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ABSTRACT   

 

          The fundamental concept of a fuzzy set and fuzzy set operations was first introduced 

by L. A. Zadeh [175] in 1965 and it provides a natural foundation for treating 

mathematically the fuzzy phenomena, which exists pervasively in our real world and for 

building new branches of fuzzy mathematics. This also provides a natural frame work for 

generalizing various branches of mathematics such as fuzzy topology, fuzzy groups, fuzzy 

rings, fuzzy vector spaces, fuzzy supra topology, fuzzy infra topology, fuzzy bitopology 

etc. C. L. Chang [19] in 1968 first introduced the concept of fuzzy topological spaces by 

using fuzzy sets. C. K. Wong [160, 161, 162, 162], R. Lowen [107, 108, 109, 110,111],              

B. Hutton [70, 71, 72], T. E. Gantner et al. [54], P. P. Ming and L. Y. Ming [121, 122], 

etc., discussed various aspects of fuzzy topology by using fuzzy sets. A. J. Klein [91] 

defines  -level sets and  -level topology. Fuzzy compactness occupies a very important 

place in fuzzy topological spaces and so does some of its forms. Fuzzy compactness first 

discussed by C. L. Chang [19], T. E. Gantner et al. [54] introduced  -compactness,                 

A. D. Concilio and G. Gerla [27] discussed almost compact spaces and M. N. Mukherjee 

and A. Bhattacharyya [130] discussed almost  -compact spaces. 

           

          The purpose of this thesis is to contribute about different types of fuzzy 

compactness and establish theorems, corollaries and examples in fuzzy topological spaces 

by using the definitions of C. L. Chang [19], T. E. Gantner et al. [54], A. D. Concilio and 

G. Gerla [27] and M. N. Mukherjee and A. Bhattacharyya [130]. We study several 

properties of these definitions along with the different theorems from existing there. 

Moreover to suggest new definitions of fuzzy  -compact spaces,  -compact fuzzy sets, 

 - -compact spaces, partially  -compact and partially  - -compact fuzzy sets,         
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Q -compact and  - Q -compact fuzzy sets, Q -compact and  - Q -compact fuzzy sets, 

almost partially  -compact and almost partially  - -compact fuzzy sets, almost                  

Q -compact and almost  - Q -compact fuzzy sets and also to study their several 

properties in fuzzy topological spaces have been done in the work.  

         

          Chapter one incorporates some fundamental definitions and results of fuzzy sets, 

fuzzy set operations, fuzzy mapping, fuzzy topology, fuzzy separation axioms, good 

extension property and fuzzy productivity. These results are ready bibliographies for the 

study in the next chapters. Results are stated without proof and can be found in the thesis 

referred to.  

 

          Our works start from chapter two. Chapter two deals with fuzzy compact spaces due 

to C. L Chang [19] which is global property. In this chapter, we have discussed some 

theorems, corollaries and examples in fuzzy topological spaces, fuzzy subspaces, 

mappings in fuzzy topological spaces, fuzzy 1T -spaces, fuzzy Hausdorff spaces, fuzzy 

regular spaces and good extension property about fuzzy compact spaces. Also we have 

defined  -open fuzzy sets,  -cover, fuzzy  -compact spaces and investigated difference 

between fuzzy compact and fuzzy  -compact spaces.       

 

          We aim to study  -compact spaces in the sense of T. E. Gantner et al. [54] in 

chapter three which is global property and we have introduced  -level continuous 

mapping. In this chapter, we have established some theorems, corollaries and examples in 

fuzzy topological spaces, fuzzy subspaces, mappings in fuzzy topological spaces, fuzzy 

1T -spaces, fuzzy Hausdorff spaces, fuzzy regular spaces,  -level topological spaces, 

cofinite topological spaces, good extension property and fuzzy product spaces and give 

some examples about  -compact spaces. Also we have constructed  - -shading,          
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 - -compact spaces and identified difference between  -compact and  - -compact 

spaces.   

 

          We have discussed compact fuzzy sets due to C. L. Chang [19] in chapter four 

which is local property. In this chapter, we have investigated some theorems, corollaries 

and examples of compact fuzzy sets in fuzzy topological spaces, fuzzy subspaces, fuzzy 

mappings, fuzzy 1T -spaces, fuzzy Hausdorff spaces, fuzzy regular spaces, good extension 

property and fuzzy productivity about compact fuzzy sets. Also we have introduced                 

 -compact fuzzy sets and found difference between compact and  -compact fuzzy sets. 

     

          In chapter five, we have defined partial  -shading, partial  -subshading, open 

partial  -shading, partially  -compact fuzzy sets. We have discussed some theorems, 

corollaries and examples of partially  -compact fuzzy sets in fuzzy topological spaces, 

fuzzy subspaces, fuzzy mappings,  -level continuous mapping, fuzzy 1T -spaces, fuzzy 

Hausdorff spaces, fuzzy regular spaces,  -level topological spaces, good extension 

property and fuzzy productivity about partially  -compact fuzzy sets. Also we have 

introduced partial  - -shading, partial  - -subshading and partially  - -compact 

fuzzy sets and indicated the difference between partially  -compact and partially              

 - -compact fuzzy sets.  

 

          In chapter six, we have constructed Q -cover, Q -subcover, open Q -cover,            

Q -compact fuzzy sets, Q -cover, Q -subcover,  open Q -cover, Q -compact fuzzy 

sets,  - Q -cover,  - Q -subcover,  - Q -compact fuzzy sets,  - Q -compact fuzzy sets. 

We have also studied some theorems, corollaries and examples in fuzzy topological 

spaces, fuzzy subspaces, fuzzy 1T -spaces, fuzzy Hausdorff spaces, fuzzy regular spaces, 
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 -level topological spaces, good extension property and fuzzy productivity about                

Q -compact, Q -compact,  - Q -compact,  - Q -compact fuzzy sets. Furthermore, we 

have found difference between Q -compact and Q -compact fuzzy sets, Q -compact and                    

 - Q -compact fuzzy sets, Q -compact and  - Q -compact fuzzy sets. Moreover, we 

have compared compact fuzzy stes (Chang’s sense [19]) with Q -compact and               

Q -compact fuzzy sets,  -compact fuzzy stes (Chang’s sense [19]) with  - Q -compact 

and  - Q -compact fuzzy sets. 

 

          In chapter seven, we have studied almost compact fuzzy sets due to A. D. Concilio 

and G. Gerla [27] which is local property. We have established some theorems, corollary 

and give some examples in fuzzy topological spaces, fuzzy subspaces, fuzzy mappings, 

fuzzy 1T -spaces, fuzzy regular spaces, good extension property and fuzzy productivity 

about almost compact fuzzy sets. Also we have introduced proximate  -cover, proximate 

 -subcover, almost  -compact fuzzy sets and found different characterizations between 

almost compact and almost  -compact fuzzy sets.   

 

          We have dealth with almost  -compact spaces due to M. N. Mukherjee and A. 

Bhattacharyya [130] in chapter eight which is global property. In this chapter, we have 

established some theorems, corollary and give some examples in fuzzy topological spaces, 

fuzzy subspaces, fuzzy mappings, fuzzy 1T -spaces, fuzzy regular spaces,  -level 

topological spaces,  -level continuous mapping and good extension property about 

almost  -compact spaces. Also we have introduced proximate  - -shading, proximate 

 - -subshading, almost  - -compact spaces and found difference between almost    

 -compact and almost  - -compact spaces.   
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          In chapter nine, we have introduced proximate partial  -shading, proximate partial 

 -subshading, almost partially  -compact fuzzy sets. We have also established some 

theorems, corollary and give some examples in fuzzy topological spaces, fuzzy subspaces, 

fuzzy mappings, fuzzy 1T -spaces, fuzzy regular spaces,  -level topological spaces,        

 -level continuous mapping, good extension property and fuzzy productivity about 

almost partially  -compact fuzzy sets. In addition to that, we have defined proximate 

partial  - -shading, proximate partial  - -subshading, almost partially  - -compact 

fuzzy sets and investigated different characterizations between almost partially                

 -compact and almost partially  - -compact fuzzy sets.  

 

          In chapter ten, we have defined proximate Q -cover, proximate Q -subcover, 

almost Q -compact fuzzy sets. We have also studied some theorems, corollary and give 

some examples in fuzzy topological spaces, fuzzy subspaces, fuzzy 1T -spaces, fuzzy 

regular spaces,  -level topological spaces, good extension property and fuzzy 

productivity about almost Q -compact fuzzy sets. Moreover, we have introduced 

proximate  - Q -cover, proximate  - Q -subcover, almost  - Q -compact fuzzy sets 

and found different characterizations between almost Q -compact and almost                           

 - Q -compact fuzzy sets.   

           

 



 
1 

Chapter One 

Preliminaries 

 

          Introduction 1.1: In this chapter incorporates concepts and results of fuzzy sets, 

fuzzy mappings, fuzzy topological spaces, subspace of a fuzzy topological space, fuzzy 

product topological space and its characterizations which are to be used as references for 

understanding the next chapters. Most of the results are quoted from the various research 

articles. Through the sequel, we make use of the following notations.   

                       X                                                               : Non-empty set 

                       J                                                                : Index set 

                       nJ                                                               : Finite subset of  J  

                        R                                                               : Set of real numbers                      

                                                                                       : Sum 

                                                                                      : Union 

                                                                                      : Intersection 

                                                                                      : Strictly subset or proper subset                                                    

                                                                                      : Subset  

                                                                                      : Belongs to 

                                                                                       : Not belongs to 

                                                                                     : Implies that 

                       I  ]1,0[                                                   : Closed unit interval 

                       1I  )1,0[                                                   : Right open unit interval 

                        0I  ]1,0(                                                 : Left open unit interval 

                        A ,  B ,  C ,…                                         : Ordinary sets or Classical sets                                            
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                        u ,  v ,   ,   ,…                                    : Fuzzy sets 

                        TX ,                                                       : General topological space  

                        tX ,                                                        : Fuzzy topological space 

                        AtA,                                                       : Subspace of  tX ,  

                       
Ji

iX                                                        : Usual product of iX  

                       ttXX  ,                                              : Product fuzzy topological space 

                       )(u  { x  X : )(xu }                    : Subset of X  

                        t  { )(u : u  t }                                 : General topology on X  

)(T   { u  XI : ]1,(1 au  T ,  a  1I }   : Fuzzy topology on X  

This thesis deals with various fuzzy compactness in fuzzy topological spaces. To present 

our work in a systematic way, we consider in this chapter, various concepts and results on 

fuzzy sets and fuzzy topological spaces found in various research papers. For this we 

begin with.  

 

          Definition 1.2[175]: Let X  be a non-empty set and I  is the closed unit interval 

]1,0[ . A fuzzy set in X  is a function u : X  I  which assigns to every element x  X . 

)(xu  denotes a degree or the grade of membership of x . The set of all fuzzy sets in X  is 

denoted by XI . A member of XI  may also be called a fuzzy subset of X .  

 

          Definition 1.3[121]: A fuzzy set is empty iff its grade of membership is identically 

zero. It is denoted by X0 .  

 

          Definition 1.4[121]: A fuzzy set is whole iff its grade of membership is identically 

one in X . It is denoted by X1 .  
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          Definition 1.5[175]: Let X  be a non-empty set and A  X . Then the characteristic 

function )(1 xA : X  }1,0{  defined by )(1 xA 







Ax
Ax

if0
if1

 

Hence we say that A  is fuzzy set in X  and this fuzzy set is denoted by A1 . Thus we can 

consider any subset of a set X  as a fuzzy set whose range is }1,0{ .  

           

          Definition 1.6[19]: Let u and v  be two fuzzy sets in X . Then we define           

(i) u  v  iff )(xu  )(xv  for all x  X  

(ii) u  v  iff )(xu  )(xv  for all x  X  

(iii)   vu   iff )(x  )()( xvu    max ])(),([ xvxu  for all x  X  

(iv)   vu   iff  )(x  )()( xvu    min ])(),([ xvxu  for all x  X  

(v)   cu  iff )(x  )(1 xu  for all x  X  and we say that cu  is complement of u .              

          Remark: Two fuzzy sets u  and v  are disjoint iff vu   0 .   

 

          Definition 1.7[19]: In general, if { iu : i  J }  is family of fuzzy sets in X , then 

union  iu  and intersection  iu  are defined by 

)(xui   sup{ )(xui : i   J  and x  X }  

)(xui   inf{ )(xui : i   J  and x  X } , where J  is an index set.  

 

          De-Morgan’s laws 1.8[175]: De-Morgan’s Laws valid for fuzzy sets in X   i.e. if u  

and v  are any fuzzy sets in X , then    

(i) 1 ( u  v )  ( 1 u )  ( 1 v )  

(ii) 1 ( u  v )  ( 1 u )  ( 1 v )           



Preliminaries 

  
4 

For any fuzzy set in u  in X ,  u  ( 1 u )  need not be zero and u  ( 1 u )  need not 

be one.  

 

           Distributive laws 1.9[175]: Distributive laws remain valid for fuzzy sets in X  i.e. 

if u ,  v  and w  are fuzzy sets in X , then 

(i) u  )( wv   )( vu   )( wu   

(ii) u  )( wv   )( vu   )( wu  .  

 

          Definition 1.10[121]: Let   be a fuzzy set in X , then the set { x  X : )(x  0 }  

is called the support of   and is denoted by 0  or supp .  

 

          Definition 1.11[121]: A fuzzy set in X  is called a fuzzy point iff it takes the value 

0  for all y  X  except one, say x  X . If its value at x  is r  ( 0  r  1), we denote this 

fuzzy point by rx , where the point x  is called its support.  

 

          Definition 1.12[121]: A fuzzy set   in X  is called quasi-coincident (in short        

q-coincident) with a fuzzy set   in X , denoted by q  iff )(x  )(x  1 for some 

x  X .  

 

          Definition 1.13[19]: Let f : X  Y  be a mapping and u  be a fuzzy set in X . 

Then the image of u , written )(uf , is a fuzzy set in Y  whose membership function is 

given by 

)()( yuf   

















)(if0

)(if})(:)({sup
1

11

yf
yfyfxxu

 .  
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          Definition 1.14[19]: Let f : X  Y  be a mapping and v  be a fuzzy set in Y . Then 

the inverse of v , written )(1 vf  , is a fuzzy set in X  whose membership function is given 

by )()(1 xvf   ))(( xfv .  

 

          Definition 1.15[131]: Let f : X  Y  be a mapping. Then f  is said to be one-one 

(one-to-one) iff )(af  )(bf    a  b .   

 

          Definition 1.16[131]: Let f : X  Y  be a mapping. Then f  is said to be onto 

(surjective) iff )(Xf  Y .  

           

          Definition 1.17[131]: Let f : X  Y  be a mapping. Then f  is said to be bijective 

iff it is both one-one and onto.  

 

          Theorem 1.18[168]: Let f : X  Y  be a mapping and 1u ,  2u  be fuzzy sets in X . 

If  1u  2u , then )( 1uf  )( 2uf .  

 

          Theorem 1.19[168]: Let f : X  Y  be a mapping and 1v ,  2v  be fuzzy sets in Y . 

If  1v  2v , then )( 1
1 vf   )( 2

1 vf  .  

 

          Theorem 1.20[168]: Let f : X  Y  be one-to-one mapping and u  be a fuzzy set 

in X , then ))((1 uff   u .  

 

          Theorem 1.21[168]: Let f : X  Y  be onto mapping and v  be a fuzzy set in Y , 

then ))(( 1 vff   v .  
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Theorems (1.20) and (1.21) will be used again and again in our next works. 

 

          Theorem 1.22[159]: Let f : X  Y  be a mapping, iu , i  J  be fuzzy sets in X  

and iv , i  J  be fuzzy sets in Y . Then 

(i) 













Ji
iuf  )(

Ji
iuf



 

(ii) 












 
Ji

ivf 1  )(1
i

Ji
vf



  

(iii) 













Ji
iuf   

Ji
iuf



)(  

(iv) 












 
Ji

ivf 1  
Ji

ivf


 )(1 .  

 

          Definition 1.23[106]: Let X  be a non-empty set and T  be a family of subsets of 

X . Then T  is said to be topology on X  if 

(i)  ,  X T  

(ii) if iA T  for each i  J , then 
Ji

iA


T  

(iii) if A ,  B T  A  B T  

The pair  TX ,  is called topological space, any member U T  is called open set in the 

topology T  and its complement i.e. cU  is called closed set in the topology T .  

 

          Definition 1.24[106]: Let U  denote the class of all open sets of real numbers R. 

Then U  is a topology on R; it is called the usual topology on R.  
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          Definition 1.25[106]: Let X  be a non-empty set and T  denote the class of all 

subsets of  X  whose complements are finite together with the empty set  . This class T  

is also a topology on X . It is called the cofinite topology on X .  

 

          Definition 1.26[106]: A subset A  of a topological space  TX ,  is compact iff 

every open cover of A  has a finite subcover.  

           

          Definition 1.27[19]: Let X  be a non-empty set and t  XI  i.e. t  is a collection of 

fuzzy sets in X . Then t is called a fuzzy topology on X  if  

(i) 0 , 1 t   

(ii) if iu  t  for each i  J , then 
Ji

iu


 t  

(iii) if u ,  v  t  , then u  v  t  

The pair  tX ,  is called a fuzzy topological space and in short, fts. Every member of t  is 

called a t -open fuzzy set. A fuzzy set is t -closed iff its complements is t -open. In the 

sequel, when no confusion is likely to arise, we shall call a t -open ( t -closed) fuzzy set 

simply an open (closed) fuzzy set.  

 

          Definition 1.28[19]: A fuzzy topology 1t  is said to be coarser than a fuzzy topology 

2t  if and only if 1t   2t .  

 

          Definition 1.29[121]: Let   be a fuzzy set in an fts  tX , . Then the interior of   

is denoted by 0  or int  and defined by 0 {  :     and   t } .  

          Remark [1]: The interior of a fuzzy set   is the largest open fuzzy set contained in 

  and trivially, a fuzzy set   is fuzzy open if and only if   0 .  
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          Definition 1.30[121]: Let   be a fuzzy set in an fts  tX , . Then the closure of   

is denoted by
_

  or cl  and defined by 
_

 {  :     and   ct } .  

          Remark [1]: The closure of a fuzzy set   is the smallest closed fuzzy set 

containing   and trivially, a fuzzy set   is a fuzzy closed if and only if  
_

 .  

 

          Theorem 1.31[1]: Let  tX ,  be a fuzzy topological space and u , v  be two fuzzy 

sets in X . Then 

(i) 0  0 , 1  1 

(ii)  00u   0u ,  u   u          

(iii) 0u  u  u  

(iv) vu   u  v  

(v) If u  v , then 0u  0v  

(vi) If u  v , then u  v .  

 

          Theorem 1.32[27]: Let  tX ,  be an fts and u  be an open fuzzy set in t . Then 

u   0
u .  

 

          Definition 1.33[121]: Let  tX ,  be an fts and A  X . Then the collection 

At  { Au | : u  t }  is fuzzy topology on A , called the subspace fuzzy topology on A  

and the pair  AtA,  is referred to as a fuzzy subspace of  tX , .  
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          Definition 1.34[19]: Let  tX ,  and  sY ,  be two fuzzy topological spaces. A 

mapping f :  tX ,    sY ,  is called a fuzzy continuous iff the inverse of each s -open 

fuzzy set is t -open or equivalently for each s -closed fuzzy set is t -closed.  

 

          Definition 1.35[161]: Let  tX ,  and  sY ,  be two fuzzy topological spaces. Let 

f :  tX ,    sY ,  be a mapping from an fts  tX ,  to another fts  sY , . Then f  is 

called  

(i) a fuzzy open mapping iff )(uf  s  for each u  t . 

(ii) a fuzzy closed mapping iff )(vf  is a closed fuzzy set of Y , for each closed fuzzy set 

v  of X .  

 

          Definition 1.36[116]: Let f  be a mapping from an fts  tX ,  into an fts  sY , . 

Then f  is fuzzy closed iff )(uf   uf  for each fuzzy set u  in X .  

 

          Theorem 1.37[122]: Let f :  tX ,    sY ,  be a fuzzy continuous mapping. Then 

(i)  uf  )(uf , for any fuzzy set u  in X .                 

(ii) )(1 vf    vf 1 , for any fuzzy set v  in Y .  

 

          Definition 1.38[49]: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively and f  is a mapping from  tX ,  to  sY , , then we say that f  is a 

mapping from  AtA,  to  BsB,  if BAf )( .  
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          Definition 1.39[49]: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively. Then a mapping f :  AtA,   BsB,  is relatively fuzzy continuous 

iff for each v  Bs , then )(1 vf  | A  At .  

 

          Definition 1.40[49]: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively. Then a mapping f :  AtA,   BsB,  is relatively fuzzy open iff for 

each v  At , the image )(vf  Bs .     

 

          Definition 1.41[3]:  Let  TX ,  be a topological space. A function f : X   R        

(with usual topology) is called lower semi-continuous ( l. s. c. ) if for each a R , the set 

),(1  af T . For a topology T  on a set X ,  let )(T be the set of all l. s. c. functions 

from   TX ,  to I (with usual topology); thus )(T   { u  XI : ]1,(1 au T ,  a  1I } . 

It can be shown that )(T  is a fuzzy topology on X . 

      Let P be a property of topological spaces and FP be its fuzzy topology analogue. Then 

FP is called a ‘good extension’ of P “iff the statement   TX ,  has P iff  )(, TX   has 

FP”   holds good for every topological space  TX , .  Thus characteristic functions are       

l . s. c.  

 

          Definition 1.42[106]: Let { iX : i  J }  be any family of sets and let X  denote the 

Cartesian product of these sets i.e. X 
Ji

iX . Note that X  contains all points             

p   ia : i  J   where ia  iX . Recall that, for each 0j  J , we define the projection 

0j  from the product set X  to the coordinate space 
0jX  i.e. 

0j : X 
0jX  by 

0j (  ia : i  J  ) 
0ja . These projections are used to define the product topology.  
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          Definition 1.43[9]: Let   XI  and   YI . Then )(    is a fuzzy set in YX   

for which  )(    ),( yx   min{ )(x ,  )( y } , for every ),( yx  YX  . 

  

           Definition 1.44[161]: Given a family   JitX ii :,  of fts’s, we define their 

product  
Ji

ii tX ,  to be the fts   tX , , where X 
Ji

iX  is the usual product set and t  is 

the coarsest fuzzy topology on X  for which the projections i : X  iX  are fuzzy 

continuous for each i  J . The fuzzy topology t  is called the product fuzzy topology on 

X  and  tX ,  is a product fts.  

 

          Definition 1.45[150]: An fts  tX ,  is said to be fuzzy 1T -space iff for every            

x ,  y  X , x  y , there exist u ,  v  t  such that 1)( xu ,  0)( yu  and 0)( xv ,  

1)( yv .  

         

          Definition 1.46[85]: An fts  tX ,  is said to be fuzzy 1T -space iff for all                

x ,  y  X , x  y , there exist u ,  v   t  such that 0)( xu ,  0)( yu  and 0)( xv ,  

0)( yv .  

 

          Definition 1.47[54]: An fts  tX ,  is said to be fuzzy Hausdorff space iff for all              

x ,  y  X , x  y , there exist u ,  v  t  such that 1)( xu ,  1)( yv  and u  v   0 .  

 

          Definition 1.48[85]: An fts  tX ,  is said to be fuzzy Hausdorff iff for all               

x ,  y  X , x  y , there exist u ,  v  t  such that 0)( xu ,  0)( yv  and u  v  0 .     
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          Definition 1.49[93]: An fts  tX ,  is said to be fuzzy Hausdorff iff for every pair of 

distinct fuzzy points rx ,  sy  in X , there exist u ,  v  t  such that rx  u ,  sy  v  and 

u  v  0 .  

 

          Definition 1.50[116]: An fts  tX ,  is said to be fuzzy Hausdorff iff for all                       

x ,  y  X , x  y , there exist u ,  v  t  such that 1)( xu ,  1)( yv  and u  v1 .  

 

          Definition 1.51[116]: An fts  tX ,  is said to be fuzzy regular iff for each 

x  X and u  ct  with 0)( xu , there exist v ,  w  t  such that 1)( xv ,  u  w  and 

v  w1 .  

 

          Definition 1.52[27]: An fts  tX ,  is said to be fuzzy regular iff each open fuzzy set 

u  of X  is a union of open fuzzy sets iu  of X  such that iu  u  for each i .        
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Chapter Two 

Fuzzy Compact Spaces 

 
          Fuzzy compact spaces was first introduced by Chang [19] in fuzzy topological 

spaces and mentioned some properties which are global property. In this chapter, we have 

discussed various other properties of this concept and established some theorems, 

corollaries and examples. Also we have defined fuzzy  -compact spaces and found 

different characterizations between fuzzy compact and fuzzy  -compact spaces.     

  

          Definition 2.1[19]: Let  tX ,  be an fts and   be a fuzzy set in X . Let                 

M  { iu : i  J }  be a family of fuzzy sets. Then M  }{ iu  is called a cover of   iff 

 { iu : i  J } . If each iu  is open, then M  }{ iu  is called an open cover of  . 

Furthermore, if a finite subfamily of M  is also cover   i.e.  there exist 
1iu ,  

2iu ,  …… ,  

niu  M  such that  
1iu 

2iu   ……   
niu , then M  is said to be reducible to a finite 

cover or contains a finite subcover or has a finite subcover.      

 

          Definition 2.2[19]: An fts  tX ,  is compact iff each open cover has a finite 

subcover. 

 

          Theorem 2.3:  Let  tX ,  be a compact fts, A  X  with A1  is closed. Then A1  is 

also compact. 
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Proof: Let M  { iu : i  J }  be an open cover of A1  i.e. A1  
Ji

iu


. Then 

X1  













Ji
iu  cA1  that is *M  }{ iu   }1{ cA  is an open cover of X1 . But cA1  is open, 

since A1  is closed. So *M  is an open cover of X1 .  As   tX ,  is compact; hence *M  has  

a finite subcover i.e. there exist 
ki

u  M  ( k  1 ,  2 ,  ...... , n )  such that X1 
1i

u 
2i

u   

...... 
niu  cA1 . But A1  and cA1  are disjoint; hence A1   

1iu 
2iu   ...... 

niu ; 

kiu  M  ( k  1 ,  2 ,  ...... , n ) . We have just shown that any open cover M  }{ iu  of A1  

contains a finite subcover i.e. A1  is compact.  

 

          Definition 2.4[10]: A family M  of fuzzy sets has the finite intersection property iff 

the intersection of the members of each finite subfamily of M  is non-empty.  

 

          Theorem 2.5:  An fts  tX ,  is compact iff each family of closed fuzzy sets which 

has the finite intersection property has a non-empty intersection.  

Proof: cf.[19].    

 

          Theorem 2.6: For an fts  tX , , the following statements are equivalent : 

(i)   tX ,  is compact. 

(ii)  For each {
iA1 : i  J }  of closed subsets of  tX ,  ;  

Ji
Ai



1  X0   implies                        

{
iA1 : i  J }   contains a finite subfamily {

1
1

iA ,  
2

1
iA ,  ....... ,  

niA1 }  with 
1

1
iA 

2
1

iA   ...... 


niA1  X0 .     
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Proof: (i)   (ii) : Suppose 
Ji

Ai


1  X0 . Then by De-Morgan’s law, X1      c
X0   

c

Ji
Ai 











1   

Ji
Ac

i


1 . So }1{ c
iA

 is an open cover of  tX , , since each 
iA1  is closed. As  tX ,  

is compact, then there exist c
iA1

1  ,  c
iA 2

1 ,  …… ,  c
niA1    }1{ c

iA
  such that X1   c

iA1
1  c

iA 2
1   

.......  c
niA

1 .  Thus by De-Morgan’s law, X0    c
X1   ( c

iA1
1  c

iA 2
1   .......  c

niA
1 ) c                  

  
1

1
iA 

2
1

iA   ...... 
niA1 and we have shown that (i)  (ii). 

(ii)   (i) : Let { iu : i  J }   be an open cover of  tX ,  i.e. X1  
Ji

iu


. By De-Morgan’s 

law, we have X0    c
X1 

c

Ji
iu 











    

Ji

c
iu



. Since each iu  is open, then { c
iu : i  J }  

is a family of closed fuzzy sets and so by above has an empty intersection. Hence by 

hypothesis, there exist c
iu
1
 ,  c

iu
2

,  …. ,  c
in

u   }{ c
iu  such that c

iu
1
   c

iu
2
   ……  c

in
u  

 X0 . Thus by De-Morgan’s law, we get X1     c
X0    (  c

iu
1
   c

iu
2
   ……  c

in
u  ) c             

  
1iu   

2iu    …….   
niu . Accordingly,   tX ,  is compact and so (ii)    (i). 

 

          Theorem 2.7: Let  tX ,  be an fts and A  X . Then A1  is compact in  tX ,  iff A1  

is compact in  AtA, . 

Proof: Suppose A1  is compact in  tX , . Let { iu : i  J }   be an open cover of A1  in 

 AtA, . Then there exist iv  t  such that iu  iv | A  iv . Hence A1  
Ji

iu


 
Ji

iv


 and 

therefore { iv : i  J }  is an open cover of A1 . Since A1  is compact, so { iv : i  J }  

contains a finite subcover, say {
ki

v : k  nJ }  such that A1   
1i

v 
2i

v  ......
ni

v . But, 

then A1  (
1i

v  
2i

v   ......  
ni

v ) | A    (
1i

v | A )    (
2i

v | A )   ...... (
ni

v | A )               
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1i

u 
2i

u  ......
ni

u . Thus { iu : i  J }  contains a finite subcover                                 

{
1iu ,  

2iu , ...... ,
niu }   and A1  is compact in  AtA, . 

Conversely, suppose A1  is compact in  AtA, . Let { iv : i  J }  be an open cover of A1  in 

 tX , . Set iu  iv | A , then A1  
Ji

iv


 implies that A1  













Ji
iv | A   

Ji
( iv | A )             

  
Ji

iu


. But iu  At , so { iu : i  J }  is an open cover of A1  in  AtA, . As A1  is compact 

in  AtA, , thus { iu : i  J }  contains a finite subcover, say {
1iu ,  

2iu , ...... ,
niu } . 

Accordingly, A1   
1iu 

2iu  ......
niu   (

1iv | A )    (
2iv | A )  ...... (

niv | A )             

  (
1i

v  
2i

v   ......  
ni

v ) | A  
1i

v 
2i

v  ......
ni

v . Thus { iv : i  J }  contains a 

finite subcover {
1i

v ,  
2i

v , ...... ,  
ni

v }  and therefore A1  is compact in  tX , . 

 

          Corollary 2.8: Let  *, tY  be a subspace of  tX ,  and A  be a subset of  *, tY  such 

that A  Y  X . Then A1  is compact in  tX ,  iff  A1  is compact in  *, tY .  

Proof: Let At  and *
At  be the subspaces of fuzzy topologies on A . Then by preceding 

theorem (2.7), A1  is compact in  tX ,  or   *, tY  iff A1  is compact in  AtA,  or  *, AtA ; 

but  At   *
At . 

 

     Theorem 2.9: Let  1, tX  and  2, tX  be two fts’s and  1, tX  be compact. If 2t  is 

coarser than 1t , then  2, tX  is also compact.  

The proof is easy. 

 

          Theorem 2.10: Let  tX ,  be an fts and }1{
sY  X1 , where }1{

sY  be a finite family. 

If each 
sY1  is compact, then  sY1  is a compact subspace of  tX , . 
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Proof: Let { iu : i  J }  be an open cover of  sY1 . Then { iu : i  J } is an open cover 

of 
sY1 for each s  J . Since 

sY1  is compact, then { iu : i  J }  contains a finite subcover, 

say {
kiu : k  nJ }  which is a cover of 

sY1 . The union of these families is a finite subcover 

of  sY1 . Thus  sY1  is compact.    

           

          Theorem 2.11: Let  tX ,  and  sY ,  be two fts’s and f :  tX ,   sY ,  be 

bijective, fuzzy open and fuzzy continuous. Then  tX ,  is compact iff  sY ,  is compact. 

The necessary part of this theorem has already been proof by Chang [19].  

Suppose  sY ,  is compact. Let M  { iu : i  J }  be an open cover of  tX ,  with 


Ji

iu


 X1 . Since f  is fuzzy open, so )( iuf  s  and hence { )( iuf : i  J }  is an open 

cover of  sY , . As  sY ,  is compact, then for each y  Y , we have )()( yuf
Ji

i


 Y1 . 

Hence there exist )(
ki

uf { )( iuf : i  J }  ( k  nJ )  such that )()( yuf
n

k
Jk

i


 Y1 . 

Again, let v  be any fuzzy set in X . Since f  is bijective, then  )(1 vff   v . Hence 

X1  )1(1
Yf   













 
n

k
Jk

iuff )(1    
n

k
Jk

iuff


 )((1   
n

k
Jk

iu


. Thus  tX ,  is compact. 

           

          Theorem 2.12: Let  tX ,  be an fts and  AtA,  be a subspace of   tX ,  with  tX ,  

is fuzzy compact. Let f :  tX ,   AtA,   be fuzzy continuous and onto, then  AtA,  is 

fuzzy compact.  

Proof: Let M   { iu : i  J }  be an open cover of  AtA,  with 
Ji

iu


 A1 . Put 

iu  iv | A , where iv  t . Since f  is fuzzy continuous, then )(1
iuf   t  implies that 

)|(1 Avf i
  t . As  tX ,  is fuzzy compact, then we have for each x  X ,  
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Ji

f


1 )()|( xAvi  X1 . Thus we see that { )|(1 Avf i
 : i  J }  is an open cover of  tX , . 

Hence there exist  )|(
1

1 Avf i
 ,  )|(

2

1 Avf i
 ,  …… ,  )|(1 Avf

ni
   })|({ 1 Avf i

  such that 


n

k

f
1

1



 )()|( xAv
ki

 X1  for every x  X . Again, let u  be any fuzzy set in A . Since f  is 

onto, then we have ))(( 1 uff   u . Hence A1  )1( Xf  













n

k
i Avff
k

1

1 )|(                                 

  
n

k

f
1

 )|(1 Avf
ki

    )|(
1


n

k
i Av
k



   
n

k
ik

u
1

. Therefore  AtA,  is fuzzy compact. 

 

          Theorem 2.13: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively with  AtA,  is compact. Let f :  AtA,   BsB,  be relatively fuzzy 

continuous and surjective mapping. Then  BsB,  is compact.  

Proof: Assume that BAf )( , as f  is surjective. Let { iv : iv  Bs }  for each i  J  be an 

open cover of  BsB,  i.e. 
Ji

iv


 B1 . As f  is relatively fuzzy continuous, then 

)(1
ivf  | A  At  and hence { )(1

ivf  | A : i  J }  is an open cover of  AtA, . Since 

 AtA,  is compact, so { )(1
ivf  | A : i  J }  has a finite subcover i.e. there exist 

)(1
kivf  | A  { )(1

ivf  | A }  ( k  1 ,  2 ,  …… , n )  such that A1  
n

k
i Avf
k

1

1 )|)((


 . 

Again, let v  be any fuzzy set in B . As f  is surjective, so we have  )(1 vff   v . 

Therefore B1  )1( Af  













n

k
i Avff
k

1

1 )|)((  
n

k

f
1

( )(1
kivf  | A )   

n

k 1

(


kiv | )(Af )  

 
n

k 1

(


kiv | B ) 
n

k
ik

v
1

, as iv | B  iv . Thus  BsB,  is compact. 
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          Theorem 2.14: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively. Let f :  AtA,   BsB,  be relatively fuzzy open and bijective 

mapping with  BsB,  is compact. Then  AtA,  is also compact. 

Proof: We have BAf )( , as f  is bijective. Let { iu : iu  At }  be an open cover of 

 AtA,  for every i  J  i.e 
Ji

iu


 A1 . As iu  At , then there exists iv  t  such that 

iu  iv | A  and so 
Ji
( iv | A )  A1 .  As f  is relatively fuzzy open, then )( iuf  Bs  and 

hence { )( iuf : i  J }  is an open cover of  BsB,  implies that { )|( Avf i : i  J }           

  { )(|)( Afvf i : i  J }    { Bvf i |)( : i  J }  is an open cover of  BsB, . Since 

 BsB,  is compact, then { Bvf i |)( : i  J }   has a finite subcover, say                       

{ Bvf
ki |)( : k  nJ }  such that )|)(( Bvf

n

k
Jk

i


   B1 . Let v  be any fuzzy set in A . As f  

is bijective, then we have  )(1 vff   v . Hence A1    )1(1
Bf    













 
n

k
Jk

i Bvff )|)((1               

 ))(|( 1 Bfv
n

k
Jk

i



   )|( Av

n

k
Jk

i


  
n

k
Jk

iu


. Thus {
kiu : k  nJ }  is a finite subcover of 

{ iu : iu  At } . Hence  AtA,  is compact. 

          

          Theorem 2.15: Let  tX ,  be a fuzzy 1T -space (as def. 1.45), A  X  and A1  be a 

compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that )(xu  1 

and  A  ]1,0(1v . 

Proof: Let y  A . Since x  A ( x  cA ) , then clearly x  y . As  tX ,  is fuzzy               

1T -space, then there exist yu ,  yv  t  such that )(xu y  1 ,  )(yu y  0  and )(xvy  0 ,  

)(yvy  1. Hence A1 { yv : y  A }  i.e. { yv : y  A }  is an open cover of A1 . Since 

A1  is compact, then it has a finite subcover, say 
1yv ,  

2yv ,…… ,  
nyv  }{ yv  such that 
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A1 
1yv 

2yv   ……. 
nyv . Now, let v 

1yv 
2yv   ….. 

nyv  and u 
1yu   

2yu   

…… 
nyu . Thus we see that v  and u  are open fuzzy sets, as they are the union and 

finite intersection of open fuzzy sets respectively i.e. v ,  u  t . Furthermore, 

A  ]1,0(1v  and )(xu  1, since each )(xu
ky  1 individually. 

 

          Theorem 2.16: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and A1 ,  B1  be disjoint 

compact subsets in  tX ,  ( A ,  B  X ) . Then there exist u ,  v  t  such that 

A  ]1,0(1u   and B  ]1,0(1v .   

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint. Since B1  is compact, then by 

theorem (2.15), there exist yu ,  yv  t  such that )(yu y  1 and B  ]1,0(1
yv . Since 

)(yu y  1, then { yu : y  A }  is an open cover of A1 . As A1  is compact, so it has a finite 

subcoer, say 
1yu ,  

2yu ,…… ,  
nyu  }{ yu  such that A1 

1yu 
2yu   ……. 

nyu . 

Furthermore, B1 
1yv 

2yv   ……. 
nyv , as B  ]1,0(1

kyv  for each k . Again, let               

u 
1yu   

2yu   …… 
nyu  and v 

1yv 
2yv   ….. 

nyv . Thus we see that 

A  ]1,0(1u  and B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t .  

 

          Theorem 2.17: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and A  X . If A1  is 

compact in  tX , , then A1  is closed. 

Proof: Let x  cA  . We have to show that, there exist u  t  such that )(xu  1 and 

u  pA , where pA  is the characteristic function of cA . Indeed, for each y  A , there 

exist yu ,  yv  t  such that )(xu y  1 ,  )(yuy  0  and )(xvy  0 ,  )(yvy  1. Hence we see 

that A1 { yv : y  A }  i.e. { yv : y  A }  is an open cover of A1 . Since A1  is compact 
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in  tX , , so A1  has a finite subcover, say {
kyv : y  A } ( k  nJ )  such that 

A1 
1yv 

2yv   ……. 
nyv . Now, let u   

1yu   
2yu   …… 

nyu . Thus we see that 

)(xu  1, as )(xu
ky  1 for each k . For, each z  A , there exists a k  such that 

)(}{ zv
ky  1 ( k  1 ,  2 ,  …… , n )  and so )(zu  0 . Hence u  pA . Therefore, cA1  is 

open in  tX , . Thus A1  is closed in  tX , . 

 

          Theorem 2.18: Let  tX ,  be a fuzzy 1T -space (as def. 1.46), A  X  and A1  be a 

compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that 0)( xu  

and  A  ]1,0(1v . 

Such fuzzy 1T -space have no compact subset. So the above theorem (2.18) is vacuously 

true for there space.  

 

          Theorem 2.19: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47), A  X  and 

A1  be a compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that 

)(xu  1 ,  A  ]1,0(1v  and u  v  0 . 

Proof: Let y  A . Since x  A ( x  cA ) , then clearly x  y . As  tX ,  is fuzzy 

Hausdorff, then there exist yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu  yv  0 . 

Hence A1 { yv : y  A }  i.e. { yv : y  A }  is an open cover of A1 . Since A1  is 

compact, then there exist 
1yv ,  

2yv ,…… ,  
nyv  }{ yv  such that A1 

1yv 
2yv   ……. 


nyv . Now, let v 

1yv 
2yv   …… 

nyv  and u   
1yu   

2yu   …… 
nyu . Thus we 

see that v  and u  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. v ,  u  t . Furthermore, A  ]1,0(1v  and )(xu  1, since each 

)(xu
ky  1 individually. 
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Finally, we claim that u  v  0 . We observe that 
kyu 

kyv  0  implies that 

u 
kyv  0 , by distributive law, we have u  v  u  (

1yv 
2yv …... 

nyv )  

 ( u 
1yv )   ( u 

2yv )   …...  ( u 
nyv )  0 .   

