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 Introduction  

The notion of a fuzzy set, as proposed by L.A. Zadeh[90] in 1965 to provide a 

foundation for the evolution of many areas of knowledge. After then in quick 

succession, L-fuzzy sets were introduced by Goguen[24] in 1967. As a result, this 

provides a natural frame work for generalizing many algebraic and topological 

concepts in various directions such as L-fuzzy sets, fuzzy logics, fuzzy control, 

fuzzy groups, fuzzy rings, fuzzy vector spaces, fuzzy topology, fuzzy bitopology, 

L-topology etc. Many other branches of mathematics have been developed all over 

the world during the last five decades. Chang [12] first introduced and studied the 

concept of a fuzzy topological space by using the fuzzy set in 1968. Hutton[31-34] 

,Reilly[33-34],Wong [83-84], Lowen[47-48], Srivastava[73-79], Dude[16-17], 

Cutler[14], Ying[88], Ali[2-9], Hossain[26-30], Pu and Liu[53-54], etc., discussed 

and developed various aspects of fuzzy topological spaces. Ying [88] introduced 

fuzzifying topology and developed this in a new direction with the semantic 

methods of continuous valued logic. With the help of fuzzifying topology, 

Sinha[69-70] introduced and studied T0, T1, T2-(Hausdorff), T3-(regular), T4-

(normal), separation axioms. Mashhour et al. [51-52] introduced and studied the 

concepts of the family of fuzzifying semi-open sets, fuzzifying neighbourhood 

structure of a point and fuzzifying semi-closure of a fuzzy set. Also in fuzzifying 
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topology they introduced and studied semi-T0-, semi-R0-, semi-T1-, semi-R1-, 

semi-T2(semi Hausdorff)-, semi-T3(semi regular)-, semi-T4(semi normal)-, 

separation axioms. Ali and Hossain [28] developed the R0 and R1 separation 

axioms and studied their relations with the T1 and T2-separation axioms 

respectively. In 1993, Warner and Mclean [80] introduced on compact Hausdorff 

L-fuzzy spaces. Later Jin-xuan, Ren Bai-lin[35] introduced and studies a set of 

new separation axioms in L-fuzzy topological spaces. After wards, Kudri[41-42], 

Li[43-44], Song[71], Xu[86], ZHAO Bin[93], introduced the L-fuzzy topological 

spaces and studied the strong Hausdorff Separation property in L-fuzzy 

topological spaces.  

In this present thesis, we are going to introduce some new definitions of 

separation axioms in L-topological spaces using the ideas of Jin-xuan and Ren 

Bai-lin[35]. Some of their equivalent formulations along with various new 

characterizations and results concerning the existing ones are presented here. Our 

criterion for definitions has been preserving as much as possible the relation 

between the corresponding separation properties for L-topological spaces. 

Moreover, it will be seen that the definitions of these axioms are ‘good extensions’ 

in the sense of Lowen [47-48]. 

We aim to develop theories of L-T0, L-T1, L-T2 (Hausdorff), L-R0 and L-

R1-separation axioms analogous to its counterpart in ordinary topology. The 
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materials of this thesis have been divided into six chapters, a brief scenario of 

which we present as follows.  

The first one is to incorporate some of the basic definitions and results of fuzzy 

set, fuzzy topology, fuzzy mapping, L-topology and its mapping. These results are 

ready references for the work in the subsequent chapter. Results are stated without 

proof and can be seen in the papers referred to. 

Our work starts from chapter two. In this chapter, we have introduced and 

studied T0 properties in L-topological spaces. Here we add eight more definitions 

to this list and we have established relationship among them. All these eight 

definitions are ‘good extensions’ of the corresponding concept T0 in a topological 

space. We prove that all these definitions satisfy property of hereditary, productive 

and projective. Also we have studied some other properties of these concepts.     

In chapter three, we have developed and studied T1 properties in L-

topological spaces. Here, we include eight more definitions to this chapter and we 

have established relations among them. All these eight notions are ‘good 

extensions’ of the corresponding concept of T1 in a topological space. We prove 

that all these notions are hereditary, productive and projective. We have discussed 

some other properties of these concepts. 

We have introduced and studied T2(Hausdorff) properties in L-topological 

spaces, in chapter four. We have developed here seven more definitions and we 
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established relations among them. All these properties are ‘good extensions’ of the 

corresponding concept T2(Hausdorff) in a topological space. We have observed 

that all the definitions satisfy property of hereditary, productive and projective.  

Chapter five is based on the R0 properties in L-topological spaces. Here we 

have obtained seven more definitions. We see that all these properties are ‘good 

extensions’ of the corresponding notions in topological spaces. We have discussed 

that all the properties are hereditary, productive and projective. We have also 

studied several other properties of these concepts.   

The R1 properties in L-topological spaces are to be studied in chapter six. 

We have given here seven more definitions and we have established relations 

among them. All these are ‘good extensions’ of their corresponding concept in a 

topological space. Some other pleasant properties of these concepts have been 

studied here.  
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CHAPTER-1 

Preliminaries 

1.1 Introduction: 

We have discussed the fuzzy sets, fuzzy topological spaces and L-topological 

spaces in this chapter. We have incorporated some of the basic definitions and 

results of the fuzzy sets, Grade of membership, L-fuzzy sets, complement of L-

fuzzy sets, some laws of L-fuzzy sets, different mapping on L-fuzzy sets, 

Fuzzy topological spaces, L- topological spaces, L-T0, L-T1, L-T2-spaces, fuzzy 

product topological spaces and L-product topological spaces which are to be 

used as ready references for understanding the subsequent chapters. Most of the 

results are quoted from various research papers. We make use the following 

general notations in this thesis paper. 

                                           :  Index set. 

                            L               :  Complete distributive lattice with 0 and 1. 

                             I = [0, 1]   :  Closed unit interval.  

                             I1 = [0, 1)  :  Right open unit interval. 

                             I0 = (0, 1]  :  Left open unit interval. 
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                            μ, α, β, γ,.. :  L-Fuzzy sets. 

                             (X, t)         :  Fuzzy topological space. 

                               (X, τ)       :  L-topological space. 

                            (X, T)        :  General topological space. 

                             i  Xi     :  Usual product of Xi . 

                           (X, τ 1 τ 2)  :  Product of L-topologies τ 1 and τ 2 on the set X. 

              I( τ) = { u -1(  , 1 ] :  uτ* },   I1 : General topology on X. 

1.2 Fuzzy Set 

1.2.1 Definition [90]: Let X be a non-empty set and I= [0, 1]. A fuzzy set in X 

is a function �:� → � which assign to each element  � ∈ �, a degree of 

membership, �(�) ∈ �.Thus a usual subset of X, is a special type of a fuzzy set 

in which the range of the function is [0,1]. 

1.2.2 Definition: Let X be a nonempty set and A be a subset of X. The function 

1� ∶ �  → { 0 ,1} defined by   

1�(� )  = �
1 ��  � ∈  �
0 �� � ∉ A

�          is called the characteristic function of A. We also 

write 1x for the characteristic function of X. 
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1.2.3 Definition: The characteristic functions of subsets of a set X are referred 

to as the crisp sets in X. 

1.2.4 Example: Suppose X is real number R and the fuzzy set of real numbers 

much greater than 5 in X that could be defined by the continuous function 

]1,0[: XU such that 
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1.2.5 Definition [47]: A fuzzy subset is empty if and only if grade of 

membership is identically zero in X. It is denoted by 0. 

1.2.6 Definition [47]: A fuzzy subset is whole if and only if its grade of 

membership is identically one in X. It is denoted by 1. 

1.2.7 Definition [82]: Let u and v be two fuzzy subsets of a set X. Then u is 

said to be subset of v, i.e., u  v if and only if u(x)  v(x) for every x  X.  

1.2.8 Definition [82]: Let u and v be two fuzzy subsets of a set X. Then u is 

said to be equal to v, i.e., u = v if and only if u(x) = v(x) for every x X.  

1.2.9 Definition [82]: Let u and v be two fuzzy subsets of a set X. Then u is 

said to be the complement of v, i.e., u = vc if and only if u(x) = 1 – v(x), for 

every x X.  Obviously (v c) c = v. 

1.2.10 Definition [11]:  Let u and v be two fuzzy subsets of a set X. Then the 

union w of u and v, i.e., w = u  v if and only if w(x) = (u  v) (x) =  
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max{ u(x), v(x) }, for every x X. The union w is a fuzzy subset of X.  

In general, if  be an index set and A = {u i   : i } be a family of fuzzy sets 

of X then the union u i is defined by                      

(u i ) (x) = sup {u i (x)    : i  }, x X.  

1.2.11 Definition [11]: Let u and v be two fuzzy subsets of a set X. Then the 

intersection m of u and v, i.e., m = u  v is a fuzzy subset of X if and only if 

m(x) = (u  v) (x)   = min {u(x), v(x)},  x  X,   and ( u i) (x) =  

inf {u i (x) : i }, x X, where { u i , i  }. 

1.2.12 Definition: Let u and v be two fuzzy subsets of a set X. Then the 

difference of u and v is defined by u - v = u  v c. 

1.2.13 Definition: If  I and u IX define by u(x) =, for all x X, we refer 

to u as a constant fuzzy set and denote it by  itself. In particular, we have the 

constant fuzzy sets 0 and 1. 

1.2.14 Example: Let X= {x, y, z} and u, v IX are defined by u(x) =.6,  

u(y) =.7, u (z) =.5 and v(x) =.7, v(y) =.5, v (z) =.4. Then (u v) (x) = 

max {u(x), v(x)} =.7, (u v) (y) =max {u(y), v(y)} =.7, (u v) (y) = 

max {u(y), v(y)} =.5, (u v) (x) =min {u(x), v(x)} =.6, (u v) (y) = 

min {u(y), v(y)} =.5, (u v) (z) =min {u(z), v(z)} =.4., uc (x)= 1-u(x)=.4, 

 uc (y)= 1-u(y)=.3, uc (z)= 1-u(z)=.5.  
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1.2.15 Laws of the algebra of fuzzy sets: 

As in ordinary set theory, idempotent laws, associative law, commutative law, 

distributive laws, identity law, demorgan’s laws hold in the case of fuzzy sets 

also. But the complement laws are not necessarily true. For example, if  

X= {a, b, c} and u is a fuzzy subset of X where is defined by          

u ={ (a , .2) , ( b , .7 ) , ( c , 1 ) }, 

then  u c ={ ( a , .8 ) , ( b , .3 ) , ( c , 0 ) } 

so  u  u c = { ( a , .8 ) , ( b , .7) , ( c , 1 ) } 1, 

u  u c = { ( a , .2) , ( b , .3 ), ( c , 0 ) }  0 . 

Also in ordinary set theory U  V =   if and only if U  V c. But in fuzzy 

subsets reverse is not necessary true. For example if  

v = { ( a , .6 ) , ( b , .2 ) , ( c , 0 ) } then  u  v c , 

u  v = { ( a , .2 ) , ( b , .2 ) , ( c , 0 ) }  0.  

1.3 Fuzzy Topology 

1.3.1 Definition [12]: Let � = [0,1], � be a non-empty set and ��  be the 

collection of all mappings from  � into � , i. e. the  class of all fuzzy sets in 

�. A fuzzy topology on � is defined as a family � of members of ��,  

satisfying the following conditions:  

(i)  1,0 ∈ �  
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(ii) if �� ∈ � for each � ∈ Λ  then ⋃ ���∈� ∈ �   

(iii) if ��,�� then �� ∩ �� ∈ � .  

The pair (�,�) is called a fuzzy topological space (fts, in short) and the 

members of � are called �-open (or simply open) fuzzy sets. A fuzzy set � 

is called a �-closed (or simply closed) fuzzy set if  1 − � ∈ �.  

1.3.2 Example :  Let  X = { a , b , c , d } , t = { 0 , 1 , u , v}, 

where  1 = { (a , 1 ) , ( b , 1 ) , ( c , 1 ) , ( d , 1 ) } 

            0 = { ( a , 0 ) , ( b , 0 ) , ( c , 0 ) , ( d , 0 ) } 

            u =  { ( a , .2 ) , ( b , .5 ) , ( c , .7 ) , ( d , .9 ) }  

             v =  {  ( a , .3 ) , ( b , .5 ) , ( c , .8 ) , ( d , .95 ) } 

Then (X, t) is a fuzzy topological space.    

1.3.3 Definition: A fuzzy topological space (X, t) is said to be fuzzy regular if 

and only if for each � ∈ � and closed fuzzy set u with u(x) =0, there exists 

open fuzzy sets �,� ∈ � such that v(x) =1, wu   and wv 1 . 

1.3.4 Definition: A fuzzy topological space (X, t) is said to be fuzzy normal if 

and only if for each close fuzzy set m and open fuzzy set u with um , there 

exists a fuzzy set v such that uvvm   .  
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1.4 L-Fuzzy Set 

1.4.1 Definition [24]: Let X be a non-empty set and L be a complete 

distributive lattice with 0 and 1. An L-fuzzy set in X is a function �: � → � 

which assign to each element � ∈ �, a degree of membership,  �(�)∈ �.  

1.4.2 Definition [24]: Let � be an L-fuzzy set in � .Then 1 − � = �′ is 

called the complement of � in �. 

1.4.3 Definition [24]: An L-fuzzy subset is empty if and only if grade of 

membership is identically zero in X. It is denoted by 0∗. 

1.4.4 Definition [24]: An L-fuzzy subset is whole if and only if its grade of 

membership is identically one in X. It is denoted by 1∗. 

1.4.5 Definition [24]: Let � and � be two L-fuzzy subsets of a set X. Then � is 

said to be subset of �, i.e., � ⊆ � if and only if �(�)≤  �(�) for every x  X.  

