
University of Rajshahi Rajshahi-6205 Bangladesh.

RUCL Institutional Repository http://rulrepository.ru.ac.bd

Department of  Mathematics MPhil Thesis

2014

New Approximate Solution of

Non-Linear Differential Systems

Pervin, Mst. Razia

University of Rajshahi

http://rulrepository.ru.ac.bd/handle/123456789/290

Copyright to the University of Rajshahi. All rights reserved. Downloaded from RUCL Institutional Repository.



NEW APPROXIMATE SOLUTION OF NON-LINEAR 

DIFFERENTIAL SYSTEMS 

 
 

 
 
 

Thesis submitted in partial fulfillment of the requirements for 
the degree of 

 
 

MASTER OF PHILOSOPHY 
IN 

MATHEMATICS 
 

Submitted 
 

BY 
MST. RAZIA PERVIN 

 
 

 
DEPARTMENT OF MATHEMATICS 

FACULTY OF SCIENCE 
UNIVERSITY OF RAJSHAHI 

RAJSHAHI-6205 
 

DECEMBER-2014 
 



 i 

DECLARATION 
 

 

 
The thesis entitled “New Approximate Solution Of Non-Linear Differential Systems” is 

solely written with all the endeavor and enthusiasm by me and has been submitted in partial 

fulfillment of the requirements for the degree of Master of Philosophy in Mathematics, 

Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh. I hereby confirm that 

this research work is original and has never been submitted elsewhere for any degree. 

 

 

 

 

______________________ 

Mst. Razia Pervin      Date:……………… 

(Candidate) 

Roll No: 11315, Session: 2011-2012, Reg No: 3086 

Department of Mathematics 

University of Rajshahi, Rajshahi-6205, Bangladesh. 

 

 

 

 

 

 

 

 



 ii 

DEDICATION 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
This Thesis Work 

is DeDicaTeD 
To 

My reverenT 
ParenTs, 

Loving DaughTer  
&  

husbanD. 
 



 iii 

CERTIFICATE 
 
 

 

 

This is to certify that the research work entitled “New Approximate Solution Of Non-Linear 

Differential Systems” presented  in this dissertation is based on the study carried out by  Mst. 

Razia Pervin, Roll No.11315, Registration No.3086, Session-2011-2012 in the fulfillment of 

the requirements for the degree of Master of Philosophy in Mathematics, Faculty of Science, 

University of Rajshahi, Rajshahi-6205, Bangladesh, has been completed under our 

supervision. We believe that this research work is an original one and has never been 

submitted elsewhere for any degree. 

 

 

 

_____________________________________________ 
Prof. Dr. Shewli Shamim Shanta 
Supervisor 
Department of Mathematics 
University of Rajshahi, Rajshahi, Bangladesh. 
 
 
 
 
_____________________________________ 
Dr. Pinakee Dey 
Co-Supervisor 
Associate Professor 
Mawlana Bhashani Science and Technology University 
Santosh, Tangail, Bangladesh.  
 
 
 
 
 
 



 iv 

ACKNOWLEDGEMENTS 
      

All praises and glory is to the Almighty Allah who is the Omnipotent and only Creator of all 

creatures that are seen or unseen in this world. All my worshiping and gratefulness bestowed 

only to Him Who enabled me to accomplish such a thesis task.   

However, my indebtedness and gratitude to the many individuals who have helped shape this 

thesis work cannot adequately be conveyed in a few sentences. I would like to express my 

sincere admiration, appreciation and gratitude to my Supervisor, Professor Dr. Shewli 

Shamim Shanta for her kind guidance, invaluable suggestions and farsighted advice in 

implementing the thesis work.  

I am really indebted to Dr. Pinakee Dey, Co-Supervisor of this thesis work whose outstanding 

contributions and enormous supports make this work a success.  

I also feel it is important to acknowledge and thank my mentor and ex-head of Department of 

Mathematics of the University of Rajshahi, Rajshahi, Bangladesh  Professor Dr. M. A. Sattar 

who taught me a lot regarding academic and research work. I think very few people get such a 

chance what I have gathered from his pleasant company. It is also gratefully acknowledged 

the supports and co-operations of my friends & colleagues. 

How to express the language of indebtedness to my family members is really unknown to me. 

My heartfelt respects and gratitude is expressed to my reverent parents for their spontaneous 

support and inspiration regarding my higher education and research work. 

Last but not in the least, I am overwhelmed with joys and proud that only because of them it 

has happened in my life to carry out such a thesis work. Thanks to my very affectionate 

daughter Arshiya Helal and beloved husband Bosher Al Helal. Without their co-operations I 

believe this thesis work may not have seen the light of this Universe. Thanks to all!  



 v 

ABSTRACT 
 

Most of the perturbation methods are developed to find periodic solutions of nonlinear 

systems; transients are not considered. At first, Krylov and Bogoliubov introduced a 

perturbation method which is well known as “asymptotic averaging method” to discuss the 

transients in the second order autonomous systems with small nonlinearities. Later, this 

method has been amplified and justified by Bogoliubov and Mitropolskii. Mitropolskii has 

extended the method for slowly varying coefficients to determine the steady state periodic 

motions and transient processes. In this dissertation, we have modified and extended the KBM 

method to investigate some second order nonlinear systems. 

Firstly, a second order time dependent nonlinear differential system is considered. Then a new 

perturbation technique is developed to find an asymptotic solution of nonlinear systems in 

presence of an external force. Finally, this technique is used to obtain an asymptotic solution 

of a time dependent nonlinear differential system with slowly varying coefficients using the 

extended KBM method. These methods are illustrated with several examples. 
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Introduction 
 
 

In science and engineering, there exist many nonlinear oscillatory systems in which 

parameters are not small. The theory of nonlinear vibrations is an important part of modern 

science. Those oscillatory systems are often governed by nonlinear differential equations. To 

solve these problems, it is possible to replace a nonlinear differential equation with a related 

linear equation that approximates the original nonlinear equation closely enough to provide 

useful results. Often such linearization is not feasible and therefore the original nonlinear 

differential equation itself must be considered. 

Van der Pol first paid attention to the new (self-excitation) oscillation and found that their 

existence is inherent in the nonlinearity of the differential systems characterizing the process. 

This nonlinearity appears, thus, as the very essence of these phenomena and by linearizing the 

differential systems in the sense of the method of small oscillations, one simply eliminates the 

possibility of investigating such problems. Thus, it is necessary to deal with the nonlinear 

problems directly instead of evading them by dropping the nonlinear terms. To solve 

nonlinear differential systems there exist some methods. Among the methods, the method of 

perturbations, i. e., asymptotic expansions in terms of a small parameter, are foremost. 

According to these techniques, the solutions are presented by the first two terms to avoid 

rapidly growing algebraic complexity. Although these perturbation expansions may be 

divergent, they can be more useful for qualitative and quantitative representations than the 

expansions that are uniformly convergent. 

 Perturbation methods are one of the fundamental tools used by all applied 

mathematicians and theoretical physicists and widely used in science to obtain approximate 
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solutions based on known exact solutions to nearby problems. Such asymptotic techniques 

can also be used to provide initial guesses for numerical approximations, and they can now be 

generated through smart use of symbolic computation. An example of this occurs in boundary 

layer problem where the regions of rapid change in quantities are fluid velocity, temperature 

or concentration. This method is most effectively used to analyze problems in solid and fluid 

mechanics, control theory, celestial mechanics, optics, shock waves, nonlinear vibrations, 

nonlinear wave propagations, and reaction-diffusion systems arising in several physical and 

biological contexts. 

