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magnetic field strength
concentration

wall concentration
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free stream temperature

velocity component in x-direction

free stream velocity.,

velocity component in y-direction
distribution of suction or blowing
reaction rate parameter of the solute
volumetric coefficient of thermal expansion
velocity slip parameter

similarity variable

thermal slip parameter
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buoyancy or mixed convection parameter
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CHAPTER 1

Introduction



We first present a brief ideas and principles in “Fluid Mechanies™ which may
serve as the background materials of viscous, incompressible laminar Newtonian or
non-Newtonian fluid flow problems considered in the present thesis. The basic
equations viz, the continuity equation and the momentum equation for the motion of
viscous incompressible fluid under the limits of continuum hypothesis are presented.
The laws of classical mechanics apply throughout the continuous medium under
consideration. The length scale of the flow is always taken to be large compared with
the molecular mean-free-path, so that the fluid can be considered as a continuum. It
excludes the flow of gases at very low pressures i.e., rarefied gases. Liquid flows can
usually be treated as incompressible fluid. The classification of fluids, say, Newtonian
and non-Newtonian, Prandtl’s boundary layer concept, boundary layer equations,
concept of similarity variable for analyzing the viscous flow problems, group-
theoretic approach of for finding invariant solution of an incompressible viscous fluid
flows, are discussed systematically. Using the similarity variable for some specific
flow problems, a set of nonlinear ordinary differential equations, known as self-
similar equations are derived. Analytical or closed-form solution as well as numerical
solution of these nonlinear differential equations relating to particular class of flow
problems are obtained and the corresponding flow quantities are shown graphically
and discussed physically.

In general, matter is found to exist in four phases or states e.g. solid. liquid,
gas and plasma (ionized gases). Out of these last three states of matter are termed as
fluid. Fluid mechanics is the subject in which we deal with the flow problems
pertaining to one of these phases e.g. liquid, gas and plasma or combination, mainly
of the first two or last two phases.

Essentially, the fluid flow problems are of widely spread interest in various
fields of engineering as well as in meteorology, oceanography and other subjects of
physical sciences. We live in a world which is largely a fluid. Air, oceans, rivers and
so on are all fluids whose behaviour is mostly described using the principles of
continuum hypothesis. The constitutive equations are framed using some assumptions
based on the material behaviors of fluid and the flow conditions. It's study is
important to physicists or applied mathematicians whose main interest is in

understanding the related physical phenomena. On the other hand fluid dynamical
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engineers worked out many problems of practical interest using empirical formula.
Also an understanding of this subject helps us to explain a variety fascinating natural
phenomena around us. The cause of natural calamities like tornadoes, hurricanes and
monsoon can be understood basically through the use of the laws of fluid mechanics.
The human circulatory systems are governed by the principles of fluid dynamics. The
flow of air through our respiratory passages into the lungs and the flows of blood
through our arteries and veins and other circulatory systems are considered important.
Besides, flows of water in channels, rivers etc. or other Newtonian/non-Newtonian
liquid flows occurring in technical devices are concerned to our day to day living
conditions. Here we shall discuss some of the basic development in fluid mechanics
which are relevant to the problems undertaken in this thesis.

A fluid is defined as a coherent material substance whose parts are readily
moved past one another or, in other words, a substance which offers little resistance to
change its shape in contrast to solid substances [Kaufmann, (1963)]. Understanding of
the basic principle obeyed by different types of fluids is highly relevant to the
protection of our natural living conditions and many technical developments.
Experimental observations lead us to classify fluid flows generally into two types e.g.,
laminar and turbulent. Osborne Reynolds (1894) conducted an experiment on fluid
flows through a pipe at different speeds by injecting dye. At low velocity he found
that the flows exhibits streamline pattern of flow while at certain high velocity of the
flow starts exhibiting mixing of stream lines. The former case is termed as laminar
flow and the later one is turbulent motion. A non-dimensional number associated with
the motion of viscous fluid flow, e.g., Reynolds number is introduced to distinguish
the above two states of motion. In case of viscous fluid flows through a pipe the

Reynolds number is defined by Re=Udp/u, where U is a characteristic mean
velocity and d is the diameter of the pipe, p is the fluid density and g is kinematic

viscosity of the fluid. The Reynolds number is a non-dimensional number relating to
the motion of viscous fluid and is defined as above. It is approximately the ratio of

inertia force to viscous force of the fluid motion.



The analytical solutions of governing nonlinear equations arc not possible
except few ones. So we sought numerical solution using finite-difference method or

shooting method.

1.1 Classification of fluids
The fluids can be classified as (i) Ideal fluid and (ii) Real fluid based on its

physical properties.

1.1.1 Ideal fluids : A fluid is said to be an ideal fluid if the stress vector at a point
is normal to any surface through the point and there is no tangential forces (shearing
stresses) even when the fluid is in motion. This is equivalent to stating that an ideal
fluid offers no internal resistance to change its shape during its motion. The pressure
at every point in an ideal fluid is equal in all directions (isotropic in nature), whether
the fluid is at rest or in motion. Ideal fluids are also termed as inviscid fluids or

perfect fluids as frictionless fluids.

1.1.2 Real fluids : A fluid is said to be real if the stress vector at a point in the
fluid across any surface through this point has both normal and tangential
components. These tangential or friction forces in a real fluid motion are connected
with a property, which is called the viscosity of the fluid i.e., real fluids are more or
less viscous fluids. Viscosity is caused by internal friction of fluid and it plays an
important role during the motion of the fluid. It offers resistance or shearing stress
during the motion. So, the physical property that characterizes the flow resistance of
simple fluids in the viscosity. This internal resistance, unlike solids, does not depend
on the deformation itself but on the rate of deformation also. Viscosity is a physical
property of fluid derived under the hypothesis of continuum. It represents the
tendency of a fluid to undergo deformation when subject to a shear stress. The
deformation rate is determined by the inter-molecular force, which provides the force
to balance the applied shear force. In fact, viscosity is a global material constant or
constants representing the propensity for a collection of fluid molecules to externally

applied stress.



In case of a pure liquid consisting of simple molecules. viscosity is thought to
be an intrinsic property and its value is dependent on the temperature of the fluid
alone. For more complex fluids. such as solutions of macromolecules. viscosity may
contain more than one constant and generally shows a complex dependence on an
additional number of parameters, such as concentration, molecular weight etc of the
solute. Nonetheless, even in these more complex cases, viscosity is ascribed to the
intrinsic properties of the fluid itself.

Real fluids are classified into two categories Newtonian fluids and non-

Newtonian fluids.

1.1.3 Newtonian fluids : The rate of deformation or rate of strain of a fluid is
proportional to the applied shearing stress (force). If the shearing stress is linearly
proportional to the rate of strain, the fluid is called Newtonian fluid. Newtonian fluid
follows Newton’s law of friction which states that the shearing stress (7) between the
layers of fluid moving past each other is proportional to the velocity gradient (du/dy).
The shear stress ( 7) per unit area is defined by 7 = u(du/dy) or shear rate, where the
proportionality constant u is called co-efficient of viscosity or dynamic viscosity or
shear viscosity. Because of the above linear relationship between stress and rate of
strain and because of the fact that the stress or the rates of strain components don’t
enter through their time derivatives, this linear law provides, a great simplicity in
mathematical analysis of fluid motion. Besides, it cannot be called as hypothetical
constitutive equation as it provides a fairly good description of the flow properties of
a very large class of real fluids, for examples water, air, mercury etc. [Batchelor

(1993), White (1974)].

1.1.4 Non-Newtonian fluids : The non-Newtonian fluids are generally highly
viscous fluids. These are particular classes of fluids where the shear stress of a fluid is
a nonlinear function of rate of strain. It is known that a large class of fluids deviate the
Newtonian’s law. Many solid-liquid and liquid-liquid suspensions are considered non-
Newtonian. as they comprise of solutions of macro-molecules, molten plastics, and

mammalian whole blood and synovial fluid. The study of non-Newtonian fluid
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mechanics is therefore of wide interest to the researchers who work in biological, non-
biological, chemical process engineering, material science, plastic engineering and
other related fields. The typical non-biological examples of this class of fluids are
pastes, plastics, molasses, molten rubber, printers ink, Coal-ter, Clay condensed milk,
collides, macro/molecular materials, solution of high polymers and so on. The non-
Newtonian fluids are modeled in several ways. In the following section we shall
discuss different kinds of non-Newtonian fluid models and their mathematical

equations.

1.1.5 Visco-elastic fluid model : These fluids possess certain degree of
elasticity in addition to viscosity. When a visco-elastic fluid is in motion, a certain
amount of energy is stored up in the material as strain energy while some energy is
lost due to viscous dissipation. In this class of fluids unlike inelastic viscous fluids,
one can not neglect the strain, however small it may be as it is responsible for the
recovery to the original state and for possible reverse flow that follows the removal of
the stress. During the flow the natural state of the fluid changes constantly and it tries
to attain the instantaneous state or the deformed state, but it does never succeed
completely. This lag is a measure of the elasticity or the so called “memory™ of the
fluid. But there are some fluids like soap solution, polymer solution, which have some
elastic properties besides having viscous properties. Such fluids are the examples of
visco-elastic fluids.

There are various models for visco-elastic fluids. Examples are second order
(Rivlin-Erickson fluids) Oldroyd fluids, Walters B* fluid [Beard and Walters (1964)]
and so on. There are another class of visco-elastic fluids such as second grade or third
grade fluids.

Coleman and Noll (1960), originally suggested a constitutive equation for the
incompressible visco-elastic second grade fluid, based on the postulate of fading

memory as

T =—pl+pd +a A, +a, A’



where 7 is the stress tensor, p is the pressure,  is the dynamic fluid viscosity, «,
and @z, are the first and second normal stress coefficients. 4, and 4, are the kinematic
tensors, expressed as:

A = grad(V)+ (grad(lf’))f

and 4, = ;‘; A+ A (gradV )+ (gradV)' 4

. . d . o .
where V7 is the velocity andT is the material time derivative.
dt

The constitutive equation for second-order visco-elastic fluids was given by

Rivlin-Ericson and is written as follows.
T, =-po, + vAi” + V'A,([” + v"A,(;]AL:].

2

3,
A :(uU +u,,), AV =Z A 1y AD + A0+ 4 u
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where 7, is the stress tensor, pis pressure, ¢, is Kronecker delta, v,v" and v" are

three measurable material constants. They denote respectively the viscosity, elasticity

and cross-viscosity. u, is the velocity of the fluid.

1.1.6 Power-law fluid model : The mathematical model for describing the
mechanistic behaviour of a variety of commonly used non-Newtonian fluids is the

power-law model which is also known as Ostwald-de Waele model. According to

n-|

du

dy

du

Ostwald-de Waele model, the constitutive equation is represented as 7 =m 7
Ly

where m denotes the flow consistency index and n is the flow behaviour index.

Viscosity is the ratio of shear stress to the deformation rate. For power law fluid

n-1
o du S ; .
model, it is m|—| ., known as apparent fluid viscosity. When » <1, the model is

dy

valid for pseudoplastic fluids such as gelatine, blood, milk etc. In these types of fluids,
the apparent fluid viscosity decreases with increasing deformation rate (n<1) and are
called shear thinning fluids. When n>1, the model is valid for dilatant fluids, such as

sugar in water, aqueous suspension of rice starch, sand etc. this fluid model is also



known as shear thickening fluid in which the apparent fluid viscosity in creases with

increasing rate of deformation of the fluid.

1.1.7 Bingham plastic : There are some substances which require a yield stress

for the deformation rate (i.c., the flow) to be established, and hence their constitutive
equations do not pass through the origin thus violating the basic definition of fluid.

These are termed as Bingham plastic. the shear stress deformation rate relationship is

et R g

. . d. . .
linear, ie..7, =7, +1 —u—. Examples: Clay suspensions, drilling mud, and
¥ /'ﬂ dy p

toothpaste. The study of non-Newtonian fluids is further complicated to the fact that
the apparent viscosity may be time-dependent. Thixotropic fluids show a decrease in
apparent viscosity with time under a constant applied shear stress; many paints are
thixotropic. Rheopectic fluids show an increase in apparent viscosity with time. After
deformation some fluids partially return to their originally shape when the applied

stress is released [Bird et al. (1960)].

1.2 Continuity and momentum equations

Navier-Stokes equations provide a complete description of viscous fluid flow
problems along with equation for continuity. Various initial and boundary conditions
are properly prescribed depending on flow conditions. The Navier-Stokes equations
can be solved to predict different characteristics related to the flow phenomena
including flow separation and other unsteady flow phenomena. The equations are
non-linear partial differential equations and no analytical closed-form solutions are
obtained except few special flow problems. Even the numerical approach faces
difficulties because of nonlinearity, unsteadiness and the irregular boundary.

In fluid mechanics, the law of conservation of mass is very important. This
law states that mass can be neither created nor-destroyed in a specific control volume

with having no source or sink. The equation of conservation of mass is obtained as

D ”
et oVH =0 1.1
o TP (L.1)

where p be the fluid density and # be the velocity vector.



This equation is interpreted as : For any closed surface drawn in the fluid. the increase
in the mass of fluid within the surface in any time interval must be equal to the excess
of mass that flows into the volume through the surface over the mass that flows out in
that interval [ Yuan (1969), Kundu and Cohen (2008)].

For the incompressible case p is constant and the above equation is reduced to
the form as

Vai=0 (1.2)
Physically this means that the rate of expansion is every where zero.

The equation of motion of a fluid can be derived from Newton’s second law of
motion which states that the total force acting on a fluid mass enclosed in an arbitrary
volume is equal to the time rate of change of linear momentum of the fluid enclosed
in that volume. The momentum balance is expressed as

Du oo,
g F e i
P TP e

(1.3)

at all points of the fluid. Here F, be the component of the body force per unit mass of

the fluid, o is the stress tensor, p the density of the fluid, w;, the i-th component of

the velocity and D 1s the material derivative due to the fluid acceleration.
{

The stress tensor o, can be expressed as

G, =—po, +id,, (1.4)
where p is the fluid pressure and the non-isotropic part d; is termed as the deviatoric
stress tensor [Batchelor (1993)]. On choosing the coefficient of fluid viscosity u. as

the one independent scalar constant, the deviatoric stress tensor d;, (considering

Stokes™ assumption) can be expressed as

| L
= 2#((3” _EA()”J (1.5)
0
where e”:l %+L (1.6)
T 2(0x, ox

and A =e, is the rate of expansion. Substituting (1.4), (1.5) and (1.6) in (1.3), we get

the momentum equation as follows.



, ) ( 1 ]
—L = pF - +—|2u|e ——AS, (1.7)
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This equation is usually called the Navier-Stokes equations of motion for an
incompressible viscous fluid.

