University of Rajshahi Rajshahi-6205 Bangladesh.

RUCL Institutional Repository http://rulrepository.ru.ac.bd
Department of Applied Mathematics PhD Thesis
2009

Laminar Flow of Incompressible
Viscous Newtonian Fluid

Haque, Md. Abdul

University of Rajshahi

http://rulrepository.ru.ac.bd/handle/123456789/507
Copyright to the University of Rajshahi. All rights reserved. Downloaded from RUCL Institutional Repository.



LAMINAR FLOW OF INCOMPRESSIBLE VISCOUS NE WTON[AN P [Um

THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENT FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
APPLIED MATHEMATICS
BY
MD. ABDUL HAQUE

B.Sc. (Honours),M. Sc., M. Phil.

DEPARTMENT OF APPLIED MATHEMATICS
UNIVERSITY OF RAJSHAHI
RAJSHAHI-6205

BANGLADESH

JANUARY, 2009



STATEMENT Of ORIGINALITY

[ declare that the contents in my Ph. D. thesis entitled “Laminar Flow of Incompressible
Viscous Newtonian Fluid” are original and accurate to the best of my knowledge. I also
certify that the materials contained in my thesis have not been previously published or

written by any person for a degree or diploma.

Ph. D. Research Fellow

09

0b -0l
Rajshahi University (Md. Abdul Haque)

Assistant Professor
Department of Applied Mathematics
University of Rajshahi

Bangladesh



ACKNOWLEDGEMENT

[ express my deepest sense of gratitude to late Professor Dr. M. Monsur Rahman for his
encouragement and cooperation related to my research work. It is my pleasure to
acknowledge a deep gratitude to my respected teacher Professor Dr. M. Shamsul Alam
Sharker for his advice and encouragement during the research period. I wish to express
my sincere admiration, appreciation and gratitude to Professor Dr. M. Zillur Rahman for
providing me invaluable suggestions to carry out the research work.

Thanks are also due to professor Dr. M. Hossain Ali and to all other colleagues of the
department of Applied Mathematics, University of Rajshahi for their necessary advice
and cordial cooperation during the period of study. I am grateful to Dr. Md. Shamsul
Alam, Professor, Department of Mathematics, Rajshahi University of Engineering and
Technology (RUET) for his help in computer programming in getting the numerical
result.

I am grateful to the Bangladesh University grants commission for offering me a
scholarship. [ am also thankful to the authority of Rajshahi University, Bangladesh for
allowing me to work on study leave.

[ am deeply grateful to my wife, Rowson Ara Begum, for her loving endurance. Without
her unfailing support it would have been difficult for me to complete the thesis. | thank
my beloved daughter Medha and son Mubhid for their patience and sacrifice of time that

could have been utilized for their service.

Author



ABSTRACT
The thesis entitled “Laminar Flow of Incompressible Viscous Newtonian Fluid” is
being presented for the award of the degree of Doctor of Philosophy in Applied
Mathematics. It is the outcome of my researches conducted in the Department of Applied
Mathematics, University of Rajshahi, Bangladesh.
The whole thesis consists of wi we chapters. The first chapter is a general introductory
chapter, giving the general information about Laminar Flow of Incompressible Viscous
Newtonian Fluid. In chapter II, we have described about the basic concepts of
incompressible viscous Newtonian fluid. Some fundamental equations are presented in
this chapter.
In Chapter III a laminar flow of incompressible viscous fluid has been considered. Here
two numerical methods for solving boundary layer equation have been discussed;
(i)Keller Box scheme,(ii) shooting method. Runge-Kutta method is used to solve the
initial value problem. The shooting method is supported by a suitable example.
The Chapter IV is divided into two parts. In Part: A an attempt has been made to
investigate the velocity profile of unsteady laminar flow of incompressible viscous fluid.
The method of separation of variable is used to determine the solutions of the governing
differential equations. Time varying pressure gradient is considered for poiseuille flow.
The velocity profiles for the various types of flow are shown by the figures.
In Part: B a fully developed conducting flow of incompressible viscous Newtonian fluid
between two parallel plates under the action of a parallel Lorentz force is considered.
Analytic solutions for this type of flow are developed. The velocity profiles are presented

in figures.



In Chapter V, an attempt has been made to study the flow of a viscous incompressible
fluid between two parallel porous plates. In case I, we have considered the flow of
conducting fluid between two fixed porous plates in presence of a transverse magnetic
field. Small suction and injection are imposed on the plates. The velocity of the fluid has
been obtained under the three different cases, when pressure gradient is (i) varying
linearly with time (ii) decreasing exponentially with time and (iii) varying periodically
with time. In case Il of this chapter an attempt has been made to study the flow of a
conducting viscous incompressible fluid between two porous plates in absence of
pressure gradient force. One plate is at rest and the other plate is oscillating with a
constant frequency. A small suction is imposed on the oscillating plate. A transverse
magnetic field is also placed on the fluid. The velocity distribution has been investigated
numerically with the help of finite difference method.

In Chapter VI the laminar flow of Newtonian conducting fluid produced by a moving
plate in presence of transverse magnetic field is investigated. The basic equation
governing the motion of such flow is expressed in non-dimensional form. Analytic
solution of the governing equation is obtained by Laplace transformation. Numerical
solution of the dimensionless equation is also obtained with the help of Crank-Nicholson
implicit scheme. Velocity profiles of the corresponding problem are shown in the graphs.