In this dissertation, we shall discuss nonlinear vibrating problems that can be described 

by the dynamical vibrations of second and nth order time dependent nonlinear differential 

systems with small nonlinearities by the use of the extended Krylov-Bogoliubov-Mitropolskii 

(KBM) method. An important approach to study such nonlinear oscillatory problems is the 

small parameter expansion. Two widely spread methods are mainly used: one is averaging, 

particularly the KBM method and the other is the method of variation of parameters. 

According to the KBM technique the solution starts with the solution of linear equation, 

termed as generating solution, assuming that, in the nonlinear case, the amplitude and the 

phase of the solution of the linear differential equation are time-dependent functions rather 

than constants. This method introduces an additional condition on the first derivative of the 

generating solution for determining the solution of a second order equation. Originally, the 

method was developed by Krylov-Bogoliubov to obtain the periodic solutions of second order 

nonlinear differential systems. Now, the method is used to obtain oscillatory, damped 

oscillatory and non-oscillatory solutions of second, third etc. order nonlinear differential 

systems by imposing some restrictions to make the solutions uniformly valid. 
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Most of the authors found the solutions of autonomous nonlinear differential systems. 

Only a diminutive number of authors investigated damped forced nonlinear vibrating 

problems. In this dissertation, some second order time dependent nonlinear vibrating 

problems have been studied and their solutions are investigated. 

The results may be useful to researchers working in the field of nonlinear mechanics, 

mathematical physics, control theory, population dynamics, etc. 
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Chapter 1 
 

The Survey and the Proposal 
 
1.1 The Survey 
      

In the modern era, the study of nonlinear vibrating problems is of crucial importance not 

only in all areas of physics but also in engineering and other disciplines, since most physical 

phenomena in our real world are essentially nonlinear and are described by nonlinear 

equations. In the mathematical formulations many physical problems often result in 

differential equations that are nonlinear. However, in many cases it is possible to replace a 

nonlinear differential equation with a related linear differential equation that approximates the 

actual equation closely enough to give useful results. Often such linearization is not possible 

or feasible; when it is not, the original nonlinear equation itself must be tackled. 

 

In the treatment of nonlinear oscillations by perturbation methods, e.g. Lindstedt’s [28] 

method,  Poincare’s [49] method etc. only periodic oscillations have been treated; transients 

are not considered. For the first time, Krylov and Bogoliubov (KB) [25] have introduced a 

new perturbation method in order to discuss the transient state solution of the equation 

presented by 

                            ),(2 xxfxx  εω =+                                                                        (1.1)  

where ε  is a small parameter. In this equation, the damping terms are small. But in the 

particular cases, it gives those periodic solutions obtained by Poincare [ 49] . Here it should 

be mentioned that Poincare’s [49] method is well known perturbation method for determining 

periodic solutions of nonlinear ordinary differential equations with small nonlinearities. 
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 When  0=ε , then the equation (1.1) reduces to linear equation and its solution is  

                            )(cos ϕω += tax                                                                           (1.2) 

where a and ϕ  are arbitrary constants to be determined from the initial conditions.  

Now in order to determine an approximate solution of the equation (1.1) for  ε  small but 

different from zero,  Krylov and Bogoliubov assumed that the solution is still given by (1.2) 

with the derivative of the form 

                             )sin( ϕωω +−= tax                                                                        (1.3) 

where a and ϕ  are functions of t , rather than being constants. 

Differentiating (1.2) with respect to t gives 

                             ψϕψψω sincossin  aaax −+−= ,    ϕωψ += t                          (1.4) 

Hence 

                             0sincos =− ψϕψ  aa                                                                  (1.5) 

On account of (1.3).  

Again differentiating (1.3) with respect to t gives 

                              ψϕωψωψω cossincos2  aaax −−=                                             (1.6) 

Substituting (1.6) into (1.1) and utilizing (1.2) and (1.3), we obtain 

                           )sin,cos(cossin ψωψψϕωψω aafaa −−=+                                    (1.7) 

Solving (1.5) and (1.7) for a  and ϕ  yields 

                              )sin,cos(sin ψωψψ
ω
ε aafa −−= , 

                            )sin,cos(cos ψωψψ
ω
εϕ aaf

a
−−=                                           (1.8) 
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 Thus according to Krylov and Bogoliubov’s method, the single differential equation 

(1.1) of the second order for x  has been replaced by the two differential equations of the first 

order in the unknown amplitude a  and the phase ϕ . It is obvious that the solution is periodic 

with constant amplitude and period 
ω
π2  as the limit 0→ε . But one cannot tell about the 

amplitude and the periodicity of oscillations whenε  is small, rather than sufficiently small.  

 

Expanding )sin,cos(sin ψωψψ aaf −  and )sin,cos(cos ψωψψ aaf −  in Fourier series 

in the total phase ψ  and assuming that the parameter ε  is small, so that the amplitude a  and 

the phase ϕ  change very slowly during one period of the oscillation,  

i.e,     ω
ϕ
ϕω <<<<


,
a
a ,                                                                                               (1.9) 

The first approximate solution of (1.1) by averaging (1.8) over one period is  

                            

ψψωψψ
ωπ

εϕ

ψψωψψ
πω
ε

π

π

daaf
a

daafa

∫

∫

−−=

−−=

2

0

2

0

)sin,cos(cos
2

)sin,cos(sin
2





                              (1.10)  

where a  and  ϕ  are independent of time under the integrals. 

KB called their method asymptotic in the sense such that 0→ε . An asymptotic series 

itself is not convergent, but for a fixed number of terms the approximate solution tends to the 

exact solution as ε  tends to zero. It is noted that the term asymptotic is frequently used in the 

theory of oscillation, also in the sense,  ∞→ε . But in this case the mathematical method is 

quite different. 
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The higher order effects were obtained by Volosov [80], Musen [37] and Zabrieko [82].  

The equation (1.10) is the differential equations of the first approximation in the form in 

which they are originally obtained by Krylov and Bogoliubov [25] and in this case they are 

generally used in applications. 

 

This method, though it is restricted to differential equations of the type (1.1) has been 

used extensively in plasma physics, theory of oscillations and control theory. Kruskal [24] has 

extended this method to solve the equations of type  

                             ),,( εxxFx  =                                                                                   (1.11)                

The solutions of these fully nonlinear equations are based on the recurrent relations and 

are given in the forms of power series of the small parameter ε . Cap [18] has investigated 

some nonlinear systems of the type  

                             ),()(2 xxFxfx  εω =+ ,                                                               (1.12)  

by using elliptic functions in the sense of the Krylov and Bogoliubov method. 

 

 Later, this technique has been amplified and justified mathematically by Bogoliubov and 

Mitropolskii [3], and extended to a non-stationary vibrations by Mitropolskii [32]. They 

assumed the solution of the nonlinear differential equation (1.1) in the form 

                   )(),(),(),(cos 1
2

2
1

++++++= n
n

n Oauauauax εψεψεψεψ   (1.13) 

where ku , nk ,2,1=  are periodic functions of ψ  with a period π2 , and the quantities 

a  and ψ  are functions of time t , defined by 
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)()()()(

)()()()(
1

2
2

1

1
2

2
1

+

+

+++++=

++++=
n

n
n

n
n

n

OaBaBaB

OaAaAaAa

εεεεωψ

εεεε




             (1.14)  

The function ku , kA  and kB , nk ,2,1=  are to be chosen such a way that the 

equation (1.13), after replacing  a  and ψ  by the functions defined in equation (1.14), is a 

solution of the equation (1.1). Since there are no restrictions in choosing the functions kA  and 

kB , that generate the arbitrariness in the definitions of the functions ku . To remove this 

arbitrariness, the following additional conditions are imposed. 

