 

(3.62) 

where the square brackets denote vector coupling. i.e., 

(3.63) 

The LS-.iftransfonnation bracket [104] in Eq.(3.61) is related to 9j symbol [110]. 

Now, the integral in Eq.(3.6l) can be written in a form which separates the orbital 

and spin-isospin wave functions~ 
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(3.64) 

Here X;' contains only spatial integrals~ that is, 

(3.65) 

and the general form of the tw~body interaction potential is given as 

(3.66) 

Here Q~ (Q }1 ) and R~ (R ;.t) are spin and isoopin singlet (triplet) projection operators 

for the pair jk and U ro (r11 ) are radial wave functions~ the pair wave function is 

(3.67) 

where (/J and z are orbital and spin-isospin wave functions respectively. 

For the case of (a.,d) reaction a=4, b=2~ S
0 

= 0, 1
0 

= 0 and sb = 1, tb = 0, so the 

expansion of X a , is 

x [xs•r· (1,2) Xs'r' (3,4 )t (3 .68) 

The two-particle fractional parentage c~efficient has the value 

( )
S '+l } 

- [;; b S '+T' I 
-v2 ' 
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Evaluating the spin integration as displayed in Eq.(3.64) with the method of 

Racah algebra [I 05], the nuclear matrix element can be written as: 

where 

( . lv _ U I . ) = (aJ~(A + 2J~ "[,.,.1. Jn,l,h Jc.sn (- j +t _I 8 'lfbB aA aA 'lfaA 2 2 LJ AINN J2 .H T,l 

x]AB([~ltft] [~lzfzl·JT) V.M~VeMs) (Tfl.J'NfraNs) 

x (sbo-b.SL1s0 CT0 . ) (tbvbTh'JtavJ (LAS4JM) 

(3.69) 

f 4l,c.sr (r r )= ;- t " ro (- )0 U(ll ll · FS'v- 1 (1.!.11 · GT) 
A aA' bB LJ 2 2 2 2 ' J-' 2 2 2 2 ' 

(3.70) 

3.6.5. Differential cross-section 

Using Eq.(3.69) for nuclear matrix element the transition amplitude can be written 

[104,105,112J as 

I 

Tfl = L;l'1'' J,o,, [:n b ":J!,. ( ( n,l, j , j ( n212 j 2 ]) [ ( 2s, + I ) ( 2J + I) r {I _.M ,JMf/.U,) 

Ll ~ PC.S: a. a. (0) (3.7I) 
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I 

The 'spectroscopic amplitude' ~~ is analogous to that used in single stripping theory 

[112] namely, 

I 

3~([n,l,j,J [n,I,J,] :JT) ~ (A; 
2
)\., ([n,I,J,] [n,I,J,] :JT) (3.72) 

Also, b sr is defined by: 

I 

b,.,. ~ (- t'(; )' [2(2S +I )Jl(t,v ,Thfjt.v.) 68m (3.73) 

bST 2 
is essentially the spectroscopic factor for the light particles [ 1 04]. 

pu: ~ ~ inEq.(3.7l)isgivenby, 
• I 

(3.74) 

where, A.b = a b - a a - M , 
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(3.75) 

and 

(3.76) 

Using Eq.3. 71 the expresston for the differential aoss-section for two-nucleon transfer 

reaction can be written a-; [ 105, 1 06), 

2 

(3.77) 

3. 6. 6. Numerical evaluation of the radial integral 

II I) I l . 
To evaluate / '~ , •J• •16 one must specify the detail of the coordinates with 

reference to Fig. (3.3). Deftning ri lr. = ~ - ;. a-; position vector of the center of mass of 

the particle j relative to the center of ma.-;s of k, where ri (with one subscript ) is the 

position vector of j relative to an (arbitrary ) origin. one can write, 
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2 

B=(A+ 1+2) 

a(=b+l+2) 

b 

Fig. 3.3. Schematic representntion of vector coordinates used in the description of 
the direct ~tripping reaction A(a,b)B. The pointslabe1ed A and b correspond to the 
center of m ass of B(=A+ 1+2) and a(=b+ 1+2). 
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Denoting all internal coordinates of the nucleide by ~ , the equation for /'\L 

may now be written in the fonn: 

where the coordinates ~b and ~~ are independent of ~8 and ~A . However, the 

functional form of the internal wave functions of the transferred pair and the outgoing 

ejectile, and that of the interaction potential , are most conveniently expressed using the 

relative coordinate and the center of mass coordinates of the respective pair. The Jacobian 

oftransformation between these coordinates is 

(3.79) 

So, the expansion coefficients in Eq.(3. 76) are given by 

(3.80) 

and hence the Eq. (3 .75) can be written as 

(3.81) 
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For reaction (a.,d) integration must be made over four cocxdinates ~a and Tzt m 

Eq. (3.78), rllA and rb8 inEq. (3.81). 

Now, the differential cross-section then can be rnunerically evaluated in tenns of 

these radial integrals involving the coefficients. 

3.6. 7. Approximation for simplifying the calculation 

1) Zero-range Approximation 

Because of the complexity of the problem, a zero-range approximation is usually made. It 

essentially reduces f'•'~L to a function of one argument and reduces I~t,u.f.'•ft to a s~e 

integral . The equation (3 . 78) is replaced by [ 105) 

(3.82) 

The implication of this assumf(ion is that either the internal wave fimction of the 

incoming projectile a, or the interaction potential has a r~e short enough that it may 

be replaced by a delta function. Referring to the Fig. 3.3 the vector P can be written 

in terms Of ~B and r 11A : 

where 

(3 .83) 

A 
y = - . Using the expanston the delta function m terms of spherical 

B 

harmonics the final expression for zero-range fonn factor F0~1,L(raA) can be written 

as, 
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(3.84) 

This equation ts only valid in the zero-range approximatio~ that is, either the 

wave fimction of a or the interaction potential must be considered sufficiently short 

range that a delta function o{fi) can be introduced into the Eq. (3.84). 

3.6.8. Wat•efunction of the transferred pair of nucleons 

The pair wave fimction rp4~t can be written as a product of single-particle wave 

fimctions as: 

(3.85) 

where ~; is an operator which makes m interchanges between the particles l and 2. 

If [~11}1 ] = [n212jz} the normalization factor N = t~ otherwise N = Jz (117). 

Using the wave function, the radial integral /11~L may be written as: 

Following Glendmning [104], g is defined as g = 2N , where 

= J2 , otherwise. (3.87) 
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The radial integra] of the form factor for two-nucleon transfer reaction contains wave 

fimction generated from the product of the single particle shell-model wave fimctioos of 

the variables of the separate particles. However, the calculation can be usually be 

performed more simply if the wave fWlCtion is expressed in terms of the relative and 

center-of-mass variables of the two particles. 

The wave function of the products of the fimctions of the variables of the separate 

particles can be calculated in the following methods: 

a) A Method has been developed by Talmi [118] and Moshinsky [119] where the 

single particle wave functions are asswned to be the infinite harmonic 

oscillator wave functions . This method associates Brody and Moshinsky [120] 

brackets with the calculation. Glendenning prescribed this method for the two­

nucleon transfer form factor [1 04,115,121]. 

b) Another method of performing the transformation to relative and c.m. 

coordinates with the single-particle wave functions of a finite well h~ been 

treated by first expanding the finite well wave fimctions in terms of harmonic 

oscillator wave functions of varying nwnbers of nodes, and then performing 

the Talmi-Moshinsky transformation components [ 122, 123]. 

c) The third method introduced by Bayman and Kallio [107], where 

transformation has been performed directly with the finite well wave functions 

and does not involve the harmonic oscillator expansion The coodition is this 

that it is limited to that part of the wave function in which the two-particles 

have relative angular momentum zero. The computer code DWUCK uses the 

Bayman-Kallio form factor. 
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d) Another prescription for the two-nucleon foon factcr is that of Rook and 

Mitra [124] which also does not use any transformation to relative and c.m. 

coordinates. The Rook -Mitra form factor treats the transfmed pair wave 

fimction as a product of two Woods-Saxoo wave functions. In the :rer<rrange 

approach the relative motion of the two nucleons is ignoced so that the two 

wave functions have the same radial argument A fmite ranse correction can 

be made using the local energy approximation; in this case, the wave 

functions of the two transferred nucleons have different radial arguments. The 

Rook-Mitra form factor is incocpocated in the distorted wsve computer 

program NELMAC [125]. Lewis et al [126] have compared the Bayman­

Kallio and Rook-Mitra form factcrs, but have not been able to identify either 

prescription as being superior to the other. 

Drisko and Rybicki [ 122] have emphasized that the proper treatment of transfer process 

requires wave functions with the asymptotic behaviour of a fmite well as because the 

process is sensitive to the nuclear wave functions in the vicinity of the nuclear surface 

and beyond Here the methods due to Glendenning and Bayman-Kallio will be presented 

in a brief form and in the present study Bayman-Kallio's method has been followed in 

computer computatioo [ DWUCK4]. 

3.6.8.1. Glendenning method for two nucleon wave.fundion 

The essential steps for the method for evaluation of F0~ z,L using pure tw<rnucleon 

wave function suggested by Glenderm.i.ng [104,115] is being outlined here. 
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sectioo are transformed into fimctions of relative and center -of-mass coordinates: 

n1(- ) NL'In) 
X fP A r 21 fP A' \,I{ (3.88) 

where n/A , NL'A' are the quantum mnnbers describing the relative and center-of-mass 

motion of the transferred pair. It is to be noted that the notation n is used as the nwnber of 

radial nodes in the wave functions including the origin, but in Eq. (3.88) n = n -1 has 

been used according to the definition used by Moshinsky [120.147]. If the single-particle 

wave .fi.mctions are chosen to normalized oscillator flUlCtions with the parameter 

mm 
v =-: 

It 

then, 

NL' fn) ( z) f.£' (.,;),1 (/);~ · Vt = RNL' 2\R p YL'A'Vt 1 

(3.89a) 

(3.89b) 

(3.90a) 

(3.9<l>) 

and the transformation coefficients are well known [118- 120) and have been tabulated by 

Brody and Moshinsky [ 120]. 
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Here the oscillator radial fimction is defmed as: 

(3 .91) 

where 

maJ 
v =- · n = n - l 11 , 

and the hannonic oscillator potential is i mrr/r 2
. In this case, the sum in Eq. (3.88) is 

restricted according to: 

2n1 + ~ + 2n2 + 12 = 2n + 1 + 2N + L'} 
11 + /2 + 1 + L' = even 

(3 .92) 

Following the pure relative s-states for the light particles, 1 ts taken to be zero. 

Incorporating Eq. (3 .88) and Eq.(3.86), F;1~L can be written as: 

(3.93) 

Finally, perfonning the integration over ~b and ~~ and ass~ a Gaussian 

form for potential and for the wave function of nucleide a, the differential cross-section 

in the absence of the spin-orbit forces, in the zero interaction awroximation can be 

written as [1 05,121]: 
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(3.94) 

where, 

nd and n., are integrals of the products of the oscillator wave fimctions over 4b and 

~~ respectively. 

The wave function RNL (2»"2
) in the radial integral is essentially describing the 

motion of the center-{)f-mass of the transferred pair of particles. The energy of this pair of 

particles is given by the experimental separation energy. Consequently, the asymptotic 

behaviour of the wave function RNL(2w2
) should be exponential in form, exp(- ar), with 

the constant a., determined by the separation energy. However, in the treatment given 

here, the wave function RNL (2w2
) was chosen to an oscillator function To correct for 
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this, Glendenning [104) recommends matching a Hankel fimction onto RNL(2w2
) at some 

suitably large radius. 

3.6.8.2. Bayman-Kallio 's method of two-nucl.eon wavefunction 

Bayman and Kallio [ l 07] started deri~ two-nucleon wave function frc:m 

normalized two-particle shell-model wave fimction as, 

1 1 

, ,n,llf, (r. a )] + (- )r[ru"t 111·, (r. a ) ,.,n,t,h (r. a )] 
'f' m1 2 ' 2 Tm1 2' 2 '1"m1 I' 1 

M M (3.95) 

T is the isobaric spin, zero, if the state is symmetric in the two-particles and unity if the it 

is antisynunetric. The bracket notation indicates vector coupling to total angular 

momentum I and its z component M . The single particle states '1'~1 (r, a) have the form 

(3.96a) 

"' 

(3.96b) 

The radial ftmction "n~ir) are normalized solutions of the radial Schr<XIinger 

equation with the chosen single-particle potential. 

To find the part of the wave fi.mction (3.95) in which the two-particles have zero-

angular momentum, it is expanded in an LS coupling representation with the help of 

normalized 9j symbol L 1 07J as, 
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I 

{ ( [ 11'1 (;,) ~"'' (ii)] ' + (- 1''"[11'1 (r, }p'· (;; )]') [ru(.,., )xM(u, )r} 
X M (3.97) 

[ {t + O.,., 01,1, 011h) l 
1he part of this wave function in which the two-particles have zero relative 

angular momentum is permutation symmetric in ~ and ~ . Thus. if T=l. then S=O term 

and if T=O. only the S= 1 term is taken. 

The relative and center -of-mass coordinates in a symmetric form are defmed as 

(3.98a) 

(3.98b) 

and an expansion of the form 

L L 

[ 9'~, (~) 9'~1 (rz )] + [ 9'~1 (rz) 9'~1 (~ )] 
M M 

(3.99) 

are envisaged. 

Setting R = i and integrating Eq. (3.99). fo.f(r,R) is obtained as 
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[. [. 

[ '1'~, (;;) '1'~, (;,)] +~. (r,) '1'~, (;,)] 
x J 11 11 a; 

(R=!) (2(1 + o nsn, 0~11 oM, )] ~ 
(3.100) 

(
2A + 1)~ 

as, Y~(z) = oM.O ~ and 

The "distribution fimction" fo.f(r,R) obtained by perfo~ the integral in Eq. (3.1 00) 

contains all the information about the relative angular momentum zero part of the two 

particle wave function. 

In zero-range DWBA treatment of strippq into the two-particle state, one need 

to evaluate the form factors using this radial part of the wave function in Eq.(3.100) 

transformed into a function of relative and center -of-mass coordinates generated from a 

finite well single particle wave fimction 

3.6.9. Selection rules for two-nucleon transfer 

A number of general rules known as selection rules arise .fhm the formalism 

adopted in the processes of two-nucleon transfer reaction. They come into beq from the 

properties of the wave fimctions used to describe 

(a) the initial and final states, 

(b) the incoming and outgoing particles, and 

(c) orbitals of the transferred particles. 
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Let the initial and fmal nuclei are described by the quantum numbers JAITA and 

J 8 , T8 respectively; and the two transferred nucleons by the single-particle orbitals 

[ntlt.h] and [nzlzh]; then. 

(1) TB - TA = 0, ± 1 

u, - j21 ~ IJB - J AI ~ j, + j2 . 

(2) If both the initial and final nuclei are considered to be states of good 

seniority and reduced isospin, then 

VB - V 1 = 0, ± 2 

tB - fA= 0, ± 1 

where v' s and t's are seniority and reduced isospin quantum numbers respectively. 

also 

(3) Let L, S, J and T be the possible quantum numbers of the transferred pair 

(i.e., h+lz=L etc.); then 

ITs- TAl ~ T ~ TB + TA 

IJB - J AI~ J ~ JB + J A 

II, - 121 ~ L ~ I, + 12 

jj,- j2l ~ J ~ j, + j2. 

( 4)The parity change between the initial and fmal states is given by 

6n = (- )''+'] 
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If the transferred particles are in a relative s-state, then 11 + 12 + L = even and l:ln = (- ) . 

(5) The restriction on L, S, J and T are derived requiring that the tramferred pair should 

be anti-symmetric that is, 

when, S=O, T =l 

S=l , T=O. 
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3.7. The DWBA theory for three-nucleun transfer 

3. 7.1. Transition ampliJude with a mia-oscopicfonnfactor 

Analogous to single and two-nucleon transfer, the transitioo amplitude for three-

nucleon transfer reaction in DWBA is given by [ 127] 

(3.101) 

In the expression for the transition amplitude the integration is carried out over 

the center of mass coordinate R = 1 (~ + ~ + ~) and the relative coordinate 

-r = H~ + r2 + r3 ) - ;: between the ejectile nucleon labeled 4 and the three transferred 

in the entrance and exit channels are functions of the relative coordinates 

- (mAJ -r 8 = - - r 
P m 

8 

and i'"' = ii - ( : : )r in these chamtels (Fig. 3 .4. ), where m' s are the 

masses of the particle indicated in the subscripts. 

f t23 2 

8 
4 

Fig. 3.4 . Coordinates used in the three-nucleon reaction. 
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3. 7. 2. Nuclear matrix element 

The antisyrnmetrized nuclear matrix element with the superscript a 

I I 

(I" ,I" .lVII" .1'1 A r = (: J (A; 3 
)' ( 1'1. pl'f. "JVII'f:l'f~) (3.102) 

depends on the internal wave functions of the P'Ojectile f/1;, the ejectile f/1 P , the target 

I I 

nucleus 'I'~ , and the residual nucleus 'I'~ . The binomial coefficients (: r 8M (A; 3 r 
stem as usual from the antisymmetrization procedure (1 05]. In order to calculate the 

nuclear matrix element (3.1 02) we need the interaction potential responsible for the three-

nucleon transfer 

3 

V = LV;4(f.4) (3.103) 
t~ l 

which is a sum over the effective nucleon-nucleon potentials V;4 (f.4 ) between ejectile 

nucleon 4 and the three-transferred nucleons 1,2, w 3. The antisymmetrized wave 

fi.mction for the alpha-particle is also needed, which can be split up into a space and spin-

isospin part 

a( y; · T -o 
x X a 1, 2,3,4 ,; :N • O 

•• • 
(3.104) 

The wave function for the residual nucleus 'I'~ can be exparxled in the IT reP'esmtatioo 

with the wave functions of the target nucleus and the three transferred nucleons as 
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(3.105) 

where the cross-product is defmed as 

Here p represents all quantum numbers necessary to characterize the three transfened 

nucleons. ~ .. and ~8 are the internal coordinates of the target nucleus A and the residual 

nucleus B . The ~~ = ('i, a11 rJ with i = l, 2 and 3 are the space, spin, and isospin with ;; 

1 

with respect to the center of mass of the core A The expansioo coefficients Sla(pJT) 

are the spectroscopic amplitudes. 

The antisymrnetrized three-particle wave functioo can be written as 

(3.107) 

N(p) and Z(p) are the normalization and antisymmetrimtion factors [128]. The three-

particle wave function can be split up into a space and spin-isospin dependent part by 

transforming from if to LS representation using 9j symbols 
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(3.108) 

where S = Yz is taken for the spin transfer. 

By inserting Eqs.(3.1 05 - 3.1 08) into the expression for the nuclear matrix element 

(3.1 02), this matrix element can be spit up into a space and a spin-isospin part Hence the 

transition amplitude can be reduced to form [ 127], 

I 

1(~.~1(A,B) = (:)2 ~(J ,.M _.IM~ ,M8)(r ,NAt(~) T.N,) 

(3.109) 

The configuration factor g(p) comes from the antisymmetrization and normalization 

procedw-e [ 128]. 
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3. 7.3. Microscopic form factor for alpha-projectile 

The form factor F~ (.R,;) is defmed as the space part of the nuclear matrix 

element in Eq. (3.1 09) 

(3.110) 

In order to calculate this form factor the coordinates (~ 1 ~ 1 ~ 1 r4 ) are to be transformed to 

If the alpha-particle wave fimction is assumed to have a Gaussian form [ 127) 

(3.111) 

with the size parameter 71 = 0. 233 fin-1
, which is correlated to the equivalmt hamtoo.ic 

oscillatoc constant v a = 0.434 fin-2 by TJ2 = ~ v a and to the rms radius of the alpha particle 

by (r2 )~ = 2_ =1.61 fin. Perfonning the coordinate transformation [1291 
877 

( - - - - \0 (1)(- ) (/Ja 1j . rz· '3·'4Jo = (/Ja r 

The interacting potential is also assumed to have a Gaussian form 

(3.112) 
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±v,4(r,4)= uo±exp{-P2(~ - r, J) (3.113) 
1=1 1=1 

with U
0 
= 70MeV and p = 0.632 fin-1[130]. In tenns of the coordinates (1,1.2.~23 ), (;4) 

can be written after apply~ the Chant-Mangelson approximation [130], 

V(.. .. .. ) v<,l( .. ) v<2l(.. .. ) r.lj z• 'izJ :::s r 'iz·'in 

With Glendenning awroximation, the potential can be written as, 

(3.115) 

The space-part of the three-nucleon Wt!.Ve function is given as 

(3.116) 

with s~e-particle WIJVe function, 

tp(~Y' = ~ u(ti}~,J,f,!t,(~) where (i = 1,2,3), 
I 

which are calculated in a Woods-Saxon potential. 

In order to transform this WIJVe function (3.116) to the new coocdinates, the 

single-particle wave functions tp(r, r are expanded in terms of the harmonic oscillator 

wave functions with the harmonic oscillator constant v . The expansion coefficients are 

denoted by a,. . where p, is the radial quantum mnnber of the corresponding harmonic 

oscillator WIJVe functions to the above mentioned coordinates using the generalized 
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masses p, and 14 . 

factor split up into three terms, each depending on R. 1. and (;;:t~'.z3) respectively. 

Integrating over the internal coordinates ;; 2 and ~ 23 the form factor reduces to 

(3.117) 

where f.l is the mass of a nucleon 

The r-dependent finite range normalization factor D('·'>(r) is given by 

, 
= 3U, [~: r up [ -r' (p• +tv.) l (3.118) 

The radial form factor (/JN,'I. (R) is the spherical harmonic oscillator fi.mction 

N'Lf;;) } ( 2) L( ;,) 
(/) M \,"( = - H N'L 3ll? 1 J( \,It 

R 
(3.119) 

The overlap I •.•. is the integral over the internal coordinates 1,2 and '.23 • 

In the cac;e of Glendenning awroximation (3.115) the overlap integral reduces to 

I 

l{2n'+l) !!(2n"+l) "]"l 
1 . = (4v v~ , 

"" a r n' In" I 2" 2" 
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( )-J[Va - V] n'+n' 
x v tv -­a va +v 

3. 7. 4. Zero-range tq:Jproximation 

(3.120) 

In the zero-range approximation the normalization factor (3.118) is given as 

[127), 

(3.121) 

JJoa,p) can be calculated by the integral 

(3.122) 

3. 7.5. Transition amplitude with a cluster form-factor 

In the cluster approximation the interaction potential, projectile wave fimction, 

and residual nucleus wave function in the expressions (3.103-3.1 05) are replaced 

respectively by 

,:',JJ{,t: .r: ) - (t)(-)'··0 •( rs. -r .. -o 
'f' a \':7o 0:. p - V'a r M. -oX a t, p IM,. mN. · 0 

(3.123) 

(3.124) 

(3.125) 
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The wave functions are given in the LSIT representation and the cluster space, spin, and 

isospin coordinates ~, = (R 1 u, 1 r,). After perfooning the spin algebra the transitioo 

amplitude is reduced as [ 127] 

I 

1(~~)(A,B) = (;J ~(J _MAJM~ eMs XTANA Ht~T,N s) 

x (ttt(- t loo)) 

where the form factor f:t_ (.R,r) is given as 

(3.127) 

with the radial wave function r:p, (R r:L of triton t calculated in a Woods-Saxon potential 

between t and the target nucleus A Here the radial quantwn number is restricted to its 

maximum value N, which is given by the oonservation of the oscillator quanta in the 

Talmi-Moshinsky [118, 119) transformation, 

J 

Q ~ 2N + L = L ( 2n, + I,) (3.128) 
Ia I 
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3. 7. 6: Differential cross-section 

The differential cross-section for three-nucleon transfer A(a,p)B can be written ac; 

[127] 

( 
d (7 ) j.J aA J1 pB k p 1 

dn = (2n1tY k: (2J ... + 1) 
(3.129) 

The quantities paA and f.Jp6 are the reduced masses and iia and k, are the 

relative momenta in the entrance and exit charmels respectively. M A and M. are the 

magnetic quantum numbers of the target and residual nuclei. 
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CHAPTER4 

CCBA AND CRC FORMALISM 

4.1. Introduction to CCBA and CRC 

An alternative approach often used to interp-et and analyze the experimental data of 

direct reaction is 'coupled-channels' (CC) method The method usually considered as the 

extension of the distorted wave method confront~ more complicated situations. 

By coupled-channels method it is meant that these are the solutions that include a 

relatively small set of coupled equations that results from considering a model wave 

functions with a small number of terms. The truncation to a small basis states implies the 

use of an effective Hamiltonian and interaction 

When rearrangement is being considered, so that the states from more than one 

partition enter, the name ' coupled-reaction channels' (CRC) has come into use. 

There may be situation of rearrangement collision in which a role is played by 

inelastic transitions before and after the rearrangement event. When the two sets of 

coupled equations are solved for tl1e inelastic transitions before and after the 

rearrangement and the rearrangement itself is treated to the ftrst order, the method is 

usually known as coupled-channels Born approximation (CCBA). 

This chapter will deal with the basic formalism of (CC) necessary and relevant to the 

present study. The illustration will basically follow the references [52, 132, 133]. 

The Fig. 4.1 illustrate schematically some standard model processes: 

(a) Fig. 4.1 (a) shows some possible transitions for inelastic scattering, in 

particular, it indicates no direct coopting fiom the ground state A to the 
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excited state A++, but this state may be excited via A • as an intennediate 

state. It also indicates a 'self-coupling' term for the A • as an intermediate 

state. Solving the coupled equations of the CC method for this system would 

correspond to the infinite smn of all possible combinations of the arrows. 

(b) Fig. 4.1 (b) illustrates an analogous situation for a rearrangement collisioo~ 

solving the corresponding CRC equations is equivalent to summing all 

possible combinations of arrows. 

(c) Fig 4 .1(c). represents similar situation to the case of Fig. 4.1(b), but one in 

which a third partition has been considered whim may supply the 

intermediate states. This may also be solved by the frrst-order (direct) plus 

second order ('two-step') solution 

(d) Fig 4.1 ( d ) represents a rearrangement collision in which inelastic transitions 

before and after the rearrangement event plays an important role. This 

feature is accounted for by the CCBA method as mentioned before. 

All the fonnalism in relation to the basis of the DWBA method applies to the 

coupled-charmels Born approximation (CCBA), since the latter is simply an 

extension of the former. 

The CCBA was proposed by Penny and Satchler and also developed by Iano 

and Austem [133] 
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(a). Inelastic A(a,a')A.(a', a'')A- (b). Rearrangement A(a,b )B 

8 

A A 

(c). Two-step Rearrangement, e.g 
A(a,c ~(c,b )B 

(d). Inelastic + Rearrangement, e.g. 
A(a,a')A.(a',b )B 

Fig. 4.1. A schematic representation of some multi-step processes. 
Each arrow represents a matrix element of the interaction. 
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4.2. Bmis of the CC metltod for inelastic scattering 

The total wave function 'P for a system may be expanded in a complete (and 

infinite) set of internal states \J1 a foc oo.e particular partition a. = a + A, as 

(4.1) 
a 

Where ra 1S the channel coordinate foc the a - partition and ~a represents the 

cocrespooding internal cootdinates. In the usual scatt~ situation, a boundary condition 

is imposed that the fi.mction X a foc the entrance channel has the asymJXotic form of a 

plane plus outgoing spherical waves while all the other X a· have outgoing waves only. 

If the form ( 4.1) is inserted into the Schrodinger equation for the systan, 

(E - H) '1' = 0 (4.2) 

H may be ~pressed in a form appropriate for the a partition as, 

(4.3) 

Multiplying from the left by one of the 'P;, integratit@ over the internal ~a coordinates 

and using the ortho~nality relation, we get the (inftnite) set of coupled equatioo.s for the 

channel functions X a (ra), of which a representative ooe is 

[ E-c.-k.-(a IV.I a')] x.(T.)=.-t.(a IV.I a') x •. (r,) (4.4) 

The interactioo. matrix elements are integrals over the ~a alone, so they remain 

functions of ra : 
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(4.5b) 

4.3. CCBA formalism with spinless target, projectile and ejectik 

The CCBA formalism with a simple case in which the target, projectile and 

emitted particles all have zero-spin and even parity is being considered fJISt. Let us 

consider a rearrangement collision A(a,b)B (Fig.4.2). 

A 
8 

I a 

I~ 
A a 

r~g. 4.2. Schematic diagram for A(a,b)B re8ITllJl81'111ent collition. 

Inelastic scattering to a single excited state of the target with spin 1 A is included, 

but it is assumed that there is no inelastic effect in the exit channel as shown 

schematically in Fig4.2. So, the distorted wave in the exit channel is standard one. 

For the general case, the distorted wave will be similar to that in the entrance channel. 

In the entrance channel coupling between the ground state and one excited state is 

being considered. So, the CC wave may be written as, 

(4.6) 
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Where the first tenn describes purely elastic scattering from the target ground state 

1{/ aoo• while the second tenn describes inel~tic transitions to the excited state 

'I' til Jl with spin IA and projection M A. The elastic wave z~~.ao contains both 
A A 

incoming and while the inelastic wave z~~A.ao contains outgoing waves only [52]. 

4. 4. The transition amplitude 

The CCBA transition amplitude for the transitioo a--) p [52,132,133,], in a fonn 

analogous to DWBA can be written as: 

(4.7) 

The generalized distorted waves are the solutions of the finite sets of the coupled 

equations with generalized auxiliary potential U a and UP, which now have noo-

vanishing, off-diagonal matrix elements within their chosen sets of clooely ooupled 

states. When the waves from Eq. (4.6) are inserted into Eq. (4.7) for the transition 

amplitude, there will have two terms oorresponding to the two parts of the wave 

Eq.( 4.6) as follows: 

= r;cBA(direct )+ T~BA (indirect) (say). 
~ ~ 
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where I B and M B are respectively the spin and its projection of the fmal nucleus in 

the chatmel p and its projection. 

The first term describes the usual type of DW amplitude except that the elastic 

wave z ao,ao is generated by the coupled equations instead of by a one-channel 

equation with a simple optical potential. 

The second term describes transitions in which the target is excited before transfer 

takes place. 

For the present purpose, we use the zero-range form for the interaction kernel I 8 , 

the a ~ fJ transfer from the target ground-state (assumed to be zero-spin) is associated 

with a unique angular momentum transfer I= I 8 (and m = M 8 ). The corresponding 

interaction kernel in Eq. ( 4. 8) has the form [52]: 

1/Ja = Ipr,M,:aoo(rp,rJ= (s,a'f Jt(~~'Y,"'(rJJ 8{;.8 -p;J>1, 1b'11,, (4.9) 

where r = ~ · 

Here a factor (s,a 'f have been separated explicitly that is usually called a 

spectroscopic amplitude, so that the radial form factor may be chosen to have a simple 

normalization: 

(4.10) 

Transfer from the excited state of the target allows more than one angular 

momentum transfer I' (tmless I A= 0 ): 

~A - I 8 Is l' s I A+ 1 B (4.11) 
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The interaction kernel for this a' ~ p transfer is, 

. 
1 fJa' = 1 tr,M, ,a,AMJrp,;;,) = 2: (sa·r ,r,:r· (ra) ~~·r,:"' (fa)] t5(rp - Jia) 

where the (s,~ r are the corresponding spectroscopic amplitudes us~ the same 

normalization as in Eq.( 4.1 0). 

With the kernels ( 4.9) and ( 4.12) in the amplitude ( 4. 8) with axes chosen with z 

along k a andy along k a x k fJ , and for m 2:: 0, the transitioo amplitude reduces to, 

X PL: (e) ~,r,r.. (direct)+ A/'r.. (indirect )j (4.13a) 

(4.13b) 

where 

A/' L.. (indirect) = ~) ~-L,-l' (LpL:ooll'o)i;i'w(LaL;ll';I ... Lp) 
I'~ 

X (st 'f x,~'L• (indirect) (4.14b) 
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and .i = (2x + I)~ , La and Lp's are orbital angular momenta of the respective 

channels. 

The radial integrals are given by, 

(4.15a) 

X/" .L~L. (indirect)= ~1r t J drzL, (kp,Ar )t,~'(r )z L~ .r.. (ka , r) (4.15b) 
f"'P a 

The flrst (direct) term is the same as the DWBA expression except the z L partial 
" 

waves are here generated from the coupled equatiom. The second (indirect) describes the 

contributions going through the excited state a -)> a' -)> p . 

4. 5. The differential cross-section 

The expression for the differential cross-section has the usual form : 

It is evident from Eq.( 4.13) for T that there occurs interference between the direct 

and indirect amplitudes, which may be destructive or constructive. This may be of great 

importance in the identification of these processes. 

lhe relative importance of the indirect process depends on, amo~ other thitlg<l, 

the magnitude of the inelastic waves x I;.L. in the vicinity of the nuclei relative to the 

elastic waves. This is determined by the strength of the inelastic excitation. The 
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importance of the indirect tenn also depends on the relative sizes of the spectrosoopic 

amplitudes (s,a f and (st" f . If the direct transition is inhibited because (st f is small for 

some reason of nuclear structure but (s,a' f is not so inhibited , this may allow the indirect 

process to compete successfully or even dominate. 

4. 6. General case inchuling mutual excitation 

Using the generalized coupled-channels (CC) wave in channel spin representatioo. 

and generali zed transfer of interaction kernels, general form of the CCBA transition 

amplitude [ 132, 134J can be written in more explicit form as: 

where, 

x{:· 
S ' a 

Jbo 
I ' b 

I ' 
(J 

(4.17) 
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I a and I b are the spins of light particles , M a and M b are their respective projections. 

The second swn in Eq. ( 4. 1 7) is over 

The radial integral X is given by [ 521 

L' t:., ( ) where, g,, rp. ra is partial wave form factor for the lth wave and 

Using the above transition amplitude the differential cross-section for general case 

becomes, 

(4.18) 

where, a pa(B)= 2: ~:.!:~.N .. ar,.MAI.M. ~P.kar and 0 is the angle between kft and 
MsN..&f#. 

The computer computation has been performed using the code CHUCK3 [39]. 



CHAPTERS 
STUDY OF a-INDUCED TRANSFER REACTIONS 

5.1. Study of (a,t) Reaction 

5.1.1. Formalism for V WBA computation 

'The differential cross-section ( Eq. 3.29) for a transfer reaction with a particular j-

transfer in the DWBA theory [38,52] is given by, 

(5.1) 

Where, J1 and sa are the spins of the target and the projectile respectively. Jls and /Cs are, 

respectively, the reduced masses and wave numbers. The subscripts i and f refer to the 

incident and outgoing channels, respectively. £ denotes the sum over aU magnetic sub-

states. Tfi is the transition amplitude given in Eq. ( 3.13 ). 

In the iso-spin representation, the experimental cross-section of the stripping 

reaction in full fmite-range (FFR) calculations [39] is given by 

( da) 2J 1 + 1 2 ( da) - = CSs -
dQ exp 2J; + I dQ DWUCK$ 

(5.2) 

( du) means cross-section calculated with the computer code DWUCK5, C2 is the 
tJO. DlfUCXS 

iso-spin Clebsch-Gordon co-efficient, Sands are respectively the heavy and light particle 

spectroscopic factors. J1 and J , arc the total spins of the fmal and initial nuclei respectively. 