The Chapter VII is also divided into two parts. In part: A, the temperature distributions
of various types of parallel flow of incompressible viscous fluid have been considered.
Temperature distribution near a heated plate is also discussed. Coefficients of heat
transfer for various types flow has  been investigated. In part: B of this chapter, we
have considered unsteady MHD flows of an incompressible viscous fluid past an infinite

vertical plate. The uniform flow is subject to a transverse applied magnetic field. We



Vi

have also considered small magnetic Reynolds number so that induced magnetic field is
neglected.

In Chapter VIII a steady laminar flow of viscous incompressible Newtonian flow
through a uniform circular tube is considered. Two cases related to this type of flow have
been considered here; i) circular tube flow past across a transverse magnetic field,
ii)circular tube flow past a solid narrow obstacle . The distributions of radial velocity are
shown for various Hartmann number. The pressure drop across the obstacle is shown by

graphs.
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: Fluid velocity
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: Shear stress
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CHAPTER 1

INTRODUCTION
Fluid dynamics is the science treating the study of fluid in motion. By the term fluid is meant
a substance that flows. It is thus more convenient to treat the fluid as having continuous
structure so that at each point we can prescribe a unique velocity, a unique pressure, a unique
density, etc. Fluid may be classified as Newtonian, non-Newtonian; incompressible,
compressible; viscous, non-viscous etc.
Suppose two fluid particles, having at different velocities, have a common boundary. Then
across the boundary there will be interchange of momentum. The normal transport of
molecules across the boundary will lead to a direct or normal force. In the case of viscous
fluid there is a friction between the particles: this will manifest itself in the form of equal and
opposite tangential or shearing force on each particle at the common boundary.
A fluid is a substance that deforms continuously when subject to a shear stress, no matter how
small that shear stress may be. A shear force is the force component tangent to the surface. In
laminar flow shear stress is caused by internal friction. Shear stress at a point is the limiting
value of shear force to area as the area reduces to a point.
Flow may be classified in many ways such as laminar, turbulent; steady, unsteady; uniform,
non-uniform; rotational irrotational etc. In laminar flow the fluid moves in a layer, each fluid
particle follows a smooth and continuous path. The fluid particles in each layer remain in an

orderly sequence without crossing one another even when they turn a corner or pass an



obstacle. There is no transfer of masses between adjacent layers. The momentum transfer

between adjacent layers is molecular.

The essential problems of hydrodynamic theory were enlarged by the interest in the
hydrodynamics flow of electrically conducting fluids in presence of magnetic field. Although
vast problems in the hydrodynamic and hydro-magnetic flows are now available, yet many
problems in the hydrodynamic and hydro-magnetic flows are to be analyzed. Navier in 1827
established the equation of viscous fluid motion taking into consideration the effects of
intermolecular forces. After some times G.G. Stokes in 1845 derived the same equations
based on the assumption that the normal and shearing stresses are linear functions of the rate
of deformation, in relation with Newton law of friction. This equations are historically
Navier-Stokes equations.

In this doctoral thesis, two types of parallel flow of Newtonian fluid have been considered;
namely (i) incompressible isothermal flow between two infinite flat plates or over a flat plate,
(ii) incompressible isothermal flow through a circular duct. The thesis is mainly devoted to
solve the Navier-Stokes equations for laminar flow problems arising from the incompressible
viscous Newtonian fluid. Some problems have been solved in absence of magnetic field and
some problems have been solved in presence of magnetic field. One of the most important
contributions in this research work is that earlier investigations have been extended to the case
of incompressible viscous Newtonian fluid. The steady and unsteady flow of viscous
incompressible fluid between two parallel plates have been presented in the standard books of

Bachelor [6], Chorlton [10], Ferraro and Plumpton [18], Lamb [38], Landau and Lifshitz



[39], Milne Thomson [45], Pai [48], and others. In this thesis some problems of laminar flow
of conducting fluid in presence of magnetic field have been considered. We have also
investigated the case when the effect of magnetic field is small or large.

In velocity boundary layer, when a fluid flows with a free stream velocity U_ past a flat plate
it is assumed that the velocity of fluid adjacent to the surface is zero. At increasing distances
perpendicular to the plate, the stream velocity approaches the free stream velocity U,
asymptotically. In this case the whole flow region is divided into two parts; one in which
velocity varies from zero to U_ the other region, called the free stream, lies outside the
boundary layer. It is assured that the velocity of fluid outside the boundary layer will be
U, everywhere. The process for solving boundary layer equation has been described
analytically in many standard books of Bansal [7], Rogers & Mayhew [58], Schlichting [62].
Keller [29,32] solved boundary layer problems numerically using some suitable
transformations of variables. In solving boundary layer equations we have considered Box
scheme method and shooting method. We have transferred the Blasius equation to equivalent
system of linear equations and solved them by fourth order Runge-Kutta method.