1.4.6 Definition [24]: Let � and � be two L-fuzzy subsets of a set X. Then � is 

said to be equal to �, i.e., � = �if and only if �(�) = �(�) for every x X.  

1.4.7 Definition [24]: Let � and � be two L-fuzzy subsets of a set X. Then � is 

said to be the complement of �, i.e., � = ��  if and only if �(�) =  1 – �(�), 

for every x X. Obviously (��)� = �. 
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1.4.8 Definition [24]: Let � and � be two L-fuzzy subsets of a set X. Then the 

union � of � and �, i.e., � = � ∪ � if and only if �(�) =  (� ∪ �)(�) =

 ��� { �(�) ,�(�) }, for every x X. The union � is an L-fuzzy subset of X.  

In general, if Λ  be an index set and � =  {�� ∶� ∈ Λ } be a family of L-fuzzy 

sets of X then the union  ∪ �� is defined by  ( ∪ ��) (�) =  ��� {��(�): � ∈

Λ },� ∈  �. 

1.4.9 Definition [24]: Let � and � be two L-fuzzy subsets of a set X. Then the 

intersection  � of � and �, i.e., � = � ∩ � is an L-fuzzy subset of X if and 

only if �(�) = (� ∩ �)(�) = ��� {�(�),�(�) },∀ � ∈  �,and( ∩ �� )(�) =

 ��� {��(�) ∶ � ∈ Λ},� ∈ �,where {��,� ∈ Λ}.   

1.4.10 Definition [24]: Let � and � be two L-fuzzy subsets of a set X. Then the 

difference of � and � is defined by � − � =  � ∩ ��. 

1.4.11Example: Let � =  {�,�,�}, � = {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} 

and �,� ∈ �� are defined by �(�)= .6,�(�)= .7,�(�) = .5 and �(�)=

.7,�(�) = .5,� (�) = .4.Then (� ∪ �)(�) = ��� {�(�),�(�)} = .7, 

(� ∪ �) (�) = ��� {�(�),�(�)} = .7, (� ∪ �) (�) = ��� {�(�),�(�)} =

.5,(� ∩ �)(�) = ��� {�(�),�(�)} = .6,(� ∩ �) (�) = ��� {�(�),�(�)} =

.5, (� ∩ �) (�) = ��� {�(�),�(�)} = .4, ��(�)=  1 − �(�) = .4, ��(�) =

 1 − �(�)= .3,��(�) =  1 − �(�) = .5.  
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1.4.12Definition [45]: Two L-fuzzy sets � and � in � are said to be intersected 

if and only if there exist a point  � ∈ �  such that  ( � ∩ � ) (�)≠ 0 . In this 

case we say that � and � intersect at x. 

1.4.13 Definition [46]: Let � be a non empty set and � be an L-fuzzy set in �. 

A - cut of � is defined by �� = {�: �(�) ≥ �,∀� ∈ �}.  

1.4.14 Definition [46]: Let X be a non empty set and � be an L-fuzzy set in X. 

A strong - cut of � is defined by ��
� = {�: �(�)> �,∀� ∈ �}. We see that 

-cut and strong -cut are crisp subsets of �. The 1-cut of � is called the core 

of �.  

1.4.15 Definition [46]: Let � be a non empty set and � be an L-fuzzy set in �. 

The support of � in � is the crisp subset of � that contains all the elements of X 

that have none zero membership grads in �, i.e., supp� = {�: �(�)> 0}. 

1.4.16 Definition [46]: The height ℎ(�) of an L-fuzzy set � is the largest 

membership grade obtained by any element in that set, i.e.,ℎ(�)= �(�)�∈�
���

. 

1.4.17 Definition [46]: For a finite L-fuzzy set, the cardinality |�| defined as 

|�| = ∑ �(�)�∈� . ‖�‖ =
|�|

|�|
 is called the relative cardinality of �.   
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1.4.18 Definition [46]: An L-fuzzy set � is called normal when ℎ(�) = 1; 

it is called subnormal when ℎ(�) <  1. The height of � may also be 

viewed as the supremum of  for which �� ≠ ∅.  

1.4.19 Definition [90]: If � ∈ � and � is an L-fuzzy set in � defined by 

�(�) = �, ∀ � ∈ � then we refer to � as a constant L-fuzzy set and 

denoted it by � itself.  

In particular, we have the constant L-fuzzy sets 0 and 1.   

1.4.20 Definition [46]: An L-fuzzy point � in � is a special L-fuzzy set 

with membership function �(�) = �     �� � = �� 

         = 0  ��ℎ������ � ≠ �� where  � ∈ � .  

1.4.21 Definition [46]: An L-fuzzy point � is said to belong to an L-fuzzy 

set � in � (� ∈ �) if and only if �(�)< �(�) and �(�)≤ �(�) 

(� ≠ �)�. �. �� ∈ � ⇒ � < �(�)  . 

1.4.22 Definition [90]: An L-fuzzy singleton in � is an L-fuzzy set in � 

which is zero everywhere except at one point say �, where it takes a value 

say � with 0 < � ≤ 1  and � ∈ � . We denote it by ��  and �� ∈ � iff  

� ≤ �(�) . 
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1.4.23 Definition [46]: An L-fuzzy singleton �� is said to be quasi-

coincident (q-coincident, in short) with an L-fuzzy set � in �, denoted by 

���� iff � + �(�)> 1 . Similarly, an L-fuzzy set � in � is said to be  

q-coincident with an L-fuzzy set � in �, denoted by ��� if and only if 

�(�)+ �(�)> 1 for some � ∈ � . Therefore ��� � iff  �(�)+ �(�)≤ 1 

for all  � ∈ � , where ��� � denotes that an L-fuzzy set � in � is not q-

coincident with an L-fuzzy set � in �.  

1.4.24 Laws of the algebra of L-fuzzy sets: 

As in ordinary set theory, idempotent laws, associative laws, commutative 

laws, distributive laws, identity laws, Demorgan’s laws hold in the case of  

L-fuzzy sets also. But the complement laws are not necessarily true. For 

example, if � =  {�,�,�}, � = {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} and � is 

an L-fuzzy subset of � where is defined by          

 � = { (� ,.2) ,( � ,.7 ) ,( � ,1 ) }, 

then  �� = { ( � ,.8 ) ,( � ,.3 ) ,( � ,0 ) } 

so� ∪ �� =  { ( � ,.8 ) ,( � ,.7) ,( � ,1 ) }≠ 1, 

� ∩ �� =  { ( � ,.2) ,( � ,.3 ),( � ,0 ) }≠ 0 . 

Also in ordinary set theory � ∩ � = ∅ if and only if � ⊂ ��. But in L-fuzzy 

subsets reverse is not necessary true. For example 
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if � = { ( � ,.6 ),( � ,.2 ),( � ,0 )} then � ⊂ ��, 

� ∩ � = { ( � ,.2 ) ,( � ,.2 ) ,( � ,0 ) }≠ 0. 

1.5 Mapping in L-fuzzy set  

1.5.1 Definition [23 ]: Let � be a mapping from a set � into a set � and � is an 

L-fuzzy subset on �.Then � and � induced an L-fuzzy subset � = �(�) of � 

whose membership function is defined by  

�(�)= �(�)(�) = �
sup{�(�)} �� ���[{�}]≠ ∅,� ∈ �

0, otherwise
� 

1.5.2 Definition [11]: Let � be a mapping from a set � into � and � is an  

L-fuzzy subset of �. Then the inverse of � written as � =  ���(�) is an  

L-fuzzy subset of X and is defined by �(�) = (���(�)) (�)=  �(� (�)), for 

� ∈ �. 

1.5.3Example: Suppose that � =  {�,�,�,�} and � =  {�,�,�}. Define 

�: �   � by �(�) = �,�(�) = �,�(�) = �,�(�) = �. Let � ∈ �� be 

given by �(�) = .2,�(�) = .3,�(�) = .5 and �(�)= .4. Then (� (�))(�)=

 ��� {�(�),�(�)} = .5.Similarly,(�(�))(�) = ��� �(�) = .2,

��� (� (�))(�)=  ��� �(�)= .3.  

On the other hand, if � is an L-fuzzy set in � given by �(�)= .6,�(�)=

.8,�(�) = .7. Then (���(�))(�) = �(�(�)) = �(�) = .8, (���(�))(�) =
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�(�(�)) = �(�)= .7, (���(�))(�) = �(�(�))= �(�)= .6, (���(�))(�)=

�(�(�)) = �(�) = .6.                                                                                

We now mention some properties of L-fuzzy subsets induced by mappings.       

1.5.4 Definition [11]: Let � be a mapping from X into Y, � be an L-fuzzy 

subset of � and � be an L-fuzzy subset of �. Then the following properties are 

true. 

(a) ���(��) = � ���(�)�
�   for any L-fuzzy subset � of �. 

(b) � (��) = ��(�)�
�
  for any L-fuzzy subset � of �. 

(c) �� ⊂ �� ⟹ ���(��)⊂ ���(��), where �� and �� are two L-fuzzy 

subsets of  �. 

(d) �� ⊂ �� ⟹ �(��)⊂ �(��), where �� and �� are two L-fuzzy subsets 

of X. 

(e) � ⊃ � (���(�)), for any L-fuzzy subset  � of Y. 

(f) � ⊂ ���(�(�)), for any L-fuzzy subset  � of X. 

(g) Let � be a function from � into � and � be a function from � into �.  

Then ( � � � )��(�) =   ���( ���(�) ), for any L-fuzzy subset � in �, 

where  ( � � � ) is the composition of � and �. 
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1.6 L-topology 

1.6.1 Definition [46]: Let X be a non-empty set and L be a complete 

distributive lattice with 0 and 1. Again suppose that � be the sub collection 

of all mappings from � to � �. �. � ⊆ ��. Then � is called L-topology on � 

if it satisfies the following conditions: 

(i) 0∗ ,1∗ ∈ � 

(ii) If �� ,�� ∈ � then �� ∩ �� ∈ � 

(iii) If �� ∈ � for each � ∈ Λ then  ∪�∈� �� ∈ � . 

Then the pair (�,�) is called the L-topological space (lts, in short) and the 

members of � are called open L-fuzzy sets. An L-fuzzy set � is called a 

closed L-fuzzy set if 1 − � ∈ �. 

1.6.2Example:Let� = {�,�,�},� = {0∗,�,�,1∗}and 

� = {0,0.05,0.1,0.15,………0.95,1}.Where 0∗ = {(�,0),(�,0),(�,0)},1∗ =

{(�,1),(�,1),(�,1)},� = {(�,0.1),(�,0.3),(�,0.5)}and 

� = {(�,0.2),(�,0.4),(�,0.6)}. Then � is an � topology on � and the pair 

(�,�) is called L-topological space.   

1.6.3 Definition [46]: Let � be an L-fuzzy set in lts  (�,�). Then the 

closure of  � is denoted by  �̅ or ��� and defined as  �̅ = ∩ {�: � ⊆ � ,� ∈

��}. 
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The interior of � written �� or int� is defined by�� = ∪ {�: � ⊆ � ,� ∈ �}.  

1.6.4 Definition [46]: If (�,�) is an lts and � ⊆ � then �� = {�ǀ�: � ∈ �} 

is calld the sub space L-topology on � and  (�,��) is referred to as an  

L-sub space of  (�,�). 

1.6.5 Definition [46]: Let (X, τ) be an L-topological space. A subfamily B of τ 

is a base for τ if and only if each member of τ can be express as the union of 

some members of B. 

1.6.6 Definition [46]: Let (X, τ) be an L-topological space. A subfamily S of τ 

is a sub-base for τ if and only if the family of finite intersection of members of 

S forms a base for τ. 

1.6.7 Definition [46]: Let �� be an L-fuzzy point in an lts (�,�). An  

L-fuzzy set � in � is called a neighborhood (in short, nhd) of �� if and only 

if there exists an open L-fuzzy set � in � such that �� ∈  � ⊆ � . 

1.6.8 Definition [46]: An L-fuzzy set u in an L-topological space  ( �, �) is 

called a neighborhood of an L-fuzzy point x r if and only if there exist an  

L-fuzzy set �� ∈ � such that x r  u1  u. A neighborhood u is called an open 

neighborhood if u is open. The family consisting of all the neighborhoods of x r 

is called the system of x r. 
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1.6.9 Definition [46]: An L-topological space (X, τ) is said to be L-T0 if and 

only if  

a) for all distinct elements x, y X, there exists uτ such that u(x) =1, u(y) 

=0 or u(x) =0, u(y) =1. 

b)  for all distinct elements x, y X, there exists uτ such that u(x) < u(y) 

or  u(y) < u(x). 

c) for all distinct elements x, y X, 111  yx . 

1.6.10 Definition [46]: An L-topological space (X, τ) is said to be T1 if and 

only if  

(a) for all distinct elements x, y X, there exist u, v τ such that u(x) =1, 

u(y) =0 and v(x) =0, u(y) =1; 

(b) for all distinct elements x, y X, there exist u, v τ such that u(x) >0, 

u(y) =0 and v(x) =0, v(y) >0; 

(c) for all distinct elements x, y X, there exist u, v τ such that u(x) > u(y) 

and v(y) > v(x). 

1.6.11 Definition [46]: An L-topological space (X, τ) is said to be L-fuzzy 

Hausdorff or L-T2 if and only if  

(a) for all distinct elements x, y X, there exist u, v τ such that u(x) 

=1=u(y) and 0 vu ; 
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(b) for all pair of distinct L-fuzzy points xr, ys S(X), there exist u, v τ 

such that xr u, ys v and 0 vu ; 

(c) for all distinct elements x, y X, there exist u, v τ such that u(x) > 0, 

v(y) >0 and 0 vu .                                                   

1.7 Continuous map Open map and closed map 

1.7.1 Definition [46]: Let � be a real-valued function on an L-topological 

space. If {�: �(�)> �} is open for every real �, then � is called lower-semi 

continuous function (lsc, in short).  