The corresponding expression [39] for zero-range (ZR) approximation is: 
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(5 .3) 

D0
2 is the normalization constant and ( d~ is the cross-section calculated with 

d DwtX::K4 

DWUCK4. 

For the analyses of the data for the unbound states of the fmal nucleus, the 

resonance form factor formulated by Vincent and Fortune [46,47] has been applied. It is 

assumed that the resonance has a Breit-Wigner shape and in such a case the differential 

cross-section is given [ 47] by 

da fj.kdaP 
- = - - --
cK). 1i cK). 

(5.4) 

Here daF is the cross-section predicted at the energy of resonance ( the positive energy of 
~ . 

transferred proton relative to the core). r is the width of the resonance; 11 is the reduced 

mass of the transferred proton and the target nucleus; and k is the wave-number of the 

proton at the resonance energy. r is estimated from the relation [47] 

2 2Ji [1' z G d (G')] - = -- iu(r~ dr +--- . 
r ll2k o 2k dk a 

(5.5) 

Here u(r) is the radial wave function of proton in the field of target core and r = Rm= is 

the distance beyond which nuclear potentials are assumed to be zero. G and G' are the 

irregular Coulomb function and its derivative at r = Rmax , respectively. 
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5.1.2. DWBA Analysis of17Al(a,tj'Si Reaction 

The ZR and FFR DWBA calculations for the angular distributions have been 

performed using the computer codes DWUCK4 and DWUCK5 [39], respectively. Both 

the codes are modified to include Michel and molecular potentials. For the ZR calculations, 

a Gaussian form of fmite range correction in the local energy approximation [32,39] with 

the correction parameter R=O. 7 fm., has been used. Corrections due to non-locality [39) of 

potentials in the conventional form have been applied using the non-locality parameters 

J3(cx)=0.2, J3(t)=0.2 and J3(p)=0.85 fm. The FFR analyses have been performed for both 

bound and unbound regions using each of the Miche~ molecular and normal optical model 

types of potentials. 

5.1. 2.1. Choice of Potential Parameters 

For entrance channe~ the parameters of the molecular and Michel types of 

potential are generated by fitting the angular distributions of elastic data [ 44] using the Chi­

squared minimization code MINUIT (41] in conjl.Ulction with the optical model code 

SCAT2 [ 135] modified to incorporate the Michel and molecular potentials. The fits to the 

elastic data are shown in Fig.5.l. The normal optical-potential-parameter set used in the 

present analysis is taken from [ 136]. The parameters of all three types of potentials are 

given in Table 5.1. The parameters of the bound state geometry are also noted in Table 

5.1. For a bound state of 28Si in both the FFR and ZR calculations as well as for the 
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bound state of alpha in the FFR calculations, the single proton transfer wave function has 

been computed adjusting the WS potential well depth so that its eigenvalue equals the 

separation energy [32). 

For the triton potential in the exit channel different sets of triton potential have 

been employed. Two sets of triton potential<;, labeled set-1 and set-2 in Table 5.1, have 

been found to frt the data reasonably well with the molecular, normal optical or Michel 

potential in the entrance channel as can be seen in Figs. 5.2a- 5.2c. The set-2 of triton 

potential produces a slightly better fit at the larger scattering angle region when the 

molecular potential has been used in the a.-channel (Fig.5.2a). On the other hand, the 

normal optical or the Michel potential in the a.-channel produces good fit to the data for 

the set-1 of triton potential in the exit channel Fig. 5.2b. We have, therefore, fmally chosen 

the set-2 of triton potential with molecular potential and the set- I of the triton potential 

with the Michel or normal optical potential in the a.-channel for the analyses of the data. It 

is to be noted that, the sensitivity of the predicted cross-sections to the triton potential 

seems to be much stronger in the case of the normal optical potential in the entrance 

(Fig.5.2b) than for cases with the otha- two potentials. 

5.1.2.2. Angular distributions 

The FFR DWBA calculations for angular distributions for the best fits to the data 

using all three types of a.-nucleus potentials for various /-transfers are compared to the 

experimental data in Figs. 5.4- 5.9 for all levels. 
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The compariSon of the ZR and FFR DWBA calculations of the angular 

distributions for the ground state (g.s.) and the 11.58 MeV state, using the molecular, 

Michel and normal optical potentials with the experimental data are shown in Figs. 5.3a-

5.3c. 

The levels in Figs. 5.4-5.9 are grouped according to the associated /-transfers. The 

levels populated through the 1=2, 3, and 4 transfers are shown in Figs. 5.4-5.6, 

respectively. On the other hand, the levels which have been obtained through the 

incoherent sum of more than one /-transfers such as 1 = 0+2, 1+3 and 2+4 are shown, 

respectively, in Figs. 5.7- 5.9. The DWBA fit to the unresolved group at E~:=6. 88 MeV has 

also been shown in Fig. 5. 8 with the total incoherent contribution from 1=2+ 3. In the 

previous study, Yasue et al. [44]. associated 1=3 transfer for fitting 15.02, 15.85 and 16.11 

MeV transitions, but, in the present study, it seems to be 1=4. The predicted angular 

distributions using each of the molecular, Michel and normal optical potentials for both l-

transfers (1=3 and 1=4) are compared to the data in F ig. 5.1 0. Clearly the 1=4 transfer is 

preferred in aU three cases. 

5.1.2.3. Spectroscopic strengths 

The spectroscopic strengths of a reaction for a transition to a fmal state (lr;Tr) with 

the transferred conf~guration (lj) is related to the spectroscopic factor Sij [ 139] by 

- (2J, + t) 2 

GIJ- ( ) C S,. 21; + 1 I) 

(5.6) 
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where C is the Clebsch-Gordon coefficient involving iso-spins of the target and the fmal 

nucleus. 

The sum rule for the spectroscopic strength in case of the 27 Al(a.,t)28Si reaction can 

then be expressed [l39J by 

LG 11 = t(n - holes) for Tr = 1, 
lr 

= t(p - holes) - 1(n - holes) for 1~ = 0, 

where <p-holes> and <n-holes> are, respectively, the effective number of proton-holes and 

neutron-holes in the orbit (lj ). 

The total strength comprising transitions with T r =0 and 1 is then 

L G 11 = (p - holes). (5.7) 
Jr . • Tr 

The deduced sum of strengths for all /=2 transitions with j=3/2,5/2 transfers and T F O, 1 is 

L G = 2.33. This is almost half of the sum ruJe strength 5.0, the number of proton 

holes in the ld~12 and l d312 orbi.ts. Similarly, the sum of alll=O transition strengths for both 

T F O and 1 has been found to be L G = 0.96 which is again 50% of the expected sum of 

2.0. 

The extracted transition strengths for the (6- ;0) state at E:r= ll.58 MeV and (6-; l) 

state at E:r= l4.36 MeV; which, have stretched configuration (1d~12-1,1f712) in the shell 

model are 0.14 and 0.23 respectively, which is small compared to the expected full 

strength of 1.08 for each. One may, however, consider the fragmentation of 6- strengths 

is due to the deformed structure of 28Si-core, using the following assumptions, 
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(i) the vibrational state of the core does not change in the transition, (ii) the core has 

negative deformation and (iii) the proton-hole configuration in the target is I ji=5/2, 

Oy= l/2 > i.e. the target has Ji=5/2 and K;=l/2, 

one may calculate the spectroscopic strength due to deformation, can then be calculated, 

using the expression [ 140, 141 ] 

(5 .8) 

where CNli( Owa.) as defmed in [ 140, 14 1} are the coefficients connecting a deformed 

single particle state to spherical eigen-states, i ~ unity as K.;:A). The values of these 

coefficients have been taken from [142). Eq. (5 .8) with K r=4 results in a strength of 

G=0.083 for each of the (6-;0) and (6-;1) states, which is, indeed, small. 
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Table 5.1. Potential parameters used in the DWBA calculatiom for 27A1(a,ti8Si 

Channe4 a:+-27 AI tt28Si p¥'Al t+p 

Potential Optical Michel Molecular Optical Bound Bound 
type~ Bel-l Bel-J; state state 

v . (MeV) 218.0 80.20 52.81 143.82 56.30 V) V) 

r.(fm) 1.24 l. 617 1.55 1.19 1.40 1.25 1.25 
a.(fin) 0.68 0 .60 0.57 0.682 0.72 0 .70 0 .65 
V 1(MeV) 68.46 
R1(fin) 2.84 

a. 7.40 
p(fin) 2.90 
W.(MeV) 25.6 55.20 58.13 31.30 50.10 

rJ(fin) 1.24 1.53 1.28 1.40 
aJ(fin) 0.68 0.52 0.999 0.72 
R,.(fin) 3.35 
Wrf.MeV) 
r0 (fin) 
a0 (fin) 
v, . (MeV) 4.65 ~=25 ~=25 

r, . (fin) 0.996 

a •.•. (fin) 0.280 
rc(fin) 1.25 1.25 
Rc (fin) 5.10 3.90 9.30 3.94 3.94 

Ref . ---7 a) b) c) d) d) 

V) adjusted to give the separation energy; •> Ref. [136]; b) Ref. [I37J ; c) Ref[l38J; 41 Ref. [51] 
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Table 5.2. States of 2SSi observed in the 27 Al(a,t)'-Fs i reaction at Ea. ==64 .5 MeV 811d the deduced 
spectroscopic factors using different potentials. 

(2Jr+ l)C2Ss"' 

present work 
Ex J';T l(nlj) 

(MeV) a) b) c) d) e)t 

g.s. o'; o 2(0dsn) 4 .8 4 .5 4.5 4.6 
1.78 2'; 0 (O + 2) 0.7. 1.08 0.84, 1.26 0.672, 1.008 1.7, 1.2 
4.62 4'; 0 (2 + 4) 2.13 . . 022 2.90, 0.396 2.22, 0.117 2.5, 0.04 
4.98 o' ; o 2(0dll2) 0.4 2 0.6 0.75 0.48 
6.28 3'; 0 (0 + 2) 0.138. 1.24 0.36, 2.04 0.63, 1.47 0.39, 1.4 
6.69 o' ; o 2( Odll2 ) 0.03 0.048 0.048 0.04 

6.88} 3- ;o 

6.89 4+;o 
(2+3) 0.27, 0.03 0.57, 0.03 0.456, 0.024 0.65, 1.1, 2.6 

7.38} 2+ ;0 
(0+2) 0.3, 1.2 0.276, 1.104 0.15, 0.90 

7.42 2+; 0 
0.06, 0.86 

7.80 3'; 0 (O + 2) 0.26, 0.396 0.357, 0.663 0.315, 0.585 0.22. 0.35 
7.93 2'; 0 (0 + 2) 0.27, 0.672 0.63, 1.17 0.441, 0.819 0.7, 0.65, 0.06 
8.26 2'; 0 (0 + 2) 0.30, 1.20 0.1.5, 1.6.5 0.38, 1..5 0.13, 1.1 
8.41 4-; 0 (1 + 3) 0.48, 0.72 0.9. 0.9 0.9, 0.9 0.45, 1.0 
8.54 6'; 0 4 0.48 0.78 0.9 0.13 
8.59 3' ; 0 (0 + 2) 1.0, 1.51 2.85, 2.85 1.8, 1.8 0.8, 1.9 
8.90 1-; 0 (1 + 3) 0.048, 0.072 0.076, 0.032 0.055, 0.023 0.018, 0.048 
8.9-t 4 ' ; 0 (2+4) 0.054,0.023 0.022, 0.086 0.022, 0.086 0.11, 0.06 

5-; o or 3 0.054 0.066 0.036 0.06 
9.16 4 '; 0 4 O.o2 O.Q3 .03 0.06 
9.32 3 '; 1 (O + 2) 1.176. 0.50 1.95. 1.05 1.365, 0. 735 1.5, 0.49 
9.38 2'; 1 (0 + 2) 1.33. 0.88 3.36, 1.44 3.84. 0.96 1.6. 1.0 
9.48 2 '; 0 (0 + 2) 0.52, 0.90 1.5,1.5 1.026, 0.054 0.2, 0.24 
9.70 5-; o 3 1.20 1.8 1.8 1.8 
9.76 (2. 3r; o <' + 3) 0.038, 0.113 0.576, 0.144 0.385, .096 0.06, 0.17 
9.93 o. 2r; o 3 0.60 1.17 0.99 0.1 1 
10.21 (2- 4)'; 0 4 .096 0.126 0.126 0.17 
10.38 3' ; 1 (0 + 2) 0.66, 1.98 1.13, 3.38 0.75, 2.25 0.65, 2.3 
10.72 r ;0+ 1 (2 + 4) 0. 11 3. O.o38 1.92, 0.48 0. 144, 0.036 0.1 1, 0.009 
10.94 + (2 + 4) 0.70, 0.08 1.37, 0.072 1.083, 0.057 0.32 
11.10 (2+4) 0.105, 0.045 0.108, 0.072 0.072, 0.048 0.1, 0.04, 
11.14 2' (2 + 4) 0.363, 0.297 0.274, 0.068 0.168, 0.042 0.02, 0.06 

11.44} 
2+ ,3+ ,4+; (0,1) 

11.45 1+;1 (2 + 4) 2.96, 0.16 5.99, 0.315 3.99, 0.21 3.8, 0.39 

11.58 6"; 0 3 1.41 1.86 1.68 2.1 

[continued .. ] 
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Table S.l. (continued .. ) 

(2Jr + l)<;ls~ 

Ex J',T l(nlj) present work 

(MeV) a) b) c) d) e) t 

11 .80 + 2+4 0.19, 0.157 0.36, 0.36 0.5, 0.22 0.13, 0.12 
11.90 3-; 0 (1+3) 0.4, 0.08 0.126,0.294 0.099, 0.231 0.49, 0.17 

11.93 1 + 3 3.70, 0.195 5.67, 0.63 4 .28, 0.23 4.7 
11.97 (2',4); 0 2+4 0.59, 0.066 0.972, 0.108 0.11 , 0.066 0.5, 0.09 

or 3·; 0 or 1+3 0.41 , 0.221 0.655, 0.353 0.43, 0.23 0.4, 0.3 
12.07 (2~; 0 2+4 0.21 , 0.09 0.315, 0.135 0.252, 0.108 0.3, 0.09 

or 3 0.21 0.36 0.24 0.2 
12.24 3++4.;0 2+4 0.1, 0.06 0.144, 0.216 0.144, 0.216 0.27, 0.12 
12.30 t;o 4 0.39 0.51 0.51 0.06 
12.33 t •; l 2 0.72 1.32 0.9 0.55 

12.49 r :o 3 0.84 1.2 1.14 1.0 

12.66 4- ; I 3 3.00 5.4 4.2 3.8 

12.82 1-: 0 1+3 0.14, 0.32 0.20, 0.46 0.15, 0.36 0.03, 0.32 
13.25 s-; 1 3 3.30 5.4 4 .2 3.6 
13.99 3 0.63 1.02 0.78 1.6 
14.36 o; 1 3 2.40 2.88 2.7 3.7 
14.69 3 0.24 0.51 0.33 0.39 
15.02 4 0.15 0.21 0.21 0.70 
15.38 3 0.45 0.78 0.57 0.55 
15.55 + 4 0.12 0.21 0.15 0.09 
15.85 4 0.11 0 .. 222 0.156 0.36 
16.11 4 0.48 0.24 0.48 0.41 
16.50 + 4 0.14 0.24 0.18 O.o? 

• R = 2.0 is the light pmticle spectroscopic fuctor. 

t light particle spectro!lcopic fuctor is not mentioned in [44]. 

•> Ref. [151]; b) Optical; c) Miche~ dJ Molecular, c>. Ref. [44J. 
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Table 5.3. Comparison of the deduced spectroscopic strength• to the shell model predictions. 

G = (vr+tl czs 
(2J,+l) 

Ex J' ; T l(nlj) 
(MeV) a) present work b) shell-model c) 

g.s. o•; o 2(0dSI2) 0.375 0.53 
1.78 2•; 0 (0 + 2) 0.06, 0.08 0.38, 0.06 
4 .62 4•; 0 (2 + 4) 0.19, 0.01 0.33, 0.00 
4 .98 o•: o 2(0dsn) 0.06 0.05 
6.28 3+; 0 (0 + 2) 0.05, 0.12 0.34, 0.14 
6.69 o+: o 2( Od ll2 ) 0.004 0.005 

6.&8} r : o 3 0.002 0.0 

6.89 4+;0 2 O.Q38 0.27 

7.38} 2+: o 

7.42 2+; 0 
(0+2) O.o2, 0.09 0.02, 0.17 

7.80 3'; 0 (O + 2) 0.03, 0.05 0.357, 0.663 
7.93 2+; 0 (0+ 2) 0.04, 0.07 0.00, 0.13 
8.59 3•; 0 (O + 2) 0.15, 0.15 O.o35, 0.21 
9.32 3\ 1 (O + 2) 0.1 1, 0.06 0.38, 0.06 
9.38 2•;1 (O + 2) 0.32, 0.08 0.23, 0.05 
10.38 3•; 1 (0 + 2) 0.06, 0.19 0.01 , 0.20 
10.72 1. ;0+ 1 (2 + 4) 0.012, 0.006 0.015, 0.00 

11.58 6"; 0 3 0. 14 0.083 4) 

14.36 6"; 1 3 0.23 0.083 4) 

•> Ref.[l5l ]; b) Molecular potential; c) Ref. (143); d) Deformed shell-model [ 140,141 ]. 
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Fig.5.1. Fits to the a.-
27 

AI elastic scattering data at 64.5 MeV with molecular and Michel 

potentials. Data are from Yasue at a/. [44] 
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5.2. Study of (a, d) Reaction 

5.2.1. Formalism f or DWBA computation 

In absence of spin-orbit interactions, the differential cross-section for a (a.,d) 

reaction with a particular J-transfer in the DWBA theory [105] is given by, 

2 

~]B~ 
iz 

(5.9) 

Where, Jls and ks are, respectively, the reduced masses and wave numbers. The 

subscripts i andfrefer to the incident and outgoing channels, respectively. p1 = [n,l1J1] 

and p 2 = [n2 / 2J2 ] denote the orbital quantum numbers for the transferred nucleons in the 

fmal nucleus. /:1112 (p1p2 ; JO] are the spectroscopic amplitudes in the jj-coupling for an 

angular momentum transfer J and an isospin transfer T=O. [ ] refers to the normalized 9-j 

symbol, the LS-jj transformation factor [104]. Bft describes the !cinematic aspects of the 

reaction. In Eq.(5.9) the light particle spectroscopic factor c 2 s = 1.0 for (ex., d) reactions has 

been used. 

In the macroscopic DWBA calculations, no information on the structure of the 

cluster is required except the quantum numbers(N,L) as defmed by 

..... . (5 .10) 

where the quantum numbers v = 0 and A. = 0 are assumed for the relative Os-state internal 

motion of the transferred cluster. 
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In Eq.(5.1 0), only one N- value is considered to contribute, the two nucleons in 

the cluster being in the relative Os-state. 

1he structure amplitude Gu for two nucleon transfer, as de!med by Glendenning 

[ 1 04] is expressed as 

.... (5 .11) 

In Eq.(5.11 ), 0 00 denotes the overlap of the spatial wave function of relative 

motion of the two particles in the transferred cluster with the corresponding part in the 

incident a. particle. ( I ) represents the Brody-Moshinsky bracket [104,105,147]. 

The expression for cross section in terms of the cluster quantum numbers (N,L) 

parallel to Eq.(5 .9) can be written in the notation of Glendenning [104] as an incoherent 

sum over L andM as: 

(5.12) 

Denoting the cross sections calculated for an L-transfer and a J-transfer with the 

FFR code DWUCK5 [39] by ( da )u and taking advantage of the incoherent sum over 
dJ} Dl¥ 5 

the L-transfer(s), one can write the experimental cross section as, 
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(5.13) 

In the cases of 28,JOSi 1 1 = 0 , so the transferred total angular momentum 1 is 

unique, but for 29S~ J 1 = t, the transferred total angular momentum are restricted to two 

values 1=J1 and 12 . The spin transfer being unity in the (~d) reaction. one of the 1-

transfers, say 11 involves two orbital angular momentum transfers L =L1 and L2• On the 

other hand, 12 associates only one L=L3 which is equal to one of L 1 and L:z, say L1, such 

Thus, the above equation can be written explicitly as, 

(5. 14) 

Now, assummg ( da )c.,;. ~ ( da )c.,;l which ts valid m absence of any spin-orbit 
dn mrs dn mrs 

interaction and denoting A c., = (A L 1 );. + (A LJ );l , A LJ = (A LJ t. and taking off superscript 

J2 on ~ , Eq. (5. I 4) can be written as, ( 
d )L,Jl 
d.Q DWS 

(do-) _ (21 I+ 1)[ (do- )Ll (do- )£2 ] 
- - ALl - + A L2 -
df} ap (2J1 + 1) df} D, S dfl D, S 

(5. 15) 

On the other hand, the experimental cross-sections related to the microscopic cross-

(
da') L 

sections dQ) which has been calculated by the ZR code DWUCK4 (39) are given by, 
DW4 
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(5.16) 

~ in Eq. (5.16) is the normalization constant for the (a,d) reactions. The form of 

Eq.(5.15) shows that AL1 and ALZ are the spectroscopic factors [37, 150] for the L1 and L1 

transfers, respectively. The cross sections in Eq. (5.15) being incoherent sum of the 

contributions from the two L-values (for natural parity transitions only one L-transfer L=J 

permitted) L = J ± 1, the spectroscopic factor [ 150) ALfor each of the L-transfers and the 

normalization constant ~ can be extracted from Eq.(5.15) and Eq.(5.16) respectively by 

fitting the experimental cross sections. 

5.2.2. DWBA analysis ofz'Si(a,d/"P reaction 

1he microscopic zero-range and macroscopic full fmite-range (FFR) DWBA 

calculations for the angular distributions have been performed using the computer codes 

DWUCK4 and DWUCK5 [39), respectively. Both the codes are modified to include the 

:Michel potential. Corrections due to non-locality (32,39] of potentials in the conventional 

form have been applied using the non-locality parameters ~(a.)=0.2, ~(d)=0. 54 and 

~(p)==0.85 fm. ln both the microscopic ZR and macroscopic FFR calculations, the 

molecular, :Michel and normal optical types of a.-18Si potential and the optical d-30p 

potential have been employed. The parameters of the molecular and Michel potentials are 

taken from the work of Tariq et aL [19]. The a.-18Si elastic fits are furnished in Fig. 

5 .11 . The parameters of the normal shallow optical potentials for the incident channel are 
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from Jankowski et al. [ 18]. Several sets of the d-30p optical potentials including that from 

[ 18] have been tried, but only the one from the work of Fitz eta!. [ 148] produces the best 

fit. All the potential parameters employed in the present analyses are displayed m 

Table.5.4. 

5.2.2.1. MacroscopicDWBA calculatimrs 

The macroscopic analyses have been performed using the full fmite-range DWBA 

code DWUCK5 [39]. The parameters for the bound-state geometry of the d-d and d-28Si 

Woods-Saxon (WS) potentials, shown in Table 5.4 are taken from [18]. The bound state 

wave functions for the transferred deuteron-cluster in alpha as well as the fmal nucleus 

have been generated by adjusting the deuteron separation energies. At the start of 

calculations, the accuracy parameters used in the code DWUCK5 have been assigned 

appropriate values, to defme effective width of wave numbers [39, 149] in the expansion 

of the distorted waves in terms of plane waves for making the zero-range calculations 

identical to those from the code DWUCK4 [39]. This ensures the necessary .. convergence" 

for the integral for the zero-range form-factor, defmed in Eq.(3.9) of Charlton [ 149]. 

The cluster configurations of the transferred deuteron for the different states of 

excitation are shown in Table 5.5. For the fmal states with natural parity, populated by one 

L-transfer, the DWBA predictions are normalized to the data to yield the relevant 

spectroscopic factor AL as defmed in Eq. (5 .15). On the other hand, for the transitions 

involving two L-transfers, leading to the fmal states with unnatural parity, the 

spectroscopic factors are obtained by minimizing the X2 defined by 
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(5 .17) 

where a cp ( 01 ) = ( da ( 01 )) and 6o ~ ( e i) are, respectively, the experimental cross 
df} cp 

section, as defmed in Eq. (5 .15), and its error at the scattering angle ei . o 0 w(ei) is the 

cross section predicted by the DWBA theory. 

The DWBA predictions with the molecular (solid curves), normal optical (broken 

curves), and Michel (dotted curves) potentials are compared to the data of the ground 

(1 +), 0.709 ( 1+), 1.454 (2+), 2 .72 (2•) and 3.02 MeV (2+) states in Fig. 5. 12~ to the data 

ofthe 1.974 (3+), 2.538 (3+), and 2.84MeV (3+) states in Fig. 5.13; and to the data ofthe 

3.93 (2-), 4 .63 (3+) and 5.42 MeV (i") states of 3<i> in Fig. 5. 14. It is amply clear from 

Figs. 5.12- 5.14 that the calculations with the molecular potential produces the best fits to 

data for all the transitions. Furthermore, the Michel potential generates cross sections, 

which are lower by l to 2 orders of magnitude than those predicted by either the normal 

optical or the molecular potential. Table 5.6 gives the comparison of the total 

spectroscopic factors for the cluster transfer for the three types of potentials. 

The compiled work of Endt and van der Leun [ 151] suggests alternative spin-

parity for the 3.93 MeV state as J"= J+,T or 3+. While de Meijer et aL [31] assigned J"=3+ 

for the state, Jankowski et aL [18] suggested T . The DWBA calculations with the 

molecular potential for both 1"=2- and 3+, are compared to the experimental cross section 

in Fig.5. 15. The J" = 2- assignment is clearly favored, confuming the observation of 

Jankowski et aL [ 18]. 
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5.2.2.2 MicroscopicDWBA calculations 

The microscopic ZR DWBA calculations have been performed using the zero­

range code DWUCK4 for the positive parity states with the transferred particles stripped to 

the sd-shell The present analyses make use of three sets of spectroscopic amplitudes ~112 , 

two sets based on the FPSDI and MSDI Hamiltonians as defmed in Wildenthal et aL 

[144] and the shell-model wave functions of the 28Si and 30p nuclei given by Wildenthal et 

al. [ 144, 145] and the third one, labeled by CW [37], derived from the wave fWlctions of 

Chung and Wildenthal referred to in [37]. The FPSDI and CW amplitudes are taken from 

de Meijer et al. [37] , while the MSDI amplitudes are from Jankowski et al. [18). All the 

three sets of spectroscopic amplitudes are calculated in the model space of Od,11-l ~11-0d311 . 

The spectroscopic amplitudes are presented in the Table (5.8- 5.10). Since the codes 

DWUCK4 and DWUCK5 assume that the spherical harmonics carry a time reversal phase 

of i 1
, a factor not used in the phase conventions adopted in the calculations of the 

spectroscopic amplitudes [37], the amplitudes have been multiplied by an extra phase of 

;'• +1,-L before feeding these to the codes. 

The bound state wave functions for each of the transferred nucleons have been 

generated by assuming a real Woods-Saxon well with the geometry parameters r 0=1.25 fm. 

and ao= 0.65 fm. and the depth adjusted to produce the binding energy equal to half the 

separation energy of the transferred deuteron. A Thomas-Fermi spin-orbit term with A-=25 

has also been used for the bound state wave functions. 
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A Gaussian form of fmite range correction in the local energy approximation [39] 

has been investigated. Fig. 5.16 compares the microscopic DWBA calculations for the 

molecular type of a.-28Si potential using R=O.O fin. (broken curves), 0.7 fm. (solid curves) 

and 0. 85 fm. (dotted curves) to the experimental data for the ground (1 +), 2. 53 (3+), 2. 84 

(3+) and 3.02 MeV (2+) states. The fmite-range correction with R=O. 7 fin improves the fits 

to the data. 

lhe effect of the three types of the a-28Si potential on the microscopi~ DWBA 

calculations has also been examined using the spectroscopic amplitudes J3112 calculated 

from the FPSDI interaction. Fig. 5.17 displays the DWBA predictions for the molecular 

(solid curves), normal optical (broken curves) and Michel (dotted curves) potentials, 

compare to the data for the ground (1 +). 0. 71 (1 +), 1.45 (2+) and 1.97 MeV (3+) states of 

30p. As in the case of the macroscopic analyses, the molecular potential provides the best 

description of the data and the Michel gives the worst. Moreover, the predicted cross 

sections with the Michel potential are so small that they need normalization factors (Table 

5.6), larger by orders of magnitude compared to those for the molecular and normal optical 

potentials. 

Figs . . 5 .18 and 5.19 display the comparison of the microscopic DWBA calculations 

with fmite-range parameter R=0.7 fm. and the molecular a-28Si potential, for the FPSDI 

(solid curves), CW (broken curves) and MSDI (dotted curves) interactions. The 

calculations with the three interactions produce more or less the same quality fits to the 

data for the ground (1 +), 0. 709 (1 +), 1.454 MeV (2+) states (Fig.5.18). The FPSDI and 

CW amplitudes produce identical predictions for the 2. 72 MeV (2+) state (Fig. 5.18) and 
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2.84 MeV (3+) state (Fig. 5.19) and the same quality fits to the 1.97 (3+) and 2.538 (3+) 

MeV states (Fig. 5. t 7). For the 3.02 MeV state, FPSDI gives a better description at large 

scattering angles than C W does (Fig. 5.18). Nonetheless, the spectroscopic amplitudes 

~ from the three interactions produce completely different spectroscopic factors sf, as listed 

in Table 5.5. Moreover, the experimental cross sections for the reaction leading to the 

ground (1 +), 0.709 (1 +), 1.454 (2+), 1.974 (3+), 2.538 (3+), 2 .72 (2+), 2.84 (3+) and 3.02 

MeV (I+) states of 30p, need normalization constants as listed in Table 5.7, which are 

widely different and inconsistent . 

The 7.20 MeV (T ) state is considered to have a pure stretched (Of7fli 

configUration leading to the spectroscopic amplitude for the (a.,d) reaction as P112 = 1.0 

(35,37). This model independent value of p112 has been used to deduce the normalization 

constant for the reaction as ~=722 ± 25, which compares closely with ~=870± 20 and 

650± 20 obtained, following two methods for calculating the form-factors, by de Meijer et 

al (37]. But only a few of the extracted ~-values for other states given in Table 5. 7 are 

close to the model independent-value, deduced from the reaction data for the 7.20 MeV 

state. AJI the normalization constants extracted using molecular, normal optical and Michel 

potentials are exhibited in Tables (5 .8- 5.10) along with the corresponding spectroscopic 

amplitudes for three interactions. None of the FPSDI, CW and MSDI interactions produce 

a consistent set of values for the normalization constant. 

5.2.2.3. Calculation of the spectroscopic factors 

The model dependent spectroscopic factors are calculated from the FPSDI, CW 

and MSDI spectroscopic amplitudes {3 112 by the method outlined in [37]. Since the 



126 

spectroscopic factor for the 7.20 MeV state is unity, the spectroscopic factor for other 

transitions can be given by 

(5.18) 

where the structure factor Gu is expressed through Eq. (5.11) and G 67(7.20) = 0.56000 

denotes the value of the structure factor for the 7.20 MeV state. 

The total spectroscopic factor S 0 for a transition is then given by 

(5.19) 

The S~ values, which are listed in Table 5.5, are calculated using the FPSDI and 

CW spectroscopic amplitudes taken from de Meijer et aL [37]. For the MSDI interaction, 

the Sr values are calculated using Eq. (5.18) from the MSDI spectroscopic amplitudes 

from Jankowski et al. [18]. The predicted spectroscopic factors S~ and S0 are compared 

in Tables 5.5 and 5.6. to the experimental spectroscopic factors ALand l:AL respectively, 

deduced from the macroscopic analyses. 



127 

Table 5.4 .. Potential pararnetm UBed in the DWBA calculations for 2SSi(a.,d)30P reaction. Vis adjUBted 
to give the separation energy. 

Channel a.+30Si d+3'1> d+d d+30Si 
Type Molecular' Michel' 0Etical& OEticar Bound stateli 

V0 (MeV) 27.0 25.0 50.42 102.7 v v 

Ro (fin) 5.52 5.20 

r0 (fm) 1.699 1.07 1.05 0.935 

8o (fin) 0.34 0.46 0.505 0.852 0.50 0.997 

V1 (MeV) 42.5 

Rt (fin) 2.90 

a. 7.12 

p (fm) 6.45 

W0 (MeV) 17.0 34.0 10.34 

Rw (fin) 4.1 4 .05 

r1(fm) 1.699 

a1(fm) 0.65 0.505 

Wn(MeV) 16.10 

rn (fin) 1.53 

an(fm) 0.574 

Vso(MeV) 6.0 

f 10 (fin) 1.07 

a,0 (fm) 0.852 

rc(fin) 1.30 1.30 1.15 1.25 1.3 

Rc(fin) 9.35 

• Ref. [19]. 
b Ref. [18]. 
c Ref. (148]. 
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Table 5.5 .. Cluster spectroscopic factors of the 28Si(a.,d)30P reaction are compared to the theoretical shell-
model factort! for the FPSDI, CW and MSDI interactions. FPSDI and CW spectroscopic facton are taken 

from Ref.[37]. MSDI filcton are calculated from the 1pectrocopic amplitudes ~ 112 of Ref.[ 18] by the 

method outlined in (37). S7 values are normalized to the value of Ia ~2!l 12 
for the 7.20 MeV etate. 

E. J" Cluster Cluster Spectroscopic Factor Shell-model Spectro1oopic 
Con fig . Factor 

s~ = jal.l;r~zolz 
(MeV) N,L A I 

L ALb Ae 
L FPSDI cw MSDI 

0.0 I+ 2,0 0 .23±0.07 1.76±0.20 0.28 0.448 0.043 0 .168 
1,2 0.23±0.07 d 0.56 0.237 0.121 0.031 

0.709 1+ 2,0 0.16±0.07 1.45±0.20 0.029 0.030 0 .020 
1,2 0.24±0.08 d 0.85 0.617 0.274 0.038 

1.454 2+ 1,2 0.25±0.05 0.20±0.04 0.32 0.372 I 0.081 7.8x 10-4 

1.974 3+ 1,2 0.11±0.04 0 .72±0.13 0.041 0.078 0.004 

0,4 0.09±0.03 0.47±0.20 6.} X to·-4 0.134 1.5 X 10'3 

2.538 3+ 1,2 0 .16±0.04 0.67±0.14 0.015 0.165 
0,4 0.07±0.03 < 0.25 0.426 0.076 

2.72 2+ 1,2 0.28±0.05 0.12±0.02 0.34 0.058 0.045 

2.84 3f. 1,2 0.08±0.02 0.16±0.07 0 .007 0.007 
0,4 0.09±0.02 0.33±0.11 0 .334 0 .254 

3.02 1+ 2,0 0 .03±0.02 0.51±0.15 0.27 9.7 X 10-4 0 .319 
1,2 0 .32±0.05 0.06±0.10 0.35 1.4x 10·3 0.021 

3.93 2' 2,1 0.11±0.04 0.32 
1,3 0.18±0.04 

(3+) (1,2) (0.06±0.05) (0.14±0.05) 
(0,4) (0.08±0.05) (0.05±0.06) 

4.62 3' 2,1 0.15±0.04 0.17±0.02 0.30 

5.42 2' 2,1 0.54±0.09 
1,3 0.06±0.03 0 .86 

• Present work. 
b Ref [37). 
<Ref (18). 
dToo smaD. a value to quote. 
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Table 5.6. Comparison of deduced total spectroscopic facton ofthe 28Si(a.,dj0P reaction from the 
macroscopic and the nonnalization facton for the microscopic FPSDI calculations using the molecular, 
norm al optical and Michel potentials . Total spectro1copic factor is the sum of the spectroscopic factotw for 
the two L-transren for the unnatural parity states. 