The coefficient of viscosity u depends significantly on temperature for many
fluids. So it is required to consider x as a function of position when appreciable
temperature differences exist in the flow field. For small temperature differences it
will suffice the purpose if we take g as uniform over the whole region of the fluid.

Finally, the equation of motion for an incompressible fluid (¢, = 0) becomes,
in vector notation

pﬂzpﬁPVpJFﬂVzﬁ (1.8)

Dt

In the absence of external force, the unknowns are the components of velocity
field and pressure. Some difficulties arise in case of incompressible flow problems
since the boundary conditions only exist for the velocity field. Combining the
continuity and the momentum equations, Poisson equation for pressure in the
following form

V:p:g(u,v,w) (1.9)
where g(u,v,w) is a function of the components of the velocity vector. This equation
must be solved subject to the boundary condition i—p (the normal pressure gradient)

on

obtained from the momentum equation.

1.3 Mathematical derivation of Prandtl’s boundary layer theory

In 1904, Ludwig a Prandtl little known physicist revolutionized fluid
dynamics with his notion that the effects of internal friction due to fluid viscosity are
experienced only very near an object moving through a fluid. This concept relating to
the flow behaviour near the boundary, known as boundary layer first time introduced
by Ludwig Prandtl (1904) at third International Mathematics Congress held at
Heidelberg, Germany. The frictional effects were experienced only a thin region near

the surface and out side this fluid layer or boundary layer, the flow was essentially the
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inviscid flow. It is obvious that the thickness of the boundary layer approaches zero as
the viscosity goes to zero. Prandtl’s hypothesis reconciled two rather contradictory
facts. On one hand he supported the intuitive idea that the effects of fluid viscosity are
indeed negligible in most of the flow field if the fluid viscosity is small. At the same
time Prandtl was able to account for drag by insisting that the no-slip condition must
be satisfied at the wall, no matter how small the fluid viscosity. This reconciliation
was Prandtl’s aim, which he achieved brilliantly, and in such a simple way that it now
seems strange that nobody before him thought of it. Prandtl also showed how the
equations of motion within the boundary layer can be simplified drastically even the
nature of the equation is changed. Since the time of Prandtl, the concept of the
boundary layer can be simplified. Since the time of Prandtl, the concept of the
boundary layer has been generalized, and the mathematical techniques involved have
been formalized, extended and applied to various other branches of physical science.
The concept of the boundary layer is considered one of the cornerstones in the history
of fluid mechanics.

The velocity changes over a very short distance normal to the surface. The
boundary layer is a region of very large velocity gradient, the local shear stress can be
very large within the boundary layer. Another marked result according to Prandtl is
flow separation phenomena. With the advent of Prandtl’s boundary layer concept, the
Navier- Stokes equations can be reduced to a simpler form. The major mathematical
break through is that the boundary layer equations exhibit a completely different
mathematical behavior than the Navier-Stokes equations. The Navier-Stokes
equations have an elliptic behavior. The complete flow field must be solved
simultaneously, in accord with specific boundary conditions defined along the
boundary of the flow. In contrast, the boundary layer equations have parabolic
behavior greatly afford the analytical and computational simplification. The equation
can be solved step-by-step by marching down stream from where the flow encounters
a body, subjected to initial and boundary conditions. Fluid viscosity only played a role
in the thin layer of flow immediately adjacent to a surface [H. Evans (1968)].

We shall now derive the differential equation for boundary layer flow which is
formed in the immediate neighbourhood of the solid body. L. Prandtl (1904) made the

most seminal contribution to fluid mechanics through his construction of boundary
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layer theory. For the sake of simplicity let us consider a two-dimensional motion of a
liquid with very small fluid viscosity.
We take the x-axis along the wall and y-axis perpendicular to the wall. In

absence of external forces the Navier-Stokes equations of motion can be written as

ou  ou  QOu 1 op u ou
— A — At P =t} = s (1.10)
ot ox Oy p Ox ox” oy
) v Iy 20
LALLM o i (1.11)
ot ox oy p Ox ox~ oy
and 9-11 Q‘L =0 (1.12)
X Oy
The boundary conditions are as follows:
The no-slip boundary conditions give us
4 =wi=l) on, p=y (1.1.3)

and y — o i.e., for away from the solid wall, # — U , the free-stream velocity.

(1.14)
We assume the fluid viscosity to be very small. According to Prandtl’s boundary layer
theory. the velocity component u parallel to the wall in the boundary wall rises rapidly
from zero value on the wall to a free stream value (/ within a short distance, say o

(boundary layer thickness), [Schlichting (2000)]. We take u, x, ¢ to be of the order
0(1), i.e.. u~0(1).x=~0(1).r=0(1) and y. the distance from the wall to be of the

order & ,1ie., y~0(5), & <<1.

From the equation of continuity, we get

5 ) A
%+6L_0 Gu~0(1)

ox (3_y_ Toax (1.15)
It gives the term ay ~0(1)

oy
But yw()(()'), it gives vz{)((b') (1.16)

Using (1.14) & (1.15), we analyse the orders of each term in the momentum equation

as follows.

—=~0(1). u—=0(1)x0(1)~0(1)
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cu
v—=0(0)x0(1/5)=0(1

= 0(6)x0(1/6) ~0()
Thus, the inertial terms in the left hand side of (1.10) is of the order 1. Next, we
consider the viscous term in the equation.

2 2
4 ~0(1) and 5—fzo ZJ
ox” oy 19

) 2
3 - o o'u
1s negligible compare to the term

3

This indicates that the term

Physically,

2

the variation of streamwise term is very small compare to the variation of cross-

streamwise term. So, we can write the equation (1.10) approximately as

ou ou  Ou 1dp du
+V—= +v

2 P (117)
ot ox oy L Ox oy

Now, we assume that in the equation (1.17) the inertial term and the viscous term are

of the same order, i.e., 0(1). Then we have

2
ua—u=0(l)

Or, t)z0(52):>5z0(x/t_)) (1.18)

The thickness of boundary layer (&) is the square root of v, i.e. the thickness & is

the square root of the fluid Kinematic Viscosity. We us consider the v-momentum

equation (1.11). We get the followings order analysis

ov
—=0(5), u—=0(5), v—=0(5)x0(1)=0(5
0 =00). uZ=0(2). 2 ~0(5)x0() ~0(5)
So, the inertial terms is of the order & .

o’y o’y 1
Now, —=0(5), —= 0] —|.

2 2

ou . o .
Hence, the term a—zi 1s negligible in compare to [%}—fj Also, using (1.17), we have
X

& 5 1 ~T- j . ,
U(&_‘;]:O(&)XO(EJEO((S)' Both the inertial and viscous terms in equation
i

(1.11) are of the order & .
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Hence —l@zo(a). (1.19)
p oy

Integrating (1.19) along the normal direction, we get p = 0(52). Now, the equation

(1.11) can be replaced by
]
0=—— 0B, (1.20)
p oy
and the continuity equation remains unchanged.
Hence, the boundary layer equations for the two-dimensional motion of a

viscous fluid past a flat plate with usual notations are given by

Oou du
)
ox Oy

2
@+ur@+v%:-ia—p+ua—f (1.21)
ot ox cy 0 Ox oy

i
p oy

with boundary conditions
u=v =0 (usual no slip conditions) aty =0, u > U as y > (1.22)

The pressure may be calculated by the inviscid flow outside the boundary
layer since the pressure is independent in the perpendicular direction to the boundary

layer. Outside the boundary layer u=U, v = 0, we may write the u-momentum

equation as

7 2rr
U, dU __i@er/u(alj]
oy”

o ax p ox -,5

1 0 ol/ dU
Or, ———2 =—+U— [since {/is a function of x only and v = 0 outside the boundary layer.|

pox ot

. 1
Now, for steady case, the above equations becomes U d—U = __a’_p

p dx '
At the outer edge of the boundary layer, the u-component of velocity becomes equal
to the outer flow Ulx, r). Since there is no large velocity gradient here, the viscous
terms vanish for large values of flow Reynolds number, and consequently for the

outer flow we obtain the following equation as [Batchelor (1993)].
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oU oU  1op

e e

ot ox p Ox

In case of steady flow situation, the equation is simplified still further. The pressure

) . - - d]
depends only on x. We shall write this by writing the derivative as f so that
x

du 1 . . . . .
i T _761;10" This may also be written in the usual form Bernouli’s equation for
dx p dx

mviscid flows.

1.4 Importance of Prandtl’s boundary layer theory in fluid

mechanics

It plays a vital role in the motion of viscous fluid. Also, it is very powerful
method of analyzing the complex behaviour of real fluid motion. This theory can be
utilized to simplify the Navier-Stokes equations to such an extent that it becomes
possible to tackle many practical problems of great importance. On the other hand, the
boundary layer theory is capable of explaining the difficulties encountered by ideal
fluid dynamics. It is able to predict the flow separation. It can explain the existence of
wake. The pressure distribution produces a net force in the direction of motion. The
analysis of heat transfer near solid wall is explained satisfactorily. The boundary

conditions may be implemented appropriately.

1.5 MHD boundary layer equations

Magnetohydrodynamics (MHD) is a rapidly advancing subject since its
inception. Application of MHD to natural events received a significant interest when
astrophysicists came to realize how prevent throughout the universe are conducting,
ionized gases (plasma) and significantly strong magnetic fields [Shercliff (1965),
Cowling (1956)].

Magnetohydrodynamics (MHD) is the study of the motion of an electrically
conducting fluid in the presence of a magnetic field. Electric currents, induced in the
conducting fluid as a result of its motion modify the field; at the same time the

magnetic field produces mechanical forces which modify the motion. Basically .in
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MHD there are two basic effects viz.(i) an induced magnetic field associated with
there currents appears, perturbing the original magnetic field, (ii) an electromagnetic
force due to the interaction of currents and field appears, perturbing the original
motion. MHD owes its particular interest and difficulty to its interaction between the
field and the motion.

The equations of MHD are the ordinary electromagnetic and hydrodynamic
equations, modified to take account of the interaction between the fluid motion and
the magnetic field. As in most electromagnetic problems involving conductors, other
than those concerned with rapid oscillations, Maxwell’s displacement currents are
ignored. Accumulations of electric charge are neglected in the equation of continuity
of charge. So electric currents are regarded as flowing in closed circuits. When the
magnetic Reynolds number denoted by R, (= uoVd) is small, one may neglect the
induced current. Here « be the magnetic permeability, o the magnetic diffusivity, V
the velocity of conducting fluid and d be the characteristic length.

The modified u-momentum equation in two-dimensional motion taking into account
the body force due to the electromagnetic force (known as Lorentz force) may be
written as follows taking into account some assumption on the magnetic field and the

restriction flow filed.

ou ou ou  1op [us
ot ox 5% pDox \p

F e ey B Tt —JXHJ-PUVZH-

Here g is the magnetic permeability, ./ the current density vector, v is the kinematic
viscosity of the fluid. The body force is equal to./ x B = (/uj x 171") = u(VxH)x H.
Since the induced magnetic field is negligible for the small value of magnetic
Reynolds number, the current .J governs from Ohm’s law as given below.
J =cr[[—:‘+§x]§] :O"[E+ﬂ(7>< H]
If £E~0,then J= J(;ti} x ﬁ) , o being conductivity of the material.

We are considering a two-dimensional motion of an electrically conducting

incompressible viscous fluid. So, § = (u, v,0) and H = (0,H,.0) because a uniform

magnetic field His applied in the direction of y and there is no induced magnetic
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field. So, J = J[;z(u.v,o)x(o, HU,O)J = cr,uH(,ulg, that is, the current vector acts in
the z-direction. normal to the plane of flow.

Now, uJ x H = i’c H, [(O 0,u)x (0, H”,O)] =—p’oH, ui = —o B, ui

2
oB~ -

ui
Yol

So, %[;zjxﬁ}z

In this study, the displacement current is zero, since the flow velocity is small.
Thus, the MHD boundary layer equations in two-dimensions (using the boundary

layer approximations) under no external body forces may be written as follows.

w o,
ox Oy

u ou w13 oB  0u
a o dy  péx  p ;
Loy

Py

1.6 Similarity variable
Prandt] (1904) pointed out the pressure is a known variable in boundary layer

analysis and assumed p(x) is to be impressed upon the boundary layer from the
potential flow. This means that free-stream out side the boundary layer, U = U (x) is

related to p(x) by Bernoulli’s theorem for incompressible flow, as

_ldp_,dU (1.23)
Vo il dx
Accordingly, the momentum and continuity equations are now written as
2
y Py _ydl | Ou (1.24)
ox  Ox dx oy*
o + el ={J, (1.25)
ox Oy
The boundary conditions are, given by
u(x,O):v(x,O)zO; u(x,oo)=U(x) (1.26)

17



Blasius (1908) forwarded a solution for boundary layer past a flat plate. He

considered a special case when the displacement thickness is small (in this situation

H

Reynolds number, (Re >>1) , U=constant, Z—L—O in equation (1.24). He estimated
X

the boundary layer thickness & = constant x(vx/U )”2 and introduced a similarity

variable
U
= (1.27)
2vx
Now the stream function of the flow is given by
F == J.udy at x=constant (1.28)

which should increase with &(~ x'? ) w has the non-dimensional form

W= \jQVUxf(q) . (129

The velocity components « and v are now obtained from the definition of stream

function, as

=) v W igrg) (130
Substituting the relation (1.30) in the Blasius boundary layer equation

u%w%:v%. (131)
We obtain a third order non-linear ordinary differential equation e.g.,

ST+ =0. (1.32)
And the boundary conditions are reduced to

7(0)=£(0)=0; f'()=1. (1.33)

1.7 Slip conditions in fluid flow problems

A common feature of all these analysis is the assumption that the flow field
obeys the conventional no-slip condition at the solid boundary .The no-slip boundary
condition is one of the central tenets of the Navier-Stokes theory. However, there are

situations wherein this condition does not hold. In particular the inadequacy of the no-
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slip condition is evident for most non-Newtonian fluids [Andersson (2002), Ariel et
al. (2006)]. For example, polymer melts often exhibit macroscopic wall slip and that
in general is governed by a nonlinear and monotone relation between the slip velocity
and the ftraction. Also, the fluids that exhibit boundary slip have important
technological applications such as in the polishing of artificial heart valves and
internal cavities. Navier (1827) proposed a slip boundary condition which depends
linearly on the shear stress. The mathematical equation of this condition may be stated
as: u(x,y)= LZ—; which relates the fluid velocity u to the shear rate % at the
boundary.. Here, L is the slip length, and y denotes the coordinate perpendicular to
the surface. In the present work we have used the slip boundary condition for the
analysis of flow over a stretching sheet and also the flow around a orthogonal

stagnation point.