 

          Corollary 2.20: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47), A  X  and 

A1  be a compact subset in  tX , . Let x  A , then there exist u  t  such that )(xu  1 and 

]1,0(1u  cA . 

Proof: By theorem (2.19), there exist u ,  v  t  such that )(xu  1,  A  ]1,0(1v  and 

u  v  0 . Hence ]1,0(1u  ]1,0(1v   . If not, there exists x  ]1,0(1u  ]1,0(1v  

  x  ]1,0(1u  and x  ]1,0(1v    )(xu  0  and )(xv  0    u  v   0 . Hence 

]1,0(1u  A    and consequently ]1,0(1u  cA .     

 

          Theorem 2.21: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47) and A1 ,  B1  be 

disjoint compact subsets in  tX ,  ( A ,  B  X ) . Then there exist u ,  v  t  such that 

A  ]1,0(1u ,  B  ]1,0(1v  and u  v  0 . 

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint. Since B1  is compact, then by 

theorem (2.19), there exist yu ,  yv  t  such that )(yuy  1 ,  B  ]1,0(1
yv  and 

yu  yv  0 . Since )(yuy  1, then { yu : y  A }  is an open cover of A1 . As A1  is 

compact, then there exist 
1yu ,  

2yu ,…... ,  
nyu  }{ yu  such that A1 

1yu 
2yu   ……. 


nyu . Furthermore, B1 

1yv 
2yv   ……. 

nyv , as B  ]1,0(1
kyv  for each k . Now, 

let u 
1yu   

2yu   …… 
nyu  and v 

1yv 
2yv   ….. 

nyv . Thus we see that 

A  ]1,0(1u  and B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t . 
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Finally, we have to show that u  v  0 . First, we observe that 
kyu 

kyv  0  for each k , 

implies that 
kyu  v  0 , by distributive law, we see that u  v  (

1yu   
2yu   …… 


nyu )   v   (

1yu  v )  (
2yu  v )   …...  (

nyu  v )  0 .   

 

          Theorem 2.22: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47), A  X  and 

A1  be a compact subset in  tX , . Then A1  is closed.  

Proof: Let x  cA . We have to show that, there exists u  t  such that )(xu  1 and 

u  pA , where pA  is the characteristic function of cA . Now, let y  A , then there exist 

yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu  yv  0 . Thus we see that 

A1 { yv : y  A }  i.e. { yv : y  A }  is an open cover of A1 . Since A1  is compact, so 

it has a finite subcover, say 
1yv ,  

2yv , …… ,  
nyv  }{ yv  such that A1 

1yv 
2yv   ……. 


nyv .  Again, let u   

1yu   
2yu   …… 

nyu  and v 
1yv 

2yv   ……
nyv . Hence 

we observe that )(xu  1, as )(xu
ky  1 for each k  and u  (

1yv 
2yv   …... 


nyv )  0 . For each z  A , it is clear that )(}{ zv

ky  1 ( k  1 ,  2 ,  …… , n ) . Thus 

)(zu  0  and hence u  pA . Therefore, cA1  is open and so A1  is closed.    

 

          Theorem 2.23: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48), A  X  and 

A1  be a compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that 

)(xu  0 ,  A  ]1,0(1v  and u  v  0 . 

Such fuzzy Hausdorff space have no compact subset. So the above theorem (2.23) is 

vacuously true for there space.  
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           Theorem 2.24: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.49), A  X  and 

A1  be a compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that 

rx  u ,  A  ]1,0(1v  and u  v  0 . 

Such fuzzy Hausdorff space have no compact subset. So the above theorem (2.24) is 

vacuously true for there space.       

 

          Theorem 2.25: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.50), A  X  and 

A1  be a compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that 

)(xu  1 ,  A  ]1,0(1v  and u  1 v . 

Proof: Let y  A . Since x  A ( x  cA ) , then clearly x  y . As  tX ,  is fuzzy 

Hausdorff, then there exist yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu  1 yv . 

Hence A1 { yv : y  A }  i.e. { yv : y  A }  is an open cover of A1 . Since A1  is 

compact, then there exist 
1yv ,  

2yv ,…… ,
nyv  }{ yv  such that A1 

1yv 
2yv  ……  

nyv . Now, let v 
1yv 

2yv ….. 
nyv  and u 

1yu   
2yu   …… 

nyu . Thus we see 

that v  and u  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. v ,  u  t . Furthermore, A  ]1,0(1v  and )(xu  1, since each 

)(xu
ky  1 for each k . 

Finally, we have to show that u  1 v . As  yu  1 yv  implies yvu  1 . Since 

)(xu
ky  1 )(xv

ky  for all x  X  and for each k , then u  1 v . If not, there exists 

x  X  such that )(xu y  1 )(xvy . We have )(xu y  )(xu
ky  for each k .  Then for some 

k ,  )(xu
ky  1 )(xv

ky . But this is a contradiction, as )(xu
ky  1 )(xv

ky  for each k . 

Hence u  1 v .       
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          Theorem 2.26: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.50) and A1 ,  B1  be 

disjoint compact subsets in  tX ,  ( A ,  B  X ) . Then there exist u ,  v  t  such that 

A  ]1,0(1u ,  B  ]1,0(1v  and u  1 v . 

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint. Since B1  is compact, then by  

theorem (2.25), there exist yu ,  yv  t  such that )(yuy  1 ,  B  ]1,0(1
yv  and  

yu  1 yv . Since )(yu y  1, then { yu : y  A }  is an open cover of A1 . As A1  is 

compact, then there exist 
1yu ,  

2yu ,…… ,  
nyu  }{ yu  such that A1 

1yu 
2yu   ……. 


nyu . Furthermore, B1 

1yv 
2yv   ……. 

nyv , as B  ]1,0(1
kyv  for each k . Now, 

let u   
1yu   

2yu   …… 
nyu  and v   

1yv 
2yv   ….. 

nyv . Thus we see that 

A  ]1,0(1u  and B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t . 

Finally, we have to show that u  1 v . First, we observe that 
kyu  1

kyv  for each k , 

implies that 
kyu  1 v  for each k  and it is clear that u  1 v .   

 

          Theorem 2.27: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.50), A  X  and 

A1  be a compact subset in  tX , . Then A1  is closed.  

Proof: Let  x  cA . We have to show that, there exists u  t  such that )(xu  1 and 

u  pA  , where pA  is the characteristic function of cA . Now, let y  A , then there exist 

yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu  1 yv . Thus we see that       

A1 { yv : y  A }  i.e. { yv : y  A }  is an open cover of A1 . Since A1  is compact, so 

it has a finite subcover, say 
1yv ,  

2yv , …… ,  
nyv  }{ yv  such that A1 

1yv 
2yv   

……
nyv . Again, let u 

1yu   
2yu   …… 

nyu  and v 
1yv 

2yv   ….. 
nyv . 
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Hence we observe that )(xu  1, as )(xu
ky  1 for each k  and yu  1 yv  implies that 

u  1 yv . As  )(xu
ky  1 )(xv

ky  for all x  X  and for each k , then u  1 v . If not, 

there exists x  X  such that )(xu y  1 )(xvy . We have )(xu y  )(xu
ky  for each k . Then 

for some k ,  )(xu
ky  1 )(xv

ky . But this is a contradiction as )(xu
ky  1 )(xv

ky  for each 

k . Hence u  1 v . For each z  A , it is clear that )(}{ zv
ky  1 ( k  1 ,  2 ,  …… ,  

n ) . Thus )(zu  0  and hence u  pA . Therefore, cA1  is open and so A1  is closed.     

 

          Theorem 2.28: Let  tX ,  be a fuzzy regular space (as def. 1.51), A  X  and A1  

be a compact subset in  tX , . Suppose x  A  and u  ct  with )(xu  0 . Then there exist 

v ,  w  t  such that )(xv  1 ,  u  w ,  A  ]1,0(1v  and v  1 w . 

Proof: Suppose x  A  and u  ct  we have )(xu  0 . Since   tX ,  is fuzzy regular, then 

there exist xv ,  xw  t  such that )(xvx  1 ,  xu  xw  and xv  1 xw . Hence     

A1 { xv : x  A }  i.e. { xv : x  A }  is an open cover of A1 . Since A1  is compact, so it 

has a finite subcover, say 
1xv ,  

2xv ,…… ,
nxv  }{ xv  such that A1 

1xv 
2xv   ……. 


nxv . Now, let v   

nxv 
2xv …… 

nxv  and w   
1xw   

2xw ……
nxw . Thus we 

see that v  and w  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. v ,  w  t . Furthermore, A  ]1,0(1v ,  )(xv  1 and u  w ,  

as u  kw   individually. 

Finally, we have to show that v  1 w . As 
kxv  1

kxw  for each k  implies that 

kxv  1 w  for each k  and it is clear that v  1 w .  
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          Theorem 2.29: A topological space   TX ,  is compact iff  )(, TX   is fuzzy 

compact. 

Proof: Suppose  TX ,  is compact. Let { iu : i  J }  be an open cover of   )(, TX   

i.e X1  
Ji

iu


. Then ]1,(1 aui
  T  for a  1I  and { ]1,(1 aui

 : ]1,(1 aui
 T }  is an open 

cover of  TX , . Since   TX ,  is compact, so it has a finite subcover, say                

{ ]1,(1 au
ki
 : k  nJ }  such that X   ]1,(1

1
aui

    ]1,(1
2

aui
    ...... ]1,(1 au

ni
 . Now, we 

can write X1 
1iu 

2iu  ......
niu  and it is seen that {

kiu : k  nJ }  is a finite subcover 

of { iu : i  J } . Thus  )(, TX   is fuzzy compact. 

Conversely, suppose that  )(, TX   is fuzzy compact. Let { jV : j  J }  be an open 

cover of   TX ,  i.e. X  
Jj

jV


. Since 
jV1  are l . s. c. then 

jV1  )(T  and                          

{
jV1 : 

jV1  )(T }  is an open cover of   )(, TX  . Since  )(, TX   is fuzzy 

compact, so it has a finite subcover, say {
kjV1 : k  nJ }  such that 

X1 
1

1
jV 

2
1

jV  ......
njV1 . Now, we can write X   

1j
V    

2j
V    ......  

nj
V  and it is 

seen that {
kjV : k  nJ }  is  a finite subcover of  { jV : j  J } . Thus  TX ,  is compact.  

 

          Theorem 2.30: If   JitX ii :,  is a family of fuzzy compact fuzzy topological 

spaces, then the product space 








 Ji

i
Ji

i tX ,  is also fuzzy compact.  

Proof: cf.[108].  

 



Fuzzy Compact Spaces 

 

  
28 

        Definition 2.31: Let  tX ,  be an fts and 0    1. A fuzzy set u  t  is said to be 

 -open in X  iff )(xu    for all x  0u . If   0 , then u  is open. A fuzzy set is said to 

be  -closed iff its complement is  -open. 

 

          Example 2.32: Let X  },{ ba ,  I  ]1,0[  and 0    1. Again, let u ,  v  XI  

defined by  )(au  4.0 ,  )(bu  3.0  and )(av  7.0 ,  )(bv  5.0 . Consider t  { 0 ,  u ,  

v ,  1} , then  tX ,  is an fts. Take   4.0 . Then u  is not  -open in X , as )(bu    for 

b  0u . But v  is  -open in X , as )(av , )(bv    for a ,  b  0v .          

 

          Definition 2.33: Let M  { iu : i  J }  be a family of  -open fuzzy sets in an fts 

 tX ,  and   be a fuzzy set in X . Then M  is said to be  -cover of   iff              

  
Ji

{ iu : iu  M } .  A subfamily of a  -cover of   which is also a  -cover of   is 

said to be  -subcover.   

 

          Example 2.34: Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  

defined by  )(1 au  1 ,  )(1 bu  4.0 ; )(2 au  5.0 ,  )(2 bu  1 and )(3 au  5.0 ,  )(3 bu  4.0 . 

Now, take t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is an fts. Again, let   XI  

defined by )(a  6.0 ,  )(b  7.0 . Take   4.0 . Clearly 1u ,  2u  and 3u  are  -open 

fuzzy sets in  tX , . Now, we observe that   1u  2u . So { 1u ,  2u }  is a  -cover of   

in  tX , .   

 

          Definition 2.35: Let  tX ,  be an fts and 0    1. An fts  tX ,  is  -compact iff 

every  -cover of X  has a finite  -subcover.      
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          Theorem 2.36: Any fuzzy  -compact space is fuzzy compact. The converse is not 

necessarily true in general. 

The proof is straightforward.  

Now, for the converse, we consider the following example. 

Let X  ]1,0[ ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 xu 













14.0for6.0
0.4xfor1

4.00for1

x

x
 ,  )(2 xu 














14.0for1
0.4xfor1

4.00for5.0

x

x
  and 

)(3 xu 













14.0for6.0
0.4xfor1

4.00for5.0

x

x
. Now, take t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that 

 tX ,  is an fts. Clearly  tX ,  is fuzzy compact. Take   8.0 . Then there is no finite              

 -open fuzzy sets ku  for k  1 ,  2 ,  3  in  tX , . Thus  tX ,  is not  -compact. 
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Chapter Three 

 -Compact Spaces  

 

           -compact spaces have been introduced first by Gantner et al. [54] in fuzzy 

topological spaces and discussed some characterizations of this concept. We aim to study 

various other properties of this concept and established some theorems, corollaries and 

examples. Also we have defined  - -compact spaces and found different properties 

between  -compact and  - -compact spaces.   

 

          Definition 3.1[54]: Let  tX ,  be an fts and   I . A collection M  of fuzzy sets is 

called an  -shading, 10   (res. * -shading, 10  ) of X  if for each x  X  there 

exists a u  M  such that )(xu  (resp. )(xu ). A subcollection of an  -shading 

(res. * -shading) of X  which is also an  -shading (resp. * -shading) is called an                   

 -subshading (res. * -subshading) of X . 

 

          Definition 3.2[54]: An fts  tX ,  is said to be  -compact, 10   (res.                        

* -compact, 10  ) iff each  -shading (res. * -shading) of X  by open fuzzy sets 

has a finite  -subshading (res. * -subshading), where   I . 

 

          Theorem 3.3: Let  tX ,  be an fts and A  X . Then A1  is  -compact (resp.                   

* -compact) in  tX ,  iff A1  is  -compact (resp. * -compact) in  AtA, .   

Proof: Suppose A1  is  -compact in  tX , . Let M  { iu : i  J }  be an open  -shading 

of A1  in  AtA, . Then there exist iv  t  such that iu  iv | A   iv . Hence { iv : i  J }  is 
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an open  -shading of A1  in  tX , . Since A1  is  -compact in  tX , , then { iv : i  J }  

has a finite  -subshading, say {
kiv : k  nJ }  such that )(xv

ki
   for each x  A . For, 

if x  A , then there exists 
0ki

v such that )(
0

xv
ki

    implies that )()|(
0

xAv
ki

   and 

consequently )(
0

xu
ki

  , as A  X . Hence 
0kiu  M  and so {

kiu : k  nJ }  is a finite 

 -subshading of M . Therefore, A1  is  -compact in  AtA, .                 

Conversely, suppose A1  is  -compact in  AtA, . Let H  { iv : i  J }  be an open                  

 -shading of A1  in  tX , . Put iu  iv | A . To show this, let x  X . If x  A , then there 

exists 
0i

v  H  such that 
0i

u 
0i

v | A . But 
0i

u  At  , so )(
0

xui    for each x  A . 

Therefore, { iu : i  J }  be an open  -shading of A1  in  AtA, . Since A1  is  -compact 

in  AtA, , then { iu : i  J }  has a finite  -subshading, say {
kiu : k  nJ }  such that 

)(xu
ki

   for each x  A . For, if x  A , then there exists 
0ki

u such that )(
0

xu
ki

     

)()|(
0

xAv
ki

     )(
0

xv
ki

  , as A  X . Thus {
kiv : k  nJ }  is a finite                             

 -subshading of H . Hence A1  is  -compact in  tX , .        

Similar proof for * -compactness can be given. 

 

          Corollary 3.4: Let  *, tY  be a fuzzy subspace of   tX ,  and A  Y  X . Then A1  

is  -compact (resp. * -compact) in  tX ,  iff A1  is  -compact (resp. * -compact) in 

 *, tY . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by preceding theorem 

(3.3), A1  is  -compact in  tX ,  or  *, tY  iff A1  is  -compact in  AtA,  or  *, AtA . But 

At  *
At  .  

Similar work for * -compactness can be given. 
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          Theorem 3.5: Let  tX ,  be an fts and A  X . If  tX ,  is  -compact (resp.                           

* -compact) and A1  is closed, then  AtA,  is  -compact (resp. * -compact) subspace of 

 tX , . 

Proof: Let M  { iu : i  J }  be an open  -shading of  AtA, . Then there exist iv  t  

such that iu  iv | A . Let H  { iv  t : iv | A  M } . Then H  { AX 1 }  is a family and 

is an open  -shading of  tX , . To prove this, let x  X . If x  A , then there exists 

0iu  M  such that )(
0

xui   . Let /
iv  t  such that /

iv | A 
0iu . Thus /

iv  H  and 

)(/ xvi   . If x  AX  , then )()1( xAX   . Since  tX ,  is  -compact, so 

H  }1{ AX   has a finite  -subshading, say {
kiv , AX 1 }  ( k  nJ ) . Also A1  and AX 1  

are disjoint, so we can exclude AX 1  from this  -shading. Hence {
kiv | A }  ( k  nJ )  is 

a finite  -subshading of M . For if  x  A  and {
kiv , AX 1 }  ( k  nJ )  is an open                   

 -shading of  tX , , then there exists 
0iv  such that )(

0
xvi   . Therefore 

)()|(
0

xAvi    and 
0i

v | A M . Hence  AtA,  is  -compact.  

The proof is similar for * -compactness can be given. 

          Note: This theorem have been proved in Gantner et. al. [54] in a different form.  

 

          Theorem 3.6: Let  tX ,  and  sY ,  be two fuzzy topological spaces with  tX ,  is 

 -compact (resp. * -compact). Let f :  tX ,   sY ,  be fuzzy continuous and 

surjective mapping. Then  sY ,  is  -compact (resp. * -compact). 

Proof: Let { iu : iu  s }  be an open  -shading of  sY ,  for every i  J . Since f  is 

fuzzy continuous, then )(1
iuf   t . We see that, for each x  X ,  )()(1 xuf i

    and so 

)}({ 1
iuf   is an open  -shading of  tX , , i  J . Since  tX ,  is  -compact, then 

)}({ 1
iuf   has a finite  -subshading, say { )(1

kiuf  : k  nJ } . Now, if y  Y , then 
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y  )(xf  for some x  X . Then there exists 
kiu  }{ iu  such that )()(1 xuf

ki
   which 

implies that ))(( xfu
ki

   or )(yu
ki

  . Thus }{ iu  has a finite  -subshading                    

{
kiu : k  nJ } . Hence  sY ,  is  -compact.    

Similar proof for * -compactness can be given. 

          Note: This theorem was proved in Gantner et. al. [54] in a different form.  

 

          Theorem 3.7: Let  tX ,  and  sY ,  be two fuzzy topological spaces with  sY ,  is 

 -compact (resp. * -compact). Let f :  tX ,   sY ,  be fuzzy open and bijective 

mapping. Then  tX ,  is  -compact (resp. * -compact). 

Proof: Let M  { iu : i  J }  be an open  -shading of  tX , . Since f  is fuzzy open, 

then )( iuf  s  and hence )(Mf  { )( iuf : i  J }  is also an open  -shading of  sY , . 

For, if y  Y , then )(1 yf   )(1 Yf  . So there exists 
0i

u  M  such ))(( 1
0

yfui
   

which implies that )()(
0

yuf i   . As  sY ,  is  -compact, then )(Mf  has a finite                  

 -subshading, say { )(
kiuf : k  nJ }  such that )()( yuf

ki
   for each y  Y . For, if 

x  )(1 Yf  , then x  )(1 yf   for y Y . Therefore, there exists 
ki

u  M  such that 

)()( yuf
ki

   which implies that ))(( 1 yfu
ki

    or )(xu
ki

  . Thus M  has a finite 

 -subshading {
kiu : k  nJ } . Hence Then  tX ,  is  -compact. 

Similar work for * -compactness can be done. 

 

          Theorem 3.8: Let  tX ,  be an fts and  AtA,  be a subspace of an fts  tX , . Let 

f :  tX ,   AtA,  be fuzzy continuous and onto mapping with  tX ,  is  -compact 

(resp. * -compact). Then  AtA,  is  -compact (resp. * -compact). 



 -Compact Spaces 

 

  
34 

Proof: Let M  { iu : i  J }  be an open  -shading of  AtA, . Put iu  iv | A , where 

iv  t . Since f  is fuzzy continuous, then )(1
iuf   t  and so )|(1 Avf i

  t . Thus we have 

for every x  X , )()|(1 xAvf i
    and hence )(1 Mf   { )(1

iuf  : iu  M }  i.e 

)(1 Mf    { )|(1 Avf i
 : i  J }   is an open  -shading of  tX , . As  tX ,  is                       

 -compact, then )(1 Mf   has a finite  -subshading, say { )|(
1

1 Avf i
 ,  )|(

2

1 Avf i
 ,  

…… ,  )|(1 Avf
ni

 } . Now, if y  A , then y  )(xf  for some x  X . Then there exists 

k  such that )()|(1 xAvf
ki

    which implies that )|( Av
ki

 )(xf    or )(yu
ki   . 

Hence  AtA,  is  -compact. 

Similar work for * -compactness can be given. 

 

          Theorem 3.9: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and  sY ,  

respectively and f :  AtA,   BsB,  be relatively fuzzy continuous and onto mapping 

with  AtA,  is  -compact (resp. * -compact). Then  BsB,  is  -compact (resp.                 

* -compact). 

Proof: We have BAf )( , as f  is onto. Let { iv : iv  Bs }  be an open  -shading of 

 BsB,  for every i  J  i.e )(yvi    for each y  B . Since iv  Bs , then there exists 

iu  s  such that iv  iu | B  and so ( iu | B ) )( y   for each y  B .  As f  is relatively 

fuzzy continuous, then Avf i |)(1  At . Thus we observe that, for each x  A , 

)()|)(( 1 xAvf i
    and hence { Avf i |)(1 : i  J }  is an open  -shading of  AtA,  

implies that { ABuf i |)|(1 : i  J }   { ))((|)( 11 ABfuf i  : i  J }                                      

  { Auf i |)(1 : i  J }  is an open  -shading of  AtA, . Since  AtA,  is  -compact, 

then { Auf i |)(1 : i  J }  has a finite  -subshading, say { Auf
ki |)(1 }  ( k  nJ )  such 
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that )()|)(( 1 xAuf
ki

   for each x  A . Now, if y  B , then y  )(xf  for some 

x  A . Then there exists k  we have )()|)(( 1 xAuf
ki

    implies that 

))(|( Afu
ki

))(( xf    implies that )()|( yBu
ki

  , as f  is onto or )( yv
ki

  . Hence it 

is clear that {
ki

v : k  nJ }  is a finite  -subshading of { iv : iv  Bs } . Thus  BsB,  is    

 -compact.   

The proof is similar for * -compactness can be given. 

  

          Theorem 3.10: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively. Let f :  AtA,   BsB,  be relatively fuzzy open and bijective 

mapping with  BsB,  is  -compact (resp. * -compact). Then  AtA,  is also  -compact 

(resp. * -compact). 

Proof: We have BAf )( , as f  is bijective. Let { iu : iu  At }  be an open  -shading of 

 AtA,  for every i  J  i.e )(xui    for each x  A . Since iu  At , then there exists 

iv  t  such that iu  iv | A  and so ( iv | A ) )(x    for each x  A .  As f  is relatively 

fuzzy open, then )( iuf  Bs . Thus we observe that, for each y  B , )()( yuf i    and 

hence { )( iuf : i  J }  is an open  -shading of  BsB,  implies that                          

{ )|( Avf i : i  J }   { )(|)( Afvf i : i  J }    { Bvf i |)( : i  J }  is an open                       

 -shading of  BsB, . Since  BsB,  is  -compact, then { Bvf i |)( : i  J }   has a finite 

 -subshading, say { Bvf
ki |)( : k  nJ }  such that   )(|)( yBvf

ki    for each y  B . 

Now, if x  )(1 Bf  , then x  )(1 yf   for y  B . Then there exists k , we have 

  )(|)( yBvf
ki

   implies that ))(|( 1 Bfv
ki

 ))(( 1 yf     implies that )()|( xAv
ki

   or 

)(xu
ki

  . Hence it is clear that {
kiu : k  nJ }  is a finite  -subshading of                           

{ iu : iu  At } . Thus  AtA,  is  -compact. 
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Similar work for * -compactness can be done. 

 

          Theorem 3.11: Let  tX ,  be an fts. If every family of closed fuzzy sets in  tX ,  

which has empty intersection has a finite subfamily with empty intersection, then  tX ,  is 

 -compact (resp. * -compact). The converse is not true in general. 

Proof: Let M  { iu : i  J }  be an open  -shading of  tX , . From the first condition of 

the theorem, we have 
Ji

c
iu



 X0 . Thus 
Ji

iu


 X1 . Again, by the second condition of the 

theorem, we get 
n

k
Jk

c
iu



 X0  implies that 
n

k
Jk

iu


 X1  and hence )(xu
ki

   for each 

x  X . It is clear that {
kiu : k  nJ }  is a finite  -subshading of M . Therefore  tX ,  is 

 -compact. 

 Now, for the converse, consider the following example.  

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let u ,  v  XI  defined by  )(au  3.0 ,  

)(bu  4.0  and )(av  6.0 ,  )(bv  7.0 . Put t  { 0 ,  u ,  v ,  1} , then we see that  tX ,  

is an fts. Take   5.0 . Then  tX ,  is an  -compact. Now, closed fuzzy sets are 

)(auc  7.0 ,  )(buc  6.0  and )(avc  4.0 ,  )(bvc  3.0 . We observe that cu  cv  0 . 

Thus the converse of the theorem is not necessarily true in general.       

The work is similar for * -compactness can be given. 

 

          Definition 3.12[91]: Let  tX ,  be an fts and 10  , then the family        

t  { )(u : u  t }  of all subsets of X  of the form )(u  { x  X : )(xu }  is called 

 -level sets, forms a topology on X  and is called the  -level topology on X  and the 

pair  tX ,  is called  -level topological space.  
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          Theorem 3.13: Let 0    1. An fts  tX ,  is  -compact iff  tX ,  is compact 

topological space. 

Proof: For proof cf.[12].  

 

          Theorem 3.14[106]: If T  is a cofinite topology on X , then  TX ,  is compact. 

 

          Theorem 3.15: Let  tX ,  be an fts and if t  becomes a cofinite topology on X , 

then  tX ,  is  -compact. 

Proof: Let M  { iu : i  J }  be an open  -shading of  tX , . Then                        

t  { )( iu : iu  t } , where )( iu  { x  X : )(xui   }  and by the theorem t  is a 

cofinite topology on X . We see that H   { )( iu : i  J }  is an open cover of  tX ,  . 

For let, x  X , then there exists a 
0iu  M  such that )(

0
xui   . Therefore, x  )(

0iu  

and )(
0i

u  H . As  tX ,  is cofinite, hence compact which implies that H  has a finite 

subcover, say { )(
kiu }  ( k  nJ ) , where 

kiu  t  and )(
kiu  t . Then the family }{

kiu  

( k  nJ )  forms a finite  -subshading of M  and hence  tX ,  is  -compact.     

 

          Definition 3.16: A mapping f :  tX ,   tX ,  is said to be  -level continuous 

iff  ))(( 1 uf   t  for every u  t . 

          Example 3.17: Let X = },,{ cba ,  I  ]1,0[  and 10  . Let 1u ,  2u ,  3u ,  

4u  XI  defined by  )(1 au   4.0 ,  )(1 bu  2.0 ,  )(1 cu  6.0 ; )(2 au  2.0 ,  )(2 bu  4.0 ,  

)(2 cu  6.0 ; )(3 au  4.0 ,  )(3 bu  4.0 , )(3 cu  6.0  and )(4 au  2.0 ,  )(4 bu  2.0 ,  

)(4 cu  6.0 . Now, put  t  { 0 ,  1u ,  2u ,  3u ,  4u ,  1} , then we see that  tX ,  is an fts. 

Now, we have t  { )( :   t }  and )(  { Xx : )(x  } . Put   3.0 . Then 
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we have )0(3.0   ,  )1(3.0  X ,  )(3.0 1u  },{ ca ,  )(3.0 2u  },{ cb ,  )(3.0 3u  X ,  

)(3.0 4u  }{c . Therefore, 3.0t  {  ,  X ,  },{ ca ,  },{ cb , }{c }  is a topology on X .     

Let :f   tX ,   tX ,  defined by )(af  b ,  )(bf  a ,  )(cf  c . Now, 

)()0(1 Xf   ))((0 Xf = 0 ,  )()1(1 Xf  =1 for all Xx ; )()( 1
1 auf    ))((1 afu                 

 )(1 bu  2.0 , )()( 1
1 buf    ))((1 bfu   )(1 au  4.0 ,  )()( 1

1 cuf    ))((1 cfu                                

 )(1 cu  6.0 ; )()( 2
1 auf    ))((2 afu   )(2 bu  4.0 , )()( 2

1 buf    ))((2 bfu                             

 )(2 au  2.0 ,  )()( 2
1 cuf    ))((2 cfu   )(2 cu  6.0 ; )()( 3

1 auf    ))((3 afu                         

 )(3 bu  4.0 , )()( 3
1 buf    ))((3 bfu   )(3 au  4.0 ,  )()( 3

1 cuf    ))((3 cfu                          

 )(3 cu  6.0 ; )()( 4
1 auf    ))((4 afu   )(4 bu  2.0 , )()( 4

1 buf    ))((4 bfu                           

 )(4 au  2.0 ,  )()( 4
1 cuf    ))((4 cfu   )(4 cu  6.0 . Then we observe that 

))0((3.0 1f    ,  ))1((3.0 1f  X ,  ))((3.0 1
1 uf    },{ cb ,  ))((3.0 2

1 uf   },{ ca ,  

))((3.0 3
1 uf   X ,  ))((3.0 4

1 uf   }{c . Therefore  ,  X ,  },{ cb ,  },{ ca ,  }{c  3.0t  i.e. 

))0((3.0 1f ,  ))1((3.0 1f ,  ))((3.0 1
1 uf  ,  ))((3.0 2

1 uf  ,  ))((3.0 3
1 uf  ,  ))((3.0 4

1 uf   3.0t . 

Hence f is  -level continuous.      

 

          Theorem 3.18: Let f :  tX ,   tX ,  be  -level continuous and bijective 

mapping with  tX ,  is compact. Then  tX ,  is  -compact. 

Proof: Let M  { iu : i  J }  be an open  -shading of  tX , . As f  is  -level 

continuous, then ))(( 1
iuf   t  and hence { ))(( 1

iuf  : i  J }  is an open cover of 

 tX , . Since  tX ,  is compact, then { ))(( 1
iuf  : i  J }  has a finite subcover, say 

{ ))(( 1
kiuf  } ( k  nJ ) .  Now, we have )(xf  y  for y  X , as f  is bijective. But 

{ ))(( 1
kiuf  }  is finite subcover of { ))(( 1

iuf  : i  J } , there exist some k  such that 
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))(( xfu
ki

 implies that )(yu
ki

  for each y  X . Thus {
ki

u : k  nJ }  is a finite 

 -subshading of M . Therefore  tX ,  is  -compact.     

 

          Theorem 3.19: Let  tX ,  be a fuzzy 1T -space (as def. 1.45), A  X  and A1  be an 

 -compact (resp. * -compact) subset in  tX , . Let x  cA , then there exist u ,  v  t  

such that )(xu  1 and A  ]1,0(1v .   

Proof: Let y  A . Since x  A  ( x  cA ) , then clearly x  y . As  tX ,  is fuzzy                    

1T -space, then there exist yu ,  yv  t  such that )(xuy  1 ,  )(yu y  0  and )(xvy  0 ,  

)(yvy  1. Let us take   1I  such that )(yvy    0 . Thus we see that { yv : y  A }  is 

an open  -shading of A1 . Since A1  is  -compact in  tX , , so it has a finite                            

 -subshading, say {
kyv : y  A }  ( k  nJ )  such that )(yv

ky    for each y  A . Now, 

let v   
1yv 

2yv   ….. 
nyv  and u   

1yu   
2yu   …… 

nyu . Thus we see that v  

and u  are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 

respectively i.e. v ,  u  t . Moreover, A  ]1,0(1v  and )(xu  1, as )(xu
ky  1 for each 

k .  

Similar proof for * -compactness can be given. 

 

          Theorem 3.20: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and A1 ,  B1  be disjoint 

 -compact (resp. * -compact) subsets in  tX ,  ( A ,  B  X ) . Then there exist                    

u ,  v  t  such that A  ]1,0(1u  and  B  ]1,0(1v .  

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint . Since B1  is  -compact, then 

by theorem (3.19), there exist yu ,  yv  t  such that )(yuy  1 and B  ]1,0(1
yv . Let us 

take   1I  such that )(yuy    0 . As )(yuy  1, then we see that { yu : y  A }  is an 
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open  -shading of A1 . Since A1  is  -compact in  tX , , so it has a finite  -subshading, 

say {
kyu : y  A }  ( k  nJ )  such that )(yu

ky    for each y  A . Furthermore, since 

B1  is  -compact, so B1  has a finite  -subshading, say {
kyv : x  B }  ( k  nJ )  such 

that )(xv
ky   for each x  B , as B  ]1,0(1

kyv  for each k . Now, let u   
1yu   

2yu   

…… 
nyu  and v   

1yv 
2yv   ….. 

nyv . Thus we see that A   ]1,0(1u  and 

B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the union and finite 

intersection of open fuzzy sets respectively i.e. u ,  v  t .  

Similar work for * -compactness can be given.         

 

          Theorem 3.21: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and A  X . If A1  is 

 -compact (resp. * -compact) subset in  tX , , then A1  is closed. 

Proof: Let x  cA  . We have to show that, there exist u  t  such that )(xu  1 and 

u  pA , where pA  is the characteristic function of cA . Indeed, for each y  A , there 

exist yu ,  yv  t  such that )(xu y  1 ,  )(yu y  0  and )(xvy  0 ,  )(yvy  1. Let us take 

  1I  such that )(yvy    0 . Thus we see that { yv : y  A }  is an  -shading of A1 . 

Since A1  is  -compact in  tX , , so it has a finite  -subshading, say                                  

{
kyv : y  A } ( k  nJ )  such that )(yv

ky    for each y  A . Now, let u   
1yu   

2yu   …… 
nyu . Thus we see that )(xu  1, as )(xu

ky  1 for each k . For, each z  A , 

there exists a k  such that )(zv
ky   0  and so )(zu  0 . Hence u  pA . Therefore, cA1  

is open in  tX , . Thus A1  is closed in  tX , . 

The proof is similar for * -compactness can be given. 
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          Theorem 3.22: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and A  X . If A1  is 

 -compact (resp. * -compact) subset in  tX ,  and x  cA , then there exist u , v  t  

such that 0)( xu  and A  ]1,0(1v .The converse of the theorem is not necessarily true 

in general.  

The proof is similar as that of theorem (3.19). 

Now, for the converse, consider the following example. 

Let X  },{ ba ,  I   ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by                    

)(1 au   2.0 ,  )(1 bu  0 ; )(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put  

t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is a fuzzy 1T -space. Again, let A1  XI  

defined by )(1 aA  0 ,  )(1 bA 1. Hence we observe that A  }{b  and a  cA . Now       

1u ,  2u  t  where )(1 au  0  and ]1,0(1
2
u  }{b . Hence A  ]1,0(1

2
u . Take   8.0 . 

Then we see that A1  is not  -compact in  tX , , as )(buk    for b  A  and k  1 ,  2 ,  

3 . Thus the converse of the theorem is not true in general.    

Similar work for * -compactness can be given.  

 

          Theorem 3.23: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and A , B   X . If 

A1  and B1  are disjoint  -compact (resp. * -compact) subsets in  tX , , then there exist 

u ,  v  t  such that A  ]1,0(1u  and  B  ]1,0(1v . The converse of the theorem is not 

true in general. 

The proof is similar as that of theorem (3.20). 

Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(3.22). Let A1 ,  B1  XI  defined by )(1 aA  1 ,  )(1 bA  0  and )(1 aB  0 ,  )(1 bB  1. Hence 

we observe that A  }{a  and B  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u   }{a  and 

]1,0(1
2
u  }{b . Hence we observe that A  ]1,0(1

1
u  and B  ]1,0(1

2
u , where A1  and B1  
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are disjoint. Take   8.0 . Then we see that A1  and B1  are not  -compact in  tX , , as 

)(auk    for a  A  and )(buk    for b  B , where k  1 ,  2 ,  3 . Thus the converse 

of the theorem is not true in general.    

Similar proof for * -compactness can be given.  

 

          The following example will show that the  -compact subsets in fuzzy 1T -space     

(as def. 1.46) need not be closed. 

          Example 3.24: Consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(3.22). Again, let A1  XI  defined by )(1 aA  0 ,  )(1 bA  1. Take   2.0 . Then clearly 

A1  is  -compact in  tX , . But A1  is not closed, as its complements cA1  is not open in 

 tX , .        

 

          Theorem 3.25: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47), A  X  and 

A1  be an  -compact (resp. * -compact) subset in  tX , . Let x  cA , then there exist        

u ,  v  t  such that )(xu  1 ,  A  ]1,0(1v  and u  v  0 .  

Proof: Let y  A . Since x  A  ( x  cA ) , then clearly x   y . As  tX ,  is fuzzy 

Hausdorff, then there exist yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu  yv  0 . 

Let us take   1I  such that )(yvy    0 . Thus we see that { yv : y  A }  is an open 

 -shading of A1 . Since A1  is  -compact in  tX , , so it has a finite  -subshading, say 

{
kyv : y  A }  ( k  nJ )  such that )(yv

ky    for each y  A . Now, let                               

v   
1yv 

2yv   ….. 
nyv  and u   

1yu   
2yu   …… 

nyu . Thus we see that v  and 

u  are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 
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respectively i.e. v ,  u  t . Moreover, A  ]1,0(1v  and )(xu  1, as )(xu
ky  1 for each 

k .  

Finally, we claim that u  v  0 . As 
kyu 

kyv  0  implies that u 
kyv  0 , by 

distributive law, we see that u  v   u  (  
1yv 

2yv   ….. 
nyv )  0 . 

Similar work for * -compactness can be given.  

 

          Corollary 3.26: Let  tX ,  be a fuzzy Hausdroff space (as def. 1.47), A  X  and 

A1  be an  -compact (resp. * -compact) subset in  tX , . Let x  A , then there exists 

u  t  such that )(xu  1 and  ]1,0(1u  cA . 

Proof: By theorem (3.25), there exist u ,  v   t  such that 1)( xu ,  A  ]1,0(1v  and 

u  v  0 . Hence ]1,0(1u   ]1,0(1v   . If not, there exists x  ]1,0(1u   ]1,0(1v  

  x  ]1,0(1u  and x   ]1,0(1v     )(xu  0  and )(xv  0    u  v  0 . Hence 

]1,0(1u  A    and consequently ]1,0(1u  cA .   

Similar proof for * -compactness can be given.  

   

          Theorem 3.27: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47) and A1 ,  B1  be 

disjoint  -compact (resp. * -compact) subsets in  tX ,  ( A ,  B  X ) . Then there exist 

u ,  v  t  such that A  ]1,0(1u ,  B   ]1,0(1v  and u  v  0 .  

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint. Since B1  is  -compact , then 

by theorem (3.25), there exist yu ,  yv  t  such that )(yuy  1 ,  B  ]1,0(1
yv  and 

yu  yv  0 . Let us take   1I  such that )(yu y   0 . As )(yu y  1, then we see that 

{ yu : y  A }  is an open  -shading of A1 . Since A1  is  -compact in  tX , , so it has a 

finite  -subshading, say {
kyu : y  A }  ( k  nJ )  such that )(yu

ky    for each y  A . 
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Furthermore, since B1  is  -compact, so B1  has a finite  -subshading, say {
kyv : x  B }  

( k  nJ )  such that )(xv
ky    for each x  B , as B  ]1,0(1

kyv  for each k .              

Now, let u   
1yu   

2yu   …… 
nyu  and v   

1yv 
2yv   ….. 

nyv . Thus we see that 

A  ]1,0(1u  and B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t .  

Lastly, we have to show that u  v  0 . First, we observe that 
kyu 

kyv  0  for each k  

implies that 
kyu  v  0 , by distributive law , we see that u  v   (

1yu   
2yu   …… 


nyu )   v  0 . 

Similar proof for * -compactness can be given.  

 

          Theorem 3.28: Let  tX ,  be a fuzzy Hausdorff space  (as def. 1.47), A  X . If A1  

is  -compact (resp. * -compact) subset in  tX , , then A1  is closed. 