~ Jll L Total spectroscopic facton L AL Normalization constant~ 

(MeV) Macroscopic calculatioiUI Microscopic calculatioiUJ 
Molecular Optical Michel Molecular Optical Michel 

0.0 t+ 0+2 0.46 0.74 23.4 2ro 4ro 7000 

0.709 t+ 0+2 0.40 1.33 30.0 70 85 8000 

1.454 2. 2 0.25 0 .50 11.0 270 950 lroQ 

1.974 3+ 2+4 0.20 0.57 20.0 1500 2000 35000 
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Table 5. 7.Nonnalization construtt ~ for the microscopic zero-range calcuJations of~i(a,d)30P for 
different shell-model intemctions. ~m is the relative nonnalization conlrtant to the model independent 
~=722 for the 7.20 MeV state. 

E,. J" L Nonnalization construtt ~ Relative nonnalization constant~ • .~ 
(MeV) Interaction Interaction 

FPSDI cw MSDI FPSDI cw MSDI 

0.0 t+ 0+2 2ro 4000 800 0.388 S.S40 1.108 

0.709 t+ 0+2 70 tro 1500 0.096 0.249 2.08 

1.454 2+ 2 270 850 5500 0.374 1.177 7.618 

1.974 Jl- 2+4 1SOO 500 7000 2.(!71 0.692 9.965 

2.538 3+ 2+4 220 900 - 0.304 1.246 -
2.72 2+ 2 550 4500 - 0.762 6.233 -

2.84 3+ 2+4 350 450 - 0.484 0.623 -

3.02 1+ 0+2 14000 450 - 19.39 0.623 -
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Table 5.8. Spectroscopic amplitudes and normalization constant for transition.t in the 28Si(a.,d)30P reaction using molecular potential 

Spectroscopic amplitude& Normalization constants 

E a) 
:r 

(MeV) I'" Interaction ~/2~/2 ~5/2 d 5/2d312 91/28112 s,,~J/2 dJ/~3/2 NFPSDI NMSDI New w•l 

0 1+ FPSDI bl -0.1291 - -0.0576 -0 .7264 -0.3659 +().2000 280.0 - - 0 .350 

MSDI c) -0.09593 - +0.03974 -0.40482 -0.13899 +0 .08527 - 800 - 1.000 

cw b> -0.1 071 - -0.2557 -0.3346 -0.1859 +0.1727 - - 4000.0 6 .00 

0.71 1+ FPSDI +0.0130 -0.0737 -0 .3089 +0.7348 -0 .1835 10.0 0 .08 7 

MSDI -0.03825 +0.04540 -0.14308 + 0.16475 -0 .07733 1500.0 - 1.88 

cw -0.0054 -0 .0070 -0.2429 +0.4129 -0.1418 180.0 0.225 

1.45 2+ FPSDI +0.0556 +0.0044 +0.7385 270 0.340 

MSDI -0.15 183 -0.0050 1 +0.16456 5500 6 .874 

cw +0.0173 -0.1422 + 0.4527 850 1.06 

[ Cont:inned .. ] 
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Table 5.8. [continued..] 

Spectroscopic amplitudes and normalization constant for transitioN in the 28Si(a..d)30p reaction using molecular potential 

Spectroscopic amplitude N ormal.ization constants •• 

E •> 
X 

(MeV) J+ Interaction ~/2~12 d512.512 d5/2d312 91/~1/2 Btf2d312 d3/2d312 NFPSDI NMSDI New N"l 

1.97 3+ FPSDI -0.0001 -0.2131 -0.0329 - - +0.0098 1500.0 - - 1.875 

MSDI +0.08666 -0.08176 +0.05548 - - - - 7000.0 - 8.750 

cw +0.0700 +0 .2618 -0.0445 - - +0.3502 - - 500 6 .00 

2.54 3+ FPSDI -0.0105 -0.0458 +0.0829 +0.6726 220.0 0.274 

CW +0 .1005 +0.3200 -0.0807 -0.2881 900.0 1 . 124 

2.72 2+ FPSDI -0.0723 +0. 1274 -0.3415 550.0 0 .686 

cw +0.0506 -0.3035 -01072 4500 5.624 

[Continued ... ] 
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Table 5.8. (continued.] 

Spectroscopic amplitudes and normalization constants for transitions in the 28Si(a.,d)30p reaction using molecular potential 

Spectroscopic amplitude Normalization CoJlltanu •• 

E •> :r 

(MeV) r Interaction d"2ds12 ds12s512 dsnd3n Stf2Sl12 s t/2d312 d3/2d3/2 NFPSDI NMSDI New Nral 

2.84 3+ FPSDI -0.0081 +0.0914 -0.1004 +0.5200 350.0 0.438 

cw +0.0174 -0.0506 +0.2130 -0.3979 450.0 0 .562 

3.02 1+ FPSDI +0.0004 -0.0499 -0.0392 -0.0121 -0.1595 1.40xl04 

cw +0.2574 -0.3648 +0.2212 +0.0859 -0.2665 450.0 0 .562 

a) P. M. Endt and C. van der Leun, Nucl. Phys. AJ10(1978)1.[151) 
b) R. J. de Meijer, L . W. Put, J. J. Akerman, J. C. Vermenlen, and C. R. Bingham, Nucl. Phys. AJ86(1982)200.[37) 
c) K. Jankowski. A. Grzeszuk. M. Siemaszko, A. Surowiec, W. Zipper, A. Budzanowski. and E. Kozik, Nucl. Phys. A416(1984) 1-19.(18] 

*-NFPSDI = Nonnalization Conmurt using molecular potential and Spectroscopic amplitude• extracted from FPSDI interaction; 
NMSDr Nonnalization Constant using molecular potential and Spectroscopic amplitudes extracted from MSDI interaction; 
New= Nonnalization Conmmt Uling molecular potential and Spectroscopic amplitudes extracted from CW interaction 

17.51 

NreL= Noonal.ization Constants relative to the Normalization Constant= 800.0 obtained for the Ex=7.20 MeV; f"=r state ultlltling a l.OOO(lf71:z)2 

spectroscopic amptitude. 
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Table-5.9. Spectroscopic amplitudes and normalization constanta for transitions in the 28Si(a.,d)30P reaction using optical potential 

Spectroscopic amplitudes Normalization constants 

E •> .. 
(MeV) r Interaction ~n~n d~n8~t2 ds12d312 81128112 s112d3n d 312d312 NFPSDI NMSDI New wei 

0 1+ FPSDi bl -0.1291 - -0.0576 -0.7264 -0.3659 +0.2000 480.0 - - 0 .80 

MSDI eJ -0.09593 - +0.03974 -0.40482 -0.13899 +0.08527 - 100~ 1.25 

cw b> -0 .1071 - -0.2557 -0.3346 -0.1859 +0.1727 - - 5000.0 6 .25 

0. 7 1 1 + FPSDI +0.0130 -0.0737 -0.3089 +0.7348 -0.1835 85 .0 0 .100 

MSDI -0.03825 +0.04540 -0.14308 +0.16475 -0.07733 1800.0 - 2 .2 5 

cw -0.0054 -0.0070 -0.2429 +0.4729 -0.1418 180.0 0 .263 

1.45 2+ FPSDI +0.0556 +0.0044 +0.7385 280 0 .352 

MSDI -0.15183 -0.00501 +0.16456 9000 1 1.25 

cw +0.01 73 -0 .1422 +0.4527 950 1.188 

[Continued. .. ] 



135 

Table 5.9. [continued..] 

Spectroscopic amplitudes and normalization constant for transition~ in the 2Bsi( a.,d)30P reaction using optical potential 

Spectroacopic 8.1t1plitude Normalization constants • * 

E a) 

" (MeV) r Interaction d~,2~12 d5f2ll~/2 d512d3/2 9 Jf281/2 s,l2d312 d312d3/2 NFPSDI NllSDt New wel 

1.97 3+ FPSDI -0.0001 -0.2131 -0.0329 - - +0.0098 2000 .0 - - 2.5 

MSDI +0.08666 -0.08176 +0.05548 - - - - 8000.0 - 10.0 

cw +0.0700 +0.2618 -0.0445 - - +0.3502 - - 800 1.0 

2.54 3+ FPSDI -0.0105 -0 .0458 +0.0829 +0.6726 10.0 0 .125 

CW +0.1005 +0.3200 -0.0807 -0.2881 1100.0 1.375 

2.12 z+ FPSDI -0.0723 +0.1274 -0.3415 600.0 0.75 

cw +0 .0506 -0 .3035 -01072 5500 6 .88 

[ Cooti:nued. .. ] 
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Table 5.9. [continued.] 

Spectroscopic amplitudes and normalization conttant for tranaitiona in the 2SSi(a.,d)30P reaction llBing optical potential 

Spectroscopic amplitude Normalization Constants • • 

E •> 
~ 

(MeV) r Interaction ds,~512 dsn•s/2 d snd3n s ,/2, 112 S112d 312 d 312d312 NFPSDI NWDr New N rel 

2.84 3 ... FPSDI -0.0081 +0.09 14 -0.1004 +0.5200 9200 11.5 

cw +0 .01 74 -0 .0506 +0 .2130 -0.3979 12000 1.5 .0 

3.02 1+ FPSDI +0.0004 -0.0499 -0 .0392 -0.0121 -0.1595 

cw +0.2574 -0 .3648 +0.2212 +0.0859 -0.2665 

a) P. M. Endt and C. van der Leun, Nucl. Phys. AJ10(1978)1 (151]. 
b) R. J. de Meijer, L. W . Put, J. J. Akerman, J. C. Vermenlen, and C. R. Bingham, Nucl. Phys. AJ86( 1982)200 (37]. 
c) K. Jankowski, A. Grzetzuk., M. Siemaszko, A. Surowiec, W. Zipper, A. Budzanowski, and E. Kozik., Nucl. Phys. A4l6( 1984) 1-19 (18] . 

**NFPsDr = Normalization Constant uling optical potential and Spectroscopic amplitude• extracted from FPSDI interaction; 
NMsor Normalization Constant u&ing optical potential and Spectro~eopic amplitudes extracted from MSDI interaction; 
New= Normalization Conatant llling optical potential and Spectroecopic amplitudes extracted from CW interaction 
Nre1.= Noonalization Constanta relative to the Normalization Collltant= 800.0 obtained for the Ex=7 .20 MeV; J"=T state assuming a 1. 000( 1 f 7n)2 

spectroscopic~-
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Table 5.1 0. Spectroscopic amplitudes and nonnalization corurtant for t:ransitions in the 2Bsi(a.,d)30P reaction lll:ing Michel potential 

Spectroscopic amplitudes N onnalization c011.1tants -

E a) 
z 

(MeV) r Interaction d.snd.s/2 ds12ss,2 dsl2d 312 St/211 112 Btnd3!2 d3/2d312 NFPSDr NYSDr New N'"•l 

0 1. FPSDI bl -0.1291 - -0.0576 -0.7264 -0.3659 +0.2000 7000 - - 8.75 

MSDI c> ~.09593 - +0 .03974 -0.40482 -0.13899 +0.08527 

cwo> -0 .1071 - -0.2557 -0.3346 ~.1859 +0.1727 - - 70000.0 87 .5 

0.7 1 1• FPSDI +0.0130 -0.0737 ~.3089 +0.7348 ~.1 835 8000.0 10.0 

MSDI -0.03825 +0 .04540 ~.14308 +0.1 6475 ~.07733 

cw -0.0054 -0 .0070 ~.2429 +0.4729 -0 .1418 6000 7.5 

1.45 2+ FPSDI +0.0556 +0.0044 +0. 7385 1800 2 .25 

MSDI ~. 15183 -0.00501 +0.16456 

cw +0.0173 -0.1422 +0.4527 18000 22.5 

[Continned ... ] 
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Table 5.10. [continued..] 

Spectroscopic amplitudes and nonnalization constant for transitions in the 28Si(a.,d)30P reaction using Michel potential 

Spectroscopic amplitude Normalization constants•• 

E •> 
" (MeV) r Interaction ds12~12 ds12Bst2 ds12d312 SJf28112 s,l2d3/2 d312d3/2 NFPSDr Nwsor New i'Fel 

1.97 3+ FPSDI -0.0001 -0.2131 -0 .0329 - - +0.0098 35000 - - .t3 . 7 5 

MSDI +0.08666 -0.08176 +0.05548 

cw +0.0700 +0.2618 -0.0445 - - +0.3502 - - 1500018.75 

2.54 3 ... FPSDI -0.0105 -0.0458 +0.0829 +0.6726 7000 8 .75 

cw +0.1005 +0.3200 -0.0807 -0.2881 17000 21.25 

2.72 2+ FPSDI -0.0723 +0.1274 -0.3415 300.0 0.375 

cw +0.0506 -0.3035 -01072 90000 11.25 

[ Cootinued .. ] 
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Table 5.10. [continued .. ] 

Spectroscopic amplitudes and normal.ization constant for transitions in the 2Bsi( a.,d)30P reaction using Michel potential 

Spectroscopic amplitude Nonnalization Constants •• 

E a) 

" (MeV) :r+ Interaction ds12ds12 dsnist2 dsnd312 8lf28 ll2 8Jt2d312 d312d312 NFPSDI Nysor New N r d 

2.84 3+ FPSDI -0.0081 +0 .0914 -0.1004 +0.5200 2.9x1cf 36.25 

cw +0.0174 -0.0506 +0.2130 -0.3979 1.9xl05 237 .5 

3.02 1+ FPSDI +0.0004 -0.0499 -0.0392 -0.0121 -0.1595 

cw +0.2574 -0.3648 +0.2212 +0 .0859 -0 .2665 

a) P.M. Endt and C. van der Leun., Nucl. Phys. AJ10(1978)1 [151]. 
b) R. J. de Meijer, L. W . Put, J. J. Akerman, J. C. Vermenlen, and C. R. Bingham, Nucl. Phys. AJ86(1982)200 (37]. 
c) K. Jankowski, A. GTZeszuk., M. Siemaszko, A. Snrowiec, W. Zipper, A Bud.zanowsk:i, and E. Kozik, Nucl. Phys. A426(1984) 1-19[ 18]. 

**NFPSDI =Normalization Con.stant llli.ng Michel potential and Spectroscopic amplitudes extracted from FPSDI interaction; 
Nysor Nonnalization Constant using Michel potential and Spectroscopic amplitudes extracted from MSDI interaction; 
New= Normalization Comtant using Michel potential and Spectroscopic amplitudes extracted from CW interaction 
Nrel.= Nonnaliiation Constants relative to the Normalization Constant= 800.0 obtained for the Ex=7 .20 MeV; r'=r state assuming a 1.000( 1 f 712i 
spectroscopic a.mpJitnde. 
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28Si(a.,a.)28Si at 26 MeV 
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Fig.5.11 . Fits to the a-
28

si elastic scattering data at 26 MeV (lab.) with the molecular, Michel, 

deep and shallow normal optical potentials. Data are from [9] 

180 
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Fig.5.12. Comparison of the full finite-range macroscopic DWBA calculations for the 
28

Si(a.,d)
30

P reactionat 26 MeV leading to the 1 +and 2 +states of 
30P to the 

differential cross-section data .The solid, broken and dotted curves are the predictions 

using the molecular, normal optical, and Michel a.-28si potentials, respectively. 

Data are from [18). 
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Fig. 5.13. Same as in Fig.5.12 for the transition to the 3 + states of 
30

P. 

Data are from (18]. 
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Fig. 5.14. Same as in Fig.5.12 for the transition to the 2- and 3-

states of 
30

P. Data are from (18). 
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21SI(a,d),.,P 
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(Asst.mlng 2") 

· · · · · · · · · · · · · (Assl.mlng 3• ) 
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Fig.5.15. Full finite-range macroscopic DWBA calculations using 

the molecular a-28si potential for the 3.93 MeV state assuming 

the spin-parity J'l =2- (solid curve) and 3 +(dotted curves) 

are compared to the data. Data are from [18] 
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Fig. 5.16. Comparison of the zero-range microscopic DWBA calculations using the FPSDI 

spectroscopic amplitudes and the molecular potential in the a.-channel for the 
28

si(a.,d)
30

P 
. . + + + + 30 

react1on at 26 MeV leadmg to the ground (1 ), 2.538(3 ), 2.84(3 ) and 3.02 (2 ) MeV states of P 

to the differential cross-section data. The solid curves are the predictions using the finite-range (FR) 

correction with FR parameter R=O. 7 fm. The broken and dotted curves are the predictions with 

R=O.O and 0.85 fm., respectively. Data are from [18]. 
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Fig. 5.17. Comparison of zero-range microscopic DWBA calculations with FR correction 
28 . 30 . . + + + 

for tne Sr(a.,d) P reactron at 26 MeV leadrng to the ground (1 ), 0. 709(1 ), 1.454(2 ), 

1.93(3\ and 7.20 (7+) MeV states of 30P to the differential cross-section data. The solid, 

broken and dotted curves are the predictions using the molecular, optical and Michel a.-28s; 
potentials, respectively. Data are from [18] 
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Fig. 5.18. Comparison of zero-range microscopic DWBA calculations with FR correction 

and the molecular potential for the 
28

Si(o.,d)
30

P reaction at 26 MeV, leading to the 1 + and 2 + 

states of 
30

P to the differential cross-section data. The solid, broken and dotted 

curves are the predictions using the FPSDI, CW, and MSDI spectroscopic amplitudes. 

Data are from {18]. 
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Fig.5.19. Same as in Fig. 5.18. for transitions to the 3+ and 7+ states of 
30

P. 

Data are from [18]. 
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5.2.3. DJVBA mta/ysis of the 19Si(a,d)31 P reaction. 

Both the macroscopic full finite-range DWBA and mia-oscopic zero-range 

DWBA calculations have been performed in the case of the 29Si( a.,d)31P using the 

computer code DWUCK5 and DWUCK4 [39] respectively. Corrections due to the non­

locality [32,39J of potentials have been applied using the non-locality parameters 

p(a.)=0.2, p(d)=0.54 and J3(p)=0.85 fin. In both the macroscopic FFR and the microscopic 

ZR calculations, the molecular, Michel and normal optical types of a.-29Si potential used, 

have been generated in the present work by fitting the elastic data [45], as shown in Fig 

5.20. The d-31P optical potential parameters are taken from the work of Fitz et aL [148]. 

All the potential parameters used are displayed in Table 5.11 . 

5.2. 3.1 . M aero scopic D WBA Calculations 

The macroscopic analyses have been performed using full fmite-range DWBA. 

The parameters of bound-state geometry for the d-d and d-29Si Woods-Saxon (WS) 

potential, shown in the Table 5.11 are taken from [18]. The bound-state wave functions 

for the transferred deuterons in alpha as well as in the final nucleus have been generated 

by adjusting the deuteron separation energies. The accuracy parameters used in the 

computer code DWUCK5 have been assigned in the same way as performed in the study 

of the 28Si(a.,d)30p reaction. 

The cluster configurations of the transferred deuteron for the different states of 

excitation are shown in Table 5.12. It is to be noted that for the (a.,d) reaction on 19S~ 

there are two possible values of the total transferred angular momentum J for odd J and 

even parity or an even J and odd parity. For the fmal states populated by more than one 
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L-transfers for a single J transfer, the cross-sections are added incoherently and the 

spectroscopic factors AL are deduced from Eq. (5.15) coupled with the minimization of 

z2 defmed in Eq. (5 .17). On the other hand, for the transitions, involving more than one 

J transfer , use of Eq. (5 .15) along with the minimization of z 2 leads to the extraction of 

the total spectroscopic factor for the same L, but diffa-ent J transfers. The deduced 

spectroscopic factors are listed in Table 5.12. 

The DWBA predictions with the molecular (solid curves), standard optical 

( broken curves ) and Michel ( dotted carves) potentials are compared to the data of the 

ground (1/2'" ), 1.27 (312\ and 2.23 (5/2+) MeV states in Fig. 5.21; to the data of 3.13 

(112+), 3.30 (5/2+) and 3.41 (7/2+) MeV states in Fig. 5.22 and to the data of 

3.51 (3/2~, 4.19 (512}, and 4.26 (3/2~ MeV states of31P in Fig.5.23. 

5.2.3.2. MicroscopicDWBA calculations 

The microscopic calculations have been performed usmg the zero-range code 

DWUCK4. The present analyses make use of three sets of spectroscopic amplitudes J3112
, 

based on MSDI, RIP, and KB hamiltonians [48]. These three sets of amplitudes are 

obtained from Ref [45J and are ftnnished in Tables (5 .14-5.16) along with the respective 

normalization constants deduced from fitting the experimental data from Ref [ 48 ]. The 

phase conventions used are similar to that used in the analyses of the 211Si(a.,d)30p 

reaction. 

The botmd state wave ftmctions for each of the transferred nucleons have been 

generated by assuming a real Woods-Saxon well with the geometry parameters r0=1.25 

fin. and ao=0.65 fm and the depth adjusted to produce the binding energy equal to half 
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the separation energy of the transferred deuteron. A Thomas-Fermi spin-otbit term with 

1..=25 has also been used for the bound state wave function 

A Gau'3sian form of the fmite-range correction m the LEA [39] has been 

investigated Fig. 5.24 compares the microscopic DWBA calculations for the molecular 

type of a.-29Si potential using R=O.O fin. (broken lines), 0.7 fin. (solid lines) and 0.8 fin. 

(dotted lines) to the experimental data for grmmd (1/2+), 1.27(3/2), and 2.23 (512) MeV 

states of31P. The finite range parameter R = 0. 7 fm. seems to give the best fit to the data. 

The effect of three types of the a.-29Si potential on the microscopic DWBA 

calculations has been examined using the spectroscopic amplitudes p112 calculated from 

MSDI, RIP and KB interactions. Figs. 5.25- 5.27 display the DWBA predictions for the 

molecular potential using spectroscopic amplitudes f3 112 from MSDI (solid curves ), RIP 

(broken curves) and KB (dotted cwves ) interactions compared to the data for the ground 

state (1/2 ) , 1.27 (312\ 2.23 (512), 3. 13(112}, 3.30 ( 512}, 3.41 (112), 3.51(312), 

4.19(5/2 ~ and 4.26 (3/2+) MeV states. Similarly, Figs. 5.28-5.30 show the same for 

normal optical and Figs. 5.31 - 5.33 for Michel potentials. Figs. 5.34 - 5.36 display in a 

comparative manner, the DWBA predictions compared to the data using molecular, 

normal optical and Michel potentials and spectroscopic amplitudes t/12 ofMSDI. 

5.2.3.3. Calculations of theoretical spectroscopic factors 

Skwirczynska et al. [150), calculated the spectroscopic factor from the expression 

12 L] 
2 

.!. 1 
2 

iz J 

(5.20) 
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Comparison of Eq. (5.20), which occurs in Eq. (5.9), with the expression (Eq. 5.11) for 

structure factor G u, which is associated with the expression for the macrosoopic aoss-

section in Eq. (5.12), suggests that the kinematic part B~ in Eq. (5.9) is still not free of 

microscopic quantwn numbers. Hence, Eq. (5.20) does not represent in total the 

macroscopic spectroscopic factor, although it may give the right order. On the other hand, 

the spectroscopic factor defined [37J in Eq. 5.18 in terms of the structure factor Gu (Eq. 

5.11) is complete in itself. Therefore, the value of jauj
2 

relative to that for any state with 

spectroscopic amplitude p'A = 1 and with a stretched coo.figuration, can yield a real 

measure of spectroscopic strength of a state populated through the transfer (L,J). Thus, if 

it is asswned that there exists a state in the fmal nucleus populated via J• = 7+ through 

the transfer configuration (fud and the target configuration does not involve the orbital 

fm, then one can deduce the spectroscopic factors relative to the IG d711 as done in the 

analysis of the 21Si(a.,d)30P reaction with the observed state at Ex = 7.20 MeV using Eq, 

5.18. Thus, the spectroscopic factors are estimated using the expression 

(5. 21) 

where 0 67 = 0.56.000 represents the structure factor for an unobserved state populated 

with the pr = r transfer p}5 = 1.0 . The sum over J encompasses the cases where the 

target spin is non-zero. 
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The total spectroscopic factors Sa for a transition is then obtained by the Eq. (5.19) 

The spectroscopic factcxs Sf and Sa , using three sets of spectroscopic 

I 

amplitudes P2 from the MSDL RIP and KB interactions [45] have been calculated and 

noted in Tables 5.12 and 5.13. These theoretically predicted spectroscopic factors are also 

compared to experimentally deduced values using three (molerular, normal optical and 

Michel) types of potentials in Tables 5.12 and 5.13. 

-
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Table ~.11. Potential parameters used in the DWBA calculations for 29Si(~d)31P. Vis adjustlld to give the 
separation energy. 

Channel a.+29Si d+Jlp d+d d+29Si 

T~pe Molecular' Michel• 0Etical1 Oeticalli Bound state• 

V0 (MeV) 26.3 31.41 182.45 102.7 v v 
R0 (fm) 5.45 4.83 

r0 (fm) 1.15 1.07 1.05 0.935 

a0 (fm) 0.34 0 .55 0.76 0.852 0.50 0.997 

V1 (MeV) 42.5 

R1 (fm) 2.90 

a. 7.39 

p (fm) 6.45 

W0 (MeV) 17.92 34.91 13.5 

Rw (fm) 4.1 4.06 

r1(fm) 1.51 

a1 (fm) 0.64 0.70 

W0 (MeV) 16.10 

r0 (fin) 1.53 

ao(fm) 0 .574 

VsoCMeV) 6.0 

f,0 (fin) 1.07 

8 10 (fin) 0.852 

rc (fin) 1.30 1.30 1.15 1.25 1.3 

Rc(fin) 9.45 "' 

• Present work 
"Ref. [48]. 
• Ref. [ 18]. 
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Table 5.12. Ch1ster spectroscopic facton for the 29Si(a.,d)31P extracted by molecular, normal optical and 

Michel potentials are compared to the theoretical shell-model factors for the MSDL RIP and K.B 

interactions. Factors are calculated from the spectroscopic mnplitndes ~1 12 of Ref.(45) by the method 

outlined in (37) . 

E. P' J, C luster C h1s ter Spectroscopic Factor Shell-model Spectroscopic 

Con fig. FactorS~ 

(MeV) N,L AL AL AL MSDI RIP KB 
(molecular) (optical) (Michel) 

0.0 112+ 2,0 0.18±0.06 12.6±2.62 7.2± 1.44 0.6 11 0.027 0.024 
1,2 0.12±0.04 8.4±1 .68 4.8±0.96 0.006 0.053 0.011 

1.27 3/2+ 2,0 0 .0525±0 .01 3.0±0.6 1.8±0.36 0.007 0.009 0.006 
1,2 0.298±0 .09 4 .5±0.9 2.7±0.54 0.597 0 .176 0.060 

2 1,2 

2.23 512+ 2 1,2 0.1425±0.04 5.03±1.05 1.58±0.32 0.112 0.220 0.013 
3 1,2 

0,4 0.0075±0.002 0.265±0.07 0.084±.02 0.000 0.004 0.003 

3.13 112+ 2,0 0 .052±0 .02 0.90±0.27 0 .76±0.15 0.021 0.009 0.171 

1,2 0.078±0.02 1.50±0.30 1.14±0 .23 0.229 0.036 0.026 

3.30 5n+ 2 1,2 0 .0855±0.03 4.~0.81 3.8±0.lll 0.084 0.006 0.002 
3 1,2 

0,4 .0.0045±0.001 0 .215±0.05 0 .2±0.05 0.000 0.011 0.067 

3.41 712+ 3 1,2 0.260±0.08 13.0±3.9 5.2±1.3 0 .005 0.031 0.002 
0,4 0.0325±0.01 3.25±0.65 1.3±0.33 0.143 0.020 0.101 

4 0,4 
3.51 3/2 ~ I 2,0 0 .0585±0.02 1.8±0.36 1.5±0.38 0.001 0.060 0.002 

1,2 
2 1,2 0.1365±0.04 4.2±0.84 3 .5±0.88 0.169 0.012 0.200 

4.19 512+ 2 1,2 0.088±0.03 4.0±0.lll 4.4±1.1 0.058 0.077 0.010 

3 1,2 
0,4 0.022±0 .006 1.0±0.25 1.1±0.26 0 .014 0.029 0.061 

4.26 3/2+ 2,0 0.070±0.02 2.8±0.70 2 .2±0.55 0 .002 0.004 0.002 

1,2 0. 135±0.04 4.2±1 .05 3.3±0.83 0.005 0.052 0.011 

2 1,2 
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Table 3.13. Totalspectrot~copic factors of 29Si(a..,d)31P reaction deduced from the macroscopic calculation 
using them olecular, noon al optical and Michel potentials are com pared to the corresponding total 

!lpectroscopic factol'!l calculated with the spectro!lcopic amplitudes p'h of three interaction• (MSDI, RIP 

and KB) taken from Ref.[45] by the method outlined in Ref [37). 

E. J" L Total spectroscopic factors 2..AL Total spectroscopic factors S0 

(MeV) Macroscopic calculations Microscopic calculations 
Molecular Optical Michel MSDI RIP KB 

0.0 112+ 0+2 0.40 21.0 12.0 0.617 0.~0 0.35 

1.27 3/2+ 0+2 0.35 7.5 4.5 0.604 0.185 0.066 

2.23 512+ 2+4 0.15 5.04 16.64 0.112 0.224 0.016 

3.13 l/2+ 0+2 0.13 2.4 1.90 0.250 0.045 0.197 

3.30 512+ 2+4 0.09 4.30 4.00 0.~4 0.017 0.069 

3.41 7/2+ 2+4 0.29 16.25 6.50 0.148 0.051 0.103 

3.51 3/2+ 0+2 0.20 6.00 5.00 0.170 0.072 0.202 

4.19 5/2+ 2+4 0.11 5.00 5.50 0.072 0.106 0.071 

4.26 312 0+2 0.21 7.00 5.50 0.007 0.056 0.013 
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Table 5.14. Spectroscopic amplitndes and normalization conatant for transition~ in the 29Si(a.,d)31P reaction lUing molecular potential 

Spectroscopic amplitudes a) N ormalizati.on constants •• 

E a) 

" (MeV) Y Iua Interaction ~ndsn d,nSt tl dsnd312 l tf21112 l tf2d 3/2 dl/~3/2 N)LSI)I N!U? NKB 

0 1/2+ 1 MSDI +0.220 . -0.128 +0.725 +0.013 -0.144 55 
RIP -0.385 . -0.242 -0.168 -0.048 +0.097 . 100 
KB -0.011 . -0.11 1 -0.239 -0.037 +0.093 . . 2200 

1.27 3/2+ 1 MSDI -0.122 . -0.046 -0 .016 -0 .562 +0 .236 500 
RIP -0.093 . +0.044 -0.013 -0.265 +0.105 . 1700 

KB +0 .091 . -0.021 +0.002 +0.151 -0.122 . . 8000 
2 MSDI . 0.012 0.055 . +0462 

RIP . 0.047 -0.013 . +0357 
KB . -0.015 0.010 . -0.17 1 

2.23 5/2+ 2 MSDI . -0.089 +0.063 . -0216 - 400 
RIP . -0.133 +0.063 . +0.053 . . 460 
KB . -0.055 +0.170 . +0.020 . . . 3000 

3 MSDI +0.088 -0.305 -0.040 . . -0.008 
RIP -0.289 -0.374 -0.032 . . +0.005 

KB -0.050 -0.089 -0.029 . . -0.073 

[Continued ... ] 
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Table 5.14 (Continued .. ) 

Spec1roacopic amplitudes and normalization constant for mm.itiollJ in the 29Si(a.,d)31P reaction using molecular potential 

Spectroscopic amplitudes N onnalization conatanta 
... 

E,. 
(MeV) r Jtra Interaction <4ndsn ~llStll ~/2d312 St/~112 9t/2d3/2 d312d312 NYSDI NlUP Nu 

3.13 1/2+ 1 MSDI ·0.151 - -0:122 -0.163 -0 .380 +0.120 80 
RIP -0 .161 - +0 .057 +0.026 -0.136 +0.102 - 610 
KB +0.094 - -0.070 +0.464 -0.086 +0.204 - - 50 

3.30 512+ 2 MSDI - +0.063 -0.144 - -0.324 - 180 
RIP - -0.028 -0.218 - +0.129 - - 270 

KB - +0.002 +0.087 - -0.027 - - - 2300 
3 MSDI -0.036 -0.035 0.102 - - +0.039 

RIP -0.038 -0 .025 0.102 - - -0.066 
KB -0.040 -0.010 -0.051 - - +0.231 

3.41 712+ 3 MSDI -0.047 +0.064 -0.151 - - +0.258 800 
RIP +0.023 +0.087 -0.253 - - -0.045 - 18000 
KB +0.021 +0.006 -0.036 - - -0.311 - - 1100 

4 MSDI - - +0.121 
RIP - - +0.086 

KB - - +0.215 

[Continued ... ] 
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Table 5.14 (Continued .. ) 

Spectroscopic amplitudes and normalization constant. for t:ran.itions ln. the 29Si(a.,d)31P reaction u.ing molecular potential 

Spectr01copic amplitudes 
a) 

Normalization consta.ntll -
E,. 