                              

,0sin),(

,0cos),(

2

0

2

0

∫

∫

=

=

π

π

ψψψ

ψψψ

dau

dau

k

k

                                                              (1.15) 

These conditions guarantee the absence of secular terms in all successive approximations. 

 

Differentiating (1.13) two times with respect to t , utilizing relations (1.14), substituting 

x  and the derivatives 
...

, xx  in the original equation (1.1), and equating the coefficients of  kε , 

nk ,2,1=  results a recursive system 

                          )sincos(2),()1(
2

2
2 ψψωψ

ψ
ω kk

k
k

k ABaafu
u

++=









+

∂

∂ − ,   (1.16) 

where  

                            ),sin,cos(),(0 ψωψψ aafaf −=  
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.2sin2

cos)sin,cos(

sincos

)sin,cos(),(

2
1

2

1
1

2

1
1

111

1
1

2
1

1
11

1
)1(

.












∂

∂
+

∂∂
∂

−





 −+







 −+−×









∂
∂

+−+

−=

ψψ
ωψ

ψψωψ

ψ
ωψψ

ψωψψ

uB
a

uA
da
dBAaBA

da
dAABaaaf

uBaA

aafuaf

x

x

            (1.17)  

It is obvious that  1−kf  is a periodic function of the variable ψ  with  period π2 , which 

depends also on the amplitude a . Therefore, 1−kf  as well as ku  can be expanded in a 

Fourier series as 

                
,sin)(cos)()(),(

sin)(cos)()(),(

)1(

1

)1()1(
0

)1(

1

)1()1(
0

)1(

ψψννψ

ψψψ

nawnaaau

nahnagagaf

k
n

n

k
n

k
k

k
n

n

k
n

kk

−
∞

=

−−

−
∞

=

−−−

++=

++=

∑

∑
        (1.18)     

 

where 

                     

1,sin)sin,cos(1

,cos)sin,cos(1

,)sin,cos(
2
1

2

0

)1()1(

2

0

)1()1(

2

0

)1()1(
0

≥−=

−=

−=

∫

∫

∫

−−

−−

−−

ndnaafh

dnaafg

daafg

kk
n

kk
n

kk

ψψψωψ
π

ψψψωψ
π

ψψωψ
π

π

π

π

             (1.19) 

Here 0)1(
1

)1(
1 == −− kk wν for all values of k , since both integrals of  (1.15) vanish. 
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Substituting these values into the equation (1.16), it becomes 

                  

[ ]
( ) ( )

[ ],sin)(cos)(

sin2)(cos2)()(

sin)(cos)()1()(

2

)1()1(

)1(
1

)1(
1

)1(
0

)1()1(

1

22)1(
0

2

∑

∑

∞

=

−−

−−−

−−
∞

=

−

++

++++=

+−+

n

k
n

k
n

k
k

kk

k
n

k
n

n

k

nahnag

BahBaagag

nawnana

ψψ

ψωψω

ψψνωνω

     (1.20) 

Now equating the coefficients of harmonic of the same order, we get 

 

                              

1,
)1(
)(

)(

,
)1(
)(

)(,
)(

)(

,02)(,02)(

22

)1(
)1(

22

)1(
)1(

2

)1(
0)1(

0

)1(
1

)1(
1

≥
−

=

−
==

=+=+

−
−

−
−

−
−

−−

n
n
ah

aw

n
ag

a
ag

a

AahBaag

k
nk

n

k
nk

n

k
k

k
k

k
k

ω

ω
ν

ω
ν

ωω

                    (1.21) 

 These are the sufficient conditions to obtain the desired order of approximation. For the 

first order approximation, we have  

 

                            

,cos)sin,cos(
2

1
2

)(

,sin)sin,cos(
2

1
2

)(

2

0

)1(
1

1

2

0

)1(
1

1

ψψψωψ
ωπω

ψψψωψ
πωω

π

π

daaf
aa

agB

daafahA

−−=−=

−−=−=

∫

∫
     (1.22)  

 

Therefore the variational equations in (1.14) become 

                              

,cos)sin,cos(
2

,sin)sin,cos(
2

2

0

2

0

ψψψωψ
ωπ

εωψ

ψψψωψ
ωπ
ε

π

π

daaf
a

daafa

−−=

−−=

∫

∫





                      (1.23) 
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It is noted that the equation (1.23) is similar to the equation (1.10). Thus the first order 

solution obtained by Bogoliubov and Mitropolskii [3] is identical with the original solution 

obtained by Krylov and Bogoliubov [25]. In the second case, higher order solution can be 

found easily. The correction term 1u  is obtained from (1.21) as 

                              
)1(

cos)(cos)()(
22

)1()1(

2
2

)1(
0

1 n
nahnagagu nn

n −
+

+= ∑
∞

= ω
ψψ

ω
                      (1.24) 

   

The solution (1.13) together with 1u  is known as the first order improved solution in 

which a  and ψ  are the solutions of the equation (1.23). If the value of the function 1A  and 1B  

are substituted from (1.22) in the second relation of (1.17), one obtains the function )1(f , in 

the similar way, one can find the unknown functions 2A , 2B  and 2u . Thus the determination 

of the higher order approximation is sufficiently clear. 

 

The Krylov and Bogoliubov method has been extended by Kruskal [24] to solve the fully 

nonlinear differential equation 

                              ),,( εxxFx  =                                                                                (1.25)  

 

The solutions of this fully nonlinear equation are based on recurrence relations and are 

given in the form of power series of the small parameterε . 

 

Cap [18] has investigated some nonlinear systems of the form  

                              ),()(2 xxFxfx  εω =+                                                                (1.26) 
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He has solved this equation by using elliptical functions in the sense of the Krylov and 

Bogoliubov method. 

 

Struble [78] has developed a technique for treating weakly nonlinear oscillatory systems 

such as those governed by  

                              ),,(2 txxfxx  εω =+                                                                  (1.27) 

He has expressed the asymptotic solution of this equation for small ε  in the form 

                               ∑
=

+++−=
N

n

Y
n

n Otxtax
1

1)()()(cos εεθω                                   (1.28) 

where a  and θ  are slowing varying  functions of time. 

     Later the method of Krylov- Bogoliubov-Mitropolskii (KBM) has been extended by Popov 

[50] to damped nonlinear systems 

                               ),(2 2 xxfxxkx  εω =++ ,                                                      (1.29) 

where 
.

2 xk−  is the linear damping force and ω<< k0 . It is noteworthy that, because of the 

importance of the method [50] in the physical systems, involving damping force, Mendelson 

[29] and Bojadziev [14] rediscovered Popov’s results. In the case of damped nonlinear 

systems the first equation of  (1.14) has been replaced by  

                          )()()()( 1
2

2
1

++++++−= n
n

n OaAaAaAaka εεεε  ,           (1.14a) 

On the contrary, Murty, Deekshatulu and Krishna [35] have found a hyperbolic 

asymptotic solution of an over-damped system represented by the nonlinear differential 

equation (1.29) in the sense of KBM method; i. e., in the case ω>k . They have used 

hyperbolic function, ϕcosh  or ϕsinh  instead of the harmonic function ϕcos , which have 
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been used in [3,25,29,50]. In the case of oscillatory or damped oscillatory process ϕcos  may 

be used arbitrarily for all kinds of initial conditions. But in the case of non-oscillatory systems 

ϕcosh  or ϕsinh  should be used depending on the given set of initial conditions [15,35,36]. 

Murty, Deekshatulu [34] have developed another asymptotic method obtaining simple 

analytic solution of the over-damped system represented by the same equation (1.29). 

