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ABSTRACT 
 

Fixed point theory has fascinated hundreds of researchers since 1922 with 

the celebrated Banach’s fixed point theorem. Fixed point iterative procedures are 

one of the early achievements of fixed point theory for their usefulness to 

construct the solving technique of different nonlinear problems. Most of the 

physical problems of applied sciences and engineering are usually formulated as 

functional equations. Such equations can be written in the form of fixed point 

equations in an easy manner. It is always desired to develop an iterative procedure 

which approximates the solution of these equations in fewer numbers of steps. 

From this point of view, the main objective of our research is to fit a best fixed 

point iterative procedure whose working ability (rate of convergence) is better than 

that of the analogous fixed point iterative procedures. There exist a numeral 

number of fixed point iterative procedures in literature. But there raised a natural 

question that, “Which is the best fixed point iterative procedure under the 

equivalent situation?”. Tofind the answer of that question already many works 

have been completed by various renowned researchers; see for instance [12, 27, 

37, 39, 47, 49] and their references. By the inspiration of these works here we have 

proposed a new three-step fixed point iterative procedure whose rate of 

convergence is better than that of analogous fixed point iterative procedures in 

case of contraction mapping. Using our new fixed point iterative procedure we 

have also established some weak and strong convergence theorems for non-

expansive mapping andwe applythese results to find the solutions of constrained 

minimization problems and feasibilityproblems. In the last part of our research, we 

have studied the fixed point iterative procedures with errors and proveda 

convergence theorem of multi-step Noor fixed point iterative procedure with errors 

for Zamfirescu operator, which generates the convergence theorems of rest fixed 

point iterative procedures with errors for the same operator.  
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Many problems of physical interest are converted into nonlinear problems 

that can be solved precisely by fixed point iterative procedure; this means a 

suitable fixed point iterative procedure play a vital role to solve these types of 

nonlinear problems. The study of variational inequality and complementarity 

problems of mappingssatisfying certain constraints has been at the center of 

rigorous research activity.Given the fact, complementarity and variational 

inequality problems which areextremely useful in optimization theory can be 

found by solving an equationwith some special form of nonlinear function.It is 

very important to developsome faster iterative procedure to find the approximate 

solution.From theseperceptive, here we introduce a newthree-step fixed point 

iterative procedure and prove that it is faster than Picard [48], Mann [53], Ishikawa 

[40], Noor [24], Agarwalet al. [37], Abbas et al. [27] and Thakuret al. [12] 

iterative procedures. 

The celebrated Banach’s fixed point theorem established by Polish 

mathematician Stefan Banach in 1922 [37] is one of the most useful results in 

fixed point theory.  It has many advantages to solve nonlinear problems, but it has 

one weakness, that it is applicable for continuous mappingonly. To overcome this 

situation W. R. Mann [53] invented a new iterative procedure in 1953. Later, in 

1974 S. Ishikawa [40] devised a new iterative procedure to establish the 

convergence of Lipschitzian pscudocontractive map when Mann iteration scheme 

failed to converge. After S. Ishikawa in 2000, M.A. Noor [24] introduced and 

analyzed three-step Noor iterative procedure to study the approximate solutions of 

variational inclusions (inequalities) in Hilbert spaces when Ishikawa Iterative 

procedure failed.Afterwards many iterative procedures have been formulated to 

solve many complex problems; see for instance the monograph of V. Berinde [49]. 

There are many research works in literature on the approximation of fixed points 
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of  contraction mapping and non-expansive mappingby using Mann’s iterative 

procedure [53], Ishikawa’s iterative procedure [40] , Noor’s iterative procedure 

[24], Agarwal et al.’s iterative procedure [37], Abbas et al.’s iterative procedure 

[27] and recently Thakur et al.’s iterative procedure [12] have also been studied in 

the same purposes, see for instance [8, 12, 14, 15, 21, 24, 27, 31,  37, 40, 41, 44, 

45, 47, 57, 58, 61] and their references. From this continuation, in this work, we 

have proposed a new three-step iterative procedure whose rate of convergence is 

better than that of above mentioned iterative procedures. Besides this work here 

we have also studied the iterative procedures with errors and established a 

convergence theorem of multi-step Noor fixed point iterative procedure with errors 

[42] for more general Zamfirescu operator [46] which generates the convergence 

theorem of other fixed point iterative procedure with errors. Throughout this thesis 

ℕ will denote the set of natural numbers andℝwill denote the set of real numbers. 

 For convenience of discussion we divide our total work into seven 

individual chapters. In the Chapter-1, we have presented some known definitions 

and some fundamental results of fixed point theory, which have used as the tools 

of our main work. 

 In the Chapter-2 we introduced different fixed point iterative procedures. 

Here we have also proved the convergence theorem and stability theorem of our 

new iterative procedure by using Zamfirescu operator. 

 Chapter-3 is one of the main parts of our research. In this chapter, we have 

shown that the rate of convergence of our new iterative procedure is fastest than 

that of all comparable iterative procedures for contraction mapping by using the 

sense of V. Briende [44] in all ways of comparison thinking. 

 In the Chapter-4 we established some weak and strong convergence 

theorems by using our new iterative procedure under different well-defined 

conditions. 
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In the Chapter-5 wepresented different fixed point iterative procedure with 

errors.  

 Chapter-6 is another principal part of our research. Here we have 

established a principle of convergence of multi-step Noor fixed point iterative 

procedure for more general zamfirescu operator which is able to generate the 

principle of convergence of other fixed point iterative procedures with errors.  

 Chapter-7 is the final chapter of this thesis, which is furnished with 

application andconclusion. 
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CHAPTER-1 

MATHEMATICAL PRELIMINARIES AND 

SOME FUNDAMENTAL RESULTS  
 

The main aim of this Chapter is to state some basic definitions and some 

fundamental results of fixed point theory to keep this thesis in sequence and for the 

convenience of references. For the conciseness, all of the theorems are stated without 

proof. 

 

1.1 Some basic definitions  

Definition 1.1.1.[55]A vector space or linear spaceis a set𝑋𝑋 together with two 

operations, addition and scalar multiplication such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋and all 𝛼𝛼 ∈

ℝ(set of real numbers) both 𝑥𝑥 + 𝑦𝑦 and 𝛼𝛼𝑥𝑥are in𝑋𝑋, and for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋and all 

𝛼𝛼,𝛽𝛽 ∈ ℝthe following properties are satisfied:  

(i) 𝑥𝑥 + 𝑦𝑦 = 𝑦𝑦 + 𝑥𝑥;   

(ii) (𝑥𝑥 + 𝑦𝑦) + 𝑧𝑧 = 𝑥𝑥 + (𝑦𝑦 + 𝑧𝑧); 

(iii) (𝛼𝛼 + 𝛽𝛽)𝑥𝑥 = 𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑥𝑥;   

(iv) 𝛼𝛼(𝑥𝑥 + 𝑦𝑦) = 𝛼𝛼𝑥𝑥 + 𝛼𝛼𝑦𝑦; 

(v) 𝛼𝛼(𝛽𝛽𝑥𝑥) = (𝛼𝛼𝛽𝛽)𝑥𝑥; 

(vi)  there exists a 0 ∈ 𝑋𝑋such that for all 𝑥𝑥/ ∈ 𝑋𝑋, 0 + 𝑥𝑥/ = 𝑥𝑥/; 

(vii)  there exists a −𝑥𝑥 ∈ 𝑋𝑋such that for all 𝑥𝑥 ∈ 𝑋𝑋, 𝑥𝑥 + (−𝑥𝑥) = 0; 

(viii) there exists a 1 ∈ ℝsuch that for all 𝑥𝑥 ∈ 𝑋𝑋, 1 ∙ 𝑥𝑥 = 𝑥𝑥. 

Definition 1.1.2.[54] Let 𝑋𝑋 be a nonempty set. The mapping 𝑑𝑑:𝑋𝑋 × 𝑋𝑋 → ℝis said to 

be a metric on 𝑋𝑋 if it satisfies the following conditions: 
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 (i) 𝑑𝑑(𝑥𝑥,𝑦𝑦) ≥ 0,∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋; 

 (ii) 𝑑𝑑(𝑥𝑥,𝑦𝑦) = 0, iff 𝑥𝑥 = 𝑦𝑦, ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋; 

 (iii) 𝑑𝑑(𝑥𝑥,𝑦𝑦) = 𝑑𝑑(𝑦𝑦, 𝑥𝑥),∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋; 

 (iv) 𝑑𝑑(𝑥𝑥,𝑦𝑦) ≤ 𝑑𝑑(𝑥𝑥, 𝑧𝑧) + 𝑑𝑑(𝑧𝑧,𝑦𝑦),∀ 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋. 

Here the set 𝑋𝑋 together with the metric 𝑑𝑑i.e., the order pair (𝑋𝑋,𝑑𝑑)is called a metric 

space. 

Example 1.1.3. If 𝑋𝑋 = ℝ(Set of real numbers) and the metric define by   

 𝑑𝑑(𝑥𝑥,𝑦𝑦) = |𝑥𝑥 − 𝑦𝑦|,∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋. 

Then (𝑋𝑋,𝑑𝑑)form a metric space. 

Definition 1.1.4. [55]Let 𝑋𝑋be a vector space. A function ‖∙‖:𝑋𝑋 → [0,∞)is called a 

norm if and only if for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋and all 𝛼𝛼 ∈ ℝ, the following rules hold: 

(i) ‖𝑥𝑥 + 𝑦𝑦‖ ≤ ‖𝑥𝑥‖ + ‖𝑦𝑦‖,∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋; 

(ii) ‖𝛼𝛼𝑥𝑥‖ = |𝛼𝛼|‖𝑥𝑥‖,∀ 𝑥𝑥 ∈ 𝑋𝑋 and 𝛼𝛼 ∈ ℝ; 

(iii) ‖𝑥𝑥‖ = 0 ⇒ 𝑥𝑥 = 0. 

The pair (𝑋𝑋, ‖∙‖)is then called a normed linear space. A normed linear space 

(𝑋𝑋, ‖∙‖)defines a metric space (𝑋𝑋,𝑑𝑑)with 𝑑𝑑 defined by 𝑑𝑑(𝑥𝑥,𝑦𝑦) = ‖𝑥𝑥 − 𝑦𝑦‖. 

Definition 1.1.5. [55]A vectorspace 𝑋𝑋is called an inner product space or unitary 

space if to each ordered pair of vectors 𝑥𝑥 and 𝑦𝑦 ∈ 𝑋𝑋there is associated a number〈𝑥𝑥,𝑦𝑦〉 

the so-called inner product or scalar product of 𝑥𝑥 and𝑦𝑦, such that the following 

rules hold: 

(i) 〈𝑦𝑦, 𝑥𝑥〉 = 〈𝑥𝑥,𝑦𝑦〉������� (the bar denotes complex conjugation); 

(ii) 〈𝑥𝑥 + 𝑦𝑦, 𝑧𝑧〉 = 〈𝑥𝑥, 𝑧𝑧〉 + 〈𝑦𝑦, 𝑧𝑧〉   ∀ 𝑥𝑥,𝑦𝑦, , 𝑧𝑧 ∈ 𝑋𝑋; 

(iii) 〈𝛼𝛼𝑥𝑥,𝑦𝑦〉 = 𝛼𝛼〈𝑥𝑥,𝑦𝑦〉 ∀𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋and 𝛼𝛼 ∈ ℝ; 

(iv) 〈𝑥𝑥,𝑦𝑦〉 ≥ 0 ∀ 𝑥𝑥 ∈ 𝑋𝑋; 

(v) 〈𝑥𝑥, 𝑥𝑥〉 = 0 iff 𝑥𝑥 = 0. 
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Definition 1.1.6.[54] A sequence {𝑥𝑥𝑛𝑛}in a metric space (𝑋𝑋,𝑑𝑑)is said to be 

convergent if there is a point 𝑥𝑥 ∈ 𝑋𝑋with the following property:  

For every 𝜀𝜀 > 0there is an integer 𝑁𝑁such that 𝑛𝑛 ≥ 𝑁𝑁implies that𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥) <

𝜀𝜀.In this case we also say that the sequence {𝑥𝑥𝑛𝑛}is converges to 𝑥𝑥 ∈ 𝑋𝑋, or that 𝑥𝑥 ∈ 𝑋𝑋is 

the limit of {𝑥𝑥𝑛𝑛}, and we write 𝑥𝑥𝑛𝑛 → 𝑥𝑥, or lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛 = 𝑥𝑥.  

If the sequence {𝑥𝑥𝑛𝑛}does not convergent, then it is said to be divergent. 

A sequence {𝑥𝑥𝑛𝑛} in a metric space (𝑋𝑋,𝑑𝑑) is said to be a Cauchy sequence if 

for every 𝜀𝜀 > 0 there is an integer 𝑁𝑁such that 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 ) < 𝜀𝜀 for all 𝑛𝑛,𝑚𝑚 ≥ 𝑁𝑁. 

A metric space(𝑋𝑋,𝑑𝑑)is said to be a complete metric space if every Cauchy 

sequence in 𝑋𝑋 is convergent. 

Definition 1.1.7.[55]Let (𝐻𝐻,𝑑𝑑)be a metric space. If this metric space is complete, i.e., 

if every Cauchy sequence converges in𝐻𝐻, where the metric 𝑑𝑑is defined by the inner 

product of the space, then the space (𝐻𝐻,𝑑𝑑)is called a Hilbert Space. 

Definition 1.1.8.[55]A normed linear space 𝑋𝑋which is complete as a metric space and 

the metric is defined by its norm, is called a Banach Space. 

Definition 1.1.9.[55]Let 𝑋𝑋 be a norm linear space. Then the closed unit ball of 𝑋𝑋 is 

denoted by 𝐵𝐵�  and defined as the set  

 𝐵𝐵� = {𝑥𝑥 ∈ 𝑋𝑋: ‖𝑥𝑥‖ ≤ 1}. 

Definition 1.1.10.[55] A subset 𝐶𝐶 of a linear space 𝑋𝑋 is called convex set if for all 

𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶 and for all real numbers 0 ≤ 𝑡𝑡 ≤ 1, we have  

𝑡𝑡𝑥𝑥 + (1 − 𝑡𝑡)𝑦𝑦 ∈ 𝐶𝐶. 

Definition 1.1.11. [55]A Banach space𝐵𝐵is said to be uniformly convex if,‖𝑥𝑥𝑛𝑛‖ ≤

1, ‖𝑦𝑦𝑛𝑛‖ ≤ 1 and ‖𝑥𝑥𝑛𝑛 + 𝑦𝑦𝑛𝑛‖ → 2as  𝑛𝑛 → ∞imply‖𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛‖ → 0,∀ 𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛 ∈ 𝐵𝐵. 

Definition 1.1.12.[57]Let 𝑋𝑋 be a Banach space,𝑆𝑆𝑋𝑋 = {𝑥𝑥 ∈ 𝑋𝑋 ∶  ‖𝑥𝑥‖ = 1} be a unit 

sphere on 𝑋𝑋 and 𝑋𝑋∗ be the dual of 𝑋𝑋, that is the space of all continuous linear 

functional on 𝑋𝑋. Then the space 𝑋𝑋 is said to be a smooth Banach space if the limit 
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 lim𝑡𝑡→0
‖𝑥𝑥+𝑡𝑡𝑦𝑦‖−‖𝑥𝑥‖

𝑡𝑡
 (1.1) 

exists for each 𝑥𝑥 and 𝑦𝑦 in 𝑆𝑆𝑋𝑋 . In this case, the norm of 𝑋𝑋 is called 𝐆𝐆𝐚𝐚�𝐭𝐭𝐭𝐭𝐚𝐚𝐭𝐭𝐭𝐭 

differentiable norm. 

Definition 1.1.13.[57]The Banach space 𝑋𝑋 is said to has𝐅𝐅𝐅𝐅�́�𝐭𝐜𝐜𝐜𝐜𝐭𝐭𝐭𝐭 differentiable 

norm if for each 𝑥𝑥 ∈ 𝑋𝑋, the limit defined by (1.1) exists and attained uniformly for 

𝑦𝑦 ∈ 𝑆𝑆𝑋𝑋 , and in this case it is also well-known that  

 〈𝑦𝑦, 𝐽𝐽(𝑥𝑥)〉 + 1
2
‖𝑥𝑥‖2 ≤ 1

2
‖𝑥𝑥 + 𝑦𝑦‖2 ≤ 〈𝑦𝑦, 𝐽𝐽(𝑥𝑥)〉 + 1

2
‖𝑥𝑥‖2 + 𝑏𝑏(‖𝑦𝑦‖) (1.2)  

for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, where 𝐽𝐽 is the Fréchet derivative of the functional1
2
‖ ∙ ‖2 𝑎𝑎𝑡𝑡 𝑥𝑥 ∈

𝑋𝑋, 〈∙,∙〉 is the dual pairing between 𝑋𝑋 and 𝑋𝑋∗, 𝑏𝑏 is an increasing function defined 

on[0,∞)such that lim𝑡𝑡→0
𝑏𝑏(𝑡𝑡)
𝑡𝑡

= 0. 

Definition 1.1.14. [64] The Banach space 𝐵𝐵 is said to satisfy the Opial’s condition, if 

for each sequence {𝑥𝑥𝑛𝑛}𝑛𝑛=0
∞  in 𝐵𝐵, 𝑥𝑥𝑛𝑛 ⇀ 𝑥𝑥 implies that 

lim𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑥𝑥‖ < lim𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑦𝑦‖          (1.3) 

for all𝑦𝑦 ∈ 𝐵𝐵 with 𝑦𝑦 ≠ 𝑥𝑥. 

Definition 1.1.15. [64] A Banach space 𝐵𝐵 is said to have the Kadec-Klee property if 

for every sequence {𝑥𝑥𝑛𝑛} in 𝐵𝐵, 𝑥𝑥𝑛𝑛 ⇀ 𝑥𝑥 and ‖𝑥𝑥𝑛𝑛‖ → ‖𝑥𝑥‖together imply 𝑥𝑥𝑛𝑛 → 𝑥𝑥 as 𝑛𝑛 →

∞. 

Definition 1.1.16.[57]Let 𝐵𝐵 be a nonempty bounded closed convex subset of a 

uniformly convex Banach space𝑋𝑋. Then the mapping  𝑇𝑇:𝐵𝐵 → 𝑋𝑋 is called demiclosed 

at 𝑦𝑦 ∈ 𝑋𝑋 if for each sequence {𝑥𝑥𝑛𝑛}in 𝐵𝐵 and each 𝑥𝑥 ∈ 𝑋𝑋, 𝑥𝑥𝑛𝑛 ⇀ 𝑥𝑥, and 𝑇𝑇𝑥𝑥𝑛𝑛 →

𝑦𝑦 implies that𝑥𝑥 ∈ 𝐵𝐵and 𝑇𝑇𝑥𝑥 = 𝑦𝑦.  

Definition 1.1.17.[12] Let 𝐵𝐵 be a nonempty bounded closed convex subset of a 

uniformly convex Banach space𝑋𝑋. Then the mapping  𝑇𝑇:𝐵𝐵 → 𝐵𝐵 is called 

semicompact if any sequence {𝑥𝑥𝑛𝑛}in 𝐵𝐵, such that  lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛‖ = 0, has a 

subsequence converging strongly to some 𝑠𝑠 ∈ 𝐵𝐵. 
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Definition 1.1.18. [15] Let 𝐵𝐵 be a subset of a Norm space𝑋𝑋. Then the mapping 

𝑇𝑇:𝐵𝐵 → 𝐵𝐵 is said to satisfy Condition (I) if there exists a non-decreasing function 

ℎ: [0,∞) → [0,∞) with ℎ(0) = 0, ℎ(𝑟𝑟) > 0 for all 𝑟𝑟 ∈ (0, 1) such that ‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ ≥

ℎ(𝑑𝑑(𝑥𝑥, 𝐹𝐹(𝑇𝑇))) for all x ∈ B, where  𝑑𝑑�𝑥𝑥, 𝐹𝐹(𝑇𝑇)� = 𝑖𝑖𝑛𝑛𝑖𝑖{‖𝑥𝑥 − 𝑠𝑠‖: 𝑠𝑠 ∈ 𝐹𝐹(𝑇𝑇)}. 

 

1.2 Fixed Points 

Definition 1.2.1.[9]Consider a mapping 𝑇𝑇of a set 𝑀𝑀into itself or into some set 

containing  𝑀𝑀. Then the solution of the equation 𝑇𝑇𝑥𝑥 = 𝑥𝑥is called a fixed pointor an 

invariant point(sometimes shortened to fixpoint) of𝑇𝑇 in 𝑀𝑀 for all𝑥𝑥 ∈ 𝑀𝑀. Briefly, the 

point 𝑥𝑥 ∈ 𝑀𝑀is called a fixed point of the mapping MMT →: iff 𝑇𝑇𝑥𝑥 = 𝑥𝑥. 

Geometrically, the intersecting point of the curve 𝑦𝑦 = 𝑇𝑇𝑥𝑥and the straight line 𝑦𝑦 = 𝑥𝑥is 

a fixed point of 𝑇𝑇. 

The set of fixed points of 𝑇𝑇 is denoted by 𝐹𝐹(𝑇𝑇),where 𝐹𝐹(𝑇𝑇) = {𝑥𝑥:𝑇𝑇𝑥𝑥 = 𝑥𝑥}. 

Example 1.2.2. Let the mapping 𝑇𝑇be defined on the real numbers by 𝑇𝑇𝑥𝑥 = 𝑥𝑥2 −

3𝑥𝑥 + 4, then 𝑥𝑥 = 2 is a fixed point of 𝑇𝑇, because  𝑇𝑇2 = 2.Consider 𝑦𝑦 = 𝑇𝑇𝑥𝑥and we 

obtain thefollowing figure: 

 
Figure-1.1: Fixed point of 𝑇𝑇𝑥𝑥 = 𝑥𝑥2 − 3𝑥𝑥 + 4. 
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Not all functions have fixed points; as for example, if 𝑇𝑇 is a function defined 

on the real numbers as 𝑇𝑇𝑥𝑥 = 𝑥𝑥 + 1 then it has no fixed points, since 𝑥𝑥 is never equal 

to 𝑥𝑥 + 1 for any real number. In graphical terms, a fixed point means the point 

(𝑥𝑥,𝑇𝑇𝑥𝑥)is on the line𝑦𝑦 = 𝑥𝑥, or in other words the graph of 𝑇𝑇 has a point in common 

with that line. The example 𝑇𝑇𝑥𝑥 = 𝑥𝑥 + 1 is a case where the graph and the line are a 

pair ofparallel lines. Points which come back to the same value after a finite number 

of iterations of the function are known as periodic points; a fixed point is a periodic 

point with period equal to one. 

Theorem 1.2.3.[9] Let 𝑀𝑀be a metric space. Suppose that 𝑇𝑇 is a continuous mapping 

of 𝑀𝑀 into a compact subset of 𝑀𝑀 and that, for each 𝜀𝜀 > 0, there exists 𝑥𝑥(𝜀𝜀)such that   

𝑑𝑑�𝑇𝑇𝑥𝑥(𝜀𝜀), 𝑥𝑥(𝜀𝜀)� < 𝜀𝜀.      (1.4) 

Then 𝑇𝑇has a fixed point. 

Definition 1.2.4.[9] The points 𝑥𝑥(𝜀𝜀)satisfying (1.4) of Theorem 1.2.3 is called𝜀𝜀-fixed 

points for 𝑇𝑇. 

 

 

 

1.3 Convergence of fixed point[9] 

 A formal definition of convergence can be stated as follows: 

Suppose {𝑠𝑠𝑛𝑛} as 𝑛𝑛goes from 0 to∞is a sequence that converges to 𝑠𝑠, with 𝑠𝑠𝑛𝑛 ≠

0,∀ 𝑛𝑛 ∈ ℕ. If positive constants 𝜆𝜆 and 𝛼𝛼 exist with lim𝑛𝑛→∞
|𝑠𝑠𝑛𝑛+1−𝑠𝑠|

|𝑠𝑠𝑛𝑛−𝑠𝑠| = 𝜆𝜆 then {𝑠𝑠𝑛𝑛}as 

𝑛𝑛goes from 0 to∞  converges to 𝑠𝑠of order 𝛼𝛼, with asymptotic error constant 𝜆𝜆4T. There 

is a nice checklist for checking the convergence of a fixed point 𝑠𝑠 for a function𝑇𝑇𝑥𝑥 =

𝑥𝑥. 

1) First check that, 𝑇𝑇𝑠𝑠 = 𝑠𝑠 

http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Parallel_(geometry)
http://en.wikipedia.org/wiki/Iterated_function
http://en.wikipedia.org/wiki/Periodic_point
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2) Check for linear convergence. Start by finding�𝑇𝑇/(𝑠𝑠)�.  If 

�𝑇𝑇/(𝑠𝑠)� ∈ (0, 1] then we have linear convergence 

�𝑇𝑇/(𝑠𝑠)� > 1 series diverges 

�𝑇𝑇/(𝑠𝑠)� = 0 then we have at least linear convergence and maybe 

something better, we should check for quadratic 

3) If we find that we have something better than linear we should check for 

quadratic convergence. Start by finding�𝑇𝑇//(𝑠𝑠)�. If 

�𝑇𝑇//(𝑠𝑠)� ≠ 0 then we have quadratic convergence provided 

that 𝑇𝑇//(𝑠𝑠)  is continuous 

�𝑇𝑇//(𝑠𝑠)� = 0 then we have something even better than 

quadratic convergence 

�𝑇𝑇//(𝑠𝑠)�does not exist then we have convergence that is better than 

linear but still not quadratic 

 

1.4 Contraction Mappings 

Definition 1.4.1.[9, 54]Let 𝑀𝑀be a metric space. A mapping 𝑇𝑇:𝑀𝑀 → 𝑀𝑀is called a 

contraction mapping if ∃a positive real number 0 ≤ 𝜆𝜆 < 1such that  

𝑑𝑑(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦) ≤ 𝜆𝜆𝑑𝑑(𝑥𝑥,𝑦𝑦),∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑀𝑀,      

where𝑑𝑑(𝑥𝑥,𝑦𝑦)denotes the metric between 𝑥𝑥and 𝑦𝑦. 

If 𝑀𝑀is a normed space, then𝑇𝑇is contraction if   

‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝜆𝜆‖𝑥𝑥 − 𝑦𝑦‖. 

If 𝑇𝑇is linear, this reduces to ‖𝑇𝑇𝑥𝑥‖ ≤ 𝜆𝜆‖𝑥𝑥‖,∀ 𝑥𝑥 ∈ 𝑀𝑀. Thus, a linear operator 𝑇𝑇:𝑀𝑀 →

𝑀𝑀is contraction if its norm satisfies 

‖𝑇𝑇‖ = ‖𝑇𝑇𝑥𝑥‖
‖𝑥𝑥‖𝑥𝑥≠0

𝑠𝑠𝑠𝑠𝑠𝑠
= ‖𝑇𝑇𝑥𝑥‖𝑥𝑥=1

𝑠𝑠𝑠𝑠𝑠𝑠 . 
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Figure-1.2: Contraction Mapping. 

Example 1.4.2. Consider the cosine function on [0, 1]. Graphs of 𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 and 𝑦𝑦 =

𝑥𝑥 show there is one intersecting point in [0, 1], which means cosine function has a 

fixed point in [0, 1]. We will show this point can be obtained through iteration. 

Since cosine is a decreasing function. Therefore, for 0 ≤ 𝑥𝑥 < 1we have 𝑐𝑐𝑐𝑐𝑠𝑠1 ≤

𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 < 1with𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 ≈ 0.54that is 𝑐𝑐𝑐𝑐𝑠𝑠: [0, 1] → [0, 1]. For𝑥𝑥,𝑦𝑦 ∈ [0, 1] the Mean-value 

theorem tells us 

 𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 − 𝑐𝑐𝑐𝑐𝑠𝑠𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑠𝑠/(𝑡𝑡)(𝑥𝑥 − 𝑦𝑦) = (−𝑠𝑠𝑖𝑖𝑛𝑛𝑡𝑡)(𝑥𝑥 − 𝑦𝑦). 

for some𝑡𝑡between𝑥𝑥 and 𝑦𝑦.  Thus |𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 − 𝑐𝑐𝑐𝑐𝑠𝑠𝑦𝑦| = |𝑠𝑠𝑖𝑖𝑛𝑛𝑡𝑡||𝑥𝑥 − 𝑦𝑦|. 

Since 𝑡𝑡 is between𝑥𝑥 and 𝑦𝑦and sine is increasing on this interval (it increases 

from 0 up to𝜋𝜋
2
≈ 1.57 > 1) we have|𝑠𝑠𝑖𝑖𝑛𝑛𝑡𝑡| = 𝑠𝑠𝑖𝑖𝑛𝑛𝑡𝑡 ≤ 𝑠𝑠𝑖𝑖𝑛𝑛1 ≈ 0.8414.  

Therefore, |𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 − 𝑐𝑐𝑐𝑐𝑠𝑠𝑦𝑦| ≤ 0.8414|𝑥𝑥 − 𝑦𝑦|. 

So, cosine is a contraction mapping on [0, 1], which is complete. Hence, there 

is a unique 𝑎𝑎 ∈ [0, 1]such that 𝑐𝑐𝑐𝑐𝑠𝑠𝑎𝑎 = 𝑎𝑎.  

 A beautiful application of contraction mappings to the construction of fractals 

(interpreted as fixed points in a metric space whose points are compact subsets of the 

plane). 

 

1.5 Non-expansive Mappings 
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Definition 1.5.1.[9] Let 𝑀𝑀be a metric space. A mapping 𝑇𝑇:𝑀𝑀 → 𝑀𝑀is called a non-

expansive if   

 𝑑𝑑(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦) ≤ 𝑑𝑑(𝑥𝑥,𝑦𝑦),∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑀𝑀,    

where 𝑑𝑑(𝑥𝑥,𝑦𝑦)denotes the metric between 𝑥𝑥 and 𝑦𝑦. 

If 𝑀𝑀 is a normed space, then 𝑇𝑇 is non-expansive if  

‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ ‖𝑥𝑥 − 𝑦𝑦‖. 

If 𝑇𝑇 is linear, this reduces to 

‖𝑇𝑇𝑥𝑥‖ ≤ ‖𝑥𝑥‖,∀𝑥𝑥 ∈ 𝑀𝑀. 

Thus, a linearoperator 𝑇𝑇:𝑀𝑀 → 𝑀𝑀is non-expansive if its norm satisfies ‖𝑇𝑇‖ ≤ 1. 

The non-expansive mapping 𝑇𝑇:𝑀𝑀 → 𝑀𝑀is called strictly non-expansive if  

 𝑑𝑑(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦) ≤ 𝑑𝑑(𝑥𝑥,𝑦𝑦) ⇒ 𝑥𝑥 = 𝑦𝑦,∀𝑥𝑥,𝑦𝑦 ∈ 𝑀𝑀. 