(MeV) r Jtra Interaction ~/2dS/2 ~125112 dsndJ/2 S t/~1/2 Stl2d312 d3/2d312 Nwnz NlUP Nn 

3.51 3/2+ 1 MSDI +0.055 - +0 .037 +0.020 +0.112 -0.107 11000 
RIP -0.186 - +0.180 -0 .061 -0.079 +0.092 - 700 
KB -0.088 - -0.050 +0.0 11 -0.301 +0 .215 - - 1300 

2 MSDI - -0.083 +0.070 - +0 .519 
RIP - +0.032 +0.003 - -0.088 -
KB - +0.010 -0.061 - +0.285 -

4.19 512+ 2 MSDI - +0.058 -0.038 - -0.116 - 38000 
RIP - -0.050 +0.022 - -0.051 - - 4500 

KB - -0.027 +0.052 - -0.132 - - - 1.500 
3 MSDI -0.030 +0.183 -0.169 - - -0.196 

RIP -0.071 -0 .169 +0.269 - - -0.068 
KB -0.038 +0.082 -0.005 - - +0 .239 

4.26 3/2+ 1 MSDI +0.075 - +0.120 +0.023 -0.100 -0.309 590 
RIP -0.01 7 - +0.088 -0.002 +0.137 + 0.015 - 2500 
KB +0.037 - -0 .051 +0.005 +0.087 +0.022 - - 3400 

2 MSDI - +0.058 -0.109 - +0.033 
RIP - -0.001 -0.264 - -0.050 

KB - -0.019 -0.105 - -0.019 -

a) Ref. [45]. 
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Table 5.15. Spectroscopic amplitudes and normalization conatantll for transitioll.l .in the 2~i(a.,d)31P reaction u.aing normal optical potential 

Spectroscopic amplitudes a, Normalization constants 

E,. 
(MeV) r Ju.a Interaction dmdS/2 ~125112 d 1nd312 St f28 tf2 Stf2d312 d 3nd312 NWI>I NRIP N:trn 

0 1/2+ 1 MSDI +0.220 - -0.128 +0.725 +0.013 -0.144 9.0x102 

RIP -0.385 - -0.242 -0.168 -0.048 +0.097 - 9.5x103 

ICB -0.01 1 - -0.111 -0.23 9 -0.037 +0.093 - l.5xl03 

1.27 3/2+ 1 MSDI -0.122 - -0.046 -0.016 -0.562 +0.236 6.0x10 3 

RIP -0.093 - +0.044 -0.013 -0 .265 +0.105 - 2.2xl03 

KB +0.091 - -0.021 +0.002 +0 .151 -0.122 - - 8.9xl03 

2 MSDI - 0.012 0.055 - +0462 
RIP - 0.047 -0.013 - +0357 
KB - -0 .015 0.010 - -0 .17 1 

2.23 512+ 2 MSDI - -0 .089 +0.063 - -0.276 - 6.5x103 

RIP - -0 .133 +0.063 - +0.053 - - 7.3xl03 

KB - -0 .055 +0.170 - +0.020 - - - 5 .0xl0 4 

3 MSDI +0.088 -0.305 -0.040 - - -0.008 
RIP -0.289 -0.374 -0.032 - - +0 .005 

ICB -0.050 -0 .089 -0.029 - - -0.073 

[Continued ... ] 
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Table 5.15. (Continued .. ) 

Spectroscopic amplitudes and normalization constants for transitions in the 29Si(a.,d)31P reaction using nonnal optical potential 

Spectroscopic arnpli1udes 
a) 

N onnalization constants 

E, 
(MeV) r .Iu.. Interaction ~12d5/2 ~128 1/2 ~1~312 S1f2S112 S112d312 d1/2d3/2 N~r NRIP NKB 

3.13 1/2+ 1 MSDI -0.151 - -0.122 -{) .163 -0.380 +0. 120 1.2xl 03 

RIP -{) .1 61 - +0.057 +0.026 -0.136 +0.102 - l.5xl04
-

KB +0.094 - -0.070 +0.464 -0.086 +0.204 - - 5 .0xl02 

3.30 S/2+ 2 MSDI - +0.063 -0. 144 - -0.324 - 4.0x103 

RIP - -0.028 -0 .218 - +0.129 - - 9.0x104 

KB - +0.002 +0.087 - -0.027 - - - 8 .0x104 

3 MSDI -0.036 -0.035 0.102 - - +0 .039 
RIP -0.038 -0.025 0.102 - - -{) .066 
KB -0.040 -0.010 -{).051 - - +0.231 

3.41 7/2+ 3 MSDI -0.047 +0.064 -{).151 - - +0.258 1.4x 104 

RIP +0.023 +0.087 -0.253 - - -0.045 - 2.8x105 

KB +0.021 +0.006 -0.036 - - -0.311 - - 2 .0x104 

4 MSDI - - +0.121 
RIP - - +0.086 

KB - - +0.215 

[Continu ed ... ] 
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Table 5.15 (Continued .. ) 

Spectroecopic amplitude• and normalization constants for traruition1 in the 29Si(a.,d)31P reaction uaing nonnal optical potential 

Spectroecopic amplitudes 
a) 

Nonnalization constants -
Et 

(MeV)Y Jtra Interaction dmds12 ds12s 1r2 d~,~312 ltnlt/2 ·1(~312 d3nd312 NlLSDI NRIP NKB 

3.51 312+ 1 MSDI +0.055 - +0.037 +0.020 +0.112 -0.107 1.5x10" -
RIP -0.186 - +0.180 -0.061 -0 .079 +0.092 - 1.1x1o• 
KB -0.088 - -0.050 +0.011 -0.30 1 +0. 215 - - 1.6xl04 

2 MSDI - -0.083 +0.070 - +0 .519 
RIP - +0.032 +0.003 - -0.088 -
KB - +0.010 -0.061 - +0.285 -

4.19 5/2+ 2 MSDI - +0.058 -0.038 - -0.116 - 5.0xl05 

RIP - -0.050 +0.022 - -0.051 - - 5.0xl05 

KB - -0.027 +0.052 - -0.132 - - - 1.8x1o• 
3 MSDI -0 .030 +0.183 -0.169 - - -0 .196 

RIP -0 .071 -0.169 +0.269 - - -0.068 
KB -0 .038 +0.082 -0.005 - - +0.239 

4.26 3/2+ 1 MSDI +0.075 - +0.120 + 0.023 -0.100 -0.309 l.lx10" 
RIP -0.017 - +0.088 -0.002 +0.137 +0.015 - 4 .0xl04 

KB +0.037 - -0.051 +0.005 +0.087 +0.022 - - 5.8x104 

2 MSDI - +0.058 -0.109 - +0.033 
RIP - -0.001 -0.264 - -0 .050 

KB - -0.019 -0.1 05 - -0.019 -

a) Ref. [45]. •• Normalization constants using optical potential. 
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Table 5.16. Spectroscopic amplitudes and normalization constant for transitions in the 29Si(~X,d)31 P reaction using Michel potential 

Spectroscopic amplitudes a) Normalization constants •• 

E,. 
(MeV) r ltra Interaction d~r2d512 d5/2iltf2 d512d312 31(28112 StndJr2 dJf2dJf2 NYSDr NRIP Nu 

0 1/2+ 1 MSDI +0.220 - -0.128 +0.725 +0.013 -0.144 5.5x102 -
RIP -0.385 - -0.242 -0.168 -0.048 +0.097 - 7.0x103 

KB -0.011 - -0.111 -0.239 -0.037 +0.093 - - 1.2xl<t 

1.27 3/2+ 1 MSDI -0.122 - -0.046 -0.016 -0.562 +0.236 3.2x103 

RIP -0.093 - +0.044 -0.013 -0.265 +0.105 - 1.1x 103 

KB +0.091 - -0.021 +0.002 +0.151 -0.122 - - 4.0xto• 
2 MSDI - 0.012 0.055 - +0462 

RIP - 0.047 -0.013 - +0357 
KB - -0.015 0.010 - -0.171 

2.23 512+ 2 MSDI - -0 .089 +0.063 - -0.276 - 1.9xl03 

RIP - -0.133 +0.063 - +0.053 - - 2.1x10 3 

KB - -0.055 +0.170 . +0.02 - - - 1.7xl04 

3 MSDI +0 .088 -0.30.5 -0.040 - - -0.008 
RIP -0.289 -0 .374 -0.032 - - +0.00.5 

KB -0 .050 -0.089 -0.029 - - -0.073 

[Continued. .. ] 
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Table 5.16 (Continued..) 

Spectroscopic amplitudes and normalization cOllltanU for tranlitions in the 29Si(a.,d)31P reaction uling Michel potential 

Spectro1copic ampli1nde. 
a) 

N onnalization constants 

E" 
(MeV) r Jtra Interaction ds12d512 ds/281/2 ds,~J/2 S tf21112 s,,2d3/2 d3nd3/2 N~SDI NIUP NKB 

3.13 1n• 1 MSDI -0.151 - -0.122 -0.163 -0.380 +0.120 5.5xl02 

RIP -0.161 - +0.057 +0.026 -0.136 +0.102 - 1.9xl04 

KB +0.094 - -0.070 +0.464 -0.086 +0.204 - - 3.0xl02 

3.30 5/2+ 2 MSDI - +0.063 -0.144 - -0.324 - 2.2x103 -
RIP - -0.028 -0.218 - +0.129 - - 4.4x1ol 

KB - +0.002 +0.087 - -0.027 - - - 4.3x104 

3 MSDI -0.036 -0.035 0.102 - - +0.039 
RIP -0.038 -0.025 0.102 - - -0.066 
KB -0.040 -0.010 -0.051 - - +0.231 

3.41 7/2+ 3 MSDI -0.047 +0.064 -0.151 - - +0.258 8.0x102 

RIP +0.023 +0.087 -0.253 - - -0.045 - 4.0x104 

KB +0.021 +0.006 -0.036 - - -0 .311 - - l.Oxl03 

4 MSDI - - +0.121 
RIP - - +0.086 

KB - - +0.215 

(Continued ... ] 
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Table 5.16. (Continued .. ) 

Spectroscopic amplitude. and normalization conttant for t:ranntioDJ in the 29Si( a.,d)31P reaction using Michel potential 

S . li d !) pectroscoptc amp tu e1 Nonnalization constants-

Ez 
(MeV) r J tro Interaction ~nds12 ~12.\12 ~/2d3/2 St/~112 St l2d 312 d 312d312 N YSDI NRIP NK.B 

3.5 1 312+ MSDI +0.055 - +0.037 +0.020 +0.112 -0.107 8.0x1o• 
RIP -0.186 - +0.180 -0.061 -0.079 +0.092 - 7.0xl03 

KB -0.088 - -0.050 +0. 011 -0.301 +0.21 5 - - 8.0x103 

2 MSDI - -0.083 +0.070 - +0.519 
RIP - +0.032 +0.003 - -0.088 -
KB - +0.010 -0.061 - +0.285 -

4.19 512+ 2 MSDI - +0 .058 -0.038 - -0.116 - 2.2x1o• 
RIP - -0.050 +0.022 - -0.051 - - 3 .0xl<t 

KB - -0.027 +0.052 - -0.132 - - - 1.0x104 

3 MSDI -0.030 +0. 183 -0.169 - - -0.196 
RIP -0.071 -0.169 +0.269 - - -0.068 
KB -0.038 +0.082 -0.005 - - +0.239 

4.26 3/2+ 1 MSDI +0.015 - +0.120 +0.023 -0.100 -0.309 5.9x103 

RIP -0.01 7 - +0.088 -0.002 +0.137 +0 .015 - 2 .5x1o• 
KB +0.037 - -0.051 +0.005 +0.087 +0.022 - - 3 .4x104 

2 MSDI - +0.058 -0.109 - +0.033 
RIP - -0 .001 -0.264 - -0.050 

KB - -0.019 -0.105 - -0.019 -

a) Ref. [ 45). •• Normalization conltants llling Michel potential. 
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5.2.4. DWBA analysis of the 30Si(a,d/1P reaction 

1be microscopic zero-range (ZR) DWBA and macroscopic full fmite-range (FFR) 

calculations for analyzing the 30Si( a.,d)32P reaction data have been performed using 

DWUCK4 and DWUCK5 [39] respectively. 

As before, corrections due to non-locality [32,39] of potentials in the conventional 

form have been applied using the non-locality parameters p(a)=0.2, p(d)=0.54 and 

p(p)=0.85 :fin. In both the microscopic ZR and macroscopic FFR calculations, the 

molecular, standard and Michel types of a -30Si potential in the entrance channel and the 

standard optical d-32P in the exit channel have been employed The parameters of the 

molecular , standard, and Michel potentials are generated by fitting the elastic data [45] 

of a-30Si as shown in the Fig.5.37. The d-32P standard optical potentials used has been 

procured from the work of Fitz et al [148]. All the potential parameters used are 

displayed in Table 5.17. 

5.2. 4.1. Macroscopic D WBA calculations 

1be botmd state geometry for d-d and d-30Si Woods Saxon (WS) potential shown 

m Table 5.17 are taken from [ 18]. As usual, the bound-state wave functions for the 

transferred deuteron in alpha as well as in the fmal nucleus have been generated by 

adjusting the deuteron separation energy. The accuracy parameters used in the c<Xie has 

been assigned using the method as mentioned before ( Sec. 5.2.2.1 ) in the analysis of the 

reaction on 28S i. 
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The clu'lter configuration of the transferred deuteron for the different states of 

excitations are shown in Table 5.18. Foc the final states with natural parity states 

populated by one L-transfer, the DWBA predictions are compared to the data to yield the 

rel evant spectroscqJic factors Av. as defined in Eq. 5.15. On the other hand, foc the 

transitions involving two £-transfers leading to fmal states with wmatural parity 

spectroscopic factors AL are extracted by using Eq. (5.15) and minimizing X2 in Eq. 

( 5.17). The deduced spectroscopic factors are noted in Tables 5. 18 and 5.19. 

The DWBA predictions with molecular (solid ctuVe), normal (dotted cwve ) and 

Michel ( broken curves ) potentials are compared to the data of the ground (1}, 0.08 

(2), 1.15(1\ and 1.32 (2) MeV states in Fig. 5.38 and to the data of 1.75 (3}, 2.66(2}, 

2.74 (I+) and 3.00 (3+) MeV states of32P in Fig. 5.39. 

5.2.4.2. Microscopic DWBA calculation 

The present microscopic analyses make use of three sets of spectroscopic 

amplitudes /3'12
, based on different nucleon-nucleon interactions. All three sets of 

spectroscopic amplitudes are obtained from [45). The ftrst set (MSDI) have been 

extracted using the modified surface delta interaction [152]; another set ( RIP) have been 

calculated based on an effective interaction found by fttting to experimentally observed 

nuclear energy levels [1 53]. The third set (KB) which have been calculated assuming a 

Hamada-Johnston scattering potential [154]. All three amplitudes are fwnished in Tables 

(5.20 - 5.22) along with the respective normalization constants deduced using Eq. (5 .16) 

after fitting the experimental data using all three (molecular, nonnal optical and Michel) 

potentials. 
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All three sets of spectroscopic amplitudes are calculated in the model space of 

1 d5122s1121 d:J12. The phase correctioos to the spectroscopic amplitudes for inputting to the 

computer DWUCK4 are same as discuc:;sed in Sec. 5.2.2.2. 

The bound-state wave ftmctions for each of the t.ransferred nucleons have been 

generated by assuming a real Woods-Saxon well with the geometry parameters ro= l.25 

fin and ao=0.65 fm and the depth adjusted to reproduce the binding energy equal to the 

half of the separation of the transferred deuteron A Thomas-Fermi spin-orbit term with 

A-=25 has also been u<>ed for the bound state wave ftmctions. 

A Gaussian form of the finite r~e correction m the LEA (39] has been 

investigated. Fig. 5.40 compares the microocopic DWBA calculations for the molecular 

type of a.-30Si potential using R=O.O fin (dotted curves), 0.7 fin (solid curves) and 0.8 fm 

(broken curves) to the experimental data for ground (1+), 0.08(2+), 1.15 (I) and 1.32 (2+) 

MeV states. As observed in the analysis of the reaction on 21.29S~ R=0.7 fin gives the best 

overall fits to the data 

1be effect of the three types of the a.-30Si potentials on the microocopic zero­

range DWBA calculations with finite range correction R=O. 7 fm has also been examined 

under the spectroscopic amplitudes calculated for all three interactions. Figs. 5.41- 5.42 

display the DWBA predictions for the molecular potentials using all three interactions 

MSDI (solid lines), RIP (dotted Jines ), and KB (broken lines ). F ig>. 5.43-5.44 and Figs. 

5.45- 5.46 exhibit in a similar way the DWBA predictions for the standard optical and 

Michel potentials using all three interactions. 

Figs. 5.47 and 5.48 compare the experimental data with the microocopic DWBA 

predictions using the molecular ( solid lines), standard optical ( broken lines) and Michel 
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( dotted lines) potentials. In all the cases, the finite-range corrections using R =={). 7 fin and 

spectroscopic amplitude due to MSDI have been used. 

5.2.4.3. Calculations of the spectroscopic factors: 

In case of the JOSi( a,di1p reaction the theoretical spectroscopic factors S~ for a 

state populated through (L,J) transfer are deduced using the Eq. (5.18), such as. 

Here G67 = 0. 561200 represents the structure factor for an unobserved state with J; = r , 

which has the stretched configuration (fmf, and the spectroscopic amplitude /3~ = 1.0 

with the asswnption that the target does not have a component (fin) in its wave ftmction. 

The total spectroscopic factors are calculated from Eq. (5. 19). 

1be spectroscopic factors s~ and the total spectroscopic factors S 0 
' using three 

I 

sets of spectroscopic amplitudes {3 1 from the MSDL RIP and KB interactions [45] have 

been calculated and noted in Tables 5.18 and 5.19. The theoretically predicted 

spectroscopic factors are also compared to the experimentally deduced values using all 

three ( molecular, normal optical and Michel ) types of potentials in T abies 5.18 and 5.19. 
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Table 5.17. Potential parameters used in the DW BA calculations for the 30Si(a..d)32p reaction. V iB the 
depth of the potential adjusted to give the separation energy. 

Channel a.+30Si d+32P d+d d+30Si 
Type Molecular- Michel• Optical• Opticalb Bound statec 

V0 (MeV) 27.0 25.0 190.84 102.7 v v 

Ro(fin) 5.52 5.20 

r0 (fin) 1.15 1.07 1.05 0.935 

ao (fin) 0.34 0.46 0.73 0.852 0.50 0.997 

V1 (MeV) 42.5 

R1 (fm) 2.90 

ex 7.12 

p (fm) 6.45 

W0 (MeV) 17.0 34.0 13.0 

Rw (fin) 4.1 4 .05 

r1(fin) 1.51 

a1 (fin) 0.65 0.87 

W0 (MeV) 16.10 

r0 (fm) 1.53 

ao(fm) 0.574 

V80(MeV) 6.0 

r,0 (fm) 1.07 

B10 (fin) 0.852 

rc (fin) 1.30 1.20 1.15 1.25 1.3 

Rc(fm) 9.46 

• Present work 
"Ref. [48]. 
c Ref. [18]. 
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Table ~.18. Cluster 11pectro11copic facton of the J0si(o.,d)32p reaction extracted by molecular, optical and 
Michel potentials are compared to the theoretical shell-model factors for the MSD~ RlP and KB 

interactions. Facton are calculated from the spectroscopic amplitudes ~liZ of Ref[45] by the method 

outlined in [37]. 

E. r Cluster Cluster Spectroscopic Factor Shell-model Spectroscopic 
Conflg. Factor Sf 

(MeV) N,L At At At MSDI RIP KB 
(molecular) (optical) (Michel) 

0.0 t+ 2,0 0 .60±0.18 19.80±4.95 12.00±3.6 0.007 0.079 0.0004 
1,2 0.40±0.12 13.00±3.25 8.00±2.4 0 .210 0 .089 0.014 

0 .08 2+ 1,2 0.24±0.07 0.90±0.23 1.40±0.42 0 .083 0.017 0.002 

1.15 1+ 2,0 0 .25±0.08 1.00±0.22 6.67±2.1 0 .014 0.001 0.025 
1,2 0 .25±0.08 1.00±0.25 6 .67±2.1 0.001 O.ot1 ·0.061 

1.32 2+ 1,2 0.09±0.03 2.60±0.70 1.40±0.42 0 .0001 0.008 0.007 

1.75 3+ 1.2 0.48±0.14 1.29±0.32 7.89±2.40 0.015 0.041 0.0002 
0,4 0.32±0.09 0.85±0.26 5.26±1.60 0.078 0.029 0.116 

2.26 2+ 1,2 0.16±0.05 4.00±1.10 4.00±1.30 0.002 0.002 0.005 

2.74 1+ 2,0 0.18±0.05 1.06±0.27 5.06±1.50 0.014 0.012 0.009 
1,2 0.29±0.09 1.60±0.32 7.60±2.30 0.154 O.ot8 0.030 

3.00 3+ 0,4 0.02±0.006 0.21±0.05 0.29±0.09 0 .006 0.037 0.007 
1,2 0.14±0.04 1.92±0.48 1.93±0.58 0.042 0.001 0.020 
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Table ~.19 . Total 8pectroscopic facto111 of the 30Si(~d)32P reaction deduced from the macroscopic 

calculation using the m olecular, normal optical and Michel potentials are compared to the total 

spectroscopic factom calculated with the spectroscopic amplitudes p y, of three interactions (MSDI, RIP 

and KB) from Ref [45) by the method outlined in Ref. (37). 

E. J" L Total spectroscopic factor~ 2...-AL Total1pectroscopic facto111 S 0 

(MeV) Macro1copic calculation1 Microscopic calculation~ 

Molecular Optical Michel MSDI RIP KB 

0.0 1+ 0+2 1.00 32.80 20.00 0.217 0.168 0.014 

0 .08 2+ 2 0 .24 0.90 1.40 0 .083 0.017 0.002 

1.15 I+ 0+2 0.50 2.00 13.34 0.015 0.012 0.086 

1.32 2+ 2 0 .09 2.60 1.40 0.0001 0.008 0 .007 

1.75 3+ 2+4 O.!l> 2.14 13.15 0.093 0.070 0.116 

2.66 2+ 2 0.16 4.00 4.00 0.002 0.002 0.005 

2 .74 I+ 0+2 0.47 2.66 12.66 0 .168 0 .030 0.039 

3.00 3+ 2+4 0.16 2.13 2.22 0 .048 0.038 0.027 
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Table 5.20. Spectroscopic amplitudes and normalization constant for transitions in the 30Si(a.,d)32P reaction using molecular potential 

Spectroscopic ampiitndes a) Normalization constants 

E .. 
(MeV) r Interaction ~/2~ d~ns~/2 d~12d312 Stf28112 s 112d3/2 d312d 312 NMSDI NRIP No 

0 1+ MSDI +{) . 117 - +0.056 +0. 029 +0.337 -0 .215 4.0xl03 

RIP -0.228 - +{).122 -0.097 -0.008 +0.204 - 2.5x103 

KB +0.011 - +{).028 +0 .015 -0.170 -0 .091 - - 4. 0x.l03 

0.08 2+ MSDI +{) .074 - -0.063 - -0.40 1 - 6.0x1o2 

RIP +0.062 - +0.244 - -0.044 - - l.5xl03 

KB -0.020 - -0.026 - +0.098 - - - 6.0xl03 

1.15 1+ MSDI -0.067 - -0.050 -0.220 -0.054 -0 .275 4.0xl03 

RIP +0.137 - -0.061 +{).017 +0.033 + 0.380 - 3 .5xl03 

KB +0.005 - -0.002 + 0.219 -0.207 +0.123 - - 4.0xlO" 

[Continued. .. ] 
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Table 5.20. [continued 0] 

Spectroscopic amplitudes and normalization constant for transiti.onJ in the 30Si(a.,d)32P reaction using molecular potential 

S 0 1i d a) pectroscoptc amp tu e Normalization constants** 

E,. 
(MeV) r Interaction ~12~12 dsni lf2 d5/2d3/2 S1ni112 91f2d3/2 d3/2d3/2 NMSDI N!UP NKll 

1.32 2+ MSDI - -00057 -00091 - +00124 2 03x103 

RIP - -00056 -0 0015 - -00064 406x1 03 

KB - -00019 +00049 - -00129 1.4x103 

1. 75 3+ MSDI +00011 -00061 +00140 +00344 3o8xl03 

RIP -00040 -00115 +00258 ·Oo067 8 00xl03 

KB -0 0021 +00017 -0 0001 +0 0388 208xl03 

2066 2+ MSDI -00027 -00160 +001 88 7oOxlo2 

RIP + 00048 -00013 -00084 201x10" 

KB +00001 -0.139 +0 0000 6 o0x103 

[Continued. 0 0] 
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Table 5.20. [continued. .] 

Spectroscopic amplitudes and normalization confla.nt for transition~ in the 30Si(a.,d)32P reaction using molecular potential 

S · 1i d a) pectroscop1c amp tu e Normaliz.ation Constants** 

E:r 
(MeV)Y Interaction d512~12 dmit/2 d5nd312 S t/~ 112 9 tl2d312 d3/2d312 N~.t:SDI NRIIP 

2.74 1• MSDI -0.045 +0.032 - -0.040 -0.309 +0.243 1.7x103 

RIP +0.039 -0.111 - +0.044 +0.173 +0 .. 31 - 1.8xl03 

KB +0.049 -0.031 - +0.104 +0.233 +0.142 - -
3.00 3+ MSDI +0.028 -0.115 -0.084 - - +0.173 1.5xlol 

RIP +0.121 +0 .154 +0.019 - - +0.004 - 1.5x104 

KB +0.028 +0.100 +0.120 - - -0.086 - -
a) [45] 

**NMSDr =Normalization Constant using molecular potential and Spectroscopic amplitudes extracted from MSDI interaction; 
Nm= Noonalization Constant using molecular potential and Spectroscopic amplitudes extracted from RIPinteraction; 
Nn= Noonalization Con1tant using molecular potential and Spectroscopic amplitude• extracted from KB interaction 

NK:a 

9 .8xl02 

3.0x103 
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Table 5.21. Spectroscopic amplitudes and nonnalization constant for transitions in the 30Si(a.,d)32P reaction using normal optical potential 

Spectroscopic amplitudes a) N onnalization constants 

Ex 
(MeV)Y Interaction ~~2~12 d~J2Bsn d~,2d3/2 s,l2s112 s ,ndJ/2 d3nd312 NYSDI NlUP NKB 

--
0 1+ MSDI +0.117 - +0.056 +0.029 +0.337 -0 .215 4.8x1Q4 

RIP -0.228 - +0.122 -0.097 -0.008 +0.204 - 3.0x104 

KB +0.011 - +0.028 +0.015 -0.170 -0.091 - - 5.8x104 

o.o8 2• MSDI +0.074 -0.063 -0.401 6.0x1oJ 

RIP +0.062 +0.244 -0.044 1.6x104 

KB -0.020 -0.026 +0.098 7.0x104 

1.15 1+ MSDI -0.067 -0.050 -0.220 -<>.054 -0.275 4.0xl04 

RIP +0.137 -0.061 +0.017 +0.033 +0.380 6.0x104 

KB +0.005 -0.002 +0.219 -0.207 +0.123 3 .0xl04 

[Continued. .. ] 
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Table 5.21. (continued.] 

Spectroscopic amplitudes and normalization constant for tranwitioJUI in the 30si( a.,d)32P reaction using nonnal optical potential 

S · litud a) pectroscop1c amp e N onnali2lltion constants* • 

Ex 
(MeV) J'" Interaction ~12~/2 d s12s 112 dsnd3/2 91/281/2 8112d3/2 d3/2d312 Nw:or Nm NKB 

1.32 2+ MSDI - -O.OS7 -0.091 - +0.124 2.0x104 

RIP - -0.056 -0.015 - -0.064 4.2x104 

KB - -0.019 +0.049 - -0.129 1.2xl04 

1.75 3+ MSDI +0.011 -0.061 +0.140 +0.344 8.0x1ol 

RIP -0.040 -O.l1S +0.258 -0.067 2.2x104 

KB -0 .021 +0.017 -0.001 +0.388 2.8x103 

2.66 2+ MSDI -0.027 -0.160 +0.188 7.0x103 

RIP +0.048 -0.013 -0.084 2.0x105 

KB +0.001 -0.139 +0.000 6.5x104 

[Continued ... ] 
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Table 5.21. (continued .] 

Spectroscopic amplitudes and normalization constant for transitions in the 30Si( a,d)32P reaction using normal optical potential 

s . li d ~ pectroscoptc amp tn e Normalization CotWtant s ** 

Ex 
(MeV) r+ 

2.74 1+ 

3 .00 3+ 

a) [ 45) 

Interaction 

MSDI 

RIP 

KB 

MSDI 

RIP 

KB 

ds~/2 

-0.045 

+0.039 

+0.049 

+0 .028 

+0. 121 

+0.028 

ds12St12 ds/2d312 

+0.032 -

-0.111 -

-0.03 1 -

-0.115 -0.084 

+0.154 +0.019 

+0.100 +0.120 

Stf2B tl2 St/2d3/2 d312d312 N:wor NRIIP Nn 

-0.040 -0 .309 +0.243 l.5xl0'4 

+0.044 +0 .173 +0 .. 31 - l.5xl 04 

+0. 1 04 +0.233 +0 .142 - -

- - +0. 173 7 .0x1 o3 

- - +0.004 - 9.0x1 04 

- - -0.086 - - 2.2x1 03 

*"'NMSDI = Normalization Constant using normal optical potential and Spectroscopic amplitudes extracted from MSDI interaction; 
NRIP= Normalization Constant using normal optical potential and Spectroscopic amplitudes extracted from RIP interaction; 
NK.B= Normalization Constant using normal optical potential and Spectroscopic amplitude• extracted from KB interaction 

L Oxl 0 4 
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Table 5.22. Spectroscopic amplitudes and normalization constant for t:rsnsitions in the 30Si( a.,d) 32P reaction using Michel potential 

S · li d a) pectroscoptc amp tu e1 Normalization constants 
.. 

E,. 
(MeV) r Interaction ds12dsn ds,~s/2 dsnd312 SJ/29112 S112d312 d3/2d3/2 Nysnr NRIP N:u 

0 1+ MSDI +0.1 17 - +0.056 +0.029 +0.337 -0.215 6.0x1tr 

RIP -0 .228 - +0.122 -0.097 -0.008 +0.204 - 3 .9x104 

KB +0.011 - +0.028 +0.015 -0.170 -0.091 - - 5.2xlct 

0.08 2+ MSDI +0 .074 - -0.063 - -0.401 - 8.0x1o3 

RIP +0.062 - +0.244 - -0.044 - - 2.2xl04 

KB -0 .020 - -0.026 - +0.098 - - - 6.0xlO"' 

1.15 1+ MSDI -0.067 -0.050 -0.220 -<l.054 -0.275 6.0xl04 

RIP +0.137 -0.061 +0.017 +0.033 +0.380 6.0x104 

KB +0.005 -0.002 +0.21 9 -0.207 +0. 123 4.0xlO"' 

[Continued. .. ] 
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Table 5.22. [continued.] 

Spectroscopic amplitudes and nonnalization constant for transitions in the 30Si(a.,d)32P reaction using Michel potential 

s . li d ~ pectroecop1c amp tu e Normalization constants•• 

Ex 
(MeV) r Interaction ~/2~/2 d5f2S1f2 d5/~3/2 s,ns l/2 91/2d312 d312d3/2 N~SDI NRIP NKB 

1.32 2 ... MSDI - -0.057 -0.091 - +0.124 3.0x104 

RIP - -0.056 -0.015 - -0 .064 6.0xl0" 

KB . -0.019 +0.049 . -0 .129 2.0xl04 

1.75 3+ MSDI +0.011 -0.061 +0.140 +0.344 6.0x l03 

RIP -0.040 -0.115 +0.258 -0 .067 1.4xlO" 

KB -0 .021 +0.017 -0.00 I +0.388 4. lx103 

2.66 z+ MSDI -0.027 -0.160 +0.188 1.5x10" 

RIP +0.048 -0.013 -0.084 5.0xl05 

KB +0.001 -0.139 +0 .000 1.7xl05 

[Continued ... ] 
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Table 5.22. [continued.] 

Spectroscopic amplitudes and nonnalization constant for transitions in the 30Si(a.,d)32P reaction wring Michel potential 

S . li d ~ pectroscop1c amp tu e Normalization Constants •• 

E, 
(MeV) r 

2.74 1 .. 

Interaction 

MSDI 

RIP 

KB 

ds,~S/2 ds12s112 dsndJ/2 

-0 .045 +0.032 

+0.039 -0.111 

+0.049 ..0.031 

9112'1112 91/2d3/2 d3/2d3/2 NMSDI NRIIP NKB 

-0 .040 ..0.309 +0.243 2.5x104 

+0.044 +0.173 +0 .. 31 3.0x104 

+0.104 +0.233 +0.142 

3.00 3 .. MSDI +0.028 -0.115 -0.084 +0.173 3.0xl03 

RIP +0121 +0.154 +0.019 +0.004 

KB +0.028 +0.100 +0.120 -0 .086 

a) [45] 

**NMSDI =Normalization CoMtant using Michel potential and Spectroscopic amplitudes extracted from MSDI interaction; 
NRIP= Noonalization C onstant using Michel potential and Spectroscopic amplitudes extracted from RIP interaction; 
Nu= Noonalizati.on COJUtBnt using Michel potential and Spectroscopic amplitudes extracted from KB interaction 

l.5x105 

6 .0xl03 

1.8x104 
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Table 5.23. Comparison ofthe normalization constants extracted by zero-range DWBA 
calculations for 29Si( a.,d)'1P and 30Si( a.,d)32P reactions by using the spectroscopic 
amplitudes ofMSDL RIP, andKB interactions. 

(a) Normalization Constants for 29si(aAY1P Reaction 

Ex Molecular Normal optical Michel 
MeV, NM..<;DI NRIP NI<ll NMSDI NRIP NKB NMSDI NRIP 
0.0 55 100 2200 900 9500 1500 550 7000 

1.27 500 1700 8000 6000 2200 8900 3200 llOO 

2.23 400 460 3000 6500 7300 50000 1900 2100 

3.13 80 610 50 1200 1500 500 550 19000 

3.30 180 270 2300 4000 90000 8000 2200 4400 

3.41 800 18000 llOO 14000 280000 20000 800 40000 

3.51 llOO 700 1300 15000 11000 16000 80000 7000 

4.19 3800 4500 1500 500000 500000 18000 22000 30000 

4.26 590 2500 3400 11000 40000 58000 5900 25000 

(b) Normalization Constants for 30gi(C4di2P Reaction. 

Ex Molecular Normal optical Michel 
MeV, NMSDI NRIP NKB NMSDI NRIP NKB NMSDt NRIP 
0.0 4000 2500 4000 48000 30000 58000 60000 39000 

0.08 600 1500 6000 6000 16000 70000 8000 22000 

1.15 4000 3500 40000 40000 60000 30000 60000 60000 

1.32 2300 4600 1400 20000 42000 12000 30000 60000 

1.75 3800 8000 2800 8000 22000 2800 6000 14000 

2.66 700 21000 6000 7000 200000 65000 15000 5xl0' 

~- --2.74 -~~ - 1800 980 15000 15000 f-Toooo 30000 25000 

3.00 1500 15000 3000 7000 -90000 2200 3000 BOOOO 

NKB 
12000 

40000 

17000 

300 

43000 

1000 

8000 

10000 

34000 

NKB 
52000 

60000 

40000 

20000 

4100 

170000 

30000 

6000 
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5.2.5. DWBA analysis of the 13Si(a,p/1P reaction 

The zero-range DWBA calculations have been penormed usmg the code 

DWUCK4 [39]. The potential parameters in the distorting incident charmel used in the 

DWBA calculations are noted in Table 5.24 for all four potentials . The bound state wave 

ftmction for the transferred tritoo, considered as a point cluster, has been generated by 

asswning a real Woods-Saxon well with its depth adjusted to reproduce the separation 

energy. These parameters along with the proton optical potential are also noted in Table 

5.43. Corrections due to non-locality [32,39] of potential in the conventional form have 

been applied using the non-locality ranges ~(ct)=0. 2, ~(t)=0.2 and ~(p)=0.85 fm. The 

correction in the triton-bound state form-factor is fourxl to produce little effect on the 

cross-section. The calculations using all four potentials for the 211Si( a.,p )31P reaction 

leading to the groUTld 1/2+, 1.266 MeV 3/2+ and 2.234 MeV 5/2+ states are compared 

with the data of Jankowski et al.[ 18] in Fig. 5.49. 