Shamsul [69] extended the KBM method to find the solutions of over-damped nonlinear 

systems, when one root becomes much smaller than the other root. Murty [36] has also 

presented a unified KBM method for solving the nonlinear systems represented by the 

equation (1.29). Bojadziev and Edwards [15] have investigated the solutions of oscillatory 

and non-oscillatory systems represented by (1.29) when k  and ω  are slowly varying 

functions of time t . Arya and Bojadziev [1,2] examined damped oscillatory systems and 

time-dependent oscillating systems with varying parameters and delay. Shamsul, Alam and 

Shanta [61] extended the Krylov- Bogoliubov-Mitropolskii method to certain non-oscillatory 

nonlinear systems with varying coefficients. Later Shamsul [70] have unified the KBM 

method for solving n -th order nonlinear differential equation with varying coefficients. Sattar 

[54] has developed an asymptotic method to solve a critically damped nonlinear system 

represented by (1.29). He has found the asymptotic solution of the system (1.29) in the form 

                           )(),(),()1( 1
1

++++++= n
n

n Oauauax εψεψεψ             (1.30) 

where a  is defined the equation (1.14a) and ψ  is defined by 

                        )()()(1 1
1

+++++= n
n

n OaCaC εεεψ                           (1.14b) 

 

Shamsul [58] has developed an asymptotic method for second–order over-damped and 

critically damped nonlinear systems. Shamsul [67,71] has also extended the KBM method for 
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certain non-oscillatory nonlinear systems when the eigen-values of the unperturbed equation 

are real and non-positive. Shamsul [60] has presented a new perturbation method based on the 

work of Krylov-Bogliubov-Mitropolskii to find approximate solutions of nonlinear systems 

with large damping. Later, he has extended the method to n -th order nonlinear differential 

systems[ 64]. 

 

Making use of the KBM method Bojadziev [5] has investigated nonlinear damped 

oscillatory systems with small time lag. Bojadziev [11,12], Bojadziev and Chan [13] applied 

the KBM method to the problems of population dynamics. Bojadziev [14] has used the KBM 

method to investigate nonlinear biological and biochemical systems. Lin and Khan [27] have 

also used the KBM method to some biological problems. Proskurjakov [51], Bojadziev, 

Lardner and Arya [6] have investigated periodic solutions of nonlinear systems by KBM and 

Poincare method, and compared the two solutions. Bojadziev and Lardner [7,8] have 

investigated mono-frequent oscillations in mechanical systems including the case of internal 

resonance, governed by hyperbolic differential equations with small nonlinearities. Bojadziev 

and Lardner [9] have also investigated hyperbolic differential equations with large time delay. 

Freedman and Ruan [19] used the KBM method in the three-species chain models with group 

defense. 

 

Most probably, Osiniskii [40], first extended the KBM method to a third nonlinear 

differential equation 

 ),,(321 xxxfxkxkxkx  ε=+++                                         (1.31) 
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where ε  is a small parameter and f  is a nonlinear function. He has found the asymptotic 

solution in the form 

                   ),(),,(),,(cos 1
1

++++++= n
n

n Obaubaubax εψεψεψ         (1.32) 

where ku , nk ,2,1=  are periodic functions of ψ  with period π2 and ba,  and ψ  are 

functions of time t , given by 
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               (1.33) 

 

where λ− , ωµ ±−  are the characteristic roots of the equation (1.31) when 0=ε , and the 

functions ku , kA , kB  and kC  are chosen such that the equations (1.32) and (1.33) satisfy the 

differential equation (1.31). Osiniskii [41] has also extended the KBM method to a third order 

nonlinear partial differential equation with internal friction and relaxation. Mulholland [33] 

has studied nonlinear oscillations governed by a third order differential equation. Lardner and 

Bojadziev [26] investigated nonlinear damped oscillations governed by a third order partial 

differential equation. They introduced the concept of “couple amplitude” where the unknown 

functions kA , kB  and kC  depend on both the amplitudes a  and b . Rauch [52] has studied 

oscillations of a third order nonlinear autonomous system. Sattar [55] has extended the KBM 

asymptotic method for three-dimensional over-damped nonlinear systems. Shamsul and Sattar 

[56] developed a method to solve third order critically damped nonlinear systems. Shamsul 

[65] redeveloped the method presented in [56] to find approximate solutions of critically 

damped nonlinear systems in the presence of different damping forces. Shamsul and Sattar 

[59] have studied time dependent third order oscillating systems with damping based on an 
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extension of the asymptotic method of Krylov-Bogoliubov-Mitropolskii. Shamsul [68] also 

has developed a method for obtaining non-oscillatory solution of third order nonlinear 

systems. Later, Shamsul and Sattar [57] have presented a unified KBM method for solving 

third order nonlinear systems. Shamsul [63] has also presented a unified Krylov-Bogoliubov-

Mitropolskii method, which is not the formal form of the original KBM method, for solving 

n -th order nonlinear systems. The solution contains some unusual variables. Yet this solution 

is very important. Shamsul [74] has also presented a modified and compact form of Krylov-

Bogoliubov-Mitropolskii unified method for solving n -th order nonlinear differential 

equation. The formula presented in [74] is compact, systematic and practical, and easier than 

that of [63]. 

 

Shamsul and Sattar [57] have extended Murty’s [36] unified technique for obtaining the 

transient response of third order nonlinear systems. Recently, Shamsul [63] has presented a 

unified formula to obtain a general solution of an n -th order differential equation with 

constant coefficients. He considered a weakly nonlinear system as 

 ),,()1(

)1(

1)(

)(
 xxfxk

dx
xdk

dx
xd

nn

n

n

n
ε=+++

−

−
                                   (1.34) 

where over-dot denotes differentiation with respect to t , jk , nj ,2,1=  are constants. 

Shamsul [63] seeks a solution of (1.34) in the form 

  ++= ∑
=

n

j
n

t
j taaawetatx j

1
211 ),,,,()(),( εε λ                           (1.35) 

where jλ , nj ,2,1=  are the given eigen-values of the corresponding linear equation of 

(1.34) and each ja  satisfied a first order differential equation 
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  += ),,,,( 211 taaaAa nj ε                                                             (1.36)         

Generally, in the treatment of the perturbation techniques an approximate solution is 

determined in terms of amplitude and phase variables. But the solution (1.35) starts with some 

new variables naaa ,,, 21  . Such a choice of variables is important to tackle various nonlinear 

problems with an easier approach. This technique greatly speeds up the KBM method to 

determine the asymptotic solution. 

 

Hung and Wu [22] have presented an exact solution of a differential system in terms of 

Bessel’s functions where the coefficients vary with time in an exponential order. 

 

Shamsul, Hossain and Shanta [62] found an approximate solution of a time dependent 

nonlinear system in which a strong linear damping force acts. Shamsul [75] developed a 

general formula based on the extended Krylov-Bogoliubov-Mitropolskii method for obtaining 

asymptotic solution of an n -th order time dependent quasi-linear differential equation with 

damping. Nguyen Van Dinh [39] investigated stationary oscillation from a variant of the 

asymptotic procedure in a special case of the type 

 ),,(2 ϕεω xxfxx  =+ ,        tϕω =                                                    (1.37) 

where x  is an oscillatory variable, over dots denote derivatives with respect to time t . He has 

used asymptotic expansions in the following way   

 
,

),,(),,(cos 2
2

1

θωθϕψ
ψθεψθεψ

−=−=
+++=

t
auauax                             (1.38) 

where a  and θ  represent amplitude and phase respectively and they satisfy the following 

differential systems 
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                                                     (1.39) 

Bojadziev  [16], Bojadziev and Hung [17] used at least two trial solutions to investigate 

time dependent differential systems; one is for resonant case and the other is for the non-

resonant case. But Shamsul [75] used only one set of variational equations, arbitrarily for both 

resonant and non-resonant cases. 