If𝑀𝑀is a normed space, then the condition for strictly non-expansive reduces to  

‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ ‖𝑥𝑥 − 𝑦𝑦‖iff 𝑥𝑥 ≠ 𝑦𝑦. 

If 𝑇𝑇is linear, this reduces to‖𝑇𝑇𝑥𝑥‖ ≤ ‖𝑥𝑥‖,∀ non zero 𝑥𝑥 ∈ 𝑀𝑀. 

Example 1.5.2. Contraction mapping, isometrics and orthogonal projections all are 

non-expansive mappings. A fixed point of a non-expansive mapping need not be 

unique. 

Definition 1.5.3.[42]Let 𝐶𝐶 be a subset of real normed linear space 𝑋𝑋. A mapping 

𝑇𝑇:𝐶𝐶 → 𝐶𝐶 is said to be asymptotically non-expansive on 𝐶𝐶if there exists a sequence 

{𝑟𝑟𝑛𝑛}in [0,∞) with 𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛→∞ 𝑟𝑟𝑛𝑛 = 0such that for each𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶,  

‖𝑇𝑇𝑛𝑛𝑥𝑥 − 𝑇𝑇𝑛𝑛𝑦𝑦‖ ≤ (1 + 𝑟𝑟𝑛𝑛)‖𝑥𝑥 − 𝑦𝑦‖, ∀ 𝑛𝑛 ≥ 1.    

In this case, 

(i) if 𝑟𝑟𝑛𝑛 ≡ 0, then T is known as a non-expansive mapping.  

(ii) 𝑇𝑇 is called asymptotically non-expansive mapping in the intermediate 

senseif provided  𝑇𝑇 is uniformly continuous and  

lim𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛→∞ (‖𝑇𝑇𝑛𝑛𝑥𝑥 − 𝑇𝑇𝑛𝑛𝑦𝑦‖ − ‖𝑥𝑥 − 𝑦𝑦‖) ≤ 0𝑥𝑥 ,𝑦𝑦∈𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠 .     
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Example 1.5.4.[42] Let 𝑋𝑋 = ℝ,𝐶𝐶 = �−1
𝜋𝜋

, 1
𝜋𝜋
�and |𝑘𝑘| < 1. For each 𝑥𝑥 ∈ 𝐶𝐶, define  

 𝑇𝑇(𝑥𝑥) = �𝑘𝑘𝑥𝑥 𝑠𝑠𝑖𝑖𝑛𝑛 1
𝑥𝑥

𝑖𝑖𝑖𝑖 𝑥𝑥 ≠ 0,
0 𝑖𝑖𝑖𝑖 𝑥𝑥 = 0.

� 

Then 𝑇𝑇is asymptotically non-expansive in the intermediate sense. 

 

1.6 Some well-known fixed point theorems 

Theorem 1.6.1. (Brouwer fixed point theorem)[9] 

The Brouwer fixed point theorem is one of the early achievements of algebraic 

topology and is the basic of the more general fixed point theorems that are important 

in Functional analysis as well as numerical analysis. This theorem is named after 

Dutch Mathematician L. E. J. Brouwer (1910). 

Statement.A continuous mapping of a convex, closed set into itself necessarily has a 

fixed point. 

Examples.  

1. A continuous mapping that maps the set [0, 1] into itself has a fixed 

point. 

2. A continuous mapping that maps a disk into itself has a fixed point. 

3. A continuous mapping that maps a spherical ball into itself has a fixed 

point.    

 
Figure-1.3: Geometrical interpretation of Brouwer fixed point theorem. 

Theorem 1.6.2. (Banach fixed point theorem) [9, 38] 
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Banach fixed point theorem is one of the pivotal results of Mathematical 

analysis. It is widely considered as the source of metric fixed point theory. Also its 

significance lies in its vast applicability in a number of branches of Mathematics.This 

theorem was first stated by Polish mathematician Stefan Banach in 1922. He 

established this theorem as a part of his doctoral thesis. It is also known as 

Contraction mapping theorem. Here we state and prove this celebrated theorem. 

Statement. Let(𝑋𝑋,𝑑𝑑)be non-empty complete metric space and 𝑇𝑇:𝑋𝑋 → 𝑋𝑋  be a 

contraction mapping on 𝑋𝑋, i.e. there is a non-negative real number 0 ≤ 𝜆𝜆 < 1 such 

that  

 𝑑𝑑(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦) ≤ 𝜆𝜆𝑑𝑑(𝑥𝑥,𝑦𝑦),∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋     (1.5) 

Then the mapping 𝑇𝑇 admits one and only one (unique) fixed point in 𝑋𝑋. For any 

𝑥𝑥1 ∈ 𝑋𝑋the sequence of iterates𝑥𝑥1,𝑇𝑇(𝑥𝑥1),𝑇𝑇�𝑇𝑇(𝑥𝑥1)�,⋯converges to the fixed point of𝑇𝑇. 

Theorem 1.6.2 has many advantage to solving nonlinear problems, but it has 

one disadvantage - the contractive condition (1.5) forces to continuous mapping on 𝑋𝑋. 

Definition 1.6.3.[34]In 1968, R. Kannan [34] obtained a fixed point theorem which 

extends the Theorem 1.6.2 to mappings that need not be continuous, by considering 

instead of (1.5) the condition as follows: 

There exists 𝛽𝛽 ∈ �0, 1
2
�such that 

 𝑑𝑑(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦) ≤ 𝛽𝛽[𝑑𝑑(𝑥𝑥,𝑇𝑇𝑥𝑥) + 𝑑𝑑(𝑦𝑦,𝑇𝑇𝑦𝑦)], for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋.   (1.6) 

If a mapping 𝑇𝑇 satisfies (1.6), then it is known as Kannan mapping.  

By applying Kannan’s theorem, a lot of papers were committed to obtaining 

fixed point theorems for various classes of contractive type conditions that do not 

require the continuity of T, see for instance, Rus [16], and references therein. One of 

them is Chatterjea’s fixed point theorem.  
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Definition 1.6.4.[39]Due to Chatterjea’s fixed point theorem [39] we have, there 

exists 𝛾𝛾 ∈ �0, 1
2
� such that 

  𝑑𝑑(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦) ≤ 𝛾𝛾[𝑑𝑑(𝑥𝑥,𝑇𝑇𝑦𝑦) + 𝑑𝑑(𝑦𝑦,𝑇𝑇𝑥𝑥)], for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋.     (1.7) 

The mapping which satisfies (1.7) is known as Chatterjea mapping. 

 

In 1972, T. Zamfirescu [46] combined the above three contractive definitions, 

defined by (1.5), (1.6) and (1.7), and obtained a very interesting result as follows: 

Theorem 1.6.5.[46]Let (𝑋𝑋,𝑑𝑑) be a complete metric space and let 𝑇𝑇:𝑋𝑋 → 𝑋𝑋 be a 

mapping on 𝑋𝑋 for which there exist the real numbers 𝛼𝛼,𝛽𝛽 and 𝛾𝛾 satisfying 𝑎𝑎 ∈ (0, 1),

𝑏𝑏, 𝑐𝑐 ∈ (0, 1
2
)such that for each pair 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, at least one of the following is true: 

(𝑧𝑧1) 𝑑𝑑(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦) ≤ 𝑎𝑎𝑑𝑑(𝑥𝑥, 𝑦𝑦), 

 (𝑧𝑧2) 𝑑𝑑(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦) ≤ 𝑏𝑏[𝑑𝑑(𝑥𝑥,𝑇𝑇𝑥𝑥) + 𝑑𝑑(𝑦𝑦,𝑇𝑇𝑦𝑦)], 

 (𝑧𝑧3) 𝑑𝑑(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦) ≤ 𝑐𝑐[𝑑𝑑(𝑥𝑥,𝑇𝑇𝑦𝑦) + 𝑑𝑑(𝑦𝑦,𝑇𝑇𝑥𝑥)]. 

Then the mapping  𝑇𝑇 hasa unique fixed point 𝑠𝑠 ∈ 𝑋𝑋 and the Picard iteration scheme 

{𝑥𝑥𝑛𝑛}defined by  

 𝑥𝑥𝑛𝑛+1 = 𝑇𝑇𝑥𝑥𝑛𝑛 , 𝑛𝑛 ∈ ℕ         

converges to 𝑠𝑠, for any 𝑥𝑥1 ∈ 𝑋𝑋. 

Definition 1.6.7. [46] An operator 𝑇𝑇 which satisfies the contractive 

conditions(𝑧𝑧1), (𝑧𝑧2), and(𝑧𝑧3) of Theorem 1.6.3 is said to be a Zamfirescu operator. 

 

1.7Rate of Convergence 

In numerical analysis, the speed at which a convergentsequence approaches its 

limit is called the rate of convergence. Although strictly speaking, a limit does not 

give information about any finite first part of the sequence, this concept is of practical 

importance if we deal with a sequence of successive approximations for an iterative 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Convergence
http://en.wikipedia.org/wiki/Convergence
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Iterative_method
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method, as then typically fewer iterations are needed to yield a useful approximation 

if the rate of convergence is higher. This may even make the difference between 

needing ten or a million iterations. 

Definition 1.7.1.[49] Suppose that the sequence{𝑥𝑥𝑛𝑛} converges to the number𝜉𝜉. We 

say that this sequence converges linearly to 𝜉𝜉, if there exists a number 𝜇𝜇 ∈ (0, 1)such 

that 

 lim𝑘𝑘→∞
|𝑥𝑥𝑘𝑘+1−𝜉𝜉 |

|𝑥𝑥𝑘𝑘−𝜉𝜉 | = 𝜇𝜇.        (1.8) 

The number 𝜇𝜇 is called the rate of convergence. If the above holds with𝜇𝜇 = 0, then 

the sequence is said to converge super linearly. One says that the sequence converges 

sub linearly if it converges, but 𝜇𝜇 = 1. 

The next definition is used to distinguish super linear rates of convergence.  

Definition 1.7.2.[49]We say that the sequence converges with order 𝑞𝑞 for 𝑞𝑞 > 1  to 𝜉𝜉 

if  

 lim𝑘𝑘→∞
|𝑥𝑥𝑘𝑘+1−𝜉𝜉 |

|𝑥𝑥𝑘𝑘−𝜉𝜉 | = 𝜇𝜇with𝜇𝜇 > 0.      (1.9) 

In particular, convergence with order 2 is called quadratic convergence, and 

convergence with order 3 is called cubic convergence.  

This is sometimes called Q-linear convergence, Q-quadratic convergence, etc., 

to distinguish it from the definition below. The Q stands for "quotient," because the 

definition uses the quotient between two successive terms.  

Definition 1.7.3.[49] The drawback of the above definitions is that these do not catch 

some sequences which still converge reasonably fast, but whose “speed” is variable, 

such as the sequence {𝑏𝑏𝑘𝑘}below. Therefore, the definition of rate of convergence is 

sometimes extended as follows. 

Under the definition 1.7.1, the sequence {𝑥𝑥𝑘𝑘}converges with at least order 𝑞𝑞if 

there exists a sequence {𝜀𝜀𝑘𝑘}such that|𝑥𝑥𝑛𝑛 − 𝜉𝜉| ≤ 𝜀𝜀𝑘𝑘 ,∀𝑘𝑘, and the sequence 
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{𝜀𝜀𝑘𝑘}converges to zero with order𝑞𝑞 according to the above "simple" definition. To 

distinguish it from that definition, this is sometimes called R-linear convergence, R-

quadratic convergence, etc. (with the R standing for “root”). 

Example 1.7.4.Consider the following sequences: 
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The sequence {𝑎𝑎𝑘𝑘}converges linearly to 0 with rate1
2
. The sequence {𝑏𝑏𝑘𝑘}also 

converges linearly to 0 with rate 1
2
 under the extended definition, but not under the 

simple definition. The sequence {𝑐𝑐𝑘𝑘}converges super linearly. In fact, it is 

quadratically convergent. Finally, the sequence{𝑑𝑑𝑘𝑘}converges sub-linearly. 

1.8𝑇𝑇-Stability 

Definition 1.8.1. [1, 28] Let 𝐵𝐵be a Banach space, 𝑇𝑇 be a self-map on 𝐵𝐵, and assume 

that 𝑥𝑥𝑛𝑛+1 = 𝑖𝑖(𝑇𝑇, 𝑥𝑥𝑛𝑛)defines some iteration schemes involving 𝑇𝑇. For 

example,𝑖𝑖(𝑇𝑇, 𝑥𝑥𝑛𝑛) = 𝑇𝑇(𝑥𝑥𝑛𝑛). Suppose that 𝐹𝐹(𝑇𝑇), the fixed point set of 𝑇𝑇, is nonempty 

and that the sequence {𝑥𝑥𝑛𝑛}converges to a fixed point 𝑠𝑠of 𝑇𝑇 Let {𝑦𝑦𝑛𝑛} be an arbitrary 

sequence in 𝐵𝐵 and define  

 𝜀𝜀𝑛𝑛 = ‖𝑦𝑦𝑛𝑛+1 − 𝑖𝑖(𝑇𝑇,𝑦𝑦𝑛𝑛)‖        (1.10) 

for 𝑛𝑛 = 0, 1, 2,⋯. If lim𝑛𝑛→∞ 𝜀𝜀𝑛𝑛 = 0  implies thatlim𝑛𝑛→∞ 𝑦𝑦𝑛𝑛 = 𝑠𝑠, then the iteration 

process 𝑥𝑥𝑛𝑛+1 = 𝑖𝑖(𝑇𝑇, 𝑥𝑥𝑛𝑛)is said to be 𝑇𝑇- stable. 
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Examples 1.8.2. Picard iterativeprocedures, Mann iterative procedure, Ishikawa 

iterative procedure, Noor Iterative procedure all are𝑇𝑇- stable. 



  

CHAPTER-1 

MATHEMATICAL PRELIMINARIES AND 

SOME FUNDAMENTAL RESULTS  
 

The main aim of this Chapter is to state some basic definitions and some 

fundamental results of fixed point theory to keep this thesis in sequence and for the 

convenience of references. For the conciseness, all of the theorems are stated without 

proof. 

 

1.1 Some basic definitions  

Definition 1.1.1.[55]A vector space or linear spaceis a set𝑋𝑋 together with two 

operations, addition and scalar multiplication such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋and all 𝛼𝛼 ∈

ℝ(set of real numbers) both 𝑥𝑥 + 𝑦𝑦  and 𝛼𝛼𝑥𝑥 are in 𝑋𝑋, and for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋and all 

𝛼𝛼,𝛽𝛽 ∈ ℝthe following properties are satisfied:  

(i) 𝑥𝑥 + 𝑦𝑦 = 𝑦𝑦 + 𝑥𝑥;   

(ii) (𝑥𝑥 + 𝑦𝑦) + 𝑧𝑧 = 𝑥𝑥 + (𝑦𝑦 + 𝑧𝑧); 

(iii) (𝛼𝛼 + 𝛽𝛽)𝑥𝑥 = 𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑥𝑥;   

(iv) 𝛼𝛼(𝑥𝑥 + 𝑦𝑦) = 𝛼𝛼𝑥𝑥 + 𝛼𝛼𝑦𝑦; 

(v) 𝛼𝛼(𝛽𝛽𝑥𝑥) = (𝛼𝛼𝛽𝛽)𝑥𝑥; 

(vi)  there exists a 0 ∈ 𝑋𝑋such that for all 𝑥𝑥/ ∈ 𝑋𝑋, 0 + 𝑥𝑥/ = 𝑥𝑥/; 

(vii)  there exists a −𝑥𝑥 ∈ 𝑋𝑋such that for all 𝑥𝑥 ∈ 𝑋𝑋, 𝑥𝑥 + (−𝑥𝑥) = 0; 

(viii) there exists a 1 ∈ ℝsuch that for all 𝑥𝑥 ∈ 𝑋𝑋, 1 ∙ 𝑥𝑥 = 𝑥𝑥. 

Definition 1.1.2. [54] Let  𝑋𝑋 be a nonempty set. The mapping 𝑑𝑑:𝑋𝑋 × 𝑋𝑋 → ℝis said to 

be a metric on 𝑋𝑋 if it satisfies the following conditions: 
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CHAPTER-2 

SOME FIXED POINT ITERATIVE PROCEDURES 
 

A fundamental principle in mathematical sciences is iterative procedure. As 

the name suggests, a process which is repeated until an answer is achieved is 

called iterative procedure. Iterative procedure is used to find roots of equation, 

solution of linear and nonlinear system of equations and solution of differential 

equations. All the numerical iterative procedure is formulated to compare with any 

one of the fixed point iterative procedure and to establish the fixed point iterative 

procedure, different types of fixed point theorems are used as very important tools. 

So, we can say that numerical iterative proceduresare the achievement of fixed 

point theory. In this chapter, we will recall some fixed point iterative procedures 

and their convergence theorems and finally introduce our new iterative procedure. 

 

2.1 Picard iterative procedure 

Definition 2.1.1.[48]Let𝑇𝑇:𝑋𝑋 → 𝑋𝑋 be a given operator and 𝑋𝑋be a metric space or 

normed linear space or Banach space. Then the sequence{𝑥𝑥𝑛𝑛} defined by 

 𝑥𝑥𝑛𝑛+1 = 𝑇𝑇𝑥𝑥𝑛𝑛 ,    (2.1)    

for all𝑛𝑛 ∈ ℕ and𝑥𝑥1 ∈ 𝑋𝑋 is called Picard iterative Procedure. 

 The following results are established by V. Berinde [49] and T. Zamfirescu 

[46], about the convergence of Picard iterative procedure. 

Theorem 2.1.2 [49]Let𝑝𝑝 = 𝜉𝜉be a root of the equation 𝑓𝑓(𝑝𝑝) = 0and let 𝐼𝐼 be an 

interval containing the point 𝑝𝑝 = 𝜉𝜉. Let 𝑇𝑇(𝑝𝑝)and 𝑇𝑇/(𝑝𝑝) be continuous in 𝐼𝐼 where 

𝑇𝑇(𝑝𝑝)is defined by the equation 𝑇𝑇(𝑝𝑝) = 𝑝𝑝which is equivalent to 𝑓𝑓(𝑝𝑝) = 0. Let 

𝑝𝑝 = 𝜉𝜉be a fixed point of𝑇𝑇. Then if �𝑇𝑇/(𝑝𝑝)� < 1  for all 𝑝𝑝 ∈ 𝐼𝐼, the sequence of 
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approximation {𝑥𝑥𝑛𝑛} defined by the Picard iterative procedure(2.1) converges to 

the root 𝑝𝑝 = 𝜉𝜉(fixed point of 𝑇𝑇), provided that the initial approximation 𝑝𝑝0is 

chosen in 𝐼𝐼.        

Theorem 2.1.3[46]Let𝑋𝑋 be a Banach space and 𝑇𝑇:𝑋𝑋 → 𝑋𝑋 be a Zamfirescu 

operators. Then 𝑇𝑇have a unique fixed point 𝑝𝑝and the Picard iterative 

procedure{𝑥𝑥𝑛𝑛} defined by (2.1) converge to 𝑝𝑝 for any 𝑝𝑝1 ∈ 𝑋𝑋. 

 

2.2Kranoselskii’s iterative Procedure 

Definition 2.2.1.[23]Let 𝑇𝑇:𝑋𝑋 → 𝑋𝑋be a given operator and 𝑋𝑋be a metric space or 

normed linear space or Banach space. Then the sequence {𝑥𝑥𝑛𝑛} defined by   

𝑥𝑥𝑛𝑛+1 = (1 − 𝛿𝛿)𝑥𝑥𝑛𝑛 + 𝛿𝛿𝑇𝑇𝑥𝑥𝑛𝑛 ,(2.2) 

for all𝑛𝑛 ∈ ℕ and𝑥𝑥1 ∈ 𝑋𝑋 and 𝛿𝛿 ∈ (0,1)is called Kranoselskii’s iterative 

procedure. 

 Here we state and prove a convergence theorem of Kranoselskii’s iterative 

procedure (2.2)for Zamfirescu operator. 

Theorem 2.2.2.Let 𝐸𝐸be an arbitrary Banach space, 𝑋𝑋be a closed convex subset of 

𝐸𝐸, and 𝑇𝑇:𝑋𝑋 → 𝑋𝑋an Zamfirescu operator. Let {𝑥𝑥𝑛𝑛} be Kranoselskii’s iterative 

procedure (2.2) and𝑥𝑥1 ∈ 𝑋𝑋with 𝛿𝛿 ∈ (0,1). Then{𝑥𝑥𝑛𝑛}converges strongly to the fixed 

point of 𝑇𝑇. 

Proof.By theorem 2.1.3, we know that 𝑇𝑇 has a unique fixed point in X, say 𝑢𝑢. 

Consider 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋. Since 𝑇𝑇 is a Zamfirescu operator, therefore at least one of the 

conditions(𝑧𝑧1),(𝑧𝑧2)and (𝑧𝑧3) is satisfied by 𝑇𝑇. 

If (𝑧𝑧2) holds, then  

‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝑏𝑏[‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ + ‖𝑦𝑦 − 𝑇𝑇𝑦𝑦‖] 

  ≤ 𝑏𝑏�‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ + [‖𝑦𝑦 − 𝑥𝑥‖ + ‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ + ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖]� 

 ⇒ ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝑏𝑏
(1−𝑏𝑏)

‖𝑥𝑥 − 𝑦𝑦‖ + 2 𝑏𝑏
(1−𝑏𝑏)

‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖.   (2.3) 
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If  (𝑧𝑧3) holds, then similarly we obtain 

 ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝑐𝑐
(1−𝑐𝑐)

‖𝑥𝑥 − 𝑦𝑦‖ + 2 𝑐𝑐
(1−𝑐𝑐)

‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖             (2.4) 

Let us denote 

 𝜇𝜇 = 𝑚𝑚𝑚𝑚𝑥𝑥 �𝑚𝑚, 𝑏𝑏
(1−𝑏𝑏)

, 𝑐𝑐
(1−𝑐𝑐)

�        (2.5) 

Then we have, 0 ≤ 𝜇𝜇 < 1  and in view of(𝑧𝑧1), (2.20) and (2.21) we get the 

following inequality  

 ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝜇𝜇‖𝑥𝑥 − 𝑦𝑦‖ + 2𝜇𝜇‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖holds ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝐵𝐵. (2.6) 

Now let {𝑥𝑥𝑛𝑛}𝑛𝑛=0
∞ be the Kranoselskii’s iterativeproceduredefined by (2.2) and𝑥𝑥0 ∈

𝑋𝑋 arbitrary. Then 

‖𝑥𝑥𝑛𝑛+1 − 𝑢𝑢‖ = ‖(1 − 𝛿𝛿)𝑥𝑥𝑛𝑛 + 𝛿𝛿𝑇𝑇𝑥𝑥𝑛𝑛 − (1 − 𝛿𝛿 + 𝛿𝛿)𝑢𝑢‖ 

   ≤ (1 − 𝛿𝛿)‖𝑥𝑥𝑛𝑛 − 𝑢𝑢‖ + 𝛿𝛿‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑢𝑢‖     (2.7) 

Take, 𝑥𝑥 = 𝑢𝑢and 𝑦𝑦 = 𝑥𝑥𝑛𝑛 nxy = in (2.6), we obtain 

 ‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑢𝑢‖ ≤ 𝜇𝜇‖𝑥𝑥𝑛𝑛 − 𝑢𝑢‖,where 𝜇𝜇is given by (2.5).   (2.8) 

Now, combining (2.7) and (2.8), we get 

 ‖𝑥𝑥𝑛𝑛+1 − 𝑢𝑢‖ ≤ (1 − 𝛿𝛿)‖𝑥𝑥𝑛𝑛 − 𝑢𝑢‖ + 𝛿𝛿𝜇𝜇‖𝑥𝑥𝑛𝑛 − 𝑢𝑢‖ 

   = (1 − 𝛿𝛿 + 𝛿𝛿𝜇𝜇)‖𝑥𝑥𝑛𝑛 − 𝑢𝑢‖ 

  = (1 − (1 − 𝜇𝜇)𝛿𝛿)‖𝑥𝑥𝑛𝑛 − 𝑢𝑢‖, 𝑛𝑛 ∈ ℕ.   (2.9) 

Inductively we obtain,   

 ‖𝑥𝑥𝑛𝑛+1 − 𝑢𝑢‖ ≤ ∏ (1 − (1 − 𝜇𝜇)𝛿𝛿)𝑘𝑘‖𝑥𝑥1 − 𝑢𝑢‖𝑛𝑛
𝑘𝑘=0 ,𝑛𝑛 ∈ ℕ.  (2.10) 

As 𝜇𝜇 < 1  and 𝛿𝛿 ∈ (0, 1), hence we obtain 

 lim𝑛𝑛→∞ ∏ (1 − (1 − 𝜇𝜇)𝛿𝛿)𝑘𝑘‖𝑥𝑥1 − 𝑢𝑢‖𝑛𝑛
𝑘𝑘=0 = 0. 

This by (2.10) implies that,  

 lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛+1 − 𝑢𝑢‖ = 0, 

This implies that {𝑥𝑥𝑛𝑛} is converges strongly to 𝑢𝑢. 

This completes the theorem. ∎          
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2.3 Mann iterative procedure 

The Mann iterative procedure known as one-step iterative procedure 

invented in 1953, was used to prove the convergence of the sequence to a fixed 

point of many valued mapping for which the Banach fixed point theorem 

1.6.2failed.  

Definition 2.3.1 [53]Let𝐵𝐵 be a nonempty closed convex subset of a norm space or 

Banach space𝑋𝑋 and 𝑇𝑇 be a mapping on  𝐵𝐵. TheManniterativeprocedure is defined 

as follows. 

For any arbitrary 𝑥𝑥1 ∈ 𝐵𝐵, the iterative sequence {𝑥𝑥𝑛𝑛} constructed by  

 𝑥𝑥𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛 ;   ∀ 𝑛𝑛 ∈ ℕ,              (2.11) 

where the sequence  {𝛼𝛼𝑛𝑛} ⊂ (0, 1) is convergent, such that lim𝑛𝑛→∞ 𝛼𝛼𝑛𝑛 = 0 and 

∑ 𝛼𝛼𝑛𝑛 = ∞∞
𝑛𝑛=1 . 

 

The following results are obtained by M. Zulfikar AliandMd. 

Asaduzzaman[32] about the convergence of Mann iterative procedure (2.11). 

Theorem 2.3.2.[32]Let 𝐵𝐵 be a nonempty bounded closed convex subset of a 

Banach space 𝑋𝑋and 𝑇𝑇 be a map on  𝐵𝐵satisfying the contractive definition 

 ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝑘𝑘 𝑚𝑚𝑚𝑚𝑥𝑥 �
𝑐𝑐‖𝑥𝑥 − 𝑦𝑦‖,

(‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ + ‖𝑦𝑦 − 𝑇𝑇𝑦𝑦‖),
(‖𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ + ‖𝑦𝑦 − 𝑇𝑇𝑥𝑥‖)

�     (2.12)                    

for all 𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆, where 𝑐𝑐 ≥ 0, 0 ≤ 𝑘𝑘 < 1.  Let {𝑥𝑥𝑛𝑛} be a sequence in 𝐵𝐵defined by 

Mann iterative procedure (2.11). Now, if {𝑥𝑥𝑛𝑛}converges, then it converges to a 

fixed point of𝑇𝑇. 

Theorem 2.3.3.[32]Let 𝐵𝐵  be a nonempty closed convex subset of a uniformly 

convex Banach space 𝑋𝑋. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵satisfying the contractive definition (2.12) 

and such that 𝑇𝑇(𝐵𝐵) is relatively compact. If  𝐹𝐹(𝑇𝑇) the fixed point set of  𝑇𝑇 is 
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nonempty, then Mann iterative procedure defined by(2.11)converges to a fixed 

point of𝑇𝑇. 

 

The following results are obtained by B.E. Rhoades [5] and VasileBerinde 

[46] about the convergence of Mann iterative procedure (2.11). 

Theorem 2.3.4.[5]Let𝑋𝑋 be a uniformly convex Banach space, 𝐾𝐾a closed convex 

subset of 𝑋𝑋and 𝑇𝑇:𝐾𝐾 → 𝐾𝐾be a Zamfirescu operator. Let{𝑥𝑥𝑛𝑛}be Mann iterative 

proceduredefined by (2.11) and 𝑥𝑥1 ∈ 𝐾𝐾with {𝛼𝛼𝑛𝑛}satisfying  

 (a)𝛼𝛼0 = 1;(b) 0 < 𝛼𝛼𝑛𝑛 < 1 for 𝑛𝑛 ≥ 1; (c)∑ 𝛼𝛼𝑛𝑛(1 − 𝛼𝛼𝑛𝑛) = ∞∞
𝑛𝑛=1 . 

Then{𝑥𝑥𝑛𝑛} converges strongly to the fixed point of  𝑇𝑇.     

Theorem 2.3.5.[50]Let 𝑋𝑋be an arbitrary Banach space, 𝐾𝐾 a closed convex subset 

of 𝑋𝑋, and 𝑇𝑇:𝐾𝐾 → 𝐾𝐾be a Zamfirescu operator.  Let {𝑥𝑥𝑛𝑛} be Mann iterative 

procedure defined by (2.11) and 𝑥𝑥1 ∈ 𝐾𝐾, with {𝛼𝛼𝑛𝑛} ⊂ [0, 1]satisfying∑ 𝛼𝛼𝑛𝑛 =∞
𝑛𝑛=1

∞. Then {𝑥𝑥𝑛𝑛} converges strongly to the fixed point of 𝑇𝑇.     

2.4Ishikawaiterative procedure 

In 1974 Ishikawa devised the two-step iterative procedure to establish the 

convergence of Lipschitzianpscudocontractive map where the Mann iterative 

procedure failed to converge.  

Definition 2.4.1 [40] Let𝐵𝐵 be a nonempty closed convex subset of a norm space 𝑋𝑋 

and 𝑇𝑇 be a mapping on  𝐵𝐵.TheIshikawaiterative procedureis defined as follows.  

For any arbitrary 𝑥𝑥1 ∈ 𝐵𝐵, the iterative sequence {𝑥𝑥𝑛𝑛} constructed by  

 � 𝑥𝑥𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛 ,
𝑦𝑦𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛 ;     ∀ 𝑛𝑛 ∈ ℕ,�              (2.13) 

where the sequences{𝛼𝛼𝑛𝑛} ⊂ (0, 1) and {𝛽𝛽𝑛𝑛} ⊂ (0, 1) are convergent, such that 

lim𝑛𝑛→∞ 𝛼𝛼𝑛𝑛 = 0, lim𝑛𝑛→∞ 𝛽𝛽𝑛𝑛 = 0 and ∑ 𝛼𝛼𝑛𝑛 = ∞∞
𝑛𝑛=1 . 

Here, we state some convergence theorems of Ishikawa iterative procedure, 

which are given by B.E. Rhoades [5] and VasileBerinde [51]. 