1.8 Heat transfer in boundary layer

In fluids flowing past heated or cooled bodies the transfer of heat takes place
by conduction and convection. When the conductivity of the fluid is small, which is
true in ordinary fluids, the heat transport due to conduction is comparable to that due
to convection only across a thin layer near the surface of the body. This means that
the temperature field which spreads from the body extends essentially, over a narrow
zone in the immediate vicinity of its surface, whereas the fluid at a larger distance
from the surface is not materially affected by the heated body. This narrow region
(thin layer) near the surface of the body is known as thermal boundary layer
analogous to the concept of velocity boundary layer. The problems of thermal
boundary layers may be classified in to two categories, viz., (i) forced convection and
(i1) free convection. By forced convection we mean the flow in which the velocities
arising from the variable density (i.e. due to the force of buoyancy) are negligible in
comparison with the velocity of the main or forced flow, whereas in free convection,
also known as natural convection, the motion is essentially caused by the effect of
gravity on the heated fluid of variable density. The temperature in the thermal

boundary layer rises rapidly from its value at the wall to the value in the main stream
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within a short distance from the wall [Muralidhar and Sundararajan (1995), Bansal

(1998)].

1.9 Viscous flow around stretching sheet

The study of hydrodynamic flow and heat transfer over a stretching sheet has
gained considerable attention due to its vast applications in industry and its
importance to several technological processes. The production of sheeting material
arises in a number of industrial manufacturing processes and includes both metal and
polymer sheets. The tangential velocity imparted by the sheet induces motion in the
surrounding fluid that alters the convection cooling of the sheet. Knowledge of the
flow properties of the fluid is desirable because the quality of the resulting sheeting
material, as well as the cost of production, is affected by the speed of collection and
mass transfer rate. The viscous flow of an incompressible fluid past a moving surface
in otherwise quiescent surroundings has several engineering applications for
examples, polymer processing. The extrusion of a polymer sheet from a dye or in the
drawing of plastic films. Crane (1970) studied the steady two-dimensional flow
caused by a stretching sheet whose velocity U/ varies linearly with the distance from
a fixed point on the sheet. This flow problem has later been investigated in different
contexts by several researchers viz. Chiam (1982), Andersson and Dandapat (1991)
ctc. In view of the above mentioned applications the rate heat transfer over the
moving sheet is also very important. The desired characteristics of the final product
depend on the rate of heat transfer or cooling. In recent years, a great deal of interest
has been generated in the area of boundary layer mixed convection flow on a vertical
stretching surface in view of its numerous and ever increasing industrial and
technical applications which include aerodynamic extrusion of plastic sheets, cooling
of metallic sheets in a cooling bath, crystal growing etc. In the study of horizontal
heated or cooled surfaces, the effect of buoyancy force is neglected. However, for
vertical or inclined surfaces, the buoyancy force modifies the flow field and hence the
heat transfer rate. The importance of this phenomenon is increasing day by day due to
the enhanced concern in science and technology about buoyancy induced motions in

the atmosphere, the bodies in water and quasi-solid bodies such as earth. Buoyancy
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plays an important role where the temperature differences between land and air give
rise to a complicated flow and in enclosures such as ventilated and heated rooms. The
buoyancy force arising due to the heating of a stretching surface, under some
circumstances, may alter significantly the flow and thermal fields and thereby the heat

transfer behaviour in the manufacturing process.

1.10 Flow through porous medium

It is a material consisting of a solid matrix with an interconnected void. The
solid matrix is either rigid in the usual situation or it undergoes small deformation.
The interconnectedness of the void (the pores) allows the flow of one or more fluids
through the material. In the simplest situation, i.e., single-phase flow, the void is
saturated by a single fluid. This simple situation is considered in the present thesis. In
the two-phase flow, a liquid and a gas share the void space. In a natural porous
medium the distribution of pores with respect to shape and size is irregular. Examples
of natural porous media are beach sand, sand stone, limestone, wood and the human
lung. On the pore scale (the microscopic scale), the flow variables, viz., pressure,
velocity, density, etc. have shown irregular behavious. But the flow variables are
measured over areas that cross many pores. Such space average (macroscopic)
quantities change in a regular manner with respect to space and time (Nield and Bejan
(2003)). The porosity of a porous medium is defined as the fraction of the total

volume of the medium which is occupied by void space.

1.11 Group-theoretic approach

Special group transformations are useful tool for producing similarity
solutions. Our purpose here is to discuss about solution of differential equations based
on finding group invariants [Hansen (1964), Bluman and Cole (1974), Pakdemirli and
Yurusoy (1998)]. The scaling group of transformations are applied to find dynamical
equations to get similarity variable and finally one get the self- similar equation for
the fluid dynamical equations.

Let us consider a simple first order differential equation as
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& _ _,-[z], (1.34)

dx ¥

This equation remains invariant by the substitution x = Ax",y =1y, as

dy’ :f{y:J (1.35)

dx’ X

where A is any real constant. Sincela(y—*J under the transformation, putting
X X

= }i, we obtain easily the solution of the equation (1.34) as
X

I%: JE-#constant. (1.36)
Jv)y—v X

If A be considered as a continuous parameter, the set of transformations x — Ax".
y—Ay" form a group under composition of transformations. In fact, this is an
example of a Lie group.

Let us consider a subset D of R* on which x > x, = f(x.y.£); y =y, =g(x.y.€).
Herex, and y, are assumed to vary continuously with the parameter A .This set of
transformations form a one parameter group or Lie group under the following rules :
(i) Withe=0, f(x;»:0)=x andg(x;y;O)zy, this means the transformation
with & = (0 is an identity transformation.

(if) Changing & to -£, we have an inverse transformation such thatx, = f(x; y;¢) and
¥ =g(xy:€) leadsto x= f(x;):-¢) and y = g(x;1,:-¢).
(ii1) Composition of two transformations is also a member of the set of
transformations. For examples, if X, :f(x;y;g), i =g(x;y;8), ¥ =f(x1:y];§)
and y, =g(x];yl;5) then x, = f(x;y;£+6) and y, = g(x; ;6 +5).

Some useful one-parameter groups arc:

(iv) Horizontal translation H(g):x, =x+&. y, =y
(v) Vertical translation V' (8) X =3 Y =EPhE

(vi) Magnification M (&):x, =e’x, y, =€’y
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(v) Rotation R(a):x1 = xcos&— ysing, y, =xsing+ ycosg

We now discuss the application of group theoretic concept. following Cebeci and
Bradshaw (1977), to the problem of two dimensional steady constant property laminar

flow over a flat surface as

Ou v _, (1.37)
ox oy
o, on,  1dp OV (1.38)

ox dy  pdx &
where the symbols have their usual meanings in fluid flow problem.
We introduce simplest set of boundary conditions for a boundary layer flows in which
the variation in pressure of y-direction is negligible, i.e.. ép/dy =~ 0 as follows.
u =v =0 (usual no-slip conditions) at y =0 and u —>u, (x) (free-stream velocity) as
y—> 0 (1.39)

In the context of the two dimensional incompressible shear layer, equations given by

(1.37) and (1.38), may be written as

2o g(xy) (1.40)

u

e

And in the special case equation (1.40) can be written as

2 —g(n), (1.41)
U

Where 7 is specific function of x and yand called a similarity variable. Here the
notation is clear that the number of independent variables is reduced from two (x and
y) to one (7) and as a result the equations (1.37) and (1.38) would become ordinary
differential equations for #and v.

To find the similarity variable 7 and the necessary condition under which

equations (1.37) and (1.38) reduces to ordinary differential equations, we shall use the
group-theoretic method as discussed by Hansen (1964).

First to introduce the linear group transformation and apply the same to
equations (1.37) and (1.38):

x=A%%, ) =4, = 458, V=47, i, = A4%%,. (1.42)
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Here «,,a,.....,a, are constants, and A is called the parameter of transformation.

Substituting the relations of (1.42) in to equations (1.37) and (1.38), we obtain

o O e O gaa, (1.43)
ox oy ox v
22—
H@+l @"*U _difva_“_AL'z a] 6“ Arx shoy — o —a_u_AZcr a] du Acq—Ea a 0
ox Oy dx oy’ ox ady v oy’
(1.44)

Obviously, the set of equations will remain invariant if the powers of 4 in each term
are all equal. That is, we get the following set of equations as

o, -, =a,—a, (1.45)

20— = @y Gy — 0 = 20— =0, —2d; (1.46)
From (1.45) and (1.46) we obtain easily

& = ey 200 o =0 (1.47)

Now from the first two relations (1.42) we obtain

(2F -2

or, £ =2 (1.48)
X X

Writing&=af and considering the rest of equations of (1.42) and as well as the
&,

relations (1.47) we can write
u u v v u. u,

= TV, JIOS I 1.49)
1-2 —l-2a ? - ——a ® _I- —I- ( 2
X a xl 2a 3 a X o .Xl 2a xl 2a

Thus the combinations of variables in equations (1.48) and (1.49) are seen to be
invariant under the linear group of transformations (1.42) and these are called
absolute variables. These invariants are similarly variables if the boundary conditions
(1.39) can be transformed and expressed independent of x.

v

—a

X

We now put 17*— Flal= 5 8 )= (1.50)

and K ()= Yf’f;a =C (1.51)
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Where f* and g" are functions of 7 and 4" (7)=C is a constant, since the main
stream velocity u, is function of x only and thus can not be non-constant function of

1 becomes this would introduce dependence on y.

The boundary conditions (1.39) are now transformed and expressed in-terms
of the possible similarity variables given in equations (1.50). Accordingly, using
(1.50) and (1.51) the boundary conditions (1.39) reduces to

ff=g'=0atp=0and /"> C as n—> o, (1.52)
Now the two equations (1.37) and (1.38) can be transformed to the following ordinary
differential equation in which m is written for 1-2a to conform to usual notation
and writing u, = Cx" :

l—m

mf" ——=nf +g" =0 (1.53)

nf g S =mC (1.54)

The above equations can be solved numerically subject to boundary condition (1.52).

and  mf "

In the present thesis we would consider the group theoretic method, as illustrated
above to work out the problem.

The following numerical techniques are used to solve nonlinear ordinary
differential equation corresponding to viscous in compressible flow problem in the

present thesis.

1.12 Shooting method

Consider a two-point boundary value problem )" = f(x,y,y’) with the
boundary conditions y(a) = y, and y(b) = y,. We set y'=z and z'= f(x,y,z) with
wa) = y,. Since these equations are non-linear, we can not get the solution as super

position principle. In order to integrate the above first-order system as an initial value
problem we require a value for z(a) but no such value is given. However, if we take a
guess for z(«) and use it to compute a numerical solution we can then compare the

calculated value for y at x=b with the given boundary condition y(b) = », and adjust

the guess value, z(a), to give a better approximation for the solution. Since the
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derivative at x=a gives the trajectory of the computed solution, this technique is called
a shooting method. Basically, we seek a solution which satisfies y(b) = y,. By
successively refining the interval a suitable solution can be found. It is also possible to
improve the solution by linear interpolation or other root finding methods. The
shooting method depends on the choice of the initial slope, i.e., »'(a) which is
required to start the integration. Actually, the problem of boundary value problem is
converted to a problem of initial value problem (IVP). We have considered only

second-order linear differential equation. First, we shall discuss shooting method for

linear equation which is very easy and also sure to convergence.

1.13 Shooting method for second order linear ordinary differential
equations

We first consider a homogeneous following second-order boundary wvalue

problem as

u"(x)=p(x)u'(x)+q(x)u(x),a<x<b (155}
subject to the boundary conditions

u(a)=r, u(b)=r (1.56)
where p(x)., g(x) and r(x) are given functions in [a, b].

Since equation (1.55) is linear, for any two linearly independent solutions
uy(x) and us(x) of (1.55), the general solution is given by

u(x)=cu (x)+cyu, (x) (1.57)
where ¢y, ¢; are arbitrary constants.
We take initial conditions as

u(a)=r. u/(a)=d, (guessvalue) (1.58)

d, being any constant. Using the fourth order Runge-Kutta method, we integrate

(1.55) with the initial conditions (1.58) and obtain u,(b).

Similarly, we shall take

u, (a) = Us (a) = d, (Guess value) (1:59)

26



We determine u> (b). The conditions (1.57) give us

n=u(a)=cu (a)+cu, (i) =c% +ih (1.60)
Le 8 6= (1.61)
and  r, =u(b)=cu (b)+cyu,(b) (1.62)

Solving (1.61) and (1.62) we get the values of ¢; and ¢; as

. 1~y (b)

T u, (h)—u1 (b) ’

The required solution at a point, say x, € [a_,b] is given by

¢ =1-c, (1.63)

u(x)=cn(x )+ e (%) (1.64)

(1,23, oo .n-1), n being the number of equal subintervals of [a,b].

1.14 Numerical Solution of non-linear ordinary differential equation
using shooting method

Shooting method can be applied for the solution of non-linear ordinary
differential equation. The basic strategy is to convert the boundary value problem into
and initial value problem as discussed earlier. It is possible to convert higher order
differential equation into a system of first order differential equations. The convergent
of the method depends on the proper choice of initial slope and the solution is very
sensitive for the guess of slope value particularly for highly nonlinear equation. The
fluid flow equation is basically non-linear in nature. In this study boundary layer
flows in different context are transformed into ordinary non-linear equations using the
concept of similar flow. The problem is a boundary value problem. The shooting
method may be applied efficiently for obtaining numerical solution of non-linear self-
similar equation arising from boundary layer flow in fluid mechanics and other types
of boundary value problems. Let us discuss the solution of the following non-linear
equation using shooting method for ready reference.

We shall discuss the well known Falkner-Skan equation (self-similar equation)
for a laminar boundary layer flow in fluid mechanics as represented by

fr e L el =(1)]=0 | (1.65)
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It is a third-order nonlinear ordinary differential equation with a parameter n1.

Here f(7) is a dimensionless stream function and the parameter 7 is a

(constant) dimensionless pressure gradient ranging the values in —0.0904 <m <.
The derivation and its physical significance are elaborately discussed in any standard
text book in viscous fluid mechanics. It is to be solved subject to the following two-
point boundary conditions:

at =0, F=40and =0 (1.66)

at p=7,, /' =1. (1.67)

Here 17 =1, corresponds to the edge of the boundary layer: for computational
purposes, 7, is chosen arbitrarily to be larger than &, (the boundary layer thickness).
If appropriate boundary conditions are supplied at 7 =0, we can integrate outward
once only to obtain a solution, using fourth-order Runge-Kutta method. To satisfy
Egs. (1.66) and (1.67) for the nonlinear equation (1.65), we need to iterate using a
shooting method or otherwise.

A shooting method that can be used to solve the Falkner-Skan equation or
other ordinary nonlinear differential equations was developed by Keller (1968). One
of the features of this method is the systematic way by which new values of f"(0)
are determined. The traditional trial-and-error searching technique is replaced by
Newton’s method (see Isaacson and Keller (1966). This generally provides quadratic
convergence of the iterations and decreases the computation time.