1.7.2 Definition [46]: Let (�,�) and (�,�) be two L-topological spaces 

and � be a mapping from (�,�) into (�,�) � . �. �: (�,�)→ (�,�). Then � 

is called-  

(i) L-Continuous iff for each open L-fuzzy set  � ∈ � ⟹ ���(�)∈

� 

(ii) L-Open iff �(�)∈ � for each open L-fuzzy set  � ∈ � . 

(iii) L-Closed iff �(�) is s-closed for each � ∈ �� ie.  � is a closed L-

fuzzy set in  �.  

(iv) L-Homeomorphism iff  � is bijective and both � and ��� is L-

continuous.        
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1.7.3 Proposition[46]: Let  f : ( X , τ )   ( Y , s ) be an L-fuzzy continuous 

function, then the following properties hold :  

 (i) For every s – closed v, f -1(v) is τ – closed. 

   (ii) For each L-fuzzy point p in X and each neighborhood u of f (u), then 

there exist a neighborhood v of p such that f (v) = u. 

   (iii) For any L-fuzzy set u in X, � (�)⊂ (� (�)). 

   (iv) For any L-fuzzy set v in Y, ����( � )� ⊂ ���( � ). 

1.7.4 Proposition[46]: Let   f : ( X , τ )   ( Y , s )  be  a  L-fuzzy  open 

function , then the following properties hold: 

( i )   � ( �� )⊆ � � (�)�
�
 , for each L-fuzzy set  u in X . 

(ii)   ����(�)�
�
⊆ ���(��), for each L-fuzzy set v in Y.  

1.7.5 Proposition[46]: Let  f : ( X , t )   ( Y , s ) be a function. Then f is 

closed if and only if   � (�)⊆ � (�) for each fuzzy set u in X. 

1.8 “Good extension” and Product in L-topology  

1.8.1 Definition [46]: Let � be a none empty set and � be a topology on �. 

Let � = �(�) be the set of all lower semi continuous (lsc) functions from 
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(� ,�) to � (with usual topology). Thus �(�)= {� ∈ ��: ���(�,1]∈ �} 

for each � ∈ � . It can be shown that �(�) is an L-topology on �. 

Let “P” be the property of a topological space (� ,�) and LFP be its  

L-topological analogue. Then LFP is called a “good extension” of P “if the 

statement (� ,�) has P iff (�,�(�)) has LFP” holds good for every 

topological space(�,�). 

1.8.2 Definition [91]: Let {(��,��): � ∈ Λ} be a family of L-topological 

space. Then the space (Π��,Π ��) is called the product lts of the family 

{(��,��): � ∈ Λ} where Π�� denote the usual product L-topologies of the 

families  {��: � ∈ Λ} of L-topologies on  � .  

1.8.3 Definition [91 ] : If u 1 and  u 2 are two L-fuzzy subsets of  X and Y 

respectively then the Cartesian product  u 1  u 2 of two L-fuzzy subsets u 1 and 

u 2 is a fuzzy subsets of  X   Y defined by ( u 1  u 2 )( x , y ) =  

min{u 1(x),u2(y) }, for each pair  ( x , y )   X   Y. 

1.8.4 Definition [46] : Let { X i , i   }, be  any class  of  sets  and  let  X  

denoted  the Cartesian   product  of  these sets,  i.e.,  X =  i X i .  Note that  

X  consists  of all  points    p =   < a i ,  i   >, where  a i  X i .  Recall  that , 

for each  j o   ,  we  define  the   projection   jo  from  the  product  set   X  to  
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the coordinate space X jo . ie  jo : X    X jo  by     jo ( < a i  : i   > ) = a jo 

.These projections are used to define the product L-topology. 

1.8.5 Definition [ 46]: If ( X 1 , τ 1 )  and ( X 2 , τ 2 ) be two L- topological  

spaces  and   X = X 1   X 2 be the usual product  and  τ  be the coarsest  

L-topology on X , then each projection  i : X  X i ,   i = 1 , 2., is L-fuzzy 

continuous. The pair (X, τ) is called the product space of the L-topological 

spaces (X 1, τ1) and (X 2, τ 2). 
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Chapter-2 

On T0 Space in L-Topological Spaces 

2.1Introduction 

Fuzzy T0 spaces have been defined and studied by Hutton and Reilly[33,34], 

Pu and Liu [53,54].After then, in quick succession, a large number of 

seemingly different definitions of fuzzy T0 spaces were developed and studied 

by several workers, e.g. Ali [2], Hossain [30] ,Srivastava [77,78]  and 

Choubey[13] etc. In this chapter we define possible eight definitions of T0 

space in L-topological spaces. We established all these definitions satisfied 

“good extension” property; also we show that these spaces possess many nice 

properties and that they are hereditary, productive and projective.   

 

2.2 T0-property in L-Topological Spaces 

We now give the following definitions of T0-property in L-topological 

spaces. 

2.2.1Definition: An lts (� , �) is called-  

(a) � − ��(�) if  ∀ � , � ∈ �, � ≠ �  then ∃ � ∈ � such that �(�) ≠

�(�). 

(b) � − ��(��) if ∀ � , � ∈ �, � ≠ � then ∃ � ∈ � such that �(�) =

1, �(�) = 0 or �(�) = 0, �(�) = 1. 
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(c) � − ��(���) if for any pair of distinct L-fuzzy points ��, �� ∈

�(�) then ∃ � ∈ � such that �� ∈ �, �� ∉ � or �� ∉ �, �� ∈ �. 

(d) � − ��(��) if for all pairs of distinct L-fuzzy singletons ��, �� ∈

�(�) with ������ then ∃ � ∈ �  such that �� ⊆ �, ����� or  �� ⊆

�, �����. 

(e) � − ��(�) if for any pair of distinct L-fuzzy points ��, �� ∈

�(�) then ∃ � ∈ � such that �� ∈ �, ����� or �� ∈ � , �����. 

(f) � − ��(��) if for any pair of distinct L-fuzzy points ��, �� ∈

�(�) then ∃ � ∈ � such that �� ∈ �, �� ∩ � = 0 or �� ∈ �, �� ∩ � =

0. 

(g) � − ��(���) if ∀ � , � ∈ �, � ≠ � then ∃ � ∈ � such that �(�) >

0, �(�) = 0 or �(�) = 0, �(�) > 0.  

(h) � − ��(����) if ∀ � , � ∈ �, � ≠ � then ∃ � ∈ � such that �(�) >

�(�) or �(�) > �(�). 

A complete comparison of the definitions � − ��(��), � − ��(���),  

� − ��(��), � − ��(�), � − ��(��), � − ��(���) ��� � − ��(����)with 

� − ��(�) are given below: 
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2.2.2Theorem: Let (� , �) be an lts. Then we have the following 

implications:   

                                                         � − ��(�)                             � − ��(���) 

� − ��(����) →  � − ��(���) →  � − ��(��) → � − ��(�)               

                                                      � − ��(��)                               � − ��(��) 

The reverse implications are not true in general.  

Proof: � − ��(��) ⇒ � − ��(�) , � − ��(���) ⇒ � − ��(�) and   

� − ��(��) ⇒ � − ��(�) can be proved . Now � − ��(�) ⇒ � − ��(�) since  

� − ��(�) ⇔ � − ��(���) .  

� − ��(��) ⇒ � − ��(�), since � − ��(��) ⇒ � − ��(�). � − ��(���) and  

� − ��(����) ⇒ � − ��(�) since � − ��(����) ⇒ � − ��(���) and  

� − ��(���) ⇒ � − ��(��) . 

None of the reverse implications are true, it can be seen through the 

following counter example: Let  � = {�, �} , � be the L-topology on � 

generated by {�: � ∈ �} ∪ {�} where �(�) = 0.5 , �(�) = 0.3 and  

� = {0,0.05,0.1,0.15, … … … 0.95,1} . 

Proof: � − ��(�) ⇏ � − ��(��): Here the lts (�, �) is clearly  � − ��(�) but 

it is not � − ��(��). Since there is no none empty L-fuzzy set in � which 

takes zero value at � or  � . 
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� − ��(�) ⇏ � − ��(���): For if we take the distinct L-fuzzy points 

��/�, ��/�, there does not exist  � ∈ � such that ��/� ∈ �, ��/� ∉ � or  

��/� ∉ �, ��/� ∈ �.  

� − ��(�) ⇏ � − ��(��): As for the distinct L-fuzzy singletons ��, �� in � 

there does not exist  � ∈ � such that �� ⊆ �, ����� or  �� ⊆ �, �����.  

� − ��(�) ⇏ � − ��(�): This follows automatically from the fact that  

� − ��(�) ⇔ � − ��(���) and it has already been shown that � − ��(�) ⇏

� − ��(���).  

� − ��(�) ⇏ � − ��(��): Since for any two distinct L-fuzzy points 

��/�, ��/� in �, there does not exist  � ∈ � which is disjoint with ��/� or 

��/�.  

� − ��(�) ⇏ � − ��(���) and  � − ��(�) ⇏ � − ��(����): It is obvious 

because � − ��(���) ⇒ � − ��(��) and  � − ��(����) ⇒ � − ��(��) and it 

has already been shown that � − ��(�) ⇏ � − ��(��): 

2.3 “Good extension”, Hereditary, Productive and Projective 

Properties in L-Topology 

Now all the definitions � − ��(�),� − ��(��), � − ��(���), � − ��(��), 

 � − ��(�), � − ��(��), � − ��(���), � − ��(����) are ‘good extensions’ of 

�� − property,  is shown below:  
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2.3.1Theorem: Let (� , �) be a topological space. Then (� , �) is �� iff  

(� , � (�)) is � − ��(�).  

Proof: Let (� , �) be �� space. Choose � , � ∈ � with � ≠ �.Then ∃ � ∈ � 

such that � ∈ � , � ∉ �  or � ∈ � , � ∉ � . Now consider the characteristics 

function 1� . Then 1� ∈ � (�) such that 1� (�) = 1, 1� (�) = 0 and so that 

1� (�) ≠ 1� (�). Thus (� , � (�)) is � − ��(�). 

Conversely, let (� , � (�)) be � − ��(�). To show that (� , �) is ��. Choose 

� , � ∈ � with � ≠ �. Then ∃ � ∈ � (�) such that �(�) ≠ �(�). Let 

�(�) < �(�). Choose � such that �(�) < � < �(�) and consider 

���(�, 1]. Then ���(�, 1]∈ � with � ∉ ���(�, 1] and � ∈ ���(�, 1]. 

Hence (� , �) is ��. Similarly we can easily show that each of  � − ��(��),

� − ��(���), � − ��(��), � − ��(�), � − ��(��), � − ��(���), � − ��(����) 

are also holds ‘good extension’ property.  

2.3.2Theorem: Let  (� , �) be an lts, � ⊆ � and  �� = {�ǀ�: � ∈ �}, then 

(a) (� , �) is � − ��(�) ⇒ (�, �� ) is � − ��(�).  

(b) (� , �) is � − ��(��) ⇒ (�, �� ) is � − ��(��).  

(c) (� , �) is � − ��(���) ⇒ (�, �� ) is � − ��(���).  

(d) (� , �) is � − ��(��) ⇒ (�, �� ) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, �� ) is � − ��(�).  

(f) (� , �) is � − ��(��) ⇒ (�, �� ) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, �� ) is � − ��(���).  
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(h) (� , �) is � − ��(����) ⇒ (�, �� ) is � − ��(����). 

Proof: We prove only (b). Suppose (�, �) is L-topological space and 

� − ��(��).  

We shall prove that (�, �� ) is � − ��(��). Let � , � ∈ � with � ≠ �, then 

� , � ∈ � with � ≠ � as � ⊆ �. Since (� , �) is � − ��(��), ∃ � ∈ � such 

that �(�) = 1, �(�) = 0 or �(�) = 0, �(�) = 1. For � ⊆ � we find 

�ǀ� ∈ ��  such that �ǀ�(�) = 1, �ǀ�(�) = 0 or �ǀ�(�) = 0, �ǀ�(�) = 1. 

Hence it is clear that the subspace (�, �� ) is � − ��(��).  

Similarly, (a), (c), (d), (e), (f), (g), (h) can be easily proved.  

2.3.3Theorem: Given {(��, ��): � ∈ Λ} be a family of L-topological space. 

Then the product of L-topological space (Π��, Π ��) is � − ��(�) iff each 

coordinate space (��, ��) is � − ��(�) where  �= �, ��, ���, ��, �, ��, ���, ����. 

Proof: Let each coordinate space {(��, ��): � ∈ Λ} be � − ��(��). We show 

that the product space is � − ��(��). Suppose � , � ∈ � with � ≠ �, again 

suppose that � = Π��, � = Π�� then �� ≠ �� for some �∈ Λ. Now consider 

�� , �� ∈ ��. Since ���, ��� is � − ��(��), ∃ �� ∈ �� such that ������ =

1, ������ = 0 or ������ = 0, ������ = 1. Suppose ������ = 1, ������ = 0. 

Now take � = Π�′� where ��
′ = ��  and �� = 1 for � ≠ �. Then � is such 

that �(�) = 1, �(�) = 0. Hence the product L-topological space 

(Π��, Π ��) is � − ��(��).  
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         Conversely, let the product L-topological space (Π��, Π ��) is 

� − ��(��). Take any coordinate space ���, ���, choose �� , �� ∈ �� , �� ≠ ��. 