CHAPTER-2 SOME FIXED POINT ITERATIVE PROCEDURES 

 
21 

Theorem 2.4.2.[5]Let 𝑋𝑋be a uniformly convex Banach space, 𝐾𝐾be a closed convex 

subset of 𝑋𝑋 and 𝑇𝑇:𝐾𝐾 → 𝐾𝐾be a Zamfirescu operator. Let {𝑥𝑥𝑛𝑛}be Ishikawa iterative 

procedure defined by (2.13) and 𝑥𝑥1 ∈ 𝐾𝐾 with {𝛼𝛼𝑛𝑛}and {𝛽𝛽𝑛𝑛}are sequences of 

numbers in(0, 1)satisfying∑ 𝛼𝛼𝑛𝑛(1 − 𝛼𝛼𝑛𝑛) = ∞∞
𝑛𝑛=1 . Then {𝑥𝑥𝑛𝑛} converges strongly to 

the fixed point of  𝑇𝑇. 

Theorem 2.4.3 [51]Let 𝑋𝑋 be an arbitrary Banach space, 𝐾𝐾 a closed convex subset 

of 𝑋𝑋, and 𝑇𝑇:𝐾𝐾 → 𝐾𝐾be aZamfirescu operator. Let {𝑥𝑥𝑛𝑛} be the Ishikawa iterative 

procedure defined by (2.13) and𝑥𝑥1 ∈ 𝐾𝐾 with {𝛼𝛼𝑛𝑛}and {𝛽𝛽𝑛𝑛}are sequences of 

positive numbers satisfying∑ 𝛼𝛼𝑛𝑛 = ∞∞
𝑛𝑛=1 . Then {𝑥𝑥𝑛𝑛} converges strongly to the 

fixed point of 𝑇𝑇.   

 

2.5Nooriterative procedure 

In 2000, M. A. Noor [24] introduced and analyzed the three-step iterative 

procedure to study the approximate solutions of variational inclusions 

(inequalities) in Hilbert spaces by using the techniques of updating the solution and 

the auxiliary principle.  

Definition 2.5.1 [24]Let𝐵𝐵 be a nonempty closed convex subset of a norm space or 

Banach space𝑋𝑋 and 𝑇𝑇 be a mapping on  𝐵𝐵.The Nooriterative procedure is defined 

as follows. 

For any arbitrary 𝑥𝑥1 ∈ 𝐵𝐵, the iterative sequence {𝑥𝑥𝑛𝑛} constructed by  

 �
𝑥𝑥𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛 ,
𝑦𝑦𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑧𝑧𝑛𝑛 ,

𝑧𝑧𝑛𝑛 = (1 − 𝛾𝛾𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛 ;  ∀ 𝑛𝑛 ∈ ℕ,
�               (2.14) 

where the sequences {𝛼𝛼𝑛𝑛} ⊂ (0, 1), {𝛽𝛽𝑛𝑛} ⊂ (0, 1)and {𝛾𝛾𝑛𝑛} ⊂ (0, 1) are convergent, 

such that lim𝑛𝑛→∞ 𝛼𝛼𝑛𝑛 = 0, lim𝑛𝑛→∞ 𝛽𝛽𝑛𝑛 = 0, lim𝑛𝑛→∞ 𝛾𝛾𝑛𝑛 = 0 and ∑ 𝛼𝛼𝑛𝑛 = ∞∞
𝑛𝑛=1 . 
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The following result is obtained by M. Asauzzaman and M. Zulfikar Ali[33], 

about the convergence of Noor iterative procedure (2.14). 

Theorem 2.5.2. [33]Let 𝑋𝑋 be an arbitrary Banach space, 𝐵𝐵 be a nonempty closed 

convex subset of𝑋𝑋 and𝑇𝑇:𝐵𝐵 → 𝐵𝐵 be aZamfirescuoperator. Let𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇)be a fixed 

point of 𝑇𝑇, where𝐹𝐹(𝑇𝑇)denotes the set of fixed points of 𝑇𝑇. Let {𝑥𝑥𝑛𝑛}be the Noor 

iterative procedure defined by(2.14)and 𝑥𝑥1 ∈ 𝐵𝐵. Then the sequence{𝑥𝑥𝑛𝑛}converges 

strongly to the fixed point 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇).  

 

2.6 Agarwalet al. iterative procedure 

In 2007, Agarwalet al. [37] introduced the following two-step iterative 

procedure. They proved that the rate of convergence of this iterative procedure is 

same as that of the Picard iterative procedure (2.1) and faster than the Mann 

iterative procedure (2.11) for contraction mapping. 

Definition 2.6.1.[37]Let 𝐵𝐵 be a nonempty closed convex subset of a norm space or 

Banach space𝑋𝑋 and 𝑇𝑇 be a mapping on  𝐵𝐵.The Agarwalet al. iterative procedure 

is defined as follows. 

For any arbitrary 𝑥𝑥1 ∈ 𝐵𝐵, the iterative sequence {𝑥𝑥𝑛𝑛} constructed by 

 � 𝑥𝑥𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑥𝑥𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛 ,
𝑦𝑦𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛 ;    𝑛𝑛 ∈ ℕ,�               (2.15) 

where the sequences{𝛼𝛼𝑛𝑛} ⊂ (0, 1) and {𝛽𝛽𝑛𝑛} ⊂ (0, 1) are convergent, such that 

lim𝑛𝑛→∞ 𝛼𝛼𝑛𝑛 = 0, lim𝑛𝑛→∞ 𝛽𝛽𝑛𝑛 = 0 and ∑ 𝛼𝛼𝑛𝑛 = ∞∞
𝑛𝑛=1 .  

 

 

2.7 Abbas et al. iterative procedure 

In 2014, Abbas et al. [27]introduced a three-step iterative procedure and 

showed that the rate of convergence of their iterative procedure is faster than that 

of Agarwalet al. iterative procedure (2.15).  
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Definition 2.7.1.[27]Let 𝐵𝐵 be a nonempty closed convex subset of a norm space or 

Banach space𝑋𝑋 and 𝑇𝑇 be a mapping on  𝐵𝐵.The Abbas et al.iterative procedureis 

defined as follows.  

For any arbitrary𝑥𝑥1 ∈ 𝐵𝐵, the iterative sequence {𝑥𝑥𝑛𝑛} constructed by 

 �
𝑥𝑥𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑦𝑦𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑧𝑧𝑛𝑛 ,
𝑦𝑦𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑥𝑥𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑧𝑧𝑛𝑛 ,

𝑧𝑧𝑛𝑛 = (1 − 𝛾𝛾𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛 ;  ∀ 𝑛𝑛 ∈ ℕ,
�              (2.16) 

where the sequences{𝛼𝛼𝑛𝑛} ⊂ (0, 1), {𝛽𝛽𝑛𝑛} ⊂ (0, 1) and {𝛾𝛾𝑛𝑛} ⊂ (0, 1) are convergent, 

such that lim𝑛𝑛→∞ 𝛼𝛼𝑛𝑛 = 0, lim𝑛𝑛→∞ 𝛽𝛽𝑛𝑛 = 0, lim𝑛𝑛→∞ 𝛾𝛾𝑛𝑛 = 0 and ∑ 𝛼𝛼𝑛𝑛 = ∞∞
𝑛𝑛=1 . 

 

The following result is established by Abbas et al.[23], about the rate of 

convergence of Abbas et al. iterative procedure (2.16). 

Theorem 2.7.2. [27]Let 𝐶𝐶 be a nonempty closed convex subset of a uniformly 

Banach space 𝐸𝐸. Let 𝑇𝑇 be a contraction with a contractionfactor𝑘𝑘 ∈ (0, 1)andfixed 

point 𝑞𝑞. Let{𝑢𝑢𝑛𝑛} be defined by the iterative procedure (2.15) and {𝑥𝑥𝑛𝑛} by (2.16), 

where{𝛼𝛼𝑛𝑛},{𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛}are in [𝜀𝜀, 1 − 𝜀𝜀] for all  𝑛𝑛 ∈ ℕ and for some 𝜀𝜀 in (0,1). Then 

{𝑥𝑥𝑛𝑛} converges faster than {𝑢𝑢𝑛𝑛}. 

 

The following results are established by Abbas et al.[27], about the weak 

and strong convergence of Abbas et al. iterative procedure (2.16). 

Theorem 2.7.3. [27]Let 𝐶𝐶 be a nonempty closed convex subset of a uniformly 

Banach space 𝐸𝐸. Let 𝑇𝑇 be a non-expansive self-mapping of𝐶𝐶. Let{𝑥𝑥𝑛𝑛}defined by the 

iterative procedure (2.16), where{𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛}are in [𝜀𝜀, 1 − 𝜀𝜀] for all  𝑛𝑛 ∈ ℕ and 

for some 𝜀𝜀 𝑖𝑖𝑛𝑛 (0,1). If 𝐹𝐹(𝑇𝑇) ≠ ∅,then lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛‖ = 0. 

Theorem 2.7.4. [27]Let  𝐸𝐸 be a uniformly Banach space andlet 𝐶𝐶,𝑇𝑇and {𝑥𝑥𝑛𝑛}be 

taken as in Theorem 2.7.3. Assume that (a) 𝐸𝐸 satisfies Opial’s condition or (b) 𝐸𝐸 
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has a 𝐹𝐹𝐹𝐹𝑒𝑒𝑐𝑐ℎ𝑒𝑒𝑒𝑒́  differentiable norm. If 𝐹𝐹(𝑇𝑇) ≠ ∅,then {𝑥𝑥𝑛𝑛} converges weakly to a 

fixed point of  𝑇𝑇. 

Theorem 2.7.5. [27]Let  𝐸𝐸 be a uniformly Banach space andlet 𝐶𝐶,𝑇𝑇,𝐹𝐹(𝑇𝑇) and  

{𝑥𝑥𝑛𝑛}be taken as in Theorem 2.7.3. Then the sequence {𝑥𝑥𝑛𝑛} converges to a point of 

𝐹𝐹(𝑇𝑇) if and only if liminf 𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = 0where  𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� =

inf{‖𝑥𝑥 − 𝑝𝑝‖:𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇)}. 

Theorem 2.7.6. [27]Let  𝐸𝐸 be a real uniformly convex Banach space 

andlet 𝐶𝐶,𝑇𝑇,𝐹𝐹(𝑇𝑇),{𝑥𝑥𝑛𝑛}be taken as in Theorem 2.7.3. Let 𝑇𝑇satisfy Condition (I), then 

{𝑥𝑥𝑛𝑛} converges strongly to a fixed point of 𝑇𝑇. 

 

2.8Thakur et al. iterative procedure 

Recently, Thakur et al. [10] introduced another three-step iterative procedure 

and showed that the rate of convergence of their iterative procedure is faster than 

all the above mentioned iterative procedure defined by (2.1),(2.11) and (2.13) to 

(2.16) for contraction mapping.  

Definition 2.8.1. [12] Let 𝐵𝐵 be a nonempty closed convex subset of a norm space 

or Banach space𝑋𝑋 and 𝑇𝑇 be a mapping on  𝐵𝐵.The Thakur et al. iterative 

procedure is defined as follows.  

For any arbitrary𝑥𝑥1 ∈ 𝐵𝐵, the iterative sequence {𝑥𝑥𝑛𝑛} constructed by, 

 �
𝑥𝑥𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑥𝑥𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛 ,
𝑦𝑦𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑧𝑧𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑧𝑧𝑛𝑛 ,

𝑧𝑧𝑛𝑛 = (1 − 𝛾𝛾𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛 ;  ∀ 𝑛𝑛 ∈ ℕ,
�              (2.17) 

where the sequences{𝛼𝛼𝑛𝑛} ⊂ (0, 1), {𝛽𝛽𝑛𝑛} ⊂ (0, 1) and {𝛾𝛾𝑛𝑛} ⊂ (0, 1) are convergent, 

such that lim𝑛𝑛→∞ 𝛼𝛼𝑛𝑛 = 0, lim𝑛𝑛→∞ 𝛽𝛽𝑛𝑛 = 0 , lim𝑛𝑛→∞ 𝛾𝛾𝑛𝑛 = 0 and ∑ 𝛼𝛼𝑛𝑛 = ∞∞
𝑛𝑛=1 . 

  

The following result is given by Thakur et al. [12], about the rate of 

convergence of Thakur et al. iterative procedure. 
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Theorem 2.8.2. [12]Let 𝐶𝐶 be a nonempty closed convex subset of a norm space 𝐸𝐸. 

Let 𝑇𝑇 be a contraction with a contraction constant 𝑘𝑘 ∈ (0, 1) and the fixed point 𝑝𝑝. 

Let{𝑢𝑢𝑛𝑛} be defined by the iterative procedure (2.16) and {𝑥𝑥𝑛𝑛} by (2.17), 

where{𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛}are in [𝜀𝜀, 1 − 𝜀𝜀] for all  𝑛𝑛 ∈ ℕ and for some 𝜀𝜀 ∈ (0,1). Then 

{𝑥𝑥𝑛𝑛} converges faster than {𝑢𝑢𝑛𝑛}. 

 

2.9 Our new three-step iterative procedure 

In order to preserve the continuation of the above mentioned works, here we 

have proposed a new three-step iterative procedure. Our new iterative procedure is 

defined as follows. 

Definition 2.9.1.Let 𝐵𝐵 be a nonempty closed convex subset of a norm space or 

Banach space𝑋𝑋 and 𝑇𝑇 be a mapping on  𝐵𝐵.For any arbitrary𝑥𝑥1 ∈ 𝐵𝐵, the iterative 

sequence {𝑥𝑥𝑛𝑛} constructed by 

 �
𝑥𝑥𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑥𝑥𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛 ,
𝑦𝑦𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑥𝑥𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑧𝑧𝑛𝑛 ,

𝑧𝑧𝑛𝑛 = (1 − 𝛾𝛾𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛 ;  ∀ 𝑛𝑛 ∈ ℕ,
�     (2.18) 

where the sequences{𝛼𝛼𝑛𝑛} ⊂ (0, 1), {𝛽𝛽𝑛𝑛} ⊂ (0, 1) and {𝛾𝛾𝑛𝑛} ⊂ (0, 1) are convergent, 

such that lim𝑛𝑛→∞ 𝛼𝛼𝑛𝑛 = 0, lim𝑛𝑛→∞ 𝛽𝛽𝑛𝑛 = 0, lim𝑛𝑛→∞ 𝛾𝛾𝑛𝑛 = 0 and ∑ 𝛼𝛼𝑛𝑛 = ∞∞
𝑛𝑛=1 . 

 Here, we state and prove a convergence theorem of our new iterative 

procedure (2.18) for Zamfirescu operator.  

Theorem 2.9.2.Let𝑋𝑋 be an arbitrary Banach space, 𝐵𝐵be a nonempty closed convex 

subset of 𝑋𝑋and𝑇𝑇:𝐵𝐵 → 𝐵𝐵be aZamfirescuoperator.Let  𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇)be a fixed point of 𝑇𝑇 

and {𝑥𝑥𝑛𝑛}be our new iterative procedure defined by(2.18)and 𝑥𝑥1 ∈ 𝐵𝐵. Then the 

sequence{𝑥𝑥𝑛𝑛}converges strongly to the fixed point 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇).  

Proof.By theorem 2.1.3, we know that 𝑇𝑇 has a unique fixed point in𝐵𝐵, say 𝑝𝑝. 

Consider 𝑥𝑥,𝑦𝑦 ∈ 𝐵𝐵. Since 𝑇𝑇 is aZamfirescu operator, therefore at least one of the 

conditions(𝑧𝑧1),(𝑧𝑧2)and (𝑧𝑧3) is satisfied by 𝑇𝑇. 
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If (𝑧𝑧2) holds, then  

‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝑏𝑏[‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ + ‖𝑦𝑦 − 𝑇𝑇𝑦𝑦‖] 

  ≤ 𝑏𝑏�‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ + [‖𝑦𝑦 − 𝑥𝑥‖ + ‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ + ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖]� 

 ⇒ ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝑏𝑏
(1−𝑏𝑏)

‖𝑥𝑥 − 𝑦𝑦‖ + 2 𝑏𝑏
(1−𝑏𝑏)

‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖  (2.19) 

If  (𝑧𝑧3) holds, then similarly we obtain 

 ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝑐𝑐
(1−𝑐𝑐)

‖𝑥𝑥 − 𝑦𝑦‖ + 2 𝑐𝑐
(1−𝑐𝑐)

‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖           (2.20) 

Let us denote 

 𝜇𝜇 = 𝑚𝑚𝑚𝑚𝑥𝑥 �𝑚𝑚, 𝑏𝑏
(1−𝑏𝑏)

, 𝑐𝑐
(1−𝑐𝑐)

�        (2.21) 

Then we have, 0 ≤ 𝜇𝜇 < 1  and in view of(𝑧𝑧1), (2.20) and (2.21) we get the 

following inequality  

 ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝜇𝜇‖𝑥𝑥 − 𝑦𝑦‖ + 2𝜇𝜇‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖holds ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝐵𝐵.           (2.22) 

Now, let{𝑥𝑥𝑛𝑛}be sequence defined by our new iterative procedure (2.18) and 𝑥𝑥1 ∈

𝐵𝐵arbitrary. Then we have 

 ‖𝑥𝑥𝑛𝑛+1 − 𝑝𝑝‖ = ‖(1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑥𝑥𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛 − (1 − 𝛼𝛼𝑛𝑛 + 𝛼𝛼𝑛𝑛)𝑝𝑝‖ 

   ≤ (1 − 𝛼𝛼𝑛𝑛)‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝛼𝛼𝑛𝑛‖𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑝𝑝‖            (2.23) 

Putting𝑥𝑥 = 𝑥𝑥𝑛𝑛and 𝑦𝑦 = 𝑝𝑝in (2.22), we obtain 

 ‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ ≤ 𝜇𝜇‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖, where  𝜇𝜇is given by (2.21).   (2.24) 

Again, putting with 𝑥𝑥 = 𝑦𝑦𝑛𝑛and 𝑦𝑦 = 𝑝𝑝in (2.22), we obtain 

 ‖𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ ≤ 𝜇𝜇‖𝑦𝑦𝑛𝑛 − 𝑝𝑝‖, where  𝜇𝜇is given by (2.21).   (2.25) 

Further, we have 

 ‖𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ = ‖(1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑥𝑥𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑧𝑧𝑛𝑛 − (1 − 𝛽𝛽𝑛𝑛 + 𝛽𝛽𝑛𝑛)𝑝𝑝‖ 

  ≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝛽𝛽𝑛𝑛‖𝑇𝑇𝑧𝑧𝑛𝑛 − 𝑝𝑝‖.             (2.26) 

Again,putting 𝑥𝑥 = 𝑧𝑧𝑛𝑛and 𝑦𝑦 = 𝑝𝑝in (2.22), we get 

 ‖𝑇𝑇𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ ≤ 𝜇𝜇‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖.       (2.27) 

Combining (2.24), (2.25), (2.26) and (2.27) we obtain,  
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 ‖𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ ≤ 𝜇𝜇[(1 − 𝛽𝛽𝑛𝑛)𝜇𝜇‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝜇𝜇𝛽𝛽𝑛𝑛‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖].   (2.28) 

But, we have 

 ‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ = ‖(1 − 𝛾𝛾𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑇𝑇𝑧𝑧𝑛𝑛 − (1 − 𝛾𝛾𝑛𝑛 + 𝛾𝛾𝑛𝑛)𝑝𝑝‖ 

  ≤ (1 − 𝛾𝛾𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + +𝛾𝛾𝑛𝑛‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖.    (2.29) 

From, (2.28) and (2.29), we get   

 ‖𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ ≤ 𝜇𝜇 �(1 − 𝛽𝛽𝑛𝑛)𝜇𝜇‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝜇𝜇𝛽𝛽𝑛𝑛 �
(1 − 𝛾𝛾𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖

+𝛾𝛾𝑛𝑛‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ ��. (2.30) 

From, (2.24) and (2.30),we get 

 ‖𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ ≤ 𝜇𝜇 �(1 − 𝛽𝛽𝑛𝑛)𝜇𝜇‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝜇𝜇𝛽𝛽𝑛𝑛 �
(1 − 𝛾𝛾𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖

+𝛾𝛾𝑛𝑛𝜇𝜇‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ ��. (2.31) 

Now, combining (2.23), (2.24) and (2.31), we obtain 

 ‖𝑥𝑥𝑛𝑛+1 − 𝑝𝑝‖ ≤ (1 − 𝛼𝛼𝑛𝑛)𝜇𝜇‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝛼𝛼𝑛𝑛 �𝜇𝜇2 �
(1 − 𝛽𝛽𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖

+𝛽𝛽𝑛𝑛 �
(1 − 𝛾𝛾𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖

+𝜇𝜇𝛾𝛾𝑛𝑛‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ ���. 

  = 𝜇𝜇[1 − (1 − 𝜇𝜇)(1 + 𝜇𝜇𝛽𝛽𝑛𝑛 + 𝜇𝜇2𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛)𝛼𝛼𝑛𝑛 ]‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖.  (2.32) 

Since, 𝜇𝜇[1 − (1 − 𝜇𝜇)(1 + 𝜇𝜇𝛽𝛽𝑛𝑛 + 𝜇𝜇2𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛)𝛼𝛼𝑛𝑛 ] ≤ [1 − (1 − 𝜇𝜇)𝛼𝛼𝑛𝑛 ].  

Hence from (2.32), we get  

 ‖𝑥𝑥𝑛𝑛+1 − 𝑝𝑝‖ ≤ [1 − (1 − 𝜇𝜇)𝛼𝛼𝑛𝑛 ]‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖,   𝑛𝑛 ∈ ℕ.    (2.33) 

By (2.33) we inductively obtain 

 ‖𝑥𝑥𝑛𝑛+1 − 𝑝𝑝‖ ≤ ∏ [1 − (1 − 𝜇𝜇)𝛼𝛼𝑘𝑘]‖𝑥𝑥1 − 𝑝𝑝‖𝑛𝑛
𝑘𝑘=0 ,  𝑛𝑛 ∈ ℕ.   (2.34) 

Using the fact that 0 ≤ 𝜇𝜇 < 1,𝛼𝛼𝑛𝑛 ,𝛽𝛽𝑛𝑛 , 𝛾𝛾𝑛𝑛 ∈ (0, 1)and∑ 𝛼𝛼𝑛𝑛 = ∞∞
𝑛𝑛=0 , we obtain that,  

 lim𝑛𝑛→∞ ∏ [1 − (1 − 𝜇𝜇)𝛼𝛼𝑘𝑘]𝑛𝑛
𝑘𝑘=0 = 0.      (2.35) 

Now from (2.34) and (3.35), we obtain 

 lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛+1 − 𝑝𝑝‖ = 0,       

This implies that{𝑥𝑥𝑛𝑛}converges strongly to the fixed point𝑝𝑝. 

This completes our proof. ∎ 
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Definition 2.9.3. Let 𝐵𝐵be a Banach space, 𝑇𝑇 be a self-map on 𝐵𝐵 and assume that 

𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑇𝑇, 𝑥𝑥𝑛𝑛)representsour new iterativeprocedure(2.18) involving 𝑇𝑇. Suppose 

that the fixed point set𝐹𝐹(𝑇𝑇)of𝑇𝑇is nonempty and that the sequence {𝑥𝑥𝑛𝑛}converges to 

a fixed point 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇). Let {𝑤𝑤𝑛𝑛} be an arbitrary sequence in 𝐵𝐵 and define 𝜀𝜀𝑛𝑛 =

‖𝑤𝑤𝑛𝑛+1 − 𝑓𝑓(𝑇𝑇,𝑤𝑤𝑛𝑛)‖for 𝑛𝑛 ∈ ℕ. If lim𝑛𝑛→∞ 𝜀𝜀𝑛𝑛 = 0 implies thatlim𝑛𝑛→∞ 𝑤𝑤𝑛𝑛 = 0, then 

our new iterative procedure represented by𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑇𝑇, 𝑥𝑥𝑛𝑛)is said to be 𝑇𝑇- stable. 

Lemma 2.9.4.Let 𝑋𝑋be a Banach space, 𝐵𝐵 be a nonempty, convex subset of 𝑋𝑋and 

𝑇𝑇:𝐵𝐵 → 𝐵𝐵be a Zamfirescu operator. If our new iterative procedure (2.18) 

converges, then lim𝑛𝑛→∞ 𝜀𝜀𝑛𝑛 = 0, where 𝜀𝜀𝑛𝑛 is given by the definition 2.9.3. 

Proof.Let lim𝑛𝑛→∞ 𝑤𝑤𝑛𝑛 = 𝑤𝑤𝑛𝑛∗. Then according to the definition 2.9.3, we have  

 0 ≤ 𝜀𝜀𝑛𝑛 = ‖𝑤𝑤𝑛𝑛+1 − (1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑤𝑤𝑛𝑛 − 𝛼𝛼𝑛𝑛𝑇𝑇𝑢𝑢𝑛𝑛‖ 

  = ‖𝑤𝑤𝑛𝑛+1 − 𝑇𝑇𝑤𝑤𝑛𝑛 + 𝛼𝛼𝑛𝑛(𝑇𝑇𝑤𝑤𝑛𝑛 − 𝑇𝑇𝑢𝑢𝑛𝑛)‖ 

  ≤ ‖𝑤𝑤𝑛𝑛+1 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ + 𝛼𝛼𝑛𝑛𝜇𝜇‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖ 

  = ‖𝑤𝑤𝑛𝑛+1 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ + 𝛼𝛼𝑛𝑛𝜇𝜇‖𝑤𝑤𝑛𝑛 − (1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑤𝑤𝑛𝑛 − 𝛽𝛽𝑛𝑛𝑇𝑇𝑣𝑣𝑛𝑛‖ 

  ≤ ‖𝑤𝑤𝑛𝑛+1 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ + 𝛼𝛼𝑛𝑛𝜇𝜇‖𝑤𝑤𝑛𝑛 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ + 𝛼𝛼𝑛𝑛𝛽𝛽𝑛𝑛𝜇𝜇‖𝑇𝑇𝑤𝑤𝑛𝑛 − 𝑇𝑇𝑣𝑣𝑛𝑛‖ 

  ≤ ‖𝑤𝑤𝑛𝑛+1 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ + 𝛼𝛼𝑛𝑛𝜇𝜇‖𝑤𝑤𝑛𝑛 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ + 𝛼𝛼𝑛𝑛𝛽𝛽𝑛𝑛𝜇𝜇2‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖ 

 = ‖𝑤𝑤𝑛𝑛+1 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ + 𝛼𝛼𝑛𝑛𝜇𝜇‖𝑤𝑤𝑛𝑛 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ + 𝛼𝛼𝑛𝑛𝛽𝛽𝑛𝑛𝜇𝜇2 �𝑤𝑤𝑛𝑛 − (1 − 𝛾𝛾𝑛𝑛)𝑤𝑤𝑛𝑛
−𝛾𝛾𝑛𝑛𝑇𝑇𝑤𝑤𝑛𝑛

� 

 = ‖𝑤𝑤𝑛𝑛+1 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ + 𝛼𝛼𝑛𝑛𝜇𝜇‖𝑤𝑤𝑛𝑛 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ + 𝛼𝛼𝑛𝑛𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛𝜇𝜇2‖𝑤𝑤𝑛𝑛 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ 

 = ‖𝑤𝑤𝑛𝑛+1 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ + (𝛼𝛼𝑛𝑛𝜇𝜇 + 𝛼𝛼𝑛𝑛𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛𝜇𝜇2)‖𝑤𝑤𝑛𝑛 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ 

 ≤ ‖𝑤𝑤𝑛𝑛+1 − 𝑤𝑤𝑛𝑛‖ + ‖𝑤𝑤𝑛𝑛 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ + (𝛼𝛼𝑛𝑛𝜇𝜇 + 𝛼𝛼𝑛𝑛𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛𝜇𝜇2)‖𝑤𝑤𝑛𝑛 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ 

 = ‖𝑤𝑤𝑛𝑛+1 − 𝑤𝑤𝑛𝑛‖ + (1 + 𝛼𝛼𝑛𝑛𝜇𝜇 + 𝛼𝛼𝑛𝑛𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛𝜇𝜇2)‖𝑤𝑤𝑛𝑛 − 𝑇𝑇𝑤𝑤𝑛𝑛‖ 

 ≤ ‖𝑤𝑤𝑛𝑛+1 − 𝑤𝑤𝑛𝑛∗‖ + ‖𝑤𝑤𝑛𝑛∗ − 𝑤𝑤𝑛𝑛‖ + �
1 + 𝛼𝛼𝑛𝑛𝜇𝜇

+𝛼𝛼𝑛𝑛𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛𝜇𝜇2� �
‖𝑤𝑤𝑛𝑛 − 𝑤𝑤𝑛𝑛∗‖

+‖𝑤𝑤𝑛𝑛∗ − 𝑇𝑇𝑤𝑤𝑛𝑛‖
� 

 → 0 as 𝑛𝑛 → ∞, 

i.e., lim𝑛𝑛→∞ 𝜀𝜀𝑛𝑛 = 0.                           
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 Now, we state and prove a Stabilitytheoremof our new iterative procedure 

(2.18). 

Theorem 2.9.5.Let 𝑋𝑋 be an arbitrary Banach space, 𝐵𝐵be a nonempty closed 

convex subset of𝑋𝑋and𝑇𝑇:𝐵𝐵 → 𝐵𝐵be a zamfirescuoperator. Let𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇)be a fixed 

point of  𝑇𝑇. Then prove that the iterative sequence{𝑥𝑥𝑛𝑛}defined by our new iterative 

procedure (2.18) involving the operator 𝑇𝑇is 𝑇𝑇-stable. 

Proof.From the definition 2.9.3, we can say that theour new iterative procedure 

(2.18) will be 𝑇𝑇-stable iflim𝑛𝑛→∞ 𝜀𝜀𝑛𝑛 = 0,where𝜀𝜀𝑛𝑛 = ‖𝑥𝑥𝑛𝑛+1 − (1 − 𝛼𝛼𝑛𝑛)𝑥𝑥𝑛𝑛 −

𝛼𝛼𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛‖implies thatlim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛 = 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇). 
Now, from the lemma 2.9.4, we observed that if our new iterative 

proceduredefined by (2.18)converges to a fixed point of 𝑇𝑇 thenlim𝑛𝑛→∞ 𝜀𝜀𝑛𝑛 = 0. 

But, in our theorem 2.9.2 we have already shown that our new iterative 

proceduredefined by (2.18) is strongly convergent to a fixed point of  𝑇𝑇.  

So, by combining our theorem 2.9.2 and lemma 2.9.4, we obtain 

lim𝑛𝑛→∞ 𝜀𝜀𝑛𝑛 = 0and this proves that our new iterative procedure (2.18)is𝑇𝑇-stable.∎  

    

 

 



CHAPTER-3 

RATE OF CONVERGENCE OF FIXED POINT 

ITERATIVE PROCEDURES 

 

In this chapter we demonstrate that our iterative procedure(2.18) converges 

to the fixed point faster than that of Picarditerative procedure (2.1), Manniterative 

procedure (2.11), Ishikawaiterative procedure (2.13), Nooriterative procedure 

(2.14), Agarwalet al.iterative procedure (2.15), Abbas et al.iterative procedure 

(2.16), and Thakur et al. iterative procedure (2.17) for contraction mappings in the 

sense of Berinde [48].   