In two dimensional parallel flow, as the velocity profile does not change in the direction of
motion x, the shear stress can only be a function of y (i.e. perpendicular direction of the
flow). We also note that the pressure varies hydrostatically in the y direction and can be a

function additionally of xand ¢; ¢ being time. For steady flow if we delete hydrostatic

increase of pressure in y direction then the pressure gradient is a function of x only.



Sengupta, Bazlur & Kander [63] considered a unsteady flow problem between two parallel
plates. They solved the problem by Laplace transformation. We have solved the problem by
the method of variation of parameters considering suitable functions for pressure gradient
force.

Gailitis & Lielausis [20] introduced the idea of Lorentz force to control the flow of an
electrically conducting fluid over a flat plate. The problem for a non conducting fluid was
considered by Sinha & Chaudhury [69] for periodic moment of the plate. Sengupta & Kumar
[64] considered MHD flow problems of a viscous incompressible fluid near a moving porous
flat plate. Poria, Mamaloukas , Layek & Mazumdar [52] solved some problems of transverse
magnetic field on the flow of a viscous conducting fluid produced by an oscillating plane
wall. Recently Pantokratoras [50] described the effect of parallel magnetic field to the flow of
conducting fluid. We have extended some MHD flow problems for transverse and parallel
magnetic field. In recent years a number of papers have been published on incompressible
viscous fluid through porous medium. These types of problems are usually known as the
problem of transpiration cooling. Transpiration cooling is a very effective process in reducing
heat transfer between the fluid and the boundary. Two problems related to porous medium
have been discussed in the thesis. Panton [51], Von, Kerezek & Davis [74], Erdogan [17]
derived the solﬁtions of some problems related to a oscillating plate. Taking inverse Laplace
transformation and using complex inversion formula we have solved the laminar flow
problem analytically. We have also solved the same problem numerically with the help of

Crank Nicholson Implicit Scheme.



Various problems related to thermal boundary layer over a flat plate have been presented in
many standard books and papers Bansal [7], Hossain [24], Milne [45], Rogers [58],
Schlichting [62] and Sparrow & Eichhorn[70]. We have discussed the various properties of
energy equation and finally established a few relationships between velocity and temperature
of the fluid.

Laminar flow through a circular tube is a common phenomenon of fluid dynamics. Kapur [28]
described about flow of Newtonian fluid through human blood vessels. Das and Sengupta
[12] discussed the unsteady flow of conducting viscous fluid through a straight tube.
Mazumdar, Ganguly & Venkatesan [43] described the effects of magnetic field on the flow of
Newtonian fluid through a circular tube. We have considered the laminar flow of
incompressible fluid through a uniform circular tube in presence of magnetic field. For steady
case the pressure drop across the length of obstacle has been discussed. For steady case the
flow of Newtonian fluid through circular tube has been investigated. Here we have transferred
the equation of flow from Cartesian coordinate to cylindrical polar coordinates and solved

them by Bessel function.



CHAPTER 11
Available Information on Laminar Flow of Incompressible Viscous

Fluid

2.1 Laminar and turbulent flows

A flow, in which each fluid particle traces out a definite curve and the curves traced out
by any two different fluid particles do not intersect, is said to be laminar. On the other
hand, a flow, in which each fluid particle does not trace out a definite curve and the
curves traced out by the fluid particles intersect, is said to be turbulent. At low velocities,
a fluid flow may be laminar but at high velocities the tendency of fluid particles is to mix
and to become turbulent. Highly viscous fluids tend to flow laminar because the shear
forces due to viscosity tend to oppose motion and inhibit free mixing whereas low
viscosity fluids tend to flow turbulent. It is observes that low-density fluids are more
likely to flow laminar than are denser fluids. This is because the exchange of momentum
and hence the effectiveness of mixing is less for low-density fluids than for denser fluids.

2.2 Newtonian and non-Newtonian fluids

Fluid may be classified as Newtonian and Non-Newtonian. In Newtonian fluid there is a
linear relation between the magnitude of applied shear stress and the resulting rate of
deformation. Most common fluids fall into this category. In Non-Newtonian fluid there is
a nonlinear relation between the magnitude of applied shear stress and the rate of
deformation. Gases, water, thin liquids etc. are Newtonian fluid, while thick long chained
hydrocarbons, colloidal solutions, clay etc. are Non-Newtonian fluid. A short description

of Newtonian and Non-Newtonian of fluids is listed in the following table:



Newtonian fluid

Non-Newtonian fluid

o
#dy

i) Plastic fluid
d
r =A+B (&))"
dy
where A , B and n are constants. If n=1 the material is known as a

Bingham Plastic.

ii) Pseudoplastic fluid
du
r=u(—)", n<l
H( dy)
1ii) Dilatant fluid
du
r=u(—)",n>1
u( dy) n
iv) Viscoelastic fluid
du

f=ﬂ:i;+ E

where E is the modulus of elasticity.

V) Thirotropic fluid
du

r=p ()" + ()
dy

where f(t) is a decreasing function of time (the dynamical viscosity

decreases with the time for which shearing forces are applied).

vi) Rheopectic fluid

du
=u(—)"+f(¢
Tﬂ(f) [

where f (t) is a increasing function of time (the dynamical viscosity

increase with the time for which shears forces are applied.)




A Newtonian fluid having velocity u, the rate of deformation ? exhibits shear stress
'y

obtained by the following relation

e
'udy

where 4 is the proportionality constant and is called the coefficient of viscosity.