According to Keller’s shooting method, we first replace equation (1.65) by a
system of three first-order ordinary differential equations. If the unknowns f, /* and
/" are denoted by £, fi, and f> respectively, the system of three first-order equations

can be writlten as

S =h (1.68)
=5 (1.69)
=" - m(1- £7) (1.70)

Here /) is related to the x-component velocity, but f; is related to the velocity gradient.

The boundary conditions given by equations (1.66) and (1.67) are replaced by
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f0)=0, /1(0)=0 (1.71)
£{n.)} =0 (1.72)
It is to be noted that f, (0) is related to wall shear stress. Now, we choose

£2(0) = s, s being a guess value (1.73)
The problem is to find s such that the solution of the initial value problem, satisfies

the outer boundary condition (1.72).That is, if we denote the solution of this initial

value problem by [f(r,r,s),ft (7.5). /s (U,s)], then we seek s such that

£ (7.,5)-1=¢(s)=0. (1.74)
To solve Equation (1.74), we employ Newton’s method. This widely used
method for finding the root of an equation by successive approximation is most

simply explained by reference to Fig.l. If s" is a guess for a root of the equation

s)=0, a better guess, s, is (usually) obtained by extrapolation to the axis of the
¥

tangent to y =¢(s) ats = s” and so on. This yields the iterates s” defined by

s =g & . fl(??wa-?”)fl

(d¢/d5)(5v) ’ _(au/as')(nw,ls-”)’ ¥ =il 2 (1.75)

Obviously. 5" =" only if aﬁ(s") =0, and then equation (1.72) is satisfied exactly. In

general, this will not occur for any finite v; instead we iterate until s =g’z g for

some sufficiently small & . Then the condition (1.72) is also approximately satisfied.
In order to obtain the derivative of f; with respect to s, we take the derivatives
of equations (1.68)-(1.70), (1.71), and (1.73). This leads to the following lincar

differential equations, known as the variational equations, for equations (1.68)-(1.70):

F'=U (1.76)
U=V (1.77)
P —mTH(fV+uF)+2muU (1.78)

and to the initial conditions, 7 =0:

F(0)=0,U(0)=0and V(0)=1 (1.79)
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. of
Here  F(7,s) sa—{, U(n,s)= =

and V(n.s)= 2_1; (1.80)
s

Note that the boundary condition at 77, has disappeared. being replaced by the last of

equation (1.79).
Once the initial-value problem given by equations (1.68)-(1.70), (1.71), and

(1.76)-(1.79) 1s solved, u(rym,s") and U(nw,s") are known, and consequently the

next approximation to v(0), namely, s"*', can be computed from equation (1.75). A

number of integration methods can be used to solve the initial value problem. Here,
because of its simplicity, we use a fourth-order Runge-Kutta method.

The theory behind the Runge-Kutta method (Isaacson and Keller [27]) is
rather complicated and is not necessary for the present discussion. Its virtue is that it
is “self starting”: that is, a forward step of integration, evaluating the integral by
numerical approximation, requires only the initial conditions already given for the
ODE. Other, non-self-starting methods require details of the solution for several
previous steps before a new step can be executed by integrating polynomial fits to the
previous values of the derivatives, but the Runge-Kutta method can “pull itself up by
its bootstraps”. As might be excepted, non-self-starting methods are faster to run, and
where many calculations are to be done, it is common to start with a Runge-Kutta
method and then switch over to a non-self-starting method such as the predictor-

corrector method described by Isaacson and Keller (1966).
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1.15 Summary of the problems worked out in the thesis

In Chapter-I, we have presented the basic developments in viscous fluid
dynamics which are relevant to the problems undertaken in this research works. The
different kinds of non-Newtonian fluid models, their mathematical representations
and drawbacks of the models are discussed. Viscous flows are governed by coupled
nonlinear partial differential equations. The analytical or closed form solutions are
difficult to find. In this work we mainly seek similarity solution for a particular class
of flow problems. The heat transfer in the concept of boundary layer is also discussed.
The numerical solutions are sought for most flow cases under consideration. The
shooting method for nonlinear equations is developed for approximate solutions of
flow fields and heat transfer quantities. We shall now give the summary of the
problems worked out in the thesis.

The Chapter-II is devoted to the steady boundary layer mixed convection flow
of Newtonian fluid in a vertical stretching sheet in porous medium. Mixed convection
in porous medium is very interesting for investigations. The partial slip condition is
relevant in such flow problems and is used here. The self-similar equations governing
the flow are obtained using similarity transformations and are solved numerically
shooting method. From the analysis it reveals that with the increasing value of slip
parameter the velocity decreases resulting the increase of the temperature. The
increase in Prandtl number (Pr) decreases the velocity along the sheet as well as the
velocity boundary layer thickness. In addition, the wall skin friction and heat transfer
from the sheet decrease with the increase of boundary slip. The physical explanations
for each of the effects are discussed.

Chapter-I1I deals with the solutions for MHD steady boundary layer slip flow
and heat transfer over a stretching surface in presence of heat source or sink. The
effect of velocity slip parameter on a viscous incompressible fluid is to suppress the
velocity field which in turn causes the enhancement of the temperature field. The rate
of heat transfer decreases with the increase of velocity as well as thermal slip
parameter. The results pertaining to the present study indicate that due to internal heat
generation thermal boundary layer increases. The boundary-layer edge is reached

faster as Pr increases. The increasing Prandtl number has a suppressive effect on
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temperature. It is hoped that, the physics of flow over the stretching sheet can be
utilized as the basis for many engineering and scientific applications with the help of
our present model. The results pertaining to the present study may be useful for the
different model investigations. The findings of the present problem are also of great
interest in those areas where the surface layers are being stretched.

In Chapter-1V, an analysis is made to find the distribution of the chemically
reactant solute in the flow of an electrically conducting viscous incompressible fluid
over a stretching sheet subjected to magnetic field applied externally. The governing
partial differential equations along with the appropriate boundary conditions for flow
field and reactive solute are transformed into a set of non-linear ordinary differential
equations by using scaling group of transformations (Lie-group of transformations).
An exact analytical solution is obtained for the velocity field in such a flow. Using
this velocity field, we obtain numerical solution for the reactant concentration field. It
reveals that contaminate solute transfers from the plate are enhanced with the increase
of the magnetic field and decreases with the increase of Schmidt number. The curve
corresponding reactant solute decreases its value significantly with the increase of
chemical reaction-rate parameter. The problem under consideration is relevant in
chemical engineering processes.

In Chapter-V, we investigate the effect of diffusion of chemically reactive
species on forced convective boundary layer flow over a porous flat plate in a porous
media. The reaction-rate of the reactive species is considered such that it is inversely
proportional to position along the plate. A self-similar set of equations are obtained
and then solved numerically using shooting method. This analysis reveals that due to
the permeability of the porous medium the velocity increases but the concentration
decreases. The suction reduces the thicknesses of momentum and thermal boundary
layers but blowing enhances their thicknesses. Both for the Schmidt number and the
reaction rate parameter, the reactive concentration profile decrease.

In Chapter-VI, we obtained solution of the boundary layer flow and heat
transfer with internal heat generation or absorption for two classes of visco-clastic
fluid viz. over a stretching sheet. The governing equations are transformed into self-
similar ordinary differential equations by similarity transformations. The flow

equation relating to momentum equation is solved analytically and the heat equation
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by using the Kummer’s function. The analysis reveals that for the increase in
magnitude of visco-elastic parameter, both the velocity and temperature at a fixed
point increase for second-grade fluid but decrease for Walter’s liquid B. Due to
increasing Prandtl number and heat sink parameter, the thermal boundary layer
thickness reduces, whereas increasing heat source parameter increases the thickness

of the thermal boundary layer.
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CHAPTER 11

Effects of partial slip on boundary layer
mixed convection flow towards a
vertical stretching sheet in porous

medium

34



2.1 Introduction

The flow due to stretching sheet in a porous medium is a very important
problem in fluid dynamics due to its significant applications in polymer processing
industries, several biological processes and many others. Crane (1970) who was first
investigated the flow over a linearly stretching plate, gave an exact similarity solution
in closed analytical form for steady boundary layer flow of an incompressible viscous
fluid. The work of Crane is extended by many researchers such as Gupta and Gupta
(1977), Chen and Char (1988) taking the effects of heat and mass transfer under
various physical conditions. Chen (1998) demonstrated the mixed convection laminar
flow adjacent to continuously stretching vertical sheet and Ishak et al. (2008)
analyzed the hydromagnetic effects to this mixed convection flow. Elbashbeshy and
Bazid (2004) studied the heat transfer over a stretching surface in a porous medium,
with internal heat generation and suction or injection. Ouaf (2005) obtained an exact
solution of thermal radiation effects on magnetohydrodynamic (MHD) steady
asymmetric flow over a porous stretching sheet. In recent past, Kumaran et al. (2009)
investigated the MHD flow past a quadratically stretching permeable sheet.

A common feature is assumed in all those investigations stated above, the flow
field obeys the conventional no-slip condition at the boundary. But, in certain
situations the no-slip boundary condition does not hold good and is required to
replace by partial slip boundary condition. Beavers and Joseph (1967) investigated the
fluid flow over a permeable wall using the slip boundary condition. The effects of slip
boundary condition on the flow of Newtonian fluid past a stretching sheet were
studied by Andersson (2002) and Wang (2002). On the other hand, Ariel (2008)
analyzed the flow of a visco-elastic fluid over a stretching sheet with partial velocity
slip.

In the present investigation, we have studied the effects of partial slip
boundary condition on steady Newtonian boundary layer mixed convection flow and
heat transfer in a vertical stretching sheet in porous medium. The variable initial
temperature distribution along the sheet is taken into account. Using similarity
solution technique, the governing partial differential equations are transformed into a

set of non-linear self-similar ordinary differential equations. Then the transformed
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self-similar equations are solved numerically by using shooting method with the
approximate choice of guess value. The results are plotted in figures and discussed

physically in all contexts.

2.2 Mathematical formulation of the flow problem

Let us consider the mixed convection boundary layer flow of a viscous
incompressible fluid due to a vertical sheet stretching with linear velocity. The sheet
embedded in a porous medium. Using the usual velocity and thermal boundary layers
approximations, the equations for steady two-dimensional flow and the temperature

equation may be written in usual notations as

s W6 2.1)
ox Oy

ou  ou u v

—tVv—=U0—F——uxt Tr-T 2.2
e VB & utgf(T-T,) (2.2)

or or « o'T
and u——HJ—= m——s—0pn,
ox o pc, dy

(2.3)
where u and v are velocity components in x- and y-directions respectively, p is the
fluid density, u is the coefficient of fluid viscosity, v (=4/p) is the kinematic fluid
viscosity, k is the permeability of the porous medium, f; is the volumetric coefficient
of thermal expansion, g is the acceleration due to gravity, 7" is the temperature, x is
the fluid thermal conductivity, ¢, is the specific heat. The last term on the right-hand
side of equation (2.2) represents the influence of the thermal buoyancy force on the
flow field, with “+” sign corresponding to the buoyancy assisting flow region and “-"
sign the buoyancy opposing flow region. In Figl, the physical description of this flow
in a heated vertical stretching sheet is presented.

The appropriate boundary conditions for the velocity components and the
temperature are given by
u=ax+D(du/dy)(Velocity Slip Condition), v=v,, at y= 0; u—0 as y—>0 (2.4)
and 7= T,,=Tx+Tox at y= 0; T> T as y—oo, (2.8}
where ¢ is stretching constant with >0, D denotes the slip length, 7\,=T,+Tox is

variable temperature distributed over sheet and 7., is the free stream temperature



assumed to be constant with 7,,>7,. Here v, is a prescribed distribution of suction

(v,<0) or blowing (v,,>0), applied through the porous vertical stretching sheet where

the velocity of the sheet is so small so that it does not affect the porosity of the sheet

as well as the medium.

We now introduce the stream function y(x,y) of this two-dimensional steady flowas

g = e pim ST (2.6)

The continuity equation (2.1) is satisfied automatically and the momentum equation

(2.2) and the temperature equation (2.3) take the following forms:

oy Oy oy o dw vo
rov o "{2/=U vl Vi ef(T-T,). (2.7)
oy dxdy Ox Oy dy. k oy
2
g SLOT_SWOT ¥ 47 (2.8)

The boundary conditions (2.4) of the flow reduce to

5 2
ﬂ/{_:aerDa‘f’a_wzfvwatyzo;%AOasyﬁoo. (2.9
oy oy Ox ay

Next, we introduce the dimensionless variables for yand 7" as given below:

y =~av xf () and T =T, +(T, = T,)0(). (2.10)
where the similarity variable 7 is defined as n=y(a/ B

Using Equation (2.10) we obtain following self-similar equations as

" = f—k*f+10=0 (2.11)

and 8"+ Pr(f0' - f'6)=0, (2.12)
where k*=(u/ka) is the permeability parameter of the porous medium, A=+Grd/Re,*
[the significance of “+” is same as above] is the buoyancy or mixed convection
parameter with >0 and A<0 corresponding to the assisting flow and opposing flow,
respectively, Gr,=g(T,—T. L )x*/ 0" is the local Grashof number, Re,=ax’/v is the local

Reynolds number and Pr=gp«c,/k is the Prandtl number.

The boundary conditions (2.9) and (2.5) reduce to the following forms:
Am=S, f(m=1+5"n) at n=0; f(m)—>0as p>» (2.13)
and & n)=1 at n=0; & n)—0 as n—0, (2.14)
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where S= —v‘,,/(au)”z, $>0 (i.e. v,<0) is corresponding to suction and S<0 (i.e. v,,>0)

is corresponding to blowing, 6=L(a/v)"* is the velocity slip parameter.

2.3 Numerical method

The nonlinear coupled differential equations represented by (2.11) and (2.12)
along with the boundary conditions (2.13) and (2.14) form a two point boundary value
problem (BVP) and are solved using shooting technique with fourth order Runge-
Kutta method by transferring into an initial value problem (IVP). In this method, we
have to choose a suitable finite value of 77—, say 7.. We set following first-order

systems as

f'=z,
2= p, (2.15)

p=2—fo+k*z- 10

ad 0% } (2.16)
q'=—Pr(fq-z0)

with the following boundary conditions

N0)=S, 2(0)=1+3p(0), A0)=1. (2.17)

To solve (2.15) and (2.16) as an IVP we must need values for p(0) i.e. f10) and ¢(0)

i.e. 10) but no such values are given. The initial guess values for f"0) and 010) are

chosen and the solution procedure is carried out. We compare the calculated values of

S1{n) and A7) at 7.(=10) with the given boundary conditions J1(17:)=0 and & n..)=0

and adjust values f"(0) and 910) using Secant method to give better approximation for

the solution. The step-size is taken as #=0.01. The process is repeated until we get the

results correct up to the desired accuracy of 107 level.