 

3.1 A discussion on error estimate of fixed point iterative procedure 

The error estimate and stability of fixed points appear to have been given 

systematically, mainly for the Picard iterative procedure(2.1) (sequence of 

successive approximations), in conjunction with various contractions. For 

illustration here we give the following example. 

Example 3.1.1.If 𝑇𝑇:𝑋𝑋 → 𝑋𝑋is an α -contraction on a complete metric 

space (𝑋𝑋,𝑑𝑑),that is, there exists a constant 0 ≤ 𝛼𝛼 < 1 such that 

 𝑑𝑑(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ≤ 𝛼𝛼𝑑𝑑(𝑇𝑇,𝑇𝑇),∀ 𝑇𝑇,𝑇𝑇 ∈ 𝑋𝑋, 

then by Banach fixed point theorem (Theorem 1.6.2) we know that 

(a) 𝐹𝐹(𝑇𝑇) = {𝑇𝑇∗},  Where 𝐹𝐹(𝑇𝑇)denotes the set of fixed point of 𝑇𝑇. 

(b)𝑇𝑇𝑛𝑛+1 = 𝑇𝑇𝑇𝑇𝑛𝑛  (Picard iterative procedure (2.1)) converges to 𝑇𝑇∗for all𝑇𝑇1 ∈ 𝑋𝑋. 

(c) Both the a priori and a posteriori error estimates  

 𝑑𝑑(𝑇𝑇𝑛𝑛 , 𝑇𝑇∗) ≤ 𝛼𝛼𝑛𝑛

1−𝛼𝛼𝑛𝑛
𝑑𝑑(𝑇𝑇1, 𝑇𝑇2), 𝑛𝑛 ∈ ℕ,    (3.1) 

 𝑑𝑑(𝑇𝑇𝑛𝑛 , 𝑇𝑇∗) ≤ 𝛼𝛼
1−𝛼𝛼

𝑑𝑑(𝑇𝑇𝑛𝑛−1, 𝑇𝑇𝑛𝑛), 𝑛𝑛 ∈ ℕ,     (3.2) 

hold. 
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Remark 3.1.2.The errors 𝑑𝑑(𝑇𝑇𝑛𝑛 , 𝑇𝑇∗)are decreasing as rapidly as the term of 

geometric progression with ratio 𝛼𝛼, that is {𝑇𝑇𝑛𝑛}converges to 𝑇𝑇∗at least as rapidly as 

the geometric series. The convergence is however linear, 

 𝑑𝑑(𝑇𝑇𝑛𝑛 , 𝑇𝑇∗) ≤ 𝑑𝑑(𝑇𝑇𝑛𝑛−1, 𝑇𝑇∗),𝑛𝑛 ∈ ℕ. 

If 𝑇𝑇satisfies a weaker contractive condition, e.g., 𝑇𝑇is non-expensive, then Picard 

iterative procedure (2.1) does not converges generally or even if it converges, its 

limit is not fixed point of  𝑇𝑇. More general iterative procedures are needed.  

 

3.2 Rate of convergence of fixed point iterative procedures 

The problem of studying the rate of convergence of fixed point iterative 

procedures arises in two different contexts: 

(1) For large classes of operator (quasi-contractive type operators) not only 

Picard iterative procedure (2.1), but also the Manniterative procedure (2.11), 

Ishikawaiterative procedure (2.13), Nooriterative procedure (2.14), Agarwalet 

al.iterative procedure (2.15), Abbas et al.iterative procedure (2.16), and Thakur et 

al.iterative procedure (2.17) can be used to approximate the fixed points.In such 

situation, it is of theoretical importance to compare these methods in order to 

establish, if possible which one converges faster. 

(2) For a certain fixed point iterative procedure (Picard, Kranoselskij’s, 

Mann, Ishikawa, Noor etc.) we do not know an analytical error estimate of the 

form (3.1) and (3.2) of example 3.1.1.In this case we can try an empirical study of 

the rate of convergence.  

Now, we give a theorem, which have been stated by the help of Banach 

fixed point theorem. By this theorem we are able to provide some useful 

information about the rate of convergence of fixed point iterative procedures 

towards the fixed point. 

Theorem 3.2.1. Let 𝑇𝑇be a contraction mapping on a complete metric space 𝑀𝑀 

with contraction constant 𝜆𝜆and fixed point𝑎𝑎. For any 𝑇𝑇1 ∈ 𝑀𝑀 with 𝑇𝑇-iterates 

{𝑇𝑇𝑛𝑛}, we have the error estimates 
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 𝑑𝑑(𝑇𝑇𝑛𝑛 ,𝑎𝑎) ≤ 𝜆𝜆𝑛𝑛

1−𝜆𝜆
𝑑𝑑(𝑇𝑇1,𝑇𝑇(𝑇𝑇1)),       (3.3) 

 𝑑𝑑(𝑇𝑇𝑛𝑛 ,𝑎𝑎) ≤ 𝜆𝜆𝑑𝑑(𝑇𝑇𝑛𝑛−1,𝑎𝑎),        (3.4) 

 and 𝑑𝑑(𝑇𝑇𝑛𝑛 ,𝑎𝑎) ≤ 𝜆𝜆
1−𝜆𝜆

𝑑𝑑(𝑇𝑇𝑛𝑛−1, 𝑇𝑇𝑛𝑛).      (3.5) 

3.3 Sense of B.E. Rhoades about the rate of convergence of two fixed point 

iterative procedures 

In 1976 B.E. Rhoades [4] introduce the following technique to check the 

rate of convergence of fixed point iterative procedures: 

Let {𝑇𝑇𝑛𝑛} and {𝑇𝑇𝑛𝑛} be two sequences generated by two fixed point iterative 

procedures, which are converge to a certain fixed point𝑝𝑝 of a given operator 𝑇𝑇. To 

compare the rate of convergence of these fixed point iterative procedures, B.E. 

Rhoades [4] considered that the iterative procedure represented by {𝑇𝑇𝑛𝑛}is 

betterthan the iterative procedure represented by{𝑇𝑇𝑛𝑛}if 

 ‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ ≤ ‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖, ∀𝑛𝑛.                (3.6) 

 

3.4Sense of V. Berinde about the rate of convergence of two fixed point 

iterative procedures 

After B.E. Rhoades [4] in 2004 V. Berinde [48] established a technique to 

compare the rate of convergence of two fixed point iterative procedures. To define 

V. Berinde technique we need the following definition about rate of convergence 

of two sequences of real numbers: 

Definition 3.4.1.[48, 49] Let{𝑟𝑟𝑛𝑛}and {𝑠𝑠𝑛𝑛}be two sequences of real numbers that 

converge to 𝑟𝑟and 𝑠𝑠, respectively, and assume that there exists a limit 

 𝑙𝑙 = lim𝑛𝑛→∞
|𝑟𝑟𝑛𝑛−𝑟𝑟|
|𝑠𝑠𝑛𝑛−𝑠𝑠|                  (3.7) 

(i) If 𝑙𝑙 = 0, then it can be said that{𝑟𝑟𝑛𝑛}converges faster to 𝑟𝑟 than {𝑠𝑠𝑛𝑛}to 𝑠𝑠. 

(ii) If 0 < 𝑙𝑙 < ∞, then it can be said that{𝑟𝑟𝑛𝑛} and{𝑠𝑠𝑛𝑛}have the same rate of 

convergence. 

In the case (i), the notation 𝑟𝑟𝑛𝑛 − 𝑟𝑟 = 𝑜𝑜(𝑠𝑠𝑛𝑛 − 𝑠𝑠) will be used and if 𝑙𝑙 = ∞, 

then the sequence {𝑠𝑠𝑛𝑛} converges faster than {𝑟𝑟𝑛𝑛}, that is  𝑠𝑠𝑛𝑛 − 𝑠𝑠 = 𝑜𝑜(𝑟𝑟𝑛𝑛 − 𝑟𝑟). 
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Suppose that, for two fixed point iterative procedures represented by the 

sequences{𝑇𝑇𝑛𝑛}and{𝑇𝑇𝑛𝑛}, both converging to the same fixed point 𝑝𝑝of a given 

operator 𝑇𝑇, the error estimates 

 ‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ ≤ 𝑟𝑟𝑛𝑛 , 𝑛𝑛 ∈ ℕ,       (3.8) 

 ‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ ≤ 𝑠𝑠𝑛𝑛 , 𝑛𝑛 ∈ ℕ,        (3.9) 

are available, where {𝑟𝑟𝑛𝑛}and {𝑠𝑠𝑛𝑛}are sequences of positive numbers (converging to 

zero).  

Then, in view of definition 3.4.1 V. Berinde [48] adopted the following 

concept about rate of convergence of two fixed point iterative procedures. 

Definition 3.4.2.[48, 49]Let {𝑇𝑇𝑛𝑛} and {𝑇𝑇𝑛𝑛}be two sequences generated by two 

fixed point iterative procedures that converge to the same fixed point 𝑝𝑝and satisfy 

(3.8) and (3.9), respectively. If {𝑟𝑟𝑛𝑛}converges faster than{𝑠𝑠𝑛𝑛}, then it can be said 

that {𝑇𝑇𝑛𝑛}converges faster than {𝑇𝑇𝑛𝑛}to the fixed point 𝑝𝑝.  

 

3.5 Recent development ofthe rate of convergence of fixed point iterative 

procedures 

In recent years, definition 3.4.2 has been used as a standard tool to compare 

the rate of convergence of two fixed point iterative procedures. Using this 

technique Sahu [11] established that the Agarwalet al. iterative procedure (2.15) 

converges faster than the Mann iterative procedure (2.11) and the Picard iterative 

procedure (2.1). Using a similar technique Abbas and Nazir [27] established that 

the Abbas et al. iterative procedure (2.16) converges faster than the Agarwalet al. 

iterative procedure (2.15) and hence it converges faster than the Mann iterative 

procedure (2.11) and the Picard iterative procedure (2.1) also. Recently, in 2014 D. 

Thakur, B.S. Thakur, and M. Postolache [12] established that the Thakur et al. 

iterative procedure (2.17) converges faster than Abbas et al. iterative procedure 

(2.16) and supported that claim by the following example. 

Example 3.5.3.Let 𝑋𝑋 = ℝ and 𝐵𝐵 = [1, 50]. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵be a mapping defined by 

𝑇𝑇(𝑇𝑇) = √𝑇𝑇2 − 8𝑇𝑇 + 40 for all 𝑇𝑇 ∈ 𝐵𝐵. For the initial value 𝑇𝑇1 = 40 and 𝛼𝛼𝑛𝑛 =
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0.85, 𝛽𝛽𝑛𝑛 = 0.65, 𝛾𝛾𝑛𝑛 = 0.45 for 𝑛𝑛 = 0, 1, 2, …, Thakuret al. iterative procedure 

(2.17) is faster than Abbas et al. iterative procedure (2.16) 

So, by the above mentioned discussion we can comment that the Thakuret 

al. iterative procedure (2.17) is faster than that of all the iterative procedures(2.1), 

(2.11), and (2.13) to (2.16). Finally, by the rest two sections of this chapter we 

have shown that the rate of convergence of our new iterative procedure (2.18) is 

faster than that of Thakuret al. iterative procedure (2.17) for contraction mapping 

in the sense of V. Berinde [48], that is the rate of convergence of our new iterative 

procedure (2.18) is faster than that of all the iterative proceduresdefined by (2.1), 

(2.11), and (2.13) to (2.17). 

 

3.6 Analytical Comparison of rate of convergence of our new iterative 

procedure withThakur et al. iterative procedure 

In this section, we have analytically shown that our proposed new iterative 

procedure (2.18) converges faster than Thakuret al. iterative procedure (2.17) in 

the sense of V. Berinde [48]. 

Theorem 3.6.1.Let 𝐵𝐵 be a nonempty closed convex subset of a norm space 𝑋𝑋. Let 

𝑇𝑇 be a contraction mapping on 𝐵𝐵 with the contractive constant 𝜆𝜆 ∈ (0, 1) and 𝑝𝑝 be 

a fixed point of 𝑇𝑇. Let {𝑢𝑢𝑛𝑛} be the sequence generated by Thakur et al. iterative 

procedure(2.17) and {𝑇𝑇𝑛𝑛} be the sequence generated byour new iterative 

procedure(2.18), where{𝛼𝛼𝑛𝑛},{𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] for all  𝑛𝑛 ∈ ℕ and for some 

𝜉𝜉 ∈ (0,1). Then the iterative procedurerepresented by {𝑇𝑇𝑛𝑛} converges faster than 

the iterative procedurerepresented by{𝑢𝑢𝑛𝑛}. That is our new iterative procedure 

(2.18) converges faster than Thakur et al. iterative procedure (2.17). 

Proof.From the Thakur et al. iterative procedure (2.17), we have  

 �
𝑢𝑢𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑢𝑢𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑣𝑣𝑛𝑛 ,
𝑣𝑣𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑤𝑤𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑤𝑤𝑛𝑛 ,

𝑤𝑤𝑛𝑛 = (1 − 𝛾𝛾𝑛𝑛)𝑢𝑢𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑇𝑇𝑢𝑢𝑛𝑛 ;  ∀ 𝑛𝑛 ∈ ℕ.
�  (3.10)  
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Now, using (3.10) and according to the Theorem 2.3 of Thakur et al. [9], we 

obtain 

 ‖𝑢𝑢𝑛𝑛+1 − 𝑝𝑝‖ ≤ 𝑘𝑘𝑛𝑛 [1 − (1 − 𝑘𝑘2)𝛼𝛼𝛽𝛽𝛾𝛾]𝑛𝑛‖𝑢𝑢1 − 𝑝𝑝‖, ∀ 𝑛𝑛 ∈ ℕ.                   (3.11) 

Let  𝑠𝑠𝑛𝑛 = 𝑘𝑘𝑛𝑛 [1 − (1 − 𝑘𝑘2)𝛼𝛼𝛽𝛽𝛾𝛾]𝑛𝑛 .      (3.12) 

Now from the 3rd equation of our new iterative procedure (2.18), we have 

 ‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ = ‖(1 − 𝛾𝛾𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑇𝑇𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

  ≤ (1 − 𝛾𝛾𝑛𝑛)‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ + 𝛾𝛾𝑛𝑛‖𝑇𝑇𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

≤ (1 − 𝛾𝛾𝑛𝑛)‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ + 𝛾𝛾𝑛𝑛𝑘𝑘‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

 ≤ [1 − (1 − 𝑘𝑘)𝛾𝛾𝑛𝑛 ]‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖(3.13) 

From the 2nd equation of our new iterative procedure (2.18), we have 

 ‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ = ‖(1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑇𝑇𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ 

  ≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑇𝑇𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ + 𝛽𝛽𝑛𝑛‖𝑇𝑇𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ 

 ≤ (1 − 𝛽𝛽𝑛𝑛)𝑘𝑘‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ + 𝛽𝛽𝑛𝑛𝑘𝑘‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ 

≤ (1 − 𝛽𝛽𝑛𝑛)𝑘𝑘‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ + 𝛽𝛽𝑛𝑛𝑘𝑘[1 − (1 − 𝑘𝑘)𝛾𝛾𝑛𝑛 ]‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

 = 𝑘𝑘[1 − (1 − 𝑘𝑘)𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛 ]‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ (3.14) 

Finally, from the 1st equation of our new iterative procedure (2.18), we have 

 ‖𝑇𝑇𝑛𝑛+1 − 𝑝𝑝‖ = ‖(1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

 ≤ (1 − 𝛼𝛼𝑛𝑛)‖𝑇𝑇𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ + 𝛼𝛼𝑛𝑛‖𝑇𝑇𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

  ≤ (1 − 𝛼𝛼𝑛𝑛)𝑘𝑘‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ + 𝛼𝛼𝑛𝑛𝑘𝑘‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

≤ (1 − 𝛼𝛼𝑛𝑛)𝑘𝑘‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ + 𝛼𝛼𝑛𝑛𝑘𝑘2[1 − (1 − 𝑘𝑘)𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛 ]‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

 = 𝑘𝑘�1 − 𝛼𝛼𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑘𝑘[1 − (1 − 𝑘𝑘)𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛 ]�‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

≤ 𝑘𝑘�1 − 𝛼𝛼𝑛𝑛𝑘𝑘 + 𝛼𝛼𝑛𝑛𝑘𝑘[1 − (1 − 𝑘𝑘)𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛 ]�‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

= 𝑘𝑘[1 − 𝛼𝛼𝑛𝑛𝑘𝑘 + 𝛼𝛼𝑛𝑛𝑘𝑘 − 𝑘𝑘(1 − 𝑘𝑘)𝛼𝛼𝑛𝑛𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛 ]‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

= 𝑘𝑘[1 − 𝑘𝑘(1 − 𝑘𝑘)𝛼𝛼𝑛𝑛𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛 ]‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

 ≤ 𝑘𝑘[1 − 𝑘𝑘2(1 − 𝑘𝑘)𝛼𝛼𝑛𝑛𝛽𝛽𝑛𝑛𝛾𝛾𝑛𝑛 ]‖𝑇𝑇𝑛𝑛 − 𝑝𝑝‖ 

 ≤ 𝑘𝑘𝑛𝑛[1 − 𝑘𝑘2(1 − 𝑘𝑘)𝛼𝛼𝛽𝛽𝛾𝛾]𝑛𝑛‖𝑇𝑇1 − 𝑝𝑝‖ 

i.e., ‖𝑇𝑇𝑛𝑛+1 − 𝑝𝑝‖ ≤ 𝑘𝑘𝑛𝑛 [1 − 𝑘𝑘2(1 − 𝑘𝑘)𝛼𝛼𝛽𝛽𝛾𝛾]𝑛𝑛‖𝑇𝑇1 − 𝑝𝑝‖.  (3.15) 

Again, let 𝑟𝑟𝑛𝑛 = 𝑘𝑘𝑛𝑛 [1 − 𝑘𝑘2(1 − 𝑘𝑘)𝛼𝛼𝛽𝛽𝛾𝛾]𝑛𝑛 .     (3.16) 
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Now from (3.12) and (3.16) we obtain, 

 
𝑟𝑟𝑛𝑛
𝑠𝑠𝑛𝑛

= 𝑘𝑘𝑛𝑛 �1−𝑘𝑘2(1−𝑘𝑘)𝛼𝛼𝛽𝛽𝛾𝛾 �𝑛𝑛

𝑘𝑘𝑛𝑛 [1−(1−𝑘𝑘2)𝛼𝛼𝛽𝛽𝛾𝛾 ]𝑛𝑛  

= �1−𝑘𝑘2(1−𝑘𝑘)𝛼𝛼𝛽𝛽𝛾𝛾 �𝑛𝑛

[1−(1−𝑘𝑘2)𝛼𝛼𝛽𝛽𝛾𝛾 ]𝑛𝑛        (3.17) 

Taking limit as 𝑛𝑛 tends to ∞ on both sides of (3.17), we get 

 lim𝑛𝑛→∞
𝑟𝑟𝑛𝑛
𝑠𝑠𝑛𝑛

= 0. 

Therefore, according to the definitions (3.4.1) and (3.4.2) we can conclude that, 

our iterative procedurerepresented by {𝑇𝑇𝑛𝑛} converges faster than the Thakur et al. 

iterative procedurerepresented by{𝑢𝑢𝑛𝑛}.∎ 

 

3.7 Numerical and graphical Comparison of rate of convergence of our new 

iterative procedurewith Thakur et al. iterative procedure 

For proper numerical comparison here we consider the Example 3.5.3 

(Example 3 of Thakuret al. [12]) and explain numerically and graphically that the 

rate of convergence of our iterative procedure (2.18) is faster than that of the 

Picarditerative procedure (2.1), the Manniterative procedure (2.11), the 

Ishikawaiterative procedure (2.13), the Nooriterative procedure (2.14), the 

Agarwalet al.iterative procedure (2.15), the Abbas et al.iterative procedure (2.16), 

and the Thakuret al.iterative procedure (2.17). The numerical and graphical 

comparisons are shown in the Table 3.7.1 and Figure 3.1 respectively. From this 

comparison it has been shown that all of above mentioned iterative procedures 

converge to the fixed point 𝑝𝑝 = 5 after different number of iterative steps, but our 

new iterative procedure (2.17) converges to this fixed point after minimum number 

of iterative steps. 
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Table 3.7.1: Comparative results given by different iterative procedures for 

example3.5.3. 
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Figure-3.1: Graphical representation of convergence behavior of different 

iterativeprocedures along with our new iterative procedure (2.18) 

for the contraction mapping described in the Example 3.5.3. 

 



CHAPTER-4 

SOME CONVERGENCE THEOREMS OF NEW 

FIXED POINT ITERATIVE PROCEDURE VIA 

NON-EXPANSIVE MAPPING 
 

In this chapter, we have established some weak and strong convergence 

theorems for non-expansive mapping using our new iterative procedure (2.18), 

which have extended the results of several authors cited in [6, 29, 30, 36, 41, 47, 

56, 58, 59,64]. 

 

4.1 Some essential lemmas 

In this section we state and prove some lemmas which are used as tools to 

prove the weak and strong convergence theorems of our new iterative procedure. 

Lemma 4.1.1.Let 𝐵𝐵 be a nonempty closed convex subset of a norm space 𝑋𝑋. Let 𝑇𝑇 

be a non-expansive mapping on 𝐵𝐵, {𝑥𝑥𝑛𝑛} be a sequence defined by the iterative 

procedure (2.18), where{𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] for all  𝑛𝑛 ∈ ℕ and for some 

𝜉𝜉 ∈ (0,1) and 𝐹𝐹(𝑇𝑇) is non-empty. Then the limit 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ exists for 

all 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇). 

Proof.Let 𝑝𝑝 be a fixed point of  𝑇𝑇, i.e. 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇). Then for all 𝑛𝑛 ∈ ℕ, from our 

iterative procedure (2.18) we have,  

 ‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ = ‖(1 − 𝛾𝛾𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ 

 ≤ (1 − 𝛾𝛾𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝛾𝛾𝑛𝑛‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ 

 ≤ (1 − 𝛾𝛾𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝛾𝛾𝑛𝑛‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ 

 i.e.,‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ ≤ ‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖,(4.1) 

and 

 ‖𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ = ‖(1 − 𝛽𝛽)𝑇𝑇𝑥𝑥𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ 
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  ≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝛽𝛽𝑛𝑛‖𝑇𝑇𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ 

  ≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝛽𝛽𝑛𝑛‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ 

  ≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝛽𝛽𝑛𝑛‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ 

 i.e.,‖𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ ≤ ‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖(4.2) 

Now combining (4.2) and the 3rd equation of (2.18), we have 

 ‖𝑥𝑥𝑛𝑛+1 − 𝑝𝑝‖ = ‖(1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑥𝑥𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ 

≤ (1 − 𝛼𝛼𝑛𝑛)‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝛼𝛼𝑛𝑛‖𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ 

≤ (1 − 𝛼𝛼𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝛼𝛼𝑛𝑛‖𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ 

 ≤ (1 − 𝛼𝛼𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝛼𝛼𝑛𝑛‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ 

          =‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ 

 i.e., ‖𝑥𝑥𝑛𝑛+1 − 𝑝𝑝‖ ≤ ‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖.       (4.3) 

Taking limit as 𝑛𝑛 tends to ∞ on both sides of (4.3), we get 

 lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛+1 − 𝑝𝑝‖ ≤ lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖. 

This proves that the limit lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ exists for all 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇).∎ 

 

Now we state a lemma of Schu [18, 19], which will be need to prove our 

next lemma. 

Lemma 4.1.2.[18] Suppose that 𝑋𝑋 is uniformly convex Banach space and 0 < 𝑝𝑝 ≤

𝑡𝑡𝑛𝑛 ≤ 𝑞𝑞 < 1 for all 𝑛𝑛 ∈ ℕ. Let  {𝑥𝑥𝑛𝑛} and  {𝑦𝑦𝑛𝑛} be two sequences of 𝑋𝑋 such that 

𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑝𝑝𝑛𝑛→∞‖𝑥𝑥𝑛𝑛‖ ≤ 𝑟𝑟, 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑝𝑝𝑛𝑛→∞‖𝑦𝑦𝑛𝑛‖ ≤ 𝑟𝑟 and 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑝𝑝𝑛𝑛→∞‖𝑡𝑡𝑛𝑛𝑥𝑥𝑛𝑛 + (1 −

𝑡𝑡𝑛𝑛)𝑦𝑦𝑛𝑛‖ = 𝑟𝑟 hold for some  𝑟𝑟 ≥ 0. Then limn→∞‖𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛‖ = 0. 

 

Lemma 4.1.3.Let 𝐵𝐵 be a nonempty closed convex subset of a uniformly convex 

Banach space 𝑋𝑋. Let 𝑇𝑇 be a non-expansive mapping on 𝐵𝐵, {𝑥𝑥𝑛𝑛} be a sequence 

defined by our new iterative procedure (2.18), where{𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] 

for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1) and  𝐹𝐹(𝑇𝑇) is non-empty . Then 

𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛‖ = 0. 
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Proof.Let 𝑝𝑝 be a fixed point of  𝑇𝑇, i.e. 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇). Then by our Lemma 4.1, we 

have lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ exists. Assume that lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ = 𝑙𝑙.  

Now, from (4.1) and (4.2), we get 

 limsup𝑛𝑛→∞‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ ≤ 𝑙𝑙       (4.4) 

and 

 limsup𝑛𝑛→∞‖𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ ≤ 𝑙𝑙.       (4.5) 

Since 𝑇𝑇 is a non-expansive mapping and 𝑝𝑝 is a fixed point of  𝑇𝑇, therefore we have 

 ‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ ≤ ‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖(4.6) 

and 

 ‖𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ ≤ ‖𝑦𝑦𝑛𝑛 − 𝑝𝑝‖.                                          (4.7)  

Taking lim sup as 𝑛𝑛 tends to ∞ on both sides of (4.6) and (4.7), and combining 

with (4.4) and (4.5), we get 

 limsup𝑛𝑛→∞‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ ≤ 𝑙𝑙       (4.8) 

and 

 limsup𝑛𝑛→∞‖𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ ≤ 𝑙𝑙.        (4.9) 

Since 

 lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛+1 − 𝑝𝑝‖ = lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ = 𝑙𝑙 

i.e., lim𝑛𝑛→∞‖(1 − 𝛼𝛼𝑛𝑛)(𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝) + 𝛼𝛼𝑛𝑛(𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑝𝑝)‖ = 𝑙𝑙.                      (4.10) 

So, from (4.8), (4.9), (4.10) and the Lemma 4.1.2, we have 

 lim𝑛𝑛→∞‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑦𝑦𝑛𝑛‖ = 0.      (4.11) 

We have 

 ‖𝑥𝑥𝑛𝑛+1 − 𝑝𝑝‖ = ‖(1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑥𝑥𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ 

≤ ‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ + 𝛼𝛼𝑛𝑛‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑦𝑦𝑛𝑛‖, 

which yields 

 𝑙𝑙 ≤ liminf𝑛𝑛→∞‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖.      (4.12) 

Combining (4.8) and (4.12), we obtain 

 lim𝑛𝑛→∞‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ = 𝑙𝑙.       (4.13) 

Now, we have 
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 ‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ ≤ ‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑦𝑦𝑛𝑛‖ + ‖𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ ≤ ‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑦𝑦𝑛𝑛‖ + ‖𝑦𝑦𝑛𝑛 − 𝑝𝑝‖, 

which yields 

 𝑙𝑙 ≤ liminf𝑛𝑛→∞‖𝑦𝑦𝑛𝑛 − 𝑝𝑝‖.      

 (4.14) 

From (4.5) and (4.14), we obtain 

 lim𝑛𝑛→∞‖𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ = 𝑙𝑙.                                                                    (4.15) 

Again, since 𝑇𝑇 is a non-expansive mapping and 𝑝𝑝 is a fixed point of  𝑇𝑇, therefore 

we have 

 limsup𝑛𝑛→∞‖𝑇𝑇𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ ≤ limsup𝑛𝑛→∞‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ ≤ limsup𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖,  

which yields 

 limsup𝑛𝑛→∞‖𝑇𝑇𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ ≤ 𝑙𝑙.                                                                (4.16) 

Since 

lim𝑛𝑛→∞‖𝑦𝑦𝑛𝑛 − 𝑝𝑝‖ = 𝑙𝑙. 

⟹ lim
𝑛𝑛→∞

‖(1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑥𝑥𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ = 𝑙𝑙 

⟹ lim𝑛𝑛→∞‖(1 − 𝛽𝛽𝑛𝑛)(𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝) + 𝛽𝛽𝑛𝑛(𝑇𝑇𝑧𝑧𝑛𝑛 − 𝑝𝑝)‖ = 𝑙𝑙.                        (4.17) 

From (4.8), (4.16), (4.17) and the Lemma 4.1.2, we obtain 

 lim𝑛𝑛→∞‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑧𝑧𝑛𝑛‖ = 0.      (4.18) 

Again, since 𝑇𝑇 is a non-expansive mapping and 𝑝𝑝 is a fixed point of  𝑇𝑇, therefore 

we have 

 ‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ ≤ ‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑧𝑧𝑛𝑛‖ + ‖𝑇𝑇𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ 

≤ ‖𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑧𝑧𝑛𝑛‖ + ‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ ≤ ‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖, 

which yields 

 𝑙𝑙 ≤ liminf𝑛𝑛→∞‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖.      

 (4.19) 

From (4.4) and (4.19), we obtain 

 lim𝑛𝑛→∞‖𝑧𝑧𝑛𝑛 − 𝑝𝑝‖ = 𝑙𝑙.       (4.20) 

Now, from (4.20) we have, 

 𝑙𝑙 = lim𝑛𝑛→∞‖(1 − 𝛾𝛾𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ 
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= lim𝑛𝑛→∞‖(1 − 𝛾𝛾𝑛𝑛)(𝑥𝑥𝑛𝑛 − 𝑝𝑝) + 𝛾𝛾𝑛𝑛(𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑝𝑝)‖.   (4.21) 

From (4.8), (4.21) and the Lemma 4.1.2, we obtain 

 lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑇𝑇x𝑛𝑛‖ = 0. 

This proofs our lemma.∎ 

 

Now, we state a lemma of Bruck [35], which will be help to prove our next 

lemma. 

Lemma 4.1.4.[35] Let 𝐵𝐵 be a nonempty bounded closed convex subset of a 

uniformly convex Banach space 𝑋𝑋 and 𝑇𝑇:𝐵𝐵 → 𝑋𝑋 be a non-expansive mapping. 