Proof: cf. [54]. 

 

          Theorem 3.29: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and A  X . If 

A1  is  -compact (resp. * -compact) subset in  tX ,  and x  cA , then there exist                   

u ,  v  t  such that  )(xu  0 ,  A  ]1,0(1v  and u  v  0 .The converse of the theorem 

is not necessarily true in general.  

The proof is similar as that of theorem (3.25).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(3.22), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let A1  XI  

defined by )(1 aA  0 ,  )(1 bA 1. Hence we observe that A  }{b  and a  cA . Now           

1u ,  2u  t  where )(1 au  0  and ]1,0(1
2
u  }{b . Hence A  ]1,0(1

2
u  and 1u  2u  0 . 
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Take   8.0 . Then we see that A1  is not  -compact in  tX , , as )(buk    for b  A  

and k  1 ,  2 ,  3 . Thus the converse of the theorem is not true in general.   

Similar work for * -compactness can be given.  

 

          Corollary 3.30: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and A  X . If 

A1  is  -compact (resp. * -compact) subset in  tX ,  and x  A , then there exists u  t  

such that )(xu  0  and  ]1,0(1u  cA . The converse is not true in general.    

The proof is similar as that of corollary (3.26).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(3.22), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Let A1  XI  defined by 

)(1 aA  0 ,  )(1 bA  1. Hence we observe that A  }{b  and a  A . Now 1u  t  where 

)(1 au  0 and then ]1,0(1
1
u  }{a . Hence we have ]1,0(1

1
u  cA . Take   8.0 . Thus 

we see that A1  is not  -compact in  tX ,  i.e. )(buk    for b  A , where k  1 ,  2 ,  

3 . Thus the converse of the corollary is not true in general.    

Similar proof for * -compactness can be given.  

 

           Theorem 3.31: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and              

A ,  B   X . If A1  and B1  are disjoint  -compact (resp. * -compact) subsets in  tX , , 

then there exist u ,  v  t  such that A  ]1,0(1u ,  B  ]1,0(1v  and u  v  0 . The 

converse of the theorem is not true in general. 

The proof is similar as that of theorem (3.27). 

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(3.22), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Let A1 ,  B1  XI  defined 

by )(1 aA  1 ,  )(1 bA  0  and )(1 aB  0 ,  )(1 bB  1. Hence we observe that A  }{a  and 
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B  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u  }{a  and ]1,0(1

2
u  }{b . Hence we observe 

that A  ]1,0(1
1
u ,  B  ]1,0(1

2
u  and 1u  2u  0 , where A1  and B1  are disjoint. Take 

  8.0 . Then we see that A1  and B1  are not  -compact in  tX , , as )(auk    for 

a  A  and )(buk    for b  B , where k  1 ,  2 ,  3 . Thus the converse of the theorem 

is not true in general.    

Similar work for * -compactness can be given.  

   

          The following example will show that the  -compact subsets in fuzzy Hausdorff 

space (as def. 1.48) need not be closed.  

           Example 3.32: Consider the fuzzy topology t  in the example of the theorem 

(3.22), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let A1  XI  

defined by )(1 aA  1 ,  )(1 bA  0 . Take   1.0 . Then clearly A1  is  -compact in  tX , . 

But A1  is not closed, as its complement cA1  is not open in  tX , .   

 

          Theorem 3.33: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.49), A  X  and 

A1  be an  -compact (resp. * -compact) subset in  tX , . Suppose rx  be a fuzzy point in 

cA1 , then there exist u ,  v  t  such that rx  u ,  A  ]1,0(1v  and u  v  0 . 

Proof: Let sy ( s    )  be fuzzy point in A1 , then clearly x  y  i.e. rx  and sy  are 

distinct . As  tX ,  is fuzzy Hausdorff, then there exist 
syu ,  

syv  t  such that rx 
syu ,  

sy 
syv and 

syu   
syv  0  and this is true for any value of s . Hence this is also true for 

s   . Let us take   1I  such that )(yv
sy   0 . Thus we see that  {

syv : sy  A1 }   is 

an open  -shading of A1 . Since A1  is  -compact in  tX ,  , so it has a finite                           

 -subshading, say {
ksyv : sy  A1 }  ( k  nJ )  such that )( yv

ksy  . Let v 
1syv 

2syv  
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…… 
nsyv  and u 

1syu 
2syu …… 

nsyu . Thus we see that v  and u  are open 

fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e. 

v  ,  u  t . Moreover, A  ]1,0(1v  and rx  u , since rx   
ksyu for each k . 

Finally, we claim that u  v  0 . As 
ksyu 

ksyv  0  for each k  implies that 

u 
ksyv  0 , by distributive law, we therefore observe that u  v   

u  (
1syv 

2syv …… 
nsyv )  0 . 

The proof is similar for * -compactness can be done. 

 

          Corollary 3.34: Let  tX ,  be a fuzzy Hausdroff space (as def. 1.49), A  X  and 

A1  be an  -compact (resp. * -compact) subset in  tX , . Let rx  A1 , then there exists 

u  t  such that rx  u  and  ]1,0(1u  cA . 

Proof: By theorem (3.33), there exist u ,  v   t  such that rx  u ,  A  ]1,0(1v   and 

u  v  0 .  Hence ]1,0(1u  ]1,0(1v   . If not, there exists x  ]1,0(1u  ]1,0(1v  

  x  ]1,0(1u  and x   ]1,0(1v     )(xu  0  and )(xv  0    u  v  0 . Hence 

]1,0(1u  A    and consequently ]1,0(1u  cA .   

Similar proof for * -compactness can be given.  

 

          Theorem 3.35: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.49) and A1 ,  B1  be 

disjoint  -compact (resp. * -compact) subsets in  tX ,  ( A ,  B  X ) . Then there 

exist u ,  v  t  such that A  ]1,0(1u ,  B  ]1,0(1v  and u  v  0 . 

Proof: Let sy  A1 ( s    ) , then clearly sy  B1 , as A1  and B1  are disjoint . Since B1  is 

 -compact, then by theorem (3.33), there exist 
syu ,  

syv  t  such that sy 
syu ,  

B  ]1,0(1
syv  and 

syu 
syv  0  and this is true for any value of s . Hence this is also true 
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for s   . Let us take   1I  such that )(yu
sy   0 . Since sy 

syu , then                

{
syu : sy  A1 }  is an open  -shading of A1 . Since A1  is  -compact in  tX , , so it has a 

finite  -subshading, say {
ksyu : sy  A1 }  ( k  nJ )  such that )(yu

ksy  .  Furthermore, 

since B1  is  -compact, so B1  has a finite  -subshading, say {
ksyv : rx  B1 }  ( k  nJ )  

such that )(xv
ksy  , as B  ]1,0(1

ksyv  for each k . Now, let u = 
1syu 

2syu …… 


nsyu  and v = 

1syv 
2syv …… 

nsyv . Thus we see that A  ]1,0(1u  and 

B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the union and finite 

intersection of open fuzzy sets respectively i.e. u ,  v  t .  

Finally, we have to show that u  v  0 . First , we observe that 
ksyu 

ksyv  0  for each 

k  implies that 
ksyu  v  0 , by distributive law, we see that u  v  (

1syu 
2syu …… 


nsyu )  v  0 . 

Similar work for * -compactness can be given. 

 

          The following example will show that the  -compact (resp. * -compact) subsets in 

fuzzy Hausdorff space (as def. 1.49) need not be closed. 

          Example 3.36: Let X  },{ ba ,  I  ]1,0[  and 0    1. Again, let 1u ,  2u ,  

3u  XI  with )(1 au  6.0 ,  )(1 bu  0 ; )(2 au  0 ,  )(2 bu  8.0  and )(3 au  6.0 ,  

)(3 bu  8.0 . Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then  tX ,  is an fts. Now, let 4.0a  and 7.0b  be 

fuzzy points in X . Therefore  tX ,  is also a fuzzy Hausdorff space (as def. 1.49). Again, 

let A1  XI  defined by )(1 aA  1 ,  )(1 bA  0 . Take   5.0 . Then clearly A1  is                        

 -compact in  tX , . But A1  is not closed, as its complement cA1  is not open in  tX , . 
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          Theorem 3.37: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.50), A  X  and 

A1  be an  -compact (resp. * -compact) subset in  tX , . Suppose x  cA , then there 

exist u ,  v  t  such that )(xu  1 ,  A  ]1,0(1v  and u  1 v . 

Proof: Let y  A . Since x  A  ( x  cA ) , then clearly x  y . As  tX ,  is fuzzy 

Hausdorff, then there exist yu ,  yv  t  such that )(xuy  1 ,  )(yvy  1 and yu  1 yv . Let 

us take    1I  such that )(yvy    0 . Thus we see that { yv : y  A }  is an open                  

 -shading of A1 . Since A1  is  -compact in  tX , , so it has a finite  -subshading, say 

{
kyv : y  A }  ( k  nJ )  such that )(yv

ky    for each y  A . Now, let v   
1yv 

2yv  

  ….. 
nyv  and u   

1yu   
2yu   …… 

nyu . Thus we see that v  and u  are open 

fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e. 

v ,  u  t . Moreover, A  ]1,0(1v  and )(xu  1, as )(xu
ky  1 for each k . 

Finally, we claim that u  1 v . As yu  1 yv , so u  yv1 . Since )(xu
ky  1 )(xv

ky  

for all x  X  and for each k , then u  1 v . If not, there exists x  X  such that 

)(xuy  1 )(xvy . We have )(xuy  )(xu
ky  for each k . Then for some k , 

)(xu
ky  1 )(xv

ky . But this is a contradiction, as )(xu
ky  1 )(xv

ky  for each k . Hence 

u  1 v . 

Similar proof of * -compactness can be given.  

 

          Theorem 3.38: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.50) and A1 ,  B1  be 

disjoint  -compact (resp. * -compact) subsets in  tX ,  ( A ,  B  X ) . Then there 

exist u ,  v  t  such that A  ]1,0(1u ,  B   ]1,0(1v  and u  1 v . 

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint. Since B1  is  -compact, then 

by theorem (3.37), there exist yu ,  yv  t  such that )(yu y  1 ,  B  ]1,0(1
yv  and 
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yu  yv1 . Let us take   1I  such that )(yuy    0 . As )(yuy  1, then we observe 

that { yu : y  A }  is an open  -shading of A1 . Since A1  is  -compact in  tX , , so it 

has a finite  -subshading, say {
kyu : y  A }  ( k  nJ )  such that )(yu

ky   for each 

y  A . Furthermore, since B1  is  -compact, so B1  has a finite  -subshading, say                 

{
kyv : x  B }  ( k  nJ )  such that )(xv

ky    for each x  B , as B  ]1,0(1
kyv  for each 

k . Now, let u   
1yu   

2yu   …… 
nyu  and v   

1yv 
2yv   ….. 

nyv . Thus we see 

that A  ]1,0(1u  and B  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t . 

Finally, we have to show that u  1 v . First we observe that 
kyu  1

kyv for each k  

implies that 
kyu  1 v  for each k  and it is clearly shows that u  1 v . 

Similar proof for * -compactness can be done.  

 

          Theorem 3.39: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.50) and A  X . If 

A1  is  -compact (resp. * -compact) subset in  tX , , then A1  is closed. 

Proof: Let x  cA . We have to show that, there exist u  t  such that )(xu  1 and 

u  pA , where pA  is the characteristic function of cA . Suppose, for each y  A , there 

exist yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu  1 yv . Let us take   1I  such 

that )(yvy   0 . Thus we see that { yv : y  A }  is an open  -shading of A1 . Since A1  

is  -compact in  tX , , so it has a finite  -subshading, say {
kyv : y  A } ( k  nJ )  

such that )(yv
ky    for each y  A . Now, let u   

1yu   
2yu   …… 

nyu  and                  

v   
1yv 

2yv   ….. 
nyv . Thus we see that )(xu  1, as )(xu

ky  1 for each k  and 

yu  1 yv  implies that u  1 yv . But )(xu
ky  1 )(xv

ky  for all x  X  and for each k , 
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then u  1 v . If not, there exists x  X  such that )(xuy  1 )(xvy . We have                   

)(xu y  )(xu
ky  for each k . Then for some k , )(xu

ky  1 )(xv
ky . But this is a 

contradiction, as )(xu
ky  1 )(xv

ky  for each k . Hence u  1 v . For, each z  A , there 

exists k  such that )(zv
ky    0  and so )(zu  0 . Hence u  pA . Therefore, cA1  is open 

in  tX , . Thus A1  is closed in  tX , .  

The proof is similar for * -compactness can be done. 

 

          Theorem 3.40: Let  tX ,  be a fuzzy regular space (as def. 1.51), A  X  and A1  

be an  -compact (resp. * -compact) subset in  tX , . If for each x  A , there exists 

u  ct  with )(xu  0 , we have v ,  w t  such that )(xv  1 ,  u  w ,  A  ]1,0(1v  and 

v  1 w . 

Proof: Suppose x  A  and u  ct  we have )(xu  0 . As  tX ,  is fuzzy regular, then 

there exist xv ,  xw  t  such that )(xvx  1 ,  xu  xw  and xv  1 xw . Let us take   1I  

such that )(xvx    0 . Thus we observe that { xv : x  A }  is an open  -shading of A1 . 

Since A1  is  -compact in  tX , , then it has a finite  -subshading, say {
kxv : x  A }  

( k  nJ )  such that )(xv
kx   for each x  A . Let v   

1xv 
2xv   ….. 

nxv  and    

w   
1xw 

2xw   ….. 
nxw . Thus we see that v  and w  are open fuzzy sets, as they are 

the union and finite intersection of open fuzzy sets respectively i.e. v , w  t . 

Furthermore,  A  ]1,0(1v , )(xv  1, and u  w , as u 
kxw  for each k .  

Finally, we have to show that v  1 w . As 
kxv  1

kxw for each k  implies that 

kxv  1 w  for each k  and hence it is clear that v  1 w .  

Similar proof for * -compactness can be given.          
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          Theorem 3.41: A topological space  TX ,  is compact iff  )(, TX   is                 

 -compact (resp. * -compact).  

Proof: Suppose  TX ,  is compact. Let M  { iu : i  J }  be an open  -shading of 

 )(, TX  . Then ]1,(1 aui
  T  and { ]1,(1 aui

  : ]1,(1 aui
  T }  is an open cover of 

 TX , . As  TX ,  is compact, so it has a finite subcover i.e. there exist ]1,(1 au
ki
  T  

( k  nJ )  such that X   ]1,(1
1

aui
   ]1,(1

2
aui

   …..  ]1,(1 au
ni
 . Now, we observe that 

there exist 
kiu  }{ iu  ( k  nJ )   such that  )(xu

ki    for each x  X  and it is shows that 

}{
kiu  ( k  nJ )  is a finite  -subshading of M . Therefore,  )(, TX   is  -compact. 

Conversely, suppose that  )(, TX   is  -compact. Let { jV  : i  J }  be open cover of 

 TX ,  i.e. X  
Jj

{ jV : jV   T } . Since 
jV1 is l. s. c, then 

jV1  )(T  and                            

{
jV1 : 

jV1  )(T }  is an open  -shading of  )(, TX  . As  )(, TX   is                          

 -compact, so it has a finite  -subshading, say {
kjV1 : 

kjV1  )(T  }  ( k  nJ )  such 

that )(1 x
kjV   for each x  X . Therefore, we can write X   

1j
V  

2jV    ….. 


njV and it is clear that }{

kjV  ( k  nJ )  is a finite subcover of  TX , . Hence  TX ,  is 

compact.  

Similar work for * -compactness can be given.  

 

          Theorem 3.42: Let  tX ,  and  sY ,  be two fuzzy topological spaces. Then the 

product space  stYX  ,  is  -compact iff  tX ,  and  sY ,  are  -compact.  

Proof: First suppose that  ,YX  , where   { ig  ih : ig  t  and ih  s }  is                      

 -compact. Now we can define a fuzzy projection mappings  x :  ,YX    tX ,  

such that ),( yxx  x  for all ),( yx  YX   and y :  ,YX    sY ,  such that 
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),( yxy  y  for all ),( yx  YX   which we know are continuous. Hence  tX ,  and 

 sY ,  are continuous images of  ,YX   which are therefore  -compact when 

 ,YX   is given to be  -compact. 

Conversely, let  tX ,  and  sY ,  be  -compact. Let   { ig  ih : ig  t  and ih  s } , 

where ig  and ih  are open fuzzy sets in t  and s  respectively. Therefore { ig : i  J }  is an 

 -shading of   tX ,  and { ih : i  J }  is an  -shading of  sY , . That is )(xgi    for 

all x  X ,  )(yhi    for all y  Y . We see that )( ii hg  ),( yx                                 

min{ )(xgi ,  )(yhi }  . As  tX ,  and  sY ,  are  -compact, there exist 
kig  t  such 

that )(xg
ki

   for each x  X  and 
kih  s  such that )(yh

ki
   for each y  Y  

respectively. Hence we have   { ig  ih : ig  t  and ih  s }  has a finite  -subshading, 

say {
kig 

kih : k  nJ }  such that )(
kk ii hg  ),( yx    for each ),( yx  YX  . Thus 

 ,YX   is  -compact. 

 

          Definition 3.43: Let  tX ,  be an fts and 0    1 ,    I . A family M  of                        

 -open fuzzy sets is called a  - -shading, 0    1 (resp.  - * -shading, 0    1) 

of X  if for each x  X  there exists a u  M  with )(xu    (resp. )(xu   ). A 

subfamily of a  - -shading (resp.  - * -shading) of X  which is also a  - -shading 

(resp.  - * -shading) of X  is called a  - -subshading (resp.  - * -subshading) of X .  

 

           Example 3.44: Let X  },{ ba ,  I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  

2u ,  3u  XI  defined by )(1 au  1 ,  )(1 bu  6.0 ; )(2 au  7.0 ,  )(2 bu  1 and )(3 au  7.0 ,  

)(3 bu  6.0 . Now, take t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is an fts. Take 

  6.0 . Clearly 1u ,  2u  and 3u  are  -open fuzzy sets in  tX , . Again, take   8.0 . 
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Hence we observe that )(1 au   ,  )(2 bu   for a ,  b  X . So { 1u ,  2u }  is a                          

 - -shading of X .  

Similarly, we can give of  - * -shading of X .   

 

          Definition 3.45: Let  tX ,  be an fts and 0    1 ,    I . Then  tX ,  is said to 

be  - -compact, 0    1 (resp.  - * -compact, 0    1) iff every  - -shading 

(resp.  - * -shading) of X  has a finite  - -subshading (resp.  - * -subshading).    

 

           Theorem 3.46: Every  - -compact (resp.  - * -compact) spaces is  -compact   

(resp. * -compact). But the converse is not true. 

The proof is straightforward.  

Now, for the converse, consider the following example. 

Let X  ]1,0[ ,  I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 xu 













17.0for4.0
0.7xfor1

7.00for1

x

x
 ,  )(2 xu 














17.0for1
0.7xfor1

7.00for6.0

x

x
  and 

)(3 xu 













17.0for4.0
0.7xfor1

7.00for6.0

x

x
. Now, take t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that 

 tX ,  is an fts. Take   8.0 . Clearly  tX ,  is  -compact. Again take   9.0 . Then 

there is no finite  -open fuzzy sets ku  for k  1 ,  2 ,  3  in  tX , . Thus  tX ,  is not                  

 - -compact. 

Similarly, we can prove for  - * -compact spaces.    
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Chapter Four 

Compact Fuzzy Sets 

 

          Compact fuzzy sets due to Chang [19] is local property. In this chapter, we have 

discussed various properties of this concept and established some theorems, corollaries 

and examples. Also we have defined  -compact fuzzy sets and found different properties 

between compact and  -compact fuzzy sets. 

 

          Definition 4.1[19]: A fuzzy set   in X  is said to be compact iff every open cover 

of   has a finite subcover i.e. there exist 
1iu ,  

2iu ,  …… ,  
niu  }{ iu  such that 

 
1iu 

2iu   ……   
niu  or equivalently, a fuzzy set   in X  is said to be compact iff 

every open cover of   has a finite subcover. If     and   XI , then   is also 

compact. Thus we can say that, any other subsets of a compact fuzzy set is also compact. 

If 1)( x  for all x  X , then this definition coincides an fts  tX ,  with that of Chang 

[19].  

 

          Theorem 4.2: Let  tX ,  be an fts, A  X  and   be a fuzzy set in X  with 

0  A . Then   is compact in  tX ,  iff   is compact in  AtA, .      

Proof: Suppose   is compact in  tX , . Let { iu : i  J }  be an open cover of   in 

 AtA, . Then there exist iv  t  such that iu  iv | A  iv . Hence   
Ji

iu


 
Ji

iv


 and 

consequently { iv : i  J }  is an open cover of   in  tX , . As   is compact in  tX , , 

then { iv : i  J }  contains a finite subcover i.e. there exist 
1iv ,  

2iv ,  …… ,  
niv  }{ iv  

such that  
1iv 

2iv   …… 
niv . But, then   (

1iv 
2iv …..

niv ) | A              
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 (
1i

v | A )  (
2i

v | A ) ……  (
ni

v | A )   
1i

u 
2i

u  .…….  
ni

u , as 0  A . Thus 

{ iu : i  J }  contains a finite subcover {
1iu ,  

2iu ,  …… ,  
niu }  and hence   is compact 

in  AtA, .  

Conversely, suppose   is compact in  AtA, . Let { iv : i  J }  be an open cover of   in 

 tX , . Set iu  iv | A , then   
Ji

iv


 implies that   ( 
Ji

iv


) | A  
Ji

( iv | A )  

 
Ji

iu


. But iu  At  , so { iu : i  J }  is an open cover of   in  AtA, . As   is compact 

in  AtA, , then { iu : i  J }  contains a finite subcover, say {
kiu : k  nJ } .  

Accordingly,  
1iu   

2iu  .…….
niu   (

1iv | A )   (
2iv | A ) ……  (  

niv | A )  

  (
1i

v 
2i

v …… 
ni

v ) | A  
1i

v 
2i

v ……
ni

v , as 0  A . Thus { iv : i  J }  

contains a finite subcover {
kiv : k  nJ }  and therefore   is compact in  tX , .    

          Note: This theorem is different form of H. K. Abdulla and N. R. Kareem [1]. 

  

          Corollary 4.3: Let  *, tY  be a fuzzy subspace of  tX ,  and A  Y  X . Let 

  XI  and 0  A . Then   is compact in  tX ,  if and only if   is compact in  *, tY . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by theorem (4.2),   is 

compact in  tX ,  or  *, tY  if and only if   is compact in  AtA,  or  *, AtA . But At  *
At .    

     

          Theorem 4.4: Let  tX ,  and  sY ,  be two fuzzy topological spaces and                         

f :  tX ,   sY ,  be fuzzy continuous and onto mapping. If   is compact fuzzy set in 

 tX , , then )(f  is also compact fuzzy set in  sY , . 

Proof: cf.[107]. 
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          Theorem 4.5: Let  tX ,  and  sY ,  be two fuzzy topological spaces and                   

f :  tX ,   sY ,  be fuzzy open and bijective mapping. If   is compact fuzzy set in 

 sY , , then )(1 f  is also compact in  tX , .  

Proof: Let { iu : i  J }  be an open cover of )(1 f  in  tX ,  i.e )(1 f  
Ji

iu


. As f  

is fuzzy open, then )( iuf  s  and hence { )( iuf : i  J }  is an open cover of   in  sY , . 

Since   is compact fuzzy set in  sY , , then   has a finite subcover i.e. there exist 

)(
1i

uf ,  )(
2i

uf ,  …… , )(
ni

uf  })({ iuf  such that   )(
1i

uf  )(
2i

uf   ……  

)(
ni

uf . Again, let u  be any fuzzy set in X . Since f  is bijective, then we have 

)((1 uff   u . Hence )(1 f  1f ( )(
1iuf  )(

2iuf ……   )(
niuf )    

1iu    
2iu  

 ......
ni

u . Therefore )(1 f  is compact in  tX , .   

 

          Theorem 4.6: Let  tX ,  be an fts,  AtA,  be subspace of  tX ,  and                    

f :  tX ,   AtA,  be fuzzy continuous and onto mapping. If   is compact fuzzy set in 

 tX , , then )(f  is also compact fuzzy set in  AtA, .        

Proof: Let { iu : i  J }  be an open cover of )(f  in  AtA,  i.e. )(f  
Ji

iu


. Put 

iu  iv | A , where iv  t . Since f  is fuzzy continuous, then )(1
iuf   t  implies that 

)|(1 Avf i
  t  and consequently { )(1

iuf  : i  J }  i.e { )|(1 Avf i
 : i  J }  is an open 

cover of   in  tX , . As   is compact fuzzy set in  tX , , then   has a finite                   

subcover i.e. there exist )|(1 Avf
ki

  })|({ 1 Avf i
  ( k  1 ,  2 , …… , n )   such that              

   
n

k
i Avf
k

1

1 )|(


 . Again, let u  be any fuzzy set in A . Since f  is onto, then we have 
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))(( 1 uff   u . Hence )(f  













n

k
i Avff
k

1

1 )|(   
n

k

f
1

( )|(1 Avf
ki

 )   )|(
1


n

k
i Av
k



    

  
n

k
ik

u
1

. Therefore )(f  is compact in  AtA, . 

 

          Theorem 4.7: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and  sY ,  

respectively. Let   be a compact fuzzy set in  AtA,  and f :  AtA,   BsB,  be 

relatively fuzzy continuous and onto mapping. Then )(f  is also compact in   BsB, . 

Proof: Assume that BAf )( , as f  is onto. Let   be compact in  AtA,  and                      

M   { iv : i  J }  be an open cover of )(f  in  BsB,  i.e. )(f  
Ji

iv


. Since iv  Bs , 

then there exist iu  s   such that iv  iu | B . Hence )(f  
Ji

iu


( | B ). As f  is 

relatively fuzzy  continuous, then )(1
ivf  | A  At  and hence { )(1

ivf  | A : i  J }  is an 

open cover of   in  AtA,  i.e. { 1f ( iu | B  ) | A : i  J }    { )(1
iuf  | ( )(1 Bf   A ) : 

i  J }   { )(1
iuf  | A : i  J }  is an open cover of   in  AtA, . Since   is  compact in 

 AtA, , then there exist )(1
kiuf  | A{ )(1

iuf  | A }  ( k  nJ )  such that 

  
nJk

( )(1
kiuf  | A ) . Again, let v  be any fuzzy set in B . Since f  is onto, then we 

have ))(( 1 vff   v . Therefore )(f    ))|)((( 1 Auff
k

n

i
Jk



  implies that )(f   

)|)(( 1 Auff
k

n

i
Jk



  implies that )(f  
nJk
(

ki
u | )(Af )  implies that )(f  

nJk
(

ki
u | B ) 

implies that )(f   
n

k
Jk

iv


. Thus )(f  is compact in  BsB, . 
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          Theorem 4.8: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and  sY ,  

respectively. Let   be a compact fuzzy set in  BsB,  and f :  AtA,   BsB,  be 

relatively fuzzy open and bijective mapping. Then )(1 f  is compact in  AtA, . 

Proof: We have BAf )( , as f  is bijective. Let { iu : iu  At }  be an open cover of 

)(1 f  in  AtA,  for every i  J  i.e )(1 f   
Ji

iu


. Since iu  At , then there exists 

iv  t  such that iu  iv | A  and so )(1 f   
Ji

( iv | A ) .  As f  is relatively fuzzy open, 

then )( iuf  Bs  and hence { )( iuf : i  J }  is an open cover of   in  BsB,  implies that 

{ )|( Avf i : i  J }   { )(|)( Afvf i : i  J }    { Bvf i |)( : i  J }  is an open cover of 

  in  BsB, . Since   is compact in  BsB, , then { Bvf i |)( : i  J }   has a finite 

subcover, say { Bvf
ki |)( : k  nJ }  such that   

n

k
i Bvf
k

1

)|)((


. Again, let u  be any 

fuzzy set in X . Since f  is bijective, then we have )((1 uff   u . Hence                           

)(1 f    












 
n

k
i Bvff
k

1

1 )|)((    
n

k
i Bvff
k

1

1 )|)((


    
n

k
i Bfv
k

1

1 ))(|(


    
n

k
i Av
k

1

)|(


        

  
n

k
ik

u
1

. Therefore  {
kiu : k  nJ }  is a finite subcover of { iu : iu  At } . Thus )(1 f  

is compact in  AtA, . 

 

          Theorem 4.9: Let  tX ,  be an fts and   be a fuzzy set in X . If every family of 

closed fuzzy sets in  tX ,  which has empty intersection has a finite subfamily with empty 

intersection, then   is compact. The converse is not true in general. 
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Proof: Let { iu : i  J }  be an open cover of   in  tX ,  i.e.   
Ji

iu


. By the first 

condition of the theorem, we have 
Ji

c
iu



 X0 . Hence we can write 
Ji

iu


 X1 . Again, by 

the second condition of the theorem, we can write 
n

k
Jk

c
iu



 X0  implies that 
n

k
Jk

iu


 X1  

and hence   
n

k
Jk

iu


. Thus we see that {
kiu : k  nJ }  is a finite subcover of                       

{ iu : i  J } . Therefore   is compact. 

Now, for the converse, we consider the following example. 

Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u  XI  defined by  )(1 au  3.0 ,  )(1 bu  6.0  and 

)(2 au  4.0 ,  )(2 bu  8.0 . Now, take t  { 0 ,  1u ,  2u ,  1} , then we see that  tX ,  is an 

fts. Let   XI  defined by )(a  2.0 ,  )(b  7.0 . Clearly   is compact in  tX , . 

Now, closed fuzzy sets are )(1 auc  7.0 ,  )(1 buc  4.0  and )(2 auc  6.0 ,  )(2 buc  2.0 . We 

observe that cu1  cu2  0 . Thus the converse of the theorem is not necessarily true in 

general.       

 

          Theorem 4.10: Let  and   be compact fuzzy sets in an fts  tX , . Then    is 

also compact. 

Proof: Let M  { iu : i  J }  be any open cover   . Then M  is an open cover of 

both   and   respectively.  Since   is compact in  tX , , then   has a finite subcover 

i.e. there exist 
kiu  M  ( k  nJ )  such that   

n

Jk
i

n

k
u



. Again   is compact in  tX , , 

then   has a finite subcover i.e. there exist 
ri

u  M  ( r  nJ )  such that   
n

Jr
i

n

r
u



. 

Therefore 
kiv{ ,  }

riw  is a finite subcover of M . Hence    is compact in  tX , . 
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          Theorem 4.11: Let   and   be compact fuzzy sets (    0 )  in an fts  tX , . 

Then    is also compact. 

Proof: Since     ,       and  ,    are compact in  tX , , then    is 

also compact. 

 

          The following example will show that the compact fuzzy sets in an fts need not be 

closed.   

          Example 4.12: Let X = },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u ,  4u  XI  defined by 

)(1 au  4.0 ,  )(1 bu  7.0 ; )(2 au  5.0 ,  )(2 bu  3.0 ; )(3 au  5.0 ,  )(3 bu  07 ; 

)(4 au  4.0 ,  )(4 bu  3.0 . Now, take t  { 0 ,  1u ,  2u ,  3u ,  4u , 1} , then we see that 

 tX ,  is an fts. Let   XI  defined by )(a  5.0 ,  )(b  4.0 . Clearly   is compact. 

But  is not closed, as its complement c  is not open in  tX , . 

 

           The following example will show that the closure of compact fuzzy sets in an fts 

need not be compact.  

          Example 4.13: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u ,  4u  XI  defined 

by )(1 au  1.0 ,  )(1 bu  3.0 ; )(2 au  4.0 ,  )(2 bu  5.0 ; )(3 au  6.0 ,  )(3 bu  7.0 ; 

)(4 au  8.0 ,  )(4 bu  9.0 .  Now, take t  { 0 ,  1u ,  2u ,  3u ,  4u ,  1 } , then we see that 

 tX ,  is an fts. Let   XI  defined by )(a  2.0 ,  )(b  7.0 . Clearly   is compact. 

Now, closed fuzzy sets are )(0 ac  1 ,  )(0 bc  1; )(1 auc  9.0 ,  )(1 buc  7.0 ; )(2 auc  6.0 ,  

)(2 buc  5.0 ; )(3 auc  4.0 ,  )(3 buc  3.0 ; )(4 auc  2.0 ,  )(4 buc  1.0 . So we have 

  },0{ 1
cc u  cu1  i.e.  )(

_

a  9.0 ,  )(
_

b  7.0 . Hence we observe that, there is no 

finite subcover of 
_

  in  tX , . Thus 
_

  is not compact.  
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          Theorem 4.14: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and   be a compact 

fuzzy set in X  with 0  X . Let x  0  ( )(x  0 ) , then there exist u ,  v  t  such 

that )(xu  1 and  0  ]1,0(1v .  

Proof: Let y  0 . Then clearly x  y . As  tX ,  is fuzzy 1T -space, then there exist                

yu ,  yv  t  such that )(xu y  1 ,  )(yuy  0  and )(xvy  0 ,  )(yvy  1. Hence we see that 

 { yv : y  0 }  i.e. { yv : y  0 }  is an open cover of   in  tX , . Since   is 

compact, then { yv : y  0 }  has a finite subcover i.e.  there exist 
1yv ,  

2yv ,…… ,  

nyv  }{ yv  such that  
1yv 

2yv   ……. 
nyv . Now, let v   

1yv 
2yv   ….. 

nyv  

and u   
1yu   

2yu   …… 
nyu . Then we see that v  and u  are open fuzzy sets, as they 

are the union and finite intersection of open fuzzy sets respectively i.e. v ,  u  t . 

Furthermore, 0  ]1,0(1v  and )(xu  1, as )(xu
ky  1 for each k .  

 

           Theorem 4.15: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and   and   be 

disjoint compact fuzzy sets in X  with 0 ,  0   X . Then there exist u ,  v  t  such that 

0  ]1,0(1u  and  0  ]1,0(1v .   

Proof: Let y  0 . Then y  0 , as   and   are disjoint. Since   is compact in  tX , , 

then by theorem (4.14), there exist yu ,  yv  t  such that )(yuy  1 and 0  ]1,0(1
yv . As 

)(yuy  1, then { yu : y  0 }  is an open cover of   in  tX , . Since   is compact, then 

{ yu : y  0 }  has a finite subcover i.e. there exist 
1yu ,  

2yu ,…… ,  
nyu  }{ yu  such that 

 
1yu 

2yu   ……. 
nyu . Furthermore,  

1yv 
2yv ……. 

nyv , as                      

0   ]1,0(1
kyv  for each k . Now, let u   

1yu   
2yu   …… 

nyu  and v 
1yv 

2yv   

….. 
nyv . Thus we see that 0  ]1,0(1u  and 0   ]1,0(1v . Hence u  and v  are open 
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fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e. 

u ,  v  t .  

           Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(4.14) and (4.15) are not at all true. 

 

          The following example will show that the compact fuzzy sets in fuzzy 1T -space     

(as def. 1.45) need not be closed. 

          Example 4.16: Let X  },{ ba  and I  ]1,0[ . Let u ,  v  XI  defined by  

)(au  1 ,  )(bu  0  and )(av  0 ,  )(bv  1. Now, put t  { 0 ,  u ,  v ,  1} , then we see 

that  tX ,  is a fuzzy 1T -space. Let    XI  defined by )(a  3.0 ,  )(b  7.0 . Clearly 

  is compact in  tX , . But   is not closed, as its complement c  is not open in  tX , . 

 

          Theorem 4.17: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and   be a fuzzy set in 

X  with 0  X . If   is compact in  tX ,  and x  0 ( )(x  0 ) , then there exist                  

u ,  v   t  such that )(xu  0  and  0  ]1,0(1v . The converse of the theorem is not 

necessarily true in general.  

The proof is similar as that of theorem (4.14). 

Now, for the converse, we consider the following example. 

Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u  XI  defined by  )(1 au  2.0 ,  )(1 bu  0 ; 

)(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, take t   { 0 ,  1u ,  2u ,  3u ,  

1} , then we see that  tX ,  is a fuzzy 1T -space. Again, let   XI  defined by )(a  0 ,  

)(b  6.0 . Hence we observe that 0  }{b  and a  0 . Now 1u ,  2u  t  where 
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)(1 au  0  and ]1,0(1
2
u  }{b . Hence 0  ]1,0(1

2
u . But   is not compact, as there is 

no finite subcover of   in  tX , . Thus the converse of the theorem is not true in general.    

 

          Theorem 4.18: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and  ,     be fuzzy 

sets in X  with 0 ,  0  X . If   and   are disjoint compact fuzzy sets in  tX , , then 

there exist u ,  v   t  such that 0  ]1,0(1u  and  0   ]1,0(1v . The converse of the 

theorem is not true in general. 

The proof is similar as that of theorem (4.15). 

Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(4.17). Let  ,    XI  defined by )(a  8.0 ,  )(b  0  and )(a  0 ,  )(b  6.0 . 

Hence we observe that 0   }{a  and 0   }{b . Now 1u ,  2u  t  where ]1,0(1
1
u  }{a  

and ]1,0(1
2
u  }{b . Thus we see that 0  ]1,0(1

1
u  and 0   ]1,0(1

2
u , where   and 

  are disjoint. But   and   are not compact, as there is no finite suvcover of   and   

in  tX ,  respectively. Thus the converse of the theorem is not true in general.    

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(4.17) and (4.18) are not at all true. 

 

          The following example will show that the compact fuzzy sets in fuzzy 1T -space     

(as def. 1.46) need not be closed. 

           Example 4.19: Consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(4.17). Again, let   XI  defined by )(a  1.0 ,  )(b  2.0 .  Clearly   is compact in 

 tX , . But   is not closed, as its complement c  is not open in  tX , . 
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           Theorem 4.20: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47) and   be a 

compact fuzzy set in X  with 0   X . Suppose x  0 ( )(x  0 ) , then there exist               

u ,  v  t  such that )(xu  1 ,   0  ]1,0(1v  and u  v  0 .  

Proof: Let y  0 . Then clearly x  y . As  tX ,  is fuzzy Hausdorff, then there exist 

yu ,  yv  t  such that )(xuy  1 ,  )(yvy  1 and yu  yv  0 . Hence  { yv : y  0 }  

i.e. { yv : y  0 }  is an open cover of  . Since   is compact in  tX , , then there exist 

1yv ,  
2yv ,…… ,  

nyv  }{ yv  such that  
1yv 

2yv   …… 
nyv . Now, let                   

v   
1yv 

2yv   …… 
nyv  and u   

1yu   
2yu   …… 

nyu . Then we see that v  and 

u  are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 

respectively i.e. v ,  u  t . Furthermore, 0  ]1,0(1v  and )(xu  1, as )(xu
ky  1 for 

each k .  

Finally, we have to show that u  v  0 . As 
kyu 

kyv  0  implies that u 
kyv  0 , by 

distributive law, we see that u  v  u  (
1yv 

2yv   …... 
nyv )  0 . 

 

          Corollary 4.21: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47) and   be a 

compact fuzzy set in X  with 0   X .  Let x  0 ( )(x  0 ) , then there exists u  t  

such that )(xu  1 and ]1,0(1u  c
0 .  

Proof: By theorem (4.20), there exists u ,  v  t  such that )(xu  1,  0  ]1,0(1v  and 

u  v  0 . Hence ]1,0(1u  ]1,0(1v   . If not, there exists x  ]1,0(1u  ]1,0(1v  

  x  ]1,0(1u  and x  ]1,0(1v    )(xu  0  and )(xv  0    u  v   0 . Hence 

]1,0(1u   0    and consequently ]1,0(1u  c
0 .     
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          Theorem 4.22: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.47) and  ,     be 

disjoint compact fuzzy sets in X  with 0 ,  0  X . Then there exist u ,  v  t  such that 

0  ]1,0(1u ,  0   ]1,0(1v  and u  v  0 . 

Proof: Let y  0 . Then y  0 , as   and   are disjoint. Since   is compact in  tX , , 

then by theorem (4.20), there exist yu ,  yv  t  such that )(yuy  1 ,  0  ]1,0(1
yv  and 

yu   yv  0 . As )(yu y  1, then { yu : y  0 }  is an open cover of  . Since   is 

compact in  tX , , then there exist 
1yu ,  

2yu ,…... ,  
nyu  }{ yu  such that  

1yu 
2yu   

……. 
nyu . Furthermore,   

1yv 
2yv   ……. 

nyv , as 0   ]1,0(1
kyv  for each k . 

Now, let u 
1yu   

2yu   …… 
nyu  and v 

1yv 
2yv   ….. 

nyv . Thus we see that 

0  ]1,0(1u  and 0  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are the 

union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t .  

Lastly, we have to show that u  v  0 . First , we observe that 
kyu 

kyv  0  implies that 

kyu  v  0 , by distributive law, we see that u  v  (
1yu   

2yu   …… 


nyu )  v  0 .  

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(4.20), (4.22) and corollary (4.21) are not at all true. 

 

           Note: The compact fuzzy sets in fuzzy Hausdorff space (as def. 1.47) need not be 

closed. 