2.3 Magneto Hydrodynamics

Magneto Hydrodynamics is that branch of continuum mechanics, which deals with the
flow of electrically conducting fluids in electric and magnetic fields. The motion of the
conduction fluid across the magnetic field generates electric currents, which change the
magnetic field, and the action of the magnetic field on these currents gives rise to
mechanical forces, which modify the flow of the fluid. Thus there is a two-way
interaction between the flow field and the magnetic field; the magnetic field exerts force
on the fluid by producing induced currents, and the induced currents change the original

magnetic field.

The study of hydromantic goes back to Faraday who predicted induced currents in the
ocean due to the earth’s magnetic field. Faraday (1832) carried out experiments with the
flow of mercury in glass placed between poles of a magnet, and discovered that a voltage
was induced across the tube due to the motion of the mercury across the magnetic field,
perpendicular to the direction of flow and to the magnetic field. He observed that the

current generated by this induced voltage interacted with the magnetic field to slow down



the motion of the fluid, and this current produced its own magnetic field that obeyed
Ampere’s right hand rule and thus, in turn distorted the magnetic field.

In the resent time, Hartmann (1938) was first to discuss both experimentally and
theoretically the magneto-hydrodynamics flow between two parallel plates. But the real
boost was given by Alfren in 1942 when he established transverse waves in electrically
conducting fluids and explained many astrophysical phenomena with it. Since then the

literature on magneto-hydrodynamics has increased many fold.

2.4 Electromagnetic equations
Since in MHD we are mainly concerned with conducting fluids in motion, it is necessary
to consider first the electrodynamics of moving media. Magneto-hydrodynamics
equations are the ordinary electromagnetic and hydro-magnetic equations modified to
take account of the interaction between the motion of the fluid and electromagnetic field;
formulation of electromagnetic theory in mathematical form is known as Maxwell’s
equations. The basic laws of electromagnetic theory are all contained in special theory of
relativity. But here we will always assume that all velocities are small in comparison with
the speed of light. The well-known electromagnetic equations are as follows:
(a) Charge Continuity:

V-D=p,
(b) Current continuity:

V.j:_a&
ot

(c) Magnetic Field continuity:



V-B=0

(d) Ampere’s Law:

e F=Frl
ot
(e) Faraday's Law:
Vs F = __62
ot

(/) Constitutive Equations for D and B :

Here D is the electric displacement, p, the charge density, E the electric field, H the
magnetic field, J the current density, & the electrical permittivity of the medium, g, the

magnetic permeability of the medium, ¥ the fluid velocity.

2.5 Fundamental equations of fluid dynamics of incompressible viscous fluid

In the study of fluid flow, one determines the velocity distribution as well as the states of

the fluid over the whole space for all time. For incompressible viscous fluid, the velocity

10



o9

where T is the rated of heat produced per unit volume by the external agencies, c, the
/4

specific heat at constant pressure, & the thermal conductivity of the fluid, ¢ the

dissipation function, T the temperature of the fluid, ¥ the fluid velocity.

2.6 The important non-dimensional parameters
Reynolds Number Re
For laminar flow of incompressible viscous Newtonian fluid having velocity u, density

p and kinematics coefficient of viscosity v the motion is governed by the well known

Navier-Stokes’ equations

O Y =L e V2
ot Yo,

and the continuity equation
Vim =0,
If we denote the characteristic velocity by the amounts of order U over characteristic

distances of order L, then the velocity components, such as gﬂ will typically be of order
X

2

g. So the second derivative such as —% will be of order % In this way we obtain the

x2
following order of magnitude estimates for two of the terms in Navier-Stokes’ equations:

Inertia term: |(u. V)i |=0(U* / L)
Viscous term: ‘v Vzﬁlz{)(vU/Lz).

Hence

12



|inertia term‘ i T

)

|Viscous term| Y

:O(EJE)’
V 5

The quantity Sk is known as Reynolds number and is denoted by
V

Re:%.
v

The British scientist Osborne Reynold, 1883, introduced this number while discussing

boundary layer theory.

Hartmann Number M
When the magnetic field is applied to the flow field then another non-dimensional
number, called Hartmann number, plays a very important role. It is the ratio of magnetic

force to viscous force and is denoted by

M= HL7
JueO ﬂ

where ¢, is the magnetic permeability, o the electrical conductivity, x the dynamic
viscosity of fluid, H, the is magnetic field intensity, L the characteristic length. Hartman

number is the most important dimensionless number in magneto-hydrodynamics. The

hydro-magnetic effects are important when the Hartmann number is significant.

13



Prandtl Number Pr
The Prandtl number is a dimensionless number approximating the ratio of momentum
diffusivity(kinematic viscosity) and thermal diffusivity. It is named after the German

physicist Ludwig Prandtl and is defined by

where ¢, =specific heat at constant pressure
4 = coefficient of viscosity

k =thermal conductivity of a fluid

«a =thermal diffusivity, @ = £
p

VvV =

-

= kinematic coefficient of viscosity.