Then there is a strictly increasing and continuous convex function 𝑔𝑔: [0,∞) →

[0,∞) with 𝑔𝑔(0) = 0 such that  

 𝑔𝑔(‖𝑇𝑇(𝑡𝑡𝑥𝑥 + (1 − 𝑡𝑡)𝑦𝑦) − (𝑡𝑡𝑇𝑇𝑥𝑥 + (1 − 𝑡𝑡)𝑇𝑇𝑦𝑦)‖) ≤ ‖𝑥𝑥 − 𝑦𝑦‖ − ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖,  

for all 𝑥𝑥,𝑦𝑦 ∈ 𝐵𝐵 and 𝑡𝑡 ∈ [0, 1]. 

 

Lemma 4.1.5.Let 𝐵𝐵 be a nonempty closed convex subset of a uniformly convex 

Banach space 𝑋𝑋. Let 𝑇𝑇 be a non-expansive mapping on 𝐵𝐵, {𝑥𝑥𝑛𝑛} be a sequence 

defined by our new iterative procedure (2.18), where{𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] 

for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1) and  𝐹𝐹(𝑇𝑇) is non-empty. Then for 

any  𝑝𝑝1,𝑝𝑝2 ∈ 𝐹𝐹(𝑇𝑇), 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞‖𝑡𝑡𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡)𝑝𝑝1 − 𝑝𝑝2‖ exists, for all 𝑡𝑡 ∈ [0, 1]. 

Proof. By Lemma 4.1.1 we have, lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖exists for all 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇) and 

hence {𝑥𝑥𝑛𝑛}is bounded. So there exists a real number 𝑙𝑙 > 0 such that {𝑥𝑥𝑛𝑛} ⊆ 𝐷𝐷, 

where 𝐷𝐷 is a closed convex nonempty subset of 𝐵𝐵. Let 𝑎𝑎𝑛𝑛(𝑡𝑡) = ‖𝑡𝑡𝑥𝑥𝑛𝑛 +

(1 − 𝑡𝑡)𝑝𝑝1 − 𝑝𝑝2‖ for all 𝑡𝑡 ∈ [0, 1]. Then lim𝑛𝑛→∞ 𝑎𝑎𝑛𝑛(0) = ‖𝑝𝑝1 − 𝑝𝑝2‖and 

lim𝑛𝑛→∞ 𝑎𝑎𝑛𝑛(1) = lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝2‖, hence from Lemma 4.1.1  lim𝑛𝑛→∞ 𝑎𝑎𝑛𝑛(1) 

exist.  

Therefore, in order to complete this lemma, it is sufficient to show that 

lim𝑛𝑛→∞ 𝑎𝑎𝑛𝑛(𝑡𝑡) exists for all 𝑡𝑡 ∈ [0, 1]. 

Now for each 𝑛𝑛 ∈ ℕ, we define the maps  𝑄𝑄𝑛𝑛 ,𝑅𝑅𝑛𝑛 , and 𝑆𝑆𝑛𝑛  on 𝐷𝐷 by 
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 �
𝑆𝑆𝑛𝑛𝑥𝑥 = (1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑥𝑥 + 𝛼𝛼𝑛𝑛𝑇𝑇𝑅𝑅𝑛𝑛𝑥𝑥
𝑅𝑅𝑛𝑛𝑥𝑥 = (1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑥𝑥 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑄𝑄𝑛𝑛𝑥𝑥
𝑄𝑄𝑛𝑛𝑥𝑥 = (1 − 𝛾𝛾𝑛𝑛)𝑥𝑥 + 𝛾𝛾𝑛𝑛𝑇𝑇𝑥𝑥,

�     (4.22) 

for all 𝑥𝑥 ∈ 𝐷𝐷. 

Since 𝑇𝑇 is non-expansive, so for all 𝑥𝑥,𝑦𝑦 ∈ 𝐷𝐷, we observe that, 

‖𝑄𝑄𝑛𝑛𝑥𝑥 − 𝑄𝑄𝑛𝑛𝑦𝑦‖ = ‖(1 − 𝛾𝛾𝑛𝑛)𝑥𝑥 + 𝛾𝛾𝑛𝑛𝑇𝑇𝑥𝑥 − (1 − 𝛾𝛾𝑛𝑛)𝑦𝑦 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑦𝑦‖ 

                                    ≤ ‖𝑥𝑥 − 𝑦𝑦‖,    (4.23) 

and 

 ‖𝑅𝑅𝑛𝑛𝑥𝑥 − 𝑅𝑅𝑛𝑛𝑦𝑦‖ = ‖(1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑥𝑥 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑄𝑄𝑛𝑛𝑥𝑥 − (1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑦𝑦 + 𝛽𝛽𝑛𝑛𝑇𝑇𝑄𝑄𝑛𝑛𝑦𝑦‖ 

   ≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ + 𝛽𝛽𝑛𝑛‖𝑇𝑇𝑄𝑄𝑛𝑛𝑥𝑥 − 𝑇𝑇𝑄𝑄𝑛𝑛𝑦𝑦‖ 

≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑥𝑥 − 𝑦𝑦‖ + 𝛽𝛽𝑛𝑛‖𝑄𝑄𝑛𝑛𝑥𝑥 − 𝑄𝑄𝑛𝑛𝑦𝑦‖ 

≤ (1 − 𝛽𝛽𝑛𝑛)‖𝑥𝑥 − 𝑦𝑦‖ + 𝛽𝛽𝑛𝑛‖𝑥𝑥 − 𝑦𝑦‖ 

   ≤ ‖𝑥𝑥 − 𝑦𝑦‖.       (4.24) 

Hence by using (4.22) and (4.24), we obtain 

 ‖𝑆𝑆𝑛𝑛𝑥𝑥 − 𝑆𝑆𝑛𝑛𝑦𝑦‖ ≤ ‖𝑥𝑥 − 𝑦𝑦‖,∀ 𝑥𝑥,𝑦𝑦 ∈ 𝐷𝐷.                                        (4.25) 

Now, if we set 

 𝑊𝑊𝑛𝑛 ,𝑙𝑙 = 𝑆𝑆𝑛𝑛+𝑙𝑙−1𝑆𝑆𝑛𝑛+𝑙𝑙−2 … 𝑆𝑆𝑛𝑛 , 

and 

 𝑏𝑏𝑛𝑛 ,𝑙𝑙 = �𝑊𝑊𝑛𝑛 ,𝑙𝑙(𝑡𝑡𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡)𝑝𝑝1) − �𝑡𝑡𝑊𝑊𝑛𝑛 ,𝑙𝑙𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡)𝑝𝑝1��, 

for all 𝑙𝑙,𝑛𝑛 ∈ ℕ, then we obtain 𝑊𝑊𝑛𝑛 ,𝑙𝑙𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛+𝑙𝑙and𝑊𝑊𝑛𝑛 ,𝑙𝑙𝑝𝑝 = 𝑝𝑝,∀ 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇). 

Hence every fixed point of  𝑇𝑇 is also fixed point of 𝑊𝑊𝑛𝑛 ,𝑙𝑙 , and we have 

 �𝑊𝑊𝑛𝑛 ,𝑙𝑙𝑥𝑥 −𝑊𝑊𝑛𝑛 ,𝑙𝑙𝑦𝑦� ≤ ‖𝑥𝑥 − 𝑦𝑦‖, ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝐷𝐷.    (4.26) 

By Lemma 4.1.4, there exists a strictly increasing continuous convex function 

𝑔𝑔: [0,∞) → [0,∞) with 𝑔𝑔(0) = 0 such that  

 𝑔𝑔�𝑏𝑏𝑛𝑛 ,𝑙𝑙� ≤ ‖𝑥𝑥𝑛𝑛 − 𝑝𝑝1‖ − �𝑊𝑊𝑛𝑛 ,𝑙𝑙𝑥𝑥𝑛𝑛 −𝑊𝑊𝑛𝑛 ,𝑙𝑙𝑝𝑝1� 

    = ‖𝑥𝑥𝑛𝑛 − 𝑝𝑝1‖ − ‖𝑥𝑥𝑛𝑛+𝑙𝑙 − 𝑝𝑝1‖.     (4.27) 

Again, since lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ exists for all 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇), then by (4.27) we obtain 

lim𝑛𝑛 ,𝑙𝑙→∞ 𝑔𝑔�𝑏𝑏𝑛𝑛 ,𝑙𝑙� = 0.                           (4.28) 
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Applying the property of 𝑔𝑔 in (4.27), we have 

lim𝑛𝑛 ,𝑙𝑙→∞ 𝑏𝑏𝑛𝑛 ,𝑙𝑙 = 0.        (4.29) 

Now, we have 

 𝑎𝑎𝑛𝑛+𝑙𝑙(𝑡𝑡) = ‖𝑡𝑡𝑥𝑥𝑛𝑛+𝑙𝑙 + (1 − 𝑡𝑡)𝑝𝑝1 − 𝑝𝑝2‖ 

  = �𝑡𝑡𝑊𝑊𝑛𝑛 ,𝑙𝑙𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡)𝑝𝑝1 − 𝑝𝑝2� 

  ≤ 𝑏𝑏𝑛𝑛 ,𝑙𝑙 + �𝑊𝑊𝑛𝑛 ,𝑙𝑙(𝑡𝑡𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡)𝑝𝑝1) − 𝑝𝑝2� 

  ≤ 𝑏𝑏𝑛𝑛 ,𝑙𝑙 + �𝑊𝑊𝑛𝑛 ,𝑙𝑙(𝑡𝑡𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡)𝑝𝑝1) −𝑊𝑊𝑛𝑛 ,𝑙𝑙𝑝𝑝2� 

  ≤ 𝑏𝑏𝑛𝑛 ,𝑙𝑙 + ‖(𝑡𝑡𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡)𝑝𝑝1) − 𝑝𝑝2‖ 

  = 𝑏𝑏𝑛𝑛 ,𝑙𝑙 + 𝑎𝑎𝑛𝑛(𝑡𝑡),(4.30) 

for all 𝑡𝑡 ∈ (0, 1). 

But, we have  

 lim sup𝑙𝑙→∞ 𝑎𝑎𝑙𝑙 (𝑡𝑡) = lim sup𝑙𝑙→∞ 𝑎𝑎𝑛𝑛+𝑙𝑙(𝑡𝑡) 

                                                ≤ limsup𝑙𝑙→∞(𝑏𝑏𝑛𝑛 ,𝑙𝑙+𝑎𝑎𝑛𝑛(𝑡𝑡)).          (4.31) 

Now, from (4.29) and (4.31), we have 

 limsup𝑛𝑛→∞ 𝑎𝑎𝑛𝑛(𝑡𝑡) ≤ liminf𝑛𝑛→∞ 𝑎𝑎𝑛𝑛(𝑡𝑡). 

This implies that lim𝑛𝑛→∞ 𝑎𝑎𝑛𝑛(𝑡𝑡) exists for all 𝑡𝑡 ∈ (0, 1). Therefore, lim𝑛𝑛→∞ 𝑎𝑎𝑛𝑛(𝑡𝑡) 

exists for all 𝑡𝑡 ∈ [0, 1]. This completes our proof.∎ 

 

Now, according to Lemma 2.3 of Khan and Kim [43], we establish the 

following lemma, which will be needed to prove our next results. 

Lemma 4.1.6.Let 𝐵𝐵 be a nonempty closed convex subset of a uniformly convex 

Banach space 𝑋𝑋. Let 𝑇𝑇 be a non-expansive mapping on 𝐵𝐵, {𝑥𝑥𝑛𝑛} be a sequence 

defined by our new iterative procedure (2.18), where{𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] 

for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1) and  𝐹𝐹(𝑇𝑇) is non-empty and 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 −

𝑇𝑇𝑥𝑥𝑛𝑛‖ = 0. Then for any 𝑝𝑝1,𝑝𝑝2 ∈ 𝐹𝐹(𝑇𝑇), 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞〈𝑥𝑥𝑛𝑛 , 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉 exists;in 

particular,  

 〈𝑝𝑝 − 𝑞𝑞, 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉 = 0 

for all 𝑝𝑝, 𝑞𝑞 ∈ 𝜔𝜔𝑤𝑤(𝑥𝑥𝑛𝑛), the set of all weak limits of {𝑥𝑥𝑛𝑛}. 
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Proof.Let 𝑡𝑡 ∈ [0, 1]. Put 𝑥𝑥 = 𝑝𝑝1 − 𝑝𝑝2with 𝑝𝑝1 ≠ 𝑝𝑝2 and ℎ = 𝑡𝑡(𝑥𝑥𝑛𝑛 − 𝑝𝑝1) in the 

inequality (1.2), we get 

 1
2
‖𝑝𝑝1 − 𝑝𝑝2‖2 + 𝑡𝑡〈𝑥𝑥𝑛𝑛 − 𝑝𝑝1, 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉 

 ≤ 1
2
‖𝑡𝑡𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡)𝑝𝑝1 − 𝑝𝑝2‖2  

 ≤ 1
2
‖𝑝𝑝1 − 𝑝𝑝2‖2 + 𝑡𝑡〈𝑥𝑥𝑛𝑛 − 𝑝𝑝1, 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉 + 𝑏𝑏(𝑡𝑡‖𝑥𝑥𝑛𝑛 − 𝑝𝑝1‖).(4.32) 

But  lim𝑠𝑠𝑠𝑠𝑝𝑝𝑛𝑛≥1‖𝑥𝑥𝑛𝑛 − 𝑝𝑝1‖ ≤ 𝑀𝑀/ for some 𝑀𝑀/ > 0, so from (4.32), we have 

 1
2
‖𝑝𝑝1 − 𝑝𝑝2‖2 + 𝑡𝑡 limsup 𝑛𝑛→∞〈𝑥𝑥𝑛𝑛 − 𝑝𝑝1, 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉 

 ≤ 1
2

lim𝑛𝑛→∞‖𝑡𝑡𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡)𝑝𝑝1 − 𝑝𝑝2‖2  

 ≤ 1
2
‖𝑝𝑝1 − 𝑝𝑝2‖2 + 𝑡𝑡 liminf 𝑛𝑛→∞〈𝑥𝑥𝑛𝑛 − 𝑝𝑝1, 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉 + 𝑏𝑏�𝑡𝑡𝑀𝑀/�. 

That is,  

lim sup
𝑛𝑛→∞

〈𝑥𝑥𝑛𝑛 − 𝑝𝑝1, 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉 

≤ liminf 𝑛𝑛→∞〈𝑥𝑥𝑛𝑛 − 𝑝𝑝1, 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉 + 𝑏𝑏�𝑡𝑡𝑀𝑀/�
𝑡𝑡𝑀𝑀/ 𝑀𝑀/.    (4.33) 

Now, if we take the limit as 𝑡𝑡 → 0 on both sides of (4.33), then we get,  

 limsup 𝑛𝑛→∞〈𝑥𝑥𝑛𝑛 − 𝑝𝑝1, 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉 ≤ liminf 𝑛𝑛→∞〈𝑥𝑥𝑛𝑛 − 𝑝𝑝1, 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉.  

This implies that lim𝑛𝑛→∞〈𝑥𝑥𝑛𝑛 , 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉 exists for all 𝑝𝑝1,𝑝𝑝2 ∈ 𝐹𝐹(𝑇𝑇); in 

particular, we have 〈𝑝𝑝 − 𝑞𝑞, 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉 = 0 for all 𝑝𝑝, 𝑞𝑞 ∈ 𝜔𝜔𝑤𝑤(𝑥𝑥𝑛𝑛).∎ 

 

Lemma 4.1.7.[20] Let 𝐵𝐵 be a nonempty closed convex subset of a uniformly 

convex Banach space 𝑋𝑋 and 𝑇𝑇 a non-expansive mapping on 𝐵𝐵. Then 𝐼𝐼 − 𝑇𝑇 is 

demiclosed at zero. 

 

Lemma 4.1.8.[37] Let X be a reflexive Banach space satisfying the Opial’s 

condition, 𝐵𝐵 a nonempty convex subset of 𝑋𝑋, and 𝑇𝑇:𝐵𝐵 → 𝑋𝑋 an operator such that 

𝐼𝐼 − 𝑇𝑇 is demiclosed at zero and 𝐹𝐹(𝑇𝑇) ≠ ∅. Let {𝑥𝑥𝑛𝑛} be a sequence in 𝐵𝐵 such that 

𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛‖ = 0 and  𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ = 0 exists for all 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇). Then 

{𝑥𝑥𝑛𝑛} converges weakly to a fixed point of 𝑇𝑇. 
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Lemma 4.1.9. [60] Let X be a real reflexive Banach space such that its dual 𝑋𝑋∗ 

has the Kadec-Klee property. Let {𝑥𝑥𝑛𝑛} be a bounded sequence in 𝑋𝑋and 𝑥𝑥∗,𝑦𝑦∗ ∈

𝜔𝜔𝑤𝑤(𝑥𝑥𝑛𝑛), where 𝜔𝜔𝑤𝑤(𝑥𝑥𝑛𝑛) denotes the 𝑤𝑤 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 set of {𝑥𝑥𝑛𝑛}. Suppose 

𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞‖𝑡𝑡𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡)𝑥𝑥∗ − 𝑦𝑦∗‖ = 0 exists for all 𝑡𝑡 ∈ [0, 1]. Then 𝑥𝑥∗ =  𝑦𝑦∗. 

 

4.2Weak convergence theorem of our new iterative procedure 

 In this sectionwe establish a weak convergence theorem of our new iterative 

procedure (2.18) for non-expansive mapping under differentconditions. 

Theorem 4.2.1.Let 𝐵𝐵 be a nonempty closed convex subset of a uniformly convex 

Banach space 𝑋𝑋. Let 𝑇𝑇 be a non-expansive mapping on 𝐵𝐵, {𝑥𝑥𝑛𝑛} be a sequence 

defined by our new iterative procedure (2.18), where{𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] 

for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1) and  𝐹𝐹(𝑇𝑇) is non-empty. If any one of the 

following conditions holds:  

 (i) 𝑋𝑋 satisfies the Opial’s condition defined by Definition 1.1.14,  

 (ii) 𝑋𝑋 has a 𝐹𝐹𝑟𝑟�́�𝑒𝑐𝑐ℎ𝑒𝑒𝑡𝑡 differentiable norm defined by Definition 1.1.13, 

 (iii) the dual 𝑋𝑋∗of 𝑋𝑋 satisfies the Kadec-Klee property defined by Definition 

1.1.15. 

Then {𝑥𝑥𝑛𝑛}converges weakly to a point of 𝐹𝐹(𝑇𝑇). 

Proof.Let 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇), then by Lemma 4.1.1, lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ exists. 

In order to complete our proof, we have to show that {𝑥𝑥𝑛𝑛}has a unique weak 

subsequential limit in 𝐹𝐹(𝑇𝑇), i.e., {𝑥𝑥𝑛𝑛}converges weakly to a unique fixed point of 

𝑇𝑇. 

Let 𝑠𝑠 and 𝑣𝑣 be two weak limits of the subsequences �𝑥𝑥𝑛𝑛𝑙𝑙 � and �𝑥𝑥𝑛𝑛𝑗𝑗 �of {𝑥𝑥𝑛𝑛}, 

respectively. Now, by Lemma 4.1.3, we have lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛‖ = 0, and by 

Lemma 4.1.7 we have 𝐼𝐼 − 𝑇𝑇 is demiclosed with respect to zero. Hence, for the 

subsequences �𝑥𝑥𝑛𝑛𝑙𝑙 �and �𝑥𝑥𝑛𝑛𝑗𝑗 �, we obtain 𝑇𝑇𝑠𝑠 = 𝑠𝑠  and 𝑇𝑇𝑣𝑣 = 𝑣𝑣 respectively, i.e., 

𝑠𝑠, 𝑣𝑣 ∈ 𝐹𝐹(𝑇𝑇). 
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Now, we prove the uniqueness and for this first assume that the condition (i) 

holds.  

If 𝑠𝑠 ≠ 𝑣𝑣, then by Opial’s condition, we have 

 lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑠𝑠‖ = lim𝑙𝑙→∞�𝑥𝑥𝑛𝑛𝑙𝑙 − 𝑠𝑠� < lim𝑙𝑙→∞�𝑥𝑥𝑛𝑛𝑙𝑙 − 𝑣𝑣� 

= lim
𝑛𝑛→∞

‖𝑥𝑥𝑛𝑛 − 𝑣𝑣‖ 

     = lim𝑗𝑗→∞ �𝑥𝑥𝑛𝑛𝑗𝑗 − 𝑣𝑣� < lim𝑗𝑗→∞ �𝑥𝑥𝑛𝑛𝑗𝑗 − 𝑠𝑠� 

     = lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑠𝑠‖ 

 i.e., lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑠𝑠‖ < lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑠𝑠‖.  

This is a contradiction. Hence 𝑠𝑠 = 𝑣𝑣. 

Next, we assume that the condition (ii) holds. 

Now, by Lemma 4.1.8, we have〈𝑝𝑝 − 𝑞𝑞, 𝐽𝐽(𝑝𝑝1 − 𝑝𝑝2)〉 = 0, for all 𝑝𝑝, 𝑞𝑞 ∈ 𝜔𝜔𝑤𝑤(𝑥𝑥𝑛𝑛). 

Therefore, ‖𝑠𝑠 − 𝑣𝑣‖2 = 〈𝑠𝑠 − 𝑣𝑣, 𝐽𝐽(𝑠𝑠 − 𝑣𝑣)〉 = 0 implies 𝑠𝑠 − 𝑣𝑣. 

Finally, we assume that the condition (iii) holds. 

By Lemma 4.1.5, we have, lim𝑛𝑛→∞‖𝑡𝑡𝑥𝑥𝑛𝑛 + (1 − 𝑡𝑡)𝑠𝑠 − 𝑣𝑣‖ exists for all 𝑡𝑡 ∈

[0, 1]and 𝑠𝑠, 𝑣𝑣 ∈ 𝐹𝐹(𝑇𝑇). Hence by Lemma 4.1.9, we have 𝑠𝑠 = 𝑣𝑣, and by Lemma 

4.1.8, we have {𝑥𝑥𝑛𝑛}converges weakly to a unique fixed point of 𝑇𝑇.  

This completes the proof. ∎ 

 

4.3 Strong convergence theorems for our new iterative procedure 

 In this sectionwe establish some strong convergence theorem of our new 

iterative procedure (2.18) for non-expansive mappingunder differentconditions. 

Theorem 4.3.1 Let𝐵𝐵 be a nonempty closed convex subset of a uniformly convex 

Banach space 𝑋𝑋. Let 𝑇𝑇 be a non-expansive mapping on 𝐵𝐵, {𝑥𝑥𝑛𝑛} be a sequence 

defined by our new iterative procedure (2.18), where{𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] 

for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1) and 𝐹𝐹(𝑇𝑇) is non-empty. If 𝑇𝑇 is semicompact, 

then {𝑥𝑥𝑛𝑛} converges strongly to a fixed point of  𝑇𝑇. 

Proof.According to our assumption and by Lemma 4.1.3, we have 

lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛‖ = 0.       
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Now, since 𝑇𝑇 is semicompact, hence  {𝑥𝑥𝑛𝑛}𝑛𝑛=0
∞  has a subsequence �𝑥𝑥𝑛𝑛𝑗𝑗 � (say) 

converging to some 𝑝𝑝 ∈ 𝐵𝐵 as 𝐵𝐵 is closed. Then by the continuity of 𝑇𝑇, we have  

 lim𝑗𝑗→∞ �𝑇𝑇𝑥𝑥𝑛𝑛𝑗𝑗 − 𝑇𝑇𝑝𝑝� = 0.     (4.34) 

By applying Lemma 4.1.3 in (4.34), we obtain 

 ‖𝑇𝑇𝑝𝑝 − 𝑝𝑝‖ = 0. 

This confirm that 𝑝𝑝 is a fixed point of𝑇𝑇, i.e., 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇). 

Now, by Lemma 4.1.1, we can say that lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ exists for all 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇). 

Therefore, {𝑥𝑥𝑛𝑛} must converges to 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇). 

This completes the proof.∎ 

 

Theorem 4.3.2Let𝐵𝐵 be a nonempty closed convex subset of a uniformly convex 

Banach space 𝑋𝑋. Let 𝑇𝑇 be a non-expansive mapping on 𝐵𝐵, {𝑥𝑥𝑛𝑛} be a sequence 

defined by our new iterative procedure (2.18), where{𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] 

for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1) and 𝐹𝐹(𝑇𝑇) is non-empty. Then {𝑥𝑥𝑛𝑛}𝑛𝑛=0
∞  

converges to a point of 𝐹𝐹(𝑇𝑇) if and only iflim𝑙𝑙𝑛𝑛𝑖𝑖 𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = 0, where 

𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = 𝑙𝑙𝑛𝑛𝑖𝑖{‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖:𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇)}. 

Proof.First suppose that, liminf𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = 0. Now, by our assumption 

and Lemma 4.1.3, we have lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖ exists for all𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇), thus 

lim𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� exists. But by hypothesis,liminf𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = 0, 

therefore lim𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = 0. 

Now, we have to show that {𝑥𝑥𝑛𝑛}𝑛𝑛=0
∞  is a Cauchy sequence in𝐵𝐵. Since 

lim𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = 0, hence for given 𝜀𝜀 > 0, there exists a 𝑛𝑛0 ∈ ℕ such that, 

for all 𝑛𝑛 ≥ 𝑛𝑛0, we have 

 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� < 𝜀𝜀
2
. 

Particularly,  

 inf{‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖: 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇)} < 𝜀𝜀
2
. 



CHAPTER-4 SOME CONVERGENCE THEOREMS OF NEW FIXED POINT ITERATIVE PROCEDURE VIA NON-EXPANSIVE MAPPING 

 
50 

Hence, there exists a 𝑝𝑝1 ∈ 𝐹𝐹(𝑇𝑇) such that 

�𝑥𝑥𝑛𝑛0 − 𝑝𝑝1� < 𝜀𝜀
2
.                (4.35) 

Now, for  𝑙𝑙,𝑛𝑛 ≥ 𝑛𝑛0, we have 

 ‖𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑛𝑛‖ ≤ ‖𝑥𝑥𝑙𝑙 − 𝑝𝑝1‖ + ‖𝑥𝑥𝑛𝑛 − 𝑝𝑝1‖ < 𝜀𝜀
2

+ 𝜀𝜀
2

= 𝜀𝜀,   

     i.e., ‖𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑛𝑛‖ ≤ 𝜀𝜀. 

This proves that {𝑥𝑥𝑛𝑛} is a Cauchy sequence in𝐵𝐵.  

Now, since 𝐵𝐵 is a closed subset of a Banach space, that is 𝐵𝐵 is a closed subset of a 

complete space. Hence the sequence {𝑥𝑥𝑛𝑛} is a convergent sequence in𝐵𝐵, and for  

𝑝𝑝2 ∈ 𝐵𝐵 we have  

 lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛 = 𝑝𝑝2.                                                                     (4.36) 

Again, since 𝐹𝐹(𝑇𝑇) is closed, therefore  lim𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = 0 and (4.35) gives 

 𝑑𝑑�𝑝𝑝2, 𝐹𝐹(𝑇𝑇)� = 0, 𝑙𝑙. 𝑒𝑒. ,𝑝𝑝2 ∈  𝐹𝐹(𝑇𝑇). 

Therefore, {𝑥𝑥𝑛𝑛} converges to a point of 𝐹𝐹(𝑇𝑇). 

Conversely, suppose {𝑥𝑥𝑛𝑛} converges to a point of𝐹𝐹(𝑇𝑇), hence for all 𝑝𝑝3 ∈  𝐹𝐹(𝑇𝑇), 

we have 

 lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛 = 𝑝𝑝3 

⟹ lim
𝑛𝑛→∞

‖𝑥𝑥𝑛𝑛 − 𝑝𝑝3‖ = 0.                                                                     (4.37) 

But, we have𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = inf{‖𝑥𝑥𝑛𝑛 − 𝑝𝑝3‖:𝑝𝑝3 ∈ 𝐹𝐹(𝑇𝑇)}, therefore from (4.37), 

we obtain 

 lim𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = 0 

⟹ liminf𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = 0. 

This completes the proof.∎ 

 

Theorem 4.3.3Let𝐵𝐵 be a nonempty closed convex subset of a uniformly convex 

Banach space 𝑋𝑋. Let 𝑇𝑇 be a non-expansive mapping on 𝐵𝐵, {𝑥𝑥𝑛𝑛} be a sequence 

defined by our new iterative procedure (2.7), where{𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] 

for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1) and 𝐹𝐹(𝑇𝑇) is non-empty. If  𝑇𝑇 satisfy 
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Condition (I)defined by Definition 1.1.18, then {𝑥𝑥𝑛𝑛} converges strongly to a fixed 

point of  𝑇𝑇. 

Proof. By Lemma 4.1.3, we have 

lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛‖ = 0.      (4.38) 

Since 𝑇𝑇 satisfy Condition (I), hence from (4.38), we have 

 lim𝑛𝑛→∞ ℎ �𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)�� ≤ lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛‖ = 0,  

⟹ lim𝑛𝑛→∞ ℎ �𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)�� = 0. 

 ⟹ ℎ�lim𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)�� = 0.     (4.39) 

According to the Condition (I), we have ℎ: [0,∞) → [0,∞) is a non-decreasing 

function with ℎ(0) = 0,ℎ(𝑟𝑟) > 0 for all 𝑟𝑟 ∈ (0, 1). Hence from (4.39), we obtain 

 lim𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = 0, 

 ⟹ liminf𝑛𝑛→∞ 𝑑𝑑�𝑥𝑥𝑛𝑛 ,𝐹𝐹(𝑇𝑇)� = 0.                                                                          

Therefore, we observe that all the conditions of our theorem 4.3.1 already have 

satisfied.Hence by the theorem 4.3.1, we can say that {𝑥𝑥𝑛𝑛} converges strongly to a 

fixed point of 𝑇𝑇.  

This completes the proof.∎ 
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CHAPTER-5 

SOME FIXED POINT ITERATIVE PROCEDURES 

WITH ERRORS 

 

In this chapter, we will recall some fixed point iterative procedures with 

errors and state the convergence theorem of S. Plubtieng and R. Wangkeeree [42] 

for multi-step Noor fixed point iterative procedure with errors. 

 

5.1 Multi-step Noor fixed point iterative procedure with errors 

In 2006, S. Plubtieng and R. Wangkeeree [42] introduced the following 

multi-step Noor fixed point iterative procedure with errors:  

Definition 5.1.1. [42] Let 𝐵𝐵 be a nonempty subset of an arbitrary normed space 𝑋𝑋 

and let 𝑇𝑇 be a mapping from 𝐵𝐵 into itself. Then the multi-step Noor fixed point 

iterative procedure with errors is defined as follows. 