Now construct  �, � ∈ � such that � = Π�′�, � = Π�′
�
 where ��

′ = ��
′  for 

� ≠ � and ��
′ = ��, ��

′ = ��. Then � ≠ � and hence ∃ � ∈ Π�� such that 

�(�) = 1, �(�) = 0 or �(�) = 0, �(�) = 1. Suppose �(�) = 1, �(�) =

0. Now � must be the union of basic open L-fuzzy set say � =∪�∈� ��. 

Thus ∪ ��(�) = 1 and ∪ ��(�) = 0 which implies that there exist at least 

one k such that ��(�) = 1, ��(�) = 0. Now let �� = Π�� where �� = 1 

except for finitely many �,�. So Π��(�) = 1, Π��(�) = 0, �. �. inf�����
′� =

1 and inf�����
′� = 0, which implies that ������ = 1, ������ = 0. Since 

��
′ = ��

′  for � ≠ �, thus (��, ��) is � − ��(��). 

Moreover one can easily verify that  

(��, ��), � ∈ Λ is � − ��(�) ⇔ (Π��, Π ��) is � − ��(�)  

(��, ��), � ∈ Λ is � − ��(���) ⇔ (Π��, Π ��) is � − ��(���) 

(��, ��), � ∈ Λ is � − ��(��) ⇔ (Π��, Π ��) is � − ��(��) 

(��, ��), � ∈ Λ is � − ��(�) ⇔ (Π��, Π ��) is � − ��(�) 

(��, ��), � ∈ Λ is � − ��(��) ⇔ (Π��, Π ��) is � − ��(��) 

(��, ��), � ∈ Λ is � − ��(���) ⇔ (Π��, Π ��) is � − ��(���) 

(��, ��), � ∈ Λ is � − ��(����) ⇔ (Π��, Π ��) is � − ��(����).  
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Hence, we see that � − ��(�), � − ��(��), � − ��(���), � − ��(��),  

� − ��(�), � − ��(��), � − ��(���) and � − ��(����) Property is productive 

and projective.  

2.4 Mapping in L-topological spaces 

We show that � − ��(�) property is preserved under one-one, onto and 

continuous mapping for �= �, ��, ���, ��, �, ��, ���, ���� . 

2.4.1Theorem: Let (�, �) and (�, �) be two L-topological spaces and 

�: (�, �) → (�, �) be one-one, onto and L-open map, then- 

(a) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(b) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��).  

(c) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(d) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(f) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(h) (� , �) is � − ��(����) ⇒ (�, �) is � − ��(����).  

Proof: Suppose (�, �) is � − ��(��).We shall prove that (�, �) is  

� − ��(��). Let  �� , �� ∈ � with �� ≠ ��. Since � is onto, ∃ �� , �� ∈ � 

such that �(��) = �� , �(��) = �� and �� ≠ �� as � is one-one. Again 
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since (�, �) is � − ��(��), ∃ � ∈ � such that �(��) = 1, �(��) = 0 or  

�(��) = 0, �(��) = 1.  

Now 

�(�)(��) = {����(��): �(��) = ��}  = 1  

�(�)(��) = {����(��): �(��) = ��}  = 0   

or 

�(�)(��) = {����(��): �(��) = ��} = 0 

�(�)(��) = {����(��): �(��) = ��}= 1. 

Since � is L-open, �(�) ∈ �. Now it is clear that ∃ �(�) ∈ � such that 

f(u)(y�) = 1,  f(u)(y�) = 0 or f(u)(y�) = 0, f(u)(y�) = 1. Hence it is 

clear that the L-topological space (Y, s) is L − T�(ii). Similarly (a), (c), (d), 

(e), (f), (g), (h) can be proved. 

2.4.2 Theorem: Let (�, �) and (Y, s) be two L-topological spaces and 

f: (X, τ) → (Y, s) be L-continuous and one-one map, then- 

(a) (Y , s) is L − T�(i) ⇒ (X, τ) is L − T�(i). 

(b) (� , �) is L − T�(ii) ⇒ (X, τ) is L − T�(ii).  

(c) (Y , s) is L − T�(iii) ⇒ (X, τ) is L − T�(iii).  

(d) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(e) (Y , s) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(f) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 



 
 

34 
 

(g) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(h) (� , �) is � − ��(����) ⇒ (�, �) is � − ��(����).  

Proof: Suppose (Y, s) is L − T�(ii).We shall prove that (X, τ) is L − T�(ii). 

Let  x� , x� ∈ X with x� ≠ x�, ⇒ f(x�) ≠ f(x�) as f is one-one. Since (Y, s) 

is L − T�(ii), then ∃ u ∈ s  such that u�f(x�)� = 1, u(f(x�)) = 0 or 

u�f(x�)� = 0, u(f(x�)) = 1. Suppose u�f(x�)� = 1, u(f(x�)) = 0. This 

implies that f��(u)(x�) = 1, f��(u)(x�) = 0 and f��(u) ∈ τ as f is  

L-continuous and u ∈ s. Now it is clear that f��(u) ∈ τ such that 

f��(u)(x�) = 1 ,f��(u)(x�) = 0. Hence the L-topological space (X, τ) is 

L − T�(ii). 

Similarly (a), (c), (d), (e), (f), (g), (h) can be proved.  
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Chapter-3 

On T1 Space in L-Topological Spaces 

 

3.1Introduction  

The concept of fuzzy T1 space was introduced Ali [2, 3], Hossain[26], 

Srivastava and Lal[79], Sinha[69,70], Malghan[49,50] and other 

mathematician have contributed to the development of the theory. In this 

chapter, we discuss possible eight definitions of T1 space in L-topological 

spaces; all these notions satisfy “good extension” property. We show that 

these notions possess many nice properties which are hereditary, 

productive and projective. 

 

3.2 T1-property in L-Topological Spaces 

Here, we define the following definitions of T1-property in L-topological 

spaces.  

3.2.1 Definition: An lts (� , �) is called- 

(a) � − ��(�) if  ∀ � , � ∈ �, � ≠ � then ∃ �, � ∈ � such that �(�) ≠ �(�) 

and �(�) ≠ �(�). 
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(b) � − ��(��) if ∀ � , � ∈ �, � ≠ � then ∃ �, � ∈ � such that �(�) =

1, �(�) = 0 and �(�) = 0, �(�) = 1. 

(c) � − ��(���) if for any pair of distinct L-fuzzy points ��, �� ∈

�(�) then ∃ �, � ∈ � such that �� ∈ �, �� ∉ � and �� ∉ �, �� ∈ �. 

(d) � − ��(��) if for all pairs of distinct L-fuzzy singletons ��, �� ∈

�(�)with ������ then ∃ �, � ∈ � such that �� ⊆ �, ����� and  �� ⊆

�, �����. 

(e) � − ��(�) if for any pair of distinct L-fuzzy points ��, �� ∈

�(�) then ∃ �, � ∈ � such that �� ∈ �, ����� and �� ∈ � , �����. 

(f) � − ��(��) if for any pair of distinct L-fuzzy points ��, �� ∈

�(�) then ∃ �, � ∈ � such that �� ∈ �, �� ∩ � = 0 and �� ∈ �, �� ∩ � =

0. 

(g) � − ��(���) if ∀ � , � ∈ �, � ≠ � then∃ �, � ∈ � such that �(�) >

0, �(�) = 0 and �(�) = 0, �(�) > 0. 

(h) � − ��(����) if ∀ � , � ∈ �, � ≠ � then ∃ �, � ∈ � such that �(�) > �(�) 

and �(�) > �(�).  

Here, we established a comparison of the definitions � − ��(��), 

 � − ��(���), � − ��(��), � − ��(�), � − ��(��), � − ��(���), � − ��(����)with 

� − ��(�) is given below: 
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3.2.2Theorem: Let  (� , �) be an lts. Then we have the following implications:  

                                                        � − ��(�)                            � − ��(���) 

� − ��(����) →  � − ��(���) →  � − ��(��) → � − ��(�)               

                                                        � − ��(��)                          � − ��(��) 

The reverse implications are not true in general.  

Proof: � − ��(��) ⇒ � − ��(�), � − ��(���) ⇒ � − ��(�) and  � − ��(��) ⇒  

� − ��(�) can be proved easily. Now � − ��(�) ⇒ � − ��(�) since   

� − ��(�) ⇔ � − ��(���).  

� − ��(��) ⇒ � − ��(�), since � − ��(��) ⇒ � − ��(�). � − ��(���)and  

� − ��(����) ⇒ � − ��(�) since  � − ��(����) ⇒ � − ��(���) and � − ��(���) ⇒

� − ��(��). 

None of the reverse implications are true; it can be seen through the following 

example: 

Let � = {�, �}, � be the L-topology on � generated by {�:� ∈ �}∪ {�, �} 

where �(�) = 0.5, �(�) = 0.6 and �(�) = 0.7, �(�) = 0.4 and   

� = {0,0.05,0.1,0.15, … … … 0.95,1}. 

Proof: � − ��(�) ⇏ � − ��(��): Here the lts (�, �) is clearly  � − ��(�) but it is 

not � − ��(��) . Since there is no none empty L-fuzzy set in � which takes zero 

value at � or  �.  
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� − ��(�) ⇏ � − ��(���): For if we take the distinct L-fuzzy points ��/�, ��/� ∈

�(�),then there does not exist  �, � ∈ � such that ��/� ∈ �, ��/� ∉ � and  

��/� ∉ �, ��/� ∈ �.  

� − ��(�) ⇏ � − ��(��): As for the distinct L-fuzzy singletons ��, �� in � there 

does not exist  �, � ∈ � such that �� ⊆ �, ����� and  �� ⊆ �, �����.  

� − ��(�) ⇏ � − ��(�): This follows automatically from the fact that  

� − ��(�) ⇔ � − ��(���) and it has already been shown that � − ��(�) ⇏  

� − ��(���). 

� − ��(�) ⇏ � − ��(��): Since for any two distinct L-fuzzy points ��/�, ��/� in 

�(�), then there does not exist  �, � ∈ � which is disjoint with ��/� and ��/�.  

� − ��(�) ⇏ � − ��(���) and  � − ��(�) ⇏ � − ��(����): It is obvious because  

� − ��(���) ⇒ � − ��(��) and  � − ��(����) ⇒ � − ��(��) and it has already 

been shown that � − ��(�) ⇏ � − ��(��).   

 

3.3 “Good extension”, Hereditary, Productive and Projective Properties in 

L-Topology   

Here, we show that all the definitions � − ��(�), � − ��(��), � − ��(���),  

� − ��(��), � − ��(�), � − ��(��), � − ��(���)  and � − ��(����) are ‘good 

extensions’ of �� − property, is shown below:  
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3.3.1Theorem: Let (� , �) be a topological space. Then (� , �) is �� iff  

(� , �(�)) is � − ��(�). 

Proof: Let (� , �) be ��. Choose � , � ∈ � with � ≠ �. Then ∃ �, � ∈ � such 

that � ∈ �, � ∉ � and � ∈ �, � ∉ �. Now consider the lower semi continuous 

functions 1�, 1�. Then 1�, 1� ∈ �(�) with 1�(�) = 1, 1�(�) = 0 and 

1�(�) = 0, 1�(�) = 1 and so that 1�(�) ≠ 1�(�) and 1�(�) ≠ 1�(�). Thus 

(� , �(�)) is � − ��(�). 

Conversely, let (� , �(�)) be � − ��(�). To show that (� , �) is ��. Choose 

� , � ∈ �  with� ≠ �. Then ∃ �, � ∈ �(�) such that �(�) ≠ �(�)and �(�) ≠

�(�). Let �(�) < �(�) and �(�) < �(�). Choose � and � such that �(�) <

� < �(�) and �(�) < � < �(�) and consider ���(�, 1] and ���(�, 1]. Then 

���(�, 1], ���(�, 1] ∈ � and is � ∉ ���(�, 1], � ∈ ���(�, 1] and � ∈ ���(�, 1], 

� ∉ ���(�, 1]. Hence (� , �) is ��. 

Similarly we can show that � − ��(��), � − ��(���), � − ��(��), � − ��(�), 

 � − ��(��), � − ��(���), � − ��(����) are also hold ‘good extension’ property.  

3.3.2Theorem: Let  (� , �) be an lts, � ⊆ � and  �� = {�ǀ�:� ∈ �}, then 

(a) (� , �) is � − ��(�) ⇒ (�, ��) is � − ��(�).  

(b) (� , �) is � − ��(��) ⇒ (�, ��) is � − ��(��).  

(c) (� , �) is � − ��(���) ⇒ (�, ��) is � − ��(���). 

(d) (� , �) is � − ��(��) ⇒ (�, ��) is � − ��(��). 
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(e) (� , �) is � − ��(�) ⇒ (�, ��) is � − ��(�).  

(f) (� , �) is � − ��(��) ⇒ (�, ��) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, ��) is � − ��(���). 

(h) (� , �) is � − ��(����) ⇒ (�, ��) is � − ��(����). 

Proof: We prove only (b). Suppose (� , �) is L-topological space and   

� − ��(��). We shall prove (�, ��) is � − ��(��). Let � , � ∈ � with � ≠ �, then 

� , � ∈ � with � ≠ � as � ⊆ �. Since (� , �) is � − ��(��), ∃ �, � ∈ � such that 

�(�) = 1, �(�) = 0 and �(�) = 0, �(�) = 1. For � ⊆ � we find �ǀ�, �ǀ� ∈

�� and �ǀ�(�) = 1, �ǀ�(�) = 0 and �ǀ�(�) = 0, �ǀ�(�) = 1 as �, � ∈ �. 

Hence it is clear that the subspace (�, ��) is � − ��(��). 