Consider the fuzzy topology t  in the example (4.16), then  tX ,  is also a fuzzy Hausdorff 

space (as def. 1.47) and will serve the purpose that the compact fuzzy sets in fuzzy 

Hausdroff space need not be closed. 
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          Theorem 4.23: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and   be a 

fuzzy set in X  with 0  X . If   is compact in  tX ,  and x  0 ( )(x  0 ) , then 

there exist u ,  v  t  such that )(xu  0 ,  0  ]1,0(1v  and u  v  0 . The converse of 

the theorem is not necessarily true in general.  

The proof is similar as that of theorem (4.20).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(4.17), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let   XI  

defined by )(a  0 ,  )(b  6.0 . Hence we observe that 0  }{b  and a  0 . Now  

1u ,  2u  t  where )(1 au  0  and ]1,0(1
2
u  }{b . Hence 0  ]1,0(1

2
u  and 1u  2u  0 . 

But   is not compact, as there is no finite subcover of   in  tX , . Thus the converse of 

the theorem is not true in general.     

 

          Corollary 4.24: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and   be a 

fuzzy set in X  with 0  X . If   is compact in  tX ,  and x  0 ( )(x  0 ) , then 

there exists u  t  such that )(xu  0  and ]1,0(1u  c
0 . 

The proof is similar as that of corollary (4.21).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(4.17), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Let    XI  defined by 

)(a  0 ,  )(b  6.0 . Hence we observe that 0  }{b  and a  0 . Now 1u  t  where 

)(1 au  0  and then ]1,0(1
1
u  }{a . Hence we have ]1,0(1

1
u  c

0 . But   is not 

compact, as there is no finite subcover of   in  tX , . Thus the converse is not true in 

general.    
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          Theorem 4.25: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and  ,    be 

fuzzy sets in X  with 0 ,  0  X . If   and   are disjoint compact fuzzy sets in  tX , , 

then there exist u ,  v  t  such that 0  ]1,0(1u ,  0  ]1,0(1v  and u  v  0 . The 

converse of the theorem is not true in general. 

The proof is similar as that of theorem (4.22). 

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(4.17), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let  ,    XI  

defined by )(a  8.0 ,  )(b  0  and )(a  0 ,  )(b  6.0 . Hence we observe that 

0  }{a  and 0  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u  }{a  and ]1,0(1

2
u  }{b . 

Thus we see that 0  ]1,0(1
1
u ,  0   ]1,0(1

2
u  and 1u  2u  0 , where   and   are 

disjoint. But   and   are not compact, as there is no finite subcover of   and   in 

 tX ,  respectively. Thus the converse of the theorem is not true in general.    

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(4.23), (4.25) and corollary (4.24) are not at all true. 

 

          The following example will show that the compact fuzzy sets in fuzzy Hausdorff 

space (as def. 1.48) need not be closed. 

          Example 4.26: Consider the fuzzy topology t  in the example of the theorem (4.17), 

then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let   XI  defined by 

)(a  2.0 ,  )(b  1.0 .  Clearly   is compact in  tX , . But   is not closed, as its 

complement c  is not open in  tX , . 
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          Theorem 4.27: Let   be a compact fuzzy set in a fuzzy Hausdorff space  tX ,     

(as def. 1.50) with 0   X . Suppose x  0 ( )(x  0 ) , then there exist u ,  v  t  such 

that )(xu  1 ,  0  ]1,0(1v  and u  1 v .  

Proof: Let y  0 . Then clearly x  y . As  tX ,  is fuzzy Hausdorff, then there exist 

yu ,  yv  t  such that )(xuy  1 ,  )(yvy  1 and yu  1 yv . Hence  { yv : y  0 }  

i.e. { yv : y  0 }  is an open cover of  . Since   is compact in  tX , , then there exist 

1yv ,  
2yv ,…… ,

nyv  }{ yv  such that  
1yv 

2yv   …… 
nyv . Now, let 

v 
1yv 

2yv   ….. 
nyv  and u 

1yu   
2yu   …… 

nyu . Then we see that v  and u  

are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 

respectively i.e. v ,  u  t . Furthermore, 0  ]1,0(1v  and )(xu  1, as )(xu
ky  1 

individually.  

Lastly, we have to show that u  1 v .  As yu  1 yv  implies that u  1 yv . Since 

)(xu
ky  1 )(xv

ky  for all x  X  and for each k , then u  1 v . If not, then there exist 

x  X  such that )(xuy  1 )(xvy . We have )(xuy  )(xu
ky  for each k . Then for some 

k , )(xu
ky  1 )(xv

ky . But this is a contradiction, as )(xu
ky  1 )(xv

ky  for each k . 

Hence u  1 v . 

 

          Theorem 4.28: Let   and   be disjoint compact fuzzy sets in a fuzzy Hausdorff 

space  tX ,  (as def. 1.50) with 0 ,  0  X . Then there exist u ,  v  t  such that 

0  ]1,0(1u ,  0   ]1,0(1v  and u  1 v .  

Proof: Let y  0 . Then y  0 , as   and   are disjoint . Since   is compact in 

 tX , , then by theorem (4.27), there exist yu ,  yv  t  such that )(yuy  1 ,  0  ]1,0(1
yv  
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and  yu  1 yv . As )(yuy  1, then { yu : y  0 }  is an open cover of  . Since   is 

compact in  tX , , then there exist 
1yu ,  

2yu ,…… ,  
nyu  }{ yu  such that    

1yu    
2yu  

……. 
nyu . Furthermore,   

1yv 
2yv   ……. 

nyv , as 0   ]1,0(1
kyv  for each 

k . Now, let u   
1yu   

2yu   …… 
nyu  and v   

1yv 
2yv   ….. 

nyv . Thus we see 

that 0  ]1,0(1u  and 0  ]1,0(1v . Hence u  and v  are open fuzzy sets, as they are 

the union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t .  

Finally, we have to show hat u  1 v . First, we observe that 
kyu  1

kyv  for each k  

implies that 
kyu  1 v  for each k  and it is clear that u  1 v .  

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(4.27) and (4.28) are not at all true. 

 

          Note: The compact fuzzy sets in fuzzy Hausdorff space (as def. 1.50) need not be 

closed 

Consider the fuzzy topology t  in the example (4.16), then  tX ,  is also a fuzzy Hausdorff 

space (as def. 1.50) and will serve the purpose that the compact fuzzy sets in fuzzy 

Hausdorff space need not be closed.   

 

          Theorem 4.29: Let   be a compact fuzzy set in a fuzzy regular space  tX ,          

(as def. 1.51) with 0  X . If for each x  0  and u  ct  with )(xu  0 , there exist            

v ,  w  t  we have )(xv  1 ,  u  w ,  0  ]1,0(1v  and v  1 w . 

Proof: Let  tX ,  be a fuzzy regular space and   be a compact fuzzy set in  tX , . Now, 

if each x  0 ,  there exists u  ct  with )(xu  0 , by fuzzy regularity of  tX , , we have 

xv ,  xw  t  such that )(xvx  1 ,  xu  xw  and  xv  1 xw  . Hence  { xv : x  0 }  
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i.e. { xv : x  0 }  is an open cover of  . Since   is compact in  tX , , then                         

{ xv : x  0 }  has a finite subcover i.e. there exist 
1xv ,  

2xv ,…… ,
nxv  }{ xv  such that 

 
1xv 

2xv   ……. 
nxv . Now, let v 

nxv 
2xv …… 

nxv and w 
1xw   

2xw ……
nxw . Then we see that v  and w  are open fuzzy sets, as they are the union 

and finite intersection of open fuzzy sets respectively i.e. v ,  w  t . Furthermore, 

0  ]1,0(1v , )(xv  1 and  u  w , as u  
kxw  individually.  

Lastly, we have to show that v  1 w . As 
kxv  1

kxw  implies that 
kxv  1 w  for each 

k  and hence it is clear that v  1 w .   

 

          Theorem 4.30: Let  TX ,  be a topological space and  )(, TX   be an fts. If   

is any compact fuzzy set in  )(, TX  , then 0  is compact in  TX , . The converse is 

not true in general. 

Proof: Suppose   be any compact fuzzy set in  )(, TX  . Let { iV  : i  J }  be an 

open cover of 0  in  TX ,  i.e. 0    
Ji

iV


. As 
iV1  is l.s.c., then 

iV1  )(T  and                   

{
iV1 : 

iV1  )(T }  is an open cover of   in  )(, TX  . Since   is compact in 

 )(, TX  , then   has a finite subcover i.e. there exist 
1

1
iV ,  

2
1

iV ,  ...... ,  
niV1  }1{

iV  such 

that    
1

1
iV   

2
1

iV   ......   
niV1 . Hence, we can write 0   

1iV   
2iV   ...... 

niV  and 

therefore 0  is compact in  TX , .  

Now, for the converse, we give the following example.                

Let X  },,{ cba  and T  {  ,  }{b ,  }{c ,  },{ cb ,  X } , then  TX ,  is a topological 

space. Let 1u ,  2u ,  3u  XI  with )(1 au  0 ,  )(1 bu  6.0 ,  )(1 cu  0 ; )(2 au  0 ,  

)(2 bu  0 ,  )(2 cu  8.0  and )(3 au  0 ,  )(3 bu  6.0 ,  )(3 cu  8.0 . Then             
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)(T  { 0 ,  1u ,  2u ,  3u ,  1}  and  )(, TX   is an fts. Again, let   XI  with 

)(a  0 ,  )(b  7.0 ,  )(c  9.0 . Hence 0  },{ cb . Then clearly 0  is compact in 

 TX , . But   is not compact in  )(, TX  , as there do not exist ku { )(T }                     

( k   1 ,  2 ,  3 )  such that    1u    2u   3u . Thus the converse of the theorem is not 

true in general.  

    

                    Theorem 4.31: If   and   are compact fuzzy sets in an fts  tX , , then 

)(    is also compact in   ttXX  , . 

Proof: Suppose   and   are compact fuzzy sets in an fts  tX , . Let { iu : i  J }  and 

{ iv : i  J }  be open cover of   and   respectively, where iu ,  iv  t . Hence it can be 

easily shown that, min ( )(x , )(y )  
Ji
min ( )(xui , )( yvi )  for every ),( yx  XX  . 

Then { ii vu  : i  J }  is an open cover of )(    in  ttXX  ,  i.e. )(     


Ji

( iu  iv ) . Since   and   are compact, then { iu : i  J }  and { iv : i  J }  have 

finite subcovers, say {
kiu : k  nJ }  and {

kiv : k  nJ }  such that   
n

k
Jk

iu


and                   

  
n

k
Jk

iv


 respectively. Thus we can write )(    
nJk
(

ki
u 

ki
v ) . Therefore 

{
kiu 

kiv : k   nJ  }  is a finite subcover of { ii vu  : i  J } . Thus )(    is compact in  

 ttXX  , .    

           

          Definition 4.32: Let  tX ,  be an fts, 0    1 and   be a fuzzy set in X . Then   

is said to be  -compact iff every  -cover of   has a finite  -subcover. If     and 
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  XI , then   is also  -compact. Thus we can say that, any other subsets of a                        

 -compact fuzzy set in an fts is also  -compact. 

 

          Theorem 4.33: Any  -compact fuzzy set in an fts is compact. The converse is not 

true in general. 

The proof of the theorem is straightforward. 

Now, for the converse, consider the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  )(1 au 1 ,  

)(1 bu  4.0 ;     )(2 au  7.0 ,  )(2 bu  1 and )(3 au  7.0 ,  )(3 bu  4.0 . Now, take t  { 0 ,  

1u ,  2u ,  3u ,  1} , then we see that  tX ,  is an fts. Again, let   XI  defined by 

)(a  9.0 ,  )(b  8.0 . Clearly   is compact in  tX , . Take   6.0 . Then we observe 

that there is no finite  -subcover of   in  tX , . Hence   is not  -compact in  tX , . 

Thus the converse of theorem is not necessarily true.  

 



74 

Chapter Five  

Partially  -Compact Fuzzy Sets 

 

          In this chapter, we have introduced partially  -compact fuzzy sets. Furthermore, 

we have established some theorems, corollaries and examples of partially  -compact 

fuzzy sets. Also we have defined partially  - -compact fuzzy sets and found different 

properties between partially  -compact and partially  - -compact fuzzy sets.   

 

          Definition 5.1: Let  tX ,  be an fts and   I . A family M  of fuzzy sets is called 

a partial  -shading, 0    1 (resp. partial * -shading, 0    1), in short,                       

p -shading (resp. *p -shading) of a fuzzy set   in X  if for each x  0 ,  ( 0   X )  

there exists a u  M  with )(xu    (resp. )(xu   ). If each u  is open, then M  is 

called an open p -shading (resp. open *p -shading) of   in  tX , .   

A subfamily of a p -shading (resp. *p -shading) of   which is also a p -shading 

(resp. *p -shading) of   is called a p -subshading (resp. *p -subshading) of  .  

If )(x  0  for all x  X  i.e. 0  X , then p -shading (resp. *p -shading) and                   

 -shading (resp. * -shading) will be same.   

 

          Example 5.2: Let X  },,{ cba , I  ]1,0[  and 0    1. Let 1u ,  2u  XI  

defined by )(1 au  7.0 ,  )(1 bu  4.0 ,  )(1 cu  2.0  and )(2 au  3.0 ,  )(2 bu  9.0 ,  

)(2 cu  1.0 . Again, let   XI  with )(a  8.0 ,  )(b  4.0 ,  )(c  0 . Now, take 

  6.0 . Hence we observe that )(1 au   ,  )(2 bu    where a ,  b  0 . Therefore 

{ 1u ,  2u }  is a p -shading of  .  
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Again, if we take   7.0 , then { 1u ,  2u }  is a *p -shading of  .            

 

          Example 5.3: Let X  },,{ cba , I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  

defined by )(1 au  1 ,  )(1 bu  1 ,  )(1 cu  0 ; )(2 au  0 ,  )(2 bu  2.0 ,  )(2 cu  1 and 

)(3 au  0 ,  )(3 bu  2.0 ,  )(3 cu  0 . Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then  tX ,  is an fts. 

Again, let   XI  with )(a  0 ,  )(b  4.0 ,  )(c  6.0 . Now, take   7.0 . Hence 

we observe that )(1 bu   ,  )(2 cu    where b ,  c  0 . Therefore { 1u ,  2u }  is an open 

p -shading of   in  tX , .  

Again, if we take   1, then { 1u ,  2u }  is an open *p -shading of   in  tX , .            

  

          Definition 5.4: Let  tX ,  be an fts and   I . A fuzzy set   in X  is said to be 

partially  -compact, 0    1 (resp. partially * -compact, 0    1), in short,                 

p -compact (resp. *p -compact) iff every open p -shading (resp. *p -shading) of   

has a finite p -subshading (resp. *p -subshading). 

 

          Theorem 5.5: Let  tX ,  be an fts, A  X  and   be a fuzzy set in X  with 

0  A . Then   is p -compact (resp. *p -compact) in  tX ,  iff   is p -compact 

(resp. *p -compact) in  AtA, .                    

Proof: Suppose   is p -compact in  tX , . Let M  { iu : i  J }  be an open                       

p -shading of   in  AtA, . Then there exist iv  t  such that iu  iv | A  iv . Hence 

{ iv : i  J }   is an open p -shading of   in  tX , . As   is p -compact in  tX , , 

then { iv : i  J }  has a finite p -subshading, say {
kiv : k  nJ }   such that )(xv

ki
   

for all x  0 . For, if x  0 , then there exists 
0ki

v  such that )(
0

xv
ki

   implies that 
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)()|(
0

xAv
ki

   and consequently )(
0

xu
ki

  , as 0  A . Thus 
0kiu  M  and hence 

{
kiu : k  nJ }  is a finite p -subshading of M . Therefore   is p -compact in  AtA, .         

Conversely, suppose   is p -compact in  AtA, . Let { iv : i  J }  be an open                   

p -shading of   in  tX , . Put iu  iv | A . To show this, let x  X . If x  A , then there 

exists 
0iv  { iv : i  J }  such that 

0iu 
0iv | A . But 

0iu  At , so )(
0

xui    for all x  0 . 

Therefore, { iu : i  J }  is an open p -shading of   in  AtA, . Since   is p -compact 

in  AtA, , then { iu : i  J }  has a finite p -subshading, say {
ki

u : k  nJ }  such that 

)(xu
ki   for all x  0 . For, if x  0 , then there exists 

0ki
u  such that )(

0
xu

ki
     

)()|(
0

xAv
ki

     )(
0

xv
ki

  , as 0  A . Thus {
kiv : k  nJ }  is a finite                          

p -subshading of { iv : i  J } . Hence   is p -compact in  tX , .               

The proof is similar for *p -compactness can be given. 

 

          Corollary 5.6: Let  *, tY  be a fuzzy subspace of  tX ,  and A  Y  X . Let 

  XI  with 0  A . Then   is p -compact (resp. *p -compact) in  tX ,  iff   is 

p -compact (resp. *p -compact) in  AtA, . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by preceding theorem 

(5.5),   is p -compact in  tX ,  or  *, tY  if and only if   is p -compact in  AtA,  or 

 *, AtA . But At  *
At .             

Similar work for *p -compactness can be done. 

 

          Theorem 5.7: Let f : X  Y  be any mapping and   XI . Then 

)( 0f   0)(f . 
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Proof: Let y  )( 0f , then there exists an x  0  such that y  )(xf . Now, )(x  0  

and therefore sup{ )(x : x  )(1 yf  }  0  which implies that )()( yf   0 . Hence 

y   0)(f . Therefore )( 0f   0)(f .    

Again, let y   0)(f , then )()( yf   0  which implies that sup{ )(x : )(xf  y ,  

)(1 yf    }  0 . Then there exists an 0x  X , y  )( 0xf  and x  0 . Therefore 

)( 0xf  )( 0f  implies that y  )( 0f . Therefore  0)(f  )( 0f . Hence                      

)( 0f    0)(f .  

 

          Theorem 5.8: Let  tX ,  and  sY ,  be two fuzzy topological spaces and                  

f :  tX ,    sY ,  be fuzzy continuous and onto mapping. If   is p -compact (resp. 

*p -compact) in  tX , , then )(f  is p -compact (resp. *p -compact) in  sY , . 

Proof: Let M  { iu : i  J }  be an open p -shading of )(f  in  sY , . Since f  is 

fuzzy continuous, then )(1
iuf   t  and hence )(1 Mf   { )(1

iuf  : iu  M }  is an open 

p -shading of   in  tX , . For, if x  0 , then )(xf   0)(f . So there exists 
0iu  M  

such that  )(
0

xfui    which implies that )()(
0

1 xuf i
   . As   is p -compact in 

 tX , , then )(1 Mf   has a finite p -subshading, say { )(
1

1
iuf  ,  )(

2

1
iuf  ,  …… ,  

)(1
niuf  }. Now, if y   0)(f , then y  )(xf  for some x  0 . Then there exists k  

such that )()(1 xuf
ki

    which implies that  )(xfu
ki

   or )(yu
ki

  . Hence )(f  

is p -compact in  sY , . 

Similar work for *p -compactness can be given. 
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          Theorem 5.9: Let  tX ,  and  sY ,  be two fuzzy topological spaces and              

f :  tX ,    sY ,  be fuzzy open and bijective mapping. If   is p -compact (resp. 

*p -compact) in  sY , , then )(1 f  is p -compact (resp. *p -compact) in  tX , . 

Proof: Let M  { iu : i  J }  be an open p -shading of )(1 f  in  tX , . As f  is 

fuzzy open, then )( iuf  s  and so )(Mf  { )( iuf : iu  M }  is an open p -shading of 

  in  sY , . For, if y  0 , then )(1 yf    01 )(f . So there exists 
0iu  M  such that 

 )(1
0

yfui
   which implies that )()(

0
yuf i   . Since   is p -compact in  sY , , 

then )(Mf  has a finite p -subshading, say { )(
1iuf ,  )(

2iuf ,  …… , )(
niuf }. For, if 

x   01 )(f , then x  )(1 yf   for some y  0 . Therefore, there exists k  such that 

)()( yuf
ki   which implies that  )(1 yfu

ki
   or )(xu

ki  . Hence )(1 f  is      

p -compact in  tX , .     

The work is similar for *p -compactness can be given. 

 

          Theorem 5.10: Let  tX ,  be an fts, A  X  and   be a fuzzy set in X  with 

0  A . Let  AtA,  be a fuzzy subspace of  tX ,  and f :  tX ,   AtA,  be fuzzy 

continuous and onto mapping. If   is p -compact (resp. *p -compact) in  tX , , then 

)(f  is p -compact (resp. *p -compact) in  AtA, . 

Proof: Let M  { iu : i  J }  be an open p -shading of )(f  in  AtA, . Put                     

iu   iv | A , where iv  t . Since f  is fuzzy continuous, then )(1
iuf   t  implies that 

)|(1 Avf i
  t  and hence )(1 Mf   { )(1

iuf  : iu  M }  i.e )(1 Mf   { )|(1 Avf i
 : 

i  J }  is an open p -shading of   in  tX , . For, if x  0 , then )(xf   0)(f . So 

there exists 
0iu   M  such that  )(

0
xfui    which implies that )()(

0

1 xuf i
    i.e. 
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)()|(
0

1 xAvf i
  . As   is p -compact in  tX , , then )(1 Mf   has a finite                      

p -subshading, say { )|(
1

1 Avf i
 ,  )|(

2

1 Avf i
 ,  …… ,  )|(1 Avf

ni
 } . Now, if 

y   0)(f , then y  )(xf  for some x  0 . Then there exists k  such that 

)()|(1 xAvf
ki

   which implies that )|( Av
ki  )(xf   or )(yu

ki  . Hence )(f  is 

p -compact in  AtA, . 

Similar work for *p -compactness can be given. 

 

          Theorem 5.11: Let  AtA,  and  BsB,  be fuzzy subspaces of fuzzy topological 

spaces  tX ,  and  sY ,  respectively and f :  AtA,   BsB,  be relatively fuzzy 

continuous and onto mapping. If   is p -compact (resp. *p -compact) in  AtA, , then 

)(f  is p -compact (resp. *p -compact) in  BsB, . 

Proof: We have BAf )( , as f  is onto. Let { iv : iv  Bs }  be an open p -shading of 

)(f  in  BsB,  for every i  J  i.e )(yvi    for every y   0)(f . Since iv  Bs , then 

there exists iu  s  such that iv  iu | B  and so ( iu | B ) )( y    for every y   0)(f .  

As f  is relatively fuzzy continuous, then Avf i |)(1  At . Thus we observe that, for each 

x  0 , )()|)(( 1 xAvf i
   and hence { Avf i |)(1 : i  J }  is an open p -shading of   

in  AtA,  implies that { ABuf i |))|(( 1 : i  J }   { ))((|)( 11 ABfuf i  : i  J }    

{ Auf i |)(1 : i  J }  is an open p -shading of   in  AtA, . Since   is p -compact in 

 AtA, , then { Auf i |)(1 : i  J }  has a finite p -subshading, say { Auf
ki |)(1 }  

( k  nJ )  such that )()|)(( 1 xAuf
ki

    for each x  0 . Now, if y   0)(f , then 

y  )(xf  for some x  0 . Then there exists k  we have )()|)(( 1 xAuf
ki

    implies 

that ))(|( Afu
ki

))(( xf    implies that )()|( yBu
ki

 , as f  is onto or )( yv
ki

  . 



Partially  -Compact Fuzzy Sets 

 

 80 

Hence it is clear that {
ki

v : k  nJ }  is a finite p -subshading of { iv : iv  Bs } . Thus 

)(f  is p -compact in  BsB, . 

The work is similar for *p -compactness can be given. 

 

          Theorem 5.12: Let  AtA,  and  BsB,  be fuzzy subspaces of fts’s  tX ,  and 

 sY ,  respectively. Let f :  AtA,   BsB,  be relatively fuzzy open and bijective 

mapping. If   is p -compact (resp. *p -compact) in  BsB, , then )(1 f  is                      

p -compact (resp. *p -compact) in  AtA, . 

Proof:  We have BAf )( , as f  is bijective. Let { iu : iu  At }  be an open p -shading 

of )(1 f  in  AtA,  for every i  J  i.e )(xui    for every x   01 )(f . Since iu  At , 

then there exists iv  t  such that iu  iv | A  and so ( iv | A ) )(x   for every 

x   01 )(f .  As f  is relatively fuzzy open, then )( iuf  Bs . Thus we observe that, for 

each y  0 , )()( yuf i   and hence { )( iuf : i  J }  is an open p -shading of   in 

 BsB,  implies that { )|( Avf i : i  J }   { )(|)( Afvf i : i  J }    { Bvf i |)( : i  J }  

is an open p -shading of   in  BsB, . Since   is p -compact in  BsB,  , then 

{ Bvf i |)( : i  J }   has a finite p -subshading, say { Bvf
ki |)( : k  nJ }  such that 

  )(|)( yBvf
ki

   for each y  0 . Now, if x   01 )(f , then x  )(1 yf   for each 

y  0 . Then there exists k  we have   )(|)( yBvf
ki

   implies that 

))(|( 1 Bfv
ki

 ))(( 1 yf    implies that )()|( xAv
ki    or )(xu

ki   . Hence it is clear 

that {
kiu : k  nJ }  is a finite p -subshading of { iu : iu  At } . Thus )(1 f  is                     

p -compact in  AtA, . 

Similar work for *p -compactness can be done. 
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          Theorem 5.13: Let  tX ,  be an fts and   be a fuzzy set in X  with 0  X . If 

every family of closed fuzzy sets in  tX ,  which has empty intersection has a finite 

subfamily with empty intersection, then   is p -compact (resp. *p -compact). The 

converse is not true. 

Proof: Let M  { iu : i  J }  be an open p -shading of   in  tX ,  i.e. )(xui    for 

all x  0 . First condition from the given theorem, we have 
Ji

c
iu



 X0 . Hence we can 

write 
Ji

iu


 X1 . Again, by the second condition of the theorem, we get 
n

k
Jk

c
iu



 X0  

implies that 
n

k
Jk

iu


 X1  and hence )(xu
ki    for all x  0 . Hence it is clear that               

{
kiu : k  nJ }  is a finite p -subshading of M . Therefore   is p -compact. 

 Now, for the converse, consider the following example.  

Let X  },,{ cba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u ,  4u  XI  defined by  

)(1 au  4.0 ,  )(1 bu  3.0 ,  )(1 cu  2.0 ; )(2 au  8.0 ,  )(2 bu  4.0 ,  )(2 cu  1.0 ; 

)(3 au  8.0 ,  )(3 bu  4.0 ,  )(3 cu  2.0  and )(4 au   4.0 ,  )(4 bu  3.0 ,  )(4 cu  1.0 . Now, 

put t  { 0 ,  1u ,  2u ,  3u ,  4u ,  1} , then we see that  tX ,  is an fts. Let   XI  defined 

by )(a  2.0 ,  )(b  5.0 ,  )(c  0 . Take   2.0 . Then clearly   is p -compact in 

 tX , . Now, closed fuzzy sets are )(1 auc  6.0 ,  )(1 buc  7.0 ,  )(1 cuc  8.0 ; )(2 auc  2.0 ,  

)(2 buc  6.0 ,  )(2 cuc  9.0 ; )(3 auc  2.0 ,  )(3 buc  6.0 ,  )(3 cu c  8.0  and )(4 auc  6.0 ,  

)(4 buc  7.0 ,  )(4 cuc  9.0 . Thus we see that cu1  cu2 
cu3 

cu4  0 . Therefore the 

converse of the theorem is not necessarily true. 

The work is similar for *p -compactness can be given. 
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          Note: The p -compact (resp. *p -compact) fuzzy sets in an fts need not be 

closed. 

Consider the example in the theorem (5.13), then we have   is p -compact in  tX , . 

But   is not closed, as its complement c  is not open in  tX , . 

Again, take   4.0 . Then   is *p -compact in  tX ,  and   is not closed.   

 

          Theorem 5.14: Let   be a p -compact (resp. *p -compact) fuzzy set in fuzzy 

1T -space  tX ,  (as def. 1.45) with 0  X . Let x  0 ( )(x  0 ) , then there exist                 

u ,  v  t  such that )(xu  1 and 0  ]1,0(1v .  

Proof: Suppose y  0 . Then clearly x  y . As  tX ,  is fuzzy 1T -space, there exist    

yu ,  yv  t  such that )(xu y  1 ,  )(yu y  0  and )(xvy  0 ,  )(yvy  1. Let us take 

0    1. Then )(yvy    0 , as )(yvy  1. Hence we see that { yv : y  0 }  is an 

open p -shading of   in  tX , . Since   is p -compact, then { yv : y  0 }  has a 

finite p -subshading, say {
kyv : y  0 } ( k  nJ )  such that )(yv

ky   for each 

y  0 . Now, let v 
1yv 

2yv   ….. 
nyv  and u 

1yu 
2yu   …… 

nyu . Thus we 

see that v  and u  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. v ,  u  t . Moreover, 0  ]1,0(1v  and )(xu  1, as 

)(xu
ky  1 for each k .  

Similar proof for *p -compact can be done.  

 

          Theorem 5.15: Let   and   be disjoint p -compact (resp. *p -compact) fuzzy 

sets in fuzzy 1T -space  tX ,  (as def. 1.45) with 0 ,  0  X . Then there exist u ,  v  t  

such that 0  ]1,0(1u  and  0  ]1,0(1v . 
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Proof: Suppose y  0 . Then y  0 , as   and   are disjoint. Since   is p -compact 

in  tX , , then by theorem (5.14), there exist yu ,  yv  t  such that )(yuy  1 and  

0  ]1,0(1
yv . Let us take 0    1 with )(yu y    0 , as )(yuy  1. Thus we see that 

{ yu : y  0 }  is an open p -shading of   in  tX , . Since   is p -compact, then 

{ yu : y  0 }  has a finite p -subshading, say {
kyu : y  0 } ( k  nJ )   such that 

)(yu
ky   for each y  0 .  Furthermore,    is p -compact , so { yv : x  0 }  has a 

finite p -subshading, say {
kyv : x  0 } ( k  nJ )   such that )(xv

ky   for each               

x   0 , as 0  ]1,0(1
kyv  for each k . Now, let u 

1yu   
2yu   …… 

nyu  and 

v 
1yv 

2yv   …...   
nyv . Hence we see that 0  ]1,0(1u  and 0  ]1,0(1v . Thus 

u  and v  are open fuzzy sets, as they are the union and finite intersection of open fuzzy 

sets respectively i.e. u ,  v  t . 

Similar proof for *p -compact can be given.  

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above theorems (5.14) 

and (5.15) are not at all true.  

 

          The following example will show that the p -compact (resp. *p -compact) fuzzy 

sets in fuzzy 1T -space (as def. 1.45) need not be closed. 

          Example 5.16: Let X  },{ ba , I  ]1,0[  and 0    1. Let 1u ,  2u  XI  defined 

by )(1 au  1 ,  )(1 bu  0  and )(2 au  0 ,  )(2 bu  1. Put t  { 0 ,  1u ,  2u ,  1} , then we 

have  tX ,  is a fuzzy 1T -space. Again, let   XI  with )(a  2.0 ,  )(b  0 . Now, 

take   4.0 . Then   is p -compact in  tX , . But   is not closed, as its complement 

c is not open in  tX , . 

Again, if we take   1, then this example is also applicable for *p -compactness. 
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          Theorem 5.17: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and   be a fuzzy set in 

X  with 0  X . If   is p -compact (resp. *p -compact) in  tX ,  and x  0  

( )(x  0 ) , then there exist u ,  v  t  such that )(xu  0  and 0  ]1,0(1v . The 

converse is not true in general.   

The proof is similar as that of theorem (5.14). 

Now, for the converse, we give the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 au  2.0 ,  )(1 bu   0 ; )(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put 

t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is a fuzzy 1T -space. Again, let   XI  

defined by )(a  0 ,  )(b  3.0 . Hence we observe that 0  }{b  and a  0 . Here    

1u ,  2u  t  where )(1 au  0  and ]1,0(1
2
u  }{b . Therefore 0  ]1,0(1

2
u . Now, take 

  4.0 . But we see that   is not p -compact in  tX , , as )(buk    where b  0 , 

for k  1 ,  2 ,  3 . Thus the converse of the theorem is not true in general.  

This example is also valid for *p -compactness.   

 

          Theorem 5.18: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and  ,    be fuzzy 

sets in X  with 0 ,  0  X . If    and   are disjoint p -compacts (resp.                  

*p -compacts) in  tX , , then there exist u ,  v  t  such that 0  ]1,0(1u  and 

0  ]1,0(1v . The converse is not true in general.    

Similar proof as theorem (5.15). 

Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(5.17). Let  ,    XI  with )(a  3.0 ,  )(b  0  and )(a  0 ,  )(b  1.0 . Thus we 

see that 0  }{a  and 0  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u  }{a  and 
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]1,0(1
2
u  }{b . Hence we observe that 0  ]1,0(1

1
u  and 0  ]1,0(1

2
u , where   and 

  are disjoint. Take   4.0 . Hence we observe that   and   are not p -compacts in 

 tX , , as )(auk    where a  0  and )(buk    where b  0 , for k  1 ,  2 ,  3 . Thus 

the converse of the theorem is not true in general. 

This example is also applicable for *p -compactness. 

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above theorems (5.17) 

and (5.18) are not at all true.  

 

          The following example will show that the p -compact (resp. *p -compact) fuzzy 

sets in fuzzy 1T -space (as def. 1.46) need not be closed. 

          Example 5.19: Consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(5.17). Again, let   XI  defined by )(a  0 ,  )(b  8.0 . Then 0  }{b . Take 

  2.0 . Clearly   is p -compact in  tX , . But   is not closed, as its complement c  

is not open in  tX , .  

Again, if we take   3.0 , then this example is also applicable for *p -compactness. 

 

          Theorem 5.20: Let   be a p -compact (resp. *p -compact) fuzzy set in a fuzzy 

Hausdorff space  tX ,  (as def. 1.47) with 0  X . Let x  0 ( )(x  0 ) , then there 

exist u ,  v  t  such that )(xu  1 ,   0  ]1,0(1v  and u  v  0 .  

Proof: Let y  0 . Then clearly x  y . Since  tX ,  is fuzzy Hausdorff space, there exist 

yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu   yv  0 . Let us take 0    1 such 

that )(yvy   0 , as )(yvy  1. Hence we see that { yv : y  0 }  is an open                      

p -shading of   in  tX , . As   is p -compact in  tX , , then { yv : y  0 }  has a 
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finite p -subshading, say {
kyv : y  0 } ( k  nJ )  such that )(yv

ky   for each 

y  0 . Now, let v 
1yv 

2yv   ….. 
nyv  and u 

1yu 
2yu   …… 

nyu . Thus we 

see that v  and u  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. v ,  u   t . Moreover, 0  ]1,0(1v  and )(xu  1, as 

)(xu
ky  1 for each k .  

Finally, we have to show that u  v  0 . As 
kyu 

kyv  0  implies that u 
kyv  0 , by 

distributive law, we see that u  v   u  (  
1yv 

2yv   …... 
nyv )  0 . 

Similar work for *p -compactness can be given.   

 

          Corollary 5.21: Let   be a p -compact (resp. *p -compact) fuzzy set in a fuzzy 

Hausdorff space  tX ,  (as def. 1.47) with 0  X . Let x  0 ( )(x  0 ) , then there 

exists u  t  such that )(xu  1 and  ]1,0(1u  c
0 . 

Proof: By theorem (5.20), there exist u ,  v  t  such that 1)( xu ,   0  ]1,0(1v  and 

u  v  0 . Hence ]1,0(1u  ]1,0(1v   . If not, there exists x  ]1,0(1u  ]1,0(1v  

  x   ]1,0(1u  and x   ]1,0(1v     )(xu  0  and )(xv  0    u  v    0. Hence 

]1,0(1u  0    and consequently ]1,0(1u  c
0 .     

Similar work for *p -compactness can be given. 

 

          Theorem 5.22: Let   and   be disjoint p -compact (resp. *p -compact) fuzzy 

sets in a fuzzy Hausdorff space  tX ,  (as def. 1.47) with 0  ,  0  X . Then there exist 

u ,  v  t  such that 0  ]1,0(1u ,   0  ]1,0(1v  and u  v  0 . 
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Proof: Suppose y  0 . Then y   0 , as   and   are disjoint. Since   is p -compact 

fuzzy set in  tX , , then by theorem (5.20), there exist yu ,  yv  t  such that )(yuy  1 ,   

0  ]1,0(1
yv  and yu   yv  0 . Let us take 0    1  such that )(yu y    0 , as 

)(yu y  1. Then we see that { yu : y  0 }  is an open p -shading of   in  tX , . Since 

  is p -compact in  tX , , then { yu : y  0 }  has a finite p -subshading, say              

{
kyu : y  0 } ( k  nJ )   such that )(yu

ky   for each y  0 .  Furthermore,   is 

p -compact, then { yv : x  0 }  has a finite p -subshading, say                                    

{
kyv : x  0 } ( k  nJ )   such that )(xv

ky    for each x   0 , as 0  ]1,0(1
kyv  for 

each k . Now, let u 
1yu   

2yu   …… 
nyu  and v 

1yv 
2yv   …...   

nyv . Hence 

we see that 0  ]1,0(1u  and 0  ]1,0(1v . Thus u  and v  are open fuzzy sets, as they 

are the union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t . 

Finally, we have to show that u  v  0 . We observe that 
kyu 

kyv  0  for each k  

implies that 
kyu  v  0  for each k , by distributive law, we see that u  v   

(
1yu 

2yu …… 
nyu )  v  0 . 

Similar proof of *p -compactness can be given. 

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(5.20), (5.22) and corollary (5.21) are not at all true. 

 

         Note: The p -compact (resp. *p -compact) fuzzy sets in fuzzy Hausdorff space 

(as def. 1.47) need not be closed. 

Consider the fuzzy topology t  in the example (5.16), then  tX ,  is fuzzy Hausdorff space 

(as def. 1.47) and also will serve the purpose. 
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          Theorem 5.23: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and   be a 

fuzzy set in X  with 0  X . If   is p -compact (resp. *p -compact) in  tX ,  and 

x  0  ( )(x  0 ) , then there exist u ,  v  t  such that )(xu  0 ,  0  ]1,0(1v  and 

u  v  0 . The converse of the theorem is not necessarily true in general.  

The proof is similar as that of theorem (5.20).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(5.17), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let   XI  

defined by )(a  0 ,  )(b  3.0 . Hence we observe that 0  }{b  and a  0 . Here,     

1u ,  2u  t  where )(1 au  0  and ]1,0(1
2
u  }{b . Therefore 0  ]1,0(1

2
u  and 

1u  2u  0 . Now, take   4.0 . But we see that   is not p -compact in  tX , , as 

)(buk    where b  0 , for k  1 ,  2 ,  3 . Thus the converse of the theorem is not true 

in general.  

Similar work for *p -compactness can be done. 

  

          Corollary 5.24: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and   be a 

fuzzy set in X  with 0  X . If   is p -compact (resp. *p -compact) in  tX ,  and 

x  0 ( )(x  0 ) , then there exists u  t  such that )(xu  0  and ]1,0(1u  c
0 . 

The proof is similar as that of corollary (5.21).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(5.17), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Let    XI  defined by 

)(a  0 ,  )(b  3.0 . Hence we observe that 0  }{b  and a  0  and. Now, 1u  t  

where )(1 au  0  and then ]1,0(1
1
u  }{a . Hence we have ]1,0(1

1
u  c

0 . Now, take 
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  4.0 . Thus we see that   is not p -compact, as )(buk    where b  0 , for k  1 ,  

2 ,  3 . Thus the converse is not true in general.    

The work is similar for *p -compactness can be given. 

  

          Theorem 5.25: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and  ,    be 

fuzzy sets in X  with 0 ,  0  X . If   and   are disjoint p -compact (resp.                  

*p -compact) fuzzy sets in  tX , , then there exist u ,  v  t  such that 0  ]1,0(1u ,  

0  ]1,0(1v  and u  v  0 . The converse of the theorem is not true in general. 

The proof is similar as that of theorem (5.22). 

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(5.17), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let  ,    XI  

with )(a  3.0 ,  )(b  0  and )(a  0 ,  )(b   1.0 . Thus we see that 0  }{a  and 

0  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u   }{a  and ]1,0(1

2
u  }{b . Hence we observe 

that 0  ]1,0(1
1
u  and 0  ]1,0(1

2
u  and 1u  2u  0 , where   and   are disjoint. 

Take   4.0 . Hence we observe that   and   are not p -compacts in  tX , , as 

)(auk    where a  0  and )(buk    where b  0 , for k  1 ,  2 ,  3 . Thus the 

converse of the theorem is not true in general. 

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(5.23), (5.25) and corollary (5.24) are not at all true. 

 

          The following example will show that the p -compact (resp. *p -compact) fuzzy 

sets in fuzzy Hausdorff space (as def. 1.48) need not be closed. 
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          Example 5.26: Consider the fuzzy topology t  in the example of the theorem (5.17), 

then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, Let    XI  defined by 

)(a  0 ,  )(b  3.0 . Hence we observe that 0  }{b . Now, take   2.0 . Clearly   is 

p -compact in  tX , . But   is not closed, as its complement c is not open in  tX , . 

Again, if we take   3.0 , then this example is also applicable for *p -compactness. 