For a given, 𝑢𝑢0 ∈ 𝐵𝐵, and a fixed 𝑚𝑚 ∈ ℕ, compute the iterative sequences 

�𝑢𝑢𝑛𝑛
(1)� , … , �𝑢𝑢𝑛𝑛

(𝑚𝑚)�defined by 

 �

𝑢𝑢𝑛𝑛
(1) = 𝑎𝑎𝑛𝑛

(1)𝑇𝑇𝑢𝑢𝑛𝑛 + 𝑏𝑏𝑛𝑛
(1)𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛

(1)𝑣𝑣𝑛𝑛
(1)

𝑢𝑢𝑛𝑛
(2) = 𝑎𝑎𝑛𝑛

(2)𝑇𝑇𝑢𝑢𝑛𝑛
(1) + 𝑏𝑏𝑛𝑛

(2)𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛
(2)𝑣𝑣𝑛𝑛

(2)

𝑢𝑢𝑛𝑛
(3) = 𝑎𝑎𝑛𝑛

(3)𝑇𝑇𝑢𝑢𝑛𝑛
(2) + 𝑏𝑏𝑛𝑛

(3)𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛
(3)𝑣𝑣𝑛𝑛

(3)

⋮
⋮

𝑢𝑢𝑛𝑛
(𝑚𝑚−1) = 𝑎𝑎𝑛𝑛

(𝑚𝑚−1)𝑇𝑇𝑢𝑢𝑛𝑛
(𝑚𝑚−2) + 𝑏𝑏𝑛𝑛

(𝑚𝑚−1)𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛
(𝑚𝑚−1)𝑣𝑣𝑛𝑛

(𝑚𝑚−1)

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛
(𝑚𝑚) = 𝑎𝑎𝑛𝑛

(𝑚𝑚)𝑇𝑇𝑢𝑢𝑛𝑛
(𝑚𝑚−1) + 𝑏𝑏𝑛𝑛

(𝑚𝑚)𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛
(𝑚𝑚)𝑣𝑣𝑛𝑛

(𝑚𝑚),𝑛𝑛 ∈ ℕ⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 (5.1) 

where,�𝑣𝑣𝑛𝑛
(1)� , �𝑣𝑣𝑛𝑛

(2)� , �𝑣𝑣𝑛𝑛
(3)� , … , �𝑣𝑣𝑛𝑛

(𝑚𝑚)� are bounded sequences in 𝐵𝐵 and 

�𝑎𝑎𝑛𝑛
(𝑖𝑖)� , �𝑏𝑏𝑛𝑛

(𝑖𝑖)� , �𝑐𝑐𝑛𝑛
(𝑖𝑖)� are appropriate real sequences in (0, 1)such that 𝑎𝑎𝑛𝑛

(𝑖𝑖) + 𝑏𝑏𝑛𝑛
(𝑖𝑖) +

𝑐𝑐𝑛𝑛
(𝑖𝑖) = 1 for each 𝑖𝑖 ∈ {1, 2,⋯ ,𝑚𝑚}. 
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The following lemma and theorem established by S. Plubtieng and R. 

Wangkeeree[42] to prove the convergence of multi-step Noor fixed point iterative 

procedure with errors for asymptotically non-expansive mapping in the 

indeterminate sense. 

Lemma 5.1.2.[42]Let 𝑋𝑋 be a uniformly convex Banach space, 𝐶𝐶 a nonempty 

closed bounded convex subset of 𝑋𝑋 and 𝑇𝑇:𝐶𝐶 → 𝐶𝐶 be continuous asymptotically 

non-expansive mapping in the intermediate sense. Put 

 𝐺𝐺𝑛𝑛 = 𝑠𝑠𝑢𝑢𝑠𝑠𝑥𝑥 ,𝑦𝑦∈𝐶𝐶(‖𝑇𝑇𝑛𝑛𝑥𝑥 − 𝑇𝑇𝑛𝑛𝑦𝑦‖ − ‖𝑥𝑥 − 𝑦𝑦‖) ∨ 0, ∀ 𝑛𝑛 ≥ 1, 

so that ∑ 𝐺𝐺𝑛𝑛∞
𝑛𝑛=1 < ∞. Let the sequence �𝑢𝑢𝑛𝑛

(𝑘𝑘)�be defined by (5.1) with the 

following restrictions:  

(i) 𝑎𝑎𝑛𝑛
(𝑖𝑖) + 𝑏𝑏𝑛𝑛

(𝑖𝑖) + 𝑐𝑐𝑛𝑛
(𝑖𝑖) = 1  forall𝑖𝑖 ∈ {1, 2, 3, … ,𝑚𝑚} and for all 𝑛𝑛 ≥ 1; 

(ii)𝑛𝑛 ≥ 1∑ 𝑐𝑐𝑛𝑛
(𝑖𝑖)∞

𝑛𝑛=1 < ∞for all 𝑖𝑖 ∈ {1, 2, 3, … ,𝑚𝑚}.  

If 𝑠𝑠 ∈ 𝐹𝐹(𝑇𝑇), then 𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛→∞‖𝑥𝑥𝑛𝑛 − 𝑠𝑠‖exists. 

Theorem 5.1.3. [42]Let 𝑋𝑋 be a uniformly convex Banach space, 𝐶𝐶 a nonempty 

closed bounded convex subset of 𝑋𝑋 and 𝑇𝑇:𝐶𝐶 → 𝐶𝐶 be continuous asymptotically 

non-expansive mapping in the intermediate sense. Put 

 𝐺𝐺𝑛𝑛 = 𝑠𝑠𝑢𝑢𝑠𝑠𝑥𝑥 ,𝑦𝑦∈𝐶𝐶(‖𝑇𝑇𝑛𝑛𝑥𝑥 − 𝑇𝑇𝑛𝑛𝑦𝑦‖ − ‖𝑥𝑥 − 𝑦𝑦‖) ∨ 0, ∀ 𝑛𝑛 ≥ 1, 

sothat ∑ 𝐺𝐺𝑛𝑛∞
𝑛𝑛=1 < ∞. Let the sequence �𝑢𝑢𝑛𝑛

(𝑘𝑘)�be defined by (5.1) whenever 

�𝑎𝑎𝑛𝑛
(𝑖𝑖)� , �𝑏𝑏𝑛𝑛

(𝑖𝑖)� , �𝑐𝑐𝑛𝑛
(𝑖𝑖)� satisfy the same assumptions as in Lemma 5.1.2 for each 

𝑖𝑖 ∈ {1, 2, 3, … ,𝑚𝑚} and the additional assumption that 0 < 𝑎𝑎 ≤ 𝑎𝑎𝑛𝑛
(𝑚𝑚−1),𝑎𝑎𝑛𝑛

(𝑚𝑚) ≤

𝑏𝑏 < 1 for all 𝑛𝑛 ≥ 𝑛𝑛0 for some 𝑛𝑛0 ∈ ℕ. Then �𝑢𝑢𝑛𝑛
(𝑘𝑘)� converges strongly to a fixed 

point of 𝑇𝑇 for each 𝑘𝑘 = 1, 2,3, … ,𝑚𝑚. 
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5.2 Noor iterative procedure with errors defined by Cho et al. 

In 2004, Y.J. Cho, H. Zhou, G. Guo [63] introduced the following three-step 

Noor fixed point iterative procedure with errors: 

Definition 5.2.1.[63] Let 𝐵𝐵 be a nonempty subset of an arbitrary normed space 𝑋𝑋 

and let 𝑇𝑇 be a mapping from 𝐵𝐵 into itself. Then the Noor fixed point iterative 

procedure with errors is defined as follows. 

For a given, 𝑢𝑢0 ∈ 𝐵𝐵,compute the iterative sequences �𝑢𝑢𝑛𝑛
(1)� , �𝑢𝑢𝑛𝑛

(2)� , �𝑢𝑢𝑛𝑛
(3)� 

defined by 

 �

𝑢𝑢𝑛𝑛
(1) = 𝑎𝑎𝑛𝑛

(1)𝑇𝑇𝑢𝑢𝑛𝑛 + �1 − 𝑎𝑎𝑛𝑛
(1) − 𝑐𝑐𝑛𝑛

(1)� 𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛
(1)𝑣𝑣𝑛𝑛

(1)

𝑢𝑢𝑛𝑛
(2) = 𝑎𝑎𝑛𝑛

(2)𝑇𝑇𝑢𝑢𝑛𝑛
(1) + �1 − 𝑎𝑎𝑛𝑛

(2) − 𝑐𝑐𝑛𝑛
(2)� 𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛

(2)𝑣𝑣𝑛𝑛
(2)

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛
(3) = 𝑎𝑎𝑛𝑛

(3)𝑇𝑇𝑢𝑢𝑛𝑛
(2) + �1 − 𝑎𝑎𝑛𝑛

(3) − 𝑐𝑐𝑛𝑛
(3)� 𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛

(3)𝑣𝑣𝑛𝑛
(2),𝑛𝑛 ∈ ℕ⎭

⎪
⎬

⎪
⎫

(5.2) 

where�𝑎𝑎𝑛𝑛
(𝑖𝑖)� , �𝑐𝑐𝑛𝑛

(𝑖𝑖)�are appropriate real sequences in (0, 1)for all 𝑖𝑖 ∈ {1,2, 3}.. 

If 𝑐𝑐𝑛𝑛
(1) = 𝑐𝑐𝑛𝑛

(2) = 𝑐𝑐𝑛𝑛
(3) ≡ 0, then (5.2) reduces to following Noor iterative 

procedurewhich is given by Noor et al. [19-22]: 

 �

𝑢𝑢𝑛𝑛
(1) = 𝑎𝑎𝑛𝑛

(1)𝑇𝑇𝑢𝑢𝑛𝑛 + �1 − 𝑎𝑎𝑛𝑛
(1)� 𝑢𝑢𝑛𝑛

𝑢𝑢𝑛𝑛
(2) = 𝑎𝑎𝑛𝑛

(2)𝑇𝑇𝑢𝑢𝑛𝑛
(1) + �1 − 𝑎𝑎𝑛𝑛

(2)� 𝑢𝑢𝑛𝑛

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛
(3) = 𝑎𝑎𝑛𝑛

(3)𝑇𝑇𝑢𝑢𝑛𝑛
(2) + �1 − 𝑎𝑎𝑛𝑛

(3)� 𝑢𝑢𝑛𝑛 , 𝑛𝑛 ∈ ℕ⎭
⎪
⎬

⎪
⎫

          (5.3) 

where�𝑎𝑎𝑛𝑛
(𝑖𝑖)� are appropriate real sequences in (0, 1)for all 𝑖𝑖 ∈ {1,2, 3}. 

 

5.3 Ishikawa iterative procedure with errors defined by Y. Xu 

In 1998, Y. Xu [62] introduced the following two-step Ishikawa fixed point 

iterative procedure with errors: 

Definition 5.3.1. [62] Let 𝐵𝐵 be a nonempty subset of an arbitrary normed space 𝑋𝑋 

and let 𝑇𝑇 be a mapping from 𝐵𝐵 into itself. Then the Ishikawa fixed point iterative 

procedure with errors defined by Y. Xu is defined as follows. 
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For a given, 𝑢𝑢0 ∈ 𝐵𝐵 compute the iterative sequences �𝑢𝑢𝑛𝑛
(1)� , �𝑢𝑢𝑛𝑛

(2)�defined 

by 

 � 𝑢𝑢𝑛𝑛
(1) = 𝑎𝑎𝑛𝑛

(1)𝑇𝑇𝑢𝑢𝑛𝑛 + 𝑏𝑏𝑛𝑛
(1)𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛

(1)𝑣𝑣𝑛𝑛
(1)

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛
(2) = 𝑎𝑎𝑛𝑛

(2)𝑇𝑇𝑢𝑢𝑛𝑛
(1) + 𝑏𝑏𝑛𝑛

(2)𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛
(2)𝑣𝑣𝑛𝑛

(2), 𝑛𝑛 ∈ ℕ
�  (5.4) 

where�𝑣𝑣𝑛𝑛
(1)� , �𝑣𝑣𝑛𝑛

(2)� are bounded sequences in 𝐵𝐵 and �𝑎𝑎𝑛𝑛
(𝑖𝑖)� , �𝑏𝑏𝑛𝑛

(𝑖𝑖)� , �𝑐𝑐𝑛𝑛
(𝑖𝑖)�are 

appropriate real sequences in [0, 1]for all 𝑖𝑖 ∈ {1,2}. 

If 𝑏𝑏𝑛𝑛
(𝑖𝑖) = 1 − 𝑎𝑎𝑛𝑛

(𝑖𝑖) and 𝑐𝑐𝑛𝑛
(𝑖𝑖) ≡ 0 for all 𝑖𝑖 = 1, 2,  then (5.4) reduces to the 

following two-step Ishikawa iterative procedure defined by S. Ishikawa [11]: 

 � 𝑢𝑢𝑛𝑛
(1) = 𝑎𝑎𝑛𝑛

(1)𝑇𝑇𝑢𝑢𝑛𝑛 + (1 − 𝑎𝑎𝑛𝑛
(1))𝑢𝑢𝑛𝑛

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛
(2) = 𝑎𝑎𝑛𝑛

(2)𝑇𝑇𝑢𝑢𝑛𝑛
(1) + (1 − 𝑎𝑎𝑛𝑛

(2))𝑢𝑢𝑛𝑛 , 𝑛𝑛 ∈ ℕ
�        (5.5) 

where�𝑎𝑎𝑛𝑛
(𝑖𝑖)� are appropriate real sequences in (0, 1)for all 𝑖𝑖 ∈ {1,2}. 

 

5.4 Ishikawa iterative procedure with errors defined by L.S. Lu 

In 1995, L.S. Lu [22] introduced the following two-step Ishikawa fixed 

point iterative procedure with errors: 

Definition 5.4.1. [22] Let 𝐵𝐵 be a nonempty subset of an arbitrary normed space 𝑋𝑋 

and let 𝑇𝑇 be a mapping from 𝐵𝐵 into itself. Then the Ishikawa fixed point iterative 

procedure with errors defined by L.S. Lu is defined as follows. 

For a given, 𝑢𝑢0 ∈ 𝐵𝐵 compute the iterative sequences �𝑢𝑢𝑛𝑛
(1)� , �𝑢𝑢𝑛𝑛

(2)�defined 

by 

 � 𝑢𝑢𝑛𝑛
(1) = 𝑎𝑎𝑛𝑛

(1)𝑇𝑇𝑢𝑢𝑛𝑛 + 𝑏𝑏𝑛𝑛
(1)𝑢𝑢𝑛𝑛 + 𝑣𝑣𝑛𝑛

(1)

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛
(2) = 𝑎𝑎𝑛𝑛

(2)𝑇𝑇𝑢𝑢𝑛𝑛
(1) + 𝑏𝑏𝑛𝑛

(2)𝑢𝑢𝑛𝑛 + 𝑣𝑣𝑛𝑛
(2), 𝑛𝑛 ∈ ℕ

� (5.6) 

where�𝑣𝑣𝑛𝑛
(1)� , �𝑣𝑣𝑛𝑛

(2)� are bounded sequences in 𝐵𝐵 and�𝑎𝑎𝑛𝑛
(𝑖𝑖)� , �𝑏𝑏𝑛𝑛

(𝑖𝑖)�are appropriate 

real sequences in (0, 1)for all 𝑖𝑖 ∈ {1,2}. 
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5.5 Mann iterative procedure with errors defined by Y. Xu 

 In 1998, Y. Xu [62] introduced the following one-step Mann fixed 

point iterative procedure with errors: 

Definition 5.5.1. [62] Let 𝐵𝐵 be a nonempty subset of an arbitrary normed space 𝑋𝑋 

and let 𝑇𝑇 be a mapping from 𝐵𝐵 into itself. Then the Mann fixed point iterative 

procedure with errors given by Y. Xu[62] is defined as follows. 

For a given, 𝑢𝑢0 ∈ 𝐵𝐵 compute the iterative sequence �𝑢𝑢𝑛𝑛
(1)�defined by 

 �𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛
(1) = 𝑎𝑎𝑛𝑛

(1)𝑇𝑇𝑢𝑢𝑛𝑛 + 𝑏𝑏𝑛𝑛
(1)𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛

(1)𝑣𝑣𝑛𝑛
(1), 𝑛𝑛 ∈ ℕ�              (5.7) 

where�𝑣𝑣𝑛𝑛
(1)� is bounded sequence in 𝐵𝐵 and�𝑎𝑎𝑛𝑛

(1)� , �𝑏𝑏𝑛𝑛
(1)� , �𝑐𝑐𝑛𝑛

(1)�are appropriate 

real sequences in(0, 1). 

If  𝑏𝑏𝑛𝑛
(1) = 1 − 𝑎𝑎𝑛𝑛

(1)and 𝑐𝑐𝑛𝑛
(1) = 0, then (5.7) reduces to the following Mann 

iterative procedure defined by W. R. Mann [53]: 

 �𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛
(1) = 𝑎𝑎𝑛𝑛

(1)𝑇𝑇𝑢𝑢𝑛𝑛 + (1 − 𝑎𝑎𝑛𝑛
(1))𝑢𝑢𝑛𝑛 , 𝑛𝑛 ∈ ℕ�   (5.8)                 

where{ })1(
na  are appropriate real sequences in(0, 1). 

If𝑏𝑏𝑛𝑛
(1) = 1 − 𝑎𝑎𝑛𝑛

(1), 𝑐𝑐𝑛𝑛
(1) = 0and  𝑎𝑎𝑛𝑛

(1) = 𝜆𝜆 ∈ (0, 1)then (5.8) reduces to the 

following Krasnoselskij’s iterative procedure defined by M. A. Krasnoselskij [23]: 

 �𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛
(1) = 𝜆𝜆𝑇𝑇𝑢𝑢𝑛𝑛 + (1 − 𝜆𝜆)𝑢𝑢𝑛𝑛 , 𝑛𝑛 ∈ ℕ�.      (5.9) 

 

5.6Mann iterative procedure with errors defined by L.S. Lu 

In 1995, L.S. Lu [22] introduced the following one-step Mann fixed point 

iterative procedure with errors: 

Definition 5.4.1. [22] Let 𝐵𝐵 be a nonempty subset of an arbitrary normed space 𝑋𝑋 

and let 𝑇𝑇 be a mapping from 𝐵𝐵 into itself. Then the Mann fixed point iterative 

procedure with errors defined by L.S. Lu [18]is defined as follows. 

For a given, 𝑢𝑢0 ∈ 𝐵𝐵 compute the iterative sequence�𝑢𝑢𝑛𝑛
(1)�defined by 

 �𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛
(1) = 𝑎𝑎𝑛𝑛

(1)𝑇𝑇𝑢𝑢𝑛𝑛 + 𝑏𝑏𝑛𝑛
(1)𝑢𝑢𝑛𝑛 + 𝑣𝑣𝑛𝑛

(1), 𝑛𝑛 ∈ ℕ�  (5.10) 
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where�𝑣𝑣𝑛𝑛
(1)� is bounded sequence in 𝐵𝐵 and �𝑎𝑎𝑛𝑛

(1)� , �𝑏𝑏𝑛𝑛
(1)�are appropriate real 

sequences in (0, 1). 

 

5.7 Generalization of multi-step Noor fixed point iterative procedure with 

errors 

The Mann iterative procedure (5.8), Ishikawa iterative procedure (5.5), Noor 

iterative procedure (5.3), Krasnoselskij’s iterative procedure (5.9), Mann iterative 

procedure with errors defined by Y. Xu (5.7), Mann iterative procedure with errors 

defined by L.S. Lu (5.10), Ishikawaiterative procedure with errors defined by Y. 

Xu (5.4), Ishikawaiterative procedure with errors defined by L.S. Lu (5.6) and 

Noor iterative procedure with errors defined Cho et al. (5.2) all are special case of 

multi-step Noor fixed point iterative procedure with errors (5.1), which will be 

trustworthy by the following discussion: 

If 𝑚𝑚 = 3 and 𝑏𝑏𝑛𝑛
(𝑖𝑖) = 1 − 𝑎𝑎𝑛𝑛

(𝑖𝑖) − 𝑐𝑐𝑛𝑛
(𝑖𝑖) for all 𝑖𝑖 = 1, 2, 3 then multi-step Noor 

fixed point iterative procedure with errors(5.1) reduces to Noor iterative procedure 

with errors defined by Cho et al.(5.2). 

If 𝑚𝑚 = 3, 𝑏𝑏𝑛𝑛
(𝑖𝑖) = 1 − 𝑎𝑎𝑛𝑛

(𝑖𝑖) − 𝑐𝑐𝑛𝑛
(𝑖𝑖)for all 𝑖𝑖 = 1, 2, 3 and 𝑐𝑐𝑛𝑛

(1) = 𝑐𝑐𝑛𝑛
(2) = 𝑐𝑐𝑛𝑛

(3) ≡

0, then multi-step Noor fixed point iterative procedure with errors(5.1) reduces to 

Noor iterative procedure defined by Noor et al.(5.3). 

If 𝑚𝑚 = 2 thenthe multi-step Noor fixed point iterative procedure with errors 

(5.1) reduces to Ishikawa iterative procedure with errors defined by Y. Xu (5.4). 

If 𝑚𝑚 = 2, and 𝑐𝑐𝑛𝑛
(1) = 𝑐𝑐𝑛𝑛

(2) ≡ 1 then the multi-step Noor fixed point iterative 

procedure with errors (5.1) reduces to Ishikawa iterative procedure with errors 

defined by L.S. Lu (5.6). 

If 𝑚𝑚 = 2, 𝑏𝑏𝑛𝑛
(𝑖𝑖) = 1 − 𝑎𝑎𝑛𝑛

(𝑖𝑖) − 𝑐𝑐𝑛𝑛
(𝑖𝑖)for all 𝑖𝑖 = 1, 2and 𝑐𝑐𝑛𝑛

(1) = 𝑐𝑐𝑛𝑛
(2) ≡ 0, then the 

multi-step Noor fixed point iterative procedure with errors (5.1) reduces to 

Ishikawa iterative procedure (5.5). 
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If𝑚𝑚 = 1 then the multi-step Noor fixed point iterative procedure with errors 

(5.1) reduces to Mann iterative procedure with errors defined by Y. Xu(5.7). 

If 𝑚𝑚 = 1, 𝑐𝑐𝑛𝑛
(1) = 1then the multi-step Noor fixed point iterative procedure 

with errors (5.1)reduces to Mann iterative procedure with errors defined by L.S. 

Lu (5.10). 

If 𝑚𝑚 = 1, 𝑏𝑏𝑛𝑛
(1) = 1 − 𝑎𝑎𝑛𝑛

(1) − 𝑐𝑐𝑛𝑛
(1)and 𝑐𝑐𝑛𝑛

(1) = 0, then the multi-step Noor 

fixed point iterative procedure with errors (5.1) reduces to Mann iterative 

procedure(5.8). 

 If 𝑚𝑚 = 1, 𝑏𝑏𝑛𝑛
(1) = 1 − 𝑎𝑎𝑛𝑛

(1) − 𝑐𝑐𝑛𝑛
(1)

,𝑐𝑐𝑛𝑛
(1) = 0 and  𝑎𝑎𝑛𝑛

(1) = 𝜆𝜆 ∈ (0, 1)then the 

multi-step Noor fixed point iterative procedure with errors (5.1)reduces to 

Krasnoselskij’s iterative procedure (5.9). 

Therefore, it is clear from above discussion that multi-step Noor fixed point 

iterative procedurewith errors (5.1) is a general iterative procedure among the 

analogous iterative procedures. From this point of view, in the next chapter we 

have established convergence theorem of multi-step Noor fixed point iterative 

procedurewith errors for more general Zamfirescu operator, which generates the 

convergence theorem of other relevant iterative procedures for Zamfirescu 

operator. 

 

 



CHAPTER-6 

CONVERGENCE THEOREM OF MULTI-STEP 

NOOR FIXED POINT ITERATIVE PROCEDURE 

WITH ERRORS VIA ZAMFIRESCU OPERATORS 
 

In this chapter,we establish a general theorem to approximate fixed point of 

Zamfirescu operators on an arbitrary normed space through the multi-step Noor 

fixed point iterative procedure with errors in the sense of S. Plubtieng and R. 

Wangkeeree [42]. Our result generalizes and improves the corresponding results of 

A. Rafiq [2], Y. Xu [58], L. S. Liu [22], M. O. Osilike [29] and various authors in 

literature. 

 

6.1 Background of our convergence theorem of multi-step Noor fixed point 

iterative procedure with errors 

One of the most studied classes of quasi contractive type operators is that of 

Zamfirescu operator, for which all important fixed point iteration procedures, i.e., 

the Picard [46], Mann [53], Ishikawa [40], Noor [24-26] iterative procedures are 

known to converge to the unique fixed point of 𝑇𝑇. T. Zamfirescu showed in [46] 

that an operator satisfying conditions in Theorem 1.6.5 has a unique fixed point 

that can be approximated using the Picard iteration scheme. Later, Rhoades [4, 5] 

proved that the Mann and Ishikawa iterative procedures can also be used to 

approximate fixed points of Zamfirescu operator.The class of operators satisfying 

Zamfirescuconditions is independent; see for instance Rhoades [5]. The class of 

strictly pseudocontractive operators has been extensively studied by several 

authors in the last years. For a recent survey and a comprehensive bibliography, 

we refer to the V. Berinde’s monograph [49]. In 2003, 2004 and 2007, V. Berinde 

[49-52] proved the convergence theorems in arbitrary Banach spaces of the Mann 
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and Ishikawa iterativeprocedures associated to Zamfirescu operator for extending 

the results of B.E. Rhoades [5].  In 2006, A. Rafiq [2] extends the result of V. 

Berinde [49-52]. Recently in 2013, Asaduzzamanet al. [33] extend the result of V. 

Berinde [49-52] and A. Rafiq [2] for Noor iterative procedure using Zamfirescu 

operator as follows.  

Theorem 6.1.1.[33] Let X  be an arbitrary Banach space, B be a nonempty closed 

convex subset of X and BBT →:  be a Zamfirescu operator. Let )(TFp∈ be a fixed 

point of T , where )(TF  denotes the set of fixed points of T . Let { }∞=0nnx  be the Noor 

iterative procedure defined by (1.3)and Bx ∈0 . Then the Noor iterative procedure

{ }∞=0nnx  strongly converges to the fixed point )(TFp∈ . 

There is a certain gap in the above described results. Actually in the above 

described results, different types of fixed point iterative procedures associated with 

Zamfirescu operator have been considered without errors. To fill up this gap here 

we have established a general convergence theorem to approximate fixed point of 

Zamfirescu operator on an arbitrary normed space through the multi-step Noor 

fixed point iterative procedure with errors in the sense of S. Plubtieng and R. 

Wangkeeree [42], which  generates the rest. So, the main purpose of our present 

chapter is to recognized a convergence theorem for muti-step Noor fixed point 

iterative procedure with errors defined by (5.1) in the class of Zamfirescu operator 

on arbitrary normed spaces. Our result generalizes and improves upon, among 

others, the corresponding results of A. Rafiq [3]. 

Now we state a lemma of M. O. Osilike [28], which is needed to prove our 

theorem. 

Lemma 6.1.2. [28] Let {𝑟𝑟𝑛𝑛}, {𝑠𝑠𝑛𝑛}, {𝑡𝑡𝑛𝑛} and {𝑘𝑘𝑛𝑛} be sequences of nonnegative 

numbers satisfying  

 𝑟𝑟𝑛𝑛+1 ≤ (1 − 𝑠𝑠𝑛𝑛)𝑟𝑟𝑛𝑛 + 𝑠𝑠𝑛𝑛𝑡𝑡𝑛𝑛 + 𝑘𝑘𝑛𝑛 for all 𝑛𝑛 ≥ 1. 

If ∑ 𝑠𝑠𝑛𝑛∞
𝑛𝑛=1 = ∞, 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞ 𝑡𝑡𝑛𝑛 = 0 and ∑ 𝑘𝑘𝑛𝑛∞

𝑛𝑛=1 < ∞ hold, then 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞ 𝑟𝑟𝑛𝑛 = 0. 
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6.2 Convergence theorem for multi-step Noor fixed point iterative procedure 

with errors 

 In this section we sate and prove a convergence theorem for multi-step 

iterative procedure by using Zamfirescu operator, which have generate the 

analogous results of different fixed point iterative procedures. 

Theorem 6.2.1.Let 𝐵𝐵 be a nonempty closed convex subset of an arbitrary normed 

space𝑋𝑋. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵 be a Zamfirescu operator. Let �𝑢𝑢𝑛𝑛
(𝑘𝑘)�be a sequence defined 

by multi-step Noor fixed point iterative procedurewith errors (5.1), for each  𝑘𝑘 =

1, 2, 3, … ,𝑙𝑙and 𝑛𝑛 ∈ ℕ. If 𝐹𝐹(𝑇𝑇) ≠ ∅, ∑ 𝑎𝑎𝑛𝑛
(𝑘𝑘)∞

𝑛𝑛=1 = ∞, and 

�𝑣𝑣𝑛𝑛
(𝑘𝑘) − 𝑢𝑢𝑛𝑛� = 0 �𝑎𝑎𝑛𝑛

(𝑘𝑘)�, 

for each  𝑘𝑘 = 1, 2, 3, … ,𝑙𝑙 and 𝑛𝑛 ∈ ℕ. Then �𝑢𝑢𝑛𝑛
(𝑘𝑘)�converges strongly to a fixed 

point of  𝑇𝑇. 

Proof.According to our assumption 𝑇𝑇 is a Zamfirescu operator, so by Theorem 

1.6.5, we know that 𝑇𝑇 has a unique fixed point in 𝐵𝐵, say 𝑝𝑝 

 i.e., 𝑇𝑇𝑝𝑝 = 𝑝𝑝.          (6.1) 

Now, we combine the Zamfirescu conditions according to the approach of 

V. Berinde [49-52]. Since 𝑇𝑇is a Zamfirescu operator, hence 𝑇𝑇 is satisfied at least 

one of the Zamfirescu conditions (𝑧𝑧1), (𝑧𝑧2) and (𝑧𝑧3) defined by the Theorem 

1.6.5. 

If  𝑇𝑇 satisfies  (𝑧𝑧2), then for all 𝑥𝑥,𝑦𝑦 ∈ 𝐵𝐵 we have 

 ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝑏𝑏[‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ + ‖𝑦𝑦 − 𝑇𝑇𝑦𝑦‖] 

  ≤ 𝑏𝑏[‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ + ‖𝑦𝑦 − 𝑥𝑥‖ + ‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ + ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖], 

which implies 

 ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝑏𝑏
1−𝑏𝑏

‖𝑥𝑥 − 𝑦𝑦‖ + 2𝑏𝑏
1−𝑏𝑏

‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ .     (6.2) 

If  𝑇𝑇 satisfies  (𝑧𝑧3), then for all 𝑥𝑥,𝑦𝑦 ∈ 𝐵𝐵 similarly we obtain  

 ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝑐𝑐
1−𝑐𝑐

‖𝑥𝑥 − 𝑦𝑦‖ + 2𝑐𝑐
1−𝑐𝑐

‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ .    (6.3) 
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Now, if we take 

 𝛿𝛿 = 𝑙𝑙𝑎𝑎𝑥𝑥 �𝑎𝑎, 𝑏𝑏
1−𝑏𝑏

, 𝑐𝑐
1−𝑐𝑐

�.         (6.4)  

Then we have 0 ≤ 𝛿𝛿 < 1 and in view of (𝑧𝑧1) and (6.2) to (6.4), we obtained the 

following inequality. 