Similarly, (a), (c), (d), (e), (f), (g), (h) can be easily proved.  

3.3.3Theorem: Given {(��, ��):� ∈ Λ} be a family of L-topological space. Then 

the product of L-topological space (Π��, Π ��) is � − ��(�) iff each coordinate 

space (��, ��) is � − ��(�) where  � = �, ��, ���, ��, �, ��, ���, ����. 

Proof: Let each coordinate space {(��, ��):� ∈ Λ} be � − ��(��). Then we show 

that the product space is � − ��(��). Suppose � , � ∈ � with � ≠ �, again 

suppose � = Π��, � = Π�� then �� ≠ �� for some � ∈ Λ. Now consider  

�� , �� ∈ ��. Since ���, ��� is � − ��(��), ∃ ��, �� ∈ �� such that ������ =

1, ������ = 0 and ������ = 0, ������ = 1. Now take � = Π�′�, � = Π�′� where 

��
� = �� , ��

� = ��  and �� = �� = 1 for � ≠ �. Then �, � ∈ Π�� such that �(�) =
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1, �(�) = 0 and �(�) = 0, �(�) = 1. Hence the product L-topological space 

(Π��, Π ��) is � − ��(��). 

Conversely, let the product L-topological space (Π��, Π ��) is � − ��(��). 

Take any coordinate space ���, ���, choose �� , �� ∈ �� , �� ≠ ��. Now 

construct �, � ∈ � such that � = Π�′� , � = Π�′� where ��
� = ��

� for � ≠ � 

and ��
� = ��, ��

� = ��. Then � ≠ � and using the product space � − ��(��) 

∃ �, � ∈ Π�� such that �(�) = 1, �(�) = 0 and �(�) = 0, �(�) = 1. Now 

choose any L-fuzzy point ��  in �. Then ∃ a basic open L-fuzzy set  

Π��
� ∈ Π�� such that �� ∈ Π��

� ⊆ � which implies that � < Π��
�(�) or that 

� < ������
����

�� and hence � < Π��
����

��∀ � ∈ Λ … … (�) and �(�) = 0 ⇒

Π��(�) = 0 … … (��). Similarly, corresponding to a fuzzy point �� ∈ � 

there exists a basic open L-fuzzy set Π��
� ∈ Π�� that �� ∈ Π��

� ⊆ � which 

implies that � < ��
�(�)∀ � ∈ Λ … … (���) and ��

�(�) = 0 … … (��). Further, 

Π��
�(�) = 0 ⇒ ��

�(��) = 0, since for � ≠ �, ��
� = ��

� and hence from (�), 

��
����� = ��

����� > �. Similarly, Π��
�(�) = 0 ⇒ ��

�(��) = 0 using (���). 

Thus we have ��
�(��) > �, ��

�(��) = 0 and ��
�(��) > �, ��

�(��) = 0. Now 

consider ������
� = ��, ������

� = �� ∈ �� then ��(��) = 1, ��(��) = 0 and 

��(��) = 0, ��(��) = 1 showing that (��, ��) is � − ��(��).      

Moreover one can easily verify that  

(��, ��), � ∈ Λ is � − ��(�) ⇔ (Π��, Π ��) is � − ��(�)  
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(��, ��), � ∈ Λ is � − ��(���) ⇔ (Π��, Π ��) is � − ��(���) 

(��, ��), � ∈ Λ is � − ��(��) ⇔ (Π��, Π ��) is � − ��(��) 

(��, ��), � ∈ Λ is � − ��(�) ⇔ (Π��, Π ��) is � − ��(�) 

(��, ��), � ∈ Λ is � − ��(��) ⇔ (Π��, Π ��) is � − ��(��) 

(��, ��), � ∈ Λ is � − ��(���) ⇔ (Π��, Π ��) is � − ��(���) 

(��, ��), � ∈ Λ is � − ��(����) ⇔ (Π��, Π ��) is � − ��(����) . 

Hence we see that � − ��(�), � − ��(��), � − ��(���), � − ��(��),  

� − ��(�), � − ��(��), � − ��(���), � − ��(����)  Properties are productive 

and projective.   

3.4 Mapping in L-topological spaces 

We show that � − ��(�) property is preserved under one-one, onto and 

continuous mapping for � = �, ��, ���, ��, �, ��, ���, ����. 

3.4.1Theorem: Let (�, �) and (�, �) be two L-topological spaces and 

�:(�, �) → (�, �) be one-one, onto and L-open map, then- 

(a) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(b) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(c) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(d) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 
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(f) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(h) (� , �) is � − ��(����) ⇒ (�, �) is � − ��(����).   

Proof: Suppose (�, �) is � − ��(��). We shall prove that (�, �) is � − ��(��). 

Let  �� , �� ∈ � with �� ≠ ��. Since � is onto, ∃ �� , �� ∈ � such that �(��) =

�� , �(��) = �� and �� ≠ �� as � is one-one. Again since (�, �) is � − ��(��) 

∃ �, � ∈ � such that �(��) = 1, �(��) = 0 and �(��) = 0, �(��) = 1. Now 

�(�)(��) = {����(��):�(��) = ��}= 1  

�(�)(��) = {����(��):�(��) = ��}= 0  and 

�(�)(��) = {����(��):�(��) = ��}= 0 

�(�)(��) = {����(��):�(��) = ��}= 1.  

Since � is L-open, �(�), �(�) ∈ �. Now it is clear that ∃ �(�), �(�) ∈ � such 

that �(�)(��) = 1, �(�)(��) = 0 and �(�)(��) = 0, �(�)(��) = 1. Hence it is 

clear that the L-topological space (�, �) is � − ��(��). 

Similarly (a), (c), (d), (e), (f), (g), (h) can be proved. 

3.4.2Theorem: Let (�, �) and (�, �) be two L-topological spaces and 

�:(�, �) → (�, �) be L-continuous and one-one map, then- 

(a) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�).  

(b) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��).  

(c) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 
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(d) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(f) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���).  

(h) (� , �) is � − ��(����) ⇒ (�, �) is � − ��(����). 

Proof: Suppose (�, �) is � − ��(��). We shall prove that (�, �) is � − ��(��). 

Let  �� , �� ∈ � with �� ≠ ��, ⇒ �(��) ≠ �(��) as � is one-one. Since (�, �) is 

� − ��(��), ∃ �, � ∈ �  such that ���(��)� = 1, �(�(��)) = 0 and ���(��)� =

0, �(�(��)) = 1. This implies that ���(�)(��) = 1, ���(�)(��) = 0 and 

���(�)(��) = 0, ���(�)(��) = 1 and hence ���(�), ���(�) ∈ � as � is  

L-continuous and �, � ∈ � . Now it is clear that ���(�), ���(�) ∈ � such that 

���(�)(��) = 1, ���(�)(��) = 0 and ���(�)(��) = 0,   ���(�)(��) = 1. 

Hence the L-topological space (�, �) is −��(��). 

Similarly (a), (c), (d), (e), (f), (g), (h) can be proved.  
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Chapter-4 

On T2 Space in L-Topological Spaces 

4.1Introduction: 

Hausdorff, [25] introduced the fundamental concept of T2 space in general 

topology. T2 space in fuzzy topology was introduced by Ghanim et.al. [23], 

Ganguly [22], Shinha [70] and Fora[1] etc. Later FT2 space has been developed 

by Ali [2, 6], Cutler [14], Reilly [34] and Hossain [27]. Seven concepts of T2 

space in L-topological spaces are introduced and studied in this chapter. We 

showed that all these concepts satisfy “good extension” property. We also 

establish some relationships among them and study some other properties of 

these spaces.      

 

4.2 T2-property in L-Topological Spaces 

We now give the following definitions of T2-property in L-topological 

spaces. 

4.2.1Definition: An lts (� , �) is called- 

(a) � − ��(�) if ∀ � , � ∈ �, � ≠ � then ∃ �, � ∈ � such that �(�) =

1, �(�) = 0,�(�) = 0, �(�) = 1 and � ∩ � = 0 . 
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(b) � − ��(��) if for any pair of distinct L-fuzzy points ��, �� ∈

�(�)then ∃ �, � ∈ � such that �� ∈ �, �� ∉ � and �� ∉ �, �� ∈ � and 

� ∩ � = 0. 

(c) � − ��(���) if for all pairs of distinct L-fuzzy singletons ��, �� ∈

�(�) with ������ then ∃ �, � ∈ � such that �� ⊆ �, ����� and  

�� ⊆ �, ����� and � ∩ � = 0.  

(d) � − ��(��) if for any pair of distinct L-fuzzy points ��, �� ∈

�(�) then ∃ �, � ∈ � such that �� ∈ �, ����� and �� ∈ � , ����� and 

� ∩ � = 0.  

(e) � − ��(�) if for any pair of distinct L-fuzzy points ��, �� ∈

�(�) then∃ �, � ∈ � such that �� ∈ � ⊆ ����, �� ∈ � ⊆ ���� and 

� ⊆ ���.  

(f) � − ��(��) if ∀ � , � ∈ �, � ≠ � then ∃ �, � ∈ � such that �(�) >

0, �(�) = 0 and �(�) = 0, �(�) > 0 . 

(g) � − ��(���) if ∀ � , � ∈ �, � ≠ � then ∃ �, � ∈ � such that �(�) >

�(�) and �(�) > �(�).  

Here, we established a complete comparison of the definitions  

� − ��(��), � − ��(���), � − ��(��), � − ��(�), � − ��(��) and � − ��(���) 

with � − ��(�). 
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4.2.2Theorem: Let (� , �) be an lts. Then we have the following 

implications:  

                                                    � − ��(��)                          � − ��(��) 

� − ��(���)              � − ��(��)                             � − ��(�)               

                                                   � − ��(�)                              � − ��(���) 

The reverse implications are not true in general, except � − ��(��) and 

� − ��(���).  

Proof: � − ��(�) ⇒ � − ��(��) , � − ��(�) ⇒ � − ��(���)can be proved 

easily. Now � − ��(�) ⇒ � − ��(��)and � − ��(�) ⇒ � − ��(�), since  

� − ��(��) ⇔ � − ��(��)and � − ��(��) ⇔ � − ��(�). � − ��(�) ⇒ 

� − ��(��); It is obvious. � − ��(�) ⇒ � − ��(���), since � − ��(��) ⇒

� − ��(���).  

The reverse implications are not true in general, except � − ��(��) and 

� − ��(���), as can be seen through the following counter-examples: 

Example-1: Let � = {�, �}, � be the L-topology on � generated by 

{�: � ∈ �} ∪ {�, �} where �(�) = 0.5, �(�) = 0 �(�) = 0, �(�) = 0.6, 

� = {0,0.05,0.1,0.15, … ,0.95,1} and � = 0.4, � = 0.3. 

Example-2: Let � = {�, �}, � be the L-topology on � generated by 

{�: � ∈ �} ∪ {�, �} where �(�) = 0.5, �(�) = 0 �(�) = 0, �(�) = 0.4, 

� = {0,0.05,0.1,0.15, … ,0.95,1} and � = 0.5, � = 0.4.  
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Proof: � − ��(��) ⇏ � − ��(�): From example-1, we see that  the lts (�, �) 

is clearly  � − ��(��) but it is not � − ��(�) . Since there is no L-fuzzy set 

in � which grade of membership is 1. 

� − ��(���) ⇏ � − ��(�): From example-2, we see the lts (�, �) is clearly  

� − ��(���) but it is not � − ��(��). Since � − ��(���) ⇏ � − ��(��) and 

� − ��(��) ⇏ � − ��(�) so � − ��(���) ⇏ � − ��(�). 

� − ��(�) ⇏ � − ��(��): As for the distinct L-fuzzy singletons ��, �� in � 

there does not exist  �, � ∈ � such that �� ⊆ �, ����� and  �� ⊆ �, ����� . 

� − ��(��) ⇏ � − ��(�): This follows from the fact that  

� − ��(��) ⇔ � − ��(��) and it has already been shown that � − ��(��) ⇏

� − ��(�)so � − ��(��) ⇏ � − ��(�) .  

� − ��(�) ⇏ � − ��(�) : Since � − ��(��) ⇔ � − ��(�)and � − ��(��) ⇏

� − ��(�) so � − ��(�) ⇏ � − ��(�). But � − ��(���) ⇒ � − ��(��) ⇒

��(�) is obvious.   

4.3 “Good extension”, Hereditary, Productive and Projective 

Properties in L-Topology  

Here we showed that all definitions � − ��(�), � − ��(��), � − ��(���), � −

��(��), � − ��(�), � − ��(��) and � − ��(���) are ‘good extensions’ of 

�� − property, is shown below:   
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4.3.1Theorem: Let (� , �) be a topological space. Then (� , �) is �� iff  

(� , �(�)) is � − ��(�), where  � = �, ��, ���, ��, �, ��, ���. 

Proof: Let (� , �)be ��. Choose � , � ∈ � with � ≠ �.Then ∃ �, � ∈ � 

such that � ∈ �, � ∉ � and � ∈ �, � ∉ � and � ∩ � = ∅. Now consider the 

lower semi continuous functions 1�, 1�. Then 1�, 1� ∈ �(�) such that 

1�(�) = 1, 1�(�) = 0 and 1�(�) = 0, 1�(�) = 1 and so that 1� ∩ 1� =

0. Thus (� , �(�)) is � − ��(�). 

Conversely, let (� , �(�)) be � − ��(�). To show that (� , �) is ��. Choose 

� , � ∈ � with � ≠ �. Then ∃ �, � ∈ �(�) such that �(�) = 1, �(�) =

0,�(�) = 0, �(�) = 1 and � ∩ � = 0, i.e.,�(�) < �(�) and �(�) < �(�). 