 

          Theorem 5.27: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.49) and   be a 

fuzzy set in X  with )(x  0  for at least one x  X . If   is p -compact (resp.                  

*p -compact) in  tX , , then there exist u ,  v  t  such that rx  u ,  0  ]1,0(1v  and 

u  v  0 , where rx  is a fuzzy point in X . The converse is not true in general. 

Proof: Suppose  tX ,  is a fuzzy Hausdorff space and   is a p -compact fuzzy set in 

X . Let rx ,  sy  be two fuzzy points in X  with sy ( s   )  in  . Now, we see that 

x  y , as )(x  0 . As  tX ,  is fuzzy Hausdorff, then there exist 
syu ,  

syv  t  such that 

rx 
syu ,  sy 

syv and 
syu   

syv  0  and this is true for any value of s . Hence this is also 

true for s   . Let us take   1I  such that )(yv
sy   0 . Thus we see that                      

{
syv : sy   }   is an open p -shading of  . Since   is p -compact in  tX , , so 

{
syv : sy   }  has a finite p -subshading, say {

ksyv : sy   }  ( k  nJ )  such that 

)( yv
ksy   . Let v 

1syv 
2syv …… 

nsyv  and u 
1syu 

2syu …… 
nsyu . Thus 

we see that v  and u  are open fuzzy sets, as they are the union and finite intersection of 

open fuzzy sets respectively i.e. v  ,  u  t . Moreover, 0  ]1,0(1v  and rx  u , since 

rx   
ksyu for each k .  
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Finally, we claim that u  v  0 . As 
ksyu 

ksyv  0  for each k  implies that 

u 
ksyv  0 , by distributive law, we therefore observe that u  v   

u  (
1syv 

2syv …… 
nsyv )  0 . 

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(5.17). Let 1.0a  and 2.0b  be fuzzy points in X . Then  tX ,  is fuzzy Hausdorff space       

(as def. 1.49). Again, let   XI  defined by )(a  0 ,  )(b  6.0 . Hence we observe 

that 0  }{b . Now 1u ,  2u  t  where 1.0a  1u  and ]1,0(1
2
u  }{b . Hence                         

0   ]1,0(1
2
u  and 1u  2u  0 . Take   8.0 . Then we see that   is not p -compact 

in  tX , , as )(buk    where b  0 , for k  1 ,  2 ,  3 . Thus the converse of the 

theorem is not true in general.    

Similar work for *p -compactness can be given. 

 

          Corollary 5.28: Let  tX ,  be a fuzzy Hausdroff space (as def. 1.49) and   be a 

fuzzy set in X  with )(x  0  for at least one x  X . If   is p -compact (resp.                

*p -compact) in  tX , , then there exist u  t  such that rx  u  and  ]1,0(1u  c
0 , 

where rx  is a fuzzy point in X . The converse is not true in general. 

Proof: By theorem (5.27), there exists u ,  v   t  such that rx  u ,  0  ]1,0(1v   and 

u  v  0 . Hence ]1,0(1u   ]1,0(1v   . If not, there exists x  ]1,0(1u   ]1,0(1v  

  x  ]1,0(1u  and x   ]1,0(1v     0)( xu  and 0)( xv    u  v  0 . Hence 

]1,0(1u  0    and consequently ]1,0(1u  c
0 .    

Now, for the converse, consider fuzzy Hausdorff space (as def. 1.49) in the example of the 

theorem (5.27). Again, let   XI  defined by )(a  0 ,  )(b  6.0 . Hence we observe 
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that 0  }{b . Now, 1u  t  where 1.0a  1u  and ]1,0(1
1
u  }{a . Hence ]1,0(1

1
u  c

0 . 

Take   8.0 . Then we see that   is not p -compact in  tX ,  i.e. )(buk    where  

b  0 , for k  1 ,  2 ,  3 . Thus the converse of the theorem is not true in general.    

Similar work for *p -compactness can be given.  

 

          Theorem 5.29: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.49) and  ,    be 

disjoint fuzzy sets in X  with 0 ,  0  X . If   and   are p -compacts (resp.              

*p -compacts) in  tX , , then there exist u ,  v  t  such that 0  ]1,0(1u ,  

0  ]1,0(1v  and u  v  0 . The converse is not true in general. 

Proof: Let sy ( s  )  be a fuzzy point in  . Then sy  is not a fuzzy point in  , as   

and   are disjoint. Since   is p -compact, then by theorem (5.27), there exist                   

syu ,  
syv  t  such that sy 

syu ,  0  ]1,0(1
syv  and 

syu 
syv  0  and this is true for any 

value of s . Hence this is also true for s   . Let us take   1I  such that )(yu
sy    0 . 

Since sy 
syu , then {

syu : sy   }  is an open p -shading of  . Since   is                      

p -compact in  tX , , so {
syu : sy   }  has a finite p -subshading, say                     

{
ksyu : sy   }  ( k  nJ )  such that )(yu

ksy   .  Furthermore,   is p -compact, so 

{
ksyv : rx   }  has a finite p -subshading, say {

ksyv : rx    }  ( k  nJ )  such that 

)(xv
ksy   , as 0  ]1,0(1

ksyv  for each k . Now, let u = 
1syu 

2syu …… 
nsyu  and 

v = 
1syv    

2syv  …… 
nsyv . Thus we see that 0  ]1,0(1u  and 0  ]1,0(1v . 

Hence u  and v  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. u ,  v  t .  
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Finally, we have to show that u  v  0 . First we observe that 
ksyu 

ksyv  0  for each k  

implies that 
ksyu  v  0 , by distributive law, we see that u  v  (

1syu 
2syu …… 


nsyu )  v  0 . 

Now, for the converse, consider fuzzy Hausdorff space (as def. 1.49) in the example of the 

theorem (5.27). Again, let  ,    XI  with )(a  3.0 ,  )(b  0  and )(a  0 ,  

)(b  1.0 . Thus we see that 0  }{a  and 0  }{b . Now 1u ,  2u  t  where 

]1,0(1
1
u  }{a  and ]1,0(1

2
u  }{b . Hence we observe that 0  ]1,0(1

1
u  and 

0  ]1,0(1
1
u  and 1u  2u  0 , where   and   are disjoint. Take   4.0 . Hence we 

observe that   and   are not p -compacts in  tX , , as )(auk    where a  0  and 

)(buk    where b  0 , for k  1 ,  2 ,  3 . Thus the converse of the theorem is not true 

in general. 

Similar work for *p -compactness can be given.  

 

          The following example will show that the p -compact (resp. *p -compact) fuzzy 

sets in fuzzy Hausdorff space (as def. 1.49) need not be closed. 

          Example 5.30: Let X  },{ ba ,  I  ]1,0[  and 0    1. Again, let 1u ,  2u ,  

3u  XI  with )(1 au  6.0 ,  )(1 bu  0 ; )(2 au  0 ,  )(2 bu  8.0  and )(3 au  6.0 ,  

)(3 bu  8.0 . Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then  tX ,  is an fts. Now, let 4.0a  and 7.0b  be 

fuzzy points in X . Therefore  tX ,  is also a fuzzy Hausdorff space (as def. 1.49). Again, 

let   XI  defined by )(a  0 ,  )(b  9.0 . Take   5.0 . Then clearly   is                    

p -compact in  tX , . But   is not closed, as its complement c  is not open in  tX , . 

Similar work for *p -compactness can be given.  
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          Theorem 5.31: Let   be a p -compact (resp. *p -compact) fuzzy set in a fuzzy 

Hausdorff space  tX ,  (as def. 1.50) with 0  X . Let x  0  ( )(x  0 ) , then there 

exist u ,  v  t  such that )(xu  1 ,   0  ]1,0(1v  and u  1 v .  

Proof: Suppose y  0 . Then clearly x  y . Since  tX ,  is fuzzy Hausdorff space, there 

exist yu ,  yv  t  such that )(xuy  1 ,  )(yvy  1 and yu  1 yv . Let us take 0    1 

such that )(yvy    0 , as )(yvy  1. Thus we see that { yv : y  0 }  is an open                 

p -shading of   in  tX , . Since   is p -compact in  tX , , then { yv : y  0 }  has a 

finite p -subshading, say {
kyv : y  0 } ( k  nJ )  such that )(yv

ky   for each 

y  0 . Now, let v 
1yv 

2yv   ….. 
nyv  and u 

1yu 
2yu   …… 

nyu . Thus we 

see that v  and u  are open fuzzy sets, as they are the union and finite intersection of open 

fuzzy sets respectively i.e. v ,  u   t . Moreover, 0  ]1,0(1v  and )(xu  1, as 

)(xu
ky  1 for each k .  

Finally, we have to show that u  1 v . Since yu  1 yv  implies that u  1 yv . As 

)(xu
ky  1 )(xv

ky   for all x  X  and for each k , then u  1 v . If not, then there exist 

x  X  such that )(xu y  1 )(xvy . We have )(xuy    )(xu
ky  for each k . Then for some 

k ,  )(xu
ky  1 )(xv

ky . But this is a contradiction, as )(xu
ky   1 )(xv

ky  for each k . 

Hence u  1 v . 

Similar proof for *p -compactness can be given.  

 

          Theorem 5.32: Let   and   be disjoint p -compact (resp. *p -compact) fuzzy 

sets in fuzzy Hausdorff space  tX ,  (as def. 1.50) with 0  ,  0  X . Then there exist 

u ,  v  t  such that 0  ]1,0(1u ,   0  ]1,0(1v  and u  1 v . 
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Proof: Suppose y  0 . Then y   0 , as   and   are disjoint. Since   is p -compact 

in  tX , , then by theorem (5.31), there exist yu ,  yv  t  such that )(yuy  1 ,   

0  ]1,0(1
yv  and yu  1 yv . Let us assume that 0    1 such that )( yu y    0 , as 

)(yu y  1. Then we see that { yu : y  0 }  is an open p -shading of   in  tX , . Since 

  is p -compact in  tX , , then { yu : y  0 }  has a finite p -subshading, say          

{
kyu : y  0 } ( k  nJ )   such that )(yu

ky   for each y  0 .  Furthermore,   is 

p -compact , then { yv : x  0 }  has a finite p -subshading, say                               

{
kyv : x  0 } ( k  nJ )   such that )(xv

ky    for each x   0 , as 0  ]1,0(1
kyv  for 

each k . Now, let u 
1yu   

2yu   …… 
nyu  and v 

1yv 
2yv   …...   

nyv . Hence 

we see that 0  ]1,0(1u  and 0  ]1,0(1v . Thus u  and v  are open fuzzy sets, as they 

are the union and finite intersection of open fuzzy sets respectively i.e. u ,  v  t . 

Finally, we have to show that u  1 v . Since 
kyu  1

kyv  for each k  implies that 

kyu  1 v  for each k  and it is clear that u  v1 .  

Similar proof of *p -compactness can be given.  

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(5.31) and (5.32) are not at all true. 

 

            Note: The p -compact (resp. *p -compact) fuzzy sets in fuzzy Hausdorff space 

(as def. 1.50) need not be closed . 

Consider the fuzzy topology t  in the example (5.16), then  tX ,  is fuzzy Hausdorff space 

(as def. 1.50) and also will serve the purpose. 
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          Theorem 5.33: Let   be a p -compact (resp. *p -compact) fuzzy set in a fuzzy 

regular space  tX ,  (as def. 1.51) with 0  X . If for each x  0 , there exist u  ct  

with )(xu  0 , we have v ,  w  t  such that )(xv  1, u  w ,  0  ]1,0(1v  and 

v  1 w .   

Proof: Let  tX ,  be a fuzzy regular space and   be a p -compact fuzzy set in  tX , . 

Then for each x  0 , there exists u  ct  with )(xu  0 . As  tX ,  is fuzzy regular, we 

have  xv ,  xw  t  such that )(xvx  1 ,  xu  xw  and xv  1 xw . Let us take 0    1, 

then )(xvx    0 , as )(xvx  1. Hence we see that { xv : x  0 }  is an open                       

p -shading of  in  tX , . Since   is p -compact in  tX , , then { xv : x  0 }  has a 

finite p -subshading, say {
kxv : x  0 } ( k  nJ )   such that )(xv

kx    for each 

x  0 . Now, let v   
1xv 

2xv   ….. 
nxv  and w   

1xw 
2xw   ….. 

nxw . Thus v  

and w  are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 

respectively i.e. v ,  w  t . Moreover, 0  ]1,0(1v ,  )(xv  1 and u  w , as u 
kxw  

for each k .  

Finally, we have to show that v  1 w . First we observe that 
kxv  1

kxw  for each k  

implies that 
kxv  1 w  for each k  and hence it is clear that v  1 w .   

Similar proof for *p -compactness can be given.  

 

          Theorem 5.34: Let  tX ,  be an fts and   be a fuzzy set in X  with 0  X . If 0  

is compact in  tX , , then   is p -compact in  tX , . The converse is not true in 

general.       

Proof: Suppose 0  is compact in  tX , . Let M  { iv : i  J }  is an open p -shading 

of   in  tX , . Then the family W  { )( iv : i  J }  is an open cover of 0  in  tX , . 
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For, let x  0 . Then there exists a 
0i

v  M  such that )(
0

xvi   . Therefore x  )(
0i

v  

and thus )(
0iv W . Since 0  is compact in  tX , , so W  has a finite subcover, say 

{ )(
kiv : k  nJ } . Then the family {

kiv : k  nJ }  forms a finite p -subshading of M  

and hence   is p -compact in  tX , .   

Now, for the converse, we consider the following example. 

Let X  },,{ cba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u ,  4u  XI  defined by  

)(1 au  3.0 ,  )(1 bu  9.0 ,  )(1 cu  1.0 ; )(2 au  5.0 ,  )(2 bu  4.0 ,  )(2 cu  6.0 ; 

)(3 au  5.0 ,  )(3 bu  9.0 ,  )(3 cu  6.0  and )(4 au   3.0 ,  )(4 bu  4.0 ,  )(4 cu  1.0 . Now, 

put t  { 0 ,  1u ,  2u ,  3u ,  4u ,  1} , then we see that  tX ,  is an fts . Let   XI  defined 

by )(a  8.0 ,  )(b  7.0 ,  )(c  0 . Then 0  },{ ba . Take   3.0 .Then clearly   

is p -compact in  tX , . Now, we have 3.0t  {  ,  }{b ,  X } . It is clear that 0  is not 

compact in  3.0, tX .    

 

          Theorem 5.35: Let    be a fuzzy set in X  with 0  X  and f :  tX ,   tX ,  

be  -level continuous and bijective mapping. If 0  is compact in  tX , , then )(f  is 

p -compact in  tX , . 

Proof: Let M  { iu : i  J }  be an open p -shading of )(f  in  tX , . As f  is                    

 -level continuous, then ))(( 1
iuf   t  and hence { ))(( 1

iuf  : i  J }  is an open 

cover of 0  in  tX , . Since 0  is compact in  tX , , then { ))(( 1
iuf  : i  J }  has a 

finite subcover, say { ))(( 1
kiuf  } ( k  nJ ) .  Now, if y  0)(f , then y  )(xf  for 

x  0 , as f  is bijective. But { ))(( 1
kiuf  }  is finite subcover of { ))(( 1

iuf  : i  J } , 

there exist some k  such that ))(( xfu
ki   implies that )(yu

ki    for each y  0)(f . 
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Thus {
ki

u : k  nJ }  is a finite p -subshading of M . Therefore )(f  is p -compact in 

 tX , .     

 

          Theorem 5.36: Let  TX ,  be a topological space,  )(, TX   be an fts and   be 

a fuzzy set in X  with 0  X . If   is p -compact (resp. *p -compact) in 

 )(, TX  , then 0  is compact in  TX , . The converse is not true in general. 

Proof: Suppose   is p -compact fuzzy set in  )(, TX  . Let W  { iV : i  J }  be an 

open cover of 0  in  TX , . Then, since for each iV , there exists a iu  )(T  such that 

iV   ]1,0(1
iu , we have W  { ]1,0(1

iu : i  J } . Then the family G  { iu : i  J }  is an 

open p -shading of   in  )(, TX  .  Since W  is an open cover of 0 , then there 

exists a 
0iV W  such that x 

0iV . But 
0iV   ]1,0(1

0


iu  for some 

0iu  )(T . Therefore 

x  ]1,0(1
0


iu  which implies that )(

0
xui   . By p -compactness of  , G  has a finite 

p -subshading, say {
kiu : k  nJ } . Then { ]1,0(1

kiu : k  nJ }   forms a finite subcover 

of W  and hence 0  is compact in  TX , .   

Now, for the converse, we consider the following example.  

Let X  },,{ cba ,  I  ]1,0[ ,  10   and T  { }{b ,  }{c ,  },{ cb ,   ,  X } . Then 

 TX ,  is a topological space. Let 1u ,  2u ,  3u  XI  with )(1 au  0 ,  )(1 bu  6.0 ,  

)(1 cu  0 ; )(2 au  0 ,  )(2 bu  0 ,  )(2 cu  8.0  and )(3 au  0 ,  )(3 bu  6.0 ,  )(3 cu  8.0 . 

Then )(T  {  1u ,  2u ,  3u ,  0 ,  1 }  and  )(, TX   is an fts. Again, let   XI  defined 

by )(a  0 ,  )(b  4.0 ,  )(c  3.0 . Then 0  },{ cb . Then clearly 0  is compact in 

 TX , . Now, take   9.0 . Then   is not p -compact in  )(, TX  ,  as there do not 
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exist ku  })({ T  ( k  1 ,  2 ,  3 )  such that )(buk   for b  0 . Thus the converse of 

the theorem is not necessarily true in general. 

The work is similar for *p -compactness can be given. 

 

          Theorem 5.37: Let  ,    XI . Then 00    0)(   . 

Proof: Let ),( yx  00   . Then x  0  and y  0 . So )(x  0  and )(y  0 . 

Therefore )(   ),( yx  0  implies that ),( yx  0)(   . Hence 00    0)(   . 

Again, let ),( yx  0)(   . Then )(   ),( yx  0 . Thus )(x  0  and )(y  0  

implies that x  0  and y  0 . Therefore ),( yx  00   . Hence 0)(    00   . 

Therefore 00    0)(   . 

 

          Theorem 5.38: Let   and   be p -compact (resp. *p -compact) fuzzy sets in 

an fts  tX , . Then )(    is also p -compact (resp. *p -compact) in  ttXX  , . 

Proof: Suppose { iu : i  J }  is an open p -shading of   in  tX ,  i.e. )(xui    for 

each x  0  and { iv : i  J }  is an open p -shading of   in  tX ,  i.e. )(yvi   for 

each y  0 . Now, let M  { iu  iv : iu ,  iv  t }  be an open p -shading of )(    in 

 ttXX  , . Thus we see that )( ii vu  ),( yx min ( )(xui , )(yvi )  , for each 

),( yx  0)(   . As   and   are p -compact in  tX , , then { iu : i  J }  and              

{ iv : i  J }  have finite p -subshading, say {
kiu : k  nJ }   and {

kiv : k  nJ }  such 

that )(xu
ki

   and )(yv
ki

   for each x  0  and y  0  respectively. Hence we have 

M  has a finite p -subshading, say {
kiu 

kiv : k  nJ }  such that )(
kk ii vu  ),( yx   

min ( )(xu
ki , )(yv

ki
)    for each ),( yx  0)(   . Therefore )(    is p -compact 

in  ttXX  ,  
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Similar proof for *p -compactness can be given.     

 

           Definition 5.39: Let  tX ,  be an fts and 0    1 ,    I . A family M  of                  

 -open fuzzy sets is called a partial  - -shading, 0    1 (resp. partial                         

 - * -shading, 0    1), in short, p -shading (resp. *p -shading) of a fuzzy set   

in X  if for each x  0 ,  ( 0  X )  there exists a u  M  with )(xu    (resp. 

)(xu   ). A subfamily of a p -shading (resp. *p -shading) of   which is also a 

p -shading (resp. *p -shading) of   is called a p -subshading (resp.                        

*p -subshading) of  .  

If )(x  0  for all x  X  i.e. 0  X , then p -shading (resp. *p -shading) and                 

 - -shading (resp.  - * -shading) will be same.   

 

          Example 5.40: Let X  },,{ cba , I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  

2u ,  3u  XI  defined by )(1 au  1 ,  )(1 bu  1 ,  )(1 cu  3.0 ; )(2 au  4.0 ,  )(2 bu  2.0 ,  

)(2 cu  1 and )(3 au  4.0 ,  )(3 bu  2.0 ,  )(3 cu  3.0 . Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then 

 tX ,  is an fts. Again, let   XI  with )(a  0 ,  )(b  4.0 ,  )(c  6.0 . Then 

0  },{ cb . Now, take   2.0  and   7.0 . Hence we observe that 1u ,  2u ,  3u  are                 

 -open fuzzy sets and )(1 bu   ,  )(2 cu    for b ,  c  0 . Therefore { 1u ,  2u }  is an 

p -shading of   in  tX , .  

Again, if we take   1, then { 1u ,  2u }  is an *p -shading of   in  tX , .   

 

           Definition 5.41: Let  tX ,  be an fts and 0    1 ,    I . A fuzzy set   in X  is 

said to be partially  - -compact, 0    1 (resp. partially  - * -compact, 0    1), 
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in short, p -compact (resp. *p -compact) iff every p -shading (resp.                       

*p -shading) of   has a finite p -subshading (resp. *p -subshading).    

 

          Theorem 5.42: Every p -compact (resp. *p -compact) fuzzy set in an fts is 

p -compact (resp. *p -compact). But the converse is not true. 

The proof is straightforward. 

Now, for the converse, we consider the following example. 

Let X  },,{ cba , I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  2u ,  3u  XI  defined by 

)(1 au  2.0 ,  )(1 bu  1 ,  )(1 cu  1; )(2 au  1 ,  )(2 bu  4.0 ,  )(2 cu  7.0  and )(3 au  2.0 ,  

)(3 bu  4.0 ,  )(3 cu  7.0 . Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then  tX ,  is an fts. Again, let 

  XI  with )(a  9.0 ,  )(b  4.0 ,  )(c  0 . Then 0  },{ ba . Now, take   7.0 . 

Clearly   is p -compact in  tX , . Again take   5.0 . Hence we observe that there is 

no finite  -open fuzzy sets in  tX ,  such that )(auk   for  k  1 ,  2 ,  3  and a  0 . 

Thus   is not p -compact in  tX , . 

Similarly we can prove for *p -compact fuzzy sets.     
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Chapter Six 

Q -Compact Fuzzy Sets 

 

          In this chapter, we have introduced Q -compact and Q -compact fuzzy sets. 

Furthermore, we have established some theorems, corollaries and examples of Q -compact 

fuzzy sets and discussed different characterizations of Q -compact and Q -compact fuzzy 

sets. Also we have defined  - Q -compact and  - Q -compact fuzzy sets and found 

different properties between Q -compact and  -Q -compact fuzzy sets, Q -compact and 

 - Q -compact fuzzy sets.   

 

          Definition 6.1: Let  tX ,  be an fts and   be a fuzzy set in X . Let                     

M  { iu : i  J }  be a family of fuzzy sets. Then M  }{ iu  is called a Q -cover of   iff 

)(x  )(xui  1 for each x  X  and for some iu . If each iu  is open, then M  }{ iu  is 

called an open Q -cover of  . A subfamily of Q -cover of a fuzzy set   in X  which is 

also a Q -cover of   is called Q -subcover of  . 

 

          Example 6.2: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u  XI  defined by 

)(1 au  4.0 ,  )(1 bu  1.0  and )(2 au  3.0 ,  )(2 bu  2.0 . Again, let   XI  with 

)(a  6.0 ,  )(b  8.0 . Hence we observe that )(a  )(1 au  1 ,  )(b  )(2 bu  1. 

Therefore { 1u ,  2u }  is a Q -cover of  .  

 

          Example 6.3: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u  XI  defined by 

)(1 au  1 ,  )(1 bu  3.0 ; )(2 au  4.0 ,  )(2 bu  1 and )(3 au  4.0 ,  )(3 bu  3.0 .                
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Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then  tX ,  is an fts. Again, let   XI  with )(a  2.0 ,  

)(b  6.0 . Hence we observe that )(a  )(1 au  1 ,  )(b  )(2 bu  1. Therefore                  

{ 1u ,  2u }  is an open Q -cover of   in  tX , .  

 

          Definition 6.4: A fuzzy set   in X  is said to be Q -compact iff every open         

Q -cover of   has a finite Q -subcover i.e. there exist 
1i

u ,  
2i

u ,  ….. ,
ni

u  }{ iu  such that 

)(x  )(xu
ki

 1 for each x  X . If     and   XI , then   is also Q -compact i.e. 

every super sets of Q -compact fuzzy set is also Q -compact.  

 

          Theorem 6.5: Let  tX ,  be an fts, A  X  and   be a fuzzy set in A . Then   is 

Q -compact in  tX ,  iff   is Q -compact in  AtA, .      

Proof: Suppose   is Q -compact in  tX , . Let { iu : i  J }  be an open Q -cover of   in 

 AtA, . Then there exist iv  t  such that iu  iv | A  iv . Hence )(x  )(xui  1 for each 

x  A  and consequently )(x  )(xvi  1 for each x  A . Therefore { iv : i  J }  is an 

open Q -cover of   in  tX , . As   is Q -compact in  tX , , then   has finite                     

Q -subcover i.e. there exist 
ki

v  }{ iv  ( k  nJ )  such that )(x  )(xv
ki

 1 for each 

x  A . But, then )(x  )()|( xAv
ki  1 for each x  A  and therefore )(x  )(xu

ki  1 

for each x  A . Thus }{ iu  contains a finite Q -subcover {
1iu ,  

2iu ,  ….. ,  
niu }  and hence 

  is Q -compact in  AtA, .                     

Conversely, suppose   is Q -compact in  AtA, . Let { iv : i  J }  be an open Q -cover of 

  in  tX , . Set iu  iv | A , then )(x  )(xvi  1 for each x  A  and hence  

)(x  )()|( xAvi  1 for each x  A   implies that )(x  )(xui  1 for each x  A . But 

iu  At , so { iu : i  J }  is an open Q -cover of   in  AtA, . As   is Q -compact in 
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 AtA, , then there exist 
ki

u  }{ iu  ( k  nJ )  such that )(x  )(xu
ki

 1 for each x  A . 

Thus we have )(x  )()|( xAv
ki  1 for each x  A  and consequently )(x  )(xv

ki  1 

for each x  A . Thus }{ iv  contains a finite Q -subcover {
1iv ,  

2iv ,  ….. ,  
niv }  and 

therefore   is Q -compact in  tX , .  

 

          Corollary 6.6: Let  *, tY  be a fuzzy subspace of  tX ,  and A  Y  X . Let   be 

a fuzzy set in A . Then   is Q -compact in  tX ,  if and only if   is Q -compact in 

 *, tY . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by preceding theorem 

(6.5),   is Q -compact in  tX ,  or  *, tY  if and only if   is Q -compact in  AtA,  or 

 *, AtA . But At  *
At .    

 

          Theorem 6.7: Let  tX ,  be an fts and   be a Q -compact fuzzy set in X . If 

    and   ct , then   is also Q -compact in  tX , . 

Proof: Let { iu : i  J }  be an open Q -cover of  . Then }{ iu  c  is an open Q -cover 

of  . As )(x  )(xui  1 for each x  X , then )(x  max ( )(xui , )(c x )  1 for each 

x  X . Hence )(x  )(xui  )(x  )(xui  1 for each x  X . Since   is Q -compact 

in  tX , , then each open Q -cover of   has a finite Q -subcover i.e. there exist a finite 

subset nJ  J  such that {
kiu : k  nJ }  c  is an open Q -cover of  . Then           

{
ki

u : k  nJ }  is a finite subfamily of  { iu : i  J }   and is an open Q -cover of   i.e. 

{
ki

u : k  nJ }  is a finite Q -subcover of  . Hence   is Q -compact. 
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          Theorem 6.8: Let  tX ,  be an fts and   and   be Q -compact fuzzy sets in X . 

Then    is also Q -compact in  tX , . 

Proof: Let M  { iu : i  J }  be an open Q -cover of    . Then M  is open Q -cover 

of both   and  . Since   is Q -compact in  tX , , then each open Q -cover of    has a 

finite Q -subcover i.e. there exist, say 
kiu  M  ( k  nJ )  such that )(x  )(xu

ki  1 for 

each x  X . Again,   is Q -compact in  tX , , then each open Q -cover of   has a finite               

Q -subcover i.e. there exist, say 
riu  M  ( r  nJ )  such that )(x  )(xu

ri  1 for each 

x  X . Therefore {
kiu ,  

riu }  is a finite Q -subcover of M . Hence     is Q -compact 

in  tX , .   

 

          Theorem 6.9: Let   and   be Q -compact fuzzy sets in an fts  tX , . Then    

is also Q -compact in  tX , . 

Proof: Since     ,       and  ,    are Q -compacts in  tX , , then    

is also Q -compact in  tX , .     

 

          Theorem 6.10: Let  tX ,  be an fts and   be a fuzzy set in X . If every family of 

closed fuzzy sets in  tX ,  which has empty intersection has a finite subfamily with empty 

intersection, then   is Q -compact. The converse is not true in general. 

Proof: Let { iu : i  J }  be an open Q -cover of   i.e. )(x  )(xui  1 for each x  X . 

By the first condition of the theorem, we have 
Ji

c
iu



 X0 . Hence we can write 
Ji

iu


 X1 . 

Again, by the second condition, we have 
n

k
Jk

c
iu



 X0  implies that 
n

k
Jk

iu


 X1  and 
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consequently )(x  )(xu
ki

 1 for each x  X . Hence it is clear that {
ki

u : k  nJ }  is a 

finite Q -subcover of { iu : i  J } . Therefore   is Q -compact.  

Now, for the converse, we consider the following example. 

Let X  },{ ba  and I  ]1,0[ . Let u ,  v  XI  defined by )(au  4.0 ,  )(bu  3.0  and 

)(av  6.0 ,  )(bv  8.0 . Take t  { 0 ,  u ,  v ,  1} , then  tX ,  is an fts. Let   XI  with 

)(a  8.0 ,  )(b  9.0 . Clearly   is Q -compact in  tX , . Now, closed fuzzy sets are 

)(auc  6.0 ,  )(buc  7.0  and )(avc  4.0 ,  )(bvc  2.0 . Hence We observe that 

cu  cv  0 . Therefore the converse of the theorem is not necessarily true.       

 

          The following example will show that the Q -compact fuzzy sets in an fts need not 

be closed. 

          Example 6.11: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u  XI  defined by  

)(1 au  2.0 ,  )(1 bu  4.0  and )(2 au  5.0 ,  )(2 bu  6.0 . Now, put t  { 0 ,  1u ,  2u , 1} , 

then we see that  tX ,  is an fts. Let   XI  defined by )(a  9.0 ,  )(b  7.0 . Clearly 

  is Q -compact in  tX , . But   is not closed, as its complements c  is not open in 

 tX , . 

 

          The following example will show that the subsets of Q -compact fuzzy set in an fts 

need not be Q -compact. 

            Example 6.12: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u  XI  defined by 

)(1 au  3.0 ,  )(1 bu  5.0  and )(2 au  6.0 ,  )(2 bu  7.0 . Now, put t  { 0 ,  1u ,  2u ,  1} , 

then we see that  tX ,  is an fts. Let  ,   XI  defined by )(a  8.0 ,  )(b  6.0  and 
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)(a  3.0 ,  )(b  6.0 . Hence we see that    . Clearly   is Q -compact in  tX , . 

But )(a  )(auk  1 for a  X  and k  1 ,  2 . Hence   is not Q -compact in  tX , .   

    

          Theorem 6.13: Let   be a Q -compact fuzzy set in fuzzy 1T -space  tX ,                

(as def. 1.45) with 0  X . Let x  0 ( )(x  0 ) , then there exist u ,  v  t  such that 

)(xu  1 and 0  ]1,0(1v .  

Proof: Let y  0 . Then clearly x  y . As  tX ,  is fuzzy 1T -space, then there exist                

yu ,  yv  t  such that )(xu y  1 ,  )(yu y  0  and )(xvy  0 ,  )(yvy  1. Therefore 

)(x  )(xu y  1 ,  x  X  and )(y  )(yvy  1 ,   y  0  i.e. { yu ,  yv : y  0 }  is an 

open Q -cover of  . Since   is Q -compact fuzzy set in  tX , , then   has a finite                   

Q -subcover i.e. there exist 
1yu ,  

2yu ,  ……. ,  
nyu  }{ yu  and 

1yv ,  
2yv ,  ……. ,  

nyv  }{ yv  such that )(x  )(xu
ky  1 for each x  X  when )(x  0  and some 

kyu  }{ yu  and )( y  )(yv
ky  1 for each y  X  when )( y  0  and some 

kyv  }{ yv . 

Now, let v 
1yv 

2yv   ….. 
nyv  and u 

1yu 
2yu   …… 

nyu . Hence v  and u  

are open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 

respectively i.e. v ,  u  t . Furthermore, 0  ]1,0(1v  and )(xu  1, as )(xu
ky  1 for 

each k . 

 

          Theorem 6.14: Let   and   be disjoint Q -compact fuzzy sets in fuzzy 1T -space 

 tX ,  (as def. 1.45) with 0 ,  0   X . Then there exist u ,  v  t  such that 

0  ]1,0(1u  and  0  ]1,0(1v . 

Proof: Let y  0 . Then y  0 , as   and   are disjoint. Since   is Q -compact in 

 tX , , then by theorem (6.13), there exist yu ,  yv  t  such that )(yuy  1 and  
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0  ]1,0(1
yv . As )(yuy  1, then )(x  )(xvy  1 ,  x  X  and )( y  )(yu y  1 ,  

y  0  i.e. { yv ,  yu : y  0 }  is an open Q -cover of  . Since   is Q -compact fuzzy 

set in  tX , , then   has a finite Q -subcover i.e. there exist 
1yv ,  

2yv ,  ……. ,  
nyv  }{ yv  

and   
1yu ,  

2yu  ,  ……. ,  
nyu  }{ yu  such that )(x  )(xv

ky  1 for each x  X  when 

)(x  0  and some 
kyv  }{ yv  and )( y  )( yu

ky  1 for each y  X  when )( y  0  

and some 
kyu  }{ yu . Again, since   is Q -compact in  tX , , then we have 

)(x  )(xv
ky  1 for each x  X  when )(x  0  and some 

kyv  }{ yv  and 

)( y  )( yu
ky  1 for each y  X  when )( y  = 0 and some 

kyu  }{ yu  and also  

0  ]1,0(1
kyv  for each k . Now, let u 

1yu   
2yu   …… 

nyu  and v 
1yv 

2yv   

…... 
nyv . Thus we see that 0  ]1,0(1u  and 0  ]1,0(1v .  Hence u  and v  are open 

fuzzy sets, as they are the union and finite intersection of open fuzzy sets respectively i.e. 

u ,  v  t .    

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(6.13) and (6.14) are not at all true.   

 

          The following example will show that the Q -compact fuzzy sets in fuzzy 1T -space 

(as def. 1.45) need not be closed.  

          Example 6.15: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u  XI  defined by  

)(1 au  1 ,  )(1 bu  0  and )(2 au  0 ,  )(2 bu  1. Now, put t  { 0 ,  1u ,  2u ,  1} , then we 

see that  tX ,  is a fuzzy 1T -space. Let   XI  defined by )(a  6.0 ,  )(b  4.0 . 

Clearly   is Q -compact in  tX , . But   is not closed, as its complement c  is not open 

in  tX , .   
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          Theorem 6.16: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and   be a fuzzy set in 

X  with 0  X . If   is Q -compact in  tX ,  and x  0  ( )(x  0 ) , then there exist 

u ,  v  t  such that )(xu  0  and 0  ]1,0(1v . The converse is not true in general.   

The proof is similar as theorem (6.13). 

Now, for the converse, we give the following example. 

Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u  XI  defined by  )(1 au  2.0 ,  )(1 bu   0 ; 

)(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put t  { 0 ,  1u ,  2u ,  3u ,  

1 } , then we see that  tX ,  is a fuzzy 1T -space. Again, let   XI  defined by )(a  0 ,  

)(b  3.0 . Hence we observe that 0  }{b  and a  0 . Here 1u ,  2u  t  where 

)(1 au  0  and ]1,0(1
2
u  }{b . Hence 0  ]1,0(1

2
u . But we see that   is not                        

Q -compact in  tX , , as )(a  )(auk  1 for a  X  and k  1 ,  2 ,  3 . Thus the 

converse of the theorem is not true in general.    

 

          Theorem 6.17: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and  ,    be fuzzy 

sets in X  with 0 ,  0  X . If    and   are disjoint Q -compacts in  tX , , then there 

exist u ,  v  t  such that 0  ]1,0(1u  and 0  ]1,0(1v . The converse is not true in 

general.   

Similar proof as theorem (6.14). 

Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(6.16). Let  ,    XI  with )(a  3.0 ,  )(b  0  and )(a  0 ,  )(b  1.0 . Thus we 

see that 0  }{a  and 0  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u  }{a  and 

]1,0(1
2
u  }{b . Hence we observe that 0  ]1,0(1

1
u  and 0  ]1,0(1

2
u , where   and 

  are disjoint. But   and   are not Q -compacts in  tX , , as )(b  )(buk  1 for 
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b  X  and )(a  )(auk  1 for a  X  and k  1 ,  2 ,  3 . Thus the converse of the 

theorem is not true in general. 

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(6.16) and (6.17) are not at all true.   

 

          The following example will show that the Q -compact fuzzy sets in fuzzy 1T -space 

(as def.  1.46) need not be closed. 

           Example 6.18: Consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(6.16). Again, let   XI  defined by )(a  9.0 ,  )(b  8.0 . Clearly   is Q -compact in 

 tX , . But   is not closed, as its complement c  is not open in  tX , .  

 

          Theorem 6.19: Let   be a Q -compact fuzzy set in fuzzy Hausdorff space  tX ,     

(as def. 1.47) with 0  X . Suppose x  0  ( )(x  0 ) , then there exist u ,  v  t  such 

that )(xu  1 ,   0  ]1,0(1v  and u  v  0 .  

Proof: Let y  0 . Then clearly x  y . As  tX ,  is fuzzy Hausdorff, then there exist 

yu ,  yv  t  such that )(xu y  1 ,  )(yvy  1 and yu   yv  0 . Hence )(x  )(xu y  1 ,  

x  X  and )(y  )( yvy  1 ,   y  0  i.e. { yu ,  yv : y  0 }  is an open Q -cover of  . 

Since   is Q -compact in  tX , , then there exist 
1yu ,  

2yu  ,  ……. ,  
nyu  }{ yu  and 

1yv ,  

2yv ,  ……. ,  
nyv  }{ yv  such that )(x  )(xu

ky  1 for each x  X  when )(x  0  and 

some 
kyu  }{ yu  and )(y  )(yv

ky  1 for each y  X  when )(y  0  and some 

kyv  }{ yv . Now, let v   
1yv 

2yv   ….. 
nyv  and u   

1yu 
2yu   …… 

nyu . Then 

we see that v  and u  are open fuzzy sets, as they are the union and finite intersection of 
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open fuzzy sets respectively i.e. v ,  u  t . Furthermore, 0  ]1,0(1v  and )(xu  1, as 

)(xu
ky  1 for each k . 

Finally, we have to show that u  v  0 . As 
kyu 

kyv  0  implies u 
kyv  0 , by 

distributive law, we see that u  v   u  (  
1yv 

2yv   …... 
nyv )  0 . 

 

            Corollary 6.20: Let   be a Q -compact fuzzy set in fuzzy Hausdorff space  tX ,  

(as def. 1.47) with 0  X . Let x  0  ( )(x  0 ) , then there exists u  t  such that 

)(xu  1 and  ]1,0(1u  c
0 . 

Proof: By theorem (6.19), there exist u ,  v  t  such that )(xu  1 ,   0  ]1,0(1v  and 

u  v  0 . Hence ]1,0(1u  ]1,0(1v   . If not, there exists x  ]1,0(1u  ]1,0(1v  

  x   ]1,0(1u  and x   ]1,0(1v     )(xu  0  and )(xv  0    u  v    0. Hence 

]1,0(1u  0    and consequently ]1,0(1u  c
0 .        

 

          Theorem 6.21: Let   and   be disjoint Q -compact fuzzy sets in fuzzy Hausdorff 

space  tX ,  (as def. 1.47) with 0 ,  0  X . Then there exist u ,  v  t  such that 

0  ]1,0(1u ,   0  ]1,0(1v  and u  v  0 . 

Proof: Let y  0 . Then y  0 , as   and   are disjoint. Since   is Q -compact in 

 tX , , then by theorem (6.19), there exist yu ,  yv  t  such that )(yu y  1 ,   

0  ]1,0(1
yv  and yu   yv  0 . As )(yu y  1, then )(x  )(xvy  1 ,  x  X   and 

)(y  )(yu y  1 ,  y  0  i.e. { yv ,  yu : y  0 }  is an open Q -cover of  . Since    is 

Q -compact in  tX , , then there exist 
1yv ,  

2yv ,  ....… ,  
nyv  }{ yv  and 

1yu ,  
2yu ,  ……. ,  

nyu  }{ yu  such that )(x  )(xv
ky  1 for each x  X  when )(x  0  and some 
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kyv  }{ yv  and )(y  )(yu
ky  1 for each y  X  when )(y  0  and some 

kyu  }{ yu . 