 ‖𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑦𝑦‖ ≤ 𝛿𝛿‖𝑥𝑥 − 𝑦𝑦‖ + 2𝛿𝛿‖𝑥𝑥 − 𝑇𝑇𝑥𝑥‖ .    (6.5) 

If we suppose�𝑢𝑢𝑛𝑛
(𝑘𝑘)�be a multi-step Noor fixed point iterative procedurewith errors 

defined by (5.1) and 𝑢𝑢0 ∈ 𝐵𝐵 arbitrary, then we have 

 ‖𝑢𝑢𝑛𝑛+1 − 𝑝𝑝‖ = �𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑇𝑇𝑢𝑢𝑛𝑛

(𝑙𝑙−1) + 𝑏𝑏𝑛𝑛
(𝑙𝑙)𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛

(𝑙𝑙)𝑣𝑣𝑛𝑛
(𝑙𝑙) − 𝑝𝑝�.       (6.6) 

Since 𝑎𝑎𝑛𝑛
(𝑙𝑙) + 𝑏𝑏𝑛𝑛

(𝑙𝑙) + 𝑐𝑐𝑛𝑛
(𝑙𝑙) = 1, hence from (2.6) we have 

‖𝑢𝑢𝑛𝑛+1 − 𝑝𝑝‖ = �(1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙))(𝑢𝑢𝑛𝑛 − 𝑝𝑝) + 𝑎𝑎𝑛𝑛

(𝑙𝑙) �𝑇𝑇𝑢𝑢𝑛𝑛
(𝑙𝑙−1) − 𝑝𝑝� + 𝑐𝑐𝑛𝑛

(𝑙𝑙)(𝑣𝑣𝑛𝑛
(𝑙𝑙) − 𝑢𝑢𝑛𝑛)� 

≤ (1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ + 𝑎𝑎𝑛𝑛

(𝑙𝑙) �𝑇𝑇𝑢𝑢𝑛𝑛
(𝑙𝑙−1) − 𝑝𝑝� + 𝑐𝑐𝑛𝑛

(𝑙𝑙) �𝑣𝑣𝑛𝑛
(𝑙𝑙) − 𝑢𝑢𝑛𝑛�. (6.7) 

But according to our assumption, we have 

�𝑣𝑣𝑛𝑛
(𝑙𝑙) − 𝑢𝑢𝑛𝑛� = 0(𝑎𝑎𝑛𝑛

(𝑙𝑙)) 

Hence from (6.7), we have  

‖𝑢𝑢𝑛𝑛+1 − 𝑝𝑝‖ ≤ (1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ + 𝑎𝑎𝑛𝑛

(𝑙𝑙) �𝑇𝑇𝑢𝑢𝑛𝑛
(𝑙𝑙−1) − 𝑝𝑝� + 𝑐𝑐𝑛𝑛

(𝑙𝑙)0(𝑎𝑎𝑛𝑛
(𝑙𝑙)).  (6.8) 

Now, if we put 𝑥𝑥 = 𝑢𝑢𝑛𝑛
(𝑙𝑙−1)and 𝑦𝑦 = 𝑝𝑝 in (6.5), we obtain 

 �𝑇𝑇𝑢𝑢𝑛𝑛
(𝑙𝑙−1) − 𝑇𝑇𝑝𝑝� ≤ 𝛿𝛿 �𝑢𝑢𝑛𝑛

(𝑙𝑙−1) − 𝑝𝑝�,      (6.9)  

where𝛿𝛿 is given by (6.4). 

Combining (6.8) and (6.9), we obtain 

‖𝑢𝑢𝑛𝑛+1 − 𝑝𝑝‖ ≤ (1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ + 𝑎𝑎𝑛𝑛

(𝑙𝑙)𝛿𝛿 �𝑢𝑢𝑛𝑛
(𝑙𝑙−1) − 𝑝𝑝� + 𝑐𝑐𝑛𝑛

(𝑙𝑙)0(𝑎𝑎𝑛𝑛
(𝑙𝑙)) (6.10) 

Further by the definition of multi-step Noor fixed point iterative procedurewith 

errors (5.1), we have 

 �𝑢𝑢𝑛𝑛
(𝑙𝑙−1) − 𝑝𝑝� = �𝑎𝑎𝑛𝑛

(𝑙𝑙−1)𝑇𝑇𝑢𝑢𝑛𝑛
(𝑙𝑙−2) + 𝑏𝑏𝑛𝑛

(𝑙𝑙−1)𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛
(𝑙𝑙−1)𝑣𝑣𝑛𝑛

(𝑙𝑙−1) − 𝑝𝑝�(6.11) 

Since 𝑎𝑎𝑛𝑛
(𝑙𝑙−1) + 𝑏𝑏𝑛𝑛

(𝑙𝑙−1) + 𝑐𝑐𝑛𝑛
(𝑙𝑙−1) = 1, hence from (6.11) we have 

 �𝑢𝑢𝑛𝑛
(𝑙𝑙−1) − 𝑝𝑝� ≤ (1 − 𝑎𝑎𝑛𝑛

(𝑙𝑙−1))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ + 𝑎𝑎𝑛𝑛
(𝑙𝑙−1) �𝑇𝑇𝑢𝑢𝑛𝑛

(𝑙𝑙−2) − 𝑝𝑝� 
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                                               +𝑐𝑐𝑛𝑛
(𝑙𝑙−1) �𝑣𝑣𝑛𝑛

(𝑙𝑙−1) − 𝑢𝑢𝑛𝑛�.                                        (6.12) 

But according to our assumption�𝑣𝑣𝑛𝑛
(𝑙𝑙−1) − 𝑢𝑢𝑛𝑛� = 0(𝑎𝑎𝑛𝑛

(𝑙𝑙−1)), hence from (6.12) 

we have 

 �𝑢𝑢𝑛𝑛
(𝑙𝑙−1) − 𝑝𝑝� ≤ (1 − 𝑎𝑎𝑛𝑛

(𝑙𝑙−1))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ 

+𝑎𝑎𝑛𝑛
(𝑙𝑙−1) �𝑇𝑇𝑢𝑢𝑛𝑛

(𝑙𝑙−2) − 𝑝𝑝� + 𝑐𝑐𝑛𝑛
(𝑙𝑙−1)0(𝑎𝑎𝑛𝑛

(𝑙𝑙−1)) (6.13) 

Now, if we put 𝑥𝑥 = 𝑢𝑢𝑛𝑛
(𝑙𝑙−2)and 𝑦𝑦 = 𝑝𝑝 in (6.5), then we have 

 �𝑇𝑇𝑢𝑢𝑛𝑛
(𝑙𝑙−2) − 𝑇𝑇𝑝𝑝� ≤ 𝛿𝛿 �𝑢𝑢𝑛𝑛

(𝑙𝑙−2) − 𝑝𝑝�,               (6.14)  

where𝛿𝛿 is given by (6.4). 

Combining (6.13) and (6.14), we obtain 

 �𝑢𝑢𝑛𝑛
(𝑙𝑙−1) − 𝑝𝑝� ≤ (1 − 𝑎𝑎𝑛𝑛

(𝑙𝑙−1))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ + 𝑎𝑎𝑛𝑛
(𝑙𝑙−1)𝛿𝛿 �𝑢𝑢𝑛𝑛

(𝑙𝑙−2) − 𝑝𝑝� 

+𝑐𝑐𝑛𝑛
(𝑙𝑙−1)0(𝑎𝑎𝑛𝑛

(𝑙𝑙−1)).             (6.15) 

From (6.10) and (6.15), we have  

 ‖𝑢𝑢𝑛𝑛+1 − 𝑝𝑝‖ ≤ (1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ + 𝑎𝑎𝑛𝑛

(𝑙𝑙)𝛿𝛿 �
(1 − 𝑎𝑎𝑛𝑛

(𝑙𝑙−1))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖

+𝑎𝑎𝑛𝑛
(𝑙𝑙−1)𝛿𝛿 �𝑢𝑢𝑛𝑛

(𝑙𝑙−2) − 𝑝𝑝�
� 

+ 𝑐𝑐𝑛𝑛
(𝑙𝑙)0(𝑎𝑎𝑛𝑛

(𝑙𝑙)) + 𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑐𝑐𝑛𝑛

(𝑙𝑙−1)0(𝑎𝑎𝑛𝑛
(𝑙𝑙−1))  

= (1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙)  + 𝑎𝑎𝑛𝑛

(𝑙𝑙)𝛿𝛿(1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙−1)))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ 

+𝛿𝛿2𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1) �𝑢𝑢𝑛𝑛
(𝑙𝑙−2) − 𝑝𝑝� 

+  𝑐𝑐𝑛𝑛
(𝑙𝑙)0(𝑎𝑎𝑛𝑛

(𝑙𝑙)) + 𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑐𝑐𝑛𝑛

(𝑙𝑙−1)0(𝑎𝑎𝑛𝑛
(𝑙𝑙−1)) (6.16) 

Further by the definition of multi-step Noor fixed point iterative procedurewith 

errors (5.1), we have 

�𝑢𝑢𝑛𝑛
(𝑙𝑙−2) − 𝑝𝑝� = �𝑎𝑎𝑛𝑛

(𝑙𝑙−2)𝑇𝑇𝑢𝑢𝑛𝑛
(𝑙𝑙−3) + 𝑏𝑏𝑛𝑛

(𝑙𝑙−2)𝑢𝑢𝑛𝑛 + 𝑐𝑐𝑛𝑛
(𝑙𝑙−2)𝑣𝑣𝑛𝑛

(𝑙𝑙−2) − 𝑝𝑝�(6.17) 

Since 𝑎𝑎𝑛𝑛
(𝑙𝑙−2) + 𝑏𝑏𝑛𝑛

(𝑙𝑙−2) + 𝑐𝑐𝑛𝑛
(𝑙𝑙−2) = 1, hence from (6.17) we have 

 �𝑢𝑢𝑛𝑛
(𝑙𝑙−2) − 𝑝𝑝� ≤ (1 − 𝑎𝑎𝑛𝑛

(𝑙𝑙−2))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ + 𝑎𝑎𝑛𝑛
(𝑙𝑙−2) �𝑇𝑇𝑢𝑢𝑛𝑛

(𝑙𝑙−3) − 𝑝𝑝� 

                                           +𝑐𝑐𝑛𝑛
(𝑙𝑙−2) �𝑣𝑣𝑛𝑛

(𝑙𝑙−2) − 𝑢𝑢𝑛𝑛�.                                  (6.18) 
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But according to our assumption�𝑣𝑣𝑛𝑛
(𝑙𝑙−2) − 𝑢𝑢𝑛𝑛� = 0(𝑎𝑎𝑛𝑛

(𝑙𝑙−2)), hence from (6.18) 

we have 

 �𝑢𝑢𝑛𝑛
(𝑙𝑙−2) − 𝑝𝑝� ≤ (1 − 𝑎𝑎𝑛𝑛

(𝑙𝑙−2))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ + 𝑎𝑎𝑛𝑛
(𝑙𝑙−2) �𝑇𝑇𝑢𝑢𝑛𝑛

(𝑙𝑙−3) − 𝑝𝑝� 

+𝑐𝑐𝑛𝑛
(𝑙𝑙−2)0(𝑎𝑎𝑛𝑛

(𝑙𝑙−2))     (6.19) 

Now, if we put 𝑥𝑥 = 𝑢𝑢𝑛𝑛
(𝑙𝑙−3)and 𝑦𝑦 = 𝑝𝑝 in (6.5), then we have 

 �𝑇𝑇𝑢𝑢𝑛𝑛
(𝑙𝑙−3) − 𝑇𝑇𝑝𝑝� ≤ 𝛿𝛿 �𝑢𝑢𝑛𝑛

(𝑙𝑙−3) − 𝑝𝑝�,     (6.20)  

where𝛿𝛿 is given by (2.4). 

Combining (6.19) and (6.20), we obtain 

 �𝑢𝑢𝑛𝑛
(𝑙𝑙−2) − 𝑝𝑝� ≤ (1 − 𝑎𝑎𝑛𝑛

(𝑙𝑙−2))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ + 𝑎𝑎𝑛𝑛
(𝑙𝑙−2)𝛿𝛿 �𝑢𝑢𝑛𝑛

(𝑙𝑙−3) − 𝑝𝑝� 

+𝑐𝑐𝑛𝑛
(𝑙𝑙−2)0(𝑎𝑎𝑛𝑛

(𝑙𝑙−2)).     (6.21) 

From (6.16) and (6.21), we have 

‖𝑢𝑢𝑛𝑛+1 − 𝑝𝑝‖ 

≤ (1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ 

+𝑎𝑎𝑛𝑛
(𝑙𝑙)𝛿𝛿 �(1 − 𝑎𝑎𝑛𝑛

(𝑙𝑙−1))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ + 𝑎𝑎𝑛𝑛
(𝑙𝑙−1)𝛿𝛿 �

(1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙−2))‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖

 +𝑎𝑎𝑛𝑛
(𝑙𝑙−2)𝛿𝛿 �𝑢𝑢𝑛𝑛

(𝑙𝑙−3) − 𝑝𝑝�
�� 

+𝑐𝑐𝑛𝑛
(𝑙𝑙)0(𝑎𝑎𝑛𝑛

(𝑙𝑙)) + 𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑐𝑐𝑛𝑛

(𝑙𝑙−1)0(𝑎𝑎𝑛𝑛
(𝑙𝑙−1)) + 𝛿𝛿2𝑎𝑎𝑛𝑛

(𝑙𝑙)𝑎𝑎𝑛𝑛
(𝑙𝑙−1)𝑐𝑐𝑛𝑛

(𝑙𝑙−2)0(𝑎𝑎𝑛𝑛
(𝑙𝑙−2))

  = (1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙)  + 𝛿𝛿𝑎𝑎𝑛𝑛

(𝑙𝑙)(1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙−1)) + 𝛿𝛿2𝑎𝑎𝑛𝑛

(𝑙𝑙)𝑎𝑎𝑛𝑛
(𝑙𝑙−1)(1 − 𝑎𝑎𝑛𝑛

(𝑙𝑙−2)))‖𝑢𝑢𝑛𝑛 −

𝑝𝑝‖ 

+𝛿𝛿3𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1)𝑎𝑎𝑛𝑛
(𝑙𝑙−2) �𝑢𝑢𝑛𝑛

(𝑙𝑙−3) − 𝑝𝑝� + 𝑐𝑐𝑛𝑛
(𝑙𝑙)0 �𝑎𝑎𝑛𝑛

(𝑙𝑙)� 

+𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑐𝑐𝑛𝑛

(𝑙𝑙−1)0(𝑎𝑎𝑛𝑛
(𝑙𝑙−1)) +  𝛿𝛿2𝑎𝑎𝑛𝑛

(𝑙𝑙)𝑎𝑎𝑛𝑛
(𝑙𝑙−1)𝑐𝑐𝑛𝑛

(𝑙𝑙−2)0(𝑎𝑎𝑛𝑛
(𝑙𝑙−2))  (6.22) 

Now if we continue the above process until the initial equation of multi-step Noor 

fixed point iterative procedurewith errors (5.1) have been used, then the inequality 

(6.22) can written as follows. 

‖𝑢𝑢𝑛𝑛+1 − 𝑝𝑝‖ ≤ [1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙)  + 𝛿𝛿𝑎𝑎𝑛𝑛

(𝑙𝑙)(1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙−1)) + 𝛿𝛿2𝑎𝑎𝑛𝑛

(𝑙𝑙)𝑎𝑎𝑛𝑛
(𝑙𝑙−1) �1 − 𝑎𝑎𝑛𝑛

(𝑙𝑙−2)�

+ ⋯+ 𝛿𝛿𝑙𝑙−1𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1) … 𝑎𝑎𝑛𝑛
(3)𝑎𝑎𝑛𝑛

(2) �1 − 𝑎𝑎𝑛𝑛
(1)�]‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ 
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+𝛿𝛿𝑙𝑙𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1) … 𝑎𝑎𝑛𝑛
(3)𝑎𝑎𝑛𝑛

(2)𝑎𝑎𝑛𝑛
(1)‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖ 

+𝑐𝑐𝑛𝑛
(𝑙𝑙)0 �𝑎𝑎𝑛𝑛

(𝑙𝑙)� 𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑐𝑐𝑛𝑛

(𝑙𝑙−1)0 �𝑎𝑎𝑛𝑛
(𝑙𝑙−1)� 

+𝛿𝛿2𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1)𝑐𝑐𝑛𝑛
(𝑙𝑙−2)0 �𝑎𝑎𝑛𝑛

(𝑙𝑙−2)� 

+⋯+ 𝛿𝛿𝑙𝑙−1𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1) …𝑎𝑎𝑛𝑛
(3)𝑎𝑎𝑛𝑛

(2)𝑐𝑐𝑛𝑛
(1)0(𝑎𝑎𝑛𝑛

(1)) 

  = (1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙)  + 𝛿𝛿𝑎𝑎𝑛𝑛

(𝑙𝑙)(1 − 𝑎𝑎𝑛𝑛
(𝑙𝑙−1)) + 𝛿𝛿2𝑎𝑎𝑛𝑛

(𝑙𝑙)𝑎𝑎𝑛𝑛
(𝑙𝑙−1) �1 − 𝑎𝑎𝑛𝑛

(𝑙𝑙−2)� 

+⋯+ 𝛿𝛿𝑙𝑙−1𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1) …𝑎𝑎𝑛𝑛
(3)𝑎𝑎𝑛𝑛

(2) �1 − 𝑎𝑎𝑛𝑛
(1)� 

+𝛿𝛿𝑙𝑙𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1) …𝑎𝑎𝑛𝑛
(3)𝑎𝑎𝑛𝑛

(2)𝑎𝑎𝑛𝑛
(1))‖𝑢𝑢𝑛𝑛 −  𝑝𝑝‖ + 𝑐𝑐𝑛𝑛

(𝑙𝑙)0 �𝑎𝑎𝑛𝑛
(𝑙𝑙)� 

+𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑐𝑐𝑛𝑛

(𝑙𝑙−1)0 �𝑎𝑎𝑛𝑛
(𝑙𝑙−1)� + 𝛿𝛿2𝑎𝑎𝑛𝑛

(𝑙𝑙)𝑎𝑎𝑛𝑛
(𝑙𝑙−1)𝑐𝑐𝑛𝑛

(𝑙𝑙−2)0 �𝑎𝑎𝑛𝑛
(𝑙𝑙−2)� 

+⋯+ 𝛿𝛿𝑙𝑙−1𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1) …𝑎𝑎𝑛𝑛
(3)𝑎𝑎𝑛𝑛

(2)𝑐𝑐𝑛𝑛
(1)0(𝑎𝑎𝑛𝑛

(1)), 

which implies, 

‖𝑢𝑢𝑛𝑛+1 − 𝑝𝑝‖ ≤ [1 − (1 − 𝛿𝛿)𝑎𝑎𝑛𝑛
(𝑙𝑙) �1 − 𝛿𝛿𝑎𝑎𝑛𝑛

(𝑙𝑙−1)� �1 − 𝛿𝛿𝑎𝑎𝑛𝑛
(𝑙𝑙−2)� �1 − 𝛿𝛿𝑎𝑎𝑛𝑛

(𝑙𝑙−3)�… 

 … (1 − 𝛿𝛿𝑎𝑎𝑛𝑛
(1))]‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖  + 𝑐𝑐𝑛𝑛

(𝑙𝑙)0 �𝑎𝑎𝑛𝑛
(𝑙𝑙)� 

 +𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑐𝑐𝑛𝑛

(𝑙𝑙−1)0 �𝑎𝑎𝑛𝑛
(𝑙𝑙−1)� + 𝛿𝛿2𝑎𝑎𝑛𝑛

(𝑙𝑙)𝑎𝑎𝑛𝑛
(𝑙𝑙−1)𝑐𝑐𝑛𝑛

(𝑙𝑙−2)0 �𝑎𝑎𝑛𝑛
(𝑙𝑙−2)� 

+⋯+  𝛿𝛿𝑙𝑙−1𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1) …𝑎𝑎𝑛𝑛
(3)𝑎𝑎𝑛𝑛

(2)𝑐𝑐𝑛𝑛
(1)0(𝑎𝑎𝑛𝑛

(1)).      (6.23) 

But it is clear that,  

[1 − (1 − 𝛿𝛿)𝑎𝑎𝑛𝑛
(𝑙𝑙) �1 − 𝛿𝛿𝑎𝑎𝑛𝑛

(𝑙𝑙−1)� �1 − 𝛿𝛿𝑎𝑎𝑛𝑛
(𝑙𝑙−2)� �1 − 𝛿𝛿𝑎𝑎𝑛𝑛

(𝑙𝑙−3)�… (1 − 𝛿𝛿𝑎𝑎𝑛𝑛
(1))] 

 ≤ [1 − (1 − 𝛿𝛿)𝑙𝑙𝑎𝑎𝑛𝑛
(𝑙𝑙)]. 

Hence form (6.23), we obtain 

 ‖𝑢𝑢𝑛𝑛+1 − 𝑝𝑝‖ ≤ [1 − (1 − 𝛿𝛿)𝑙𝑙𝑎𝑎𝑛𝑛
(𝑙𝑙)]‖𝑢𝑢𝑛𝑛 − 𝑝𝑝‖  + 𝑐𝑐𝑛𝑛

(𝑙𝑙)0 �𝑎𝑎𝑛𝑛
(𝑙𝑙)� 

+𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑐𝑐𝑛𝑛

(𝑙𝑙−1)0 �𝑎𝑎𝑛𝑛
(𝑙𝑙−1)� + 𝛿𝛿2𝑎𝑎𝑛𝑛

(𝑙𝑙)𝑎𝑎𝑛𝑛
(𝑙𝑙−1)𝑐𝑐𝑛𝑛

(𝑙𝑙−2)0 �𝑎𝑎𝑛𝑛
(𝑙𝑙−2)� 

+⋯+  𝛿𝛿𝑙𝑙−1𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1) …𝑎𝑎𝑛𝑛
(3)𝑎𝑎𝑛𝑛

(2)𝑐𝑐𝑛𝑛
(1)0(𝑎𝑎𝑛𝑛

(1)),𝑛𝑛 ∈ ℕ. (6.24) 

By (6.24) inductively, we obtain 

 ‖𝑢𝑢𝑛𝑛+1 − 𝑝𝑝‖ ≤ ∏ �1 − (1 − 𝛿𝛿)𝑙𝑙𝑎𝑎𝑟𝑟
(𝑙𝑙)�𝑛𝑛

𝑟𝑟=0 ‖𝑢𝑢0 − 𝑝𝑝‖ 
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+𝛿𝛿2𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1)𝑐𝑐𝑛𝑛
(𝑙𝑙−2)0 �𝑎𝑎𝑛𝑛

(𝑙𝑙−2)� 

+⋯+ 𝛿𝛿𝑙𝑙−1𝑎𝑎𝑛𝑛
(𝑙𝑙)𝑎𝑎𝑛𝑛

(𝑙𝑙−1) …𝑎𝑎𝑛𝑛
(3)𝑎𝑎𝑛𝑛

(2)𝑐𝑐𝑛𝑛
(1)0(𝑎𝑎𝑛𝑛

(1)), 𝑛𝑛 ∈ ℕ. (6.25) 

Now since 0 ≤ 𝛿𝛿 < 1, 𝑎𝑎𝑛𝑛
(𝑙𝑙) ∈ (0, 1)and ∑ 𝑎𝑎𝑛𝑛

(𝑙𝑙)∞
𝑛𝑛=1 = ∞, hence by Lemma 6.1.2 

we can write 

 lim𝑛𝑛→∞ ∏ [1 − (1 − 𝛿𝛿)𝑙𝑙𝑎𝑎𝑟𝑟
(𝑙𝑙)]𝑛𝑛

𝑟𝑟=0 = 0.    (6.26) 

Taking limit as 𝑛𝑛 → ∞ on both sides of (6.25) and using (6.26), we get 

 lim𝑛𝑛→∞‖𝑢𝑢𝑛𝑛+1 − 𝑝𝑝‖ = 0. 

This implies that �𝑢𝑢𝑛𝑛
(𝑘𝑘)� , 𝑘𝑘 = 1, 2, 3, … ,𝑙𝑙converges strongly to 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇). 

This completes our proof.∎ 

 

Corollary 6.2.2.Let 𝐵𝐵 be a nonempty closed convex subset of an arbitrary normed 

space𝑋𝑋. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵 satisfies the Kannan’s contractive conditions defined by 

(1.6). Let �𝑢𝑢𝑛𝑛
(𝑘𝑘)�be a sequence defined by multi-step Noor fixed point iterative 

procedurewith errors (5.1), for each  𝑘𝑘 = 1, 2, 3, … ,𝑙𝑙and 𝑛𝑛 ∈ ℕ. If 𝐹𝐹(𝑇𝑇) ≠ ∅,

∑ 𝑎𝑎𝑛𝑛
(𝑘𝑘)∞

𝑛𝑛=1 = ∞, and �𝑣𝑣𝑛𝑛
(𝑘𝑘) − 𝑢𝑢𝑛𝑛� = 0 �𝑎𝑎𝑛𝑛

(𝑘𝑘)�, for each  𝑘𝑘 = 1, 2, 3, … ,𝑙𝑙 and 𝑛𝑛 ∈

ℕ. Then �𝑢𝑢𝑛𝑛
(𝑘𝑘)�converges strongly to a fixed point of  𝑇𝑇. 

Corollary 6.2.3.Let 𝐵𝐵 be a nonempty closed convex subset of an arbitrary normed 

space𝑋𝑋. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵 satisfies the Chatterjea’s contractive conditions defined by 

(1.7) respectively. Let �𝑢𝑢𝑛𝑛
(𝑘𝑘)�be a sequence defined by multi-step Noor fixed point 

iterative procedurewith errors (5.1), for each  𝑘𝑘 = 1, 2, 3, … ,𝑙𝑙and 𝑛𝑛 ∈ ℕ. If 

𝐹𝐹(𝑇𝑇) ≠ ∅, ∑ 𝑎𝑎𝑛𝑛
(𝑘𝑘)∞

𝑛𝑛=1 = ∞, and �𝑣𝑣𝑛𝑛
(𝑘𝑘) − 𝑢𝑢𝑛𝑛� = 0 �𝑎𝑎𝑛𝑛

(𝑘𝑘)�, for each  𝑘𝑘 =

1, 2, 3, … ,𝑙𝑙 and 𝑛𝑛 ∈ ℕ. Then �𝑢𝑢𝑛𝑛
(𝑘𝑘)�converges strongly to a fixed point of  𝑇𝑇. 

 

Corollary 6.2.4.Let 𝐵𝐵 be a nonempty closed convex subset of an arbitrary normed 

space𝑋𝑋. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵 be a Zamfirescu operator. Let �𝑢𝑢𝑛𝑛
(𝑘𝑘)�be a sequence defined 
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by Noor iterative procedurewith errors (5.2), for each  𝑘𝑘 = 1, 2, 3and 𝑛𝑛 ∈ ℕ. If 

𝐹𝐹(𝑇𝑇) ≠ ∅, ∑ 𝑎𝑎𝑛𝑛
(𝑘𝑘)∞

𝑛𝑛=1 = ∞, and �𝑣𝑣𝑛𝑛
(𝑘𝑘) − 𝑢𝑢𝑛𝑛� = 0 �𝑎𝑎𝑛𝑛

(𝑘𝑘)�, for each  𝑘𝑘 =

1, 2, 3 and 𝑛𝑛 ∈ ℕ. Then �𝑢𝑢𝑛𝑛
(𝑘𝑘)�converges strongly to a fixed point of  𝑇𝑇. 

 

Corollary 6.2.5.Let 𝐵𝐵 be a nonempty closed convex subset of an arbitrary normed 

space𝑋𝑋. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵 be a Zamfirescu operator. Let �𝑢𝑢𝑛𝑛
(𝑘𝑘)�be a sequence defined 

by Noor iterative procedure(5.3), for each  𝑘𝑘 = 1, 2, 3and 𝑛𝑛 ∈ ℕ. If 𝐹𝐹(𝑇𝑇) ≠ ∅,

∑ 𝑎𝑎𝑛𝑛
(𝑘𝑘)∞

𝑛𝑛=1 = ∞, and �𝑣𝑣𝑛𝑛
(𝑘𝑘) − 𝑢𝑢𝑛𝑛� = 0 �𝑎𝑎𝑛𝑛

(𝑘𝑘)�, for each  𝑘𝑘 = 1, 2, 3 and 𝑛𝑛 ∈ ℕ. 

Then �𝑢𝑢𝑛𝑛
(𝑘𝑘)�converges strongly to a fixed point of  𝑇𝑇. 

 

Corollary 6.2.6.Let 𝐵𝐵 be a nonempty closed convex subset of an arbitrary normed 

space𝑋𝑋. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵 be a Zamfirescu operator. Let �𝑢𝑢𝑛𝑛
(𝑘𝑘)�be a sequence defined 

by Ishikawa iterative procedurewith errorsdefined by Y. Xu (5.4), for each  𝑘𝑘 =

1, 2and 𝑛𝑛 ∈ ℕ. If 𝐹𝐹(𝑇𝑇) ≠ ∅, ∑ 𝑎𝑎𝑛𝑛
(𝑘𝑘)∞

𝑛𝑛=1 = ∞, and �𝑣𝑣𝑛𝑛
(𝑘𝑘) − 𝑢𝑢𝑛𝑛� = 0 �𝑎𝑎𝑛𝑛

(𝑘𝑘)�, for 

each  𝑘𝑘 = 1, 2 and 𝑛𝑛 ∈ ℕ. Then �𝑢𝑢𝑛𝑛
(𝑘𝑘)�converges strongly to a fixed point of  𝑇𝑇. 

 

Corollary 6.2.7.Let 𝐵𝐵 be a nonempty closed convex subset of an arbitrary normed 

space𝑋𝑋. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵 be a Zamfirescu operator. Let �𝑢𝑢𝑛𝑛
(𝑘𝑘)�be a sequence defined 

by Ishikawa iterative procedure with errorsdefined by L.S.Lu(5.6), for each  𝑘𝑘 =

1, 2and 𝑛𝑛 ∈ ℕ. If 𝐹𝐹(𝑇𝑇) ≠ ∅, ∑ 𝑎𝑎𝑛𝑛
(𝑘𝑘)∞

𝑛𝑛=1 = ∞, and �𝑣𝑣𝑛𝑛
(𝑘𝑘) − 𝑢𝑢𝑛𝑛� = 0 �𝑎𝑎𝑛𝑛

(𝑘𝑘)�, for 

each  𝑘𝑘 = 1, 2 and 𝑛𝑛 ∈ ℕ. Then �𝑢𝑢𝑛𝑛
(𝑘𝑘)�converges strongly to a fixed point of  𝑇𝑇. 