2.4 Results and discussions
Numerical computations have been carried out for various values of the
parameters viz., the permeability parameter &*, the buoyancy or mixed convection

parameter A, the Prandtl number Pr, velocity slip parameter & and suction/blowing
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parameter S. The computed values are depicted in some figures and the physical
clarifications are given for all cases.

First, we concentrate on variation of velocity field and temperature
distribution for different values of the permeability parameter k*. The velocity and
temperature profiles for several values of k* are represented in Figl and Fig2,
respectively. It is noticed that the velocity along the sheet decreases when k*
increases. On the other hand, the value of the temperature profile increases
significantly with the increase of k*.

Next. we discuss the effects of the mixed convection parameter A4 on velocity
and temperature. In Fig3 and Fig4, the velocity and temperature curves are depicted
for different values of A. Velocity at a point increases if A is increased, while
temperature at a fixed point decreases with increasing A. This buoyancy effect on
velocity profiles is very important in physical and practical point of views.

Since this flow is mixed convection type, the Prandtl number also affects the
velocity fields in addition with the temperature and this can be seen from Fig5 and
Fig6. From these figures we observe that the velocity along the sheet as well as
velocity boundary layer thickness decrease with increase in Pr and also temperature at
a point and the thermal boundary layer thickness rapidly decrease with increasing Pr.
The Prandtl number effects, specially, on the velocity field is realistic in flow
dynamics.

Fig7 and Fig8 explain the effects of non-conventional slip boundary condition
on the velocity and temperature. For increase in slip parameter & causes the decrease
of velocity at a fixed point and the increase of temperature. But the boundary layer
thickness of velocity increases with increase in the slip except very large values of 4,
because for very large value of & (tends to infinity) the boundary layer will disappear.
Also the thermal boundary layer thickness decreases with increasing &. In Tablel we
compare our obtained results for various values of slip parameter with the published
results of Andersson (2002) for force convection flow in non-porous medium and
found in excellent agreement.

Finally, the effects of suction/blowing parameter S on velocity and

temperature profiles are presented in Fig9 and Figl0. For the increase of applied
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suction, the velocity and temperature profiles at a fixed 7 decrease, while with the
increase in blowing the velocity and temperature increase.

The variation of skin-friction coefficient /{0) and the temperature gradient at
the sheet —010) which is proportional to the rate of heat transfer from the sheet, for
different values of parameters k*, A, Pr and & with $=0.5 are represented in Table2.
The skin-friction coefficient increases with the permeability parameter and Prandtl the
number, where as it decreases with the mixed convection parameter and the slip
parameter. The rate of heat transfer increase with increasing values of A4 and Pr and

decreases with increasing £* and o.

2.5 Concluding remarks

The main objective of this investigation is to study the effects of partial slip on
the steady boundary layer mixed convection flow and the heat transfer over a vertical
stretching sheet in a porous medium. The obtained self-similar nonlinear coupled
ordinary differential equations are solved numerically using shooting method. The
similarity variable is used to obtain self-similar equations for the momentum and
temperature equations in this boundary layer flow and heat transfer. From our study it
can be concluded that all parameters viz. the permeability parameter, the mixed
convection parameter, the Prandtl number and suction/blowing parameter affect the
flow field as well as heat transfer. The analysis reveals that with increase of mixed
convection parameter (A), the velocity boundary layer thickness increases and the
thermal boundary layer thickness decreases. When Prandtl number increases, the
thicknesses of velocity as well as thermal boundary layers decrease. With the increase
of velocity slip parameter, velocity along the sheet decreases and the temperature
increases. The rate of heat transfer from the sheet decreases with increasing value of
slip parameter. The main finding of this work is that the slip condition opposes the
rate of heat transfer from the sheet. This finding may be useful in many industrial

problems relating with rate of heat transfer.
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Tablel The skin-friction coefficient £7(0) for various values of & with k*=0, A=0 and

S5=0.

o Andersson (2002) | Present study
0.0 —-1.0000 -1.000000
0.1 -0.8721 -0.872083
D2 -0.7764 —0.776377
0.5 -0.5912 —-0.591195
1.0 -0.4302 —-0.430160
2.0 —0.2840 —-0.283980
5.0 ~-0.1448 —0.144840
10.0 -0.0812 —-0.081242
20.0 —0.0438 —0.043789
50.0 —-0.0186 —-0.018597

100.0 —-0.0095 —0.009551

Table2 The values of skin-friction coefficient /”{0) and the temperature gradient at
the sheet —£10) for several values of k*, A, 6 and Pr with $=0.5.

* | A 5 | Pr 110) -610)

1.0 | 0:07 | 0.1 1.0 | -1.373000 2.033619

20 | 0.07 | 0.l 1.0 | —1.496903 1.898219

05 | =02 0.1 1.0 | —1.388889 1.851392

0.5 0.0 | 0.1 1.0 | -1.265100 2.136948

0.5 0.2 0.1 1.0 | -1.167556 2292551

0:5 | 0.7 | 0.0 1.0 | —1.460227 2.404774

0.5 [0.07 | U 1.0 | —1.066353 2.046521
0.5 | 0.07 | 0.1 | 0.75 | -1.221917 1.431772
0.5 | 0.07 | 0.1 1.5 | —-1.240760 4.640295
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CHAPTER III

Lie group analysis of MHD boundary layer
equation for flow past a heated stretching
sheet with velocity and thermal slips at

boundary in presence of heat source/sink
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3.1 Introduction

The boundary layer flow over a continuously stretching surface is an often-
encountered in many engineering processes. There are lots of applications in
industries such as hot rolling, wire drawing, glass-fiber production, etc. This type of
study has gained considerable attention due to its applications in industries and
important bearings on several technological processes. Crane (1970) investigated the
flow caused by the stretching of a sheet. Many researchers such as Gupta and Gupta
(1977), Chen and Char (1988), Dutta et al. (1985) extended the work of Crane (1970)
by including the effect of heat and mass transfer analysis under different physical
situations.

All the above mentioned studies continued their discussions by assuming the
no slip boundary conditions. The non-adherence of the fluid to a solid boundary, also
known as velocity slip, is a phenomenon that has been observed under certain
circumstances [Yoshimura and Prudhomme (1998)]. Recently, many researchers
[Wang (2002), Andersson (2002), Ariel (2008), Abbas et al. (2009) etc.] investigated
the flow problems taking slip flow condition at the boundary.

The magnetohydrodynamics (MHD) of an electrically conducting fluid is
encountered in many problems in geophysics, astrophysics, engineering applications
and other industrial areas. Hydromagnetic free convection flows have a greet
significance for the applications in the fields of steller and planetary magnetospheres.
aeronautics. Engineers employ magnetohydrodynamics principles in the design of
heat exchangers. pumps, in space vehicle propulsion, thermal protection, control and
re-entry and in creating novel power generating systems. However, hydromagnetic
flow and heat transfer problems have become more important industrially. In many
metallurgical processes involve the cooling of many continuous strips or filaments by
drawing them through an electrically conducting fluid subject to a magnetic field, the
rate of cooling can be controlled and final product of desired characteristics can be
achieved. Another important application of hydromagnetic to metallurgy lies in the
purification of molten metals from nonmetallic inclusions by the application of a
magnetic field. The study of magnetohydrodynamic (MHD) flow of an electrically

conducting fluid is of considerable interest in modern metallurgical and metal-

54



working processes. Moreover, control of boundary layer flow is of practical
significance. Several methods have been developed for the purpose of artificially
controlling the behaviour of the boundary layer. The application of MHD principle is
an important method for affecting the flow field in the desired direction by altering
the structure of the boundary layer. Recently Mukhopadhyay et al. (2005) investigated
the MHD boundary layer flow with variable fluid viscosity over a heated stretching
sheet. A new dimension is added to the above mentioned study by considering the
effects of velocity and thermal slips at the wall.

In certain applications, the effects of working fluid in heat generation (sourcc)
or absorption (sink) effects are important. Representative studies dealing with these
effects have been reported by authors such as Gupta and Sridhar (1985), Abel and
Veena (1998).

The present work deals with fluid flow and heat transfer over a stretching
sheet in presence of heat source/sink. Most of the researchers try to obtain the
similarity solutions in such cases using the similarity variables. But in this chapter, a
special form of Lie group transformations, known as scaling group of transformations
is used to find out the full set of symmetries of the problem and then to study which of
them are appropriate to provide group-invariant or more specifically similarity
solutions. Because group-theoretic method is the only rigorous mathematical method
to find all the symmetries of a given differential equation and no ad hoc assumptions
or a prior knowledge of the equation under investigation is needed. Moreover, this
method unifies almost all known exact integration techniques for both ordinary and
partial differential equations. This method can be used as a tool for finding the
similarity solutions for those problems where the similarity solutions can not be found
casily by usual method. The system remains invariant due to some relations among
the parameters of the scaling group of transformations. Using this transformation, a
third order and a second order ordinary differential equations corresponding to the
momentum and the energy equations are derived. These equations are solved
numerically using shooting method. The effects of the magnetic parameter, velocity
and thermal slip parameters, heat source / sink parameter and the influence of Prandtl
number on velocity and temperature fields are investigated and analyzed with the help

of their graphical representations.

55



3.2 Equations of motion

We consider a steady two-dimensional flow of an electrically conducting
viscous incompressible fluid over a heated stretching sheet in the region y > 0.
Keeping the origin fixed, two equal and opposite forces are applied along the x-axis
which results in stretching of the sheet and a uniform magnetic field of strength By is
imposed along the y-axis.

The continuity, momentum and energy equations governing such type of flow are

written as
91{4’@:0, (3.1)
ox ay
2 2
M%Jrv%*ua L; 25 (3:2)
X  C ay yo,

- 2
wL WL K OT G p 1), (3.3)
ox v pe,d pe,

where u and v are the components of velocity respectively in the x and y-directions, 7'
is the temperature, x is the coefficient of thermal conductivity, Q,(Js 'm " K™') is
the dimensional heat generation or absorption coefficient, ¢ , 1s the specific heat, p is
the fluid density (assumed constant), g is the coefficient of fluid viscosity, o is the

electrical conductivity of the conducting fluid, t(=¢/p) is the kinematic viscosity of

the fluid, By is the strength of applied magnetic field.

3.2.1 Boundary conditions of the flow problem

The appropriate boundary conditions for the problem are given by
u . e ar )
u=ax+ Dvo— (Velocity Slip), v=0,7 =T + N—— (Thermal Slip) at y =0, (3.4)
oy oy
u—>0T—>T, as y—>w. (3.5)
Here a(>0) is a stretching constant, 7, is the uniform wall temperature, 7., is the

temperature far from the sheet. D and N are respectively the velocity and thermal slip

factors. The no-slip case is recovered for D=N =0.
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3.2.2 Method of solution

We now introduce the following relations for #, v and @ as
T =i

uz%,v=—a—wand0= -
oy ox T -T

w ol

(3.6)

where i is the stream function of this two-dimensional steady flow.
Using the relations (3.6) in the boundary layer equation (3.2) and in the energy

equation (3.3) we get the following equations

oy Dy oy Dy _Ua3w70'802 dyr

— = - : {37)
dy Oxdy Ox Oy° ay’ p oy
2
- @i% oy 69 K 0 9 5 0. (3.8)
oy Ox Ox Gy pc, oy’ p(, A
The boundary conditions (3.4) and (3.5) then become
2
B o mp Do L O g sl g sy, (3.9)
oy oy® Ox ay
UF o sl s m -5, (3.10)
ay

3.2.3 Scaling group of transformations
We now introduce the simplified form of Lie-group transformations namely, the

scaling group of transformations [Mukhopadhyay et al. (2005)],

£y £,

C:x’ =xe™,y" = ye™ " =ye™ u" =ue® v =ve™ .0 =0™. EHN)

Equation (3.11) may be considered as a point-transformation which transforms co-

ordinates (x,y,y.u,v.0) to the co-ordinates (x™,y .y .1 v, 6").

Substituting (3.11) in (3.7) and (3.8) we get,

pranntaay OV OW Oy é‘zt/f) _ pettara) OV OBy uia-a OV
oy ax’oy’  ox dy oy~ yej Ay’

(3.12)

z(ar+o:2 ~a a,)(al// 69 aW 69 K ef(zarar;)ﬁ+&

: e " =
&' x ax oy pc : y*  pc, .13

The system will remain invariant under the group of transformations I', we would

have the following relations among the parameters, namely

o, + 20, —2a; =3a, -, =a, —a, and a, + @, —a, =@, =20, -0, = —0.
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These relations give o, =, and o, =0=«;.
The boundary conditions yield ¢, = a,,a; =0.
Thus the set I' reduces to a one parameter group of transformations:

£

x=xe™ Yy =yt =ye™ ' =ue™ v =v,0=0". (3.14)
Expanding by Taylor’s series we get,

X —x=xea,, y -y=0, ¢ -y =yea,, i ~u=uee,, v -v=0, 0 -6=0.(3.15)
In terms of differentials, we get,

d _dy_dy _du_dv_do

- _ (3.16)
ax 0 ay oau 0 0

Solving the above equations we get,
y=n,y=xF@n), 0=06@). (3.17)
The equations (3.12) and (2.13) become

2
, OB

FE L Rt o 2 g (3.18)
P

K ovro+ L p=0. (3.19)

pcf? pc.;?

The boundary conditions become

F'=a+DvF",F=0,8=1+N@& at n=0. (3.20)

F' 50,0 >0asn—>wo. (3.21)

Introducing 7 =v“a’n’, F=v"a’ F*,0=0" ¢ @ in equations (3.18) and (3.19)

we get
a =a=1,a‘ =0, B :wﬁ=l,ﬁ” 0
2 2
The equations (3.20) and (3.21) transformed to
F7P-F'F"=F"-MF", (3.22)
and 8" + Pr(F'0' +18)=0 (3.23)

where M =./cB; / pa is the magnetic parameter, Pr = uc, / x 1s the Prandtl number

and L=0, / pac, is the heat source/sink parameter.
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Taking F' = f and 6 =6 the equations (3.22) and (3.23) finally take the following

form:

[l g = =M =0, (3.29)

a8 [0 +1L6=0. (3.25)
Pr

The boundary conditions take the following forms
f=1+8f", f=0,0=1+y9" atn’ =0, (3.26)

and /' >0,0 >0asn —w (3.27)

1/2

where & = D(au)”2 is the velocity slip parameter and y = D(c/v)"" is the thermal

slip parameter.