 

Shamsul [75] has investigated the solution of an n -th order time dependent quasi-linear 

differential equation 

 ),,,()1(

)1(

1)(

)(
 xxtfxk

dx
xdk

dx
xd

nn

n

n

n
νε=+++

−

−
                            (1.40) 

where )(ix ,  ,1, −= nni  represent the i -th derivative, ε  is a  small parameter, jk , 

nj ,2,1=  are constant, f  is a nonlinear function and ν  is the frequency of the external 

acting force. Shamsul  [61] seeks an asymptotic of (1.40) in the form 

             ),,,(),,,()(),( 21
1

211 nm
m

n

j
n

t
j aaauaaauetatx j  εεε λ +++= ∑

=
       (1.41) 

where jλ , nj ,2,1=  are the eigen-values of the unperturbed equation and each ja  

satisfy first order differential equation 

                ),,,,(),,,,( 2121 taaaptaaaAaa nj
m

njjjj  εελ +++=                (1.42) 

For 0=ε , expression Eq.(1.41) with Eq.(1.42) give the solution of the unperturbed 

equation 

    ∑
=

=
n

j

t
j

jeatx
1

0,)0,( λ                                                                       (1.43) 
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where 0,ja , nj ,2,1=  are arbitrary constants. The proposed solution (1.41) is not chosen 

in a usual form of KBM method but it can be easily brought to the usual form (1.40) - (1.43) 

by suitable variable transformations )(
112

1)(2/1)( ti
l etbta ϕ=−  and )(

12
1)(2/1)( ti

l etbta ϕ−= , 

where )(1 tb  and )(1 tϕ , 2/,2,1 nl = are amplitude and phase variables. It can be readily 

shown that solution (1.41) takes the form 
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),,,,,,,()()(2/1),( 2/21
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1
2/211
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     (1.44)  

and )(1 tb  & )(1 tϕ  satisfy the equations 

         
),,,,,(),,,,,(

),,,,,(),,,,,(

12/2112/211111

12/2112/211111

tbbbQtbbbBb

tbbbPtbbbAbb

nn
n

n

nn
n

n

ϕεϕεωϕ

ϕεϕεµ





+++=

+++−=
          (1.45) 

   

where 1112 ωµλ il ±−=−  are the eigen-values of the equation (1.44) when 0=ε .   

 

       Pinakee Dey et al [45] found an asymptotic solution of a second order over-damped 

nonlinear non-autonomous differential system in presence of an external force. Finally, the 

authors [46] have developed an asymptotic method for time dependent nonlinear differential 

systems with varying coefficients, in which the coefficients change slowly and periodically 

with time. 
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1.2 The Proposal 
         

      Herein, we propose the perturbation systems governed by second and n -th order non-

linear differential equations 

                          ),(2 2 xxfxxkx  εω =++ ,                     

                          ),,()2(
2

)1(
1

)(  xxxfxcxcxcx n
nnn ε=+++ −−                       (1.46) 

and differential equations with varying coefficients 

                          ),,()()(2 2 τετωτ xxfxxkx  =++ , 

                          ),,,()()()( )2(
2

)1(
1

)( τετττ  xxxfxcxcxcx n
nnn =+++ −−           (1.47) 

where 0=ε  is a small parameter, tετ =  is the slowly varying time and f  is a given 

nonlinear function. 
 

      In Chapter 2 a perturbation technique is developed to solve approximate solution of over-

damped nonlinear non-autonomous differential systems with varying coefficients. 

      Finally, in Chapter 3 an asymptotic method for second order time dependent nonlinear 

differential systems with varying coefficients is developed.  
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Chapter 2 
High precision numerical solution and approximate solution of 

over-damped nonlinear non-autonomous differential systems with 

varying coefficients 
 

 

2.1 Introduction  

       There have been many analytical techniques developed for solving oscillations of 

nonlinear differential equations. These equations can be linearized by imposing certain 

restrictions and then they are solved in simple approaches. In vibrating processes many 

problems are solved by linearizing such differential equations when the amplitude of 

oscillation is small. But when the amplitude is not small enough, the linear solution is not 

sufficient to describe the vibration. In these cases, the Krylov-Bogoliubov-Mitropolskii 

(KBM) [25,3] asymptotic method is particularly convenient and extensively used methods to 

study nonlinear differential systems with small nonlinearities. Originally, the method was 

developed by Krylov and Bogoliubov [25] for obtaining periodic solution of a second order 

nonlinear differential equation. Latter, the method was amplified and justified mathematically 

by Bogoliubov and Mitropolskii [3,32]. Popov [50] extended the method to a damped 

oscillatory process in which a strong linear damping force acts. Arya and Bojadziev [2] have 

studied a time-dependent nonlinear oscillatory system with damping, slowly varying 

coefficients and delay. Arya and Bojadziev [1] have also studied a system of second order 

nonlinear hyperbolic differential equation with slowly varying coefficients. Murty, 

Deekshatulu and Krishna [35] and Shamsul [58,63,70] extended the method to over-damped 

nonlinear system. Recently Shamsul [63] has presented a unified method for solving an n-th 
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order differential equation (autonomous) characterized by oscillatory, damped oscillatory and 

non-oscillatory processes. In another recent paper, Shamsul [70] has extended the unified 

method [63] to similar differential system (autonomous) with slowly varying coefficient. But 

Murty, Deekshatulu and Krishna [35] and Shamsul [58,63,70] limited their investigations to 

autonomous system. The aim of this paper is to extend the result in [70] to similar nonlinear 

vibrating problems in which external forces act and also investigated double and high 

precision numerical solutions. 

 

2.2  The method 

     Let us consider the nonlinear differential system   

                ),,,()()(2 2 τετωτ xxfxxkx  −=++  ,tετ =                                    (2.1) 

where the over-dots denote differentiation with respect to t, ε  is a small parameter,  tετ =  is 

the slowly varying time, ,0)( ≥τk  f  is a given nonlinear function and )(τω  is the frequency. 

The coefficients in Eq. (2.1) are slowly varying in that their time derivatives are proportional 

toε . 

 

     Setting 0=ε and 0ττ = =constant, in Eq.(2.1), we obtain the  unperturbed solution of  the 

equation. Let Eq. (2.1) have two eigen-values 2,1),( 0 =jj τλ , where )( 0τλ j  are constant, 

but when )(,0 τλε j≠  slowly vary with time. The unperturbed solution of Eq. (2.1) becomes 

                   ∑
=

=
2

1

)(
0,

0)0,(
j

t
j

jeatx τλ .                                                                      (2.2) 
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When 0≠ε  we seek a solution, in accordance with the KBM method, of the form  

               ( ) ...,),,(),,(),(, 212
2

211

2

1
0, +++= ∑

=
τετετε aauaautatx

j
j                          (2.3) 

where 2,1,0, =ja j  satisfy the differential equations 

                ...,),,()( 2
21 ετετλ ++= aaAaa jjjj                                                           (2.4) 

    The solution (2.3) together with (2.4) is not considered in a usual form of the classical 

KBM method. But this solution was early introduced by Murty [35] to investigate un-damped, 

damped and over-damped cases. Now it is being used to investigate various oscillatory and 

non-oscillatory problems ( see [58,63,70] for details ). 

 

     Confining our attention to the first few terms,  m,,2,1   in the series expansions of (2.3) 

and (2.4), we evaluate the functions ...,,,..., 211 AAu such that 1a  and 2a  appearing in (2.3) and 

(2.4) satisfy (2.1) with an accuracy of 1+mε  [63]. In order to determine these unknown 

functions, it was assumed that the functions ,...1u do not contain the fundamental terms 

[58,63,70], which are included in the series expansion (2.3) of order 0ε .   