The Prandtl number may be written as follows

The value of v shows the effect of viscosity of the fluid. The smaller the value of v is,

the narrower the region which is affected by viscosity and which is known as the

boundary layer region when v is very small. The value of & shows the thermal
" mp

diffusivity due to heat conduction. The Prandtl number shows the relative importance of

heat conduction and viscosity of a fluid. Prandtl number depends on the properties of the

fluid. For air Pr = 0.7 approx. and for water (at60° F) Pr =7 approx., whereas for oil it

14



is of the order of 1000 due to large values of . In heat transfer problem, the Prandtl

number controls the relative thickness of the momentum and thermal boundary layers.
When Prandtl number is small, it means that the heat diffuses very quickly compared to
the velocity. This means that for liquid metals the thickness of the thermal boundary layer

is much bigger than the velocity boundary layer.

Eckert Number E_

The Eckert number can be interpreted as the addition of heat due to viscous dissipation
and is very small for incompressible fluid and for low motion. It may be defined as
follows:

U2
° 7 ¢, AT

where AT = temperature difference between the wall and the fluid
at a large distance from the wall
U = some reference velocity

¢, = specific heat at constant pressure

Nusselt Number Nu
The Nusselt Number is a dimensionless number named after Wilhelm Nusselt and is
defined as

Lh,
k

Nu =

15



where 4, = local heat transfer coefficient at section L

L= characteristic length

k =thermal conductivity
Nusselt number is the measure of the rate of heat transfer by convection. It can be
expressed as the function of two dimensionless groups, the Reynolds number that

describes the flow, and the Prandtl number which is the property of the fluid. Thus

1

1 —
Nu=Ip, 5 Re?

where / is a constant.

Grashof Number Gr
The Grashof number is a dimensionless number in fluid dynamics. It is named after the
German engineer Franz Grashof. This number is defined as the ratio of product of inertia

force and buoyancy force to the square of viscous force i.e.,

Cre pU” x pBe(AT)L}

(uv)?
_ P BT
;12
where v = the velocity of the fluid caused due to buoyancy force
g = acceleration due to gravity
P = volumetric thermal expansion coefficient

AT = temperature difference

L= characteristic length

16



p = fluid density
M= viscosity of fluid

pPe(AT) L’ = the buoyancy force for the total volume.

2.7 Boundary layer approximation

When a fluid flows past a solid surface, the velocity of the fluid at the solid surface must
be same as that of the solid surface. If the solid surface is stationary, the velocity of the
fluid at the surface must be zero. As a result there is a region closed to the surface
through which the velocity increase from zero velocity at the solid surface to the velocity
of the main stream. This region in the vicinity of the solid surface is generally a narrow
region where the velocity gradients are large. The origin of the large velocity gradient is
the viscous action and the large shear stresses in that region. This narrow region is known
as boundary layer region. Boundary layer phenomenon occurs when the Reynolds
number is large and flow is considered near the bodies. The boundary iayers are then the
velocity and the thermal or magnetic boundary layers; and each thickness is inversely
proportional to the square root of the associated number. L. Prandtl made an important
contribution to fluid dynamics in 1904 by introducing the concept of boundary layer. He
classified the essential influence of viscosity in flows at high Reynolds number, that for
large Reynolds number, the viscosity and thermal conductivity appreciably influenced the
flow only near a wall. When distant measurements in the flow direction are compared
with a characteristic dimension in that direction, transverse measurements compared with

the boundary layer thickness, and velocities compared with the free stream velocity, the



Navier-Stokes and energy equations can be considerably simplified by neglecting small
quantities. The number of component equations is reduced to those in the flow direction
and pressure changes across the boundary layer are negligible. The pressure is then only a
function of the flow direction and can be determined from the inviscid flow solution.
Also the number of viscous terms is reduced to the dominant term and the heat

conduction in the flow direction is negligible.

2.8 The MHD boundary layer equations for two-dimensional flow in the case of
small magnetic Reynolds number

If the velocity distribution in a moving fluid depends on only two coordinates (x and y
say) and the velocity is everywhere parallel to the x-y plane, the flow is said to be two
dimensional. For simplicity, we derive boundary layer equation for the flow over a semi-
infinite flat plate. We take rectangular cartesian coordinates (x, y) with x measured in the
plate in the direction of the two dimensional laminar incompressible flow, and y

measured normal to the plate and (u,v ) are the velocity components. Let the viscosity of

the fluid be small. With constant fluid properties, transversely applied uniform magnetic
field Ho, the MHD boundary layer equations for incompressible fluid flow under the
boundary layer assumptions are as follows:

du Ov
—+—=0
ox ox

2
6_u+u6_u+ua_u :—la—p+va L;—g,uczHozu
ot Ox Ox p Ox oy~ p

18



I)C’(a_T_f.uva_I_‘-f-Ug) :kg-l-}u(a—u)z +JﬂezH02u2
P ot ox oy oy oy

where p =fluid pressure
1 =time
p = density of the fluid
M, = magnetic permeability
o = electrical conductivity
4 = dynamic viscosity of fluid
H,= magpnetic field intercity