Again, since   is Q -compact in  tX , , then we have )(x  )(xv
ky  1 for each x  X  

when )(x  0  and some 
kyv  }{ yv  and )(y  )(yu

ky  1 for each y  X  when 

)(y  0  and some 
kyu  }{ yu  and also 0  ]1,0(1

kyv  for each k . Now, let u   
1yu   

2yu   …… 
nyu  and v   

1yv 
2yv   …..  

nyv . Thus we see that 0  ]1,0(1u  and 

0  ]1,0(1v .  Hence u  and v  are open fuzzy sets, as they are the union and finite 

intersection of open fuzzy sets respectively i.e. u ,  v  t .   

Finally, we have to show that u  v  0 . As 
kyu 

kyv  0  implies 
kyu  v  0 , by 

distributive law, we see that u  v   (
1yu 

2yu   …… 
nyu )  v  0 . 

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(6.19), (6.21) and corollary (6.20) are not at all true. 

 

          Note: The Q -compact fuzzy sets in fuzzy Hausdorff space (as def. 1.47) need not 

be closed. 

Consider the fuzzy topology t  in the example (6.15), then  tX ,  is also a fuzzy Hausdorff 

space (as def. 1.47) and will serve the purpose. 

 

          Theorem 6.22: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and   be a 

fuzzy set in X  with 0  X . If   is Q -compact in  tX ,  and x  0 ( )(x  0 ) , then 

there exist u ,  v  t  such that )(xu  0 ,  0  ]1,0(1v  and u  v  0 . The converse of 

the theorem is not necessarily true in general.  

The proof is similar as that of theorem (6.19).  
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Now, for the converse, consider the fuzzy topology t  in the example of the theorem (6.16) 

then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let   XI  defined by 

)(a  0 ,  )(b  3.0 . Hence we observe that 0  }{b  and a  0 . Here 1u ,  2u  t  

where )(1 au  0  and ]1,0(1
2
u  }{b . Hence 0  ]1,0(1

2
u  and 1u  2u  0 . But we see 

that   is not Q -compact in  tX , , as )(a  )(auk  1 for a  X  and k  1 ,  2 ,  3 . 

Thus the converse of the theorem is not true in general.    

    

          Corollary 6.23: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and   be a 

fuzzy set in X  with 0  X . If   is Q -compact in  tX ,  and x  0 ( )(x  0 ) , then 

there exists u  t  such that )(xu  0  and ]1,0(1u  c
0 .  

The proof is similar as that of corollary (6.20).  

Now, for the converse, consider the fuzzy topology t  in the example of the theorem 

(6.16), then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Let    XI  defined by 

)(a  0 ,  )(b  3.0 . Hence we observe that 0  }{b  and a  0 . Now 1u  t  where 

)(1 au  0  and then ]1,0(1
1
u  }{a . Hence we have ]1,0(1

1
u  c

0 . But   is not                 

Q -compact, as )(a  )(auk  1 for a  X  and k  1 ,  2 ,  3 . Thus the converse is not 

true in general.  

   

          Theorem 6.24: Let  tX ,  be a fuzzy Hausdorff space (as def. 1.48) and  ,    be 

fuzzy sets in X  with 0 ,  0  X . If   and   are disjoint Q -compacts in  tX , , then 

there exist u ,  v  t  such that 0  ]1,0(1u ,  0  ]1,0(1v  and u  v  0 . The 

converse of the theorem is not true in general. 

The proof is similar as that of theorem (6.21). 
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Now, for the converse, consider the fuzzy topology t  in the example of the theorem (6.16) 

then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let  ,    XI  with 

)(a  3.0 ,  )(b  0  and )(a  0 ,  )(b   1.0 . Thus we see that 0  }{a  and 

0  }{b . Now 1u ,  2u  t  where ]1,0(1
1
u   }{a  and ]1,0(1

2
u  }{b . Hence we observe 

that 0  ]1,0(1
1
u ,  0  ]1,0(1

2
u  and 1u  2u  0 , where   and   are disjoint. But   

and   are not Q -compacts in  tX , , as )(b  )(buk  1 for b  X  and 

)(a  )(auk  1 for a  X  and k  1 ,  2 ,  3 . Thus the converse of the theorem is not 

true in general. 

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(6.22), (6.24) and corollary (6.23) are not at all true. 

           

          The following example will show that the Q -compact fuzzy sets in fuzzy Hausdorff 

space (as def. 1.48) need not be closed.      

          Example 6.25: Consider the fuzzy topology t  in the example of the theorem (6.16), 

then  tX ,  is also a fuzzy Hausdorff space (as def. 1.48). Again, let   XI  defined by 

)(a  9.0 ,  )(b  8.0 . Clearly   is Q -compact in  tX , . But   is not closed, as its 

complement c  is not open in  tX , .  

  

          Theorem 6.26: Let   be a Q -compact fuzzy set in fuzzy Hausdorff space  tX ,     

(as def. 1.50) with 0  X . Suppose x  0  ( )(x  0 ) , then there exist u ,  v  t  such 

that )(xu  1 ,   0  ]1,0(1v  and u  1 v .  

Proof: Let y  0 . Then clearly x  y . As  tX ,  is fuzzy Hausdorff, then there exist 

yu ,  yv  t  such that )(xuy  1 ,  )( yvy  1and yu  1 yv .  Hence )(x  )(xu y  1 ,  
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x  X   and )(y  )(yvy  1 ,   y  0  i.e. { yu ,  yv : y  0 }  is an open Q -cover of  . 

Since   is Q -compact in  tX , , then there exist 
1yu ,  

2yu  ,  ……. ,  
nyu  }{ yu  and 

1yv ,  

2yv ,  ……. ,  
nyv  }{ yv  such that )(x  )(xu

ky  1 for each x  X  when )(x  0  and 

some 
kyu  }{ yu  and )(y  )(yv

ky  1 for each y  X  when )(y  0  and some 

kyv  }{ yv . Now, let v   
1yv 

2yv   ….. 
nyv  and u   

1yu 
2yu   …… 

nyu . Then 

we see that v  and u  are open fuzzy sets, as they are the union and finite intersection of 

open fuzzy sets respectively i.e. v ,  u  t . Furthermore, 0  ]1,0(1v  and )(xu  1, as 

)(xu
ky  1 for each k . 

Finally, we have to show that u  1 v . As yu  1 yv  implies that u  1 yv . Since 

)(xu
ky  1 )(xv

ky   for all x  X  and for each k , then u  1 v . If not, then there exist 

x  X  such that )(xuy  1 )(xvy . We have )(xuy    )(xu
ky  for each k . Then for some 

k ,  )(xu
ky  1 )(xv

ky . But this is a contradiction, as )(xu
ky   1 )(xv

ky  for each k . 

Hence u  1 v . 

 

           Theorem 6.27: Let   and   are disjoint Q -compact fuzzy sets in fuzzy Hausdorff 

space  tX ,  (as def. 1.50) with 0 ,  0  X . Then there exist u ,  v  t  such that 

0  ]1,0(1u ,  0  ]1,0(1v  and u  1 v .  

Proof: Let y  0 . Then y  0 , as   and   are disjoint. As   is Q -compact in 

 tX , , then by theorem (6.26), there exist yu ,  yv  t  such that )(yuy  1 ,   

0  ]1,0(1
yv  and yu  1 yv . As )(yuy  1, then )(x  )(xvy  1, x  X  and 

)(y  )(yu y  1,  y  0  i.e. { yv ,  yu : y  0 }  is an open Q -cover of  . Since   is 

Q -compact in  tX , , then there exist 
1yv ,  

2yv ,  ……. ,
nyv  }{ yv  and 

1yu ,  
2yu ,  ……. ,  
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nyu  }{ yu  such that )(x  )(xv
ky  1 for each x  X  when )(x  0  and some 

kyv  }{ yv  and )(y  )(yu
ky  1 for each y  X  when )(y  0  and some 

kyu  }{ yu . 

Again, since   is Q -compact in  tX , , then we have )(x  )(xv
ky  1 for each x  X  

when )(x  0  and some 
kyv  }{ yv  and )(y  )(yu

ky  1 for each y  X  when 

)(y  0  and some 
kyu { yu } and also 0  ]1,0(1

kyv  for each k . Now, let u   
1yu   

2yu   …… 
nyu  and v 

1yv 
2yv   …..  

nyv . Thus we see that 0  ]1,0(1u  and 

0  ]1,0(1v .  Hence u  and v  are open fuzzy sets, as they are the union and finite 

intersection of open fuzzy sets respectively i.e. u ,  v  t . 

Finally, we have to show hat u  1 v . First we observe that 
kyu  1

kyv  for each k  

implies that 
kyu  1 v  for each k  and it is clear that u  1 v .  

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(6.26) and (6.27) are not at all true. 

 

         Note: The Q -compact fuzzy sets in fuzzy Hausdorff space (as def. 1.50) need not be 

closed. 

Consider the fuzzy topology t  in the example (6.15), then  tX ,  is also a fuzzy Hausdorff 

space (as def. 1.50) and will serve the purpose. 

 

          Theorem 6.28: Let   be a Q -compact fuzzy set in fuzzy regular space  tX ,        

(as def. 1.51) with 0  X . If for each x  0 , there exist u  ct  with )(xu  0 , we have 

v ,  w t  such that )(xv  1, u  w ,  0  ]1,0(1v  and v  1 w .   

Proof: Let  tX ,  be a fuzzy regular space and   be a Q -compact fuzzy set in X . Then 

for each x  0 , there exists u  ct  with 0)( xu . As  tX ,  is fuzzy regular, we have 
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xv ,  xw  t  such that )(xvx  1 ,  xu  xw  and xv  1 xw . Hence )(x  )(xvx  1 for 

each x  X  i.e. { xv : x  0 }  is an open Q -cover of  . As   is Q -compact fuzzy set 

in  tX , , so   has a finite subcover i.e. there exist 
kxv  }{ xv  ( k  1 ,  2 ,…… , n )  such 

that  )(x  )(xv
kx  1 for each x  X . Now, let v   

1xv 
2xv   ….. 

nxv  and            

w   
1xw 

2xw   ….. 
nxw . Thus v  and w  are open fuzzy sets, as they are the union 

and finite intersection of open fuzzy sets respectively i.e. v ,  w  t . Furthermore, 

0  ]1,0(1v ,  )(xv  1 and u  w , as u 
kxw for each k .  

Finally, we have to show that v  1 w . As 
kxv  1

kxw  for each k  implies that 

kxv  1 w  for each k  and hence it is clear that v  1 w .   

 

          The following example will show that the “good extension” property does not hold 

for Q -compact fuzzy sets. 

          Example 6.29: Let X  },,{ cba  and T  {  ,  }{a ,  }{b ,  },{ ba ,  X } . Then 

 TX ,  is a topological space. Again, let 1u ,  2u ,  3u  XI  defined by )(1 au  1 ,  

)(1 bu  0 ,  )(1 cu  0 ; )(2 au  0 ,  )(2 bu  7.0 ,  )(2 cu  0 ; and )(3 au  1 ,  )(3 bu  7.0 ,  

)(3 cu  0 . Then )(T  { 0 ,  1u ,  2u ,  3u ,  1}  and  )(, TX   is an fts. Now, let 

  XI  with )(a  7.0 ,  )(b  4.0 ,  )(c  0 . Then 0  },{ ba . Clearly 0  is 

compact in  TX , . But   is not Q -compact in  )(, TX  , as there do not exist 

ku  )(T  ( k  1 ,  2 ,  3 )  such that )(c  )(cuk  1. Again, let   XI  with 

)(a  0 ,  )(b  5.0 ,  )(c  1. Then clearly   is Q -compact in  )(, TX  , but 

0  },{ cb  is not compact in  TX , . It is, therefore, observe that the “good extension 

property” does not hold good for Q-compact fuzzy sets.   
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          Theorem 6.30: Let   and   be Q -compact fuzzy sets in an fts  tX , . Then 

)(    is also Q -compact in   ttXX  , . 

Proof: Let M  { ia : ia  tt   and i  J }  be a Q -cover of )(    in  ttXX  , . 

Then )(   ),( yx  ia ),( yx  1 for each ),( yx  XX  . Now, we can write                

ia   ii vu  , where iu ,  iv  t . Thus we have )(   ),( yx  )( ii vu  ),( yx  1 for each 

),( yx  XX  . Hence it is clear that )(x  )(xui  1 for each x  X  and 

)(y  )(yvi  1 for each y  X . Therefore, { iu : i  J }   and { iv : i  J }  are open               

Q -cover of   and   respectively. Since   and   are Q -compacts, then { iu : i  J }   

and { iv : i  J }  have finite Q -subcovers, say {
ki

u : k  nJ }  and {
ki

v : k  nJ }  such 

that )(x  )(xu
ki  1 for each x  X  and )(y  )(yv

ki  1 for each y  X  

respectively. Thus we can write )(   ),( yx  )(
kk ii vu  ),( yx  1 for each 

),( yx  XX  . Hence )(    is Q -compact in  ttXX  , . 

 

          Compact fuzzy sets in Chang’s sense [19] and Q -compact fuzzy sets are 

independent. The following example will serve the purpose. 

          Example 6.31: Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u ,  4u  XI  defined 

by  )(1 au  4.0 ,  )(1 bu  6.0 ; )(2 au  3.0 ,  )(2 bu  7.0 ; )(3 au  4.0 ,  )(3 bu  7.0 ; 

)(4 au  3.0 ,  )(4 bu  6.0 . Now, take t  { 0 ,  1u ,  2u ,  3u ,  4u ,  1} , then we see that 

 tX ,  is an fts. Let   XI  defined by )(a  4.0 ,  )(b  5.0 . Clearly   is compact in 

 tX ,  in the sense of Chang. Now, we observe that )(a  )(auk  1 for a  X  and 

k  1 ,  2 ,  3 ,  4 . Hence   is not Q -compact in  tX , .    
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Again, let   XI  defined by )(a  9.0 ,  )(b  8.0 . Clearly   is Q -compact in 

 tX , . But   is not compact in  tX ,  in the sense of Chang, as there do not exist  ku  

such that   
4

1k
ku .    

 

          Definition 6.32: Let M  { iu : i  J }  be a family of  -open fuzzy sets in an fts 

 tX ,  and   be a fuzzy set in X . Then M  is said to be  - Q -cover of   iff 

)(x  )(xui  1 for each x  X  and for some iu . A subfamily of  - Q -cover of a fuzzy 

set   in X  which is also a  -Q -cover of   is called  - Q -subcover of  . 

   

          Example 6.33: Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  

defined by  )(1 au  1 ,  )(1 bu  4.0 ; )(2 au  5.0 ,  )(2 bu  1 and )(3 au  5.0 ,  )(3 bu  4.0 . 

Now, take t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is an fts. Again, let   XI  

defined by )(a  1.0 ,  )(b  2.0 . Take   4.0 . Clearly 1u ,  2u  and 3u  are  -open 

fuzzy sets in  tX , . Now, we observe that )(a  )(1 au  1 ,  )(b  )(2 bu  1 for a ,  

b  X . So { 1u ,  2u }  is a  -Q -cover of   in  tX , .   

 

          Definition 6.34: Let  tX ,  be an fts, 0    1 and   be a fuzzy set in X . Then   

is said to be  - Q -compact iff every  - Q -cover of   has a finite  - Q -subcover. If 

    and   XI , then   is also  - Q -compact. Thus we can say that any other 

supersets of  - Q -compact fuzzy sets in an fts is also  - Q -compact. 

 

          Theorem 6.35: Any  - Q -compact fuzzy set in an fts is Q -compact. The converse 

is not true in general. 
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The proof of the theorem is straightforward. 

Now, for the converse, consider the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  )(1 au  1 ,  

)(1 bu  4.0 ; )(2 au  7.0 ,  )(2 bu  1 and )(3 au  7.0 ,  )(3 bu  4.0 . Now, take                

t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is an fts. Again, let   XI  defined by 

)(a  2.0 ,  )(b  3.0 . Clearly   is Q -compact in  tX , . Take   8.0 . Hence we 

observe that there is no finite  -open fuzzy set in  tX , . Hence   is not  - Q -compact 

in  tX , . Thus the converse of theorem is not necessarily true.  

           

           -compact fuzzy sets (Chang’s sense [19]) and  -Q -compact fuzzy sets are 

independent. For this, we give the following example.            

          Example 6.36: Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u ,  

4u  XI  defined by  )(1 au  5.0 ,  )(1 bu  2.0 ; )(2 au  3.0 ,  )(2 bu  4.0 ; )(3 au  5.0 ,  

)(3 bu  4.0  and )(4 au  3.0 ,  )(4 bu  2.0 . Now, take t  { 0 ,  1u ,  2u ,  3u ,  4u ,  1} , then 

we see that  tX ,  is an fts. Again, let   XI  defined by )(a  3.0 ,  )(b  4.0 . Take 

  2.0 . It is clear that   is  -compact (Chang’s sense) in  tX , . But   is not                  

 - Q -compact in  tX , , as )(a  )(auk  1 for a X  and k 1 ,  2 ,  3 ,  4 . Again, let 

  XI  with )(a  6.0 ,  )(b  8.0 . Clearly   is  - Q -compact in  tX , . But   is 

not  -compact (Chang’s sense) in  tX , , as there do not exist  -open fuzzy sets ku  such 

that   
4

1k
ku . 

 

          Definition 6.37: Let  tX ,  be an fts,   be a fuzzy set in X  and 0    1. Let 

M  { iu : i  J }  be a family of fuzzy sets. Then M  is said to be Q -cover of   iff 
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)(x  )(xui    for each x  X  and for some iu . If each iu  is open, then M  is said to 

be an open Q -cover of  . A subfamily of a Q -cover of   which is also a Q -cover 

of   is said to be a Q -subcover of  . 

 

          Example 6.38: Let X  },{ ba , I  ]1,0[  and 0    1.  Let 1u ,  2u  XI  defined 

by )(1 au  3.0 ,  )(1 bu  2.0  and )(2 au   1.0 ,  )(2 bu  4.0 . Again, let   XI  with 

)(a  4.0 ,  )(b  3.0 . Take   7.0 . Hence we observe that )(a  )(1 au   ,  

)(b  )(2 bu   . Therefore { 1u ,  2u }  is a Q -cover of  .  

 

          Example 6.39: Let X  },{ ba , I  ]1,0[  and 0    1.  Let 1u ,  2u ,  3u  XI  

defined by )(1 au  2.0 ,  )(1 bu  1; )(2 au   1 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . 

Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then  tX ,  is an fts. Again, let   XI  with )(a  6.0 ,  

)(b  5.0 . Take   9.0 . Hence we observe that )(a  )(2 au   ,  )(b  )(1 bu   . 

Therefore { 1u ,  2u }  is an open Q -cover of   in  tX , .  

 

          Definition 6.40: A fuzzy set   is said to be Q -compact iff every open Q -cover 

of   has a finite Q -subcover. 

 

          Theorem 6.41: Every Q -compact fuzzy set in an fts is Q -compact. But the 

converse is not true in general. 

The proof of the theorem is straightforward.  

Now, for the converse, consider the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u  XI  defined by )(1 au  4.0 ,  

)(1 bu  3.0  and )(2 au  6.0 ,  )(2 bu  5.0 . Put t  { 0 ,  1u ,  2u ,  1} , then  tX ,  is an fts. 
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Again, let   XI  with )(a  2.0 ,  )(b  4.0 . Take   8.0 . Clearly   is                          

Q -compact in  tX , . But   is not Q -compact, as )(a  )(auk  1 for a  X  and  

k   1 ,  2 .     

          Note: If we consider   9.0 , then example (6.31) will show that the compact 

fuzzy sets in Chang’s sense [19] and Q -compact fuzzy sets are independent.         

 

           Let  tX ,  be an fts, 0    1,  tX ,  be a  -level topological space and   be a 

fuzzy set in X .Then Q -compactness of   in  tX ,  and compactness of 0  in  tX ,   

are independent. For this, we give the following examples. 

           Example 6.42: Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u  XI  

defined by )(1 au  4.0 ,  )(1 bu  3.0  and )(2 au  6.0 ,  )(2 bu  8.0 . Put t  { 0 ,  1u ,  2u ,  

1} , then  tX ,  is an fts. Again, let   XI  with )(a  2.0 ,  )(b  0 . Take   8.0 . 

Clearly   is Q -compact in  tX , . Now, we have 0  }{a  and 8.0t  {  ,  X } . Hence 

 8.0, tX  is a 8.0 -level topological space. Thus we see that 0  is not compact in  8.0, tX , 

as there is no finite suvcover of 0  in  8.0, tX .      

Again, let   XI  with )(a  0 ,  )(b  2.0 . So we have 0  }{b . Take   7.0 . 

Then we get 7.0t  {  ,  }{b ,  X } . Hence  7.0, tX  is a 7.0 -level topological space. 

Clearly 0  is compact in  7.0, tX . But   is not Q -compact in  tX , , as 

)(a  )(auk    for a  X  and k   1 ,  2 .   

 

           Definition 6.43: Let  tX ,  be an fts,   be a fuzzy set in X  and 0    1 ,  

0    1. Let M  { iu : i  J }  be a family of  -open fuzzy sets. Then M  is said to be 

 - Q -cover of   iff )(x  )(xui    for each x  X  and for some iu . A subfamily of 
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 - Q -cover of   which is also a  - Q -cover of   is said to be  - Q -subcover of 

 . 

 

          Definition 6.44: A fuzzy set   is said to be  - Q -compact iff every                        

 - Q -cover of   has a finite  - Q -subcover.     

 

          Theorem 6.45: Every  - Q -compact fuzzy set in an fts is Q -compact. But the 

converse is not true in general. 

The proof of the theorem is straightforward. 

Now, for the converse, we consider the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  2u  XI  defined by 

)(1 au  5.0 ,  )(1 bu  4.0  and )(2 au  7.0 ,  )(2 bu  6.0 . Put t  { 0 ,  1u ,  2u ,  1} , then 

 tX ,  is an fts. Again, let   XI  with )(a  2.0 ,  )(b  3.0 . Take   9.0 . Clearly 

  is Q -compact in  tX , . Again, take   9.0 . But   is not  - Q -compact, as there 

is no finite  -open fuzzy sets in  tX , .            

          Note: If we consider   9.0 , then example (6.36) will show that the   -compact 

fuzzy sets in Chang’s sense [19] and   - Q -compact fuzzy sets are independent.                 
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Chapter Seven 

Almost Compact Fuzzy Sets 

 

          Almost compact fuzzy sets was first constructed by Concilio and Gerla [27] which 

is local property. In this chapter, we have discussed several characterizations of this 

concept and established some theorems, corollary and examples. Also we have defined 

almost  -compact fuzzy sets and investigated different characterizations between almost 

compact and almost  -compact fuzzy sets.   

 

          Definition 7.1[27]: Let   be a fuzzy set in X . A family { iu : i  J }  is a 

proximate cover of   when { iu : i  J }  is a cover of   i.e.    
Ji

iu


. A subfamily of 

{ iu : i  J }  which is also a proximate cover of   is said to be proximate subcover of  .   

  

          Definition 7.2[27]: A fuzzy set   is said to be almost compact iff every open cover 

of   has a finite subfamily whose closures is cover of   or equivalently, every open 

cover of   has a finite proximate subcover.  

Every fuzzy subsets of an almost compact fuzzy set is also almost compact. 

 

          Theorem 7.3: Let  tX ,  be an fts, A  X  and   be a fuzzy set in X  with 

0  A . Then   is almost compact in  tX ,  iff   is almost compact in  AtA, . 

Proof: Suppose   is almost compact in  tX , . Let { iu : i  J }  be an open cover of   

in  AtA, , then   0

iu : Ji  is also an open cover of   in  AtA, . Then there exist 

iv  t  such that iu  iv | A  iv . Therefore { iv : i  J }  is an open cover of   in  tX , , 
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so   0

iv : Ji  is also an open cover of   in  tX , . But from  0

iv  iv  and since   is 

almost compact in  tX , , then   0

iv : Ji  has a finite subfamily, say   0

kiv : nJk   

such that   
n

k
Jk

iv


 i.e.  
1i

v 
2i

v   …… 
ni

v . But iu  Avi |  iv | A  iv . 

Therefore,   (
1i

v 
2i

v ……
ni

v ) | A   (
1i

v | A )  (
2i

v | A ) ……  (
ni

v | A )  


1iu 

2iu ……
niu , as 0  A  i.e.  

1iu 
2iu ……

niu . Hence                        

{
ki

u : k  nJ }  is a finite proximate subcover of { iu : i  J } . So   is almost compact in 

 AtA, .   

Conversely, suppose   is almost compact in  AtA, . Let { iv : i  J }  be an open cover 

of   in  tX , , then   0

iv : Ji  is also an open cover of   in  tX , . Choose 

iu  iv | A , then we have   
Ji

iv


     













Ji
iv | A      

Ji
( iv | A )     

  
Ji

iu


. But iu  At , so { iu : i  J }  is an open cover of   in  AtA, . Therefore 

  0

iu : Ji  is also an open cover of   in  AtA, . We have  0

iu  iu  and since  is 

almost compact in  AtA, , then   0

iu : Ji  has a finite subfamily, say   0

kiu : nJk   

such that   
n

k
Jk

iu


 i.e.  
1iu 

2iu ……
niu . But we have iu  Avi |   iv | A  

 iv . Therefore  
1i

u 
2i

u ……
ni

u      (
1i

v | A )  (
2i

v | A ) ……  

(
ni

v | A )     
1i

v 
2i

v   …… 
ni

v , as 0  A . Therefore {
ki

v : k  nJ }  is a 

finite proximate subcover of { iv : i  J } . Hence   is almost compact in  tX , .      
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          Corollary 7.4: Let  *, tY  be a fuzzy subspace of an fts  tX ,  and A  Y  X . Let 

  be a fuzzy set in X  with 0  A . Then   is almost compact in  tX ,  iff   is almost 

compact in  *, tY . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then preceding theorem 

(7.3),   is almost compact in  tX ,  or  *, tY  iff   is almost compact in  AtA,  or 

 *, AtA . But At  *
At .   

 

          Theorem 7.5: Let  tX ,  and  sY ,  be two fts’s and f :  tX ,   sY ,  be fuzzy 

continuous and surjective mapping.  If   is almost compact fuzzy set in  tX , , then 

)(f  is almost compact in  sY , . 

Proof: Let { iu : i  J }  be an open cover of )(f  in  sY , , then   0

iu : Ji  is also 

an open cover of )(f  in  sY , . As f  is fuzzy continuous, then  0
1

iuf   t  and hence 

  0
1

iuf  : Ji  is an open cover of   in  tX , . Since   is almost compact in  tX ,  , 

then   0
1

iuf  : Ji  has a finite subfamily, say   0
1

kiuf  : nJk   such that 

   
n

k
Jk

iuf



0

1  i.e.    0

1

1
iuf    0

2

1
iuf    ……  0

1
ni

uf  . But from  0

iu  iu  

and f  is fuzzy continuous and surjective,  iuf 1  must be a closed fuzzy set in X  such 

that  0
1

iuf    iuf 1  and then  0
1

iuf    iuf 1 . Therefore   






 
0

1
iuff  iu  for each 

i  J . Hence )(f      






 
0

1

1
iuff      







 
0

2

1
iuff  ……    







 
0

1
ni

uff               

   )(f    
1iu    

2iu  …… 
niu . Thus )(f  is almost compact in  sY , . 
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          Theorem 7.6: Let  tX ,  and  sY ,  be two fts’s and f :  tX ,   sY ,  be fuzzy 

open, fuzzy closed and bijective mapping. If   is almost compact fuzzy set in  sY , , then 

)(1 f  is almost compact in  tX , . 

Proof: Let { iu : i  J }  be an open cover of )(1 f  in  tX , , then   0

iu : Ji  is also 

an open cover of )(1 f  in  tX , . As f  is fuzzy open, then  0

iuf  s  and hence 

  0

iuf : Ji  is an open cover of   in  sY , . Since   is almost compact in  sY , , 

then   0

iuf : Ji  has a finite subfamily, say   0

ki
uf : nJk   such that 

   
n

k
Jk

iuf


0

 i.e.    0

1iuf   0

2iuf   ……  0

niuf . But from  0

iu  iu  and f  

is closed,  iuf  must be a closed fuzzy set in Y  such that  0

iuf   iuf  and then              

 0

iuf   iuf . Therefore   







0

1
iuff  iu  for each i  J . Hence                              

)(1 f   



0

1

1
iuff   0

2i
uf ………   



0

ni
uf    )(1 f    








0

1

1
iuff   

  







0

2

1
iuff  .…...     








0

1
ni

uff    )(1 f 
1i

u  
2i

u    ……
ni

u . Hence 

)(1 f  is almost compact in  tX , .           

 

          Theorem 7.7: Let  tX ,  be an fts and let every family of closed fuzzy sets in X  

with empty intersection has a finite subfamily with empty intersection. Then any fuzzy set 

  in X  is almost compact. The converse is not true in general. 

Proof: Let   be any fuzzy set in X  and let { iu : i  J }  be an open cover of  , then 

  0

iu : Ji  is also an open cover of  . From the first condition of the theorem, we 
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have 
Ji

c
iu



 X0 . Therefore 
Ji

iu


 X1  and hence  0


Ji

iu


 X1 , as iu   0

iu . Again, by 

the second condition of the theorem, we get 
n

k
Jk

c
iu



 X0 . Thus we have 
n

k
Jk

iu


 X1  and 

hence  
n

k
Jk

iu


0

 X1 , as iu   0

iu . But from iu   0

iu  iu , then we get 
n

k
Jk

iu


  X1  

and consequently we have   
n

k
Jk

iu


 i.e.  
1i

u 
2i

u ……
ni

u .  Therefore               

{
ki

u : k  nJ }  is a finite proximate subcover of { iu : i  J } . Hence   is almost 

compact. 

For the converse, consider the following example.  

Let X  },{ ba  and I  ]1,0[ . Let u ,  v  XI  defined by  )(au  3.0 ,  )(bu  2.0  and 

)(av  4.0 ,  )(bv  3.0 . Choose t  { 0 ,  u ,  v ,  1} , then  tX ,  is an fts. Now, 

)(0 ac  1 ,  )(0 bc  1; )(au c  7.0 ,  )(bu c  8.0  and )(av c  6.0 ,  )(bv c  7.0 .  So we 

have u  { c0 ,  cu ,  cv }  cv  i.e. )(au  6.0 ,  )(bu  7.0  and v  { c0 ,  cu ,  

cv }  cv  i.e. )(av  6.0 ,  )(bv  7.0 . Again, let   XI  with )(a  6.0 ,  )(b  4.0 . 

Then clearly   is almost compact in  tX , . But cu  cv  0 . Therefore the converse of 

the theorem is not true in general.  

 

          The following example will show that the almost compact fuzzy sets in an fts need 

not be closed. 

          Example 7.8: Consider the fts  tX ,  in the example of the theorem (7.7). Again, let 

  XI  with )(a  5.0 ,  )(b  6.0 . Then clearly   is almost compact in  tX , . But   

is not closed, as its complement c  is not open in  tX , . 
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          Theorem 7.9: Let  and   be almost compact fuzzy sets in an fts  tX , . Then 

   is also almost compact in  tX , . 

Proof: Let { iu : i  J }  be an open cover of   , then   0

iu : Ji  is also an open 

cover of   . Therefore   0

iu : Ji  is any open cover of both   and   

respectively. But we have  0

iu  iu  and since   is almost compact, so   0

iu : Ji  has 

a finite proximate subcover, say {
kiu : k  nJ }  such that  

1iu 
2iu ……

niu . 

Similarly, we can find {
ri

u : r  nJ }  is a finite proximate subcover of   0

iu : Ji . 

Therefore {
ki

u ,  
ri

u }  is a finite proximate subcover of { iu : i  J } . Hence    is 

also almost compact. 

           

          Theorem 7.10: Let  and   be almost compact fuzzy sets in an fts  tX , . Then 

    is also almost compact in  tX , . 

Proof: We have      and     . As   and   are almost compact, it is clear 

that     is almost compact.       

     

          Theorem 7.11: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and   be an almost 

compact fuzzy set in X  with 0  X . Let x  0  ( )(x  0 ) , then there exist u ,  v  t  

such that )(xu  1 and 0    ]1,0(
1

v .  

Proof: Suppose y  0 . Then clearly x  y . As  tX ,  is fuzzy 1T -space, there exist     

yu ,  yv  t  such that )(xuy  1 ,  )(yuy  0  and )(xvy  0 ,  )(yvy  1. Hence we observe 

that  { yv : y  0 }  i.e. { yv : y  0 }  is an open cover of  . Thus we have 

  )(
0

xuy  1 ,    )(
0

yvy  1, as yu   0

yu  and yv   0

yv . Then   0

yv : 0y  is also an 
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open cover of  . Since   is almost compact, then   0

yv : 0y  has a finite proximate 

subcover, say {
kyv : k  nJ }  such that   

n

k
Jk

yv


 i.e.  
1yv 

2yv    ……
nyv . 

Now, let  0

v    0

1yv   0

2yv …...  0

nyv  and  0

u   0

1yu   0

2yu  ……  0

nyu . 

Hence  0

v  and  0

u  are open fuzzy sets, as they are the union and finite intersection of 

open fuzzy sets respectively i.e.  0

v ,   0

u  t . But  0

yv  yv and   0

yu  yu .  Moreover, 

0    ]1,0(
1

v  and )(xu  1, as )(xu
ky  1 for each k . 

 

          Theorem 7.12: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and  ,    be disjoint 

almost compact fuzzy sets in X  with 0 ,  0  X . Then there exist u ,  v  t  such that 

0    ]1,0(
1

u  and  0    ]1,0(
1

v . 

Proof: Suppose y  0 . Then we have y  0 , as   and   are disjoint. As   is almost 

compact, then by theorem (7.11), there exist yu ,  yv  t  such that )(yuy  1 and                   

0     ]1,0(
1

yv . Since )(yuy  1, then we have   0

yu : 0y  is also an open cover of 

 . But   is almost compact, then   0

yu : 0y  has a finite proximate subcover, say 

{
kyu : k  nJ }  such that   

n

k
Jk

yu


 i.e.   
1yu 

2yu   ……
nyu . Furthermore,  

 
1yv 

2yv ……
nyv , as 0     ]1,0(

1

kyv  for each k . Now, let  0

u    0

1yu  

  0

2yu  ……    0

nyu  and  0

v    0

1yv   0

2yv ……   0

nyv . But  0

yu  yu  

and  0

yv  yv , we see that 0    ]1,0(
1

u  and 0    ]1,0(
1

v . Also  0

u  and  0

v  are 
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open fuzzy sets, as they are the union and finite intersection of open fuzzy sets 

respectively i.e.  0

u ,   0

v  t .  

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(7.11) and (7.12) are not at all true.   

 

           The following example will show that the almost compact fuzzy sets in fuzzy                

1T -space (as def. 1.45) need not be closed. 

          Example 7.13: Let X  },{ ba  and I  ]1,0[ . Let u ,  v  XI  defined by 

)(au  1 ,  )(bu  0  and )(av  0 ,  )(bv  1. Take t  { 0 ,  u ,  v ,  1} , then   tX ,  is a  

fuzzy 1T -space. Now, )(0 ac  1 ,  )(0 bc  1; )(auc  0 ,  )(buc  1 and )(avc  1 ,  

)(bvc  0 . So we have u { c0 ,  cv }  cv  i.e. )(au  1 ,  )(bu  0  and v { c0 ,  

cu }  cu  i.e. )(av  0 ,  )(bv  1. Again, let   XI  with )(a  4.0 ,  )(b  7.0 . 

Clearly   is almost compact in  tX , . But   is not closed, as its complement c  is not 

open in  tX , . 

 

          Theorem 7.14:  Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and   be a fuzzy set 

in X  with 0  X . If   is almost compact in  tX ,  and x  0  ( )(x  0 ) , then 

there exist u ,  v  t  such that )(xu  0  and 0    ]1,0(
1

v . The converse is not true in 

general.   

The proof is similar as that of theorem (7.11). 

Now, for the converse, we give the following example. 

Let X  },{ ba  and I  ]1,0[ . Let 1u ,  2u ,  3u  XI  defined by  )(1 au  2.0 ,  )(1 bu  0 ; 

)(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put t  { 0 ,  1u ,  2u ,  3u ,  
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1 } , then we see that  tX ,  is a fuzzy 1T -space. Now, we have )(0 ac  1 ,  )(0 bc  1; 

)(1 au c  8.0 ,  )(1 buc  1; )(2 auc  1 ,  )(2 buc  7.0  and )(3 au c  8.0 ,  )(3 buc  7.0 . Therefore, 

1u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(1 au  8.0 ,   )(1 bu  7.0 ; 2u { c0 ,  cu1 ,  cu2 ,  

cu3 }  cu3  i.e. )(2 au  8.0 ,   )(2 bu  7.0  and 3u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. 

)(3 au  8.0 ,   )(3 bu  7.0 . Again, let   XI  defined by )(a  0 ,  )(b  9.0 . Hence 

we observe that 0  }{b  and a  0 . Here 1u ,  2u  t  where )(1 au  8.0  0  and 

  ]1,0(
1

2



u  },{ ba . Hence 0    ]1,0(
1

2



u . Thus we see that   is not almost compact 

in  tX , , as there do not exist ku  such that   
3

1k
ku . Thus the converse of the theorem 

is not true in general.    

 

            Theorem 7.15:  Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and  ,    be fuzzy 

sets in X  with 0 ,  0  X . If    and   are disjoint almost compact fuzzy sets in 

 tX , , then there exist u ,  v  t  such that 0    ]1,0(
1

u  and 0    ]1,0(
1

v .      

The work is similar as that of theorem (7.12). 

Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(7.14). Let  ,    XI  with )(a  9.0 ,  )(b  0  and )(a  0 ,  )(b   8.0 . Thus we 

see that 0  }{a  and 0  }{b . Now 1u ,  2u  t  where   ]1,0(
1

1



u  },{ ba  and 

  ]1,0(
1

2



u  },{ ba . Hence we observe that 0    ]1,0(
1

1



u  and 0    ]1,0(
1

2



u , where 

  and   are disjoint. But we see that   and   are not almost compact in  tX , , as there 

do not exist ku  such tht   
3

1k
ku  and   

3

1k
ku . Thus the converse of the theorem is 

not true in general. 
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The following example will show that the almost compact fuzzy sets in fuzzy 1T -space (as 

def. 1.46) need not be closed.      

          Example 7.16: Consider the fuzzy 1T -space in the example of the theorem (7.14). 

Again, let   XI  defined by )(a  5.0 ,  )(b  6.0 . Then clearly   is almost compact 

in  tX , . But   is not closed, as its complement c  is not open in  tX , .             

          

          Theorem 7.17: An almost compact fuzzy sets in fuzzy regular space  tX ,            

(as def. 1.52) is compact. 

Proof: Let { iu : i  J }  be an open cover of a fuzzy set   in X  i.e.   
Ji

iu


. As  tX ,  

is fuzzy regular, then we have iu  
Ji

ijv


, where ijv  is an open fuzzy set such that ijv  iu  

for each i . Since   
Ji

iu


 
Ji

ijv


, then { ijv : i  J }  is an open cover of  . As   is 

almost compact, then { ijv : i  J }  has a finite proximate subcover, say  jik
v : nJk   

such that   
n

k
Jk

jiv


. But jik
v 

kiu , so   
n

k
Jk

jiv


 
n

k
Jk

iu


. Hence {
kiu : k  nJ }  is a 

finite subcover of { iu : i  J } . Therefore   is compact.  

 

          The following example will show that the “good extension” property does not hold 

for almost compact fuzzy sets. 

          Example 7.18: Let X  },,{ cba  and T  {  ,  }{a ,  }{b ,  },{ ba ,  X } . Then 

 TX ,  is a topological space. Again, let 1u ,  2u ,  3u  XI  with )(1 au  2.0 ,  )(1 bu  0 ,  

)(1 cu 0; )(2 au  0 ,  )(2 bu  4.0 ,  )(2 cu  0  and )(3 au  2.0 ,  )(3 bu  4.0 ,  )(3 cu  0 . 

Then )(T  { 0 ,  1u ,  2u ,  3u ,  1}  and  )(, TX   is an fts. Now, )(0 ac  1 ,  

)(0 bc  1 ,  )(0 cc  1; )(1 auc  8.0 ,  )(1 buc  1 ,  )(1 cuc  1; )(2 auc  1 ,  )(2 buc  6.0 ,  
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)(2 cuc  1 and )(3 auc  8.0 ,  )(3 buc  6.0 ,  )(3 cuc  1. So we have 1u { c0 ,  cu1 ,  cu2 ,  

cu3 }  cu3  i.e. )(1 au  8.0 ,  )(1 bu  6.0 ,  )(1 cu  1; 2u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. 

)(2 au  8.0 ,  )(2 bu  6.0 ,  )(2 cu  1 and 3u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3   i.e. 