3.3 Numerical method for solution

The above equations (3.24) and (3.25) along with boundary conditions are

solved by converting them to an initial value problem. We set
f=g.2'sp ¢ =] p+M4z]. (3.28)
0 =q.q =-Pr(fq+L0) (3.29)
with the boundary conditions
F(0)=0. £/ (0y=1+57"(0), 8(0) =1+ y0'(0). (3.30)
In order to integrate (3.28) and (3.29) as an initial value problem we require a value
for p(0) ie. f7(0) and ¢(0) ie. @'(0) but no such values are given in the
boundary. The suitable guess values for f”(0) and O'(0)are chosen and then
integration is carried out. We compare the calculated values for f’and € at
1 =10 (say) with the given boundary condition /'(10)=0 and #(10) = 0 and adjust
the estimated values, 7' (0) and &'(0), to give a better approximation for the
solution.

We take the series of values for f”(0) and @'(0), and apply the fourth order
classical Runge-Kutta method with step-size #=0.01. The above procedure is repeated

until we get the results up to the desired degree of accuracy, 10’ .
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3.4 Results and discussions

In order to analyse the results, numerical computation has been carried out
using the method described in the previous section for various values of the magnetic
parameter (M), velocity slip parameter (0), thermal slip parameter (%), heat source or
sink parameter (L) and the Prandtl number (Pr). For illustrations of the results,
numerical values are plotted in the figures (1) to (7). In all figures we take Pr=1.

In order to assess the accuracy of the method, the results (in case of no-slip

boundary condition and in the absence of magnetic field and heat source/sink) are

compared with those of Grubka and Bobba (1985) and Chen (1998) for local Nusselt

-1/2

X

number Nu Re " =-6'(0)for forced convection flow on a linearly stretching

surface. The results (presented through Table-1) are found to agree well.

Table-1: Values of Nu_Re_” for several values of Pr with M=0, 5=0, 3=0, L=0

Pr | Grubka and Bobba (1985) Chen (1998) Present study
0.01 0.0294 0.02942 0.02944
0.72 1.0885 1.08853 1.08855
1.00 1.3333 1.33334 1.33334
3.00 2.5097 2.50972 250971

First, we concentrate on the effects of magnetic parameter M on velocity
distribution and heat transfer in case of no-slip condition at the boundary and in the
absence of any heat source/sink. In Figl, horizontal velocity profiles are shown for
different values of M (M=0.1, 0.4, 0.6). The horizontal velocity curves show that the
rate of transport decreases with the increasing distance (7) of the sheet. In all cases
the velocity vanishes at some large distance from the sheet (at 7=6). The velocity
curves show that the rate of transport is considerable reduced with increasing values
of M. This is due to the fact that with the increasing M, the Lorentz force associated
with the magnetic field increases and it produces more resistance to the transport
phenomena. Same effect of magnetic parameter is noted in case of slip at the

boundary. Fig2 exhibits the temperature profiles for the values of M. In each case.
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temperature is found to decrease with the increase of 7 until it vanishes at 7=7. But
the temperature is found to increase for any non-zero fixed value of 7 with the

increase of M.

Now we concentrate in the velocity and temperature distribution for the
variation of velocity slip parameter in the absence and presence of magnetic field
without heat generation or absorption. Fig3(a) and Fig3(b) demonstrate the effects of
velocity slip parameter () in the absence (M=0) and presence (A=0.1) of magnetic
field respectively. With the increasing B, the horizontal velocity is found to decrease
[Fig3(a) and Fig3(b)]. When slip occurs, the flow velocity near the sheet is no longer
equal to the sheet stretching velocity. With the increases in o, such slip velocity
increases and consequently fluid velocity decreases because under the slip condition,
the pulling of the stretching sheet can be only partly transmitted to the fluid. It 1s
noted that & has a substantial effect on the solutions. Fig4(a) and Fig4(b) exhibit that

the temperature €(7)in boundary layer increases monotonically with the increasing

values of velocity slip parameter & in both the cases i.e. in absence (M=0) and
presence (M=1) of magnetic parameter respectively. It is interesting to note that the
rate of heat transfer decreases with the velocity slip parameter o.

Fig5(a) represents the shear stress profile for variable velocity slip parameter ¢
in presence of magnetic field. It is seen that magnitude of shear stress decreases with
increasing slip parameter 6. An interesting nature of temperature gradient is noticed
from Fig5(b). With increasing &, the magnitude of temperature gradient decreases
upto 77 = 1.8, but it increases after it.

Fig6(a) and Fig6(b) show the effects of thermal slip » on temperature and
temperature gradient respectively in presence of magnetic field and velocity slip. With
the increase of thermal slip parameter y, less heat is transferred to the fluid from the
sheet and so temperature and also the temperature gradient (in magnitude) are found
to decrease.

In Fig7(a), effects of heat source/sink on the temperature field is shown, taking
fixed values for the other parameters involved in this study. In this case, the

temperature field increases with the increase of heat source/sink parameter L. This
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feature prevails up to certain heights and then the process is slowed down and at a far
distance from the wall temperature vanishes. On the other hand, the temperature field
increases with the decrease in the amount of heat absorption. Again, far away from
the wall, such feature is smeared out. Fig7(b) exhibits the nature of temperature
gradient for variable heat source/sink parameter L. The magnitude of temperature

gradient decreases upto 7 ~ 1.8 with the increasing values of L. But the temperature
gradient increases with increasing L for r7>1.8.

It is also observed that temperature decreases with the increasing Prandtl

number because thermal boundary layer thickness decreases due to increase in Pr.

3.5 Conclusions

The present study gives the solutions for MHD steady boundary layer flow of
an electrically conducting fluid and heat transfer over a stretching surface in presence
of heat source or sink. The effects of velocity and thermal slips at the stretching
surface are employed in the analysis. The effect of velocity slip parameter on a
viscous incompressible fluid is to suppress the velocity field which in turn causes the
enhancement of the temperature field. The rate of heat transfer decreases with the
increase of velocity as well as thermal slip parameter. The results pertaining to the
present study indicate that due to internal heat generation thermal boundary layer
increases. The boundary-layer edge is reached faster as Pr increases. The increasing
Prandtl number has a suppressive effect on temperature.
It is hoped that, the physics of flow over the stretching sheet can be utilized as the
basis for many engineering and scientific applications with the help of our present
model. The results pertaining to the present study may be useful for the different
model investigations. The findings of the present problem are also of great interest in

those arcas where the surface layers are being stretched.
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Fig6(b) Variation of temperature gradient &' (77) with n for several values of thermal
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CHAPTER 1V

Chemically reactive solute distribution
in a steady MHD boundary layer flow

over a stretching surface’

* The content of this chapter is accepted for publication in Journal of

Applied Fluid Mechanics
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4.1 Introduction

The flow of an electrically conducting fluid is a classic problem in fluid
mechanics now-a days. The distribution of solute under going chemical reaction
corresponding to boundary layer flow due to moving sheet are relevant to many
practical applications in the metallurgy industry, filaments drawn through a quiescent
electrically conducting fluid and the purification of molten metals from non-metallic
inclusions. In these situations, the boundary layer flow consideration is appropriate to
understand the processes.

The boundary layer equations play a central role in many aspects of fluid
mechanics because they describe the motion of a viscous fluid close to a surface.
These equations are especially very important since they have the capacity to admit a
large number of invariant solutions. Lie-group analysis, also called symmetry analysis
was developed by Sophius Lie to find point-transformations that map a given
differential equation to itself. This method unifies almost all known exact integration
techniques for both ordinary and partial differential equations [Pakdemirli and
Yurusoy (1990)] Group analysis is the only rigorous mathematical method to find all
symmetries of a given differential equation and no adhoc assumptions or a prior
knowledge of the equation under investigation is needed.

The non-linear character of the partial differential equations governing the
motion of the fluid produces difficulties in solving the equations. In fluid mechanics,
researchers try to obtain the similarity solutions in such cases. In case of scaling group
of transformations, the group-invariant solutions are nothing but the well known
similarity solutions [Mukhopadhyay et al. (2005)]. A special form of Lie-group of
transformations, known as scaling group transformations, is used in this work to find
out the full set of symmetries of the flow problem.

Crane (1970) extended the work of Sakiadis (196la,b) who was the first
person to study the laminar boundary layer flow caused by a rigid surface moving in
its own plane. The heat and mass transfer problem associated with Newtonian
boundary layer flow past a stretching sheet was studied by Gupta and Gupta (1977).
Chakrabarti and Gupta (1979) analyzed the magnetohydrodynamic (MHD) flow of

Newtonian fluid initially at rest, over a stretching sheet at a different values of
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parameter related with uniform temperature. Anjali Devi and Ganga (2010) exhibited
dissipation effects on MHD nonlinear flow and heat transfer past a stretching porous
surface embedded in a porous medium under a transverse magnetic field.

The effects of chemically reactive solute distribution on fluid flow due to a
stretching sheet also bear equal importance in engineering researches. The chemical
reaction effects were studied by many researchers on several physical aspects. The
diffusion of a chemically reactive species in a laminar boundary layer flow over a flat
plate was demonstrated by Chambre and Young (1958). The effect of transfer of
chemically reactive species in the laminar flow over a stretching sheet explained by
Andersson et al. (1994). Takhar et al. (2000) analyzed the flow and mass transfer on a
stretching sheet with a magnetic field and chemically reactive species with n-th order
reaction. Afify (2004) explicated the MHD free convective flow of viscous
incompressible fluid and mass transfer over a stretching sheet with chemical reaction.
Liu (2005) studied the momentum, heat and mass transfer of a hydromagnetic flow
past a stretching sheet in the presence of a uniform transverse magnetic field. Akyildiz
et al. (2006) obtained a solution for diffusion of chemically reactive species in a flow
of a non-Newtonian fluid over a stretching sheet immersed in a porous medium.
Cortell (2007) investigated the motion and mass transfer for two classes of
viscoelastic fluid over a porous stretching sheet with chemically reactive species.
Recently, Kandasamy et al. (2010) investigated the effects of temperature-dependent
fluid viscosity and chemical reaction on MHD free convective heat and mass transfer
with variable stream conditions.

In the present investigation, we have studied the Newtonian MHD boundary
layer flow and reactive solute distribution with first order reaction past a stretching
surface. The variable initial solute distribution along the surface is taken into account.
The scaling group of transformation is applied into the governing equations without
adopting any adhoc assumption and finally a set of self-similar ordinary differential
equations are obtained. Then the transformed self-similar equations are solved. Exact
analytical solution of MHD boundary layer flow is obtained and then solution of
concentration is obtained numerically. The obtained results are plotted and discussed

physically in various contexts.
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4.2 Mathematical formulation of the flow problem and reactive solute
distribution

Consider a steady MHD flow of an electrically conducting viscous
incompressible fluid undergoing a first order chemical reaction over a stretching
surface. The continuity, momentum and reactive concentration equations for
governing the flow and concentration distribution in the boundary layer region along

the stretching surface may be written as

S Sy
LY (4.1)
ox oy

2
u@+va—u=uii[+ml—(.]x8) (4.2)
dx oy o p *
%€ v _pPC _r(c-cy), (4.3)

ox oy oy

where # and v are velocity components in x- and y-directions respectively, v is the
kinematic viscosity, p is the density of the fluid, J is the current density and B is the
magnetic field. One may note that in writing equation (4.2), we have neglected the
induced magnetic field since the magnetic Reynolds number R, for the flow is
assumed to be small. Here D is the diffusion coefficient and R denotes the reaction
rate of the solute. In this flow problem the working fluid is poorly conducting.

The appropriate boundary conditions for the velocity components and reactant

concentration, C are given by

u=ax, v=0at y=0
(4.4)
u—>0as y—-w
C=C=C +Cx" at y=10
and = S g% L (4.5)
C—>C, as y—>oo,

where « is assumed to be stretching constant and we consider a variable solute

distribution along the stretching surface i.e. C,=C, +C,x", where C_ is constant
solute at infinity, C, is a positive solute constant, # is a power-law exponent, which

signifies the change of amount solute in the x-direction and C, > C, .
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The magnetic field B having components (0,By,0) with By non-negative
constant, the relation V-B=0 is automatically satisfied. It is noted that the electric
current in the flow acts parallel to z-axis (i.e. normal to the plane of the flow). Hence
from Ohm’s law we get the components of J as
Jx=0, ,=0, =0l E-H(qxB):]=0l E-+uBy], (4.6)
where o is the constant electrical conductivity of the fluid and £. is the component of
electric field along the z-direction and q the velocity vector. Now as the flow is
steady, Maxwell’s equation gives
VxE=0 (4.7)
where E is the electric field which is along the z-axis. This gives from equation (4.7)
0F./0y=0 and @E./6x=0 so that E. is a function of z only.

Since the induced magnetic field is neglected in view of the assumption
Ry<<1 electric current in the flow is determined from Ohm’s law and not from
VxB=1J, . being the magnetic permeability. But the consequence V-J=0 of this
equation must be satisfied [Shercliff, (1965)]. This readily gives from equation (4.6),
L.=constant since F£. is independent of x and y. Thus using equation (4.6), we find
from equation (4.2),

du du_ du obB L, TBE

B g e g . z (4.8)
ox gy & p P

In the free stream one can write

oB; o B,

U_
P P

which gives E.=-B,U.

E. =0,

Here U is the free-stream velocity and according to this problem U=0 as y—>w.

The momentum equation (4.8) becomes

ou ou u oB:
U—+V—=D—s— u
ox Oy o' p

(4.9)

Introducing the stream function to this boundary layer flow we get the
following relation as

oy oy
u:—’ V= —— 4.10
ay Ox (“-10)
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and the variable C is related by

c=C,+C(C,-C,) (4.11)

The continuity equation (4.1) is satisfied clearly by the relations (4.10). In view of the
relations (4.10) and (4.11), the equations (4.7) and (4.3) reduce respectively to

2 2 3 2
Op d9 Ay, R G oY (4.12)
dy oxdy Ox oy° oy p Oy

xaia—c+:r1r@/15—)ca—l//%le)awc2 - %RC (4.13)
dy Ox oy ox oy oy
and the boundary conditions become
a—wzaxand ai:O at y=0
ox
) (4.14)
WY s0at yow
C=1 at y=0
Y (4.15)
C—>0 at yo>w»

4.3 Invariant solution through scaling group of transformations
We now introduce the simplified form of Lie-group transformations, namely,

the scaling group of transformations [Tapanidis et al. (2003)] as
¥ {Y =R, S g, =, (4.16)

u =ue™ v =ve™ and C =Ce™
The transformation (4.16) may be considered as a point transformation, which
transformed the coordinates (x, y,y.u,v) to the coordinates (x*, y*,f,z/*, u.v).
Taking the relations (4.16) in to account in equations (4.12) and (4.13), we obtain

respectively

elon+2a,-2ay 6 ' 82 ' a *az . £(3ay—a 63 ' e(ay—ar BZ 3
pHlent 2 2m) aw* .a*eg*_aw* I el R e
Y ox oy X oy oy P

oy’ act oy oC’ . o
W oC - V78 ]+eg(o:2 o ag}nalx[/* &

oy

and ef(‘zz*aﬁ‘an)x* : = . .
dy ox ox 0Oy
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oC’
*2

ay

_ es{lag -t f(x()]x*D *

—e ) pyc (4.18)

In order that, the system will remain invariant under the group of transformation I’

we then would have the following relations among the transformation parameters

4 20, — 20, = 3@, — 0y =, =0,
. ' ‘ ‘ (4.19)
and &, —o, —@, =20, — &, — 0, = =, — 0
. : g . oy
From (4.19) we can obtain easilya, =0 and «, = ;. The relation v = o and
Y
) oy . : - »
Vo= P gives us a, =a,, a,=0. In view of these, the boundary conditions
(2.14) and (2.15) are transformed to
6{//, =ax and aaW =0 at y =0
)4
. (4.20)
oy A
——>0at y oo
€=1 gt p =0
* " @.21)
C >0 at y 5w

where the boundary condition C" =1 gives a, =0.
Thus the set I' finally reduces to a one-parameter group of transformation

x =xe™ v =y, =ye™,
r:{ & =l =i (4.22)

u =ue™, v =vand C"=C
Firstly, we consider the absolute invariant, 77 which is a function of the

independent variables and is taken as 77 = y'x".