To test the validity of using the molecular potential, the full fmite-range DWBA 

calculations have been carried out using the code DWUCK5 (39]. The (t+p) bound state 

geometry for the FFR calculations is shown in Table 5.24. The FFR predictions are 

compared to the data in Fig. 5.50. The spectroscopic factors S for the cluster transfer have 

been deduced from the expression (39] 

(5.22) 
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( 
da 1 ( da 1 . . . 

Here -OJ- and -OJ- are, respectively, the expenmental cross-sectton and that 
d exp t d DwtX:Cl 

predicted by DWUCK5. 1c and 11 are the total spins of the fmal and initial nucle~ 

respectively. s=2.0 is the light particle spectroocopic factoc. C
2 

is the isoopin Clebsch-

Gordon coefficient. The deduced S-values are listed in Table 5.25. The normalization 

constant D0 
2 for the t-cluster transfer in the ZR calculations has been estimated from the 

expression [39]. 

(5.23) 

Here ( d~) predicted croos-section by DWUCK4. The deduced D0
2 values and 

d DWU::K4 

the averageD/ = 2.25 x 104 Me V2 fin3 have been shown in Table 5.25. 

It is evident, from Fig.5 .50, that the FFR calculations do not improve fits over the 

ZR predictions and reduce the cross-sections at larger reaction angles even more. 

Nevertheless, the FFR calculations allow us to extract the spectroscopic factors. 

5.2. 6. CCBA ana/p&'t of tire 18Si(a,p/1P reaction 

The CCBA calculations using the molecular potential have been carried out using 

the code CHUC K3 l39]. 1be coupling scheme which associates the deformation 

parameters p2 = -0.18 and P4 = +0.08 for 18Si is shown in Fig.5.51. In the CCBA 

calculations, the depth of the imaginary part of the molecular potential (Table 5.24) has 

been decreased to I 0.5 MeV in order to reproduce the angular distribution for the elastic 

scattering. All possible re lative phases and various relative transition amplitudes a R in the 
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rearrangement paths have been tried in the simplest possible coupling scheme. The 

transition strength in a two-step path is JX"Oportional to the square of llhRI · The CCBA 

predictions using the relative spectroscopic amplitudes noted in Table 5.25 for the ground 

(112), 1.266 (312}, 2.234 (512+) and 3.415 (112) MeV state transitions have been 

compared to the data in Fig.5.50. 
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Table ~.14. Parameters of the a.-28Si potentials used in the DWBA calculations for 28Si(a.,p)31P reaction are 
given in columns 1 to 5. The parameters of proton optical-model potential, and bound 1tates of (t+28Si) and 

(t+p) systems are noted in columns 6-8, respectively. V is adjusted to give the separation energy. 

Channel a.+ 2SSi p+ 31p t + 28Si t+p 

Potential Molecular •> Michel•> Deep •> Shallow b) Optical c) Bound b) Bound"' 
Type Optical Optical State State 

Vo(MeV) 26.0 21.0 216.0 55.0 53.3-0.55 ~ v v 
Ro (fin) 5.35 5.00 3.70 5.16 - - -
ro (fm) - - - - 1.25 0.929 1.05 

ao (fin) 0.340 0.60 0 .67 0.505 0.65 0.921 0.50 

V1(MeV) 42.0 - - - - - -
R 1 (fin) 2.80 - - - - - -
a. - 8.39 - - - - -
p (fin) - 6.25 - - - - -
W 0 (MeV) 14.5 33.1 22 .4 8.64 - - -

Rx (fin) . 3.85 3 .98 5.16 - - -

Bt (fin) - 0.65 0.67 0.505 - - . 
Rw (fin) 4.00 - - - - - -
W0 (MeV) - - - - 13.5 - -
ro (fin) - - - - 1.25 - -
a0 (fin) - - - - 0.47 - -
Rc (fin) 9.35 3.95 4.07 3.95 

r. (fin) 1.30 1.30 1.25 

a) Ref. (19] 
b) Ref.[ 18). 
c) Ref.(156]. 
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Table ~-2~. Cluster transfer configurations (n: number of nodes, L: angular momentum) used in the CCBA 
are shown in cohunns 3 to 6. Column 7 indicates the relative spectroscopic factors uted in calculations of 

the ZSSi(a.,p)31P. 

E, j 1t Cluster transfer configuration Spect D 1 x 104 
0 

e1P) One-step Two-step Relative Spect. Factor MeV2 fitil 
nLd n41 n42 n4J Ampli.tudet s 

0.0 112+ 3S lG - - +01:+15 0.070 2.00 ± 0.50 

1.266 3fl+ 20 20 3S - +01 :+05:-05 0.031 2.56 ± 0.64 

2.234 512' 2D 2D 3S 10 +01 :+0 1 :+02:..()1 0.004 -
3.415 7/2' 2G 30 4S - +01 :+06:+02 0.003 -
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CHAPTER6 

RESULTS AND DISCUSSION 

The molecular and Michel potential fits to the 
27 

AI( a, a f 7 
AI data (Fig. 5.1) as 

well as fits to the 29.30Si(a,a)29..10Si data using the molecuJar, normal optical and Michel 

potential in the present work (Figs. 5.20, 5.37) are more or less of the same quality. All 

three cases lack experimental data at the large angles. But, the elastic data on 28Si has a 

wide angular range. The large angle behaviour of angular distribution including ALAS 

which cannot be accounted for by the normal (WS) optical potential [4,91 has been 

shown to be a sensitive probe for determining the a -nucleus potential (6,19-21,28,29,56]. 

However, the initial potential parameters for elastic scattering on 29..10Si are scaled from 

the parameters of the a -28Si potential deduced on the basis of seven-point angular 

distributions spanning the 14.47-45.0 MeV incident energy range and covering a wide 

angular range in the elaborate work of Tariq et al [19]. So, the parameters of the a -29..10Si 

potential parameters are expected to be reasonable. On the other hand, the molecular and 

Michel a-
27

Al potentials, deduced in the present work on the basis of a narrow angular 

distribution (8c.m< 8cf) at one-point incident energy of 64.5 MeV which is outside the 

energy range of the work of Tariq et al [ 191 may not be final. In spite of the possible 

limitations of the aY AI potential, the DWBA analyses in the present work on the 

27 
Al(a.,ti 11Si, lB,29,30Si(a,d)30

,.J
1,32Si and 28Si(a,pj1P reactions using the parameters of all 

three (molecular, normal optical and Michel) form of potentials reveal some valuable 
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facts. The following sections exhibit step by step the results and the relevant discussion 

on these. 

6.1. The 11Al(a,t/'Si reaction 

In the present study, 53 transitiom have been analyzed with all three types of 

potentials. The analyses involve: (i) 4 transitioos with the 1=2 transfers (Fig. 5.4) leading 

to the grotmd, 4.98 and 6.69 MeV states with the unique j=5/2 transfer and the 12.33 

MeV state which is assumed to be populated via j=3/2; (ii) 11 transitions with 1=3 

(Fig.5.5); (iii) 9 transitions with 1=4 (Fig. 5.6); (iv) 11 transitions with the admixture 

1=0+2 (Fig. 5.7); (v) 1 transitions with the admixture /:;1+3 (Fig. 5.8); (vi) 1 transition 

with 1=2+ 3 (Fig. 5.8) po~ating (Xobably two unresolved states with opposite parities at 

about Ex =6.88 MeV and (vii) 11 transitions with the admixture 1=2+4 (Fig. 5.9). The 

data of the transition to the 11 .97 MeV state are compared to tlle DWBA predictions 

twice, one in Fig. 5.8 for the 1=1+3 transfer and another in Fig. 5.9 for the 1=2+4 

transfer, as both transfers produce similar quality and acceptable fits to the data. 

In Fig. 5.3 the FFR and ZR calculations are compared to the angular distriootion 

data for transitions to the ground and Ex= 11.58 MeV states. 1he improvement of the fits 

due to predictions of the former over those of the latter underlines the importance of the 

FFR calculations. 

It is evident from Figs. 5.4-5.9 that the full fmite-range DWBA analyses using the 

molecular and normal optical potentials, fit quite satisfactorily the experimental data of 

the 44 transitions out of 53 with 9 other states fitted moderately. In general, the fits with 
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the molecular and normal optical potentials seem to be of the same quality, but the fits 

with the Michel potential are comparatively poor. At forward scattering angles < 20° ~ 

so, all three potentials yield, to some extent, the same results. But, at larger scattering 

angles, for the bound state transitions with the excitation energies up to 11.58 MeV, the 

molecular potential provides a better fit, although the normal optical potential competes 

reasonably well and the Michel potential seems to be inferior. However, all three types of 

potentials reproduces the absolute cross-sections, as reflected in the deduced 

spectroscopic factors [Table 5.2). For the contirruum states with the excitation energies 

above 1 1.58 MeV both the molecular and normal optical potentials yield again 

comparable results with quite reasonable fits to the data, but the Michel potential seems 

inadequate. At reaction angles larger than 30°, the difference in the predictions due to the 

three distorting a.-nucleus potentials, becomes very prominent and increases with the 

reaction angle. It is also to be mentioned that for transitions to the 4.98, 6.69, 8.54, 10.21 

and 12.24 MeV states, neither of the three types of potentials could produce good fits to 

the angular distributions, indicating the probable contribution of reaction mechanisms 

other than the direct one that may be involved in these cases. 

Yasue et al. [44) reported that an admixture of 1=1, 2 and 3 was needed to fit the 

data of the levels at Ex = 6.88 and 6.89 MeV, but in the fKesent study an admixture of 1=2 

and 3 suffices to fit satisfactorily the angular distributions of these unresolved levels (Fig 

5.8). Furthermore, they (44] used the 1=0+2+4 achnixture for the 7.93 and 8.26 MeV 

transitions, while in the present work 1=0+ 2 seems to be sufficient to fit the data quite 

well (Fig. 5.7). Moreover, as mentioned earlier, Yasue et al. [44] a<>sociated the 15.02, 
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15.85 and 16.11 MeV transitions with the 1=3 transfer, but the companson of the 

predictions in the present analyses for /=3 and 4 in Fig. 5.10 for each of the three 

potentials, show that the angular distributions for these transitions are better fitted by the 

1=4 transfer. It is also obvious from Fig. 5.10 that the predictions with the molecular 

potential bring out the difference more distinctly between the angular patterns for the 1=3 

and 1=4 transfers. 

The spectroscopic factors (Table 5.2) extracted using the molecular potential are 

comparable to those obtained using the normal optical potentia~ but are a bit larger for 

some cases. In general, the spectroscopic factors deduced from using the Michel 

potential are even larger. Considering the quality of fits, the spectroscopic factors 

obtained with the Michel potential are expected to be less reliable. 

The spectroscopic strengths extracted from the use of the molecular potential are 

compared to those calculated from the shell-model [143] in Table 5.3. The predicted and 

deduced strengths agree for most of the /=2 transitions except that for the the 6.89 MeV 

state. The extracted strengths fcx the 1=0 transitions to the 1.78, 6.28 and 9.32 MeV 

states are much weaker than the predicted values. This may partly be ascribed to the fact 

that the matching /-transfer, I~ - krRd (k's and R's are respectively the momenta and 

interaction distances in the reacbon channels) lies in the range 2-4 over Ex = 0.0 - 14.36 

MeV of the final nucleus and hence /=0 is a mismatched transfer. Furt.hetmore, 1=0 shell­

model wave functions used in [ 143] may not be good due to truncation. 

The extracted sum of strengths for all /=2 as well as for all 1=0 transitions has a 

factor of 2 missing from the expected magnitude e.g. the effective mnnber of proton-



224 

holes in the transfer -orbits. This is surprising when ooe coosiders the states of 
28S~ 

resulting from the r = 1/t, 3/t, 5/2+ transfers in the reactioo, are highly improbable to 

exist at Ex > 16.50 MeV. The spherical shell-model cannot probably take up the whole of 

the transition strength and some of the strength drains off as a result of deformation. For 

the transition to each of the 6. states at E,r=ll.58 MeV and 14.36 MeV, the predicted 

strength G=0.083, calculated on the basis of deformed shell-model [ 140, 141), is not 

adequate enough to explain the observed values (Table 5.3). The band mixing effects due 

to Coriolis coupling (146] may have significant effects on these transition strengths and is 

worth ftnther investigation .. 

6.2. The 11Si(a,d/"P reaction 

Both the molecular and Michel types of a-nucleus potential have been used, for 

the first time, for the analyses of the data for the two-nucleon transfer (a., d) reaction The 

data for the even-parity states up to Ex=3.02 MeV, have been analyzed both in terms of 

the FFR DWBA with the cluster form-factor and the ZR DWBA with the microscopic 

form-factors. In the latte:r calculations, the FPSDI and CW [37] as well as MSDI [18] 

spectroscopic amplitudes derived from the wave ftm.ctions of Wildenthal and his 

collaborators [144,145] and Ref [20) cited in the work of de Meijer et aL [37). The data 

of the odd-parity states are analyzed only in terms of the maaoscopic FFR calculations. 

In both microscopic and macrosoopic DWBA calculations, the molecular 

potential (Figs. 5.12-5.14 and 5.17-5.19) produces the best description of the data for all 

the transitions studied The Michel potential, which has been shown to des<ribe 
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satisfactorily the elastic a. +211Si data [ 19], is foliDd inadequate not only in accounting for 

the pattern of the angular distributions (Figs. 5.12-5.14, 5.17), but also in reproducing the 

right order of magnitude for the cross section data. The normal optical potential, on the 

other hand, which can fit the angular distribution at forward reaction angles and predicts 

the same order of cross sections as the molecular ooe does, is found inadequate in 

describing the data at large scattering angles (Figs. 5.12-5.14, 5.17). 

Ibe finite-range correction to the ZR microscopic calculations produces 

significant effects on the pattern of the angular distributions and improves substantially 

the fits to the data as can be seen in Fig. 5.16. This confirms the observation made by 

Bencze and Zimanyi [ 157]. The best-fit value for the fmite-range parameter fol.md is 

R =0. 70 fin for the reaction. 

In the literature, an ambiguity in the spin-parity assignment for the 3.93 MeV 

state is noted The comparison of the macroscopic DWBA predictions for f'=T (solid 

curve) and 3+ (dotted curve) in Fig. 5.15 with the experimental data favows the former, 

confirming the assignment of Jankowski et al [19] and opposing that of de Meijer et al 

[37]. 

The macroscopic spectroscopic factors AL for the transitions to the ftnal states up 

to Ex=5.42 MeV are deduced by comparing the macroscopic DWBA calculations to the 

data. Table 5.5 compares the deduced spectroscopic factors AL to those obtained at the 50 

MeV incident energy by de Meijer et al [37] and also to those extracted using the same 

data as of the present work by Jankowski et al [18]. The results of Jankowski et al[18] 

are not expected to be reliable as they included the compound nucleus contributions in 
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the analyses. The results of de Meijer et aL are b~ed on the zero-range calculations. 

Nevertheless, their AL values for the transitions involving oo.e L-transfer leading to, 

particularly, the 1.454 (2) and 4.62 MeV (3") states are remarkably close to those of the 

present work. 

The AL values for the even-parity states have been compared to the model dependent 

theoretical spectroscopic factors S~ in Table 5.5. It can be noticed that apart from the 

ground state (1 +), 1.454 (1} and 2. 72 MeV (2) transitions, the total spectra;copic factors 

LAL agrees with the calculated total sa for the CW amplitudes. On the other hand, the 

FPSDI predictions for the sa values are closer to the experimental L A L for the 

ground and 1.45 MeV states. Neither of the FPSDI and CW amplitudes reproduces the 

experimental AL for the 2.72 MeV state. It can also be noticed from Table 5.5 that FPSDI 

yields larger spectroscopic strengths compared to CW. This is also reflected in the 

deduced values of relative normalization comtants ~"' in Table 5.7, where FPSDI needs 

in general smaller ~-values to get to the data. None of the three interactions viz. FPSDI. 

CW and MSDI has been able to yield consistent values of the normalization constants for 

transitions to the even-parity states. However, the model-independent ~=722±25 is 

obtained from the data of the 7.20 MeV (7) state, where the spectra;copic amplitude is 

believed to be unity. 

6.3. The ZJSi(",d/1 P reaction 

The macroscopic FFR DWBA calculations performed for 29Si( a..,di'P reaction 

using all three potentials e.g. molecular, normal optical and Michel potentials have been 
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compared to the experimental data in Fig:;. 5.21-5.23. It is evident from Fig. 5.21 that for 

ground (112), 1.27 (312\ and 2.23 (512) MeV states of 
31

P, the quality of fits are 

moderate for all three potentials. For the ground state transitioo, the molecular and 

normal potentials generate a bit better fit in the large ~le region in ccmparison to that in 

the forward angles, whereas, the Michel potential reproduces the angular distributioo up 

to Scm= 40°-50° in a better way, rut beyond that it is unable to reproduce satisfactorily. 

For both 1.27 (312) and 2.23 (512) MeV states, the normal optical and Michel potentials 

yield a bit better fit at the forward-angle regioo in comparisoo to the molecular one. The 

macroscopic DWBA predictions by the molecular potential reproduce the experimental 

data for the 3.13 (112\ 3.30 (5/t), 3.51(3/2}, 4.19 (5/t) and 4.26 (312) MeV states 

(Fig. 5.22-5.23) in an excellent way over the whole range of angular distribution. On the 

other hand, the DWBA fits due to the normal optical and Michel potentials for these 

states are comparable to those of the molecular one at forward angles only, but not of the 

same quality at the more backward angles. For the 3.41 (112) MeV state the fit to the 

experimental data is not satisfactory for any of the three potentials. 

The effect of fmite-range correctioo to the ZR DWBA microscopic ca1culatioos 

us1ng the molecular potential and the MSDI spectroocopic amplitudes for the ground 

(l /2+), 1.27 (3/2) and 2.23 (512) MeV states has been exhibited in Fig. 5.24. The [mite­

range parameter value R =0.7 fin improves the fits to the data substantially. 

The microscopic ZR DWBA calculations with finite range correctioo (R=0.7 fin.) 

ustng the molecular potential (Figs. 5.25-5.27), normal optical (Figs. 5.28-5.30) and 

Michel (Figs. 5.31-5.33) potentials and the MSDL RIP and KB spectroocopic amplitudes 
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are compared to the experimental data. Fig. 5.25 shows that the fits to the data of the 1.27 

(3/2+) and 2.23 (5/2
1
) MeV states are quite reasonable for the molecular potential using 

Ute spectroscopic amplitudes from all three MSDI, RIP, and KB interactions. But the 

molecular potential fits using the RIP and KB amplitudes are not so satisfactory for the 

ground ( 112) state (Fig 5.25); but the same potential using MSDI accounts for the data 

of Ute state in a bit better way. For the 3.13 ( 112) and 3.30 (5/2~) MeV states (Fig. 5.26) 

the fits from the molecular potential using all three interaction amplitudes are very good 

wiili MSDI doing again Ute best. But for Ute 3.41 (712) MeV state, Ute fits from the 

molecular potential for all iliree interactions are moderate. The fits to the 3.51 (312), 

4.19 (512) and 4.26 (3/2+) MeV states (Fig. 5.27) are excellent aver the whole range of 

angular distribution using the molecular potential and Ute spect.rosoopic mnplitudes of all 

three MSDL RIP, and KB interactions. So, it is observed that in Ute ZR DWBA 

microscopic calculations, the molecular potential successfully reproduce the experimental 

data of almost all the positive parity states using the spectroscopic amplitudes of all three 

interactions. It is not easily possible to distinguish the preference of any one of the 

interactions to the other. Nevertheless, a careful scrutiny will give MSDI a favour. 

From Fig. 5.28, it is obvious Utat Ute normal optical potential accotmts for the 

ground state (112) reasonably well at far backward angles but fails to do so at the 

forward angles. For Ute 1.27 (312) and 2.23 (512) MeV states (Fig. 5.28), the fits are 

satisfactory at the forward angles, but not good at the backward angles. For the 3.13 

(112), 3.30 (5/21
) and 3.41 (712) MeV .states (Fig. 5.29) as well as fcr- the 3.51 (312), 

4.19 (5/2+) and 4.26 (312) MeV states (Fig. 5.30), the fits are as good as those due to the 
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molecular potential except at the backward angles for some states. As noted earlier, the 

reaction data have been reproduced satisfactorily by the potential parameters without 

adjustments aver those generated by fitting elastic data as shown in Fig. 5.20. It can be 

seen from the Figs. 5.28-5.30 that the microscopic ZR DWBA calculations using the. . 

nonnal optical potential without adjustment of any parameter reproduce at least the same 

quality fits, if not better compared to the previous study [48], where some of the potential 

parameters are changed aver those from the fitting the elastic data, to forge fits to the 

reaction data. 

Fig. 5.31 shows that, the ZR DWBA fits to the ground (112) state data is not so 

satisfactory using the Michel potential with any of the three interactions. For the 1.27 

(3/2~ and 2.23 (512) MeV states (Fig. 5.31) the fits are moderate at the forward angles. 

but worse at the more backward angles. The fits to the data of the 3.13 (1/2~, 3.30 (5/2~, 

3.51 (3/2+), 4.19 (5/2+) and 4.26 (3/2~ MeV states (Figs. 5.32-5.33), using the Michel 

potential and the spectroscopic amplitudes of all three MSDI, RIP, and KB interactions 

are quite good; but the fit to the 3.41 (7/2~ MeV state (Fig. 5.32) is not satisfactory. 

Figs. 5.34-5.36 compare the fits of the microscopic DWBA calculations to the 

experimental data of all the positive parity states of 
31

P using the molecular (solid lines), 

nonnal optical (broken lines) and Michel (dotted lines) potentials, each coupled to the 

MSDI spectroscopic amplitudes. It is evident without ambiguity from Fig:~. 5.34-5.36 that 

the molecular potential reproduces a better overall fit to angular distribution data in 

comparison to the other two potentials. 
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The spectroscopic factors (Tables 5.12-5.13) deduced from the macroscoptc 

calculations using all the three molecular, ncrn1al optical and Michel potentials when 

compared to the theoretical spectroscopic factors calculated from the MSDI. RIP and KB 

spectroscopic amplitudes with the method outlined in [ 150], give some distinct features 

of the potential used. The total spectroscopic factors .E4L for each of the transitions 

deduced using the molecular potential agrees well with the calculated total spectroscopic 

factor sa' although the individual AL values have some differences with s~ for the 

corresponding transitions. On the other hand, both the normal optical and Michel 

potentials could not reproduce the right order of differential cross-sections. The 

calculated cross-sections from these two potentials are underestimated by one to two 

orders of magnitude. This is reflected in the magnitude of the experimental spectroscopic 

factors for both the normal optical and Michel potentials, which are overestimated by the 

same orders over the theoretical spectroscopic factors Sa (Tables 5.12-5.13). In this 

COTUleclion, it is also to be noted that the theoretical spectroscopic factors S a (fable 

5.12) using the spectroscopic amplitudes of MSDI, RIP, and K.B interactions are not also 

consistent with one another. So, it is not possible to decide which interaction is capable of 

reproducing the correct order of cross-sections. 

The normalization constants in Eq. (5.16) extracted by comparing the theoretical 

cross-sections with U1e experimental ones using three poterttials for all the states are 

noted in Table 5.23a Two inferences come out from the deduced normalization 

coostants. Firstly, the normalization constants yielded by neither of the potentials is equal 

for all the transitions and secondly, the normalizatioo constants generated by the ncrn1al 
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optical and Michel potentials are higher than those by the molecular potential for the 

corresponding transitions by 1-2 orders of magnitude, agam reflecting the 

underestimation of the predicted cross-sections by the latter two potentials. N o 

conclusive inference can be drawn for the norrnaliZBtion constant of the (a., d) reaction 

from the inconsistency in the deduced values. 

6.4. The JDSi(a,d}'1P reaction 

The predictions from the macroscopic FFR DWBA analyses performed using the 

molecular, nonnal optical and Michel potentials are compared to the experimental data in 

Figs. 5.38-5.39. It is obvious from Figs. 5.38-5.39 that the fits using the molecular 

potential, to data of the grOWld ( 1 +) and 1. 75 (3+) MeV states are excellent over the 

whole range of angular distribution. The DWBA predictions using the molecular 

potential for the 0.08 (2+), 1.15 ( I\ 1.32 (2~, 2.66 (2+), 2.74 (1) and 3.00 (3) MeV 

states are also in very good agreement with the experimental data. 

On the other hand, both the normal optical and Michel potentials seem to be 

inadequate in reproducing the experimental data of the gro\D'ld (lJ and 0.08 (2) MeV 

states. For the 1.15 ( 1\ 1.32 (2+), 1.75 (3), 2.66 (2), 2.74 (I +) and 3.00 (3~ MeV 

states, the nonnal optical and Michel potentials produce reasonable fits at forward angles, 

but can not do so at the more backward angles. 

The finite-range correction to the ZR microscopic calculations for the ground (1 ~. 

0.08 (2+), 1.15 ( f ) and 1.32 (2+) MeV states are shown in Fig 5.40. The best-fit value 

for the finite-range parameter found is R=0.70 frn which conforms to the value obtained 

for the reaction on 28
.2

9Si. 
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Figs. 5.41 -5.42 show the oomparison of the microscopic ZR DWBA predictions 

using the molecular potential and spectroscopic amplitudes due to the MSDL RIP, or KB 

interaction with the experimental data. It is evident from Fig 5.41 that for the ground (1) 

state, the DWBA calculations using the molecular potential coupled with MSDI 

amplitudes gives better agreement with the experimental data than those with the RIP and 

KB amplitudes . The calculations foc the molecular potential ooupled with either of the 

three MSDI, RIP, and KB amplitudes reproduce the data for the 0.08 (2}, 1.15 (1 ) , 1.32 

( 2+), 2.74 (1) and 3.00 (3+) MeV states reac>onably well. The fits to the 1.75 (3) and 

2.66 (2+) M eV states are tmsatisfactory, although the data for the latter two states are 

satisfactorily described by the macroscopic calculations (Fig. 5.39). Nevertheless., 

considering the overall situation, it is evident that the MSDI spectrosoopic amplitudes 

provide a better descri.ption of the data compared to the other two. 

Figs. 5.43-5.44 show the microscopic DWBA predictions due to the normal 

optical potential using the MSDI, RlP and KB spectroscopic amplitudes. It is to be noted 

here that the potential parameters generated from the elastic fit have been used here 

unaltered. For the ground (1 +) state, the fits are not satisfactory beyond the scattering 

angle 8cm= 80°. The fits to the 0.08 (2}, 1.25 (2}, 1.32 (2), 2.66 (2+), 2.74 (1 +) and 3.00 

(3 ) MeV states are quite good up to the angle of about 120°. For the 1.75 ( 3) MeV state 

the fit is moderate. 

Figs. 5.45-5.46 display the microscopic calcuJations using the MSDI, RIP and KB 

amplitudes coupled with the Michel potential. For the ground state (1), the MSDI and 

KB amplitudes using the Michel potential describe the data well, whereas., the RIP 
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amplitudes do poorly at forward angles. The DWBA calculations for the 0.08 (t), 1.15 

(1). 1.32 ( 2\ 2.74 ( r~ and 3.00 (3) MeV states, using all three MSDI, RIP, and KB 

amplitudes and the same potential reproduce the data reasonably well up to about 8cm = 

120°. The fits to the l . 75 (3) and 2.66 ( 2) MeV states are not satisfactory. 

The comparison of the fits for all the states using the molecular, standard optical 

and Michel potentials coupled with the MSDI amplitudes for each of the potentials (Fig;;. 

5.47-5.48) obviously show that the normal optical potential produces a lesser quality fits 

on the whole in comparison to those using the molecular and Michel potential. 

The experimental spectroscopic factors AL deduced from the macroscopic 

calculations using the molecular, normal optical and Michel potentials are tabulated along 

with the theoretical spectroscopic factors s~ in (fables 5.18-5.19). It is obvious from the 

tables that the calculated theoretical shell-model spectroscopic factors due to all three 

MSDI, RIP and KB amplitudes are different by orders of magnitude. The values of the 

total spectroscopic factors S a extracted from both the RIP and KB amplitudes are lesser 

compared to those from the MSDI ones. The experimental spectroscopic factors deduced 

for the molecular potential are comparable with those calculated :from the MSDI 

spectroscopic amplitudes for the L=2 t:ransition to the ground (1 ) and 2.74 (1) MeV 

states. For all other states, the experimentally deduced spectroscopic factors due to the 

molecular potential are a bit higher but comparable to the theoretical ones. On the other 

hand, the total spectroscopic factors })tL deduced using the normal optical and Michel 

potentials are one to two orders higher than the theoretical sa values for all the 

transitions. This means that the macroscopic DWBA predictions using both the normal 
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optical and Michel potentials tmderestimate the magnitude of rrnss-sections by one to 

two orders for the different final states. 

Tables 5.20-5.23 containing the spectroscopic amplitudes from the three MSDI, 

RIP and KB interactions and the corresponding normalization constants for different 

transitions reveal two facts. ( 1) The normalization constants are not consistent and not 

same for all states and · not even for the same final state for different distorting a -nucleus 

potentials and interactions responsible for the spectroscopic amplitudes. (2) The 

normalization constants deduced from the data of any state u'Sing the noonal optical and 

Michel potentials are larger by one to two orders of magnitude than the corresponding 

ones due to the molecular potential. 

6.5. The 18Si (a,p/1Preaction 

The present work reports for, the first time, the analyses of a three-nucleon 

transfer reaction using both the molecular, deep WS and shallow WS and Michel 

potentials. The DWBA calculations for the three-nucleon transfer (a,p) reaction to the 

ground (1/2), 1.27 MeV (3/2+) and 2.23 MeV (5/2+) states of the final nucleus, using the 

molecular potential reproduce the data both in magnitude and in angular dependence, 

rather well. The calculations using the deep optical and Michel potentials are 

underestimated by 2 to 4 orders of magnitude in each case, although the angular patterns 

are reasonably reproduced The calculations using the shallow potential reproduce the 

magnitude of cross-sections up to 100° or so, but then predict a sharp decrease at large 
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angles. Thus, the molecular potential is the only one to account for the data for the 

ground (112\ 1.27 MeV (312) and 2.23 MeV (512) fmal states over the entire angular 

distributions. Moreover, the present analysis indicates that the data for the reaction can be 

successfully described without the addition of any compound nucleus contribution, which 

has been included in the analysis by Jankowski et al [I 8], oot is highly improbable at the 

incident energy considered. Furthermore, the fits to the data are reproduced without 

having to adjust any of the parameters of the molecular potential, obtained from the 

elastic data. 

The CCBA calculations for the 28Si( a.,p Y1P reaction using the molecular potential 

improve the fits over the ZR and FFR calculations (Fig. 5.50). The inelastic 4+ state at Ex 

= 4.618 MeV in 28Si plays a major role in the CCBA calculations in reproducing the 

ground state data. The coupling to the inelastic 2+ state to the ground state of 111Si is also 

significant in improving the data for the 1.266 and 2.234 MeV states of 31P. The CCBA 

calculations confirm the deformed shape of the 28Si nucleus. 

6. 6. Summing up 

One may summartze the cliscussion on the study of the 27AJ(a.,ti8S~ 

28.29.:JlSi( a.,d)30
.1

1,32P and 28Si( a.,p i 'P reactions in the following way: 

The one-nucleon transfer (a.,t) reaction on 21 AI at the 64.5 MeV incident energy 

can be reasonably described by the molecular and Michel potentials. The performance of 

these two types of potential is as satisfactory as the normal WS potential in the 

description of the reaction data at forward angles. However, the substantial difference in 

the DWBA predictions for those three types of potential occurs at large reaction angles 
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suggesting that the large angle data for the reaction may be used as a sensitive probe to 

decide the nature the a.-nucleus potential. 

The macroscopic FFR DWBA and microscopic ZR DWBA analyses of the (a.,d) 

on the alpha-cluster 28Si nucleus and the non-alpha-cluster 29:x>Si nuclei 1:ring out clearly 

three facts. (1) The compound nucleus effect is insignificant at the energy considered as 

opposed to that reported by Jankowski et al [18]. (2) The molecular potential reproduces 

the experimental data of the (a., d) reactions quite reasonably and convincingly without 

having to adjust any of the parameters of the potential obtained from elastic fit. (3) The 

Michel potential, which can account for the ALAS effect of the a.-28Si elastic scattering 

as good ac; the molecular one if not better, could not reproduce, like the normal optical 

potential, the angular distribution as well as magnitude of cross-sections of the (a.,d) 

reactions on the silicon-isotopes at the energy considered. 

The analyses of the 28Si(a.,pi'P reaction ensure emphatically that the molecular 

potential shows its clear preference to the normal optical and Michel potentials. It also 

affmns the conjecture that the compound nucleus effect is least probable at the incident 

energies near to Ett=26 MeV. The molecular potential reproduces the experimental data 

of the 28Si(a.,pi1P reaction reasonably well in magnitude and angular oscillations. 

Now, a pertinent question arises as to why the Michel potentials which has been 

so successful in accounting for ALAS in the elastic scattering on many targets [56-61], 

seems to fail in reproducing the data of the 28.29~Si(a.,d)30.Jl.Jl_p and 28Si(a.,pi1P 

reactions. The reason of success of molecular and apparent failure of Michel potentials 

may lie within the following facts. 
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The molecular and Michel potentials have two distinctive features. The Michel 

(square-Woods-Saxon) potential is a deep and monotonic potential and on the other hand, 

the molecular potential is a shallow and non-monotonic one. The molecular potential 

model has its root in a many body theory utilizing the Energy Density Functional (EDF) 

formalism, which incorporates the effects of Pauli' s exclusion principle [28]. As a 

consequence, the molecular potential may have inherent strength of describing the 

physical situation of a.-nucleus interaction in more details. The success of the molecular 

potential conforms to Baye's [160] assertion that amongst the phase equivalent potentials, 

the shallow one with a singularity, which is borne by the molecular potential with its the 

repulsive core, eliminates the states forbidden by the Pauli principle and is, therefore, 

expected to give better result in the description of transfer reactions. On the contrary, the 

Michel potential concentrates on and emphasizes the physical phenomena related to 

surface processes and hence may lack the ability of describing the processes dependent 

on the nuclear interior. So, although the two potentials widely divergent in their forms, 

provide a more or less equally good description of a.-elastic scattering from light nuclei 

in the ALAS energy-region as well as at higher energies, because the effective part of the 

potentials responsible for elastic scattering are similar. But, when the non-elastic 

processes like the (a.,d) and (a.,p) reactions come into the scenario, a more detailed 

contribution from the nuclear interior may dominate the feature. The molecular potential 

represents a more realistic situation of the phenomena. 