)(3 au  8.0 ,  )(3 bu  6.0 ,  )(3 cu  1. Now, let   XI  defined by )(a  9.0 ,  

)(b  8.0 ,  )(c  0 . Then we have 0  },{ ba . Clearly 0  is compact in  TX , .  But 

  is not almost compact in  )(, TX  , as there don’t exist ku  )(T  for k   1 ,  2 ,  

3  such that   
3

1k
ku . Again, let   XI  defined by )(a  0 ,  )(b  3.0 ,  )(c  8.0 . 

Then we have 0  },{ cb . Clearly   is almost compact in  )(, TX  . But 0  is not 

compact in  TX , . 

 

          Theorem 7.19: Let   and   be almost compact fuzzy sets in an fts  tX , . Then 

)(    is also almost compact in  ttXX  , . 

Proof: Let { ii vu  : i  J }  be an open cover of )(    in  ttXX  ,  i.e. 

)(    
Ji

( iu  iv ) . Hence it can be easily shown that, min ( )(x ,  )(y )   


Ji

min ( )(xui ,  )( yvi )  for every ),( yx  XX  . So it is clear that   
Ji

iu


 and 

  
Ji

iv


. Therefore { iu : i  J }   and { iv : i  J }  are open cover of   and   

respectively. Thus   0

iu : Ji   and   0

iv : Ji  are also open cover of   and   

respectively. Now, we have  0

iu  iu  and  0

iv  iv . As   and   are almost compact, 

then   0

iu : Ji  and   0

iv : Ji  have  finite proximate subcover, say                            

{
ki

u : k  nJ }  and {
ki

v : k  nJ }  such that   
n

k
Jk

iu


 and   
n

k
Jk

iv


 i.e. 
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1iu 

2iu ……
niu   and  

1iv 
2iv   …… 

niv  respectively. Hence we can 

write )(    
nJk
(

ki
u 

ki
v ) . Therefore {

ki
u 

ki
v : k  nJ }  is a finite proximate 

subcover of { ii vu  : i  J } . Thus )(    is almost compact in  ttXX  , .  

 

                    Definition 7.20: Let M  { iu : i  J }  be a family of  -open fuzzy sets and 

  be a fuzzy set in X . Then M  is said to be proximate  -cover of   when                        

{ iu : i  J }  is a  -cover of   i.e.    
Ji

iu


. A subfamily of { iu : i  J }  which is 

also a proximate  -cover of   is said to be proximate  -subcover of  .   

  

          Definition 7.21: A fuzzy set   is said to be almost  -compact iff every  -cover of 

  has a finite subfamily whose closures is  -cover of   or equivalently, every  -cover 

of   has a finite proximate  -subcover.  

Every fuzzy subsets of an almost  -compact fuzzy set is also almost  -compact.      

 

          Theorem 7.22: Any almost  -compact fuzzy set in an fts is almost compact. The 

converse is not true in general. 

The proof of the theorem is straightforward. 

Now, for the converse, consider the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u  XI  defined by  )(1 au  3.0 ,  

)(1 bu  2.0  and )(2 au  4.0 ,  )(2 bu  5.0 . Now, take t  { 0 ,  1u ,  2u ,  1} , then we see 

that  tX ,  is an fts. Now, )(0 ac  1 ,  )(0 bc  1; )(1 auc  7.0 ,  )(1 buc  8.0  and 

)(2 auc  6.0 ,  )(2 buc  5.0 . So we have 1u { c0 ,  cu1 ,  cu2 }  cu2  i.e. )(1 au  6.0 ,  

)(1 bu  5.0  and 2u { c0 ,  cu1 ,  cu2 }  cu2  i.e. )(2 au  6.0 ,  )(2 bu  5.0 . Again, let 
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  XI  defined by )(a  6.0 ,  )(b  3.0 . Clearly   is almost compact in  tX , .          

Take   9.0 . Then we observe that there is no finite proximate  -subcover of  . Hence 

  is not almost  -compact in  tX , . Thus the converse of theorem is not necessarily 

true.  
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Chapter Eight 

Almost  -Compact Spaces 

 

          Almost  -compact spaces was first introduced by Mukherjee and Bhattacharyya 

[130] which is global property. We aim to discuss several other characterizations of this 

concept and established some theorems, corollary and examples. Also we have defined 

almost  - -compact spaces and found different characterizations between almost                    

 -compact and almost  - -compact spaces.      

  

          Definition 8.1[130]: A family { iu : i  J } ,  iu  XI  is a proximate  -shading of 

X  when { iu : i  J }  is an  -shading of X  i.e. )(xui    for each x  X . 

A subfamily of { iu : i  J }  which is also a proximate  -shading of X  is called a 

proximate  -subshading of X . 

 

          Definition 8.2[130]: An fts  tX ,  is said to be almost  -compact iff every open 

 -shading of X  has a finite subfamily whose closures is an  -shading or equivalently, 

every open  -shading of X  has a finite proximate  -subshading.    

 

          Theorem 8.3: Let  tX ,  be an fts and A  X . Then A1  is almost  -compact in 

 tX ,  iff A1  is almost  -compact in  AtA, . 

Proof: Suppose A1  is almost  -compact in  tX , . Let { iu : i  J }  be an open                  

 -shading of A1  in  AtA, , then   0

iu : Ji  is also an open  -shading of A1  in 

 AtA, . Then there exists iv  t  such that iu  iv | A  iv . Therefore { iv : i  J }  be an 
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open  -shading of A1  in  tX ,  and so   0

iv : Ji  is also an open  -shading of A1  in 

 tX , . But A1  is almost  -compact in  tX , , then   0

iv : Ji  has a finite proximate 

 -subshading, say {
kiv : k  nJ }  such that )(xv

ki   for each x  A . We have 

iu  Avi |  iv | A  iv . Now, )(|
1

xAv
n

k
ik 




















      )()|(

1

xAv
ki

n

k



     

)(
1

xu
n

k
ik



  , as A  X   and consequently {
ki

u : k  nJ }  is a finite proximate                    

 -subshading of { iu : i  J } . Hence A1  is almost  -compact in  AtA, .      

Conversely, suppose A1  is almost  -compact in  AtA, . Let { iv : i  J }  be an open            

 -shading of A1  in  tX , , then   0

iv : Ji  is also an open  -shading of A1  in  tX , . 

Put iu  iv | A . Then 













Ji
iv | A   )|( Av

Ji
i



 
Ji

iu


. But iu  At  and so { iu : i  J }  is 

an open  -shading of A1  in  AtA, . Therefore   0

iu : Ji  is also an open  -shading 

of A1  in  AtA, . Since A1  is almost  -compact in  AtA, , then   0

iu : Ji  has a finite 

proximate  -subshading, say {
kiu : k  nJ }  such that )(xu

ki   for each x  A . But 

iu  Avi |  iv | A  iv   and consequently {
ki

v : k  nJ }  is a finite proximate                        

 -subshading of { iv : i  J } . Therefore A1  is almost  -compact in  tX , .     

 

          Corollary 8.4: Let  *, tY  be a fuzzy subspace of  tX ,  and A  Y  X . Then A1  

is almost  -compact in  tX ,  iff A1  is almost  -compact in  *, tY .  
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Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by preceding theorem 

(8.3), A1  is almost  -compact in  tX ,  or  *, tY  iff A1  is almost  -compact in  AtA,  

or  *, AtA . But At  *
At .               

 

          Theorem 8.5: Let  tX ,  be an fts and A1  be a closed subset of X ( A  X ) . If 

 tX ,  is almost  -compact, then so also is  AtA, . 

Proof: Let M  { iu : i  J }  be an open  -shading of A1  in  AtA, , then   0

iu : Ji  

is also an open  -shading of A1  in  AtA, . Then there exist iv  t  such that 

iu  iv | A  iv . Let H  { iv  t : iv | A  M } . Then }{ iv  }1{ AX   is an open                        

 -shading of X1 . To show this, let x  X . Now if x  A , there exist some iu  M  such 

that )(xui   . Let ig  t  such that ig | A  iu . So ig  H  and we have )(xgi   . Again 

if x  AX  , then )()1( xAX   1  . But iv   0

iv  iv  and since  tX ,  is almost               

 -compact, then }{ iv  }1{ AX   has a finite proximate  -subshading, say {
ki

v : k  nJ }  

such that )(xv
ki

  . Now, we have iu  Avi |  iv | A  iv . Then {
ki

v | A : k  nJ } , as 

A  X  and hence {
kiu : k  nJ }  is a finite proximate  -subshading of M . Therefore 

A1  is almost  -compact in  AtA, .   

 

          Theorem 8.6: Let  tX ,  be an fts and A , B  X . If A1  and B1  are almost                    

 -compact, then BA1  is also almost  -compact. 

Proof: Let { iu : i  J }  be an open  -shading of BA1 , then   0

iu : Ji  is also an 

open  -shading of BA1 . Hence { iu : i  J }  is any open  -shading of both A1  and B1  

respectively. Thus   0

iu : Ji  is also any open  -shading of both A1  and B1  
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respectively. But iu   0

iu  iu  and A1  is almost  -compact, then   0

iu : Ji  has a 

finite proximate  -subshading, say {
ki

u : k  nJ }  such that )(xu
ki

   for all x  A . 

Similarly, we can find {
ri

u : r  nJ }  is a finite proximate  -subshading of                      

  0

iu : Ji . Therefore {
kiu ,  

riu  }  is a finite proximate  -subshading of                   

{ iu : i  J } . Thus BA1  is also almost  -compact. 

          

          Theorem 8.7: Let  tX ,  be an fts and A , B  X ( BA   ) . If A1  and B1  are 

almost  -compact, then BA1  is also almost  -compact.  

Proof: We have BA  A  and BA  B . As A1  and B1  are almost  -compact, then 

it is clear that BA1  is also almost  -compact.                               

                             

          Theorem 8.8: Let  tX ,  be an fts and if t  becomes a cofinite topology on X . 

Then  tX ,  is almost  -compact. 

Proof: Let M  { iu : i  J }  be an open  -shading of  tX , , then   0

iu : Ji  is also 

an open  -shading of  tX , . Now, we have t  { )( iu : iu  t } , where 

)( iu  { x  X : )(xui   }  and by the theorem t  is a cofinite topology on X . Hence 

we see that { )( iu : i  J }  is an open cover of   tX , , then   0

iu : Ji  is also an 

open cover of  tX , . For let, x  X , then there exists 
0i

u  M  such that )(
0

xui      

  )(
0

0
xui   ,  as iu   0

iu . Therefore, x  )(
0iu  and )(

0iu  { )( iu }    

x   0

0i
u and  0

0i
u    0

iu : Ji . Since  tX ,  is cofinite, hence compact, then 

{ )( iu : i  J }  has a finite subcover, say { )(
kiu : k  nJ } , where 

kiu  t  and 
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)(
kiu  t      0

kiu : nJk   is also forms a finite subcover of   0

iu : Ji . But 

iu   0

iu  iu , the family {
kiu : k  nJ }  forms a finite proximate  -subshading of M . 

Hence  tX ,  is almost  -compact. 

 

          Theorem 8.9: Let f :  tX ,    sY ,  be fuzzy continuous and surjective 

mapping. If X1  is almost  -compact, then )1( Xf  is almost  -compact as a subspace of 

Y . 

Proof: We have )(Xf  Y , as f  is surjective. Let M  { iu : i  J }  be an open                  

 -shading of Y1 . Then   0

iu : Ji   is also an open  -shading of Y1 . Since f  is fuzzy 

continuous, then  0
1

iuf   t  and hence   0
1

iuf  : Ji  is open  -shading of X1 . For, 

let x  X , then )(xf  Y . So there exists some  0

0iu    0

iu : Ji  such that 

   )(
0

0
xfui       )(

0

0

1 xuf i
  . As X1  is almost  -compact, then there exists 

 0
1

kiuf     0
1

iuf  : Ji  ( k  nJ )  such that   )(
0

1 xuf
ki

    for each x  X . But 

from  0

iu  iu  and fuzzy continuity of f ,  iuf 1  must be a closed fuzzy set in X  such 

that  0
1

iuf    iuf 1  and then  0
1

iuf    iuf 1 . Therefore   




 

0
1

iuff  iu  for each 

i  J . For if y Y , then y  )(xf  for some x  X , as f  is surjective. Then there exist 

some k  such that  )(xfu
ki    )( yu

ki   for each y Y . Therefore )1( Xf  is 

almost  -compact.          

 

          Theorem 8.10: Let f :  tX ,    sY ,  be fuzzy open, fuzzy closed and bijective 

mapping . If  sY ,  is almost  -compact, then  tX ,  is also almost  -compact. 
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Proof: Let { iu : i  J }  be an open  -shading of X1 , then   0

iu : Ji  is also an open 

 -shading of X1 . As f  is fuzzy open, then  0

iuf  s  and hence it follows that              

  0

iuf : Ji  is an open  -shading of Y1 . For let, y Y , then )(1 yf   X . So there 

exists some  0

0iu    0

iu : Ji  such that    )(1
0

0
yfui

        )(
0

0
yuf i   . Since 

Y1  is almost  -compact, then there exists  0

kiuf    0

iuf : Ji  ( k  nJ )  such that  

  )(
0

yuf
ki

   for all y Y . But from  0

iu  iu  and f  is fuzzy closed,  iuf  must be a 

closed fuzzy set in Y  such that  0

iuf   iuf  and then  0

iuf   iuf  . Therefore 

  






0
1

iuff  iu  for each i  J . Since f  is bijective, we have for each x  X , there 

exists a y Y  such that x  )(1 yf  . So, we can obtain some k  such that    )( yuf
ki   

   )(1 yfu
ki

     )(xu
ki

   for each x  X . Therefore  tX ,  is almost                      

 -compact.   

 

          Theorem 8.11: Let  tX ,  be an fts. If every family of closed fuzzy sets which has 

empty intersection has a finite subfamily with empty intersection, then  tX ,  is almost 

 -compact. The converse is not true in general. 

Proof: Let { iu : i  J }  be an open  -shading of X1 . By the first condition of the 

theorem, we have 
Ji

c
iu



 X0 . Thus 
Ji

iu


 X1  and so  0


Ji

iu


 X1 , as iu   0

iu . 

Therefore   0

iu : Ji  is also an open  -shading of X1 . Again from the second 

condition of the theorem, we get 
n

k
Jk

c
iu



 X0 . So, we have 
n

k
Jk

iu


 X1  and hence 
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 0


n

k
Jk

iu


 X1 , as iu   0

iu . But iu   0

iu  iu , then 
n

k
Jk

iu


 X1  and consequently 

{
kiu : k  nJ }  is a finite proximate  -subshading of { iu : i  J } . Thus  tX ,  is almost 

 -compact. 

Now, for the converse, we consider the following example. 

Let X = },{ ba ,  I  ]1,0[  and 10  . Again, let u ,  v  XI  defined by  )(au  1.0 ,  

)(bu  2.0  and )(av  3.0 ,  )(bv  4.0 . Put t  { 0 ,  u ,  v ,  1} , then  tX ,  is an fts. 

Now )(0 ac  1 ,  )(0 bc  1; )(auc  9.0 ,  )(buc  8.0  and )(avc  7.0 ,  )(bvc  6.0 . So, 

u { c0 ,  cu ,  cv }  cv  i.e. )(au  7.0 ,  )(bu  6.0  and v { c0 ,  cu ,  cv }  cv  i.e. 

)(av  7.0 ,  )(bv  6.0 . Take   4.0 . Clearly  tX ,  is almost  -compact. But 

cu  cv  0 . Therefore the converse of the theorem is not true in general.  

 

          The following example will show that the almost  -compact subsets in an fts need 

not be closed. 

          Example 8.12: Consider the fts in the example of the theorem (8.11). Again, let 

A1  XI  defined by )(1 aA  1 ,  )(1 bA  0 . Hence we have A  }{a  and A  X . Take 

  5.0 . Then clearly A1  is almost  -compact in  tX , . But A1  is not closed in  tX , , 

as its complement cA1  is not open in  tX , . 

 

          Theorem 8.13: Let  tX ,  be a fuzzy 1T -space (as def. 1.45), A  X  and A1  be an 

almost  -compact subset in  tX , . Suppose x  cA , then there exist u ,  v  t  such that 

)(xu  1 and  A    ]1,0(
1

v .  

Proof: Let y  A . Then clearly x  y . As  tX ,  is fuzzy 1T -space, then there exist            

yu ,  yv  t  such that )(xu y  1 ,  )(yuy  0  and )(xvy  0 ,  )(yvy  1. Let us take 
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0    1 such that )(yvy   0 , as )(yvy  1. Then { yv : y  A }  is an open  -

shading of A1 . Hence we have   )(
0

xuy  1,   )(
0

yvy  1, as yu   0

yu  and yv   0

yv . 

Thus   0

yv : Ay   is also an open  -shading of A1 . Since A1  is almost  -compact, 

then   0

yv : Ay  has a finite proximate  -subshading , say  {
kyv : k  nJ }   such that 

)(yv
ky    for each y  A . Now, let  0

v    0

1yv   0

2yv …...  0

nyv  and 

 0

u   0

1yu   0

2yu  ……  0

nyu . Hence  0

v  and  0

u are open fuzzy sets , as they 

are the union and finite intersection of open fuzzy sets respectively i.e.  0

v ,   0

u  t . But 

we have  0

yv  yv  and  0

yu  yu . Moreover, A    ]1,0(
1

v  and )(xu  1, as )(xu
ky  1 

for each k .  

 

          Theorem 8.14: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and A1 ,  B1  be disjoint 

almost  -compact subsets in  tX ,  ( A ,  B  X ) . Then there exist u ,  v  t  such that 

A    ]1,0(
1

u  and B    ]1,0(
1

v . 

Proof: Let y  A . Then y  B , as A1  and B1  are disjoint . Since B1  is almost                        

 -compact, then by theorem (8.13), there exist yu ,  yv  t  such that )(yuy  1 ,  

B    ]1,0(
1

yv . Assume that 0    1 such that )(yuy   0 . As )( yuy  1 ,  then we 

we have   0

yu : Ay  is an open  -shading of A1 . But A1  is almost  -compact, then 

  0

yu : Ay  has a finite proximate  -subshading, say {
kyu : k  nJ }  such that 

)(yu
ky   for all y  A . Again, B1  is almost  -compact, then   0

yv : Bx  has a 

finite proximate  -subshading, say {
kyv : k  nJ }  such that )(xv

ky    for all x  B  
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and B    ]1,0(
1

kyv  for each k . Now, let  0

u    0

1yu   0

2yu ……  0

nyu  and 

 0

v    0

1yv   0

2yv ……  0

nyv . But we have  0

yv  yv  and  0

yu  yu .  Thus we 

see that A    ]1,0(
1

u  and B    ]1,0(
1

v . Hence  0

u  and  0

v are open fuzzy sets, as 

they are the union and finite intersection of open fuzzy sets respectively i.e.  0

u ,   0

v  t . 

 

         Theorem 8.15: Let  tX ,  be a fuzzy 1T -space (as def. 1.45), A  X  and A1  be an 

almost  -compact subset in  tX , . Then A1  is closed. 

Proof: Let x  cA . We have to show that, there exists u  t   such that )(xu  1 and 

u  pA , where pA  is the characteristic function of cA . If y  A , then x  y  and hence 

there exist yu ,  yv  t  such that )(xu y  1 ,  )(yuy  0  and )(xvy  0 ,  )(yvy  1. Let us 

take 0    1 such that )(yvy    0 . Thus { yv : y  A }  is an open  -shading of A1 . 

Hence we have   )(
0

xu y  1,   )(
0

yvy 1, as yu   0

yu  and yv   0

yv . Thus              

  0

yv : Ay  is also an open  -shading of A1 . Since A1  is almost  -compact, then 

  0

yv : Ay  has a finite proximate  -subshading, say {
kyv : k  nJ }   such that 

)(yv
ky    for each y  A . Now, let  0

u   0

1yu   0

2yu  ……  0

nyu . But we have 

 0

yu  yu , then )(xu  1, as )(xu
ky  1 for each k . Again, if z  A , there exists r  such 

that )(zv
ry    0  and clearly )(zu  0 . Hence u  pA . Therefore, cA1  is open in  tX ,  

and consequently A1  is closed. 
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           Theorem 8.16: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and A  X . If A1  is 

almost  -compact subset in  tX ,  and x  cA , then there exist u ,  v  t  such that 

)(xu  0  and  A    ]1,0(
1

v . The converse is not true in general. 

The proof is similar as that of theorem (8.13). 

Now, for the converse, we give the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 au  2.0 ,  )(1 bu  0 ; )(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put 

t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is a fuzzy 1T -space. Now, we have 

)(0 ac  1 ,  )(0 bc  1; )(1 auc  8.0 ,  )(1 buc  1; )(2 auc  1 ,  )(2 buc  7.0  and )(3 auc  8.0 ,  

)(3 buc  7.0 . Therefore 1u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(1 au  8.0 ,   )(1 bu  7.0 ; 

2u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(2 au  8.0 ,   )(2 bu  7.0  and 3u { c0 ,  cu1 ,  

cu2 ,  cu3 }  cu3  i.e. )(3 au  8.0 ,   )(3 bu  7.0 . Again, let A1  XI  defined by )(1 aA  0 ,  

)(1 bA  1. Hence we observe that A  }{b  and a  cA . Here 1u ,  2u  t  where 

)(1 au  8.0  0  and   ]1,0(
1

2



u  },{ ba . Hence A    ]1,0(
1

2



u . Take   9.0 . Thus we 

see that A1  is not almost  -compact in  tX , , as )(auk    for k  1 ,  2 ,  3 . Thus the 

converse of the theorem is not true in general.    

 

          Theorem 8.17: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and A ,  B  X .  If A1  

and B1  are disjoint almost  -compact subsets in  tX , , then there exist u ,  v  t  such 

that A    ]1,0(
1

u  and B    ]1,0(
1

v . 

Similar proof as theorem (8.14). 
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Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(8.16). Let A1 ,  B1  XI  with )(1 aA  1 ,  )(1 bA  0  and )(1 aB  0 ,  )(1 bB  1. Thus we see 

that A  }{a  and B  }{b . Now 1u ,  2u  t  where   ]1,0(
1

1



u  },{ ba  and 

  ]1,0(
1

2



u  },{ ba . Hence we observe that A    ]1,0(
1

1



u  and B    ]1,0(
1

2



u , where 

A1  and B1  are disjoint. Take   9.0 . Hence we see that A1  and B1  are not almost                  

 -compact in  tX , , as )(auk    and  )(buk   ,  for k  1 ,  2 ,  3  respectively. Thus 

the converse of the theorem is not true in general. 

 

          The following example will show that the almost  -compact subsets in fuzzy                  

1T -space (as def. 1.46) need not be closed. 

          Example 8.18: Consider the fuzzy 1T -space in the example of the theorem (8.16).  

Again, let A1  XI  defined by )(1 aA  1 ,  )(1 bA  0 . Take   6.0 . Then clearly A1  is 

almost  -compact in  tX , . But A1  is not closed in  tX , , as its complement cA1  is not 

open in  tX , . 

 

          Theorem 8.19: An almost  -compact fuzzy regular topological space  tX ,         

(as def. 1.52) is  -compact. 

Proof: Let M  { iu : i  J }  be an open  -shading of X1  i.e. )(xui   for every 

x  X . By fuzzy regularity of X, we have iu  
Ji

ijv


, where ijv  is an open fuzzy set such 

that ijv  iu  for each i . As )(xui      
Ji

ij xv


)(   for each x  X . So )(xvij   for 

all x  X  and for i  J . Therefore we have { ijv : i  J }  an open  -shading of X1 . 

Since X1  is almost  -compact, then there exist jik
v { ijv }  ( k  nJ )  such that 
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)(xv jik
   for each x  X . But we have jik

v 
kiu    )(xu

ki
   for each x  X . 

Therefore X1  is  -compact.   

 

          Theorem 8.20: An fts  tX ,  is almost  -compact iff  tX ,  is compact 

topological space. 

Proof: Suppose  tX ,  is almost  -compact. Let W  { iU : i  J }  be an open cover of 

 tX , . Then for each iU , there exists a iv  t  such that iU  )( iv . Thus we have 

W  { )( iv : i  J } . So the family M  { iv : i  J }  is an open  -shading of  tX , . 

Then   0

iv : Ji  is also an open  -shading of  tX , . To see this, let x  X . Since W  

is an open cover of  tX , , there is an 
0iU W  such that x 

0iU . But 
0iU  )(

0iv  for 

some 
0iv  t . Therefore x  )(

0iv  which implies that )(
0

xvi   . Since  tX ,  is almost 

 -compact, then M  has a proximate  -subshading, say 
kiv  M ( k  nJ )  such that 

)(xv
ki

  . Since iv  iv , then {  
ki

v : k  nJ }  forms a finite subcover of W  and thus 

 tX ,  is compact.     

Conversely, suppose that  tX ,  is compact. Let M  { iu : i  J }  be an open                     

 -shading of  tX , , then   0

iu : Ji  is also an open  -shading of  tX , . Therefore 

we have the family W  { )( iu : i  J }  is an open cover of  tX , . Now, for x  X , 

there exists a 
0i

u  M  such that )(
0

xui   . So x  )(
0i

u  and )(
0i

u W . Since  tX ,  

is compact, then W  has a finite subcover, say )(
kiu W  ( k  nJ )  such that 

X  )(
1i

u  )(
2i

u  ...... )(
ni

u . But  0

iu  iu ,  so {
ki

u : k  nJ }  forms finite 

proximate  -subshading of M . Hence  tX ,  is almost  -compact.   
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          Theorem 8.21: Let  tX ,  be an fts and  tX ,  be a  -level topological space. Let 

f :  tX ,   tX ,  be  -level continuous and bijective mapping. If  tX ,  is compact, 

then  tX ,  is almost  -compact.                 

Proof: Let { iu : i  J }  be an open  -shading of  t,X , then   0

iu : Ji  is also an 

open  -shading of  tX , . Since f  is  -level continuous, then ))(( 1
iuf   t    

  




 

0
1

iuf  t  and hence  









 

0
1

iuf : Ji  is an open cover of  tX , . As 

 tX ,  is compact, then  









 

0
1

iuf : Ji  has a finite subcover, say               

 









 

0
1

ki
uf : nJk  . Now, we have )(xf  y  for y  X , as f  is bijective. Since 

 0

iu  iu  and  









 

0
1

ki
uf : nJk   is a finite subcober of  










 

0
1

iuf : Ji , then 

there exist some k  such that  )(xfu
ki

     )(yu
ki

   for every y  X . Therefore 

{
kiu : k  nJ }  forms a finite proximate  -subshading of { iu : i  J } . Hence  tX ,  is 

almost  -compact.                              

 

          Theorem 8.22: A topological space  TX ,  is compact iff   )(, TX   is almost 

 -compact. 

Proof: Suppose  TX ,  is compact. Let { iu : i  J }  be an open  -shading of 

 )(, TX  . Then   0

iu : Ji  is also an open  -shading  )(, TX  . Therefore we 

can write ]1,(1 aui
 T  and hence { ]1,(1 aui

 : ]1,(1 aui
 T }  is an open cover of 

 TX , . As  TX ,  is compact, then { ]1,(1 aui
 : ]1,(1 aui

 T }  has a finite subcover, say 

]1,(1 au
ki
 { ]1,(1 aui

 }  ( k  nJ )  such that X  ]1,(1
1

aui
    ]1,(1

2
aui

  …...   
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]1,(1 au
ni
 . But from  0

iu  iu , we observe that there exists  0

ki
u    0

iu : Ji  

( k  nJ )  such that )(xu
ki

   for all x  X . Hence it is observe that {
ki

u : k  nJ }  is a 

finite proximate  -subshading of { iu : i  J } . Therefore  )(, TX   is almost                   

 -compact . 

Conversely, suppose that  )(, TX   is almost  -compact. Let { jV : j  J }  be open 

cover of  TX ,  i.e. X  
Jj

jV


{ : jV  T } . As 
jV1 is l. s. c., then 

jV1  )(T  and we have 

{
jV1 : 

jV1  )(T }  is an open  -shading of  )(, TX  .  Then   0

1
jV : )(1 T

jV   is 

also an open  -shading of  )(, TX  . Since  )(, TX   is almost   -compact, then 

  0

1
jV : )(1 T

jV   has a finite proximate  -subshading, say                              

 0

1
kjV    0

1
jV : )(1 T

jV   ( k  nJ )  such that )(1 x
kjV   for all x  X . As 

jV1  )(T  and 
jV1 

jV1 , then we can write X 
1jV 

2jV …....
njV and hence it is 

clear that {
kjV } ( k  nJ )  is a finite subcover of { jV : j  J } . Hence  TX ,  is 

compact. 

           

          Definition 8.23: Let  tX ,  be an fts and 0    1 ,  0    1. Let { iu : i  J }  be 

a family of  -open fuzzy sets in  tX , . Then { iu : i  J }  is a proximate  - -shading 

of X  when { iu : i  J }  is a  - -shading of X  i.e. )(xui    for all x  X .        

A subfamily of { iu : i  J }  which is also a proximate  - -shading of X  is said to be 

proximate  - -subshading of X .   
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          Definition 8.24: Let 0    1 ,  I . An fts  tX ,  is said to be almost                   

 - -compact, 0    1 iff every  - -shading of X  has a finite subfamily whose 

closures is  - -shading of X  or equivalently, every  - -shading of X  has a finite 

proximate  - -subshading.  

 

          Theorem 8.25: Every almost  - -compact space is almost  -compact. But the 

converse is not true. 

The proof is straightforward.  

For the converse, we consider the following example. 

Let X  ]1,0[ ,  I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 xu 













16.0for3.0
0.6xfor0

6.00for0

x

x
 ,  )(2 xu 














16.0for0
0.6xfor0

6.00for4.0

x

x
  and 

)(3 xu 













16.0for3.0
0.6xfor0

6.00for4.0

x

x
.    Put t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is 

an fts. Now,   )(1 xuc 













16.0for7.0
0.6xfor1

6.00for1

x

x
,  )(2 xuc 














16.0for1
0.6xfor1

6.00for6.0

x

x
  and 

)(3 xuc 













16.0for7.0
0.6xfor1

6.00for6.0

x

x
. So we have 1u { c0 ,  cu1 ,  cu2 ,  cu3  }   cu3  i.e. 

)(1 xu 













16.0for7.0
0.6xfor1

6.00for6.0

x

x
; 2u { c0 ,  cu1 ,  cu2 ,  cu3  }   cu3  i.e. 

)(2 xu 













16.0for7.0
0.6xfor1

6.00for6.0

x

x
 and 3u { c0 ,  cu1 ,  cu2 ,  cu3  }   cu3  i.e. 
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)(3 xu 













16.0for7.0
0.6xfor1

6.00for6.0

x

x
. Take   4.0 . Clearly  tX ,  is almost  -compact. 

Again, take   9.0 . Then we observe that there is no finite proximate  - -subshading 

of X . Hence  tX ,  is not almost  - -compact. Thus the converse of theorem is not 

necessarily true. 
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Chapter Nine 

Almost Partially  -Compact Fuzzy Sets 

 

          In this chapter, we have introduced almost partially  -compact fuzzy sets. 

Furthermore, we have established some theorems, corollary and examples about almost 

partially  -compact fuzzy sets. Also we have defined almost partially  - -compact 

fuzzy sets and found different characterizations between almost partially  -compact and 

almost partially  - -compact fuzzy sets.  

 

          Definition 9.1: A family { iu : i  J }  is a proximate partial  -shading, in short 

pp -shading of a fuzzy set   in X  when { iu : i  J }  is a p -shading  of   i.e. 

)(xui    for each x  0 .        

A subfamily of { iu : i  J }  which is also a pp -shading of   is said to be                        

pp -subshading of  .   

  

          Definition 9.2: Let  tX ,  be an fts and   I . A fuzzy set   is said to be almost 

partially  -compact, 0    1, in short, ap -compact iff every open p -shading of   

has a finite subfamily whose closures is p -shading of   or equivalently, every open 

p -shading of   has a finite pp -subshading.  

 

          Theorem 9.3: Let  tX ,  be an fts, A  X  and   be a fuzzy set in X  with 

0  A . Then   is ap -compact in  tX ,  iff   is ap -compact in  AtA, . 



Almost Partially  -Compact Fuzzy Sets 

 

  
154 

Proof: Suppose   is ap -compact in  tX , . Let { iu : i  J }  be an open p -shading 

of   in  AtA, , then   0

iu : Ji  is also an open p -shading of   in  AtA, . So there 

exist iv  t  such that iu  iv | A  iv . Therefore { iv : i  J }  is an open p -shading of 

  in  tX ,  and so   0

iv : Ji  is also an open p -shading of   in  tX , . Since 

 0

iv  iv  and   is ap -compact in  tX , , then   0

iv : Ji  has a finite                       

pp -subshading, say {
ki

v : k  nJ }  such that )(xv
ki

   for each x  0 . But                  

iu   Avi |   iv | A  iv . Now, )(| xAv
n

k
Jk

i 





















        

n

k
Jk

i xAv


)(|      

)(xu
n

k
Jk

i


  , as 0  A  and hence it shows that {
kiu : k  nJ }  is a finite                       

pp -subshading of { iu : i  J } . Therefore   is ap -compact in  AtA, .  

Conversely, suppose   is ap -compact in  AtA, . Let { iv : i  J }  be an open                

p -shading of   in  tX , , then   0

iv : Ji  is also an open p -shading of   in 

 tX , . Put iu  iv | A , then 













Ji
iv | A   )|( Av

Ji
i



 
Ji

iu


. But iu  At , so { iu : i  J }  

is an open p -shading of   in  AtA, . Therefore   0

iu : Ji  is also an open                    

p -shading of   in  AtA, . As  0

iu  iu  and   is ap -compact in  AtA, , then 

  0

iu : Ji  has a finite pp -subshading, say {
ki

u : k  nJ }  such that )(xu
ki

  for 

each x  0 . But iu  Avi |  iv | A  iv , then {
ki

v : k  nJ }  is a finite                             

pp -subshading of { iv : i  J } . Thus   is ap -compact in  tX , .      
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          Corollary 9.4: Let  *, tY  be a fuzzy subspace of an fts  tX ,  and A  Y  X . Let 

  be a fuzzy set in X  with 0  A . Then   is ap -compact in  tX ,  iff   is               

ap -compact in  *, tY . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by preceding theorem 

(9.3),   is ap -compact in  tX ,  or  *, tY  iff   is ap -compact in  AtA,  or  *, AtA . 

But At  *
At .  

 

           Theorem 9.5: Let  tX ,  and  sY ,  be two fts’s and f :  tX ,   sY ,  be fuzzy 

continuous and surjective mapping. If   is ap -compact in  tX , , then )(f  is                   

ap -compact in  sY , . 

Proof: Let { iu : i  J }  be an open p -shading of )(f  in  sY , , then   0

iu : Ji  is 

also an open p -shading of )(f  in  sY , . As f  is fuzzy continuous, then  0
1

iuf   t  

and hence   0
1

iuf  : Ji  is an open p -shading of   in  tX , . For, let x  0 , then 

)(xf   0)(f . So there exists  0

0iu    0

iu : Ji  such that    )(
0

0
xfui     

  )(
0

0

1 xuf i
   . As   is ap -compact, then   0

1
iuf  : Ji  has a finite subfamily, 

say   0
1

kiuf  : nJk   such that   )(
0

1 xuf
ki

    for each x  0 . But  0

iu  iu  and 

fuzzy continuity of f ,   iuf 1  must be a closed fuzzy set in X  such that 

 0
1

iuf    iuf 1  and then  0
1

iuf    iuf 1 . Therefore   






 
0

1
iuff  iu  for each 

i  J . Now, if  y   0)(f , then y  )(xf  for some x  0 , as f  is surjective. So there 

exists k  such that   )(1 xuf
ki

       )(xfu
ki

     )( yu
ki

  . Hence )(f  is 

ap -compact in  sY , .   
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          Theorem 9.6: Let  tX ,  and  sY ,  be two fts’s and f :  tX ,   sY ,  be fuzzy 

open, fuzzy closed and bijective mapping. If   is ap -compact in  sY , , then )(1 f  is 

ap -compact in  tX , . 

Proof: Let { iu : i  J }  be an open p -shading of )(1 f  in  tX , , then   0

iu : Ji  

is also an open p -shading of )(1 f  in  tX , . Since f  is fuzzy open, then  0

iuf  s  

and hence   0

iuf : Ji  is an open p -shading of   in  sY , . For, let y  0 , then 

)(1 yf    01 )(f . So there exists  0

0iu    0

iu : Ji  such that    )(1
0

0
yfui

      

  )(
0

0
yuf i   . As   is ap -compact in  sY , , then   0

iuf : Ji  has a finite 

subfamily, say   0

ki
uf : nJk   such that   )(

0

yuf
ki    for each y  0 . But 

 0

iu  iu  and f  is fuzzy closed,  iuf  must be a closed fuzzy set in Y  such that 

 0

iuf   iuf  and then  0

iuf   iuf . Therefore   







0

1
iuff  iu  for each i  J . For, 

if x   01 )(f , then x  )(1 yf   for y  0 , as f  is bijective. So we can obtain, there 

exists k  such that   )(yuf
ki

      )(1 yfu
ki

      )(xu
ki

  . Hence )(1 f  is 

ap -compact in  tX , .   

 

          Theorem 9.7: Let  tX ,  be an fts and let every family of closed fuzzy sets in X  

with empty intersection has a finite subfamily with empty intersection. Then any fuzzy set 

  in X  is ap -compact. The converse is not true in general. 

Proof: Let   be any fuzzy set in X  and let { iu : i  J }  be an open p -shading of  , 

then   0

iu : Ji  is also an open p -shading of  . By the first condition of the 
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theorem, we have 
Ji

c
iu



 X0 . Therefore  
Ji

iu


 X1  and hence  0


Ji

iu


 X1 , as iu   0

iu . 

Again, by the second condition of the theorem, we get 
n

k
Jk

c
iu



 X0 . So we have 


n

k
Jk

iu


 X1  and hence  
n

k
Jk

iu


0

 X1 , as iu   0

iu . But iu   0

iu  iu , then we get 


n

k
Jk

iu


 X1  and consequently we have )(xu
ki

  for each x  0 . Therefore                    

{
ki

u : k  nJ }  is a finite pp -subshading of { iu : i  J } . Hence   is ap -compact.  

Now, for the converse, we consider the following example. 

Let X = },,{ cba ,  I  ]1,0[  and 0    1. Let u ,  v  XI  defined by  )(au  3.0 ,  

)(bu  2.0 ,  )(cu  4.0  and )(av  4.0 ,  )(bv  3.0 ,  )(cv  5.0 . Choose t  { 0 ,  u ,  v ,  

1} , then  tX ,  is an fts. Now, )(0 ac  1 ,  )(0 bc  1 ,  )(0 cc  1; )(auc  7.0 ,  

)(buc  8.0 ,  )(cuc  6.0  and )(avc  6.0 ,  )(bvc  7.0 ,  )(cvc  5.0 . So we have 

u { c0 ,  cu ,  cv }  cv  i.e. )(au  6.0 ,  )(bu  7.0 ,  )(cu  5.0  and v { c0 ,  cu ,  

cv }  cv  i.e. )(av  6.0 ,  )(bv  7.0 ,  )(cv  5.0 . Again, let   XI  with )(a  0 ,  

)(b  3.0 ,  )(c  8.0 . Take   3.0 . Then clearly   is ap -compact in  tX , . But 

cu  cv  0 . Therefore the converse is not true in general.  

 

           The following example will show that the ap -compact fuzzy sets in an fts need 

not be closed. 

          Example 9.8: Consider the fts  tX ,  in the example of the theorem (9.7). Again, let 

  XI  with )(a  5.0 ,  )(b  6.0 ,  )(c  0 . Take   5.0 . Then clearly   is almost 

ap -compact in  tX , . But   is not closed, as its complement c  is not open in  tX , . 
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          Theorem 9.9: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and   be an                   

ap -compact fuzzy set in X  with 0  X . Let x  0  ( )(x  0 ) , then there exist   

u ,  v  t  such that )(xu  1 and 0    ]1,0(
1

v .  

Proof: Let y  0 . So clearly we have x  y . As  tX ,  is fuzzy 1T -space, there exist 

yu ,  yv  t  such that )(xu y  1 ,  )(yu y  0  and )(xvy  0 ,  )(yvy  1. Let us assume that 

0    1 such that )(yvy   0  (as )(yvy  1). Thus we see that { yv : y  0 }  is an 

open p -shading of  . Also we have   )(
0

xuy  1 ,    )(
0

yvy  1, as yu   0

yu , 

yv   0

yv  and  then   0

yv : 0y  is also an open p -shading of  . Since   is   

ap -compact, then   0

yv : 0y  has a finite pp -subshading, say {
kyv : k  nJ }  

such that )(yv
ky    for each y  0 . Now, let  0

v    0

1yv   0

2yv …...  0

nyv  and 

 0

u   0

1yu   0

2yu  ……  0

nyu . Hence  0

v  and  0

u  are open fuzzy sets, as they 

are the union and finite intersection of open fuzzy sets respectively i.e.  0

v ,   0

u  t . But 

we have  0

yv  yv  and  0

yu  yu . Moreover, 0    ]1,0(
1

v  and )(xu  1, as 

)(xu
ky  1 for each k . 