Choose � and � such that �(�) < � < �(�) and �(�) < � < �(�) and 

consider ���(�, 1] and ���(�, 1]. Then ���(�, 1], ���(�, 1] ∈ � and is 

� ∉ ���(�, 1], � ∈ ���(�, 1], � ∈ ���(�, 1], � ∉ ���(�, 1] and ���(�, 1] ∩

���(�, 1] = ∅  as � ∩ � = 0 . Hence (� , �) is ��. 

 Similarly, we can show that � − ��(��), � − ��(���), � − ��(��),  

� − ��(�), � − ��(��), � − ��(���) are also hold ‘good extension’ 

property.  

4.3.2Theorem: Let  (� , �) be an lts, � ⊆ � and  �� = {�ǀ�: � ∈ �}, then 

(a) (� , �) is � − ��(�) ⇒ (�, ��) is � − ��(�). 

(b) (� , �) is � − ��(��) ⇒ (�, ��) is � − ��(��). 
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(c) (� , �) is � − ��(���) ⇒ (�, ��) is � − ��(���). 

(d) (� , �) is � − ��(��) ⇒ (�, ��) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, ��) is � − ��(�). 

(f) (� , �) is � − ��(��) ⇒ (�, ��) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, ��) is � − ��(���). 

Proof: The author proved only (a). Suppose (� , �) is L-topological space 

and � − ��(�). We shall prove (�, ��) is � − ��(�). Let � , � ∈ � with  

� ≠ �, then � , � ∈ � with � ≠ � as � ⊆ �. Since (� , �) is � − ��(�), 

∃ �, � ∈ � such that �(�) = 1, �(�) = 0,�(�) = 0, �(�) = 1 and � ∩ � =

0. For � ⊆ � we find �ǀ�, �ǀ� ∈ �� and �ǀ�(�) = 1, �ǀ�(�) = 0 and 

�ǀ�(�) = 0, �ǀ�(�) = 1 and �ǀ� ∩ �ǀ� = (� ∩ �)ǀ� = 0 as �, � ∈ �. 

Hence it is clear that the subspace (�, ��) is � − ��(�).  

Similarly, (b), (c), (d), (e), (f), (g) can be proved.  

4.3.3 Theorem: Given {(��, ��): � ∈ Λ} be a family of L-topological space. 

Then the product of L-topological space (Π��, Π ��) is � − ��(�) iff each 

coordinate space (��, ��) is � − ��(�) where � = �, ��, ���, ��, �, ��, ���. 

Proof: Let each coordinate space {(��, ��): � ∈ Λ} be � − ��(�). We showed 

that the product space is � − ��(�). Suppose � , � ∈ � with � ≠ �, again 

suppose � = Π��, � = Π�� then �� ≠ �� for some � ∈ Λ. Now consider 

�� , �� ∈ ��. Since ���, ��� is � − ��(�), ∃ ��, �� ∈ �� such that ������ =

1, ������ = 0,������ = 0, ������ = 1 and �� ∩ �� = 0.  
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Now take � = Π�′�, � = Π�′� where ��
� = �� , ��

� = ��  and �� = �� = 1 for 

� ≠ �. Then �, � ∈ Π�� such that �(�) = 1, �(�) = 0,�(�) = 0, �(�) =

1and � ∩ � = 0. Hence the product of L-topological space (Π��, Π ��) is 

� − ��(�).  

Conversely, let the product of L-topological space (Π��, Π ��) is 

� − ��(�). Take any coordinate space ���, ���, choose �� , �� ∈ �� , �� ≠ ��. 

Now construct �, � ∈ � such that � = Π�′� , � = Π�′� where ��
� = ��

� for 

� ≠ � and ��
� = ��, ��

� = �� . Then � ≠ � and using the product space 

� − ��(�) ∃ �, � ∈ Π�� such that �(�) = 1, �(�) = 0,�(�) = 0, �(�) = 1 

and � ∩ � = 0. Now choose any L-fuzzy point �� in �. Then ∃ a basic 

open L-fuzzy set  Π��
� ∈ Π�� such that �� ∈ Π��

� ⊆ � which implies that  

� < Π��
�(�) or that � < ������

����
�� and hence � < Π��

����
��∀ � ∈ Λ … … (�) 

and �(�) = 0 ⇒  Π��(�) = 0 … … (��). 

Similarly, corresponding to a fuzzy point �� ∈ � there exists a basic fuzzy 

open set Π��
� ∈ Π�� such that �� ∈ Π��

� ⊆ � which implies that  

� < ��
�(�)∀ � ∈ Λ … … (���) and 

Π��
�(�) = 0 … …  (��). Further, Π��

�(�) = 0 ⇒ ��
�(��) = 0, since for 

� ≠ �, ��
� = ��

� and hence from (�), ��
����� = ��

����� > �. Similarly, 

Π��
�(�) = 0 ⇒ ��

�(��) = 0 using (���). Thus we have ��
�(��) > �, ��

�(��) =

0 and ��
�(��) > �, ��

�(��) = 0. 
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Now consider ������
� = ��, ������

� = �� ∈ �� then ��(��) = 1, ��(��) =

0,��(��) = 0, ��(��) = 1 and �� ∩ �� = 0, showing that (��, ��) is 

� − ��(�).      

Moreover one can verify that  

(��, ��), � ∈ Λ is � − ��(��) ⇔ (Π��, Π ��) is � − ��(��).  

(��, ��), � ∈ Λ is � − ��(���) ⇔ (Π��, Π ��) is � − ��(���). 

(��, ��), � ∈ Λ is � − ��(��) ⇔ (Π��, Π ��) is � − ��(��). 

(��, ��), � ∈ Λ is � − ��(�) ⇔ (Π��, Π ��) is � − ��(�). 

(��, ��), � ∈ Λ is � − ��(��) ⇔ (Π��, Π ��) is � − ��(��). 

(��, ��), � ∈ Λ is � − ��(���) ⇔ (Π��, Π ��) is � − ��(���).  

Hence it is seen that � − ��(�), � − ��(��), � − ��(���), � − ��(��),  

� − ��(�), � − ��(��), � − ��(���) Properties are productive and 

projective.  

4.4Mapping in L-topological spaces 

We showed that � − ��(�) property is preserved under one-one, onto and 

continuous mapping for � = �, ��, ���, ��, �, ��, ���. 

4.4.1 Theorem: Let (�, �) and (�, �) be two L-topological spaces and 

�: (�, �) → (�, �) be one-one, onto and L-open map, then-  

(a) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 
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(b) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(c) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(d) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(f) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

Proof: Suppose (�, �) is � − ��(�).We shall prove that (�, �) is � − ��(�). 

Let  �� , �� ∈ � with �� ≠ ��. Since � is onto, ∃ �� , �� ∈ � such that 

�(��) = �� , �(��) = �� and �� ≠ �� as � is one-one. Again since (�, �) is 

� − ��(�) ∃ �, � ∈ � such that �(��) = 1, �(��) = 0, �(��) = 0,  

�(��) = 1 and � ∩ � = 0. 

Now 

�(�)(��) = {sup �(��) : �(��) = ��} = 1  

�(�)(��) = {sup �(��) : �(��) = ��} = 0  

�(�)(��) = {sup �(��) : �(��) = ��} = 0  

�(�)(��) = {sup �(��) : �(��) = ��} = 1 

and 

 �(� ∩ �)(��) = {sup(� ∩ �)(��): �(��) = ��} 

 �(� ∩ �)(��) = {sup(� ∩ �)(��): �(��) = ��} 
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Hence �(� ∩ �) = 0 ⇒ �(�) ∩ �(�) = 0 

Since � is L-open, �(�), �(�) ∈ � . Now it is clear that ∃ �(�), �(�) ∈ � 

such that �(�)(��) = 1 , �(�)(��) = 0,�(�)(��) = 0, �(�)(��) = 1 and 

�(�) ∩ �(�) = 0. Hence it is clear that the L-topological space (�, �) 

is� − ��(�). Similarly (b), (c), (d), (e), (f), (g) can be proved. 

4.4.2 Theorem: Let (�, �) and (�, �) be two L-topological spaces and 

�: (�, �) → (�, �) be L-continuous and one-one map, then- 

(a) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(b) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(c) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(d) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(f) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

Proof: Suppose (�, �) is � − ��(�).We shall prove that (�, �) is � − ��(�). 

Let  �� , �� ∈ � with �� ≠ ��, ⇒ �(��) ≠ �(��) as � is one-one. Since 

(�, �) is � − ��(�), ∃ �, � ∈ �  such that ���(��)� = 1, �(�(��)) =

0,���(��)� = 0, �(�(��)) = 1 and � ∩ � = 0. This implies that 

���(�)(��) = 1, ���(�)(��) = 0,���(�)(��) = 0, ���(�)(��) = 1 and 

���(� ∩ �) = 0 ⇒ ���(�) ∩ ���(�) = 0. Hence ���(�), ���(�) ∈ � as � 

is L-continuous and �, � ∈ � . Now it is clear that ���(�), ���(�) ∈ � such 
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that ���(�)(��) = 1 ,���(�)(��) = 0, ���(�)(��) = 0, ���(�)(��) = 1 

and ���(�) ∩ ���(�) = 0. Hence the L-topological space (�, �) is 

� − ��(�). Similarly (b), (c), (d), (e), (f), (g) can be proved. 
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Chapter-5 

On R0 Space in L-Topological Spaces 

5.1: Introduction 

The concept of R0-property first defined by Shanin[64] and there after 

Dude[16], Naimpally[57], Dorsett[15], Caldas[10], Ekici[18], as earlier 

Keskin[38]  and Roy[62] defined many characterizations of R0-properties. The 

concepts of fuzzy R0-propertise are established and discussed by 

Hutton[33,34], Srivastava[78], Ali[9], Khedr[40], Zhang[92] and many other 

fuzzy topologist. In this chapter we define possible eight definitions of R0 

space in L-topological spaces and we show that this space possesses many nice 

properties which are hereditary, productive and projective. 

5.2 R0-property in L-Topological Spaces 

We now give the following definitions of R0-property in L-topological spaces.  

5.2.1Definition: An lts (� , �) is called-  

(a) � − ��(�) if  ∀ � , � ∈ �, � ≠ � whenever ∃ � ∈ � with �(�) ≠ �(�) 

then ∃ � ∈ � such that �(�) ≠ �(�).  

(b) � − ��(��) if ∀ � , � ∈ �, � ≠ � whenever ∃ � ∈ � with �(�) =

1, �(�) = 0 then  ∃ � ∈ � such that �(�) = 0, �(�) = 1. 
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(c) � − ��(���) if for any pair of distinct L-fuzzy points ��, �� ∈ �(�) 

whenever ∃ � ∈ � with  �� ∈ �, �� ∉ � then ∃ � ∈ � such that �� ∉

�, �� ∈ �. 

(d) � − ��(��) if for all pairs of distinct L-fuzzy singletons ��, �� ∈

�(�) and ������  whenever  ∃ � ∈ � with �� ⊆ �, ����� then  ∃� ∈ � 

such that  �� ⊆ �, �����. 

(e) � − ��(�) if for any pair of distinct L-fuzzy points ��, �� ∈

�(�)whenever ∃ � ∈ � with �� ∈ �, ����� then ∃� ∈ � such that  

�� ∈ � , �����. 

(f)  � − ��(��) if for any pair of distinct L-fuzzy points ��, �� ∈ �(�) 

whenever ∃ � ∈ � with �� ∈ �, �� ∩ � = 0 then  ∃� ∈ � such that 

�� ∈ �, �� ∩ � = 0. 

(g) � − ��(���) if ∀ � , � ∈ �, � ≠ � whenever ∃ � ∈ � with �(�) >

0, �(�) = 0 then ∃� ∈ � such that �(�) = 0, �(�) > 0. 

(h) � − ��(����) if ∀ � , � ∈ �, � ≠ � whenever ∃ � ∈ � with �(�) > �(�) 

then  ∃� ∈ � such that �(�) > �(�).  

5.3 “Good extension”, Hereditary, Productive and Projective Properties in 

L-Topology  

Now all the definitions � − ��(�), � − ��(��), � − ��(���), � − ��(��), 

 � − ��(�), � − ��(��), � − ��(���)and � − ��(����) are ‘good extensions’ of 

�� − property, is shown below:  
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5.3.1Theorem: Let (� , �) be a topological space. Then (� , �) is �� iff  

(� , �(�)) is � − ��(�), for  � = �, ��, ���, ��, �, ��, ���, ����. 

Proof: Let the topological space (� , �) be ��, we shall prove that the fuzzy 

topological space (� , �(�)) is � − ��(��). Choose � , � ∈ � with � ≠ �. Let  

� ∈ �(�) with �(�) = 1, �(�) = 0, then it is clear that ���(�, 1] ∈ �, for any 

� ∈ I� and � ∈ ���(�, 1] , � ∉ ���(�, 1]. Since  (� , �) is ��, then there exist 

� ∈ � with � ∉ � , � ∈ � . Now consider the characteristics function 1�. We 

see that 1� ∈ �(�)with 1�(�) = 0, 1�(�) = 1 . Thus (� , �(�)) is � − ��(��).  

Conversely, let (� , �(�)) be  � − ��(��), we shall prove that (� , �) is 

��. Choose � , � ∈ �, � ≠ � and � ∈ �, with � ∈ � , � ∉ �, but we know that 

the characteristic function 1� ∈ �(�). Also it is clear that 1�(�) = 1 , 1�(�) =

0. Since (� , �(�)) is  � − ��(��), then ∃� ∈ �(�) such that �(�) = 0, �(�) =

1. Again since � is  lower semi continuous function then ���(0 , 1] ∈ � and 

from above, we get � ∉ ���(0 ,1] , � ∈ ���(0 ,1]. Hence (� , �) is ��.  