Furthermore, one may also note that the two potentials differ significantly in 

defining the Coulomb radius. In case of the molecular potential, the Coulomb radius Rc is 
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the distance where 28Si barely touches the a particle. The observe:d density distribution, 

p{ r) for 28Si is given by [90] 

r - c 
{ ]

- 1 

p(r) = p(O 1 + expd 

with c=3.14 fin and d=0.537 fin. Thus, at r=6 fin, this leads to p(r) = 0.005p(O) . A 

reasonable density distribution fWlCtion for a particle is 4( :) 312 

exp(- yr 2 ) with y 

=0.5 [158). This is about 0.001 at r=3.35 fin. Thus, a reasonable value of Rc is 

(6.00+3.35) =9.35 fin., which is used in the molecular potential. The Michel potential, on 

the other hand, uses Rc= 3.95 fin. At this distance, the two nuclei have inter-penetrated 

each other substantially. In the DWBA theory, the stripped particles from the projectile 

are assumed to drop on the nuclear surface and hence, the treatment may be somewhat 

sensitive to the actual value of Rc. 

The present study of the 27AI(a,tf11S~ 211.29~Si(a,d)30.11 .:nP and 28Si(a,p)31P 

reactions strengthens Satchler's contention [31] that the real test of a potential generated 

from the analysis of elastic scattering data lies in its ability in reproducing the non-elastic 

data. Hence, the success of the molecular a-nucleus potential in describing the angular 

distributions of the (a,d), and (a,p) reactions on the silicon-isotopes and the one-

nucleon transfer (a,t) reaction on 27 Al in addition to the elastic scattering on various 

targets in different mass regions, justifies its clear-cut superiority over the normal WS 

and the Michel potentiaL~. 
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CONCLUSION 

The present study reveals some convincing successes of the molecular potential 

and inadequacy of the Michel one in describing a.-induced two-nucleon transfer (a.,d) and 

three-nucleon transfer (a.,p) reactions on the mid sd-shell targets, although both are 

strong contenders to explain the ALAS effects in the a.-elastic scattering and to accmmt 

for the angular distribution of one-nucleon transfer ( a.,t) reaction It is worth mentioning, 

in this relation, that the normal optical potential has been proven inadequate in describing 

the ALAS effect in the a.-elastic scattering on targets of different mass regions. 

Although, the molecular and Michel types of a.-nucleus potentials produce more 

or less the same quality fits to the 27Al(o.,a.)27Al scattering (Fig.5.1) and both of them are 

able to describe reasonably the data of the 27 AI( a.,ti8Si reaction at small reaction angles, 

they lead to significantly different scenario in generating the predictions at large reaction 

angles. The three potentials generate diverse predictions at large angles, offering the 

large-angle data of the one-nucleon transfer reaction as a sensitive probe of the a.-nucleus 

potential. 

The macroscopic FFR DWBA and microscopic ZR DWBA analyses of the (a.,d) 

reaction on 28
-
30Si establish convincingly the fact that the molecular potential reproduces 

the experimental data in magnitude and in angular oscillations quite satisfactorily. The 

Michel and normal optical potentials, on the other hand, tmderestimate the cross-sections 

by one to two orders of magnitude in addition to giving poorer fits to the angular 

distribution The molecular potential can also give adequate accounts of the absolute 
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magnitude and angular pattern of the tlrree-nucleon transfer ( a.,p) reaction on 
28

Si. The 

Michel potential tmderestimates the aoss-section of the reaction by 2-4 orders of 

magnitude. The nonnal optical WS potential cannot simultaneously reproduce the 

absolute magnitude of croos-sections and the angular distribution, in conformity with the 

observation of Bnmner et al [ 161] and Hamill and Kunz [ 162]. 

In addition, the present work stroogly put fOJWard some important observations. 

Firstly, this study in conjtmction with the previous studies of a.-elastic scattering on ~ 

and 28,30Si by Tariq et al. [19] supports the observations asserted by Budzanowski et al. 

(159] that elastic data of either at forward angle or at backward angles only are 

insufficient to determine the potential parameters. So, the present work emphasizes the 

essentiality of the elastic and non-elastic scattering data of wide angular range extending 

to the large backward angles to determine the parameters of potentials more reliably. 

Secondly, the present study conforms to Satchler's contention [31] that the real test of a 

potential set generated from the analyses of elastic scattering data lies in its ability to 

reproduce the non-elastic data. 

Both the (a,d) and (a,p) reactions, because of their high negative Q-value, are 

spin-selective and favour the transitions to maximum spins. However, since these 

reactions have large angular momentwn mismatch, there will be a substantial 

contribution from the nuclear interior, resulting in sensitivity of the calculated cross­

sections to the nature of the a-nucleus interaction. The molecular-type potential gives 

satisfactory account of the (a, d) and ( a ,p) reactions even for the large angle data. Thus, 

the present work suggestc; that the molecular potential paves the way for more prolific use 

ofthese two reactions for spectroscopic studies. 
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The present study also invoke some endeavour to dig into the deeper essence of 

the fact that while the Michel potential enjoys so much sucx:esses in accotmting for the 

ALAS effect in the elastic processes on various targets of different nuclear mass regions 

[57,61), the cluster structure in 4<t-ri [58,59] and oscillations in the fusion excitation 

function [60,163 ], it is found inadequate in describing the (et,d) and (et,p) reactions. The 

success of molecular potential, on the other hand, lays a strong foothold for the Energy 

Density Ftmctional formalism. lbis may pave the way for introducing newer steps in the 

hope of resolving some astrophysical problems, related to neutron star density [ 164]. 

The success of molecular potential in accounting for the a.-elastic and a.-induced 

non-elastic data, is certainly a leap forward and ushers in the long cherished hope of 

Hodg;on [22) for obtaining a satisfactory global a.-nucleus potential. But even then, the 

present work suggests that the molecular potential with its simple parametrization needs 

further examination with targets in other mass regions before being accepted as a global 

one. 
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APPENDIX 



f'II YS IL't\L IWVIE\V C. VOLUME GO, O,I,IGI7 

Eff'cd of (1:'-II Udcus potentia l on the 27 AI( cr,t) 2RSI rcacliou 

S. K. O:~s, 1 t\ . S. IJ . T:~ riq, 1 t\ . r:. M. ~1. Halun:1n, 1 P. K. Roy.' M. N. ll11 d:~, 1 
/\ . S. ~ l• > nd:-~1, 1 

/\ . I< . 13:~s:Jk, 1 

II. tv!. Sen Ci upta,2 :111d F. U. Malik·' 
1 /Jrf 'rl ' IIIICIII nf /'hy.l iC.!, 1/nil·c• .lity of Urrj.,fwhi, llnj.r lwhi, /lan.~ ladc.lh 

2ncpnt1111CIII nf l 'lly.liC.I, Unin•rJity of IJ!rrrkn, IJ!rn~rr . /lnn.~lodnh 

J/JCf •wtmcnt of l'hysics, Southrtll llli11oiJ U11ircr,1ity, Cmhmrdalr, 1/lillois o2901 
(Hrccivctl 15 June 1999; published IG Scplcrnhcr 1999) 

rull flniiC ·I :-~ngc distol tcd-wnvc Born npprnxirn:rl ion cnl cul:rtinn~ hn vc hcCil per fnr lllcd 11~111)! rnolcculnr , 

Michel, :111<.1 norm~l opri c:~ l polcnliah ro nn~lpc the:' nngulnr disllibuliom or cross sect ion~ f"m I he 53 ll~n~il ions 
flO(llll nting the hOllllti nntlunhountl ~ 1 :111!~ of 1~Si via the ( (t,/) l t":ICi ion. 1 he Jl:l l nntC I CI.~ of lht·~c tiii CC flOi t"llliaJ~ 
hnve been dctcnnincd f10111 n n n l y~c~ ol 1lu: c l a~ l ic ~cnllcdng <hln in ihc cnil nnce ch:uutcl :1t I he incident cnc1 gy 
Involved. The molcculnr nml (lplicn l pul c nti n l~ n1c ftlllltd to p1otlucc ~nti~rnclory lit~ to the 1I:Hn, hut the Michel 
potentinl ~CC III~ to hC' inadequate. For alltlu ec potcntiah in the cntrnncc channel. the dedurcd I ll :t l l.~ fc l ~ ror the 
transi tion~ to lhc 15.02, l5.R5, and 16. 11 MeV stales dilrcr hom the :-rs~ignntr nt~ pr cviou~ ly ' ~' IXll tcd . The 
cxlt;~ctctl spcctr o~copi c factors nrc cornpnrcd with shell -model predict ions. [SU:i:iG-2!! 1 J(99)U25 10-8J 

PACS numhc1(~): 2 .'i . 5~ .Ci. 2 1.10.Jx, 211. 10 Eq. 2li . ~O . ..f g 

I. INTHOIJUCTJON 

Since the li rs l ob~er v:rlio n o f anomalous l:n gc angle scal ­
lcting (t\L0S) by Cun cll i et nl. I_ I ] in the c l<tstir sr:ttlc t ing 
o f (1' p:u licles by l (oo and 32S, it h:-~ s :J iso been round lo occur 
in o ther el<ts tic nnd noncla ~ li c processes l 2 - t1] induced by (1' 

pnrli cles. The 1101111:11 oplicn l -rnodcl pnlenlia ls ;u c lound to 
be consislcnlly imtdeq ualc in reproducing t\Lt\S in clnslic 
anu inelastic sc:~ll cring as well as trnn~ rer rencliom induced 
hy ( Y p:u licles [5 - 9 j. T wo :~llcrnalive types or potential h :-~vc 
been pr!lposcd lo explnin 1\L/\S. The lir sl one, ndvocalcd by 
M id tel et n/. f I 0. II]. is rt special type u r opl ic:~ l potential 
wi th a squnrcd Woods-Snxon (WS) geornctr y. ' lite second 
one is :1 molecular l ypc o f complex polcnlials 11 2- 1 tl ]. ha v­
ing :1 tcpul si vc core in il s real pari. Dol lt potenli:ils have been 
w cccsslul in reproducing 1\L/\S in the clast ic scallcring or cr 

p:u ticles l10- J5J by some 2s - ld nuclei . Nonelastic pro­
cesses ha ve so f;~r been, in most ca se.~. lt ealed within the 
l r:unc\\'ork o f d irecl-l cnction theory using normal optical po­
tcntinls in lite distor ted channels. The :u1ornnlies in the data 
or (cr,d) and (a ,,l ) r e:~cti ons on 2Rs i I9J have, liO r:u, been 
analy1.ed in terms of an incoherent sunt of lhc dislorled-wavc 
IJorn npproxirnalion (DWI3/\) contribution c:dculalcd with 
normal opti cal polenli:~ls and lite compound nucleus eurl l ri ­
bu tion enlculaled on the basis o f lite l lauser-Fcsltbach model 
[ 16j. The rnethod has enjoyed a l imited sueces~. In p:utieu­
lnr, the r lm;lic and lrnm;fcr datn cotrld not uc fill ed with the 

snme optica l polenliill. T o the best o f our knowledge there is 
no iiVailable report dealing wi th the ~i ngle pnrl icle lrnn~ rer 
pr ocesses using both th ~ molecular- and Mlchcl -typc poten­
tials. nlthough these potentials could ex plain succes.~ fully lhc 
clastic 0'-Scallcring data ror n nun1bcr of 2 .f - ) r/ largcls [ 15j. 
The normal oplicnl model, on the olher hand, ha~ failed to 
cxplnin these data. One mny also note lhntlhc molecular type 
of potential has been able r e:~sonab l y lo repr oducc [ 17 J the 
angu l :-~r distributions of the cross section for the 
2RSi( a,p) ~ 1 P teaction l e :-~d in g lo the ground nnd exci ted 

slates. T he pr esent study is r notiv:~ ted with :1 view lo tes t the 

lwo po tentinls in :uraly1.ing the one-nucleon llnnsfcr renction 
on n larger, ns n part o f n series or in vcsl igations to li nd lhe 
nnhtre of the rr IHtcleus interaction wh ich c:-~ n explai n all col­
lision p1ocesscs invo lv ing rr-p:lt l iclcs inc.:luding p:~ r li clc 

l r:-~nsfer renctions. Wit h this objecti ve in mind we ha ve cho· 
sen I he expcrimenl:d d:rl a of Yasuc ct a/. [ 18] for lhc 
21/\l(a,t) 28Si renclio n al £ ., = 64 .5 McV. Ie:~ding lo 56 lran­
sitions with an energy 1 csolul inn of nboul 35 ke V. The 
IJWIJJ\ iltlnl yse~ inlhc work or Yasuc Cl ai. !I Rj do not usc 
lhe :.pprnpr i :~l e form rac lor :t!: well :t~ I he full linite-r:lllge 
(Fr:J{) calc ul:~lions for the lr:msil inns lo stales in the unbound 
region. We ha ve investi gated the effect or a f'FR using the 
nor m:-~ 1 oplic:tl, Michel -type, and rnolceu l :-~r potentials for 
part icle 11 :111s l ers lo bound as well as lhe unbound s lates ~~~­

ing lhc rcson:tncc fo1111 factor, formulnled by Vincent :tnd 
f orltiiiC [ 19,20J. One rnay note, however, the l:~c k of reaction 
data in the analysis al sc:tll cring angles grcn ler than about 
G0° (e.m.) which rnij!hl be irnpot I ani in dcler'mirrirrg the de­
tails of the pnlcnlials. The form of the three types or 
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FIG. I. Fits lo the rr- 21/\1 clastic scnllcting data nl 61\.5 MeV 
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TABU~ I. l'o tcnti:~1l' :u:~mc tcr~ . \1 :rdju~tccl to give the ~cp:~1ntion energy. 

Ch~ rurcl rr I 27111 

Pol c nli:~ l 

type Optical lllirhrl 1\IPiccul:~r 

1'0 (MeV) 218.0 80.20 52.81 

r 0 (rm) 1.24 l.o 11 1.55 
o0 (fnr) O.GS 0.(,() 0.57 

111 (MeV) ()R A(, 

R 1 (fm) 2.811 
(r 7..10 
r (fm) 2.'JO 
IV0 (MeV) 25 .6 55.20 58. 13 
r 1 (fm) 1.2-1 I S 3 

" 1 (fm) 0.68 ()52 
n .. (fm) :1.:15 
11' 11 (MeV) 
r 11 (fm) 
n n (fm) 
11, .... (MeV) 
,., •. (fm) 
a, ... (I'm) 
r r (I'm) 
n r (fm) 5.10 J.?O 9.30 

;I 

-
' l{eferencc l3t1 J. 
"Reference [35]. 
cRcrercncc lJo). 
''Reference l27 J. 

rr- nucleu~ pnt enlial u~cd in !he pr c~enl W(lr k i ~ di~cu~~cd in 
Sec. I I. Section Ill gi ve~ briefly lhc ~:rli r 111 ;1.~pec 1~ of rhe 
DWB/\ theory relevnnl lo the pr e~ent mw ly~e~. The J)\VIJA 
nn:rly~es :ue furnished i11 Sec. IV . Section V disr usscs the I 
transfers i11volved in populat ing the vnrinus fi rw l s f ;~t e~ . in 
p:u ticulnr I n~s i gnmcnts tlwl difrcr from the pr evio11sly rc­
porlcd vnlues f l 8j for some o f the lr nn!d tions. The corH.: Iu· 
sions :11e given in Sec. VI. 
\ 

II. (1'-NUC LIWS 1'0 I'ENTli\ LS 

The sq unred WS Miche l potential 11 0.11 J irn; luding !he 
Coulomb tcr 111 V ,( r) is rompr iscd of the foll mvi ng fprrns 

1.1 () J of the rc:1 l I'( r) and imaginary II' ( 1) par t ~: 

\IM(I) =- \10{ I 1-lrcxp[ - (~)'J} 

x{ I I exp('·;,::R) r\ \' ,(1), ( I ) 

(2) 

wilh 

t + '~Si I' 1· 17111 t I (I 

Oplic:~l 
llonnd llonll() 

set I ~rt 2 ~ t a te ~tate 

IH82 5(iJ() \1 I' 

1.1 9 1.40 1.25 I ?'i 

0.68 2 0.72 0.70 0.65 

31.30 50. tO 
1.2/l 1.-10 
0.999 0.71 

t1 .65 >- ~ 25 >. = 25 
0.996 
0.280 

1.25 1.25 
J.9tl J .9't 
b c tl d 

( for ,. ,;::n,) (:I) 

,. (fm r> R,), (4) 

where Rc = rcA ~'·' is the CoullHIIh racliu~. 
Thi s phcnomcnologicnl fm 111 of I he polcntial IH1s heen 

~hl~wn to be npproximntcly similar to the equiv:~len l loc:~ l 

pote nli :~ l I2 1J obtained from the micro~copic ;uwlysis using 
rc!;onn ling gwup 111elhod I21.2?. J. 

The molecu lar potentia l is crnhcddcd in the c:~1 l y works of 
Block r111d Malik 1.2:lJ nnd o thers 124,25 ] who rccogni1.cd this 
as the rn:111ifest:r tion of the role l• f the l'auli exclusion pr in· 
ciple in he:~vy ion scntlcring. The potentia l i!; obtained from 
a mnny body thcw y ulili7. ing the energy-density functionnl 
method [25,2Gj. This pl•lential has the rollow ing forms [ 14] 
for the r c:~ l . ll,(r), :urd irnnginary, ll'm (r). paris: 

(5) 

0·1-16 17·2 
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M ichel pnl c nri ~ls with se t I mrd set 2 (Tnhlc I) of t1i ton potcnrinls in the ex it ch:mncl. 

[ 
r ] 2 

II' (1 ) = - 1\1 cx p - - -"' o . n w (G) 

·rhus the rcn l p~rt is no nmo 11o tonic w ith a short rr•nge l epu l­
sion. T he Conlomh rnd i t11: is scaled [l tl, l .'i j acc.:ord ing to 

Uc:::- R, l t c/\~.1. R .. being the contr ibut ion fro m (I' par ­

ticles. 

The 1101111 01 1 optic::t l polcnl i::tl for the n'-nucleus system in­
cluding the Coulomb te11n is g i ven hy [ 27 J 

w here /(r,) - ( 1 ·1 e ' ' ) - r w i lh .r; == (r - r 111 111 )/o 1 and l ire 

subscript ; ,.- u , IV, :urd IJ . The Coulom b radius is gi ven hy 
R - ; \ 11.1 c - ' c r · 

11.1. Til E()({\' OF )) W ilt\ FO HI\ IAI.ISI\ 1 

The d i fferential cross sec l ion for ::1 lransfcr re:rc.: tio n w ith a 
p;u licular j lr ::tnsfc r i n the DW BA theory [2RJ is gi ven by 

w here 11 and .r , nr c l hc sp ins o f the lnrgc t and rite pr ojec ti lr, 

res pe<.:t i vcl y. , ,: s and k's arc, rcspccli vc ly , tire 1cduccd 

nwsscs and w ave IHIIllbc rs . The subscripts i and f re fer to lire 

i nc.: idcnt ::tnd oul go ing ch::tnnc ls. r c.~pcct i v c l y . ~ denotes the 

Stlln over nil rn::tg11e1ic sulr;. l:rlcs. 1j 1 is the tr :111si tion ampli ­

tude, havi11g the fo1111 

7. -JJ 1.1 . J 1.1 · C- l +( J )V ( ·) t+J( I ) Ji - r 1n r 1 11XJ <, ,rb J• 1 Xt <, , r , · 

(9) 

lle1e J is lire Jacohia11 of tire 1r ansfo11nat ion to lire rcl :r l i vc 

coordin :11es. x: ' 1 and x}-1 arc the dis1011cd w::t ves in lire 

inili::t l ::t nd fi nal dr::t nnc ls, respec ti vely. w i l lr oulgo ing and 

i ncom ing botnrdnry c.:ondilio ns. r" and r·1, ::tr c lhe coordi n::ttcs 

of the uulgoing a11d incorn ing. pa rl iclcs " :111d h rc lalive to the 

re 111er o f m ass o f lhe system . lc" and 1<11 nrc lhc rnomenl::t of 
rhc projecti le ::tnd c jcc li le, rcspec li vely. The d istorted waves 

_y(l<.r) nrc generated f rom the Sduiidingcr cquat io11 [28] 

( I 0) 

w here \1( r) is I he d is101 I ing pol cnlial and ; t is the reduced 

m<~ss of the pair. T he distor ting potcnti ::t l may be l he norrn ::tl 

oplic::t l, M ichel . or rno lcc ul<~r polcntinl. Tire \111 is the tmnsi ­
lion matrix h::t v ing the form l28j 

( II ) 

l:qunl ion ( II ) c:11r br, under cerlai n ci r cunrslancrs, faclor cd 

inlo (i) the o verl ap i 11 1egr al ( ,/,1l r/t;) cnr11a ining the spcclro· 

sco pic :rtnplil ude and l hc i n fo rnwl ion on the nuclear sl ruc-

O·l t1G I 7-J 
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Michel potentin1s ror rhc g.s. :md F., ,... 11.58 MeV lt :'lll~ilion~ :IIC COIIlp:ucd lo dnln. Dnla arc rtonr l 1RI. 

lure nnd (ii) the c rfccli vc inlcraclinn ( rftn ll' l•/'f,) IC ~ I H III~ i b l e 
for the ttnnsi1ion from the inilin l ch:111nel1o lhe linal channel 
l28j. In 1he nnnl ys is o f sin~lp nucleon sllipping r e;-~ c li ons . i l 
is :rs~ urned that the 11 ansfc1 red nucleon is pi<.: ked up f10111 the 
projectile and dcpos il ed inlo n shell-model slnlc of rhe fin;~l 
n11clcus. 'J hus the DWI3A calculalinns in the p1 esen1 :mnlys i~ 

invol ve the sinp.. le pa11iclc p1 nlnn wave funclion in the final 
nucleus rrr. well as lhnl in lhe incident cr pnt li cle. 

In the istr~ piniCJHCsenl:rlion. Eq. (R) cnn be ICdllccd inlo 11 

rnn1e lrar lrrhle fo1111 lor the cnlcul;rtion of I he n oss ~eel ion of 
lhe stripping 1err c1ion in f-FR cnlculalion~ lJOj: 

(dv) 21rl· l 2 (dcr) (I ?) 
dH ..... ""' 211+ 1 CS.f d!l I)IV\J('K5. 

(do / rfJl )llwli(' K5 111cnns the c1oss sec tion c:1lt:ul:rlcd w ilh lire 
compuler code IJ\V II('I<5 , C7 i ~ lhc i ~tlspill C: lcbsch Unldoll 
coell icienl, a11d S nnd .r me, rcspccli vely, lhc henvy and li ght 
par ticle spec 11 oscopic fnctrus . .11 :r11d ./1 a1e rhe lola l spins nf 
lhe fi nal a11d ini l inl nuclei , respectively . The co11 esponding 

expression lJOj for a 7.ero-rnnge (ZR) npp1oximnlinn is 

( 
da ) (2./rl· I ) 2 1 ( d(r) - = . V0C S - . 
riH exrt (2./1+ I )(2; + I) dSl llWt iCK~ 

( U ) 

D~ i ~ I he nn11nali 7.ation co 11sl:nrl, n11d (r/,/r/12 )11w 1f('K .t is I he 

c1oss secl i tur cnlcul:rt ed wilh 1)\VlJ<'K,I. 

For lhe nnnlyses of the dal;-~ 1'01 the unbound sla tes of the 
final nucleus, the resorwncc forr11 f;rclor formul:rl ccl by Vi11· 

ccn l nnd f-ortune [ 19,20J is npplicd. II is :-~s~umcd I hal I he 

1csonnncc hns n Brei t· W ignrr shape, nnd in such n cnsc I he 

differential cross sec I ion i • gi vcn l20 J by 

10' n-rrp rrr 1 rn•p-n~rn'T"'Il'rn_ 
21 1\l(u ,t)'ftsi 1,.,2 
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10" 

10·' 

oplical 

- - Michel 

~ 10·2 

.§. 
c 
u 
0 
u 

10' 
.-..... 
~-~1'23J ,._,V 

~. , wro' 

10·7: 

,o 
I I 
I I 

'<l .. .... ' t 
~ 

'\. t- t:-:--t-'\. .. 
......... _ · . 

................ ............ 

r.Lr.lr..LJ 1 lLu..LLLu...t.LrJ..Ld .Lr f.J . 

10 20 30 40 50 60 

Angle ec'" (deg) 

70 

FIG. 4 . Full linilc ·l :lfiJ!!" 1)\\'I)A pr ediction~ u~i np. molccul:~r 
(~olio curve~). llllrmal nplic:~l (dolled cmvcs). nnd Michel (unshed 
CUIVC~) polcllli nls ror the 11 :\ ll~il inns with I vn lucs indicnlcu :rrc 
cnm p~1 cd lo d:rln (~olid 01 open ci1dcs). 'lire 11i ton ptllentinl of set 
I lt:rs been used with the norm:rl oplit:al and Michel polcnl ials, and 

lh:rl of sr i 2 wiilr I he mnlccul;rr potent ial in I he n ch:rnnel. D:rl:r nrc 

f10111 (18j. 
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{ I ll) 

llcre du'ldfl i .~ lite er os~ ~cction pr edicled :~t lite rr•c•!!Y n f 
rcSOIIOIICC (the JlO~ ili ve energy or the lrn r1.~ ferr ccJ proton rela ­
t i ve to the core) . I' is the width of lhe r c~on:111ce, tt is the 
reduced mass of the tr :111sferr cd pr oton :1nd the t:u get 
nucleus. nnd k is the w:\Ve lllllnher o f the pr oton nt the reso­
n:-~nce energy. r is e.~tim:~ted fr om ~he rcl:ltion [20j 

--: = -, - l11 (r)i'dr ·t - -- - . . 2 2tt[fn,,.. G d (G')] 
I !i. k 0 7. k tf k c, ( 15) 

llcre rr ( r) is the r:~d i ;d wave functinn of pr oton in the licld of 

(;ugct COre Ollld ,. -d R 1110 x i s lite dist:HICC ueyond which llliCIC:ll' 

potenti:~ls :~re :~ssu rned to he 7.cro. G and G ' :ne the ir rrgular 
Coulomb I unct ion ;111d ils deri vative at ,.~ N""" . rcspec­
li vc ly. 

I V. 1>\\'IIA t\Nt\L\'S IS 

'I he Zl~ and ITI{ ()Wil t\ calc ul :~tions l'nr the angnlar 
distr il>ut ions ha ve been per for rncd using the computer 
codes DWIJCK-1 :1 ru.J IJWUCK5 l ~OJ, respecti ve ly . IJolh codes 
arc modilied to include Michel nnd rnnlecu lnr potcnti:~ls. 

For the ZR cnlcul:llions. n Gau~~i nn form or linitc-range 
corr ection in the loca l cncr[!y approJ~irn:~ tion l79.JOJ with 
the correction pn r;nnctcr R - 0 .7 rru h:-~s been u~cd . Correc­
ti ou~ due lo the nnn loca l il y !JOJ IJ of potculials in the 
conventional for m ha ve hcen appl ied using the nonloc:r lity 

par a meters {J(n) =0.2 :11 rd (1( I') == 0.85 frn . 'I he FFI~ an:1 lyscs 
ha ve been performed for both bound and unbound rrgion~ 

OWJI 7-5 
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using the Michel, molecular, aml nnn na l optic:tl model 

I )'JIC.~ or polcnli nl~ . 

A. Cltoirc ur pntt•ttllnl pnt mnc t r r~ 

For the cnt t a nee cltnnncl. the pnrnmctct s o f the molecul:u 
:t ttd Michel types o r potent ial :He generated by fi ll ing the 

:l ttgular d i.~ lri butions or e l :l ~ l i c data l1 8J u~ i ng the chi · 
l'CJll:ued m inim izr~ li on code " " NIJ IT fl 2) in conjunc tion with 
rite Clpt ical-rnodcl code SCAT2 [331 modi fi ed 111 incnrpot :t le 
rite M ichel nnd rnu lccul :1r polcrtl i:tls. The fit s to tltc c la ~ l i c 

dalrt nr e shown in Fig. I. The norrn:d nptkal ·polcnt ia l· 
p:u arnelcr scl uscd in the p1cscnt analysis is taken fr ont [.1111. 
The p:-11 arnctcrs C' f nil tlu cc types o f potentials arc gi ven in 

Tnhlc I. The bound st:t lc ge0 111etry par;uneler s nrc al.~o noted 

in Tubl c I. r:or :t bound slate of 2AS i for both the I;FR and Zl~ 

calculations, ns well ns for the hound stale o f the rr for the 

1 :FI~ cnlculations. the si ngle p10to11 tr ansfer W<lVC function 

lt n~ been computed ndj usting lite WS potent ial well depth so 

that its cigcnvnluc equals the ~c p111alion energy l29 j. 
For the tritPn pPtenli ;-r l in the ex it chnnnel, diffe1enl ~cis 

of triton polenti;-rls have becnt1ied. Two sets of triton poten· 

ti :~ l.~. l:tbc led set I and set 2 in Table I, h:lVc been found to fit 
the dat:1 re<lsonab ly we ll w ith the molecular, normal opt ic;-r l, 
or M iehcl potential in the cntr a nee channel ;-rs c;-rn be ~ccn in 
figs. 2(a) - 2(c) . Sci 2 o f l ri ton polenl i;-r ls produce~ n slight ly 
hr llcr Iii ;-rt the l;uger scalier i 11g angle region when the mn· 
lecu l ;~r potenti al is employed in the rr channcllFig. 2(a)J. On 
the other hnnd, the normal <'pt i r;~ l polen t i;~ l in the cr chmmcl 
pr oduces n good fit to the da la for set I o f 11 iton potent ials in 

the ex it ch:umcl l rig. 2(h) 1. We h r~ vc, therefore, fi rwlly cho· 
sen set 2 o f tri ton polcnti als with the molct:ul ar potential and 
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set I or the triton polenlia ls wilh lhe Michel l " ll(lrrn :d opt i­
cal pol cn ti:~ l in lhe rr ch:111nel ror the :~rwl y scs ol the d:1ta. It 

is to he noted th :~ t the sensiti vi ty of the pr ed icted cross sec­
tions to the trilon po lential seems to be uHrch sllongcr in the 
case of the normal optica l potential in the entro111ce lFig. 

2(b)J than for case.~ w ith the other two potenti:1ls. 

B. A nr,ul:rr cli .~ trihut imrs 

The con1p:1r ison of the ZR :111d FFR IJWIJ/\ cakul;rlions 
o f the :1ngulnr distributions for the gr ound strl te (g.s.) and I he 
st::lle ;rt the exci tntion cncr gy F. .• = I 1.58 MeV usi ng the mo­
lcculnr, Michel , nnd norrnal optical potentirds ror 1he best fils 
to the ex per iment:1 l d:lla arc shown in Figs. 3(:1) - J(c) . 

The FFR DWIJ /\ c:1 lculations fo r :wgular dist ri butions for 

the best fits to the clatn U$ing all tlu ee types of a -nucleus 

potentinls for various /tr ansfers ru e compared to the e.xpcri -

111Cnlt1 1 dala in r igs. t1 - 9 for :1 !1 l e vel~. The level ~ in Fi g~. 

t1 - 9 are grouped nccording to the :~ssoci nt ecl/ trnn~ fers . The 

levels popu l:~tcd thr ough tire / -:: 2, 1, :urd -1 tran~ fcrs arc 
shown in Fig~. ' ' · o, r c.~ pccli vc l y. On tire other h;urd, the 
levels which ha ve hcen oblai rred tlu oul!h the incoherent ~urn 
o f more th:111 o rre I transfer such as I = 0 I 2. I + 3. :1nd 2 
+tl :1re shown, respectively . in Figs. 7- 9. The DWIJA lit to 
the unresolved group :1t r:, '"' G.ll8 MeV is nlso shown in rig. 
8 with the total incoherent contri bution from/ = 2+3. In the 
previous study . Yasue ct of. assoc i:~tecl nn I = ) lrnnsfer for 

littirrg 15.02, 15.85, :1ncl I Ci . ll tvleV tmnsitions, but in the 
present study. it seems to be / -= tl . The predicted :1ngulnr 
distributions usirrg c :1ch of the molecular. Michel, nnd nor­
mal oplical potenti:ds for botlr I lr arrs fc r~ {I = 1 :rmll = t1) :1re 
corrrparcd to the data irr Fig . 10 . Clearly. tire' "" " tran~fer i~ 
preferred in :111 tlu ce cases. 

C. Spcct rn~cupi r st rcngt Irs 

·1 he spectroscopic ~t r e ngths o f a reaction lor a lramition 

lo n final state (11 : 7j) wi th I he transferr ed conligural ion (lj) 
is related to the ~ pec tr oswpic faclor S lj lJ8l hy 

04-1617-7 
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( I 6) 

where C i ~ the Clcb:;ch-Gordon cnefri cient in vol ving iso­
spin~ of the t<1rgc1 nnci the lin:tl nucleus. 

The sum rule for the ~pcc l roscopic strength in the cnse of 
the 27/\ l(a, t) 2RSi renelion c:tn thr.n be cxp1 essed l38] by 

2: 
I 

GtJ='i(" holes) (for r1= 1) 
1 f 

I I 
= - (fl holes) - 2' ( 11 holes) (for r, = 0), 

2 

where (p holes) nnd (11 hole!:) :11 e, 1espccti vcly. the effective 
number o f proton hCllcs nnd neutron holes in the orbit {lj). 

The tot:t l Stlength complising tl:tnsiti uns wi th r,=o and 

I i s then 

( 17) 

The deduced sum of ~tr cngths for all I = 2 trnnsi tions with 
j = 3/2,5/2tr:msfels :111d 7/= 0,1 is }:G = 2.33. T his is nlmosl 
half of the stun rule str ength 5.0, the nutnber of pt olon holes 
in the Jd5, 2 nnd ldJ,2 orbits. Simil:uly, the sum of all / = 0 
l rnnsi tion strengths lor both 1j = 0 :111d I hn~ been found to 
be LG= 0.96, which is :tgain 50% of the expected stun of 

2.0. 

Otlt16 17-8 
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The extracted 11ansition strenglhs for the (6 - ;0) stnte nt 
E_, = 11.5R MeV nnd (6 - ; I ) ~ lnle nt E, = 14.36 MeV, which 
have I he shclched ronriguralion ( l d $!2 -

1 .I/112) in I he shell 
model, :~re O. ltl :111d 0.23. respecli vely, which is sma ll CO lli · 

p:ned to the expected full s11eng1h o f 1.08 for ench. If one 
con~ideiS, however, I he rragiilenl:~lion of 6- Slrellgths .. ~due 
lo lhc dcf01mcd structure of the 2RS i co1e, using the :~ssump­
tions that (i) the vibration:~ I st:11e of the core dqes not chnnge 
in the trnnsi tion, (ii) the core hns negntive defo1111ntion , :~n<.l 
(i ii) the proton-hole conrl g111 nt ion in the tnrget is U; = 512, 
0.1 = 1/2)- i.e. , the tnrget hns .I 1 = 5/2 nnd K 1 = 1/2- one may 
c:~ lcul n te I he spectroscopic sh cngth due to del01111 :11ion using 
rhe expression [39,40J 

(21rf- 1) 2 2 2( · r 1 )1 . 2 
G = (2l,+ I ) C S=g C J1Kj)Jl t1K1 CNij(Hct~a) , 

( 18) 

whe1e CNIJ(!hur) a~ defined in (39,t10j :uc the coellicients 
co1mccting n dcf01111ed s ingle pn1ticlc stnle lo sphericnl 
eige nst:~tes , :md .'! 2 is un il y as K; -t 0. The values of these 
coerricienls h:tve been taken 110111 (till. Equntion ( 18) with 
K 1:-: t1 I e~; ult~; in :1 stl ength or G = 0.08) for ench or the 
(6 - ;0 ) nnd (6 - ; I) ~; t n tc~. which i ~;, indeed. 1; 111:111 . 