 

Corollary 6.2.8.Let 𝐵𝐵 be a nonempty closed convex subset of an arbitrary normed 

space𝑋𝑋. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵 be a Zamfirescu operator. Let �𝑢𝑢𝑛𝑛
(𝑘𝑘)�be a sequence defined 
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by Ishikawa iterative procedure (5.5), for each  𝑘𝑘 = 1, 2and 𝑛𝑛 ∈ ℕ. If 𝐹𝐹(𝑇𝑇) ≠ ∅,

∑ 𝑎𝑎𝑛𝑛
(𝑘𝑘)∞

𝑛𝑛=1 = ∞, and 

�𝑣𝑣𝑛𝑛
(𝑘𝑘) − 𝑢𝑢𝑛𝑛� = 0 �𝑎𝑎𝑛𝑛

(𝑘𝑘)�, 

for each  𝑘𝑘 = 1, 2 and 𝑛𝑛 ∈ ℕ. Then �𝑢𝑢𝑛𝑛
(𝑘𝑘)�converges strongly to a fixed point of  𝑇𝑇. 

 

Corollary 6.2.9.Let 𝐵𝐵 be a nonempty closed convex subset of an arbitrary normed 

space𝑋𝑋. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵 be a Zamfirescu operator. Let �𝑢𝑢𝑛𝑛
(𝑘𝑘)�be a sequence defined 

by Mann iterative procedure with errorsdefined by Y. Xu (5.7), for each  𝑘𝑘 = 1and 

𝑛𝑛 ∈ ℕ. If 𝐹𝐹(𝑇𝑇) ≠ ∅, ∑ 𝑎𝑎𝑛𝑛
(𝑘𝑘)∞

𝑛𝑛=1 = ∞, and 

�𝑣𝑣𝑛𝑛
(𝑘𝑘) − 𝑢𝑢𝑛𝑛� = 0 �𝑎𝑎𝑛𝑛

(𝑘𝑘)�, 

for each  𝑘𝑘 = 1 and 𝑛𝑛 ∈ ℕ. Then �𝑢𝑢𝑛𝑛
(𝑘𝑘)�converges strongly to a fixed point of  𝑇𝑇. 

 

Corollary 6.2.10.Let 𝐵𝐵 be a nonempty closed convex subset of an arbitrary 

normed space𝑋𝑋. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵 be a Zamfirescu operator. Let �𝑢𝑢𝑛𝑛
(𝑘𝑘)�be a sequence 

defined by Mann iterative procedure with errorsdefined by L.S. Lu (5.10), for 

each  𝑘𝑘 = 1and 𝑛𝑛 ∈ ℕ. If 𝐹𝐹(𝑇𝑇) ≠ ∅, ∑ 𝑎𝑎𝑛𝑛
(𝑘𝑘)∞

𝑛𝑛=1 = ∞, and 

�𝑣𝑣𝑛𝑛
(𝑘𝑘) − 𝑢𝑢𝑛𝑛� = 0 �𝑎𝑎𝑛𝑛

(𝑘𝑘)�, 

for each  𝑘𝑘 = 1 and 𝑛𝑛 ∈ ℕ. Then �𝑢𝑢𝑛𝑛
(𝑘𝑘)�converges strongly to a fixed point of  𝑇𝑇. 

 

Corollary 6.2.11.Let 𝐵𝐵 be a nonempty closed convex subset of an arbitrary 

normed space𝑋𝑋. Let 𝑇𝑇:𝐵𝐵 → 𝐵𝐵 be a Zamfirescu operator. Let �𝑢𝑢𝑛𝑛
(𝑘𝑘)�be a sequence 

defined by Mann iterative procedure(5.8), for each  𝑘𝑘 = 1and 𝑛𝑛 ∈ ℕ. If 𝐹𝐹(𝑇𝑇) ≠ ∅,

∑ 𝑎𝑎𝑛𝑛
(𝑘𝑘)∞

𝑛𝑛=1 = ∞, and 

�𝑣𝑣𝑛𝑛
(𝑘𝑘) − 𝑢𝑢𝑛𝑛� = 0 �𝑎𝑎𝑛𝑛

(𝑘𝑘)�, 
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for each  𝑘𝑘 = 1 and 𝑛𝑛 ∈ ℕ. Then �𝑢𝑢𝑛𝑛
(𝑘𝑘)�converges strongly to a fixed point of  𝑇𝑇. 

 

6.3 Some Remarks 

 In this section we give some remarks on our Theorem 6.2.1.  

Remark 6.3.1.The contractive condition (1.5) makes the mapping 𝑇𝑇 a continuous 

function on 𝑋𝑋while this is not the case with the contractive conditions (1.6), (1.7) 

and (6.5). 

Remark 6.3.2.The Kannan’s and the Chatterjea’s contractive conditions defined 

by (1.6) and (1.7) respectively are both included in the class of Zamfirescu 

operator and so their convergence theorems for the multi-step Noor fixed point 

iterative procedurewith errors are obtained in Corollary 6.2.2 and Corollary 6.2.3 

respectively. 

Remark 6.3.3 Theorem 3 of A. Rafiq [3] in the context of Mann iterative 

procedure with errors on a closed convex normed space has been obtained in 

Corollary 6.2.10.  

Remark 6.3.4. Theorem 3 of A. Rafiq [2] in the context of Noor iterative 

procedure on a closed convex normed space has been obtained in Corollary 6.2.5. 

5. In Corollary 2.7, Theorem 2 of V. Berinde [51] is generalized to the setting of 

normed spaces. 

Remark 6.3.6.In Corollary 6.2.11, Theorem 2 of V. Berinde [50] and Theorem 2.1 

of V. Berinde [52] are generalized to the setting of normed spaces. 

Remark 6.3.7.In Corollary 6.2.4, the result of Y.J. Cho, H. Zhou, G. Guo [63] is 

generalized to the class of Zamfirescu operator. 

Remark 6.3.8. Corollary 6.2.6 and Corollary 6.2.9 are used to generalize the result 

of Y. Xu [62] to the setting for the class of Zamfirescu operator. 

Remark 6.3.9. Corollary 6.2.7 and Corollary 6.2.10 are used to generalize the 

result of L. S. Liu [22] to the setting for the class of Zamfirescu operator. 

Remark 6.3.10.Our Theorem 6. 2.1 also generalized the result of M. O. Osilike 

[28-30]. 
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CHAPTER-7 APPLICATION AND CONCLUSION 

CHAPTER-7 

APPLICATION AND CONCLUSION 
 

In this chapter, we give some applications of our new fixed point iterative 

procedure (2.18) and finally conclude our whole work.  

 

7.1 Application of our new fixed point iterative procedure to constrained 

optimization problemsand split feasibility problems 

This section is allocated to some applications of our new fixed point 

iterative procedure (2.18). Let 𝐻𝐻be a real Hilbert spacewith inner product 〈∙,∙〉and 

norm‖∙‖, respectively. Let 𝐶𝐶be a nonempty closedconvex subset of 𝐻𝐻and 𝑇𝑇:𝐶𝐶 →

𝐻𝐻a nonlinear operator. 𝑇𝑇is said to be: 

  (1) 𝐿𝐿-Lipschitzian if there exists a constant𝐿𝐿 > 0 such that 

‖𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇‖ ≤ 𝐿𝐿‖𝑇𝑇 − 𝑇𝑇‖,∀ 𝑇𝑇,𝑇𝑇 ∈ 𝐶𝐶. 

An 𝐿𝐿-Lipschitzian will be contraction if 𝐿𝐿 ∈ (0, 1), and non-expansive if 𝐿𝐿 = 1. 

(2) Monotone if 〈𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇, 𝑇𝑇 − 𝑇𝑇〉 ≥ 0,∀ 𝑇𝑇,𝑇𝑇 ∈ 𝐶𝐶. 

(3) 𝜆𝜆-strongly monotone if there exists a constant 𝜆𝜆 > 0 such that 

 〈𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇, 𝑇𝑇 − 𝑇𝑇〉 ≥ 𝜆𝜆‖𝑇𝑇 − 𝑇𝑇‖2,∀ 𝑇𝑇,𝑇𝑇 ∈ 𝐶𝐶. 

(4) 𝜈𝜈-inverse strongly monotone (𝜈𝜈-ism) if there exists a constant 𝜈𝜈 > 0 such that 

 〈𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇, 𝑇𝑇 − 𝑇𝑇〉 ≥ 𝜈𝜈‖𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇‖2,∀ 𝑇𝑇,𝑇𝑇 ∈ 𝐶𝐶. 

The variational inequality problem defined by 𝐶𝐶and 𝑇𝑇will be denoted 

by𝑉𝑉𝑉𝑉(𝐶𝐶,𝑇𝑇). These were initially studied by Kinderlehrer and Stampachhia [10]. 

Thevariational inequality problem 𝑉𝑉𝑉𝑉(𝐶𝐶,𝑇𝑇) is the problem of finding a vector 𝒛𝒛in 

𝐶𝐶such that 〈𝑇𝑇𝒛𝒛, 𝒛𝒛 − 𝑘𝑘〉 ≥ 0 for all 𝑘𝑘 ∈ 𝐶𝐶. The set of all such vectors which 

solvevariational inequality 𝑉𝑉𝑉𝑉(𝐶𝐶,𝑇𝑇)problem is denoted byΩ(𝐶𝐶,𝑇𝑇). The 

variationalinequality problem is connected with various kinds of problems such as 

the convexminimization problem, the complementarity problem, the problem of 
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finding a point𝑢𝑢 ∈ 𝐻𝐻satisfying 0 = 𝑇𝑇𝑢𝑢 and so on. The existence and 

approximation of solutionsare important aspects in the study of variational 

inequalities. The variationalinequality problem 𝑉𝑉𝑉𝑉(𝐶𝐶,𝑇𝑇) is equivalent to the fixed 

point problem, that isto find 𝑇𝑇∗ ∈ 𝐶𝐶such that  

 𝑇𝑇∗ = 𝐹𝐹𝜇𝜇𝑇𝑇∗ = 𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇∗, 

where 𝜇𝜇 > 0 is a constant and 𝑃𝑃𝐶𝐶is the metric projection from 𝐻𝐻 onto 𝐶𝐶and𝐹𝐹𝜇𝜇 ≔

𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇). If 𝑇𝑇is 𝐿𝐿-Lipschitzian and 𝜆𝜆-strongly monotone, then theoperator 𝐹𝐹𝜇𝜇 is 

a contraction on 𝐶𝐶provided that 0 < 𝜇𝜇 < 2𝜆𝜆 𝐿𝐿2⁄ . In this case, anapplication of 

Banach contraction principle (Theorem 1.6.2) implies thatΩ(𝐶𝐶,𝑇𝑇) = {𝑇𝑇∗}and 

thesequence of the Picard iteration process, given by 

𝑇𝑇𝑛𝑛+1 = 𝐹𝐹𝜇𝜇𝑇𝑇𝑛𝑛 ,   𝑛𝑛 ∈ ℕ 

converges strongly to𝑇𝑇∗. 

Construction of fixed points of non-expansive operators is an important 

subject in the theory of non-expansive operators and has applications in a number 

of applied areas such as image recovery and signal processing(see[7, 8,13]). For 

instance,split feasibility problem of 𝐶𝐶and 𝑇𝑇(denoted by𝑆𝑆𝐹𝐹𝑃𝑃(𝐶𝐶,𝑇𝑇)) is 

to find a point 𝑇𝑇in 𝐶𝐶such that 𝑇𝑇𝑇𝑇 ∈ 𝑄𝑄     (7.1) 

where𝐶𝐶is a closed convex subset of a Hilbert space 𝐻𝐻1,𝑄𝑄is a closed convexsubset 

of another Hilbert space 𝐻𝐻2 and 𝑇𝑇:𝐻𝐻1 → 𝐻𝐻2is a bounded linear operator.The 

 𝑆𝑆𝐹𝐹𝑃𝑃(𝐶𝐶,𝑇𝑇)is said to be consistent if (7.1) has a solution. It is easy to seethat 

𝑆𝑆𝐹𝐹𝑃𝑃(𝐶𝐶,𝑇𝑇) is consistent if and only if the following fixed point problem has 

asolution: 

 find𝑇𝑇 ∈ 𝐶𝐶such that𝑇𝑇 = 𝑃𝑃𝐶𝐶�𝑉𝑉 − 𝛾𝛾𝑇𝑇∗�𝑉𝑉 − 𝑃𝑃𝑄𝑄�𝑇𝑇�𝑇𝑇,    (7.2) 

where𝑃𝑃𝐶𝐶and 𝑃𝑃𝑄𝑄are the orthogonal projections onto 𝐶𝐶and 𝑄𝑄, respectively; 𝛾𝛾 > 0, 

and𝑇𝑇∗is the adjoint of 𝑇𝑇. Note that for sufficient small 𝛾𝛾 > 0, the operator𝑃𝑃𝐶𝐶�𝑉𝑉 −

𝛾𝛾𝑇𝑇∗�𝑉𝑉 − 𝑃𝑃𝑄𝑄�𝑇𝑇� in (7.2) is non-expansive. 

In the view of Lemma 4.1.3, we have the following sharper results which 

containour iterative procedure (2.18) faster than the one of the iterative procedures 
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defined by (2.17), (2.16), (2.15), (2.14), (2.13), (2.11) and (2.1). These results deal 

withvariational inequality problems. 

Theorem 7.1.1.Let 𝐶𝐶 be a nonempty closed convex subset of a Hilbert space𝐻𝐻 and 

𝑇𝑇:𝐶𝐶 → 𝐻𝐻 a 𝐿𝐿-Lipschitzian and𝜆𝜆-strongly monotone operator. Suppose{𝛼𝛼𝑛𝑛}, 

{𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1). Thenfor 𝜇𝜇 ∈

(0, 2𝜆𝜆 𝐿𝐿2⁄ ), the iterative sequence{𝑇𝑇𝑛𝑛} generated from𝑇𝑇1 ∈ 𝐶𝐶 and definedby 

 �
𝑇𝑇𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ,
𝑇𝑇𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑧𝑧𝑛𝑛 ,
𝑧𝑧𝑛𝑛 = (1 − 𝛾𝛾𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ;  ∀ 𝑛𝑛 ∈ ℕ,

� 

converges weakly to𝑇𝑇∗ ∈ Ω(𝐶𝐶, 𝑇𝑇). 

Proof.Since 𝑇𝑇 ≔ 𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇) is non-expansive, hence the result follows 

fromTheorem 4.2.1.∎ 

 The Theorem 7.1.1 leads the following corollaries for iterative procedures 

defined by (2.16), (2.17), (2.14), (2.15), (2.13), (2.11) and (2.1) respectively. 

Corollary 7.1.2.Let 𝐶𝐶 be a nonempty closed convex subset of a Hilbert space𝐻𝐻 

and 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 a 𝐿𝐿-Lipschitzian and𝜆𝜆-strongly monotone operator. Suppose{𝛼𝛼𝑛𝑛}, 

{𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1). Thenfor 𝜇𝜇 ∈

(0, 2𝜆𝜆 𝐿𝐿2⁄ ), the iterative sequence{𝑇𝑇𝑛𝑛} generated from𝑇𝑇1 ∈ 𝐶𝐶 and definedby 

 �
𝑇𝑇𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑧𝑧𝑛𝑛 ,
𝑇𝑇𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑧𝑧𝑛𝑛 ,
𝑧𝑧𝑛𝑛 = (1 − 𝛾𝛾𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ;  ∀ 𝑛𝑛 ∈ ℕ,

� 

converges weakly to𝑇𝑇∗ ∈ Ω(𝐶𝐶, 𝑇𝑇). 

Corollary 7.1.3.Let 𝐶𝐶 be a nonempty closed convex subset of a Hilbert space𝐻𝐻 

and 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 a 𝐿𝐿-Lipschitzian and𝜆𝜆-strongly monotone operator. Suppose{𝛼𝛼𝑛𝑛}, 

{𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1). Thenfor 𝜇𝜇 ∈

(0, 2𝜆𝜆 𝐿𝐿2⁄ ), the iterative sequence{𝑇𝑇𝑛𝑛} generated from𝑇𝑇1 ∈ 𝐶𝐶 and definedby 

 �
𝑇𝑇𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ,

𝑇𝑇𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑧𝑧𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑧𝑧𝑛𝑛 ,
𝑧𝑧𝑛𝑛 = (1 − 𝛾𝛾𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ;  ∀ 𝑛𝑛 ∈ ℕ,

� 

converges weakly to𝑇𝑇∗ ∈ Ω(𝐶𝐶, 𝑇𝑇). 
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Corollary 7.1.4.Let 𝐶𝐶 be a nonempty closed convex subset of a Hilbert space𝐻𝐻 

and 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 a 𝐿𝐿-Lipschitzian and𝜆𝜆-strongly monotone operator. Suppose{𝛼𝛼𝑛𝑛}, 

{𝛽𝛽𝑛𝑛},{𝛾𝛾𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1). Thenfor 𝜇𝜇 ∈

(0, 2𝜆𝜆 𝐿𝐿2⁄ ), the iterative sequence{𝑇𝑇𝑛𝑛} generated from𝑇𝑇1 ∈ 𝐶𝐶 and definedby 

 �
𝑇𝑇𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ,
𝑇𝑇𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑧𝑧𝑛𝑛 ,

𝑧𝑧𝑛𝑛 = (1 − 𝛾𝛾𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ;  ∀ 𝑛𝑛 ∈ ℕ,
� 

converges weakly to𝑇𝑇∗ ∈ Ω(𝐶𝐶, 𝑇𝑇). 

Corollary 7.1.5.Let 𝐶𝐶 be a nonempty closed convex subset of a Hilbert space𝐻𝐻 

and 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 a 𝐿𝐿-Lipschitzian and𝜆𝜆-strongly monotone operator. Suppose{𝛼𝛼𝑛𝑛}, 

{𝛽𝛽𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1). Thenfor 𝜇𝜇 ∈ (0, 2𝜆𝜆 𝐿𝐿2⁄ ), 

the iterative sequence{𝑇𝑇𝑛𝑛} generated from𝑇𝑇1 ∈ 𝐶𝐶 and definedby 

 �𝑇𝑇𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ,
𝑇𝑇𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ;    𝑛𝑛 ∈ ℕ, � 

converges weakly to𝑇𝑇∗ ∈ Ω(𝐶𝐶, 𝑇𝑇). 

Corollary 7.1.6.Let 𝐶𝐶 be a nonempty closed convex subset of a Hilbert space𝐻𝐻 

and 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 a 𝐿𝐿-Lipschitzian and𝜆𝜆-strongly monotone operator. Suppose{𝛼𝛼𝑛𝑛}, 

{𝛽𝛽𝑛𝑛} ∈ [𝜉𝜉, 1 − 𝜉𝜉] for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1). Thenfor 𝜇𝜇 ∈ (0, 2𝜆𝜆 𝐿𝐿2⁄ ), 

the iterative sequence{𝑇𝑇𝑛𝑛} generated from𝑇𝑇1 ∈ 𝐶𝐶 and definedby 

 � 𝑇𝑇𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ,
𝑇𝑇𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ;     ∀ 𝑛𝑛 ∈ ℕ,� 

converges weakly to𝑇𝑇∗ ∈ Ω(𝐶𝐶, 𝑇𝑇). 

Corollary 7.1.7.Let 𝐶𝐶 be a nonempty closed convex subset of a Hilbert space𝐻𝐻 

and 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 a 𝐿𝐿-Lipschitzian and𝜆𝜆-strongly monotone operator. Suppose{𝛼𝛼𝑛𝑛} ∈

[𝜉𝜉, 1 − 𝜉𝜉] for all  𝑛𝑛 ∈ ℕ and for some 𝜉𝜉 ∈ (0,1). Thenfor 𝜇𝜇 ∈ (0, 2𝜆𝜆 𝐿𝐿2⁄ ), the 

iterative sequence{𝑇𝑇𝑛𝑛} generated from𝑇𝑇1 ∈ 𝐶𝐶 and definedby 

 𝑇𝑇𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ;   ∀ 𝑛𝑛 ∈ ℕ, 

converges weakly to𝑇𝑇∗ ∈ Ω(𝐶𝐶, 𝑇𝑇). 
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Corollary 7.1.8.Let 𝐶𝐶 be a nonempty closed convex subset of a Hilbert space𝐻𝐻 

and 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 a 𝐿𝐿-Lipschitzian and𝜆𝜆-strongly monotone operator. Thenfor 

𝜇𝜇 ∈ (0, 2𝜆𝜆 𝐿𝐿2⁄ ), the iterative sequence{𝑇𝑇𝑛𝑛} generated from𝑇𝑇1 ∈ 𝐶𝐶 and definedby 

 𝑇𝑇𝑛𝑛+1 = 𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑛𝑛 ;   ∀ 𝑛𝑛 ∈ ℕ, 

converges weakly to𝑇𝑇∗ ∈ Ω(𝐶𝐶, 𝑇𝑇). 

 

7.1.9Application to constrained optimization problems 

Let 𝐶𝐶be a closedconvex subset of a Hilbert space𝐻𝐻, 𝑃𝑃𝐶𝐶the metric projection 

of𝐻𝐻onto 𝐶𝐶and𝑇𝑇:𝐶𝐶 → 𝐻𝐻a 𝜈𝜈-ism where 𝜈𝜈 > 0 is a constant. It is well known that 

𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇𝑇𝑇)is non-expansive operator provided that 𝜇𝜇 ∈ (0, 2𝜈𝜈). 

The algorithms for signal and image processing are often iterative 

constrainedoptimization processes designed to minimize a convex differentiable 

function 𝑇𝑇overa closed convex set 𝐶𝐶 in𝐻𝐻. It is well known that every𝐿𝐿-

Lipschitzian operator is2 𝐿𝐿⁄ -ism. Therefore, we have the following result which 

generates the sequence ofvectors in the constrained or feasible set 𝐶𝐶which 

converges weakly to the optimalsolution which minimizes𝑇𝑇. 

Theorem 7.1.10.Let 𝐶𝐶 be a closed convex subset of a Hilbert space 𝐻𝐻 and 𝑇𝑇 

aconvex and differentiable function on an open set 𝐷𝐷 containing the set 𝐶𝐶. 

Assumethat ∇𝑇𝑇 is an 𝐿𝐿-Lipschitz operator on𝐷𝐷, 𝜇𝜇 ∈ (0, 2 𝐿𝐿⁄ )and minimizers of 𝑇𝑇 

relativeto the set 𝐶𝐶 exist. For a given𝑇𝑇1 ∈ 𝐶𝐶,let {𝑇𝑇𝑛𝑛} be a sequence in 𝐶𝐶 generated 

by 

 �
𝑇𝑇𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑇𝑇)𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑇𝑇)𝑇𝑇𝑛𝑛 ,
𝑇𝑇𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑇𝑇)𝑇𝑇𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑇𝑇)𝑧𝑧𝑛𝑛 ,
𝑧𝑧𝑛𝑛 = (1 − 𝛾𝛾𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑇𝑇)𝑇𝑇𝑛𝑛 ;  ∀ 𝑛𝑛 ∈ ℕ,

� 

where {𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛} 𝑎𝑎𝑛𝑛𝑎𝑎 {𝛾𝛾𝑛𝑛}are sequences in [𝜉𝜉, 1 − 𝜉𝜉] for all  𝑛𝑛 ∈ ℕ and for some 

𝜉𝜉 ∈ (0,1). Then the sequence {𝑇𝑇𝑛𝑛} converges weakly to a minimizer of𝑇𝑇. 

Proof.Since 𝑇𝑇 ≔ 𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑇𝑇) is non-expansive, hence the result follows 

fromTheorem 4.2.1.∎ 

 



CHAPTER-7 APPLICATION AND CONCLUSION 

 
76 

7.1.11Application to split feasibility problems 

Recall that a mapping 𝑇𝑇in aHilbert space 𝐻𝐻is said to be averaged if 𝑇𝑇can be 

written as (1 − 𝛼𝛼)𝑉𝑉 + 𝛼𝛼𝑆𝑆, where𝛼𝛼 ∈ (0, 1) and 𝑆𝑆is a non-expansive map on 𝐻𝐻. 

Set𝑞𝑞(𝑇𝑇): = 1
2
��𝑇𝑇 − 𝑃𝑃𝑄𝑄𝑇𝑇�𝑇𝑇�, 𝑇𝑇 ∈ 𝐶𝐶. 

Consider the minimization problem 

find𝑇𝑇∈𝐶𝐶min 𝑞𝑞(𝑇𝑇). 

By [17], the gradient of 𝑞𝑞is ∇𝑞𝑞 = 𝑇𝑇∗�𝑉𝑉 − 𝑃𝑃𝑄𝑄�𝑇𝑇, where 𝑇𝑇∗is the adjoint of 𝑇𝑇.Since 

𝑉𝑉 − 𝑃𝑃𝑄𝑄is non-expansive, it follows that ∇𝑞𝑞is 𝐿𝐿-Lipschitzian with𝐿𝐿 =

‖𝑇𝑇‖2.Therefore, ∇𝑞𝑞is 1 𝐿𝐿⁄ -ism and for any 0 < 𝜇𝜇 < 2 𝐿𝐿⁄ , 𝑉𝑉 − 𝜇𝜇 ∇ 𝑞𝑞is averaged. 

Therefore,the composition 𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑞𝑞) is also averaged. Set𝑇𝑇 ≔ 𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇𝑞𝑞). 

Note thatthe solution set of 𝑆𝑆𝐹𝐹𝑃𝑃(𝐶𝐶,𝑇𝑇)is 𝐹𝐹(𝑇𝑇). 

We now present an iterative procedure that can be used to find solutions of 

𝑆𝑆𝐹𝐹𝑃𝑃(𝐶𝐶,𝑇𝑇). 

Theorem 7.1.12.Assume that 𝑆𝑆𝐹𝐹𝑃𝑃(𝐶𝐶,𝑇𝑇)is consistent. 

Suppose{𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛} 𝑎𝑎𝑛𝑛𝑎𝑎 {𝛾𝛾𝑛𝑛}are sequences in [𝜉𝜉, 1 − 𝜉𝜉] for all  𝑛𝑛 ∈ ℕ and for 

some  𝜉𝜉 ∈ (0,1). Let{𝑇𝑇𝑛𝑛} be a sequence in 𝐶𝐶 generated by 

 �
𝑇𝑇𝑛𝑛+1 = (1 − 𝛼𝛼𝑛𝑛)𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑞𝑞)𝑇𝑇𝑛𝑛 + 𝛼𝛼𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑞𝑞)𝑇𝑇𝑛𝑛 ,
𝑇𝑇𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑞𝑞)𝑇𝑇𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑞𝑞)𝑧𝑧𝑛𝑛 ,
𝑧𝑧𝑛𝑛 = (1 − 𝛾𝛾𝑛𝑛)𝑇𝑇𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑞𝑞)𝑇𝑇𝑛𝑛 ;  ∀ 𝑛𝑛 ∈ ℕ,

� 

where 0 < 𝜇𝜇 < 2 ‖𝑇𝑇‖2⁄ . Then the sequence{𝑇𝑇𝑛𝑛}converges weakly to a solution 

of  𝑆𝑆𝐹𝐹𝑃𝑃(𝐶𝐶,𝑇𝑇). 

Proof.Since 𝑇𝑇 ≔ 𝑃𝑃𝐶𝐶(𝑉𝑉 − 𝜇𝜇 ∇ 𝑞𝑞) is non-expansive, hence the result follows 

fromTheorem 4.2.1.∎ 

 

7.2 Conclusion  

7.2.1 Conclusion on our new three-step iterative procedure 

By our Theorem 2.9.2, we have shown that the sequence of our new three-

step iterative procedure (2.18) converges strongly for Zamfirescu operator. 
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From the comparison Table 3.7.1, we observe that the Picard iterative 

procedure (2.1), the Mann iterative procedure (2.11), the Ishikawa iterative 

procedure (2.13), the Noor iterative procedure (2.14), the Agarwalet al. iterative 

procedure (2.15), the Abbas et al. iterative procedure (2.16) and the Thakuret 

al.iterative procedure (2.17) converge to the fixed point after 28th iteration, 36th 

iteration, 26th iteration,  24th iteration, 20th iteration, 20th iteration and 17th iteration 

respectively, where as our proposed new three-step iterative procedure (2.18) 

converge to the fixed point after 15th iteration under the same situation. So, we can 

conclude that the rate of convergence of our new three-step iterative procedure 

(2.18) is fastest among all the above mentioned iterativeprocedures for contraction 

mapping. Our Theorem 3.6.1 proves this argument analytically. By Theorem 4.2.1 

we establish the weak convergence of our new three-step iterative procedure (2.18) 

for non-expansive mapping under different conditions and by Theorem 4.3.1, 

Theorem 4.3.2, and Theorem 4.3.3 we establish the strong convergence of our new 

three-step iterative procedure (2.18) for non-expansive mapping under different 

conditions. 

 

7.2.2 Conclusion on the convergence theorem of multi-step fixed point 

iterative procedure with errors 

Our Theorem 6.2.1 improves the Theorem 3 of A. Rafiq [3] by extending it 

from Mann iterativeprocedure with errors to multi-step Noor fixed point iterative 

procedurewith errors. Since the iterative procedureswith errors (5.2) to (5.10) are 

special cases of the multi-step Noor iterative procedure with errors (5.1), therefore 

our Theorem 6.2.1 made by the multi-step Noor iterative procedure with errors 

(5.1) associated with Zamfirescu operator generalizes all Theorems made by the 

iterative procedures with errors (5.2) to (5.10) associated with Zamfirescu 

operator. Furthermore, by our Theorem 6.2.1, various results in the literature are 

also extended and generalized in the following way: 
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1. The fixed point theorems of Kannan’s operatordefined in Definition 1.6.3 and 

Chatterjea’s operator defined in Definition 1.6.4 are extended to the larger class of 

Zamfirescu operator associated with multi-step Noor fixed point iterative 

procedurewith errors. 

2. The fixed point theorems of V. Berinde [48, 50-52] are extended from the Mann 

and Ishikawa iterativeprocedure to multi-step Noor fixed point iterative 

procedurewith errors. 

3. The fixed point theorem of A. Rafiq [2] is extended from the Mann, Ishikawa 

and Noor iterative procedure to multi-step Noor fixed point iterative 

procedurewith errors. 

4. The fixed point theorem of Y.J. Cho, H. Zhou, G. Guo [63] is generalized and 

extended from three-step iterative procedure with errors in asymptotically non-

expansive mapping  to multi-step Noor fixed point iterative procedurewith errors 

in Zamfirescu operator. 

5. The fixed point theorems of Y. Xu [62] and L. S. Liu [22] are generalized from 

the Mann and Ishikawa iterative procedures with errors to multi-step Noor fixed 

point iterative procedurewith errors.  

6. The fixed point theorems of M. O. Osilike [28-30]are generalized from the 

Mann and Ishikawa iterative procedure with errors to multi-step Noor fixed point 

iterative procedurewith errors. 
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