Since the quantity » is absolute invariant, we get y'x™ = yx".

& Eas

® kS o o
Now, y x =yx'e™ =yx"if s =0 (since &, cannot be zero)

Hence, we get the first absolute invariantas n7=y".
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We now find the second absolute invariant, G = f (77) which involves the

dependent variable y~ and assume that G=x" 1" . Since G is an absolute invariant.

we will find r such that x"y" = x"y/ .

rear ga (r+1

Now, x"y" = (xe'”' )r et = (x e )t//e“’“’ =™y = x"y if r=-1.
Putting »=-1. the second absolute invariant G becomes G = xr]yf 1e.
Pl

Lastly, we want to find the third absolute invariant, H = ¢(7) which involves

*0

the independent variables and the dependent variable C" and is taken as = x'"C" .
H is an absolute invariant if x”"C" = x"C .

Now, x'C" = (xem’ )p Ce®™ =(x”e”“"’)5‘ =P xPC = x"C if 3 ={J

Thus, the third absolute invariant is // =C" i.e. ¢(n)=C".

Finally, from three absolute invariants, we get the transformations as given

below:
n=y .y =xf(n)and C" =¢(n) (4.23)
In view of the above relations, the equations (4.17) and (4.18) become
2
vf"+ "= —G—B-‘J—f' =0 (4.24)
yej
Dg"+ f¢'—=nf'¢—Rp=0 (4.25)

and the boundary conditions reduced to

f(n)=0. f'(n)=aat n=0 (4.26)

f'(n)—>0as n—ow |

] B 7 A =0 (4.27)
¢ —>0 as n—>c0

Again, we introduce the following transformations for 7, f and ¢ in equations
(4.24)-(4.27):
n=v"d"i7, f=0"d"f and g=0"a"¢ (4.28)
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. r 1 n " "
and we obtain a':a”:l, p==,p :—% and a" =8%=0,

Finally, in view of the above transformations and taking 7 =7, f =/ and ¢ =¢.
the equations (2.24) and (2.25) reduce to the following forms:

ST -M =0 (4.29)

and ¢"+Sc f¢'—Sc(nf'+B)p=0 (4.30)
where M=oB)"/ap is the magnetic parameter, Sc=u/D is the Schmidt number and

p=R/a is reaction rate parameter of the solute.

The boundary conditions (4.26) and (4.27) reduce to the following forms:

F(n)=0. f'(n)=1at n=0 @30

/' (n)—>0as np—o>ow .

g A =l (4.32)
¢ —>0 as n— .

4.4 Solution of the problem
The equation (4.29) along with the boundary condition (4.31) is solved
analytically [Sarpkaya, (1961)] and the exact solution is given by

_ 1~exp(—\/1+M17)
f(n)= Ny , 20. (4.33)

After substitution of the function f and using finite-difference technique for the
equation (4.30) along with the boundary conditions (4.32), we obtained the numerical

solution of the concentration equation. The expression for wall shear stress is given by

’f”(O)‘:\flJrM which increases with the increase of magnetic field M.

consequently, the boundary layer thickness of the moving surface decreases and the

rate of mass transfer will be enhanced from the plate.
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4.5 Results and discussions

The analytic solution of velocity has presented for various values of the
magnetic parameter M. The reactant solute equation is solved numerically and the
results are shown graphically.

The velocity profiles for various values of the magnetic parameter M have
been plotted in Figl. From the figure it is noted that with increase of M, the velocity
profile for any fixed value of 7 decreases. Thus it is clear that the magnetic field
opposes motion. This is due to the fact that variation of M leads to the variation of
Lorenz force producing more resistance to the transport process. Consequently, the
momentum boundary layer thickness reduces with the increase in M.

Fig2 exhibits concentration profiles for various values of M with Se=1,

p=1.n=1. From the figure it reveals that the value of contaminate solute at

particular value of 7 increases with the increase of the magnetic parameter. This
implies that the magnetic field acts to enhance the distribution of the reaction solute
from the moving plate in case of an electrically conducting fluid subject to magnetic
field. This result may be useful, in the situation where the enhancement of solute from
the plate is the prime important.

Now, we concentrate on the solute curves for variation of Schmidt number S¢
keeping fixed values of M =1, f =1, n=1. The curves are drawn in the Fig3. The
effect on the variation of the distribution of the solute is to decrease its value from the
plate. The diffusion of the solute decreases with the increase of Sc resulting the loss of
solute transfer.

Fig4 is the graphical representation of concentration profiles for various values
of reaction rate parameter 5 with M =1, Se=1, n=1. It has been found that the
thickness of the concentration boundary layer decreases with increasing . So, in case
of the distribution of reactive solute, the reaction constant parameter is a decelerating
agent.

Finally, Fig5 and Fig6 exhibit the concentration profiles in the boundary layer
flow region for different values of power-law exponent ». It is noticed from Fig5 that
for the increasing values of n with »>0, the curve representing the distribution of

solute for specific value of 7 decreases. While, in Figé the concentration profile
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increases with increase in the magnitude of » with #<(0 and for large negative values

of n, the overshoot of solute is observed near the surface. Thus, the effect of increase
of n when the surface concentration is C,,=C.+Cox" is completely opposite to the
effect of increase n when the surface concentration is C,=C,+Cy/x". Note that, the

wall concentration is constant as n=0.

4.6 Conclusions

An analysis is made to investigate the distribution of contaminate solute
transfer in steady MHD boundary layer flow. The analytical solution is obtained and
the reactant solute equation is solved numerically using the value of known velocity.
The magnetic field tends to reduce the rate of flow from the wall due to Lorentz force
arising due to electro-magnetic interaction near the moving wall and is broadening the
solute layer. The reaction rate parameter diminishes the rate of solute transfer. Also.
the solute transfer is significantly decreased with the increase of Schmidt number. The
effects of initial variable solute distribution over a stretching surface is very
interesting i.e. when the magnitude of » increases, the concentration decreases when
n>0 whereas increases when »<0. This boundary layer flow and contaminate solute
transfer play an important roles in analyzing the pollutant transfer in environmental

sciences and chemical industries.
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CHAPTER V

Diffusion of chemically reactive solute in
a steady boundary layer tflow over a

porous plate in a porous medium



5.1 Introduction

The fluid flow over a flat plate is a classical problem in fluid mechanics. The
boundary layer flow problems have been studied extensively under various aspects. In
the vear 1908, Blasius first considered the steady laminar boundary layer flow over a
flat plate. The non-linear third order ordinary differential equation was obtained using
similarity variable and analytic solution was also obtained. Howarth (1938) had
obtained the numerical solution of this flow problem. The mass transfer analysis in
boundary layer flow is of great importance in extending the theory of separation
processes and chemical kinetics. The diffusion of a chemically reactive species in a
laminar boundary layer flow over a flat plate was discussed by Chambre and Young
(1958). After that many researcher studied the heat and mass transfer with and
without chemical reaction. Gebhart and Pera (1971) studied the combined buoyancy
effects of thermal and mass diffusion on vertical natural convection. The mass
transfer effects on the flow past an impulsively started infinite vertical plate under
several conditions were analyzed by Soundalgekar (1979), Soundalgekar et al. (1984),
Das et al. (1994) and Muthucumaraswamy and Ganesan (2000,2001). The mixed
convectional aspects of the flat plate flow were investigated by Afzal and Hussain
(1984) and Yao (1987). Andersson et al. (1994) studied the diffusion of a chemically
reactive species from a stretching sheet. Fan et al. (1998) obtained the similarity
solution for the diffusion of chemically reactive species in mixed convection flow
over a horizontal moving plate. Anjalidavi and Kandasamy (1999,2000) studied the
effects of chemical reaction, heat and mass transfer on laminar flow along a semi
infinite horizontal plate and also analyzed the effects of a chemical reaction on the
flow past a semi-infinite plate in presence of a transverse magnetic field.

Mass and heat transfer phenomenon in porous medium have given significant
attention of modern researchers due to its huge applications in chemical industries.
reservoir engineering, environmental science and many other technological
processes. Some important characteristics of the flow through the porous medium
were depicted in the works of Cheng (1977), Vafai and Tien (1981) and Hsu and
Cheng (1985). In recent past, Postelnicu (2007) described the influence of chemical

reaction on heat and mass transfers by natural convection from vertical surface in
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porous media by taking into account the Soret and Dufour effects and Mukhopadhyay
and Layek (2009) analyzed the radiation effects on forced convective flow and heat
transfer over a porous plate in a porous medium.

In the present study, we investigate the effects of diffusion of chemically
reactive solute or contaminant on forced convective laminar boundary layer flow over
a porous flat plate in a porous medium. In this analysis, the reaction rate 1s taken
inversely proportional to position along the plate. By using similarity transformation.
a self-similar set of equations are obtained and then solved numerically using well
known shooting method. Computed numerical results are plotted and the flow and

heat transfer characteristics are thoroughly analyzed.

5.2 Mathematical formulation of the problem
Let us consider a steady two-dimensional flow of viscous incompressible fluid
and solute transfer over a porous flat plate in porous medium. Using boundary layer

approximations. the equations for the flow and the concentration distribution may be

written in usual notation as follows.

ox Oy
5 % o’

I‘,ﬂ+1vﬂ:u( I:,AE'(H*UI,) (5‘2)
& dy oy

and u£+v o = 6‘(2.
ox oy oy

= RIC=C.)s (5.3)

where u# and v are velocity components in x- and y-directions respectively, p is the
fluid density, g is the coefficient of fluid viscosity, v (=g/p) the kinematic fluid
viscosity, u. is the free stream velocity. k is the permeability of the porous medium, '
the concentration, D is the diffusion coefficient, C, is the value of the concentration
in the free stream. R(x) is the variable reaction rate and is given by R(x)=Ro/x, R is a
constant which is inversely proportional to the distance of the plate under
consideration.

The appropriate boundary conditions for the velocity components and the

temperature variable under boundary layer flow assumption are given by
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u=0, v=v,, at y=0; u—u,, as y—> (5.4)

and C=C,, at y=0; C—>C as y—>w© (5.5)
where C, is the plate concentration and v, is prescribed suction or blowing through
the porous plate and is given by vu.=vo/(x)” 2 vy is the initial value of suction (v¢<0) or
blowing (vy=>0).

We now introduce the stream function yAx.y) as

and y=——. (5.6)
oy Ox

Now, using relation (5.6). the equation (5.1) is automatically satisfied and the

equations (5.2) and (5.3) become

oy dy Oy SR _063(//_5)_(85//_
ay oxdy ox ' ' k Oy

i‘fia(' Ay oC :D(‘i“g _&((‘,_(‘,{n). (5.8)
dy Ox oOx Oy oy X

The boundary conditions (5.4) of the flow reduce to

P (5.7)

%:0.%:—vu aty=0:@i—>umasy->oo. (5.9)
dy ox oy

Next, we shall introduce the dimensionless variables for yand 7" as given below:

w=\u,x f(n)and C=C,_ +(C, —C_ )é(n) (5.10)

where the similarity variable 7 is defined as 7=y(u./vx)""?.

In view of relations in (5.10) we finally obtain the self-similar equations in the
following form:

1
Da Re,

_f""+-;-.ﬁ"' = (f'=1)=0 (5.11)

and ¢"+;Sc ¢ —Scpp=0 (5.12)

where Da_\.:k/xzzko/x is the local Darcy number, k=ko/x, ko is the initial value of the
permeability, Re,=u.x/v is the local Reynolds number, Sc=uv/D is the Schmidt
number and S=Ry/u., is the reaction rate parameter.

Equation (5.11) can be written as
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UK (=) =0 (5.13)

where  k'=1/Da,Re, is the permeability parameter of the porous medium
(Mukhopadhyay and Layek [20]).

The boundary conditions (9) and (5) finally become

Am=S.f(n)=0at n=0: f(n)—1 as p—ow (5.14)

and & n)=1 at n=0; & 17)—0 as p—x (5.15)
where S:(721)“./11.,_)(188_\.)”2——~2vo/(u,_.z))”21 S>0 (i.e. vp<0) 1s corresponding to suction

and S<0 (i.e. vo>0) is corresponding to blowing.

5.3 Numerical solution

The nonlinear coupled differential equations (5.13) and (5.12) along with the
boundary conditions form a boundary value problem (BVP) and are solved using
shooting method, by converting into an initial value problem (IVP). In this method we

have to choose a suitable finite value of n—w, say 7.. We get following first-order

systems

~t ' ’ ] ~ » -
f'=p.p=4.q :—;.fq+k (a=1) (5.16)
and ¢'=2z,2'= %Sc fz+ Scpo (5.17)

with the boundary conditions

A0)=S, p(0)=0, A0)=1. (5.18)

To solve (5.15) and (5.16) as an IVP, we must need values for ¢(0) 1.e. /10) and z(0)
1.e. 10) but no such values are given. The initial guess values for /10) and €10) are
chosen and applying fourth order Runge-Kutta method to obtained the approximate
solution. We compare the calculated values of f{7) and & 7) at 7..(=20) with the
given boundary conditions f1{7.)=1 and & 1..)=0 and adjust values of f"0) and 610)
using standerd Secant method to give better approximation for the solution. The step-
size 1s taken as 2#=0.01. The process is repeated until we get the results correct up to

the desired accuracy of 10 level.
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5.4 Results and discussions

The numerical computations are carried out for different values of parameters
involved 1n the equations viz., the permeability parameter of the porous medium (k).
the suction or blowing parameter (S), the Schmidt number (Sc) and the reaction rate
parameter (/). The computed results are explained by plotting some figures and
corresponding physical reasoning are also discussed at length.