V. DISCUSSION 

In the pre~;ent st udy, 53 11 ansi lions hiive been iin:1lyz.cd 
with nil three types (1r putcnt ia l ~; . The annlyscs in vo lve (i) 4 
11nnsi tions with the / -=2 ll ansfers (Fi g. t1 ), l e:~ding to the 
g•ound, 4.98, :~nd 6.69 MeV stntes with the unique j = 5/2 
trnnsfcr and the 12.33 MeV slate which is nm uned to be 
populntcd via j = J/2 . (ii) II 11ansi ti uns wilh I = 3 (Fig. 5). 
(iii) 9 transitions with I = 11 (Fig. G), (iv) I I !1 :111si tions with 

Qilol(i 1 7. 9 
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the ad111 ixlur e 1= 0 4 2 (Fi g. 7). (v) 7 l r:111silions w ith lhe 
mlrn ixltll e I = I + 3 (rig. R), ( vi) I l rnn!i il ion wi th I = 2 + .1 
(Fig. 8) popu l ;~ t i ng probably lwo \lme~olved ~! a l es wi th op­
pm ile parit ies nl nl>out £ .. =6.88 M eV, nnd ( vi i) I I l ra n~ i ­

tions wi th lire ndmixlure I = 2 + t1 (Fig. 9) trnn!i rer. The daln 
or the ll an!i i l ion to the 11.97 MeV !i lnle M e compnred In lhc 
DW 13 /\ predic tions twice, once in Fig. 8 f'ur I he I=- I + J 
lransrer nnd ngain in Fig. 9 ror I he I = 2 + t1 transfer OIS borh 
lrnm:rr 1s produce ncceplable fi ts lo the dnt:1. 

In Fig. 3 the FFI ~ and Z.R calcul:llions :ue conrpa red h > lhe 
:111gulnr distribut ion dnln ror transi tions to lhe g.s. nnd the 
stnte at E., = I 1.58 MeV. The improvement or the fit s due to 
predictions o f the former over those o f the Inlier unde1lines 
the importance o f the f-FR c:llculntions. 

It is evident rrom Figs. 4- 9 thnt the rull lin ilc-rnnge 
DWU J\ nnnlyses using the molecular nnd normal llpl ica l po­
lenl in ls fils quite snlisrnt:loli ly the expr. r irnr nl:d da rn or the 
4t11rnnsi l ions out or 53 with 9 other slates fill ed rnodcralely. 
In gencr nl , the fil s wi th the molecular :md norma l oplic;d 
polenl inls ~cern IU ue of the s:unc (]llll l i ly , hul lhe li l s w ith the 
M ichel polcnl inl nrc compnrnti vely poor. A t forw:ud scall cr­
ing angles < 20° or so, nil three polentinls y ield . lo some 
extent, the same results. But nt lnrger scnller ing angles, ror 
the bound slate trnnsit ions wi th exci tntion energies up In 

11 .58 M eV, the mnlecu l:tr polenl i:d provides n bcll cr Ii i , al ­
though the normnl optical porent ial ce>mpelcs reasonably 

well , while the l\1iclrel polcnlial fai ls completely. For the 
continuum slntes w ith exc itation energies abo ve 11.58 MeV 
both molccul :.r and nor111:1 l optica l potent ia ls yield <~ gai n 

cumparnble results with qni le reasonable fits to the data, but 
the Michel potential fails agn in. A t renction ;mgles ln1gcr 
than 30°, lhe dirrcrencc in the pred ictions due to the tluee 
distorting rl'- nucleus ptlle nl in ls becomes very prominent nnd 
incrc:.ses with the 1eac1ion :111g le. It is also lo l>e mentioned 
lh:tt rur Slll11e lrnnsil ions, c .g .. lhe 11 .98, 6.69, 8.511 , 10.2 1, and 
12.211 l'vl cV Sl:t lcs. nei lher o f lhe three l y('eS o f polenl ia fs 
could produce good fi ts lo the ;111gu lnr dist1 ihutions, indicnt­
ing probably that 1enction mechani sms other thnn the direct 
one mny be invol ved in these cases. 

Y nsuc et a!. [ 18 J reported that nn ndmixtur e o f I = l , 2, 
and J wns needed to fit the data o f the level 6.88 nnd 6.89 
MeV, but in the fli CSC nl study nn ndmixlt1re or 1=2 nntl 3 
suffices lo fi t M lisrncllll il y the nngufar disl r iuul ions or these 
tnu esol ved levels (rig. 8). F111thermore, they l1 8J used the 
1= 0 1· 2 -1- 11 ndrni xlure for lhe 7.9J !l rHI 8.26 M eV lnmsi­
lions, while in the prrscnl work 1= 0+2 seems to he suffi­
cient to li t the dnla q11i le well (Fig. 7) . M oreover, ns men­
tioned earl ier, Yn sue r r of. [ 18j nssoc inletl the 15.02, !5.85, 
:md I 6. 1 I M eV lr am it icms w ith the I = 3 l rn nsrer, but th..: 
compnr ison or the predict ions in the present nn:dyses for I 
== l and t1 in f7ig. I 0 ror each o f the th ree polent inls ~hows · 
th nt !he angular d i s tli l >t 1 li o n~ for these II ansit ions nrc bcller 

O•l t1617- I O 
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TABLE II. Slnlc~ or 2~Si oh~C I VCU in the 21AI(cr,t) IC<ICiion :1( r:., -= M .. 'i MeV. 

(2J1 t· 1 )C1Ss" 

P rcse nt work 

r:, J "; r 
(MeV) 0 1(111)) r u c r.g 

' 
g.s 0.:0 2(0dl/2) 1\.8 1\.5 tl. 5 4.6 

1.78 2 1 ;0 (0 ·I 2) 0.7, 1.08 O.R'I, 1.26 U.G72. 1.008 1.7,1.2 

t1.G2 t1' ;0 (2 H) 2.13. 0.022 2.90, 0.396 2.22, 0.117 2 . .'\, 0.0'1 

4.98 0 ' ;0 2(0d,,2) 0.'12 0.6 0.75 0.·18 

6.28 3. ;0 (0+2) 0. 1311. 1. 24 0.36, 2.04 0.63 . 1.'17 0 .39, 1.4 
6.69 o~ :o 2(0d ,,2) O.oJ 0 .048 O.(Jtl!! 0 .04 

6.88 r:o 
(2 1-3) 0.27, 0,03 0 .57, 0 03 IJ.t156. 0,02'1 

6.89 4 ' ;0 
0 .65, 1. 1, 2.6 

7.38 2. ;0 
0.06, 0.86 0. 276. I. I!H 

7.'12 2' ;0 
(0 I 2) 0.3. 1.2 0. 15, 0 .90 

7.80 3.:0 (0 I 2) 0.26, 0.396 0.)57, 0.66) O.JI:'i, 0.585 0 .22, 0.35 
7.93 2' ;0 (0 I 2) 0.27, 0.672 0.6), 1.1 7 0.'1<1 I. 0.8 19 0 .7, 0 65, 0 .06 
8.26 2 ';0 (0+2) 0.30, 1.20 0. 15, 1.65 0.38. 1.5 O. IJ, 1.1 
8.41 "-:o (I+ 3) 0.48, 0.72 0.9, 0.9 0.?. 0.9 0.45, 1.0 
8.54 G' ;0 tj 0.48 0.78 0.9 0 . 13 
8.59 J I ;0 (0 ·I 2) 1.0, 1.5 I 2.85, 2.115 1.8. 1.8 0 .11. 1.9 
8.90 1 - :o ( I I 3) 0.0'18. 0.072 0 .076, 0.032 0 .055. 0.02) 0.0 18. O.Otl8 
8.94 4' ;0 (2 + ") 0.05<1, 0.023 0.022, 0.086 0 .022, 0.0!!6 0. 11 , 0.06 

5 - ;0 or 3 0.0511 0.066 0.036 0 .06 

9.16 4' ;0 4 0.02 0.0) 0.0) 0 .06 

9.32 3 ' ; I (0 I 2) 1. 176, 0.50 1.95, 1.05 I.J65, 0.7:\:'i 1.5. 0.49 

9.38 2': I (0 + 2) l.J), 0.8!! 3.3 6, 1.44 3.84, 0.96 1.6, 1.0 

9.48 2 . :0 (0 + 2) 0.52. 0.90 1.5, 1.5 1.026, 0.05'1 0.2, 0.24 
9.70 5 - :o 3 1.20 1.8 1.8 1.8 
9.76 (2.3) - ;0 ( I I 3) 0.038. 0.1 I 3 0.576, 0.14<1 0.385, .096 0 .06, 0.,17 
9.9) ( 1,2) - :0 3 0.60 1.1 7 . 0 .99 0 .11 

10.2 1 (2 - 4). ;0 tj 0.096 0. 126 0. 126 0 .17 
10.38 3': I (0 + 2) 0.66, 1.98 I. IJ, 3.)8 0. 7~. 2.2.") 0. 6~. 2.3 
10.72 I + ;0+ I ( 2 I 4) 0. I 13, O.QJ8 1.92, 0.118 0. 14,1, O.OJ6 0 . 11 , 0.009 
10.94 + (2 I 4 ) 0.70, 0.08 1.37, 0.072 1.08.1. 0.0.~7 0.32 
I I. I 0 (2 I 4) 0.105, 0.0,15 0. 1 08. 0.072 0.072. 0.0<18 0 . 1, b.0-1, 
11. 14 2. ( 2 +4) 0.363. 0.297 0.27tl, 0.068 0 . 168. 0.042 0 .02, 0.06 
11.4tl 2 ' ,3' ·"' ;(0, 1) 
l iAS I 1

; I 
(2 I 4) 2.96,0. 16 5.99, 0.315 3.99. 0.2 1 3.8. 0.39 

11.58 6 - :o 3 I .'I I 1.86 I 68 2. 1 

11 .80 + 2 14 0. 19. 0.157 0.36. 0.36 0.5, 0.22 0. 13, 0.12 

11.90 3 - ;o ( I +3) 0.4. 0.08 0.126, 0.294 0.099, 0.23 I 0.'19, 0. 17 

11.93 1+ 3 3.70, 0. 19.'\ 5.67, 0.63 4.28, 0.23 4.7 

11.97 (2 1 ,4 1 ) ;0 2 ·1 tl 0.59. 0.066 0.972, 0.108 0. 11 , 0.066 0.5, 0.09 
or r ;o or I 1-3 0.4 1, 0.22 1 0 .655. 0.353 0.43 , 0.2) OA, 0.3 

12.07 (2 :!: ):0 2+4 0.2 1. 0.09 0.3 15, 0.135 0.252, 0.108 0.3, 0.09 

od 0.2 1 0.36 0.24 0.2 
12.24 3 ' -H':o 2+4 0. 1, 0.06 0.1114, 0.2 16 0. 14<1 , 0.2 16 0.27, 0. 12 
12.30 2 •· :o 4 0.39 0.5 1 0.5 1 0.06 
12.33 I • : I 2 0.72 1.32 0.9 0.55 
12.49 J -:o 3 0.84 1.2 1.1 4 1.0 
12.66 t1 - : I 3 3.00 5.4 4.2 3.8 
12.82 J - :o 1+3 0.14, 0.32 0.20. 0.46 O. l.'i , 0.36 0.03, 0.32 

13.25 5 - ; I 3 3.30 SA 4.2 ) .6 

0446 17- 1 I 
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Tt\ IJLJ: II. (Co11ti11urd). 

r:, 
(Me V) 

13.99 

106 
111.69 

15.02 

15.38 

15.55 

15.85 

16. 11 

16.50 

.I";T 
h 

+ 

+ 

1(111 j) 

3 
3 
3 

•s ,.,2.0 is lhc li!!hl p:uliclc spccllo~cnpic fnclor. 
hltcference l37]. 
•orrlcnl. 
~Michel. 
•Molecular. 

'Reference llllj. 

c 

O.GJ 
2.40 

0.24 

0.15 

0.45 
0. 12 

0. 11 

0.48 

0.14 

(7. 11 I I )C'S.t" 

Pre~enl work 

d e 

1.02 0.78 

2.88 2.7 

0.51 OJ) 
0.21 0.2 1 

0.78 0.57 

0.2 1 0. 15 

0.222 0. 156 

0.24 0.411 

0.24 O. IR 

r.g 

I.G 
3.7 

OJ9 
0.70 

0.55 
0.09 

0.36 

0.41 

O.o7 

~Light r~rticle ~pcctroscnpic faclor is not mentioned in l18j. 

littetl by the I "" 4 tran~fer. I t i~: nl~o ohviou~ from rig. I 0 that 

the pred i cti on~ with the m olecular potential bring (lUI the 

diffe1ence mol e di~linctly in lhe angular pallerns for I = 3 

nnd I = 4. 

The ~pec lr o~cnpic fact or~ (Table II) extrac ted using the 
rnolecu lnr polenlinl nrc comparable to those obtnined u~ing 
the no rrnnl oplicn l polenlinl, but :~re n bil larger for .~<HHe 
cn~cs. In genernl, rho~e deduced fr om using the Michel po · 
Ienti ni :~ re even larger. Considering lhe quality o f lhe ril ~. the 
~pecl ro~rnpic fnc lors oul:~ined wi th lhc Michel Jl(llentinl :ue 
ex pected to be less rclinble. 

The ~peclro~cnpic ~lr englhs extrac ted fr om the u~e o f the 
rno lccu lnr polentin l nrc comp:~red to those c;dcul ated fr om 

the :\hell modcll42J in Tuble Ill. The predic led nnd deduced 
str engths <~glee for lllOSI o r I he I= 2 lr<~nsilions exrepl th:ll 
for the 6.89 MeV slate. The exlmctccl strCfl j!lhs for the I 
= 0 lrnr J.~itiu n.~ to the 1.78, Ci.2R. <~nd 9.:12 MeV slnte nre 
IIlllCh wenker thnn I he pred ic ted vnlucs . This m:-~y he pnr tly 

n~cribcd lo the f;t cl lhal the mn tchi11g I l r<~n ~ fer jk 1R1 

- k1R1i (k ' s and R's :uc, respec ti ve ly, the 1110111errln nnd in­

tcrac tion di ~ lance!': in lhe reac tio n chnnnel!<:) lies in the range 

2- ti over ~x = 0.0- I ti .JG MeV of I he rinalnudeu~ nnd he11ce 

I ,... 0 is n llll~mnt ched trnn!':fer. The I = 0 shc ll -nHx lel wnve 

funclion~ u:;cd in [ t12J mny nol be good due In l runcn tion. 

The e .~ lrncted sum of !':trengths fo r nil I = 2 n~ well a~ fo r 

<ill 1= 0 lrnnsitions has i1 factor o f 2 missing fr om the eJt· 
peeled mngnitude, e.g ., the effective number of proto n lwles 
in the trnnsfer o •bits. This i~ srllpris ing when one cn11siders 
thnt the ~tntcs of 2~Si resulling from the j" -::: J/2~, 'J/2+. 
512' trnllsfcn; in the reac tion :~re highly impr o b:1hle In cxi~l 
nl E., > I 6.50 MeV. The spherical shell model cn rlllOI prob­

nbly tnke up the whole of the t1a11'-ilion ~t renglh, and ~ome of 

the stre11gt h drnins off ns o rcr.ull o f deformation. For the 

llnnsition to ench of the 6- slntes nl Ex= I 1.58 nnd l ti .)G 

TABLE Ill. Cornpnti ~<•n of I he deduced .~pcclto~cnpic ~lrength~ 

to rhc ~hcll ·modcl p1 cdiction~. 

(2.11 I· I) 
G=--(} S 

(2J,+ I) 

r::, 1";1' 
(MeV) n '<"' j) 

l'l cscnt IVOi kh Shell modele 

g.~. 0' ;0 2 (0d.<ll) 0.37.~ 0.53 
1.78 2 ' ;0 (0 I 2) 0.06, 0.011 0.38, 0.06 

11 .62 II' ;0 ( 2 I t1) 0. 19. 0.01 o.:n. o.oo 
11 .98 0 '; () 2 ( O(f.~t2) 0.06 0.05 
6.28 3 ' ;0 (0 I 2) 0.05. 0. 12 0.34. 0. 14 
6.69 0' ;0 2 (0 11~/l) O.llO'I 0.005 
6.88 .:1 -:o 3 0.002 0.0 
6.119 t1 ';0 2 0.0.:18 0.27 

7.38 2' ;0 
(0 I· 2) O.Q2, 0.09 O.Q2, 0.17 

7.42 2 ' ;0 

7.80 J ';0 (0 I 2) 0.0). 0.05 () .l~7. 0.663 

7.9) 2 I ;0 (0 I 2) O.Ot1, O.Q7 0.00. 0. 13 

8.59 3 I ;0 (0 I 2) 0. I 5. 0. J.S O.oJ5. 0.21 

9J2 3 I ; I (0 I· 2) 0.11, 0.06 OJS, 0.06 

9.3R 2 I; I (0 I 2) o.:\2. o.os 0.23, 0.05 

10.38 3 I; ( (0 I 2) O.OG. 0. 19 0.01, 0.20 

10.72 I I ;0-1 (2 I II) 0.0 12. 0.006 0.015. 0.00 

11 .58 6-:o 3 0. 111 0.08)~ 

14.36 6-; I J 0.23 0.08.1'1 

"Reference (37 J. 
hMol ecul;~r potent ial. 

'Re ference [ 42]. 

'10cformetl ~hell model [39,,10]. 
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MeV, lite prediclcd slrenglh (; = O.ORJ. cnlculnlcd on lhe ba­
s is o f deformed she ll model [39,t10I. is nol adcrpwlc enough 
lo expln in the o bserved values (Table Ill) . The bnnd tni :<ing 
effect~ due to Coriolis coupli ng l t13J 111ay have significant 
effects Oil these trnnsi lio n S(ICilglhs :111d is \\'Orlh ftnthcr in­
VC!ilig;~tion . 

VJ. CONCLUSIONS 

In the presenl work , bolh the molecular :wd Michcllypes 
o f a-nuc l eu~; potenliaJ producing !he S<llllC qu:tlil)' fit lo the 

27 . 
n - /\1 elnslic dn ln hnvc been used lo nnaly?.e one -nucleon 
tl :lllsfer dnln to the bound nnd unbound s lates or lRsi. The 
prf'sent work shows thnl full finile-t·nnge DWIJA :malyscs 
with the moleculnr polentinl cnn describe the angular dish i­
bulions of lhe lmnsil ions In lhe bound nnd unbound stnles in 
JRsi ntlenst 01s salisf:1cloaily, if not so111ewhat bcll cr. ns those 
obtnincd using the normnl optical potenlial. O n the other 
hand, the Mic hel polcnl inl is, in gc nctnl, inndcqualc to ex ­
plnin the dr~ln . Furthenuo re, nt renction nnglcs grcnter thnn 
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Microscopic and macroscopic distorted wave Born approximation calculations have been per­
formed using molecular, Michel and normal optical potentials to analyze the angular distributions 
of cross-sections for 12 t ransitions populating the 0.0, 0.709, 1.454, 1.974, 2.538, 2.72, 2.84, 3.02, 
3.93. 4.62, 5.42 and 7.20 MeV states of 30P via the (a, d) reaction. Only the molecular potential is 
able to produce satisfactory fits to the data, but the normal optical potential is found to be inad­
equate in accounting for the large-angle data and the Michel potential is just unsatisfactory. The 
spectroscopic factors for the d-cluster transfer are deduced from the full fin ite-range distorted-wave 
Dorn approximation and compared to the shell-model predictions for the even-parity states.The 
spin-parity assignment of the 3.93 MeV state is confumed. The best-fit value for the finite-range 
parameter for the zero-range DWDA calculations is also deduced. 

PACS nurnber(s): 25.55.Fm, 24.50.+g, 2l.JO.Jx 

I. INTRODUCTION 

Since the early observation of an unusual enhancement of cross section at large angles, commonly known as anoma­
lous large angle scattering (ALAS), by Carelli et al. (1] in a elastic scattering by 160 and 32S nuclei, it has also been 
noted in other elastic (2- 8] as well as the non-elastic (7- 13] processes involving a -particles. The normal optical poten­
tials are found to be consistently inadequate in reproducing ALAS in the similar phenomena induced by a particles 
(13- 1'7]. Two simple local potentials [18], with a minimum number of varying parameters, have been proposed to 
explain ALAS. The first one with a squared Woods-Saxon (WS) geometry, advocated by Michel and his collaborators 
(19-22], is a special type of optical potential, which is referred to as Michel potential (18]. The second one is a 
molecular type of complex potential (18,23,24] having a repulsive core in its real part. Both the potentials have been 
successful in reproducing ALAS in the elastic scattering of a -particles (18- 24] by some sd-shell nuclei. Non-elastic 
processes have so far been, in most cases, treated within the framework of direct-reaction theory using the normal 
optical potentials in the distorted channels, except a recent study by Das et al. [25] who have examined the effects of 
the molecular and Michel potentials in one-nucleon transfer reaction to the states of 28Si. 

ALAS, observed in (a, d) and (a,p) reactions on 28Si (17) and (a, d) on 27 AI (26] have, so far, been ana\y;r,ed in 
terms of an incoherent sum of the distorted-wave Born approximation (DWBA) contribution calculated wiLh normal 
optical potentials and the compound nucleus contribution predicted on the basis of the Hauser-Feshbach model (27]. 
The method has, however, enjoyed a limited success. In particular, the elastic and transfer-data could not be fitted 
with the same optical potential. 

The (a, d) reaction has been shown to be a valuable spectroscopic tool for locating two-particle states (28- 32). 
Because of the large negative Q-value involved, the reaction favors the transitions to states coupled to the maximum 
allowed spin. Moreover, unlike the one-nucleon transfer reaction, the (a, d) reactions involving two-nucleon transfer 
are dependent on the coherence property e.g. the relative signs of the different components of the wave-functions. 
The (a, d) reactions enjoy another advantage in that these can be ana\y;r,ed in terms of both the macroscopic (cluster 
transfer) and the microscopic approaches in the form-factor calculations. Another important feature of the (a, d) 
reactions lies in populating states with the T = 0 transfer. Moreover, if the relative angular momentum of the two 
transferred nucleons is 0 and remains so in the reaction process only the £ -transfer L = .J is allowed for the natural 
parity states, but two £-transfers L = .J ± 1 are permitted for exciting the unnatural parity states, the spin transfer 
S = 1 being unique. 

The present study is undertaken to examine the innuences of the normal optical, molecular and Michel potentials 
in analyzing the two-nucleon tr<~.nsfer reaction 28 Si(a, d)30P at 26 MeV incident energy, with the target and energy 
chosen for the substantial ALAS effect (18). The latter two potentials have not been tested for a two-nucleon transfer 
reaction. The work is a part of a series of investigations on other non-ela.'ltic processes including the (a,t) on 27 AI 
(25), the (a,p) on 28Si (33] and the (a,a') on 21 Mg and 28Si (34] to find the nature of the a-nucleus interaction which 
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can explain all the collision processes involving a -particles. In Sec. TI , the forms of the three a -nucleus potentials used 
in the present work, is presented. The DWBA formalism and analyses a re dicussed in Sees. Ill and IV, respectively. 
Section V deals with the discussion on the resul ts of the analyses. T he conclusion is given in Sec. VI. 

II. a -NUCLEUS POTENTIALS 

The squared WS Michel potential [20,21] including the Coulomb term Vc(r) comprises of t he following forms [18,20] 
of t he real VM(r) and imaginary WM(r) parts: 

with 

Vc(r) = [ z~~~·
2

) [3 - n;;) rorr :S Rc 

= ZtZ2e
2 

r for r > Rc . 

In Eqs. (1}-(4} !4 = r;A~f3 with i = R,I a nd C , has been defined in terms of the usual radius parameter. 

(1) 

(2) 

(3} 

(4) 

T he molecular potential, which is generated from a many-body theory utilizing the energy-density functional method 
[23,24], has t he following forms [18,21 ,25] for the real, V.n(r) and imaginary, W,.(r) parts: 

Vm(r) = -Vo [1 + exp {(r - flo ) /a.o}] - 1 + V1exp {- (r2 ;nn} + Vc(r) (5) 

(6) 

T hus, the real part is non-monotonic with a short-range repulsion. T he Coulomb and nuclear radii are scaled [18,24] 

according toR; = R 0 ; + r0 A~f3 with i = 0, 1, C, W and ro = 1.35 fm. 
The normal optical potent ial for the alpha-nucleus system including the Coulomb term is given by [27] 

V(r) = Vc - V f(xo) - i [ W f (xw)- 4Wv ! J(xv)] , (7) 

where, f (x;) = (1 + e"' 1 ) -
1 with x; = (r- r;A 113 ) /a; and the subscript i = 0, Wand D. 

TIL THEORY OF DWBA FORMALISM 

In absence of spin-orbit interactions, the differential cross-section for an (a, d) reaction on a spin-0 target with a 
particular J -transfer in the DWBA t heory [35] is given by, 

2 

(8) 

where, JL's and k's are, respectively, the reduced masses a nd wave numbers. T he subscripts i and f refer to the 
incident and outgoing channels, respectively. p1 = [n1l1 j i] and P2 = [n2 l2h] denote the orbital quantum numbers for 
the t ra nsferred nucleons in the final nucleus. {3112 [p1 P2; JO] are the spectroscopic amplitudes in the jj-coupling for 
an angular momentum transfer J and an isospin transfer T = 0. The large square brackets in Eq. (8} refer to the 
normalized 9-j symbol, the LS-jj transformation factor [36] . Bkt describes t he kinematical aspects of the reaction. 
In Eq. (8) the light part icle spedroscopic factor c2 s = 1.0 for (a , d) reactions has been used. 

In the macroscopic DWBA calculations , no information on the structure of the cluster is required except the 
quantum numbers (N, L) as defined by 

2 (n1 + n2) + lt + h = 2N + L , (9) 
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where the quant um numbers v = 0 and >. = 0 are assumed for the relative Os-state internal motion of the transferred 
cluster. The expression for cross section in terms of t he cluster quantum numbers (N,L) parallel to Eq. (8) is given 
(36] by 

da = 1-lil'l kt (2J + 1)'"' IG !RL 12 
dn ( 2)2 k· ~ J,J M . 

21rrt • r.M 
(10) 

In Eq. (10}, only one N -value is considered to contribute, the two nucleons in the cluster being in the relative Os-state. 

The structure amplitude G u, as defined by Glendenning [36] is expressed as 

(11) 

In Eq. (11), 0 00 denotes the overlap of the spatial wave fu nction of relative motion of the two particles in the 
transferred cluster with the corresponding part in t he incident a part icle. ( J ) r epresents the Brody-Moshinsky 
bracket [35-37]. 

Denoting the macroscopic cross sections calculated for the £-transfer with the FFR code DWUCK5 [38] by ( M1) ~;ws 
and taking advantage of the incoherent sum over the L-transfer(s) as in Eqs. (8) and (10), one can write the 
experimental cross sections for this reaction as 

(da) [ (da)Lt (da)''2 ] dD = (2J + 1) A,,1 dD + A1j 2 dO 
exp DW6 VW5 

(12) 

On the other hand, the experimental cross-sect ions a re related to the microscopic cross-sections ( ~~) ~w4 calculated 
with the ZR code DWUCK4 (38] by 

(~) ezp = ~ (~) DW4. 
(13) 

~in Eq . (13) is the normalization constant for the (a , d) reactions. The form of Eq. (12) shows that AL1 and AL2 

are the spectroscopic factors (26,32) for the £1 and £2 transfers, respectively. The spectroscopic factor (26) A 1, in 
Eq . (12) for each of the £ -transfers and the normalization constant ~ in Eq. (13) can be extracted from fitting the 
experimental cross sections. 

IV. DWBA ANALYSIS 

T he microscopic zero-range and macroscopic full finite-range (FFR) DW BA calculations for the angular distributions 
have been performed using the computer codes DWUCK4 and DWUCK5 [38], respectively. Both the codes are 
modified to include the Michel potential. Corrections due to non-locality (38,39] of potentials in the conventional form 
ha ve been applied using the non-locali ty parameters {J(o:) = 0.2 and {J(p) = 0.85 fm . In bot h the microscopic ZR and 
macroscopic FFR calculations, the molecular, Michel, a nd normal optical types of a -28 Si potential and the optical 
d-30 P potential have been employed. T he parameters of the molecular and Michel potentials are taken from the work 
of Tariq et al. [18) , and those of the normal optical potentials for the incident channel are from .Jankowski et al. (17). 
Several sets of the d-30 P optical potentials including that from Tlef. [17] have been tried, but the one from the work 
of Fitz et al. [40] produces the best fi t . All t he potentia l parameters employed in the present a nalyses are displayed 
in Table I. 

A. Macroscopic DWBA cnlculotions 

The macroscopic analyses have been performed using the fu ll fini te-range DWOA code DWUCK5 (38]. The bound­
state geometries for the d-d and d-28 Si Woods-Saxon (WS) potentials, shown in Table I are taken from (17]. The 
bound state wave funtions for the transferred deuteron in alpha as well as the final nucleus have been generated by 
adjusting t he deuteron separation energies. At the start of calculations, the accuracy parameters used in the code 
DWUCK5 have been assigned appropriate values, to define effective width of wave numbers [38,41) in the expansion 
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of the distorted waves in terms of plane waves for making the zero-range calculati ons identical to those from the code 
DWUCK4 (38]. T his ensures the necessary coveryence for the integral for the zero-range form-factor, defined in Eq. 
(3.9} of Charlton (41] . 

The cluster configurations of the transferred deuteron for the different states of excitation are shown in Table II. 
For t he final states with nat ural parity, populated by one £ -transfer, the DWBA predictions are normali:r.ed to the 
data to yield the relevant spectroscopic factor AL as defined in Eq. (12) . On t he other hand, for the transitions 
involving two £-transfers, leading to the final states with unnatural pa rity, t he spectroscopic factors are obtained by 
minimi:r.ing t he value of x2 defined by 

X2 = L [ae:tp (0;) - avw (0;)] 
2

, 

. tlaezp(Oi) 
I 

(14) 

where aezp (0;) = (iffi)er.p (0;) and tlaezp (0;) are, respectively, t he experimental cross section, as defined in Eq. (I2}, 

and its error at the scattering angle Oj. avw (0;) is the cross section predicted by t he DWBA theory. 
T he DWBA predictions wit h the molecular (solid curves), normal optical (broken curves), and Michel (dotted 

curves) potentials are compared to the data of t he ground (1+), 0.709 (1+), 1.454 (2+), 2.72 (2+) and 3.02 MeV (2+ ) 
states in Fig. 1; to the data of the 1.974 (J +), 2.538 (3+), and 2.84 MeV (J+) in Fig. 2; and to the data of the 3.93 
(2- }, 4.63 (3+) and 5.42 MeV (2+) states of 30P in Fig. 3. It is amply clear from Figs. 1-3 t hat t he calculations 
with the molecular potential produces the best fits to data for a ll the t ransitions. Furthermore, the Michel potential 
generates cross sections, which are lower by 1 to 2 orders of magnitude than those predicted by either the normal 
optical or the molecular potential. Table III gives the comparison of the total spectroscopic factors for the cluster 
transfer for the three types of potentials . 

The compiled work of Endt and van der Leun [44] suggests alternative spin-parity for the 3.93 MeV state as 
J"' = I+ , 2- or 3+. While de Meijer et al. [32] assigned J"' = J + for t he state, .J ankowski et al. [17] suggested 2- . 
The DWBA calculations with the molecular potential for both J" = 2- and J+, are compared to the experimental 
cross sections in Fig. 4. The J" = 2- assignment is clearly favored , confirming the observation of .Jankowski et al. 

B . Microscopic DWBA calculationA 

The microscopic calculations have been performed using the zero-range code DWUCK4 for t he positive parity states 
with t he transferred particles stripped to the sd-shell. The present ana lyses make use of t hree sets of spectroscopic 
amplitudes {3112

, two sets based on the FPSDI and MSDI hamiltonians as defined in Wildenthal et al. '[42] and t he 
shell-model wave functions of the 28Si and 30P nuclei given by Wildenthal et al. [42,43] and the third one, labeled 
by CW [32], derived from the wave functions of Chung and Wildenthal referred to in (32]. The FPSDI and CW 
amplitudes are taken from de Meijer et al. [32], while the MSDI amplitudes are from .Jankowski et al. (17] . All 
the three sets of spectroscopic ampli tudes are calculated in the model space of Ods/Tis 1/TOd3 / 2 • Since the codes 
DWUCK4 and DWUCK5 assume that the spherical harmonics carry a time reversal phase of i 1, a factor not used 
in the phase conventions adopted in the calculations of the spectroscopic amplitudes (32], the amplitudes have been 
mul tiplied by an extra phase of i 1 ' +'· - ~ before feeding these to the codes. 

T he bound state wave functions for each of the transferred nucleons have been generated by assuming a real Woods­
Saxon well with the geometry parameters r0 = 1.25 fm and ao = 0.65 frn and the depth adjusted to produce the 
binding energy equal to half the separation energy of the transferred deuteron. A Thomas-Fermi spin-orbit term with 
A = 25 has also been used for the bound state wave functions. 

A Gaussian form of finite range correction in the local energy approximat ion [38] has been investigated. Fig. 5 
compares the microscopic DWBA calculations for the molecular type of a-28Si poLential using t he range parameter 
R = 0.0 fm (broken curves), 0.7 fm (solid curves) and 0.85 fm (dotted curves) to t he experimental data for the transfer 
to the ground (1+), 2.53 (3+), 2.84 (3+) and 3.02 MeV (2+) states. The fini te-range correction with R = 0.7 fm 
improves the fits to the data. 