 

    Differentiating ),( εtx  two times with respect to t , substituting for the derivatives x  and x 

in the original equation (2.1) and equating the coefficient of ε , we obtain  
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 and   .210 aax +=  

      We have assumed that 1u  does not contain fundamental terms and for this reason the 

solution will be free from secular terms, namely tttt sin,cos and tte−  (see [70]). 

      In general the function )0(f  can be expanded in a Taylor series as: 

             ∑
∞∞

==

=
,

0,0
21,

)0(

21

21

21
rr

rr
rr aaFf                                         (2.6) 

      To obtain this solution (2.4), it has been proposed in [63] that 21,uu exclude the terms 

2
2

1
1

rr aa  of )0(f , where 121 ±=− rr . This restriction guarantees that the solution always 

excludes secular-type terms or the first harmonic terms ( see [63] for details ). According to 

our assumption, 1u  does not contain the fundamental terms, therefore equation (2.5) can be 

separated into three equations for unknown functions 1u  and 21, AA   (see [63] for details). 

Substituting the functional values of )0(f  and equating the coefficients of  tjeλ ,  2,1=j , we 

obtain 

               ( ) 1112 aA λλ ′+−Ω = ∑
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=
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and          

   ( )( ) 121 uλλ −Ω−Ω = ∑
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rr aaFf  exclude those terms for 121 ±= rr . 
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      Thus the particular solutions of (2.7) - (2.9) give the values of the unknown functions 

21, AA  and 1u . We have already mentioned that equation (2.1) is not a standard form of KBM 

method. We shall be able to transform (2.3) to the exact form of the KBM [25,3,32] solution 

by substituting 2/1
ϕieaa =  and 2/2

ϕieaa −= . Herein, a  and ϕ  are respectively amplitude 

and phase variables (see [58,63,70]). Under this assumption, we shall be able to find the 

unknown functions 1u  and 21, AA  which completes the determination of the solution of a 

second order non-linear problem (2.1).  

 

2.3  Example 

      Consider a nonlinear differential system with a non-periodic external force 

                    teExxxkx t νεετωτ ν cos2)()(2 32 −+−=++  ,                       (2.10) 

     The function )0(f  becomes, 

                 teEaaaaaaf t νεε ν cos2)33( 3
2

2
212

2
1

3
1

)0( −++++−=                           (2.11) 

      We substitute )0(f  in (2.5) and separate it into two parts as  
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                              (2.12)                                      

 and   

    ( )( ) )3( 3
2

2
21121 aaau +−=−Ω−Ω λλ .                                                        (2.13) 

      The particular solution of (2.13) is  

         3
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2
2111 acaacu += ,                           (2.14) 

where            .
)3(2

1,
)(2

3

122
2

212
1 λλλλλλ −

−
=

+
−

= cc  



 26 

     Now we have to determine two functions 1A  and 2A  from a single equation (2.12). 

                         ( ) teEaaA t νελλ ν cos23
11112

−+−=′+−Ω ,                                 (2.15) 

and                 

( ) 2
2
12221 3 aaaA −=′+−Ω λλ .                                                                  (2.16) 

     The particular solution of (2.15) - (2.16) is  

      3
3
121111 nEannaA ++′= λ ,   and  2

2
121122 aallaA +′= λ ,                               (2.17)  

where                           
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     Substituting the functional values of 1A  and  2A  into (2.5) and rearranging, we obtain 

         )( 3
3
12111111 nEannaaa ++′+= λελ                                     (2.18) 

             )( 2
2
12122222 aallaaa +′+= λελ               (2.19) 

      Therefore, the first order solution of (2.10) is 

                           121),( uaatx εε ++= ,                                                                       (2.20) 

where 21 , aa  are given by (2.18), (2.19) and  1u  is given by (2.14). 
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2.4 Results and discussions 

      An asymptotic solution of damped nonlinear non-autonomous vibrating system is 

obtained based on the extended KBM method ( by Popov [50] ). In order to test the accuracy 

of an approximate solutions obtain by a perturbation method, we compare the approximate 

solution to the numerical solution (consider to be exact). With regard to such a comparison 

concerning the presented KBM method of this paper, we refer to the works of Murty, 

Dekshatulu and Krishna [35] and Shamsul [58,63,70]. In this paper we have compared the 

perturbation solution (2.20) to those obtained by Runge-Kutta (fourth order) method for 

1,2.0,0,1,5,05. 2121 ====−=−= Eaa ελλ  with initial condition 

,0.1)0( =x 050421.−=x  and all the results are shown in Fig.2.1. 

      From the Fig 2.1, we observe that the approximate solutions show a good coincidence 

with the numerical solutions. The corresponding numerical solutions have also been 

computed by Runge-Kutta (fourth-order) method. From the Fig 2.2 and the Fig 2.3, the 

approximate solutions agree with numerical results nicely. Actually, first we compute the 

numerical solution in double precision.  In general equation (2.20) has no exact solution. 

Usually a numerical procedure is used to solve it. In this paper we have used the Runge-Kutta 

(fourth order) method. Numerically, it is advantageous to solve the transformed equation 

(2.20) instead of the original equation (2.10) because a large step size can be used in the 

integration (see [38] for details).   
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Fig. 2.1
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Fig 2.1: Perturbation solution with corresponding numerical solution is plotted with initial 

conditions ,0.1)0( =x 050421.−=x   for  1,2.0,0,1,5,05. 2121 ====−=−= Eaa ελλ . 
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Fig. 2.2
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Fig 2.2: Perturbation solution with corresponding numerical solution is plotted with initial 

conditions ,0.1)0( =x 050631.−=x   for  1,3.0,0,1,5,05. 2121 ====−=−= Eaa ελλ . 
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Fig. 2.3
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Fig 2.3: Perturbation solution with corresponding numerical solution is plotted with initial 

conditions ,0.1)0( =x 051052.−=x   for  1,5.0,0,1,5,05. 2121 ====−=−= Eaa ελλ . 
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 2.5  Multiple Precision (with exflib library) 

     Exflib (extended precision floating-point arithmetic library) is simple software for 

multiple-precision arithmetic in scientific numerical computation. Multiple-precision 

arithmetic is a method for representation and calculation of real numbers with arbitrary 

accuracy ( see [21] ).    

 

2.6. High precision numerical results 

     The high precision numerical results of our problems are shown in fig.2.4. High precision 

numerical solutions are computed by Multiple-precision arithmetic with  Exflib. Here h=.001 in 

Runge-Kutta method, but the above numerical solutions are obtained with h=.05. 
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Fig 2.4                                                            

 