For the verification of results obtained, the results corresponding to the
velocity profile for k=0 and S=0 (i.e. in non-porous medium and in absence of
suction or blowing) with the given result of Granger (1995) shown in Figl.

We shall now pay our attention to see the influence of the permeability
parameter k on the velocity as well as concentration (reactant solute). In Fig2, the

B . . ~ ¥
curves depicting various values of £ are drawn and the reactant solute ¢(77) curves

for various values of k"~ are also shown in Fig3. In both cases the effects are
prominent. The increase in permeability of the porous medium enhances the velocity
at a point. It is due to the fact that the momentum boundary layer thickness is reduced
with increase in & . But opposite effect is observed in Fig3 of concentration. The
concentration profile decreases with increasing values of permeability parameter k.

The effects of externally applied suction or blowing through the porous plate
on velocity and concentration distributions play a vital role for the flow in a porous
medium. For several values of the parameter S, the dimensionless velocity and
concentration profiles are plotted in Fig4 and Fig5. For the increase of suction applied
through the porous plate, the value of the velocity and the concentration profiles at a
fixed point decrease. On the other hand, reverse nature is noticed for applied blowing
(negative suction) i.e. with increasing blowing, the velocity and the concentration
increase. It is noted that the thicknesses of momentum as well as thermal boundary
layers decrease with suction and increase with blowing.

In Fig6 the effect of the Schmidt number on the concentration distribution is
exhibited. The concentration at a fixed 7 promptly decreases with increasing values of
Sec, because the Schmidt number acts to reduce the thermal boundary layer thickness.

Moreover. after certain increment of Sc the value of concentration profiles is negative.
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Finally, we discuss the variation of reactive concentration distribution for
several values of the reaction rate parameter £. In Fig7, a clear view of concentration
profiles for increment of /3 is represented. From the figure it reveals that the values of
the concentration decrease with increasing f. Thus the chemical reaction opposes the

diffusion of reactant concentration undergoing first-order chemical reaction.

5.5 Conclusions

The present investigation concentrates on the effects of diffusion of
chemically reactive solute in forced convective boundary layer flow over a porous flat
plate in a porous media. The reaction rate of the reactive species is considered such
that it is inversely proportional to position along the plate. A self-similar set of
equations are obtained and then solved numerically using shooting method. This
analysis reveals that the permeability of the porous medium increases the velocity but
decreases the concentration. The suction reduces the thicknesses of momentum and
thermal boundary layers but blowing enhances the above thicknesses. It is interesting
to note that the diffusion of reactant solute undergoing first-order chemical reaction

decreases with increasing values of reactant-rate parameter /.

98



£'m)

0.8

0.6

0.4

0.2

Present study
Granger (1995)

¥ X X

Figl Velocity profiles /{7) for k' =0 and S=0.

99




FA)

0.8

0.6

0.4

0.2

T T PP Sy gaba o T
__/'7,”,_.-_' )
Py R ——=
vt
e E¥ =02 o
/ ’ .
P k* =05 ----
F g &
Ly k¥ =1 —wee
_'/ i
v /
F
.o
’
/

$ =05, Sc =05, =02

Fig2 Velocity profiles f{7) for different values of k .

100




o)

0.8

0.6

0.4

0.2

0.35

k*=0 —
k*=02
k* =05 -----
-

5$=05,Sc=05,B=02

Fig3 Concentration profiles ¢(#) for different values of k .

101



')

0.8

0.6

0.4

0.2

k*=0.5, Sc =0.5, B =02

Figd Velocity profiles f{#) for different values of S.

102




o(n)

0.8

0.6

0.4

0.2

T T T T T T T T
£
o g=-1 =
| W §=-05 - }
Yy S, [ —
N S=0
\\.‘\\" S=05 —--—
\‘\ VT — —_——
B LA % S =
NP
N
k! \_ %
B R .\ \\ —
% B %
N
NN
% B M
. O k*=0.5, S¢ =05, =02 |
5 M Mk
S o T
e, T M
e T T “ ey
~ __:-.h_;..__‘_-‘_‘_
1 | | [ S e e e !
0 I 2 3 4 5 6 7 8
n

Fig5 Concentration profiles @ 77) for different values of' S.



(M)

0.8

0.6

0.4

0.2

n
Fig6 Concentration profiles ¢ ) for different values of Sc.

104

\ I I T

fe =01 ——

- Sc=02 - -
W Se =8 ===
"w\‘\ Sc = -

— '\l —4

(4
l_ I \\ —
\\ \\
- k*=0.5,§=05, p=0.2 4
'.\\ \
= e T R S e e =
0 5 10 15 20



o(m)

0.8

0.6

0.4

0.2

o E*=05. 85 =05.5=05

TEE

-I:;
] 2 3 4 5 6 "
n

Fig7 Concentration profiles ¢ 7) for different values of /3.

105




CHAPTER VI

Analysis of boundary layer flow and
heat transfer with heat generation or
absorption for two classes of visco-

elastic fluid over a stretching sheet



6.1 Introduction

The stretching sheet problem relating the flows of Newtonian fluids is a
classical problem in fluid mechanics in which the solution of the problem is obtained
casily. Study of momentum and heat transfer in laminar boundary layer flow of a
visco-elastic fluid model over a linearly stretching sheet is of great importance in
polymer processing industries in particular, the manufacturing artificial fibers. The
concept of viscous flow due to a linearly stretching sheet was introduced by Crane
(1970). The work of Crane was extended by Rajagopal et al. (1984) by taking visco-
elastic fluids. Siddappa and Abel (1985) also discussed some other important aspects
of this type of flow. Troy et al. (1987) established the uniqueness of solution of the
flow. But two years latter, Chang (1989) showed that the solution of the flow of
visco-elastic fluid is not unique and he obtained the different forms of non-unique
solutions. In 1987, Bujurke et al. studied the heat transfer analysis for the flow of
second order visco-elastic fluid over a stretching sheet. Lawrence and Rao (1992) also
demonstrated the heat transfer in the flow of visco-elastic fluid past a stretching sheet.
Andersson (1992) showed the magnetic effects on the flow of visco-elastic Walter’s
liquid B over a stretching sheet. Cortell (1994) obtained the similarity solution for the
flow and heat transfer of a viscoelastic fluid over a stretching sheet.

Siddheshwar and Mahabaleswar (2005) investigated the radiation effects on
MHD flow of a visco-elastic fluid and heat transfer over a stretching sheet with taking
into account the internal heat generation/absorption. In case of heat transfer analysis,
the thermal radiation is very important physically. Khan (2006) studied the effects of
radiation as well as heat source/sink and mass suction/blowing on heat transfer in
visco-elastic fluid flow over a stretching surface. Cortell (2007) analyzed the mass
transfer with chemically reactive species for two classes of visco-elastic fluids viz.
second-grade and Walter’s liquid B over a porous stretching sheet.

In our study, we investigate the effects of heat generation or absorption on the
flow of two different classes of visco-elastic fluids over a stretching sheet which is
being stretched linearly. We obtained the exact solutions for both momentum and heat

equations. The solution of self-similar heat conducting equation the solution is in the
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form of Kummer’s function (a confluent hypergeometric function). Actually, this

work is the generalization of the work of Cortell (1994).

6.2 Formulation of the flow and heat transfer problems

We consider a steady laminar flow of an incompressible viscoelastic fluid over
a plane sheet coinciding with the plane y=0, the flow being confined in the plane y>0.
The motion is caused due to a linear stretching of the sheet because of simultaneous
application of two equal opposite forces along the x-axis so that the sheet stretched
keeping the origin fixed. The boundary layer equations representing the momentum

and heat transfer, may be written as follows

@4-&:0. (()l)
Ox Oy
2 3 2 2 3
ua—u+1'@=ua—lfik“ u 5uﬁ+8_u61“1__5_u6u +vazf (6.2)
ox Oy oy* oxoy® Ox oy° 0Oy oxdy Oy
&r ar x T O
and u—+v—= —+

il ™ ] )
- =T, (6.3)
ox dy pc, 0y pc,

where v and v are velocity components in x and y directions respectively, =g/ p) the
kinematic fluid viscosity, p is the density, g is the coefficient of viscosity, kg is the
coefficient of viscoelasticity. The positive sign in the right hend side of equation (6.2)
corresponds to second-grade fluid [Cortell (1994, 2006)] whereas the negative sign
for Walter’s liquid B [Prasad and Abel (2000). Khan et al. (2003)]. also termed as
second-order fluid [Khan and Sanjayanand (2000)], 7 is the temperature, x is the fluid
thermal conductivity, ¢, is the specific heat, Oy is the heat generation or absorption
coefficient, 7. is the free stream temperature.

The appropriate boundary conditions for the velocity components and the
temperature are given by
u=ax, v=0 at y= 0: u—0, ou/dy—0 as y—w | (6.4)
and 7=T,, at y= 0; T> 7T, as y—>o, (6.5)
where « is stretching constant with ¢>0, 7), is temperature of the sheet assumed to be
constant. The last condition of (6.4) is the augmented condition because the flow is in

an unbounded domain, which had been discussed by Garg and Rajagopal (1992).
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We now introduce the stream function yAx.y) as
u=0y/0y and v=—0/0Ox. (6.6)
The mass-conservation equation (6.1) is satisfied automatically and the momentum

equation (6.2) and temperature equation (6.3) take the following forms.

dy dy oy Oy . oy o oy o'y . Dy Dy dy dy oy dy
dy dyox ax o)’ &' T oy axdy' oxoy &y 8y oxdyt  ox o'
(6.7)

dw ol owol « o'T Q

and ——-———= —+=2(T-T,). (6.8)
dy ox ox oy pc,y pc,

Accordingly, the boundary conditions (6.4) reduces to

O’y

2

ai=a.rx,a—w=Oaty:O;%%0,
ay Ox oy

—>0asy > . (6.9)

Next, we introduce the dimensionless variables for s and T as given below:

w=~avxf(n)and T =T, +(T, -T.)0(7). (6.10)

The similarity variable denoted by 77 1s given by # = y(a/v)'"?

Using the dimensionless variables and similarity variable, the above equations finally
have taken the following self-similar forms:

(Y= 0"= "+ A=Y - 1], (6.11)

and 0"+ Pr[f0'—10]=0, (6.12)
where A;=tkpa/v is the visco-elastic parameter with 4;>0 corresponding to the
second-grade fluid and 4,<0 for the Walter’s liquid B, Pr=uc,/x is the Prandtl
number and L=0y/pcpa is the heat source (L<0) or sink (L>0) parameter.

The boundary conditions (6.7) and (6.5) also transform to

Aim=0. fIn)=1 at =0, f1m)—0,f1n)—0as p—w (6.13)

and A n)=1 at n=0; A n)—0 as n—wo. (6.14)

6.3 Solutions of self-similar equations
The self-similar equation (6.11) representing the momentum equation with the

boundary condition (6.13) has a solution of the form
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. 1
/() :E(l—eXp(—ar})) (6.15)

where & = \JI/(1+ 4,) . (6.16)

According the sign of 4;, we can consider the fluid to be either second-grade (4,>0)
or Walter’s liquid B (4,<0, | Al |<1). Also, replacing A4, by —4; in the equations (6.15)
and (6.16) carlier analyses of Cortell (1994) and Khan (2006) in nonporous case can
be obtained.

The analytic solution of equation (6.12) with respective boundary condition
(6.14) can be written in form of hypergeometric function:

e IMIN(G + H 1 +2H,—(Pr/a?)e™
On) = (‘ ( , /, Je ™) (6.17)
M(G+ H,1+2H,- Pr/a®)

where G = Pr/2a’ and H = (Pr’ —4La’Pr)" [2a’ . (6.18)
The confluent hypergeomertic function M is the Kummer’s function (Abramowitz and

Stegun (1965)) and is defined by

. 1 % ()2

fvf(g(,.h,,.é)_n;m

with (g), = &,(& +1)(& +2)----- (g, +n-1)

and (h,), =hy(hy +D)(Ay +2)----- (hy+n-1).

Also, the solution of the boundary value problem (6.12) with (6.14) is solved
numerically by the standard Runge-Kutta scheme using shooting method after

transferring in first order systems with appropriate choice of guess value.

6.4 Results and discussions

The solution curves for velocities are plotted and are shown in Figl(a) and
Figl(b) for several values of 4, for second-grade (A4,>0) and Walter’s liquid B (4,<0),
respectively. It is noticed that the velocity represented by f1{#) increases with an
increase in A; with 4,>0 1.e. for second order fluid and on the other hand it decreases
as magnitude of A, increases when 4;<0 i.e. Walter’s liquid B. So, two opposite

behaviours in velocity curves for two classes of visco-elastic fluids are noticed.
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Now, the solution curves for the temperature distribution for several values of
Ay are presented in Fig2(a) and Fig2(b). In Fig2(a), for the case of second-grade fluid
the similar temperature profile representing A7) increases with increasing 4,
whereas from Fig2(b) i.e. for the case of Walter’s liquid B, & 7) decreases when the
magnitude of A, increases. The nature of the dimensionless temperature profiles is
same as that of the dimensionless velocity profiles.

The deviation in the temperature profiles for the variation of the Prandtl
number Pr is demonstrated in Fig3(a) and Fig3(b). For both type of visco-elastic
fluids, the temperature as well as the thermal boundary layer thickness decrease
rapidly with increasing values of Pr. Thus the Prandtl number affects the temperature
distribution for both case in similar manner.

Finally, the effects of internal heat source or sink on the heat transfer are
exhibited in the Fig4(a) and Fig4(b). Due to the increase in the heat source or sink
parameter L, the thickness of the thermal boundary layer is reduced. Thus, with the
increase in strength of heat source increases the thermal boundary layer thickness
increases but opposite trend 1s shown in case of increasing values of heat sink

parameter. The above facts are found in both second-grade fluid and Walter’s liquid

B.

6.5 Conclusions

The objective of our study is to investigate the flow behavious and heat
transfer analysis of two classes of non-Newtonian visco-elastic fluid over a stretching
sheet with internal heat generation or absorption. Using similarity variables, the
momentum and heat transfer equations are transferred into self-similar ordinary
differential equations. The nonlinear ordinary differential equations representing
momentum equation 1s solved analytically and also the heat transfer equation using a
confluent hypergeomertic function, the well known Kummer’s function. The exact
and numerical results are sketched in some figures and the following conclusions can
be drawn:
1. For the increase in the magnitude of visco-elastic parameter, the velocity and

temperature increase for second-grade fluid and decrease for Walter’s liquid B.
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For both type fluid models, increase in Prandtl number reduces the thermal
boundary layer thickness.
The temperature at a point increases with the heat source strength and decreases

with heat sink strength for second-grade as well as Walter’s B fluid models.
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