 

          Theorem 9.10: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and  ,    be disjoint 

ap -compact fuzzy sets in X  with 0 ,  0  X . Then there exist u ,  v  t  such that 

0    ]1,0(
1

u   and  0    ]1,0(
1

v . 

Proof: Let y  0 . Then we have y  0 , as   and   are disjoint. As   is               

ap -compact, then by theorem (9.9), there exist yu ,  yv  t  such that )(yuy  1 and  
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0    ]1,0(
1

yv . Assume that 10   such that )( yuy    0 . Since )( yuy  1, then 

we have   0

yu : 0y  is an open p -shading of  . But   is ap -compact, so 

  0

yu : 0y  has a finite pp -subshading, say {
kyu : k  nJ }  such that )(yu

ky    

for each y  0 . Again,   is ap -compact, then   0

yv : 0x  has a finite                   

pp -subshading, say {
kyv : k  nJ }  such that )(xv

ky     for each x  0  and  0  

   ]1,0(
1

kyv  for each k . Now, let  0

u    0

1yu   0

2yu ……  0

nyu  and                  

 0

v    0

1yv   0

2yv ……  0

nyv . But we have  0

yu  yu  and   0

yv  yv , we see 

that 0    ]1,0(
1

u  and  0    ]1,0(
1

v . Also  0

u  and  0

v  are open fuzzy sets, as they 

are the union and finite intersection of open fuzzy sets respectively i.e.  0

u ,   0

v  t .  

           Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(9.9) and (9.10) are not at all true.    

           

          The following example will show that the ap -compact fuzzy sets in fuzzy 1T -pace 

(as def. 1.45) need not be closed. 

          Example 9.11: Let X  },{ ba ,  I  ]1,0[  and 0    1. Let u ,  v  XI  defined 

by )(au  1 ,  )(bu  0  and )(av  0 ,  )(bv  1. Take t  { 0 ,  u ,  v ,  1} , then   tX ,  is 

a fuzzy 1T -space. Now, )(0 ac  1 ,  )(0 bc  1; )(auc  0 ,  )(buc  1 and )(avc  1 ,  

)(bvc  0 . So we have u { c0 ,  cv }  cv  i.e. )(au  1 ,  )(bu  0  and v { c0 ,  

cu }  cu  i.e. )(av  0 ,  )(bv  1. Again, let   XI  with )(a  4.0 ,  )(b  0 . Take 

  8.0 . Then clearly   is ap -compact in  tX , . But   is not closed, as its 

complement c  is not open in  tX , . 
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          Theorem 9.12: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and   be a fuzzy set in 

X  with 0  X . If  is ap -compact in  tX ,  and x  0  ( )(x  0 ) , then there 

exist u ,  v  t  such that )(xu  0  and 0    ]1,0(
1

v . The converse is not true in general 

The proof is similar as that of theorem (9.9). 

Now, for the converse, we give the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 au  2.0 ,  )(1 bu  0 ; )(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put 

t  { 0 ,  1u ,  2u ,  3u ,  1} , then we see that  tX ,  is a fuzzy 1T -space. Now, we have 

)(0 ac  1 ,  )(0 bc  1; )(1 auc  8.0 ,  )(1 buc  1; )(2 auc  1 ,  )(2 buc  7.0  and )(3 auc  8.0 ,  

)(3 buc  7.0 . Therefore, 1u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(1 au  8.0 ,   )(1 bu  7.0 ; 

2u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(2 au  8.0 ,   )(2 bu  7.0  and 3u { c0 ,  cu1 ,  

cu2 ,  cu3 }  cu3  i.e. )(3 au  8.0 ,   )(3 bu  7.0 . Again, let   XI  defined by )(a  0 ,  

)(b  6.0 . Hence we observe that 0  }{b  and a  0 . Here 1u ,  2u  t  where 

)(1 au  8.0  0  and   ]1,0(
1

2



u  },{ ba . Hence 0    ]1,0(
1

2



u . Take   9.0 . Thus 

we see that   is not almost ap -compact in  tX , , as )(buk    for k  1 ,  2 , 3  and 

b  0 . Thus the converse of the theorem is not true in general.    

 

          Theorem 9.13: Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and  ,    be disjoint 

fuzzy sets in X  with 0 ,  0  X . If   and   are ap -compacts in  tX , , then there 

exist u ,  v  t  such that 0    ]1,0(
1

u   and  0    ]1,0(
1

v . The converse is not true in 

general. 

The proof is similar as that of theorem (9.10). 
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Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(9.12). Let  ,    XI  with )(a  5.0 ,  )(b  0  and )(a  0 ,  )(b  4.0 . Thus we 

see that 0  }{a  and 0  }{b . Now 1u ,  2u  t  where   ]1,0(
1

1



u  },{ ba  and 

  ]1,0(
1

2



u  },{ ba . Hence we observe that 0    ]1,0(
1

1



u  and 0    ]1,0(
1

2



u , where 

  and   are disjoint. Take   9.0 . Hence we see that   and   are not almost                    

ap -compact in  tX , , as )(auk    where a  0  and )(buk    where b  0 ,  for 

k  1 ,  2 ,  3  respectively. Thus the converse of the theorem is not true in general. 

 

          The following example will show that the ap -compact fuzzy sets in fuzzy                 

1T -space (as def. 1.46) need not be closed. 

          Example 9.14: Consider the fuzzy 1T -space in the example of the theorem (9.12).  

Again, let   XI  defined by )(a  7.0 ,  )(b  0 . Take   6.0 . Then clearly   is 

ap -compact in  tX , . But   is not closed in  tX , , as its complement c  is not open 

in  tX , . 

 

          Theorem 9.15: An ap -compact fuzzy sets in fuzzy regular space  tX ,                        

(as def. 1.52) is p -compact. 

Proof: Let { iu : i  J }  be an open p -shading of a fuzzy set   in X  i.e. )(xui    for 

each x  0 . Since  tX ,  is fuzzy regular, then we have iu  
Ji

ijv


,  where ijv  is an open 

fuzzy set such that ijv  iu  for each i . But )(xui      
Ji

ij xv


)(    for each x  0 . 

Therefore )(xvij    for each x  0  and for some i  J . So { ijv : i  J }  is an open 

p -shading of  . As   is ap -compact, then { ijv : i  J }  has a finite                     
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pp -subshading, say  jik
v : nJk   such that such that )(xv jik

   for each x  0 . 

But we have jik
v 

ki
u , then )(xu

ki
  for each x  0 . Thus we see that {

ki
u : k  nJ }  

is a finite p -subshading of { iu : i  J }  and hence   is p -compact.   

 

          Theorem 9.16: Let  tX ,  be an fts and   be a fuzzy set in X with 0  X . If 0  

is compact in  tX , , then   is ap -compact in  tX , . The converse is not true in 

general.       

Proof: Suppose 0  is compact in  tX , . Let { iu : i  J }  be an open p -shading   in 

 tX , , then   0

iu : Ji  is also an open p -shading of   in  tX , . So the family 

  0

iu : Ji  is an open cover of 0  in  tX , . For let x  0 , so there exists a 

 0

0iu    0

iu : Ji  such that   )(
0

0
xui   . Hence x   0

0iu  and thus 

 0

0iu    0

iu : Ji . But 0  is compact in  tX , , so   0

iu : Ji   has a finite 

subcover, say   0

kiu : nJk  . So   0

kiu : nJk   forms a finite subfamily of               

  0

iu : Ji  such that )(xu
ki   for each x  0  i.e. {

kiu : k  nJ }  is a finite                 

pp -subshading of { iu : i  J } . Hence   is ap -compact in  tX , .   

Now, for the converse, we consider the following example. 

Let X = },,{ cba ,  I  ]1,0[  and 10  . Let u ,  v  XI  defined by  )(au  2.0 ,  

)(bu  3.0 ,  )(cu  4.0  and )(av  3.0 ,  )(bv  4.0 ,  )(cv  5.0 . Put t  { 0 ,  u ,  v ,  1} , 

then  tX ,  is an fts. Again, let   XI  with )(a  0 ,  )(b  6.0 ,  )(c  8.0 . Then 

0  },{ cb . Now )(0 ac  1 ,  )(0 bc  1 ,  )(0 cc  1; )(auc  8.0 ,  )(buc  7.0 ,  

)(cuc  6.0  and )(avc  7.0 ,  )(bvc  6.0 ,  )(cvc  5.0 . So we have                    
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u { c0 ,  cu ,  cv }  cv  i.e. )(au  7.0 ,  )(bu  6.0 ,  )(cu  5.0  and v { c0 ,  cu ,  

cv }  cv  i.e. )(av  7.0 ,  )(bv  6.0 ,  )(cv  5.0 . Take   4.0 . Then clearly   is      

ap -compact in  tX , . Now, we have 4.0t  {  ,  }{c ,  X } . Hence it is clear that 0  is 

not compact in  4.0, tX .    

 

          Theorem 9.17: Let f :  tX ,   tX ,  be  -level continuous, bijective and   be 

a fuzzy set in X . If 0  is compact in  tX , , then )(f  is ap -compact in  tX , .                 

Proof: Suppose 0  is compact in  tX , . Let { iu : i  J }  be an open p -shading 

)(f  in  tX , , then   0

iu : Ji  is also an open p -shading of )(f  in  tX , . Since 

f  is  -level continuous, then ))(( 1
iuf   t      





 

0
1

iuf  t  and hence 

 









 

0
1

iuf : Ji  is an open cover of 0  in  tX , . As 0  is compact in  tX , , 

then  









 

0
1

iuf : Ji  has a finite subcover, say  









 

0
1

ki
uf : nJk  . Now, we 

have )(xf  y  for y  0)(f , since f  is bijective. As  0

iu  iu  and                      

 









 

0
1

ki
uf : nJk   is a finite subcober of  










 

0
1

iuf : Ji , there exist some k  

such that   )(xfu
ki

     )( yu
ki

   for each y  0)(f . Thus {
ki

u : k  nJ }  is a 

finite pp -subshading of { iu : i  J } . Therefore, )(f  is ap -compact in  tX , .                     

 

          The following example will show that the “good extension” property does not hold 

for ap -compact fuzzy sets. 
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          Example 9.18: Let X  },,{ cba  and T  {  ,  }{b ,  }{c ,  },{ cb ,  X } . Then 

 TX ,  is a topological space. Let 1u ,  2u ,  3u  XI  with )(1 au  0 , )(1 bu  3.0 ,  

)(1 cu 0; )(2 au  0 ,  )(2 bu  0 ,  )(2 cu  4.0  and )(3 au  0 ,  )(3 bu  3.0 ,  )(3 cu  4.0 . 

Then )(T  { 0 ,  1u ,  2u ,  3u ,  1}  and  )(, TX   is an fts. Now, )(0 ac  1 ,  

)(0 bc  1 ,  )(0 cc  1; )(1 auc  1 ,  )(1 buc  7.0 ,  )(1 cuc  1; )(2 auc  1 ,  )(2 buc  1 ,  

)(2 cuc  6.0  and )(3 auc  1 ,  )(3 buc  7.0 ,  )(3 cuc  6.0 . So we have 1u { c0 ,  cu1 ,  cu2 ,  

cu3 }  cu3  i.e. )(1 au  1 ,  )(1 bu  7.0 ,  )(1 cu  6.0 ; 2u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. 

)(2 au  1 ,  )(2 bu  7.0 ,  )(2 cu  6.0  and 3u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3   i.e. )(3 au  1 ,  

)(3 bu  7.0 ,  )(3 cu  6.0 . Again, let   XI  defined by )(a  0 ,  )(b  6.0 ,  

)(c  5.0 . Then we have 0  },{ cb . Clerly 0  is compact in  TX , . Take   9.0 . 

Then   is not ap -compact in  )(, TX  , as there do not exist ku  for k   1 ,  2 ,  3  

such that )(buk     for b  0 . Again, let   XI  defined by )(a  2.0 ,  )(b  2.0 ,  

)(c  0 . Then we have 0  },{ ba . Take   3.0 . Then clearly   is ap -compact in 

 )(, TX  . But 0  is not compact in  TX , , as there is no finite subcover of 0  in 

 TX , . 

 

          Theorem 9.19: Let   and   be ap -compact fuzzy sets in an fts  tX , . Then 

)(    is also ap -compact in  ttXX  , . 

Proof: Let { ii vu  : i  J }  be an open p -shading of )(    in  ttXX  ,  i.e. 

)( ii vu  ),( yx   for each ),( yx  0)(   . Therefore we have )(xui   for each 

x  0  and )(yvi    for each y  0 . Hence { iu : i  J }   and { iv : i  J }  are open 

p -shadings of   and   respectively. Thus   0

iu : Ji   and   0

iv : Ji  are also 
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open p -shading of   and   respectively. Now we have  0

iu  iu  and  0

iv  iv . As 

  and   are ap -compact, then   0

iu : Ji  and   0

iv : Ji  have  finite                 

pp -subshading, say {
kiu : k  nJ }  and {

kiv : k  nJ }  such that  )(xu
ki    for each 

x  0  and )( yv
ki

  for each y  0  respectively. Hence we can write 

 
kk ii vu  ),( yx    for each ),( yx  0)(   . Therefore )(    is ap -compact in 

 ttXX  , .      

 

          Definition 9.20: Let  tX ,  be an fts,   be a fuzzy set in X  and 0    1 ,  

0    1. Let { iu : i  J }  be a family of  -open fuzzy sets in  tX , . Then                     

{ iu : i  J }  is a proximate partial  - -shading of  , in short, pp -shading, when 

{ iu : i  J }  is a p -shading of   i.e. )(xui    for all x  0 .        

A subfamily of { iu : i  J }  which is also a pp -shading of   is said to be                   

pp -subshading of  .   

          

          Definition 9.21: Let  tX ,  be an fts and 0    1 ,   I . A fuzzy set   in X  is 

said to be almost partially  - -compact, 0    1, in short, ap -compact iff every                

p -shading of   has a finite subfamily whose closures is p -shading  of   or 

equivalently, every p -shading of   has a finite pp -subshading.  

 

          Theorem 9.22: Every ap -compact fuzzy set in an fts is ap -compact. But the 

converse is not true. 

The proof is straightforward. 

Now, for the converse, we consider the following example. 
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Let X  },,{ cba ,  I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  2u  XI  defined by  

)(1 au  2.0 ,  )(1 bu  4.0 ,  )(1 cu  3.0  and )(2 au  3.0 ,  )(2 bu  5.0 ,  )(2 cu  4.0 . Put 

t  { 0 ,  1u ,  2u ,  1} , then  tX ,  is an fts. Now, )(0 ac  1 ,  )(0 bc  1 ,  )(0 cc  1; 

)(1 auc  8.0 ,  )(1 buc  6.0 ,  )(1 cuc  7.0  and )(2 auc  7.0 ,  )(2 buc  5.0 ,  )(2 cuc  6.0 . So 

we have 1u { c0 ,  cu1 ,  cu2 }  cu2  i.e. )(1 au  7.0 ,  )(1 bu  5.0 ,  )(1 cu  6.0  and 

2u { c0 ,  cu1 ,  cu2 }  cu2  i.e. )(2 au  7.0 ,  )(2 bu  5.0 ,  )(2 cu  6.0 . Again, let 

  XI  with )(a  9.0 ,  )(b  7.0 ,  )(c  0 . So we have 0  },{ ba . Take   4.0 . 

Then clearly   is ap -compact in  tX , . Again, take   9.0 . Then we observe that 

there is finite pp -subshading of  . Hence   is not ap -compact in  tX , . Thus the 

converse of theorem is not necessarily true. 
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Chapter Ten 

Almost Q -Compact Fuzzy Sets 

 

          In this chapter, we have introduced almost Q -compact fuzzy sets. Furthermore, 

we have established several theorems, corollary and examples of almost Q -compact 

fuzzy sets. Also we have defined almost  - Q -compact fuzzy sets and identified 

different characterizations between almost Q -compact and almost  - Q -compact 

fuzzy sets.          

 

          Definition 10.1: A family { iu : i  J }  is said to be proximate Q -cover of a 

fuzzy set   in X  when { iu : i  J }  is Q -cover of   i.e. )(x  )(xui    for each 

x  X  and for some iu , where   0I . 

A subfamily of { iu : i  J }  which is also a proximate Q -cover of   is called a 

proximate Q -subcover of  . 

 

          Definition 10.2: A fuzzy set   is said to be almost Q -compact iff every open 

Q -cover of   has a finite subfamily whose closures is Q -cover of   or equivalently, 

every open Q -cover of   has a finite proximate Q -subcover. 

Every super sets of an almost Q -compact fuzzy set is also almost Q -compact.   

 

          Theorem 10.3: Let  tX ,  be an fts, A  X  and   be a fuzzy set in A . Then   is 

almost Q -compact in  tX ,  iff   is almost Q -compact in  AtA, . 
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Proof: Suppose   is almost Q -compact in  tX , . Let { iu : i  J }  be an open               

Q -cover of   in  AtA, , then   0

iu : Ji  is also an open Q -cover of   in 

 AtA, . Then there exist iv  t  such that iu  iv | A  iv . Therefore { iv : i  J }  is an 

open Q -cover of   in  tX ,  and so   0

iv : Ji  is also an open Q -cover of   in 

 tX , . But  0

iv  iv  and   is almost Q -compact in  tX , , then   0

iv : Ji  has a 

finite proximate Q -subcover, say {
ki

v : k  nJ }  such that )(x  )(xv
ki

   for each 

x  A . Hence )(x    )(| xAv
ki    for each x  A  and consequently 

)(x  )(xu
ki

   for each x  A . Therefore {
ki

u : k  nJ }  is a finite proximate                  

Q -subcover of { iu : i  J } . Thus   is almost Q -compact in  AtA, .      

Conversely, suppose   is almost Q -compact in  AtA, . Let { iv : i  J }  be an open 

Q -cover of   in  tX , , then   0

iv : Ji  is also an open Q -cover of   in  tX , . 

Put iu  iv | A . Then )(x  )(xvi    for all x  A    )(x  )()|( xAvi    for each 

x  A    )(x  )(xui    for each x  A . Since iu  At , then { iu : i  J }  is an open 

Q -cover of   in  AtA, . Therefore   0

iu : Ji  is also an open Q -cover of   in 

 AtA, . But from  0

iu  iu  and   is almost Q -compact in  AtA, , then   0

iu : Ji  

has a finite proximate Q -subcover, say {
ki

u : k  nJ }  such that )(x  )(xu
ki

   for 

each x  A . But iu   Avi |  iv | A  iv , then )(x    )(| xAv
ki

   for each x  A  

  )(x    )(| xAv
ki

   for each x  A  and consequently )(x  )(xv
ki

   for each 

x  A . Therefore {
kiv : k  nJ }  is a finite proximate Q -subcover of { iv : i  J } . 

Therefore   is almost Q -compact in  tX , .    
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          Corollary 10.4: Let  *, tY  be a fuzzy subspace of  tX ,  and A  Y  X . Let   

be a fuzzy set in A . Then   is almost Q -compact in  tX ,  iff   is almost                      

Q -compact in  *, tY . 

Proof: Let At  and *
At  be the subspace fuzzy topologies on A . Then by theorem (10.3),   

is almost Q -compact in  tX ,  or  *, tY  iff   is almost Q -compact in  AtA,  or 

 *, AtA . But At  *
At .             

 

          Theorem 10.5: Let   be an almost Q -compact fuzzy set in an fts  tX , . If 

    and   ct , then   is also almost Q -compact.              

Proof: Let { iu : i  J }  be an open Q -cover of  , then   0

iu : Ji  is also an open 

Q -cover of  . So  




 0

iu   






 0

c  is an open Q -cover of  . As )(x    )(
0

xui  

   for each x  X , then we have )(x  max     





 )(),(

00

xxu c
i     for each x  X . 

Hence )(x    )(
0

xui  )(x     )(
0

xui    for each x  X . Since  0

iu  iu  and   is 

almost Q -compact, then  




 0

iu   






 0

c  has a finite subcollection, say                       

  0

kiu : nJk    






 0

c  such that )(x  max  )(),( xxu c
ik

    for each x  X . 

Therefore {
kiu : k  nJ }  is a finite proximate Q -subcover of { iu : i  J } . Hence   

is almost Q -compact.       

 

          Theorem 10.6: Let  tX ,  be an fts and   be a fuzzy set in X . If every family of 

closed fuzzy sets having the empty intersection has a finite subfamily with empty 

intersection, then   is almost Q -compact. The converse is not true in general. 
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Proof: Let { iu : i  J }  be an open Q -cover of  , then   0

iu : Ji  is also an open 

Q -cover of  . From the first condition of the theorem, we have 
Ji

c
iu



 X0 . Thus 


Ji

iu


 X1  and so  0


Ji

iu


 X1 , as iu   0

iu . Again by the second condition of the 

theorem, we get 
n

k
Jk

c
iu



 X0 . So we have 
n

k
Jk

iu


 X1  and hence  
n

k
Jk

iu


0

 X1 , as 

iu   0

iu . But iu   0

iu  iu , then 
n

k
Jk

iu


  X1  and consequently )(x  )(xu
ki

   for 

each x  X . Therefore {
ki

u : k  nJ }  is a finite proximate Q -subcover of                   

{ iu : i  J } . Thus   is almost Q -compact. 

Now, for the converse, we give the following example. 

Let X  },{ ba ,  I  ]1,0[  and   0I . Again, let u ,  v  XI  defined by )(au  2.0 ,  

)(bu  4.0  and )(av  3.0 ,  )(bv  6.0 . Put t  { 0 ,  u ,  v ,  1} , then  tX ,  is an fts. 

Now, )(0 ac  1 ,  )(0 bc  1; )(au c  8.0 ,  )(bu c  6.0  and )(av c  7.0 ,  )(bv c  4.0 . So 

we have u  { c0 ,  cu ,  cv }  cv  i.e. )(au  7.0 ,  )(bu  4.0  and v  { c0 ,  

cu }   cu  i.e. )(av  8.0 ,  )(bv  6.0 . Let   XI  with )(a  3.0 ,  )(b  7.0 . Take 

  9.0 . Then clearly  is almost Q -compact in  tX , . But cu  cv  0 . Therefore 

the converse of the theorem is not true in general.  

 

          Theorem 10.7: Let  and   be almost Q -compact fuzzy sets in an fts  tX , . 

Then    is also almost Q -compact in  tX , . 

Proof: Let { iu : i  J }   be an open Q -cover of   , then   0

iu : Ji  is also an 

open Q -cover of   . Therefore   0

iu : Ji  is any open Q -cover of both   
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and   respectively. But from  0

iu  iu  and   is almost Q -compact in  tX , , then 

  0

iu : Ji  has a finite proximate Q -subcover, say {
ki

u : k  nJ }  such that 

)(x  )(xu
ki

   for each x  X . Similarly, we can find {
ri

u : r  nJ }  is a finite 

proximate Q -subcover of   0

iu : Ji . Therefore {
kiu ,  

riu }  is a finite proximate 

Q -subcover of { iu : i  J } . Hence    is almost Q -compact in  tX , .  

 

           Theorem 10.8: Let  and   be almost Q -compact fuzzy sets in an fts  tX , . 

Then    is also almost Q -compact in  tX , . 

Proof: We have     ,      . As   and   are almost Q -compact, then it 

is clear that    is almost Q -compact in  tX , .     

           

          The following example will show that any other subsets of an almost Q -compact 

fuzzy set in an fts need not be almost Q -compact. 

           Example 10.9: Let X  },{ ba ,  I  ]1,0[  and   0I . Again, let u ,  v  XI  

defined by  )(au  3.0 ,  )(bu  4.0  and )(av  4.0 ,  )(bv  5.0 . Consider t  { 0 ,  u ,  

v ,  1} , then  tX ,  is an fts. Now, )(0 ac  1 ,  )(0 bc  1; )(au c  7.0 ,  )(bu c  6.0  and 

)(av c  6.0 ,  )(bv c  5.0 . Therefore  u    { c0 ,  cu ,  cv }  cv  i.e. )(au  6.0 ,  

)(bu  5.0  and v  { c0 ,  cu ,  cv }  cv  i.e. )(av  6.0 ,  )(bv  5.0 . Let  ,    XI  

with )(a  3.0 ,  )(b  7.0  and )(a  1.0 ,  )(b  4.0 . We observe that    . Take 

  8.0 . Clearly  is almost Q -compact in  tX , . But   is not almost Q -compact 

in  tX , , as   have no finite proximate Q -subcover in  tX , .   
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          Note: The example (10.9) also shows that almost Q -compact fuzzy sets in an fts 

need not be closed, as   is almost Q -compact in  tX ,  but c  is not open in  tX , .            

 

          Theorem 10.10: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and   be an almost 

Q -compact fuzzy set in X  with 0  X . Let x  0  ( )(x  0 ) , then there exist            

u ,  v  t  such that )(xu  1 and 0    ]1,0(
1

v .  

Proof: Let y  0 . Then clearly we have x  y . Since  tX ,  is fuzzy 1T -space, then 

there exist yu ,  yv  t  such that )(xu y 1 ,  )(yuy  0  and )(xvy  0 ,  )(yvy  1. Let us 

assume that   0I  such that )(x  )(xu y   ,  x  X  and )(y  )(yvy   ,  y  0  

i.e. { yu ,  yv : y  0 }  is an open Q -cover of  . Also we have   )(
0

xuy  1 ,  

  )(
0

yvy  1, as yu   0

yu ,  yv   0

yv  and say M    0

yu ,   0

yv : 0y  is also an 

open Q -cover of  . But we have  0

yu  yu ,   0

yv  yv   and since   is almost               

Q -compact, then M  has a finite proximate Q -subcover, say {
kyu ,  

kyv : k  nJ }  

such that )(x  )(xu
ky    for each x  X  with )(x  0 , for some  0

kyu  M  and 

)( y  )(yv
ky    for each y  X  with )(y  0 , for some  0

kyv  M . Now, let                

 0

v    0

1yv   0

2yv   …..   0

nyv  and  0

u    0

1yu    0

2yu   ……   0

nyu . Thus we 

see that  0

v  and  0

u  are open fuzzy sets, as they are the union and finite intersection of 

open fuzzy sets respectively i.e.  0

v ,   0

u  t . Moreover, 0    ]1,0(
1

v  and )(xu  1, as 

)(xu
ky  1 for each k . 
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          Theorem 10.11: Let  tX ,  be a fuzzy 1T -space (as def. 1.45) and  ,    be disjoint 

almost Q -compact fuzzy sets in X  with 0 ,  0  X . Then there exist u ,  v  t  such 

that 0    ]1,0(
1

u  and 0    ]1,0(
1

v . 

Proof: Let y  0 . Then we have y  0 , as   and   are disjoint. Since   is almost 

Q -compact, then by theorem (10.10), there exist yu ,  yv  t  such that )(yuy  1 and  

0     ]1,0(
1

yv . Let us take   0I  such that )(x    )(
0

xvy   ,  x  X   and 

)( y    )(
0

yuy   ,  y  0  i.e. say M    0

yv ,   0

yu : 0y   is an open Q -cover 

of  . But we have  0

yv  yv  and   0

yu  yu . As )( yuy  1 and   is almost                       

Q -compact in  tX , , then M  has a finite proximate Q -subcover, say                  

{
kyv ,  

kyu : k  nJ }  such that )(x  )(xv
ky    for each x  X  with )(x  0 , for 

some  0

kyv  M  and )( y  )(yu
ky    for each y  X  with )( y  0 , for some 

 0

kyu  M . Again, since   is almost Q -compact in  tX , , then we have 

)(x  )(xv
ky    for each x  X  with )(x  0 , for some  0

kyv  M  and 

)( y  )(yu
ky    for each y  X  with )( y  0 , for some  0

kyu  M  and also                  

0     ]1,0(
1

kyv  for each k . Now, let  0

u    0

1yu    0

2yu   ……   0

nyu and                

 0

v   0

1yv   0

2yv   …..   0

nyv . Thus we observe that 0    ]1,0(
1

u  and 

0    ]1,0(
1

v . Hence  0

u  and  0

v  are open fuzzy sets, as they are the union and finite 

intersection of open fuzzy sets respectively i.e.  0

u ,   0

v  t .             

          Remark: If )(x  0  for all x  X  i.e. 0  X , then the above two theorems 

(10.10) and (10.11) are not at all true.   
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          The following example will show that the almost Q -compact fuzzy sets in fuzzy 

1T -space (as def. 1.45) need not be closed.   

           Example 10.12: Let X  },{ ba ,  I  ]1,0[  and   0I . Let  u ,  v  XI  defined 

by  )(au  1 ,  )(bu  0  and )(av  0 ,  )(bv  1. Put t  { 0 ,  u ,  v ,  1} , then we see that 

 tX ,  is a fuzzy 1T -space. Now, )(0 ac  1 ,  )(0 bc  1; )(au c  0 ,  )(bu c  1 and 

)(av c  1 ,  )(bv c  0 . So we have u    { c0 ,  cv }   cv  u  i.e. )(au  1 ,  )(bu  0  

and v  { c0 ,  cu }   cu  v  i.e. )(av  0 ,  )(bv  1. Again, let   XI  defined by 

)(a  3.0 , )(b  2.0 . Take   6.0 . Then clearly   is almost Q -compact in  tX , . 

But   is not closed, as its complement c  is not open in  tX , .  

 

          Theorem 10.13:  Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and   be a fuzzy set 

in X  with 0  X . If   is almost Q -compact in  tX ,  and x  0  ( )(x  0 ) , then 

there exist u ,  v  t  such that )(xu  0  and 0    ]1,0(
1

v . The converse is not true in 

general.   

The proof is similar as that of theorem (10.10). 

Now, for the converse, we give the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1. Let 1u ,  2u ,  3u  XI  defined by  

)(1 au  2.0 ,  )(1 bu  0 ; )(2 au  0 ,  )(2 bu  3.0  and )(3 au  2.0 ,  )(3 bu  3.0 . Now, put 

t  { 0 ,  1u ,  2u ,  3u ,  1 } , then we see that  tX ,  is a fuzzy 1T -space. Now we have, 

)(0 ac  1 ,  )(0 bc  1; )(1 auc  8.0 ,  )(1 buc  1; )(2 auc  1 ,  )(2 buc  7.0  and )(3 auc  8.0 ,  

)(3 buc  7.0 . Therefore 1u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(1 au  8.0 ,   )(1 bu  7.0 ; 

2u { c0 ,  cu1 ,  cu2 ,  cu3 }  cu3  i.e. )(2 au  8.0 ,   )(2 bu  7.0  and 3u { c0 ,  cu1 ,  
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cu2 ,  cu3 }  cu3  i.e. )(3 au  8.0 ,   )(3 bu  7.0 . Again, let   XI  defined by )(a  0 ,  

)(b  3.0 . Hence we observe that 0  }{b  and a  0 . Here 1u ,  2u  t  where 

)(1 au  8.0  0  and   ]1,0(
1

2



u  },{ ba . Hence 0    ]1,0(
1

2



u . Take   9.0 . Thus 

we see that   is not almost Q -compact in  tX , , as )(a  )(auk    for a  X  and 

k  1 ,  2 ,  3 . Thus the converse of the theorem is not true in general.    

 

          Theorem 10.14:  Let  tX ,  be a fuzzy 1T -space (as def. 1.46) and  ,    be fuzzy 

sets in X  with 0 ,  0  X . If    and   are disjoint almost Q -compacts in  tX , , 

then there exist u ,  v  t  such that 0    ]1,0(
1

u  and 0    ]1,0(
1

v .     

The similar work as that of theorem (10.11). 

Now, for the converse, consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(10.13). Let  ,    XI  with )(a  3.0 ,  )(b  0  and )(a  0 ,  )(b   1.0 . Thus 

we see that 0  }{a  and 0  }{b . Now 1u ,  2u  t  where   ]1,0(
1

1



u  },{ ba  and 

  ]1,0(
1

2



u  },{ ba . Hence we observe that 0    ]1,0(
1

1



u  and 0    ]1,0(
1

2



u , where 

  and   are disjoint. Take   9.0 . Hence we see that   and   are not almost                    

Q -compact in  tX , , as )(b  )(buk    for b  X  and )(a  )(auk    for 

a  X  where k  1 ,  2 ,  3 . Thus the converse of the theorem is not true in general. 

 

          The following example will show that the almost Q -compact fuzzy sets in fuzzy 

1T -space (as def. 1.46) need not be closed. 

          Example 10.15: Consider the fuzzy 1T -space  tX ,  in the example of the theorem 

(10.13). Again, let   XI  defined by )(a  4.0 ,  )(b  8.0 . Take   9.0 . Clearly   
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is almost Q -compact in  tX , . But   is not closed, as its complement c  is not open in 

 tX , . 

 

          Theorem 10.16: An almost Q -compact fuzzy sets in fuzzy regular space           

(as def. 1.52) is Q -compact.    

Proof: Let { iu : i  J }  be an open Q -cover of   i.e. )(x  )(xui    for each 

x  X . As  tX ,  is fuzzy regular, then we have iu  ijv , where ijv  is an open fuzzy set 

such that jiv  iu  for each i . But )(x  )(xui    for each x  X    

)(x  )(xv
Ji

ij


   for each x  X . Then )(x  )(xvij    for each x  X  and for 

some i  J . So { ijv  : i  J }  is an open Q -cover of  . Since   is almost                       

Q -compact, then { ijv  : i  J }  has a finite proximate Q -subcover, say                       

{ jik
v : k  nJ }  such that )(x  )(xv jik

   for each x  X . But we have jik
v 

kiu , 

then )(x  )(xu
ki

   for each x  X . Therefore {
kiu : k  nJ }  is a finite                   

Q -subcover of { iu : i  J }  and hence   is Q -compact.         

 

          Theorem 10.17: Let  tX ,  be an fts and   be a fuzzy set in X . If 0  is compact 

in  tX , , then   is almost Q -compact in  tX , . The converse is not true in general.       

Proof: Suppose 0  is compact in  tX , . Let { iu : i  J }  be an open Q -cover of   

in  tX , , then   0

iu : Ji  is also an open Q -cover of   in  tX , . So the family 

  0

iu : Ji  is an open cover of 0  in  tX , . But 0  is compact in  tX , , so 

  0

iu : Ji   has a finite subcover, say   0

ki
u :  nJk  . Thus   0

ki
u :  nJk   
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forms a finite subfamily of   0

iu : Ji  such that )(x  )(xu
ki

   for each x X  i.e. 

{
ki

u : k  nJ }  is a finite proximate Q -subcover of { iu : i  J } . Hence   is almost 

Q -compact in  tX , .   

Now, for the converse,  consider the example. 

Let X  },{ ba ,  I  ]1,0[  and 10  . Let u ,  v  XI  defined by  )(au  3.0 ,  

)(bu  4.0  and )(av  5.0 ,  )(bv  6.0 . Put t  { 0 ,  u ,  v ,  1} , then  tX ,  is an fts. 

Now, )(0 ac  1 ,  )(0 bc  1; )(auc  7.0 ,  )(buc  6.0  and )(avc  5.0 ,  )(bvc  4.0 . So 

we have u { c0 ,  cu ,  cv }  cv  i.e. )(au  5.0 ,  )(bu  4.0  and v { c0 ,  

cu }  cu  i.e. )(av  7.0 ,  )(bv  6.0 . Again, let   XI  with )(a  1.0 ,  )(b  0 . 

Then 0  }{a . Take   5.0 . Then clearly   is almost Q -compact in  tX , . Now we 

have 5.0t  {  ,  }{b ,  X }  and  5.0, tX  is a 5.0 -level topological space. Hence we 

observe that 0  is not compact in  5.0, tX , as there is no finite subcover of 0  in 

 5.0, tX .    

            

          The “good extension property” does not remain valid for almost Q -compact fuzzy 

sets. 

          Example 10.18: Let X  },,{ cba  and T  {  ,  }{b ,  }{c ,  },{ cb ,  X } . Then 

 TX ,  is a topological space. Let 1u ,  2u ,  3u  XI  with )(1 au  0 ,  )(1 bu  6.0 ,  

)(1 cu 0; )(2 au  0 ,  )(2 bu  0 ,  )(2 cu  3.0  and )(3 au  0 ,  )(3 bu  6.0 ,  )(3 cu  3.0 . 

Then )(T  { 0 ,  1u ,  2u ,  3u ,  1}  and  )(, TX   is an fts. Now )(0 ac  1 ,  

)(0 bc  1 ,  )(0 cc  1; )(1 auc  1 ,  )(1 buc  4.0 ,  )(1 cuc  1; )(2 auc  1 ,  )(2 buc  1 ,  

)(2 cuc  7.0  and )(3 auc  1 ,  )(3 buc  4.0 ,  )(3 cuc  7.0 . So we have 1u { c0 ,  
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cu2 }  cu2  i.e. )(1 au  1 ,  )(1 bu  1 ,  )(1 cu  7.0 ; 2u { c0 ,  cu1 ,  cu2 ,  cu3 }   cu3  i.e. 

)(2 au  1 ,  )(2 bu  4.0 ,  )(2 cu  7.0  and 3u { c0 ,  cu2 }  cu2  i.e. )(3 au  1 ,  

)(3 bu  1 ,  )(3 cu  7.0 . Again, let   XI  defined by )(a  0 ,  )(b  4.0 ,  )(c  1.0 . 

Then we have 0  },{ cb . Clearly 0  is compact in  TX , . Take   9.0 . Then   is 

not almost Q -compact in  )(, TX  , as there do not exists ku  for k   1 ,  2 ,  3  such 

that )(c  )(cuk   . Again, let   XI  defined by )(a  4.0 ,  )(b  0 ,  )(c  4.0 . 

So we have 0  },{ ca . Then clearly   is almost Q -compact in  )(, TX  .  But 

0  },{ ca  is not compact in  TX , , as there do not exist a finite subcover of 0  in  

 TX , . It is, therefore, observed that “good extension property” does not hold good for 

almost Q -compact fuzzy sets.    

 

          Theorem 10.19: Let   and   be almost Q -compact fuzzy sets in an fts  tX , . 

Then )(    is also almost Q -compact in  ttXX  , . 

Proof: Let { ii vu  : i  J }  be an open Q -cover of )(    in  ttXX  ,  i.e.   

)(   ),( yx  )( ii vu  ),( yx    for each ),( yx  XX  . Then clearly we have  

)(x  )(xui    for each x  X  and )( y  )( yvi    for each y  X . Therefore 

{ iu : i  J }   and { iv : i  J }  are open Q -cover of   and   respectively. Then 

  0

iu : Ji   and   0

iv : Ji  are also open Q -cover of   and   respectively. 

Since  0

iu  iu ,   0

iv  iv  and  ,    are almost  Q -compact, then   0

iu : Ji   and 

  0

iv : Ji  have  finite proximate Q -subcover, say {
ki

u : k  nJ }  and                       

{
ki

v : k  nJ }  such that )(x  )(xu
ki

   for each x  X  and )( y  )( yv
ki

   for 
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each y  X  respectively. Hence we can write )(   ),( yx   
kk ii vu  ),( yx    for 

each ),( yx  XX  . Hence )(    is almost Q -compact in   ttXX  , . 

           

          Definition 10.20: Let  tX ,  be an fts,   be a fuzzy set in X  and 0    1 ,  

0    1. Let { iu : i  J }  be a family of  -open fuzzy sets in  tX , . Then                       

{ iu : i  J }  is proximate  - Q -cover of   when { iu : i  J }  is  - Q -cover of   

i.e. )(x  )(xui    for each x  X . A subfamily of { iu : i  J }  which is also a 

proximate  - Q -cover of   is said to be proximate  - Q -subcover of  .   

 

          Definition 10.21: A fuzzy set   is said to be almost  - Q -compact iff every                 

 - Q -cover of   has a finite subfamily whose closures is  - Q -cover of   or 

equivalently, every  - Q -cover of   has a finite proximate  - Q -subcover.  

Every fuzzy supersets of an almost  - Q -compact fuzzy set is also almost                   

 - Q -compact. 

 

          Theorem 10.22: Any almost  - Q -compact fuzzy set in an fts is almost                   

Q -compact. The converse is not true in general. 

The proof of the theorem is straightforward. 

Now, for the converse, consider the following example. 

Let X  },{ ba ,  I  ]1,0[  and 0    1 ,  0    1. Let 1u ,  2u  XI  defined by  

)(1 au  4.0 ,  )(1 bu  3.0  and )(2 au  5.0 ,  )(2 bu  6.0 . Now, take t  { 0 ,  1u ,  2u ,  1} , 

then we see that  tX ,  is an fts. Now, )(0 ac  1 ,  )(0 bc  1; )(1 auc  6.0 ,  )(1 buc  7.0  

and )(2 auc  5.0 ,  )(2 buc  4.0 . So we have 1u { c0 ,  cu1 ,  cu2 }  cu2  i.e. )(1 au  5.0 ,  
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)(1 bu  4.0  and 2u { c0 ,  cu1 }  cu1  i.e. )(2 au  6.0 ,  )(2 bu  7.0 . Again, let   XI  

defined by )(a  7.0 ,  )(b  2.0 . Take   9.0 . Clearly   is almost Q -compact in 

 tX , . Take   8.0 . Then we observe that there is no finite proximate  - Q -subcover 

of  . Hence   is not almost  - Q -compact in  tX , . Thus the converse of theorem is 

not necessarily true.         
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