¢, =specific heat at constant pressure

k =thermal conductivity of a fluid
v = kinematic coefficient of viscosity

T =temperature

19



CHAPTER 111
Steady Laminar Flow of Incompressible Fluid Over a Flat Plate

3.1 Introduction

In many flow problems the partial differential equations governing the motion of the fluid are
nonlinear. These nonlinear equations cannot be solved easily. A method is to obtain similarity
solution by employing transformations that reduces the system of partial differential equation
to a system of ordinary differential equations. L Prandtl made an important contribution to
fluid dynamics in 1904 by introducing the concept of boundary layer. According to him if a
slightly viscous fluid flows over a body in such a way that the Reynold number is very large,
then there is a thin layer near the body where the viscous forces are important; and outside the
layer the viscous forces are unimportant. There is a variety of numerical methods that are used
to solve the boundary layer problems. Two particular methods, the Crank Nicolson Scheme
and the Box scheme, seem to dominate in most practical applications. Of them Box scheme
method is easy to adapt to new classes of problems. The Box scheme was derived by Keller
[29] for solving diffusion problems. The Box scheme to a variety of boundary layer flow
problems was given by Keller [29,30,31]. Here we have engaged in numerical simulation of
fluid dynamics using computer. Here we have modified the Blasius equation into the
equivalent first order system of equations. The shooting method is used to convert the
boundary value problem into equivalent initial value problem. Finally Runge-Kutta method is

used to find out the solution of the problem.
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3.2 Mathematical formulation

For steady laminar flow of incompressible viscous fluid the basic equation of mass

conservation and momentum are :

ou

Zi=o 3.1
= 3.1)
Oy yu, 210 | 2, (3.2)

i

ot ox, P Ox,
Suppose the fluid flows in the x direction only and varies perpendicularly to the x axis(i.e. y
direction). According to the concepts of Prandtl, we obtain the following equations for two

dimensional boundary layer flow:

2
P gt e, L0P T (3.3)
ot Ox dv pOox ox
%:0 (3.4)
Z_hzy_”:o (3.5)
X

with boundary conditions

u=0, v=0 when y=0

u=U_ (x,t) when y—>wo . (3.6)
3.3 Tri-diagonal system
An efficient technique sometimes called Thomas algorithm can be used to solve a linear

system with a tri-diagonal matrix defined by the following equations

bu, +cu, =d,
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a,u, +bu, +c,u, =d,
a;u_ +bu, +cu, =d, (3.7)

where u, are the unknowns and «,.b,,¢,.d, are known.

It is possible to calculate the unknown u; using the following recurrence formula

U= -1 i=n—1,0=2, crrerrrrrrrenns 1 (3.8)

where u, =f .

Setting «, =b, and calculating, we have

&, =b———=, 1=23, ciisiiriirirs F (3.9)
ai*l
Again setting /3, :b—' and calculating, we have
1
d.' _al i-1
B=— T 22 3 . (3.10)
o

Finally the recurrence formula (3.8) is used to calculate all «, successively for
i=n—-1ln-2,.... L.

3.4 Box scheme

Let 7 be the shear stress of the flowing fluid whose viscosity is x .For Newtonian fluid, we
have

2



ou
Y el G.11)
"

Eq.(3.3),Eq.(3.4),Eq.(3.5) and Eq.(3.11) yield the following equations:

ou  ou ldp 107
to—=-——"F——

i = (3.12)
ox d pdc pdy
ox Oy
Boundary conditions:
u(x, 0)=20
v(x, 0)=0 (3.14)

ulx, y; (0] =U.
where U represents the free stream velocity , & the boundary layer thickness. We impose the
following additional condition

dulx,y;(x)]/ oy =0. (3.15)
Outside the boundary layer, we have

P RO (3.16)

? dx pdx

We now introduce the following transformations:

) =AU () /v, x]? (3.17.a)

Feam=p e |[U. v, x]? (3.17.b)
 x  dU, (%)

P(X)—Um(x) o (3.17.¢)
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bl v(x.y)

o

(3.17.d)

Here v, is some reference kinematics coefficient of viscosity and i is the stream function

for which

oy
( ] )Zﬁ
u(x,y o

Using Eq.(3.16) and Eq.(3.17) in Eq.(3.12), we get

6f =P 1= ( )’ —@Li—ﬂaf (3.18)
877 on 67]&:8?7 on’ ox '

Eq.(3.18) is equivalent to the following first order system of equations:

éf—=U (3.19.a)
on
iach = (3.19.b)
on
0 oU of | P+1
—(BV)=x{U—-V Pl - 3.19.
an()[a ax} — w-rfi-v?] (3.19.c)
The boundary conditions (3.14) becomes
S (x,0)=0
U{x;0) =0 (3.20)
Uiz, n:(x) =1.
Let the (x, y) plane be divided into a network of rectangles of sides k, (n=12,...... N) and

B (= L2800 .J ) by drawing the sets lines
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x,=0, x,=x,_,+k, , 1£n <N;

Yo=0 y,=y, +h, 1<j<d,y,=¥; . (3.21)

With the help of Eq. (3.21) we draw the following nets, some points of intersection of these

families of times are shown by following circles indicated in Fig-3.1 .

Knownl IUnknown

Y
Y,
MW=0 %, Xy
Figure -3. 1
Now we draw the above indicated box as:
(-x ]5y. ])
"2 "2
(x,,¥;) (Xp15¥))
(xn’yj—l) (an-]?y_f—l)
Figure —3.2
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Since the boundary layer equations have been formulated as a first order system, all the
derivatives can be approximated by the backward difference approximation for first

derivatives and two point averages for dependent variables. Thus any net quantity w may be

expressed by the following notations.