2.7 Conclusion 

       An asymptotic solution has been obtained for the second order nonlinear non-autonomous 

differential system characterized by non-oscillatory process. The method is a generalization of 

extended KBM method [25,3] (by Popov [50]) and can be used to obtain desired solution for 

certain external forces. The solution shows a good coincident with the numerical solution. The 

high precision numerical results also represented. The asymptotic solutions and the high 

precision numerical results are of same types. 
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Chapter 3 
Approximate solution of time dependent damped nonlinear 

vibrating systems with slowly varying coefficients 
 

 
3.1 Introduction 

Krylov-Bogoliubov-Mitropolskii (KBM) [25,3] method is one of the most widely used 

methods to obtain the approximation solutions of nonlinear systems with a small non-

linearity. The method, originally developed by Krylov-Bogoliubov [25] for obtaining periodic 

solutions, was amplified and justified by Bogoliubov and Mitropolskii [3] and latter extended 

by Mitropolskii [32] to similar systems with slowly varying coefficients. Popov [50] extended 

this method to a damped oscillation. Bojadziev and Edward [15] studied some under-damped 

and over-damped systems with slowly varying coefficients. Murty [36] has presented a 

unified KBM method for both under-damped and over-damped system with constant 

coefficients. Shamsul [70] has presented a unified KBM method for solving an n-th order 

differential equation (autonomous) characterized by oscillatory, damped oscillatory and non-

oscillatory processes with slowly varying coefficients. Hung and Wu [22] obtained an exact 

solution of a differential system in terms of Bessel’s functions where the coefficients varying 

with time in an exponential order. Roy and Shamsul [53] found an asymptotic solution of a 

differential systems in which the coefficient changes in an exponential order of slowly 

varying time. Pinakee et.al [47] has presented extended KBM method for under-damped, 

damped and over-damped vibrating systems in which the coefficients change slowly and 

periodically with time. Recently Pinakee et.al [48] extended the result in [53] to similar 

nonlinear non-autonomous vibrating problems in which external forces act. In this article we 
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have extended the KBM method to investigate the solution of damped forced nonlinear 

systems with slowly varying coefficients which measures better result for strong 

nonlinearities but Unified KBM method is unable to give desired results (wherein external 

forces act).  

3.2 The Method 

    Let us consider the nonlinear differential system   

           ),,,,()sincos()(2 321 txxfxcccxkx ντετττ  −=++++ tετ =                 (3.1) 

where the over-dots denote differentiation with respect to t, ε  is a small parameter, 21 , cc and 

3c  are constants, )(32 εOcc == , tετ =  is the slowly varying time, ,0)( ≥τk f  is a given 

nonlinear function. Setting )sincos()( 321
2 τττω ccc ++= , )(τω  is known as frequency and 

ν  is the frequency of the external force. The coefficients in Eq. (3.1) are slowly varying in 

that their time derivatives are proportional toε . 

Setting 0=ε  and 0ττ = = constant, in Eq. (3.1), we obtain the unperturbed solution of 

(3.1) in the form  

                   tt eaeatx )(
0,2

)(
0,1

0201)0,( τλτλ += ,                                                                    (3.2) 

Let Eq. (3.1) have two eigen-values, 2,1),( 0 =jj τλ , where )( 0τλ j  are constants, but 

when )(,0 τλε j≠  vary slowly with time., When 0≠ε , an approximate solution of Eq. (3.1) 

is chosen in the form given below            

             ( ) ...,),,,(),,,(),(, 212
2

211

2

1
0, +++= ∑

=

τετετε taautaautatx
j

j                            (3.3) 
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where 2,1,0, =ja j  satisfy the differential equations 

               ...,),,,()( 2
21 ετετλ ++= taaAaa jjjj                                                               (3.4) 

       The solution (3.3) together with (3.4) is not considered in a usual form of the classical 

KBM method. But this solution was early introduced by Murty [36] to investigate undamped, 

damped and overdamped cases. Now it is being used to investigate various oscillatory and 

non-oscillatory problems ( see [42,48,47] for details ). 

 Confining our attention to the first few terms,  m,,2,1   in the series expansions of (3.3) 

and (3.4), we evaluate the functions ...,,,..., 211 AAu such that 1a  and 2a  appearing in (3.3) and 

(3.4) satisfy (3.1) with an accuracy of 1+mε . In order to determine these unknown functions, it 

was assumed that the functions ,...1u do not contain the fundamental terms, the solution will 

be free from secular terms, namely tttt sin,cos and tte−  (see [70]), which are included in the 

series expansion (3.3) of order 0ε .   

Differentiating ),( εtx  two times with respect to t, substituting for the derivatives x  and x 

in the original equation (3.1) and equating the coefficient of ε , we obtain  
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where     ),,,(,, 00
)0(2

2
1

1 τν
τ
λ

λ
τ
λ

λ txxff
d
d

d
d

==′=′    
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and         ).,(),( 210 ττ tatax +=  

Herein it is assumed that both )0(f  can be expanded in Taylor’s series  

             ∑
∞

=

=
0,

21,
)0(

21

21

21
)(

rr

rr
rr aaFf τ ,                                                                                   (3.6) 

It was early imposed by Krylov and Bogoliubov [25] that 1u  does not contain secular 

terms (e.g., tt cos  and tt sin ) for obtaining the periodic solution of (3.1) in which .01 =k  

Popov [50] extended this method to an under-damped case in which 2k > 1k >0 .  

       Murty [36] extended the same method to the over-damped case. i.e., for 1k > 2k . 

We have already mentioned that equation (3.1) is not a standard form of KBM method. 

By substituting 2/1
ϕiaea =  and 2/2

ϕiaea −= , to transform (3.3) to the exact form of the 

KBM solution. Herein, a  and ϕ  are respectively amplitude and phase variables. Under this 

assumption, we shall be able to find the unknown functions 21 , AA  and 1u .  

 

3.3 Example:   

      As example of the above procedure, let us consider a nonlinear non-autonomous system 

with slowly varying coefficients 

            ,sin)sincos()(2 3
321 tExxcccxkx νεετττ +−=++++                        (3.7) 

Here over dots denote differentiation with respect to t . 21 , cc  and 3c  are constants, 

)(32 εOcc == , 210 aax +=  and the function )0(f  becomes, 

          ieeEaaaaaaf titi 2/)()33( 3
2

2
212

2
1

3
1

)0( νν −−++++−= .                         (3.8) 
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Following the assumption (discussed in section 2.2) 1u  excludes the terms 2
2
13 aa , 2

213 aa   

and ieeE titi 2/)( ννε −− . We substitute in (3.8) and separate it into two parts as 
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            (3.9)                                  

and 
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The particular solution of (3.10) is  

            
)3(2)3(2 122

3
2

211

3
1

1 λλλλλλ −
−

−
−=

aau                                                      (3.11)    

Now we have to solve (3.9) for two functions 1A  and 2A . According to the unified KBM 

method 1A  contains the term 2
2
13 aa , 2/tie ν  and 2A  contains the term 2

213 aa , 2/tie ν−  (see  

[48]) and thus we obtain the following equations  

          ,2/3 2
2
11112

2
22

1
11 ieEaaaA
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a
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∂            (3.12) 

and   

        ieEaaaA
a

a
a

a ti 2/3 2
212221

2
22

1
11
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+
∂
∂                       (3.13) 

The particular solutions of (3.12) and (3.13) are 

   )(2/2/3)/( 212
2
121111 λνλλλλ ν −+−−′−= ieEaaaA ti                        (3.14) 
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and     

    )(2/2/3)(/ 12
2
2121222 λνλλλλ ν ++−−′= − iieEaaaA ti                     (3.15) 

Substituting the functional values of 1A , 2A  from (3.14) and (3.15) into (3.4) and 

rearranging, we obtain 

       ( ))(2/2/3)/( 212
2
12111111 λνλλλλελ ν −+−−′−+= iieEaaaaa ti          (3.16) 

and 

( ))(2/2/3)(/ 12
2
212122222 λνλλλλελ ν ++−−′+= − iieEaaaaa ti         (3.17)                                       

The variational equations of a  and ϕ , in the real form, transform (3.16) and (3.17)  to  

                   
})(/{}cos)(

sin{)(8/32/
22

223

ωνψων

ψεωεωωε

++++

−++′−−=

k

kEkkaakaa
                                (3.18) 

and                                                                                                                                                        

                     
})({/}cos

sin)({)(8/32/
22

222

ωνψ

ψωνεωωεωεωϕ

+++

+−−++′+=

kak

Ekak
                        (3.19) 

where           ττω sincos 321 ccc ++=               

                