Similarly we can show that � − ��(�), � − ��(���), � − ��(��), � − ��(�), 

 � − ��(��), � − ��(���), � − ��(����)are also hold ‘good extension’ property.  

5.3.2Theorem: Let  (� , �) be an lts, � ⊆ � and  �� = {�ǀ�: � ∈ �}, then 

(a) (� , �) is � − ��(�) ⇒ (�, ��) is � − ��(�). 

(b) (� , �) is � − ��(��) ⇒ (�, ��) is � − ��(��). 
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(c) (� , �) is � − ��(���) ⇒ (�, ��) is � − ��(���). 

(d) (� , �) is � − ��(��) ⇒ (�, ��) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, ��) is � − ��(�). 

(f) (� , �) is � − ��(��) ⇒ (�, ��) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, ��) is � − ��(���). 

(h) (� , �) is � − ��(����) ⇒ (�, ��) is � − ��(����). 

Proof: We prove only (b). Suppose (� , �) is L-topological space and 

� − ��(��).We shall prove (�, ��) is � − ��(��). Let � , � ∈ �,  � ≠ �, and 

� ∈ �� with �(�) = 1, �(�) = 0. Then � , � ∈ � with � ≠ � as � ⊆ �. 

Consider � be the extension function of � on the set X, then it is clear that 

�(�) = 1, �(�) = 0. Since (� , �) is � − ��(��). Then ∃ � ∈ � such that 

�(�) = 0, �(�) = 1. For � ⊆ �, we find ∃ �ǀ� ∈ �� such that �ǀ�(�) =

0, �ǀ�(�) = 1 as �, � ∈ �. Hence it is clear that the subspace (�, ��) is 

� − ��(��). Similarly, (a), (c), (d), (e), (f), (g), (h) can be proved.  

5.3.3Theorem: Given {(��, ��): � ∈ Λ} be a family of L-topological space. Then 

the product of L-topological space (Π��, Π ��) is � − ��(�) iff each coordinate 

space (��, ��) is � − ��(�) where  � = �, ��, ���, ��, �, ��, ���, ����.  

Proof: Let each coordinate space {(��, ��): � ∈ Λ} be � − ��(��). Then we show 

that the product space is � − ��(��). Suppose � , � ∈ Π��, � ≠ �, and � ∈ Π �� 

with �(�) = 1, �(�) = 0. Choose � = Π��, � = Π��, but we have �(�) =

min{��(��) , for � ∈ Λ and �� ∈ ��} , 
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 �(�) = min{��(��) , for � ∈ Λ and �� ∈ ��} , then there exist at least one � ∈ Λ, 

such  that �� ≠ �� and ������ = 1, ������ = 0. Since ���, ��� is � − ��(��) for 

each � ∈ Λ, then ∃ �� ∈ �� such that ������ = 0, ������ = 1. Now take, � =

Π�′� where ��
� = ��  and �� = 1 for � ≠ �. then ∃� ∈ Π�� such that �(�) =

0, �(�) = 1. Hence the product of L-topological space (Π��, Π ��) is  

� − ��(��).  

Conversely, let the product of L-topological space (Π��, Π ��) is 

� − ��(��). We shall prove the each coordinate space ���, ��� is also 

� − ��(��). Choose �� , �� ∈ �� , �� ≠ �� and �� ∈ �� with ������ =

1 , ������ = 0. Now construct �, � ∈ � such that � = Π�′� , � = Π�′� where 

��
� = ��

� for � ≠ � and ��
� = ��, ��

� = ��. Then � ≠ �. Further, let ��: � → �� 

be a projection map from � into ��. Now, we observe that �� �����(�)� =

������ = 1, �� �����(�)� = ������ = 0 , i.e for  ����� ∈  Π ��, with 

�������(�) = 1, �������(�) = 1. Since the product space (Π��, Π ��) is 

� − ��(��). Then ∃� ∈ Π�� such that �(�) = 0, �(�) = 1. Now choose any 

L-fuzzy point �� in �. Then ∃ a basic open L-fuzzy set Π��
� ∈ Π�� such that 

�� ∈ Π��
� ⊆ � which implies that � < Π��

�(�) or that � < ������
����

�� and 

hence � < Π��
����

��∀ � ∈ Λ … … (�) and �(�) = 0 ⇒ Π��(�) = 0 … … (��).   

Further, Π��
�(�) = 0 ⇒ ��

�(��) = 0, since for � ≠ �, ��
� = ��

� and hence 

from (�), ��
����� = ��

����� > �. Thus we have ��
�(��) > �, ��

�(��) = 0. 
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Now consider ������
� = �� then  �� ∈ �� with  ��(��) = 1, ��(��) = 0. This 

showing that (��, ��) is � − ��(��).      

Moreover one can easily verify that  

(��, ��), � ∈ Λ is � − ��(�) ⇔ (Π��, Π ��) is � − ��(�)  

(��, ��), � ∈ Λ is � − ��(���) ⇔ (Π��, Π ��) is � − ��(���) 

(��, ��), � ∈ Λ is � − ��(��) ⇔ (Π��, Π ��) is � − ��(��) 

(��, ��), � ∈ Λ is � − ��(�) ⇔ (Π��, Π ��) is � − ��(�) 

(��, ��), � ∈ Λ is � − ��(��) ⇔ (Π��, Π ��) is � − ��(��) 

(��, ��), � ∈ Λ is � − ��(���) ⇔ (Π��, Π ��) is � − ��(���) 

(��, ��), � ∈ Λ is � − ��(����) ⇔ (Π��, Π ��) is � − ��(����). 

Hence we see that � − ��(�), � − ��(��), � − ��(���), � − ��(��),  

� − ��(�), � − ��(��), � − ��(���), � − ��(����) Properties are productive 

and projective.  

  

5.4 Mapping in L-topological spaces 

We show that � − ��(�) property is preserved under one-one, onto and 

continuous mapping for � = �, ��, ���, ��, �, ��, ���, ����. 

5.4.1Theorem: Let (�, �) and (�, �) be two L-topological spaces and 

�: (�, �) → (�, �) be one-one, onto, L-continuous and L-open map, then- 
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(a) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(b) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(c) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(d) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(f) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(h) (� , �) is � − ��(����) ⇒ (�, �) is � − ��(����).    

Proof: Suppose (�, �) is � − ��(��).We shall prove that (�, �) is  

� − ��(��). Let ��, �� ∈ �, �� ≠ �� and � ∈ � with �(��) = 1 , �(��) = 0. 

Since � is onto, ∃ �� , �� ∈ � such that �(��) = �� , �(��) = �� and 

�� ≠ �� as � is one-one. 

Now ���(�)(��) = ���(��)� = �(��) = 1 and 

  ���(�)(��) = ���(��)� = �(��) = 0 

Since �is L-continuous then ���(�) ∈ � and ���(�)(��) = 1, 

���(�)(��) = 0. Since (�, �) is � − ��(��), then ∃ � ∈ � such that 

�(�) = 0, �(�) = 1. 

 Now 

�(�)(��) = {����(��): �(��) = ��} = 0 

�(�)(��) = {����(��): �(��) = ��} = 1. 
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Since � is L-open, �(�) ∈ �. Now it is clear that ∃ �(�) ∈ � such that 

�(�)(��) = 0, �(�)(��) = 1. Hence it is clear that the L-topological space 

(�, �) is � − ��(��) . 

Similarly (a), (c), (d), (e), (f), (g), (h) can be proved. 

5.4.2Theorem: Let (�, �) and (�, �) be two L-topological spaces and 

�: (�, �) → (�, �) be one-one, L-continuous and L-open map, then-  

(a) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(b) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(c) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(d) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(f) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(h) (� , �) is � − ��(����) ⇒ (�, �) is � − ��(����).   

Proof: Suppose (�, �) is � − ��(��). We shall prove that (�, �) is  

� − ��(��). Let �� , �� ∈ �, �� ≠ �� and � ∈ � with �(��) = 1, �(��) = 0.  

Since � is one-one map then  �(��) ≠ �(��).  

Now �(�)��(��)� = sup{�(��)} = 1 as � is one-one 

And �(�)��(��)� = sup{�(��)} = 0 
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So, we have �(�) ∈ �, with �(�)��(��)� = 1, �(�)��(��)� = 0, as � is 

L-open map. Since (�, �) is � − ��(��), then ∃� ∈ � such that ���(��)� =

0, �(�(��)) = 1. This implies that ���(�)(��) = 0, ���(�)(��) = 1 and 

���(�) ∈ � as � is L-continuous and � ∈ �. Now it is clear that ∃ ���(�) ∈

� such that ���(�)(��) = 0,  ���(�)(��) = 1. Hence the L-topological 

space (�, �) is � − ��(��). 

Similarly (a), (c), (d), (e), (f), (g), (h) can be proved.  
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Chapter-6 

On R1 Space in L-Topological Spaces 

6.1: Introduction  

The concept of R1-property first defined by Yang [87] and there after 

Murdeshwar[56], Dorset[15], Dude[17], Caldas[10], Ekici[18], as earlier 

Keskin[38]  and Roy[62] defined many characterizations of R1-properties. The 

concepts of fuzzy R1-propertise are established and discussed by 

Hutton[31,32], Srivastava[76], Ali[8], Khedr[40], Kandil[36], Hossain[28] and 

many other fuzzy topologist. 

In this chapter we define possible seven definitions of R1 space in L-

topological spaces. All these definitions satisfy ‘good extension’ property and 

we establish some implications among them. Finally we show that all these 

definitions are hereditary, productive and projective and preserved under one-

one, onto and continuous maps.  

6.2 R1-property in L-Topological Spaces 

We now give the following definitions of R1-property in L-topological  

spaces.  
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6.2.1 Definition: An lts (� , �) is called-  

(a) � − ��(�) if ∀ � , � ∈ �, � ≠ � whenever ∃ � ∈ � with �(�) ≠

�(�)then ∃ �, � ∈ � such that �(�) = 1, �(�) = 0,�(�) = 0,

�(�) = 1 and � ∩ � = 0. 

(b) � − ��(��) if ∀ � , � ∈ �, � ≠ � whenever ∃ � ∈ � with �(�) ≠

�(�) then for any pair of distinct L-fuzzy points ��, �� ∈ �(�) and 

∃ �, � ∈ � such that �� ∈ �, �� ∉ � and �� ∉ �, �� ∈ � , � ∩ � = 0.  

(c) � − ��(���) if ∀ � , � ∈ �, � ≠ � whenever ∃ � ∈ � with �(�) ≠

�(�) then for all pairs of distinct L-fuzzy singletons ��, �� ∈

�(�), ������ and ∃ �, � ∈ � such that �� ⊆ �, ����� and  �� ⊆ �, ����� 

and � ∩ � = 0.  

(d) � − ��(��) if ∀ � , � ∈ �, � ≠ � whenever ∃ � ∈ � with �(�) ≠

�(�) then for any pair of distinct L-fuzzy points ��, �� ∈ �(�) and 

∃ �, � ∈ � such that �� ∈ �, ����� and �� ∈ � , ����� and � ∩ � = 0.   

(e) � − ��(�) if ∀ � , � ∈ �, � ≠ � whenever ∃ � ∈ � with �(�) ≠

�(�) and for any pair of distinct L-fuzzy points ��, �� ∈ �(�) and 

∃ �, � ∈ � such that �� ∈ � ⊆ ����, �� ∈ � ⊆ ���� and � ⊆ ���. 

(f) � − ��(��) if ∀ � , � ∈ �, � ≠ � whenever ∃ � ∈ � with �(�) ≠

�(�) then ∃ �, � ∈ � such that �(�) > 0, �(�) = 0 and �(�) =

0, �(�) > 0 . 
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(g) � − ��(���) if ∀ � , � ∈ �, � ≠ � whenever ∃ � ∈ � with �(�) ≠

�(�) then ∃ �, � ∈ � such that �(�) > �(�) and �(�) > �(�).  

Here, we established a complete comparison of the definitions 

� − ��(��), � − ��(���), � − ��(��), � − ��(�), � − ��(��) and 

� − ��(���) with � − ��(�).  

6.2.2Theorem: Let (� , �) be an lts. Then we have the following 

implications:  

                                                   � − ��(��)                          � − ��(��) 

� − ��(���)         � − ��(��)                                  � − ��(�)               

                                                    � − ��(�)                            � − ��(���) 

The reverse implications are not true in general except � − ��(��) and 

� − ��(���).  

Proof: � − ��(�) ⇒ � − ��(��) , � − ��(�) ⇒ � − ��(���)can be proved easily. 

Now � − ��(�) ⇒ � − ��(��)and � − ��(�) ⇒ � − ��(�), since � − ��(��) ⇔

� − ��(��)and � − ��(��) ⇔ � − ��(�). � − ��(�) ⇒ � − ��(��); It is 

obvious. � − ��(�) ⇒ � − ��(���), since � − ��(��) ⇒ � − ��(���).  

The reverse implications are not true in general except � − ��(��) and 

� − ��(���), it can be seen through the following counter examples:  



 

 

68 

 

Example-1: Let � = {�, �}, � be the L-topology on � generated by {�: � ∈

�} ∪ {�, �, �} where �(�) = 0.6, �(�) = 0.7, �(�) = 0.5, �(�) = 0 �(�) =

0, �(�) = 0.6, � = {0,0.05,0.1,0.15, … … … 0.95,1} and � = 0.4, � = 0.3. 