[W]”_% =— (W) +Ww).,) (3.22.2)
[%} —%«w; W) +oh) (3.22.b)
[%ﬂ =kl,,([""]fg ~beJ) vt (3.22.0)
ERCRON
bl 3 =l([W]j_]2 +[w]" (3.22.¢)

H——

1
7

It may be mentioned that [@}

If we omit local truncation error and apply the Box scheme in Eq.(3.19),we get

26
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is the best difference approximation to ow(x |,y )/0y
"y 05

g} =[u], (3.23.2)
_67] j_% =3
a—U} =y (3.23.b)
| On Py i



0] forif2]

2

2 2 I (3.23.c)

V] Bi} ["’ LAY L )}
I3 X 17;

M\—'

For example we use the following identity

perd't o el 30T or D1 BT DT

2 2 5

N =] -

There are numerous other ways in which the last term in Eq.(3.23.c) could have been written
while retaining the proper centering. Keller [29] solvad the Eq.(3.23.c) by using Newton’s
method. The resulting system of linear algebraic equations has tri-diagonal from but with
different elements in the vector and matrices. Using the procedure for solving tri-diagonal
system the resulting equation or equivalent system can be easily solved by the Box scheme.
3.5 Shooting method

Let us consider a thin infinite flat plate submerged in steady two dimensional flow whose

undisturbed velocity is U_ . Again suppose that the fluid is incompressible with low viscosity.

We introduce the stream function i, such that

We introduce the following new variables:

?7=y1}U—°° (3.24.a)
VX
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fm= vy (3.24.b)
wlU

oo

Using Eq.(3.24) in Eq.(3.3) we get

2"+ 7 =0. (3.25)
The Eq.(3.25) is the well-known as Blasius equation.
We consider the following boundary conditions:

£(0)=0, f'(0)=0, f'(0)=1. (3.26)
Analytic solution:
Blasius obtained the solution of Eq.(3.25) with the help of Eq.(3.26) in the form of power

series expansion about 7=0 assuming the following form:

3

A
f(??) =A0+A177 +7?,?2 1 ? n3+ ................. . (3.27)

The boundary conditions f (0) =0 and f'(0)=0, reduces Eq.(3.27) to

¥ (n)=A2"4 £ (Az% n). (3.28)

The third boundary condition f'(e) =1 yields

i %
= FR— S 3.29
A Limq_m F’(n)] (5-49)

The value of A can be obtained numerically from Eq.(3.29). Howarth found that A,=0.332.
Numerical Solution :

Eq.(3.25) is equivalent to the following system of equations:
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dn (3.30.2)
du
—=0
dn (3.30.b)
dv 1
= . 3.30.
P fo (3.30.c)

The boundary conditions Eq.(3.26) becomes

f(O)=0
u (0)=0 (3.31)
u (o) =1.

It we find out v(0) with the help of u(w) =1 then Eq.(3.30) is said to be a initial value

problem . To convert Eq. (3.30) as initial value problem, we may use shooting method. Let

v(0) = M, . Then the above system can be solved for f,uand v using any initial value
method until the solution at 7 =w is reached. Let wu(x0)=B, . If B =1, then we have
obtained the required solution. In practices, it is very unlikely that our initial guess v(0) = M,
is correct. If B, #1, then we obtain the solution with another guess, say v(0)= M, . Let
u(wo)=8,. If B,is not equal to 1 then we can calculate the third approximate
valuev (0) = M3(say) by the following formula:

B,~1

5(0) = M, - x(M,~M,). (3.32)

2 1

We make the same kind of calculation as above by using 7(0) and take the better of the two

initial values v(0). In this way we can find another improved value of v(0). This process
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may be continued. The process is carried out until the change of v(0) at successive

computations is less than some small prescribed value ¢, i, e,

[0(0)],,, —[v(0)],
ol <e. (3.33)

After getting the approximate value of v(0) we may represent this initial value problem by

following form:

du - .
;i;_f(naf’uau) (3343)

u(0)=nm . (3.34.b)

The initial value problem may be solved by fourth order Runge-Kutta method as

Wy =N, +é(l€1 +2k, +2k, +k,) (3.35)
where
B kyj - ki
1= Ky k, = kzz
k.’!l k32
kl] kld
ky = ks ky= k24
ks ks
and
ki=hf, (n,u,,u,, u;,) (3.36.a)

h 1 1 1
k|2 th; (f]} + 5, uU +5k”,u2j +§k2| ,uh +‘§k3g) (336b)
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h I 1 1
k!J =hf; (T]} +§, Uy, +§k[2, u,, +5k22,u3J +§k32) (3.36.¢)

ko=hf.(n,+hu, +k; uy +ky,uy, +ksy) (3.36.d)
i =113 .
3.6 Example
ab_,
dn (3.37.a)
du
—_—=D
dn (3.37.b)
dv 1
d_fy__—z—fu (337C)
f(0) =0, u(0)=0 v2.1)=1, h=.1. (3.38)