     Therefore, the first order solution of the equation (3.7) is  

                 1cos),( uatx εϕε +=                                         (3.20)   

where a   and  ϕ    are the solution of the equation (3.18) and (3.19) respectively, 1u  is given 

by (3.11). Substituting the values of 1A , 2A  from (3.14) and (3.15) into (3.4) and solving 

them, we obtain the Unified KBM solution of (3.4) similar to (3.18) and (3.19).                                                                                                                   

 In this paper, we have used the Runge-Kutta (fourth order) method. Numerically, it is 

advantageous; a large step size can be used in the integration (see [38] for details). 
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3.4 Results and Discussions 
 

       A simple technique is presented based on the extended KBM method to determine 

approximate solutions of non-autonomous nonlinear vibrating systems with varying 

coefficients. The solution has been determined under the extended KBM method which gives 

better result for long time even ε  is 10 times greater than existing procedures. Theoretically, 

the solution can be obtained up to the accuracy of any order of approximation. However, 

owing to the rapidly growing algebraic complexity for the derivation of the function, the 

solution is in general confined to a low order, usually the first. In order to test the accuracy of 

an approximate solution obtained by a certain perturbation method, one compares the 

approximate solution to the numerical solution (considered to be exact). With regard to such a 

comparison concerning the presented KBM method of this article, we refer to the works of 

Murty [36], Shamsul [70] and Pinakee et al [48,47]. In our present paper, for different initial 

conditions, we have compared the perturbation solutions (3.20) of Duffing’s equations (3.7) to 

those obtained by Runge-Kutta (fourth-order) procedure.  

      

      First of all, x  is calculated by (3.20) with initial conditions 

]00000.0)0(,50000.0)0([ == xx   or 046433.,50000.0 −== ϕa  for 

τττωωνε cos1.,)sincos(,1,5.0 3210 =++=== kccc . Then corresponding numerical 

solutions are also computed by Runge-Kutta (fourth-order) method. The result is shown in 

Fig.3.1. Also we plot unified KBM solution in Fig.3.2 with initial conditions 

]00000.0)0(,50000.0)0([ == xx   or 382760.4,50000.0 −== ϕa  for 

τττωωε cos1.,)sincos(,5. 3210 =++== kccc . We see that in Fig.3.1 the perturbation 
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solution nicely agrees with the numerical solution, but in this situation unified KBM solution 

(in Fig.3.2) does not agree. The corresponding numerical solutions have also been computed 

by Runge-Kutta (fourth-order) method. From Fig.3.3, Fig.3.5, Fig.3.7, Fig.3.9 and Fig.3.11, 

we observe that the approximate solutions agree with numerical results nicely even if 0.1≥ε  

but in Fig. 3.4, Fig. 3.6, Fig.3.8, Fig.3.10 and Fig.3.12 do not agree and the solution fails to 

give desired results.  
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Fig. 3.1
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Fig 3.1: Present approximate solution (dotted line) with corresponding numerical solution 

(solid line) is plotted with initial conditions ]00000.0)0(,50000.0)0([ == xx   or 

046433.,50000.0 −== ϕa  for τνε cos1.,0.1,5.0 === k , )sincos( 3210 ττωω ccc ++=  
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Fig 3.2
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Fig 3.2: Unified KBM perturbation solution (dotted line) with corresponding numerical 

solution (solid line) is plotted with initial conditions ]00000.0)0(,50000.0)0([ == xx   or    

382760.4,50000.0 −== ϕa for τνε cos1.,0.1,5.0 === k , )sincos( 3210 ττωω ccc ++=

. 
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Fig. 3.3
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Fig 3.3:  Present approximate solution (dotted line) with corresponding numerical solution 

(solid line) is plotted with initial conditions ]00000.0)0(,50000.0)0([ == xx   or 

045719.,50000.0 −== ϕa for τνε cos1.,0.1,6.0 === k , )sincos( 3210 ττωω ccc ++= . 
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Fig 3.4
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 Fig 3.4: Unified KBM perturbation solution (dotted line) with corresponding numerical 

solution (solid line) is plotted with initial conditions ]00000.0)0(,50000.0)0([ == xx   or 

6066.3,50000.0 −== ϕa for τνε cos1.,0.1,6.0 === k , )sincos( 3210 ττωω ccc ++= . 
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Fig. 3.5
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Fig 3.5:  Present approximate solution (dotted line) with corresponding numerical solution 

(solid line) is plotted with initial conditions ]00000.0)0(,50000.0)0([ == xx   or 

045006.,50000.0 −== ϕa for τνε cos1.,0.1,7.0 === k , )sincos( 3210 ττωω ccc ++= . 
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Fig 3.6
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Fig 3.6: Unified KBM perturbation solution (dotted line) with corresponding numerical 

solution (solid line) is plotted with initial conditions ]00000.0)0(,50000.0)0([ == xx   or 

0522.3,50000.0 −== ϕa for τνε cos1.,0.1,7.0 === k , )sincos( 3210 ττωω ccc ++= . 
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Fig. 3.7 
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Fig 3.7: Present approximate solution (dotted line) with corresponding numerical solution 

(solid line) is plotted with initial conditions ]00000.0)0(,50000.0)0([ == xx   or 

044292.,50000.0 −== ϕa for τνε cos1.,0.1,8.0 === k , )sincos( 3210 ττωω ccc ++= . 
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Fig. 3.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 101 201 301 401 501 601 701 801 901 1001

t

x

 
     

Fig 3.8:  Unified KBM perturbation solution (dotted line) with corresponding numerical 

solution (solid line) is plotted with initial conditions ]00000.0)0(,50000.0)0([ == xx   or 

6364.2,50000.0 −== ϕa for τνε cos1.,0.1,8.0 === k , )sincos( 3210 ττωω ccc ++= . 
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Fig. 3.9
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Fig 3.9:  Present approximate solution (dotted line) with corresponding numerical solution 

(solid line) is plotted with initial conditions ]00000.0)0(,50000.0)0([ == xx   or 

043579.,50000.0 −== ϕa for τνε cos1.,0.1,9.0 === k , )sincos( 3210 ττωω ccc ++= . 
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Fig. 3.10
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Fig 3.10: Unified KBM perturbation solution (dotted line) with corresponding numerical 

solution (solid line) is plotted with initial conditions ]00000.0)0(,50000.0)0([ == xx   or 

313.2,50000.0 −== ϕa  for τνε cos1.,0.1,9.0 === k , )sincos( 3210 ττωω ccc ++= . 
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Fig. 3.11
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Fig 3.11:  Present approximate solution (dotted line) with corresponding numerical solution 

(solid line) is plotted with initial conditions ]00000.0)0(,50000.0)0([ == xx   or 

042865.,50000.0 −== ϕa  for τνε cos1.,0.1,0.1 === k , )sincos( 3210 ττωω ccc ++= . 
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Fig. 3.12

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 101 201 301 401 501 601 701 801 901 1001

t

x

 

 
Fig 3.12: Unified KBM perturbation solution (dotted line) with corresponding numerical 

solution (solid line) is plotted with initial conditions ]00000.0)0(,50000.0)0([ == xx   or   

05428.2,50000.0 −== ϕa  for τνε cos1.,0.1,0.1 === k , )sincos( 3210 ττωω ccc ++= . 
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3.5 Conclusion  

       In this article we have extended the KBM method to find the approximate solution of 

damped forced nonlinear vibrating systems with slowly varying coefficients under the action 

of external force. The solutions agree with numerical results nicely even if 0.1≥ε  but unified 

KBM solutions fail to give desire results.  
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