The effect of the three types of the a -28 Si potential on the microscopic DWBA calculations has also been examined 
using the spectroscopic amplitudes calculated from the FPSDI interaction. Fig. 6 displays the DWBA predictions 
for the molecular (solid curves}, normal optical (broken curves) and Michel (dotted curves) potentials, which are 
compared to the data for the ground (I+), 0.71 (1+), 1.45 (2+) and 1.97 MeV (3+) states of 30P. As in the case of 
the macroscopic analyses, the molecular potential provides the best descript ion of t he data and the Michel gives the 
worst. Moreover, the predicted cross sections with the Michel potential are so small that they need normalization 
factors (Table III), larger by orders of magnitude compared to those for the molecular and normal optical potentials. 
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Figs. 7 and 8 d isplay the comparison of the microscopic DWBA calculations wi th t he finite-range parameter R = 0.7 
fm a nd the molecu la r a -28Si potential, for t he FPSDI (solid curves), CW (broken curves) and MSDI (dotted curves) 
interactions. The calcu lations with the three interactions produce more or less the same quality of fi ts to t he transfer 
data to the ground (1+), 0.709 (1+), 1.454 MeV (2+) states (Fig. 7). T he FPSDI and CW amplitudes produce 
identical predictions for the 2.72 MeV (21-) state (Fig. 7) and 2.84 MeV (3+) state (Fig. 8) and the same quality of 
fits to the 1.97 (3+) and 2.538 (3+) MeV states (Fig. 8). For the 3.02 MeV state, FPSD l gives a better description at 

large scattering angles t han CW does (Fig. 7). Nonetheless, the spectroscopic amplitudes from t he t hree interactions 
produce completely different spectroscopic factors S,,, as listed in Table II. Moreover, t he experimental cross sections 

for the reaction leading to the ground (1 +), 0.709 (1+), 1.454 (2 1-), 1.974 (3 1- ), 2.538 (3+), 2.72 (2+), 2.84 (3+) 
and 3.02 MeV (1+) states of 30P , need normalization constants as listed in Table IV, which are widely different and 

inconsistent. 
The 7.20 MeV (71-) state is considered to have a pure stretched (0!7; 2 )

2 
confi guration leading to the spectroscopic 

amplitude for the (a, d) reaction as fJ 112 = 1.0 [30,32]. This model independent value of fJ112 has been used to deduce 
the normali:;o;ation constant for the reaction a.'l N = 722 ± 25, which compares closely with N = 870 ± 20 and 650 ± 20 
obtained, following two methods for calcu lat ing the form-factors, by de Meijer et al. [32]. But only a few of the 
extracted N-values fo r other states given in Table IV are close to the model independent-value, deduced from t he 
reaction data for the 7.20 MeV state. None of the FPSDI, CW and MSDI iuteractions produce a consistent set of 
values for the normali:;o;at ion constant. 

C . Spectroscopic factors 

The model dependent spectroscopic factors are calculated from the F P SD l , CW and MSDI spectroscopic amplit udes 
fJ 112 by t he method outlined in (32]. Since the spectroscopic factor for t he 7.20 MeV state is unity, t he spectroscopic 
factors for other transitions are obtained by 

S 
_ IGul

2 

L - 2' 
IG6r(7.20)I 

(1 5) 

where t he structure factor Gu is expressed through Eq. (11) and G 67(7.20) = 0.56!100 denotes the value of the 
structure factor for the 7.20 MeV state. The S,_ values, which are listed in Table II, a re taken from de Meijer et al. 
(32] for the FPSDI and CW spectroscopic amplitudes. Fo r the MSDI interaction, t he S r, nlues are calculated using 
Eq. (15) from the MSDI spectroscopic amplitudes from .Jankowski et al. (17]. T he t heoretical spectroscopic factors 
S r, are compared to t he experimental spectroscopic factors A 1, , deduced from t he macroscopic analysis in Table II. 

V. DISCUSSION 

Jn the present work, both t he molecular and Michel types of a -nucleus potential havP been used, for the first time, 
for the analys£>s of two-nucleon transfer da ta. T he data for the even-parity states up to E, = 3.02 MeV, have been 
analyzed both in te rms of the FFR DWBA with the cluster form-factor a nd the Zit DWBA with the microscopic 
form-factors. Jn t he latter calculations, the FPSDI and CW [32] a.'l well as MSD l [17] spectroscopic ampli tudes derived 
from the wave functions of Wildenthal and his collabora tors [42,43] and n ef. [20) cited in the work of de Meijer et al. 
[32]. T he data of the odd-parity states a re analy:;o;ed on ly in terms of t he macroscopk FF R calculations. 

In both microscopic and macroscopic DWBA calcula tions, the molecular potential (Figs. 1-3 and 7,8] produces t he 
best description of t he data for a ll the transitions studied . The Michel potent ial, which has been shown to describe 
satisfactorily the elastic a+28Si data [18], is found inadequate not on ly in account ing for the patte rn of t he angular 
distributions [Figs. 1-3, 6], but a lso in reproducing t he r ight order of magnitude for the cross section data. T he 
normal optical potent ia l, on the other ha nd , which can fit the angular distri bution at forward scattering angles and 
predicts t he t he same order of cross sections as the molecula r one d oes, is found inadequate in describing t he data at 
large scattering angles [Figs. 1-3, 6]. 

The finite-ra.nge correction to the zn. microscopic calculations p roduces substantial effects on the pattern of t he 
angular distributions and improves substantially the fits to the data as can be seen in Fig. 5. This confirms t he 
observation made by Benc:;o;e a nd Zimanyi (45]. The best fi t value for the finite-range parameter found is R = 0.70 fm 
for the reaction . 

In the literat ure, an ambiguity in the spin-pa ri ty assig nment for the 3.93 MeV state is noted . The comparison of 
the macroscopic DWBA predict ions for r = r (solid curve) and 3+ (dotted cmve) in Fig. 4 to t he experi mental 
dat.a favors the former , confirming the assignment of .Jankowski et al. [17] and op posing that of de Meijer et al. [32]. 
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T he spectroscopic factors Ac.. for the transitions to the final states up to Ex = 5.42 MeV are deduced by comparing 
the macroscopic DWBA calcu lations to the data. Table II compares the deduced spectroscopic factors A c.. to those 
obtained at 50 MeV incident energy by de Meijer eta/. [32] and those extracted using the same data as of the present 
work by Jankowski et al. [17]. The results of J ankowski et al. are not reliable as they included t he compound nucleus 
contr ibutions in their analyses. The resul ts of de Meijer et al. are based on t he 1-cro-range calculations. Nevertheless, 
their A1, values for the t ransitions involving one £ -t ransfer leading to, part icularly, the 1.454 (2+) and 4.62 MeV (3- ) 
states are remarkably close to those of the present work. 

The Ar, values for the even-parity states and the model dependent theoretical spectroscopic fact.ors Sr" defined in 
Eq. (15), are compared in Table II. It can be noticed that a part from the ground state (1+), 1.454 (2+) and 2.72 MeV 
(2 ~) transi tion ~ , t he total spectro~copic factors I: A 1, agree with I: S1, for the CW interactions. On t he other hand, 
t he FPSDI predictions for 2:: Sc.. values are closer to the experimental 2:: A 1, for the ground and 1.45 MeV states. 
Neither of t he FPSDI and C W interactions reproduces t he experimental A1, for the 2.72 MeV state. It can also be 
noticed from Table Ill t hat FPSDI yields larger spectroscopic strengths compared to CW . This is also reflected in t he 
deduced values of relative normali1.ation constants Nrel in Tahle IV, where FPSD I needs in general smaller N-values 
to get to the data. None of the three interactions viz. FPSDI, CW and MSOJ is able to yield consistent values to 
account for the even- par ity states. However, t he model-independent l{ = 722 ± 25 is obtained from the data of t he 
7.20 MeV (7+) state, where the spectroscopic amplitude is believed to be uni ty. 

VI. CONCLUSION 

Both t he macroscopic a nd microscopic DWBA analyses suggest that the molecular type of the a-28Si potential is 
undoubtedl y the beRt of the three types of potentials considered . T he success of the present analyses lies in observing 
that the experimental cross-sections for all the t ransitions are reproduced over the ent ire angular range without t he 
aildition of compound uucleus contribut ions, which are unlikely to happen at the incident energy considered herein. 

The present work in conjunction with t he previous studies of the a -elast ic scattering on 2~Mg and 28 •30Si by Tariq 
et al. [18], of the (a, t) reaction on 27 AI [25] and the (a, p) reaction on 28 Si [3:Jj by Das et al., and of the a -inelas t ic 
scattering on 2~ Mg a nd 28Si by Rahman et al. [34] confirms that the molecular potential is the best of the t hree types 
of a -nucleus interactions including t he Michel and the normal optical potentials, in describing t he elastic, inelastic and 
rearrangement collision processes on t he sd-shell nuclei. T his ushers in hopes for finding a global a -nucleus potential, 
as observed by Hodgson [46]. It remains to be examined whether t he molecul ar type of poten t ials are capable of 
accounting for collision rr0rr~RCS involving a particle and other ligh t and med ium-light nuclei. For this purpose, 
it would be extremely helpful to have complete angular distributions for different p rocesses involving a particular 
nucleus. 
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TADLE I. Potential parameters for DWBA calculations. The potential depth V for the bound states is adjusted to give the 
separation energy. 

Channel a + 2sSi d + 30 p d+d d + 28Si 
Potential type Molecular0 Michel a Optical5 Opticalc Dound state0 

Vo (MeV) 26.0 21.0 50.42 102.7 \1 v 
R~ (fm ) 5.35 5.00 

ro (fm) 1.699 1.07 1.05 0.935 

a.o (fm) 0.34 0.60 0.505 0.852 0.50 0.997 

V, (MeV) 42.0 
R, (fm) 2.80 

0' 5.82 

p (fm) 6.25 
Wo (MeV) 15.0 28.9 10.34 
R w (fm) 4.0 3.85 
r1 (fm) l.G99 
a1 (fm) O.G5 0.505 
W o (MeV) lG.JO 
r·o (fm) 1.53 
ao (fm) 0.574 

Vso (MeV) 6.0 
rs o (fm) 1.07 
aso (fm) 0.852 
rc (fo1) 1.30 1.30 1.15 1.25 1.3 
Rc (fm) 9.35 

0 Ref. [1 8] . 
b ner. (l7j. 
c Ref. (10]. 
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TADLE II. Cluster spP.cstroscopic factors are compaa.red to the theoretical shell-model factors for the F PSDI, CW and MSDI 

interactions. FPSDI and CW spectroscopic factors are taken from Ref. [32]. MSDI factors are calculated from the spectroscopic 

amplitudes /3112 of Ref. [1 7] by the method outl ined in Ref. [37.]. ,ch values are norrnali1.ed to the value of 1 c~r 1 2 for the 7.20 

MeV state. 

Ex r Cluster Cluster spectroscopic factor Shell model spectroscopic factor 

configuration s" = IGDJI2 I IG~l0 1
2 

(MeV) N,L AL" AL6 ALe FPSDI cw MSDI 
0.0 1+ 2,0 0.23 ± 0.07 1.76 ± 0.20 0.28 0.448 0.043 0.168 

1,2 0.23 ± 0.07 d 0.56 0.237 0.121 0.031 

0.709 t+ 2,0 0.16 ± 0.{)7 1.45 ± 0.20 0.029 0.030 0.020 
1,2 0.24 ± 0.08 d 0.85 0.617 0.274 0.038 

1.1151 2~ 1,2 0.25 ± 0.05 0.20 ± 0.04 0.32 0.372 (1 0.081 7.8 X 10- 4 

1.974 3+ 1,2 0.11 ± 0.04 0.72 ± 0.13 0.041 0.078 0.004 
0,4 0.09 ± 0.03 0.47 ± 0.20 6.1 X 10- 4 0.134 1.5 X 10- 3 

2.538 3~ 1,2 0.16 ± 0.04 0.67 ± 0.14 0.01 5 0.165 
0,4 0.07 ± 0.03 < 11.25 0.426 0.076 

2.72 2+ 1,2 0.28 ± 0.05 0.12 ± 0.02 0.34 0.058 0.045 

2.84 3+ 1,2 0.08 ± 0.02 0.16 ± O.Q7 0.007 0.007 
0,4 0.09 ± 0.02 0.33 ± 0.11 0334 0.254 

3.02 1+ 2,0 0.03 ± 0.02 0.51 ± 0.15 0.27 9.7 X J0- 4 0.319 
1,2 0.32 ± 0.05 0.06 ± 0.10 0.35 1.4 X 10- J 0.021 

3.93 2- 2,1 0.11 ± 0.01 0.32 
1,3 0.18 ± 0.04 

(3+) (1 ,2) (0.06 ± 0.05) (0.14 ± 0.05) 
('1 ,4) (0.08 ± 0.05) (0.05 ± 0.06) 

4.62 3- 2,1 0.15 ± 0.04 0.17 ± 0.02 0.30 

5A2 T 2,1 0.54 ± 0.09 
1,3 0.06 ± 0.03 0.86 

• Present work . 
b llE'f. [32]. 
c Ref. [1 7]. 
d Too small a value to quote. 

'fi\OLE Ill. Comparison of deduced total specstroscopic factors from the macroscopic and normalization factors for the 
microscopic FPSDI calculations using the molecular, normal optical a ncl Mich el potentia ls. Total spectroscopic factor is the 
sum of the spectroscopic factors for the two £-transfers for the unnaturalparity states. 

E., .!" L Total spectroscopic factors Normali7.ation constant N 
(MeV) Macroscopic calculations Microscopic calculations 

Molecular Optical Michel Molecular Optical Michel 
0.0 1 0+2 0.46 0.74 23.4 280 480 7000 

0.709 1 ~ 0+2 0.40 1.33 30.0 70 85 8000 
1.454 2+ 2 0.25 0.50 11.0 270 950 1800 
1.974 3~ 2+4 0.20 0.57 20.0 1500 2000 35000 
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TADLE IV. Normalization constant H for the microscopic zero-range calculations for different shell-model interactions. N,., 
is the value relative to the model independent N = 722 for the 7.20 MeV state. 

R~ J K L Normalization constant N Relative normalization constant N,., 
(MeV) Interaction Interaction 

FPSDI cw MSDI FPSDI cw MSDI 
0.0 1 F 0+ 2 280 4000 800 0.388 5.540 1.108 

0.709 1+ 0+2 70 180 1500 0.096 0.249 2.08 

l.454 2+ 2 270 850 5500 0.374 l.177 7.618 
1.974 3+ 2+4 1500 500 7000 2.077 0.692 9.965 

2.538 3+ 2+4 220 900 0.304 1.246 
2.72 2+ 2 550 4500 0.762 6.233 
2.84 3~ 2+4 350 450 0.484 0.623 
3.02 1+ 0+ 2 14000 450 19.39 0.623 
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reaction at 26 MeV leading to the ground (1 ), 2.538(3 ), 2.84(3 ) and 3.02 (2 ) MeV states of P 
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The difTerential cross-section of the 28Si(a, p) 31 P reaction for 26 MeV incident energy has been 
analyzed in DWBA with zero and full-finite range using a deep and shallow optical, Michel and 
molecular potentials in the incident channel and a usual optical model potrnt.ial for proton in the 
fi nal channel. T he parameters of potential in the entrance channel are detPrminrd from the ela.qtic 
scattering data. The calculations done with the deep optical and Michel potentials reproduce the 
structure of the angular dist ributions reasonably well , but fail to account for thr absolute magnitudes 
by a few ordrrs. The shallow optical one is satisfactory up to about Orm = 100°. Thr molecular 
potential, on the other band, reproduces both the absolute cross-sections and the pattern of the 
angular distributions. CCnA calcu lations improve fits to the data over tiH' D\VIlA predictions. 

rACS number(s) : 25.55.Hp, 21.10.Jx, 24.50.+g, 27.30.+t 

I. INT R ODUCTIO N 

Anomalous large angle scattering (ALAS), observed in the elastic scattering of alpha-particles by light and medium­
light nuclei [1- 3], have recently been analyzed successfully for 24 Mg, 28 Si, 30•32 8 targets in terms of a complex molecular 
(4,5] and a special type of optical potential with a squared Woods-Saxon geometry, advocated by Michel and his 
collaborators [6,7). T he latter is, henceforth , referred to as t he Michel potential. Ooth of these potentials describe 
e(]ually well the elastic scattering data in a wide energy range with a small set of parameters changing systematically 
with energies. 

T he ALAS effects have also been observed in the non-elastic processes (2 ,3,8 13]. Schmittroth et al. (11] have 
establiAhed t hat the use of a complex molecul ar potent ial could enhance the back angle scattering in a single-nucleon 
transfer reaction involving heavy ion. Similarly, A LAS has also been observed by .Ja nkowski et al. (14] in the two­
a nd three-particle t ransfer reactions on the 28Si target. The large-angle behavior of t he data in t he latter work 
has been analy7.ed in terms of an incoherent sum of the distorted-wave Born approxi mat ion (DWBA} contribution 
calc:ulated with the normal optical potentials and the compound nucleus contribution predicted on the basis of the 
Ilauser-Feshbach mod el [15]. The method has, however , enjoyed a limited succeAs . 

The t hree-nucleon transfer in (a,p) reactions is a complex process. In addi tion to probable contribu tions from 
compound nucleus, pre-compound and multi-step sequential t ransfer processes, the direct pa rt of the reaction mech­
anism may comprise t riton stripping, knock-on and heavy-particle stripping (16 18]. Of these triton stripping has 
been found to be the dominant one (Hi] . Alt hough calculations in DWBA using the usual optical potential in the 
incident chan nel can, quite often, reproduce the general pattern of angular distribution, but t he absolute cross-section 
is understimated by two to t hree orders of m11gnitude [19]. T he normalization problem also persists in (a,p) reactions 
(20- 23]. Walz et al. 's (24] claim to reduce t he d iscrepancy between the data and calculation to 20% for the (p, a) 
case using a double-folded a -nucleus potential, has been cont radicted by Kajihara et al. (25], who failed to reproduce 
the Walz et al.'s calcu lations and found an enhancement factor t; = 4 instead of 1.2. T he purpose of the present 
study is, therefore, to examine the extent to which the molecular, Michel and optical potentialA can account for the 
pattern , magnitude and ALAS observed in the three-nucleon transfer (a, p) reaction on 28 Si. The study is also a part 
of our broader goal of finding the nature of a -nucleus potential capable of explaining a number of physical phenomena 
involving an alpha particle and a light nucleus, in this case 28Si. As evidenced from a number of investigations in­
cluding the single-nucleon (a, p) transfer reaction on 28 Si by Das et al. (12], it is important to select data having fairly 
complete angular distributions in order to differentiate the effects of a -nucl eus potential on a reaction process. Wit h 
this in mind, we have selected t he experimental cross-section data of .Ja nkowski et a/. (14] for the 28Si(a, p)31 P reaction 
coveri ng a wide range in a ngula r distribution including t hose at large angles, whirh 'lore expected to be sensit ive to 
the nature of a -nucleus potential. 

T he investigation has been carried out within the framework of zero-range (ZR) DWBA formalism with a simple 
process of triton-cluster transfer using shallow, deep, Michel and molecular opt ical potentials in the incident alpha­
cha.nnei.The full fini te-range (FFR) DWBA and the coupled-channels Born approximation (CCDA) calculations for 
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the molecular potential have al!<o been performed to deLermine the viability of the laU.er two potentials. This inves­
tigation further reinforces the pa.'lt assertion that data having a wide range of angu lar distribution are important for 
understanding t he physical process involving a -particle and light nuclei. 

Section ll discusses t he a -nucleus potentials used in the analyses. The DWBA and CCBA analyses are furnished 
in Sections 111 and IV respectively. Section V deals with the discussion and t he conclusions. 

II. a-NUCLEUS POTENTIALS 

Vm(r), the reru and Wm(r), t he imaginary pruts of t he compi€'X molecular potential , whi ch has its root in the 
energy-density functional study of t he reaction [4,2fi] are given by 

Vm(r) =- Vo [l + eTp {(r - R0 ) fao }r 1 + v. exp { - (r2 / Ri) } 

H'm(r) = - Woexp { - {r2/Rrv) } 
(1) 

T he real VM (r) and imagi nary W M (r) parts, of the Michel potential which is an approximate form of the non-local 
potent ia l expected from the resonating group method (H.GM) as applied to the a -cluster system [27,28] are given by 

""' (r) =·- Vo [1 + aexp { - (r2 I p2
)}] [J + exp { (1'- flo) /2ao} r 2 

WM(r) = - W0 [L + exp {(r - R,) /2a,J r 2 

The real and imagi nary parts of t he normal optical potential, V(r) and vV(1·) are given, respectively, by 

V(r) = - Vo [1 + exp {(r - Ro) /ao }r
1 

W(r) = - Wo [1 + exp {(r - R 1 ) fa 1 }] -
1 

The Cou lomb part for all t hree types of potent ials is given by 

Vc(r) = [ ~~~e' ] [3 - ~] for r :S Rc 

= z~z,e' for r > Rc 
r 

(2) 

(3) 

(4) 

(5) 

In case of the Michel and optical potentials, Rc is qui te often written as = r·c A~/3 , where AT is t he target mass 
number. On t he other hand , in case of the molecular potent ial, Rc is t he sum of the alpha and 28Si radii when they 
b;1rely touch each other. 

Although t he normal optical model has not been very successful in reproducing t he elastic scattering data over the 
energy range investigated by J ankowski et al. [1 4] and .Jarczyk et al. [10], it is possible to find a set of parameters 
produci ng a reasonable fit to the elastic scattering data at 26 MeV. Observing t hat the energy-density functional 
approach in t he special adiabatic approximation may lead to a sha llow optical potent ia l [26], a search for such a 
potential has a lso been made and included in the study. 

T he parameter search has been carried out using the code SCAT2 [29] modifi ed by us to incorporate molecular and 
Michel potentials. T he parameters obtained from the best fit to the ela.<~tic scattering data of a -particle by 28Si at 26 
MeV incident energy a re listed in Table I. T he fi ts to the elastic data are shown in Fig. 1. In general, the fi ts with all 
four potentials are reasonable, a lthough t he shallow optical potent ia l fi t is Rornewhat poorer than those of the rest. 
Parameters of the molecular and Michel potentials are th e same as t he ones in Ref. [5]. 

III. DWBA ANALYSIS 

The 7.ero-range DWDA calculations have been performed using t he code DWUCK4 [30] which has been modified to 
include t he Michel potential in t he distorting channels. T he potential parameters in the dis torting incident channel 
used in the DWBA calculations a re noted in Table 1 for all four potential s. T he bound state wave function for the 
transferred triton, considered a.~ a point cluster, has been generated by assuming a real 'Noods-Saxon well with its 
depth adjusted to reproduce the separat ion energy. T hese parameters along with the proton optical potential are 
also noted in Table 1. Corrections due to non-locality [31] of potentia l in the convent ional form have been applied 
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using the non-locality ranges /3(a) = 0.2, f3(p) = 0.85 and /3(t) = 0.2 fm. The correction in the triton-bound state 
form-factor is found t.o produce little effect on the cross-section. The calculations using all four potentials for the 
28Si(a,p)3 1 P reaction leading to the l/2+ ground, 1.2GG MeV 3/2+ and 2.234 MeV 5/2+ states are compared with 
the data of .Jankowski et al. [14] in Fig. 2. 

To test the validity of URing the molecular potential, the full finite-range DWBA calculations have been carried out 
using the code DWUCK5 [22]. The (t+p) bound state geometry for the FFil calculations is shown in Table 1. The 
FFil predictions are compared to the data in Fig.3. The spectroscopic factors S for the cluster transfer have been 
deduced from the expression [30] 

(6) 

Here (;In) exrt and ( ~~) DWVCKs are, respectively, the experimental cross-section and that predicted by DWUCK5. 
J1 and Ji are the total spins of the final and initial nuclei, r('~pectively. s = 2.0 is the light particle spectroscopic 
factor. C2 is the isospin Clebsch-Gordon coefficient. The deduced S-values are listed in Table 2. The normalization 
constant Dfi for the t-cluster transfer in the ZR calculations has been estimated from the expression [22] 

(
da) = (2Jf + ~) D5C2 S (da) 
df1 expt (2Ji + 1) (2J + 1) dU DWUCK 1 

(7) 

Here ( :~) expt and ( ~~) nwuc I<~ are, respectively, the experimental cross-section and that predicted by DWUCK4. 

The deduced Dfi values and the average D5 = 2.25 x 101 MeV2 fm3 have been shown in Table 2. It is evident, from 
Fig.3, that the FFil calculations do not improve fits over the Zll predictions and reduce the cross-sections at larger 
rea<.:tion angles even more. Nevertheless, the FFil calculations allow us to extract the spectroscopic factors. 

IV. CCBA ANALYSIS 

The CCBA calculations using the molecular potential have been carried out using the code CHUCK3 [30), with 
the coupling scheme shown in Fig.4 and the deformation parameters /32 = - 0.18 and /31 = +0.08 for 28Si. In the 
CCBA calculations, the depth of the imaginary part of the molecular potential (Table 1) has been decreased to 10.5 
MeV in order to reproduce the angular distribution for the elastic scattering. All possible relative phases and various 
relative transition amplitudes an in the rearrangement paths have been tried in the simplest possible coupling scheme. 
The transition strength in a two-step path is proportional to the square of /3an. The CCBA predictions using the 
relative spectroscopic amplitudes given in Table 2 for the 1/2+ ground, 1.266 MeV 3/2+, 2.234 MeV 5/2+ and 3.415 
MeV 7 /2+ state transitions have been compared to the data in Fig. 3. The CCBA calculations improve the fits over 
the Zll and FFR calculations. The inelastic 4+ state at Ex = 4.618 MeV in 28Si plays a major role in the CCBA 
calculations in reproducing the ground state data. The coupling to the inelastic 2+ state to the ground state of 28Si 
is also significant in improving the fits to the data for the 1.266 and 2.234 MeV states of 31 P. The CCBA calculations 
seem to confirm the deformed shape of the 28Si nucleus. 

V. DISCUSSION AND CONCLUSION 

The present work reports, for the first time, the analyses of a three-nucleon transfer reaction using the molecular 
type potential. While the patterns of the angular distributions for the reaction to the ground (1/2+), 1.27 MeV 
(3/2+) and 2.23 MeV (5/2+) states of the final nucleus, are reasonably reproduced by the DWBA calculations using 
the deep optical and Michel potentials, the predicted cross-sections are off by 2 to 4 orders of magnitudes in each case. 
This agrees with the results of Refs. [21,23) for the calculation with the deep optical potential and those of Xiumin et 
al. [3G] who failed to reproduce the data for the ~°Ca(a,p)43Sc reaction with the squared WS potential used by the 
Michel group [32). However, the DWBA and CCBA calculations using the molecular potential and assuming a simple 
triton-cluster transfer mechanism, reproduce not only the angular oscillations more satisfactorily, but also the correct 
order of absolute cross-scdions for each of the four final states including the one at 3.42 MeV excitation of 31 P. The 
calculation using the shallow potential reproduces the magnitudes up to 100° or so, but then decreases sharply at 
large angles. Thus, the molecular potential is the only one to account for the data for the ground (1/2+ ), 1.27 MeV 
(3/2+) and 2.23 MeV (5/2+) final states over the entire angular distributions. Furthermore, the present analysis 
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indicates that t he data for t he reaction can be s uccessfully described wi thout any compound nucleus contribution, as 
included by .lClnknwski et al. [14], which is highly improbable at t he incident etH'rgy considered here. 

A per tinent question arises as to why t he Michel potential, which has been so fluccessful in accounting for ALAS 
in the elastic scat tering on many targets [6,7,32,33] including 28Si in t he present work, fails to reproduce the data of 
t he 28Si(a, p)3 1 P reaction. The Michel potential has also been found to be inadequate for the one-nucleon transfer 
reaction [12). Aside from the fact that t he Michel potential is monotonic, wherea.q t he molecular is non-monotonic, 
one may note that the two potentia ls differ significantly in defining the Coulomb radius. In case of the molecular 
potential, t he Coulomb radius Rc is the di stance where 28 Si barely touches the a particle. T he observed density 
rlistribution, p(r) for 28Si is given by [.34] 

r -c 
[ ] 

- I 

p(r) = p(O) 1 + exp- d- (8) 

with c = 3.14 fm. and d = 0.537 fm. Thus, at r = 6 fm., p(r) = 0.005p(O). A re::tSonable density dis tribution for a 

particle is 4 (~) 312exp(-"F2) with "Y= 0.5 [35]. This is about 0.001 a t r= 3.35 fm. Thus, a reasonable value of R~ is 
(6.00+:1.35)= 9.35 fm ., which is used in the molecular potential. The Michel, on the other hand, uses R~=3.95 fm. 
At thiH distance, t he two nuclei have inter-penetrated each other substant.ially. In t he DWDA t heory, the stripped 
particles from the projectile are assumed to drop on th e nuclear surface and hence, the treatment may be somewhat 
sensit ive to t he actual value of flc. 

One may summarize from the displays in Figs. 1 to 3 that, while t he molecular, t he Michel with the squared WS 
geometry and the normal optical potentials produce more or less the simila r quality of fits to t he elastic data, their use 
in describing the transfer data for the (a, p) reactions leads to significantly different results, with only the molecular 
one accounting for the observed data in terms of both absol ute cross-sections and angttlar distribution. This supports 
Satchler 's contention [37] that the real test of a potential set generated from t he analysis of elastic scattering data 
lies in its abi li ty in reproducing the non-elastic data. The present work seems to suggest preference for t he molecular 
potential over other forms of t he a lpha-nucleus potent ial in describing the angular distribution of the (a, p) rea.ction 
on 28 Si at 26 MeV. T he finding demands further investigation with other targets. 
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TADLE I. ParCI.meters of the cx-28Si potentia ls given by Eqs. ( l ), (2) and {3) used in the calculations !lhown in Fig. 1 are 
given in columns 1 to 5. The pamrneters of proton optical-model potential, and bound states of (t+ 211Si) and (t+p) systems 
are noted in columns 6-8, respect ively. V is adjusted to give the separation energy. 

Channel a + 28Si p + 31 r t + 28Si t + p 
Potentia l Type Molecu lar~ Michel" Deep Optical Shallow6 Optical Optical< Dound Stateh Dound Stateb 
Vo (MeV) 26.0 21.0 216.0 55 .0 53.3 - o.5se-=,-, ---.,v~------;-:v,----

no (fm) 5.35 5.00 3.70 5.16 
1·o (fm) 
ao (fm) 
V, (MeV) 
n, {fm) 
(X 

p (fm) 
Wo (MeV) 
Rr (fm) 
ar (fm) 
R w {fm) 
Wo (MeV) 
r o (fm) 
a/J {fro) 
Rc {fm ) 
! ' C (fm) 

"Ref. [5]. 
"'Ref. IJ 4J. 
cn.er. [3l]. 

0 .31 
42 .0 
2.80 

14.5 

4.00 

9.35 

0.60 

8.39 
6.25 

33.1 
3.85 
0.65 

3.95 

0.67 

22.1 
3.98 
0.67 

4.07 

0.50fi 

8.64 
5.16 
0.505 

3.95 

1.25 
0.65 

13.5 
1.25 
0.47 

1.30 

0.929 
0.921 

1.30 

1.05 
0.50 

1.25 

TABLE II. Cluster transfer configurations (n: number of nodes, L: angular momentum) used in the CCDA are shown in 
columns 3 to 6. Column 7 indicates the relative spectroscopic ampli tudes used in calculations shown in Fig. 3. Columns 8 and 
9 are, respect ively, the spectroscopic factors deduced from the FFR calculations and the normalizat ion constant for the (a,p) 
reaction for the DWBA calculations. 

Ez J" Cluster t ransfer confi guration Spect. D3 X 104 

C ' P ) One-step Two-step Relative S p11ct . Factor MeV2 fm3 

MeV nLd nLt1 nLt2 n Lt3 Amplitudes s 
0.0 1/2+ 38 1G + 01 :+ 15 0.070 2.00±0.50 

1.266 3/2+ 20 2D 3S +01:+05:-05 0.031 2.56± 0.64 
2.234 5/2 - 20 2D 3S l G + 01 :+01 :+ 02:-01 0.004 
3.415 7/ 2- 2G 30 48 +01:+ 06:+02 0.003 

6 



10' 

104 

103 

102 

101 

10° 

1Q-' 
.......... .... 
(f) -... 10 2 ..0 
E -c: 10 3 

"'0 -... 
b 

"0 10 4 

10 ° 

10. 

10·7 

10·" 

10 9 

10-to 

10·11 

Molecular 

a oooo 

0 

X 1 o-3 Michel 

0 
0 

0 

x 1 o-6 Deep Opt. 

X 1 o-9 Shallow Opt. 

00 

0 30 60 90 1?0 150 

Angle ecm. (deg) 

Fig.1. Fits to the a-
28

s i elastic scattering data at 26 MeV (lab.) with the molecular, Michel, 

deep and shallow normal optical potentials . Data are from [9] 

7 

a 

180 



10' -,-,-,-,...,.,--.,.-,...,.,-.--.-.-r·~ I ~--r-,-, ~,. 

101 ---- Molecular 

101 · · ······Michel 

10' - · ·- · · - ShAllow Optict"l 

10" - -- - Deep Optical 

t O' 0 Jankowski 

10 ' 

tO' 
- o-g- ooo~··-0 ~u-----------,0--1 

" ·-o o-- 0-.11.. Q 

10 ' 
.......... 

tO' 

10' 
" --. . ... \ .. /. .... -:- :-.. 

,; · -:-- - -- -----.~:-::-.~ 

10' 

10 ' 
10° 

E,• 1 27 MeV. 3t2' 

~ 10' 
~ 

10' .0 
§. 10 1 

c tO' .., 
l3 10' .., 

1 0~ 
101 

100 

10' 

tO ' 0 oo 0 QJOQ tl O 

10 1 

10 ' 

10' 

to• 
10 ' 
1 0 • 1 1 1 , , , I 1 1 , , 1 .__._.__,_j ...._._._,__L,_,_..._.._._.__,_-'-'-' 

o ~ ~ 00 100 t W 1~ 1~ 100 

Angle 0cm (deg) 

Fig.2. Zero-range DWBA predictions are compared to the angular distribution or 

cross-sections ror the 
28

Si(a,p)
31

P reaction at 26 MeV leading to the ground(1t2\ 
+ + 

1.27 (3/2 ), and 2.234 (5/2 ) MeV states. Solid, dotted, dashed and dash-dotted curves 

are the predictions for the molecular, Michel, deep and shallow normal optical 

potentials respectively, in the a -channeL The data are from (14). 

8 



ii; 
:0 
.§. 
c: 
::!2 

t:> 
'"0 

10' 

10' 

10' 
g • . 112' 

10" 

10' 

10' 

10' 

10' 
10' 

10" E,s 1 27 MeV. 312' 

10' 0 

10' 

10' 

10~ 

: : ~ F,=7 23 MPV,512' 

10' ··- .. 

10 ' ~0 

10' 

10' 
10' 

10" 

10' 

10' 

10' 

E, =3.42 MeV, 712' 

- - - -- Molecular ZR 

• • • • • • • • • Molecular FFR 

Molecular CCBA 

0 Jankowski 

__ . . QJl. ~~- .~ 

10 ' ~-~~~~~~~~~~~~~~~~~~~-L~~ 

0 20 40 60 80 100 120 H O 160 180 

Angle 0 c m (deg) 

Fig.3. Zero-range (solid), full finite-range( dotted lines) and CCBA (dashed lines) 

predictions of the transfer reaction using the molecular potential are compared to 

the data for the 
28

Si(a,p)
31 

P reaction at 26 MeV leading to the ground (1/2 \ 
~ + + 

1.27 (3/2 ). 2.23 (5/2 ). 3.42 (7/2 ) MeV slates. The data are from [ 14]. 

9 
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