Example-2: Let � = {�, �}, � be the L-topology on � generated by {�: � ∈

�} ∪ {�, �, �} where �(�) = 0.8, �(�) = 0.9, �(�) = 0.5, �(�) = 0 �(�) =

0, �(�) = 0.4, � = {0,0.05,0.1,0.15, … … … 0.95,1} and � = 0.5, � = 0.4. 

Proof: � − ��(��) ⇏ � − ��(�): From example-1, we see that  the lts (�, �) is 

clearly  � − ��(��) but it is not � − ��(�). Since there is no L-fuzzy set in � 

which grade of membership is 1. 

� − ��(���) ⇏ � − ��(�): From example-2, we see the lts (�, �) is clearly  

� − ��(���) but it is not � − ��(��). Since � − ��(���) ⇏ � − ��(��) and 

� − ��(��) ⇏ � − ��(�) so � − ��(���) ⇏ � − ��(�).  

� − ��(��) ⇏ � − ��(�): This follows automatically from the fact that  

� − ��(��) ⇔ � − ��(��) and it has already been shown that � − ��(��) ⇏ 

� − ��(�) so � − ��(��) ⇏ � − ��(�).  

� − ��(�) ⇏ � − ��(�): Since � − ��(��) ⇔ � − ��(�)and � − ��(��) ⇏

� − ��(�) so � − ��(�) ⇏ � − ��(�). But � − ��(���) ⇒ � − ��(��) ⇒ 

� − ��(�) is obvious. 
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6.3 “Good extension”, Hereditary, Productive and Projective Properties in 

L-Topology  

We show that all definitions � − ��(�), � − ��(��), � − ��(���),  

� − ��(��), � − ��(�), � − ��(��) and � − ��(���) are ‘good extensions’ of 

�� − property, is shown below:   

6.3.1Theorem: Let (� , �) be a topological space. Then (� , �) is �� iff  

(� , �(�)) is � − ��(�), where  � = �, ��, ���, ��, �, ��, ���. 

Proof: Let (� , �) be ��. Choose �, � ∈ �, � ≠ �. Whenever ∃ � ∈ � with 

� ∈ �, � ∉ � or � ∉ � , � ∈ � then ∃ �, � ∈ � such that � ∈ �, � ∉ � and 

� ∈ �, � ∉ � and � ∩ � = ∅. Suppose � ∈ �, � ∉ � since � ∈ � then 

1� ∈ �(�) with 1�(�) ≠ 1�(�).  Also consider the lower semi continuous 

function 1�, 1�, then 1�, 1� ∈ �(�) such that 1�(�) = 1, 1�(�) = 0 and 

1�(�) = 0, 1�(�) = 1 and so that 1� ∩ 1� = 0 as � ∩ � = ∅. Thus (� , �(�)) 

is � − ��(�).  

Conversely, let (� , �(�)) be  � − ��(�). To show that (� , �) is ��. 

Choose � , � ∈ �  with � ≠ �. Whenever ∃ � ∈ � with �(�) ≠ �(�) then 

∃ �, � ∈ �(�) such that �(�) = 1, �(�) = 0,�(�) = 0, �(�) = 1 and � ∩ � =

0. Since �(�) ≠ �(�), then either �(�) < �(�) or �(�) > �(�). Choose 

�(�) < �(�), then ∃ � ∈ � such that �(�) < � < �(�). So it is clear that 

���(�, 1] ∈ � and � ∉ ���(�, 1], � ∈ ���(�, 1]. Let � = ���{1} ��� � =
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���{1}, then �, � ∈ � and is � ∈ �, � ∉ � , � ∉ �, � ∈ �, and � ∩ � = ∅  as 

� ∩ � = 0 . Hence (� , �) is ��. 

Similarly, we can show that � − ��(��), � − ��(���), � − ��(��),  

� − ��(�), � − ��(��), � − ��(���) are also hold ‘good extension’ property.   

6.3.2 Theorem: Let  (� , �) be an lts, � ⊆ � and  �� = {�ǀ�: � ∈ �}, then 

(a) (� , �) is � − ��(�) ⇒ (�, ��) is � − ��(�).  

(b) (� , �) is � − ��(��) ⇒ (�, ��) is � − ��(��). 

(c) (� , �) is � − ��(���) ⇒ (�, ��) is � − ��(���). 

(d) (� , �) is � − ��(��) ⇒ (�, ��) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, ��) is � − ��(�). 

(f) (� , �) is � − ��(��) ⇒ (�, ��) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, ��) is � − ��(���). 

Proof: We prove only (a). Suppose (� , �) is L-topological space and is also 

� − ��(�).We shall prove that (�, ��) is � − ��(�). Let � , � ∈ � with  � ≠ � 

and ∃ � ∈ �� such that �(�) ≠ �(�), then � , � ∈ � with � ≠ � as � ⊆ �. 

Consider � be the extension function of � on X,  then �(�) ≠ �(�),  Since 

(� , �) is � − ��(�), ∃ �, � ∈ � such that �(�) = 1, �(�) = 0,�(�) = 0, �(�) =

1 and � ∩ � = 0. For � ⊆ �, we find ,�ǀ�, �ǀ� ∈ �� and �ǀ�(�) = 1, �ǀ�(�) =

0 and �ǀ�(�) = 0, �ǀ�(�) = 1 and �ǀ� ∩ �ǀ� = (� ∩ �)ǀ� = 0 as �, � ∈ �. 

Hence it is clear that the subspace (�, ��) is � − ��(�).  
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Similarly, (b), (c), (d), (e), (f), (g) can be proved.  

6.3.3Theorem: Given {(��, ��): � ∈ Λ} be a family of L-topological space. Then 

the product of L-topological space (Π��, Π ��) is � − ��(�) iff each coordinate 

space (��, ��) is � − ��(�), where � = �, ��, ���, ��, �, ��, ���.  

Proof: Let each coordinate space {(��, ��): � ∈ Λ} be � − ��(�). Then we show 

that the product space is � − ��(�). Suppose � , � ∈ � with � ≠ � and � ∈ Π �� 

with  �(�) ≠ �(�), again suppose � = Π��, � = Π�� then �� ≠ �� for some 

� ∈ Λ.But we have �(�) = min {��(��):  � ∈ Λ}, and �(�) = min {��(��):  � ∈

Λ}. Hence we can find at least one �� ∈ �� with ������ ≠ ������, since each 

(��, ��): � ∈ Λ be � − ��(�) then ∃ ��, �� ∈ �� such that ������ = 1, ������ =

0,������ = 0, ������ = 1 and �� ∩ �� = 0. Now take � = Π�′�, � = Π�′� where 

��
� = �� , ��

� = ��  and �� = �� = 1 for � ≠ �. Then �, � ∈ Π�� such that �(�) =

1, �(�) = 0,�(�) = 0, �(�) = 1and � ∩ � = 0. Hence the product of 

L-topological space is also L-topological space and  (Π��, Π ��) is � − ��(�).  

Conversely, let the product L-topological space (Π��, Π ��) is � − ��(�). 

Take any coordinate space ���, ���, choose �� , �� ∈ �� , �� ≠ �� and �� ∈ Π�� 

with ��(��) ≠ ��(��). Now construct �, � ∈ � such that � = Π�′� , � = Π�′� 

where ��
� = ��

� for � ≠ � and ��
� = ��, ��

� = ��. Then � ≠ � and using the 

product space � − ��(�), Π�� ∈ Π�� with Π��(��) ≠ Π��(��), since 
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(Π��, Π ��) is � − ��(�) then  ∃ �, � ∈ Π�� such that �(�) = 1, �(�) =

0,�(�) = 0, �(�) = 1 and � ∩ � = 0. Now choose any L-fuzzy point �� in �. 

Then ∃ a basic open L-fuzzy set  Π��
� ∈ Π�� such that �� ∈ Π��

� ⊆ � which 

implies that � < Π��
�(�) or that � < ������

����
��  

and hence � < Π��
����

��∀ � ∈ Λ … … (�) and 

 �(�) = 0 ⇒  Π��(�) = 0 … … (��).  

Similarly, corresponding to a fuzzy point �� ∈ � there exists a basic fuzzy open 

set Π��
� ∈ Π�� such that �� ∈ Π��

� ⊆ � which implies that  

� < ��
�(�)∀ � ∈ Λ … … (���)  and  

Π��
�(�) = 0 … … (��). Further, Π��

�(�) = 0 ⇒ ��
�(��) = 0, since for � ≠

�, ��
� = ��

� and hence from (�), ��
����� = ��

����� > �. Similarly, Π��
�(�) = 0 ⇒

��
�(��) = 0 using (���).  

Thus we have ��
�(��) > �, ��

�(��) = 0 and ��
�(��) > �, ��

�(��) = 0. Now 

consider ������
� = ��, ������

� = ��,  then ��(��) = 1, ��(��) = 0,��(��) =

0, ��(��) = 1 and �� ∩ �� = 0, showing that (��, ��) is � − ��(�).      

Moreover one can easily verify that  

(��, ��), � ∈ Λ is � − ��(��) ⇔ (Π��, Π ��) is � − ��(��).  

(��, ��), � ∈ Λ is � − ��(���) ⇔ (Π��, Π ��) is � − ��(���). 
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(��, ��), � ∈ Λ is � − ��(��) ⇔ (Π��, Π ��) is � − ��(��). 

(��, ��), � ∈ Λ is � − ��(�) ⇔ (Π��, Π ��) is � − ��(�). 

(��, ��), � ∈ Λ is � − ��(��) ⇔ (Π��, Π ��) is � − ��(��). 

(��, ��), � ∈ Λ is � − ��(���) ⇔ (Π��, Π ��) is � − ��(���).   

Hence, we see that � − ��(�), � − ��(��), � − ��(���), � − ��(��),  

� − ��(�), � − ��(��), � − ��(���)  Properties are productive and projective.   

 

6.4 Mapping in L-topological spaces 

We show that � − ��(�) property is preserved under one-one, onto and 

continuous mapping for � = �, ��, ���, ��, �, ��, ���.  

6.4.1Theorem: Let (�, �) and (�, �) be two L-topological space and 

�: (�, �) → (�, �) be one-one, onto L-continuous and L-open map, then- 

(a) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(b) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(c) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(d) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(f) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���).  
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Proof: Suppose (�, �) is � − ��(�).We shall prove that (�, �) is � − ��(�). Let  

�� , �� ∈ � with �� ≠ �� and � ∈ � with �(��) ≠ �(��). Since � is onto then 

∃ ��, ��  ∈ � such that �(��) = �� and �(��) = �� , also �� ≠ ��, as  �  is 

one-one. Now we have ���(�) ∈ �, Since � is L-continuous, also we have 

���(�)(��) = ��(��) = �(��) and ���(�)(��) = ��(��) =

�(��).Therefore ���(�)(��) ≠ ���(�)(��). Again since (�, �) is � − ��(�) 

and ∃���(�) ∈ � with ���(�)(��) ≠ ���(�)(��) then ∃ �, � ∈ �  

such that �(��) = 1, �(��) = 0, �(��) = 0, �(��) = 1 and � ∩ � = 0.  

Now 

�(�)(��) = {����(��): �(��) = ��} = 1  

�(�)(��) = {����(��): �(��) = ��} = 0  

�(�)(��) = {����(��): �(��) = ��} = 0  

�(�)(��) = {����(��): �(��) = ��} = 1 

And 

 �(� ∩ �)(��) = {sup(� ∩ �)(��): �(��) = �� 

 �(� ∩ �)(��) = {sup(� ∩ �)(��): �(��) = �� 

Hence �(� ∩ �) = 0 ⇒ �(�) ∩ �(�) = 0 

Since � is L-open, �(�), �(�) ∈ �. Now it is clear that ∃ �(�), �(�) ∈ � such 

that �(�)(��) = 1 , �(�)(��) = 0,�(�)(��) = 0, �(�)(��) = 1 and  
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�(�) ∩ �(�) = 0. Hence it is clear that the L-topological space (�, �) is 

� − ��(�).   

Similarly (b), (c), (d), (e), (f), (g) can be proved. 

6.4.2Theorem: Let (�, �) and (�, �) be two L-topological spaces and 

�: (�, �) → (�, �) be L-continuous and one-one map, then- 

(a) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(b) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(c) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

(d) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(e) (� , �) is � − ��(�) ⇒ (�, �) is � − ��(�). 

(f) (� , �) is � − ��(��) ⇒ (�, �) is � − ��(��). 

(g) (� , �) is � − ��(���) ⇒ (�, �) is � − ��(���). 

Proof: Suppose (�, �) is � − ��(�).We shall prove that (�, �) is � − ��(�). Let  

�� , �� ∈ � with �� ≠ �� and � ∈ � with �(��) ≠ �(��), ⇒ �(��) ≠ �(��) as 

� is one-one, also �(�) ∈ � as � is L-open. We have �(�)(�(��)) =

sup {�(��)} and �(�)��(��)� = sup {�(��)} and �(�)(�(��)) ≠

�(�)��(��)�. Since (�, �) is � − ��(�), ∃ �, � ∈ �  such that ���(��)� =

1, �(�(��)) = 0,���(��)� = 0, �(�(��)) = 1 and � ∩ � = 0. This implies that 

���(�)(��) = 1, ���(�)(��) = 0,���(�)(��) = 0, ���(�)(��) = 1 and 

���(� ∩ �) = 0 ⇒ ���(�) ∩ ���(�) = 0. 
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Now it is clear that ∃ ���(�), ���(�) ∈ � such that ���(�)(��) = 1, 

���(�)(��) = 0, ���(�)(��) = 0, ���(�)(��) = 1 and ���(�) ∩ ���(�) = 0. 

Hence the L-topological space (�, �) is � − ��(�).   

Similarly (b), (c), (d), (e), (f), (g) can be proved.  
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