By shooting method we have

vi{U)=.32
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1.0

1.4

1.6

1.8

2.0

2.1

0064

02559

.046634

06145

.07833

0.21101

41029

0.6874

1.0346

1.4630

1.7090

3.7 Results and discussion

Complete solution of Navier-Stokes equation is not possible and so the flow region is split up
into two regions; the boundary layer region and the potential flow region. To establish the
accuracy of the solutions of boundary layer problem the Keller-Box scheme and the shooting
method are employed. Numerical computation for shooing method is carried out with the help

of Runge-Kutta method. By the two methods new phenomena have been discovered via this

Table-3.1

0

06399

0.12794

172615

19812

223945

36819

53395

70244

.84325

.96043

1

32

32

319932

319454

31866

321893

34530

32818

368238

34322

28336

21105

14316



route before experimentation. This can result in significant savings when one can replace the

expensive and time-consuming experimentation that would otherwise be needed.
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CHAPTER 1V

Laminar Flow of Incompressible Fluid Between Two Parallel Plates

4.1.1 Introduction:

The steady and unsteady flow of viscous incompressible fluid between two parallel plates
with constant pressure gradient have been presented in the standard books of Bachelor [6].
Chorlton [10], Milne Thomson [45], Pai [48]. In describing the unsteady flow of viscous
fluid between two parallel plates Sengupta, Rahman & Kandar [63] have considered time
varying pressure gradients. They used Laplace transformation to determine the solutions
of the differential equations. In this chapter an attempt has been made to study the velocity
profile of various types of unsteady two-dimensional flow of incompressible viscous fluid
between two parallel plates. In describing time varying pressure gradient for poiseuille

flow some suitable functions are considered here. A special case is considered in this

Part: A

chapter. Crank Nicholson method is used to determine the figures of the special case.

4.1.2 Mathematical formulation
Conservation of mass:

ou oJv
—+—=0

ox oy
Conservation of momentum:;

x-direction

ou ou ou 1 op
— +U—+U— = — —

ot x dy p ox

y-direction

+v(

0’u

axz
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2 Z
oy 0o, 00 LEP.; a—‘j+a—‘j). (4.1.3)
ot &x & po X

Let x be the direction of the flow, y the direction perpendicular to the flow. Suppose there

is no velocity component perpendicular to the direction of the flow. As a result the
; . Ou ;
equation of conservation of mass reduces toa =0, and this leads to % =u(y). Then the

Eq. (4.1.2) and Eq.(4.1.3) reduce to

op
6= (4.1.4.a2)
y
2
2—‘[‘ g %wgy—f (4.1.4.b)
Yol

Let L,U,, p denote the characteristic length , velocity , pressure and x',y" u',0". p' be the

dimensionless number such that

pl=—=~f ,t’:gﬂ—t.

pU,

X

/ /

X =—,Uu =
L

U
Z 8
UO

Then the Eq.(4.1.4.a)and Eq. (4.1.4.b) reduces to

ou' op’ 1 84

= = - o +R—e &yﬂ 4.1.5)
a /

0 = § (4.1.6)

where Re represents the Reynold;number and

Dropping the superscripts, we have
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2
€

ap
0= £, 4.18
oy ( )

4.1.3 Plane Poiseuille Flow

Let us consider the unsteady two dimensional flow of incompressible viscous fluid
flowing between two fixed parallel plates y =0 and y =1. Eq.(4.1.8) shows that p does
not depends on y. Hence p is a function of x and t.

Suppose

op
-—=—=F(p). (4.1.9)
oy

Eq.(4.1.7) becomes

2
LR T § L

o Re oy’

(4.1.10)

Boundary conditions:
u=0 at y=0and u=U(¢) at y =1 and initially when

Re

f:O,u(y,0)=—7F(0)y2+{U(O)+%F(O)}y. 4.1.11)

Case |

We choose a nonlinear function of time as
Fiy=a+ p+n’.

For the above function, we have

2
= a+ﬁt+ﬂ2+ia “

Re oy’

Ou
ot

(4.1.12)
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General solution of Eq.(4.1.12 ) is

3

. g BN
u=(k, cos\f;_ty+kzsm,/;y)e A +at+—2—+? (4.1.13)

where k, and k, are arbitrary constants.
Boundary conditions:
u=0 at y=0and aty=1.

Applying the boundary condition in (4.1.13), we have

2 3 x
u:(m+f;—+%)(1+8;?nyJ‘/: cos y/) + SIHJJ:U(O)e Re (4.1.14)

Velocity profile in this case for Reynolds number 1,3 and 5 is given by the Fig-4.1.1

14 Re=5

QQ\O'LQ'!)Q&Q‘QQE}Q'\QQ)QQ\ |

y

Figure-4.1.1

Case 11

We choose a transient function of time as the following form
F()y=ae™ .

For the above function, we have
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1 8%u

o _ w1 - (4.1.15)
ot Re ay
General solution of Eq.(4.1.15) is
.
u = (k, cosy/uy +k,sin [uy)e & - %o (4.1.16)

B

where &, and k, are arbitrary constants.

Boundary conditions:

u=0 at y=0and at y=1.

Applying the boundary condition in Eq.(4.1.16), we have

Rea
2

U= %cos\/;ye“ﬂ +[-—%ay2 +{U(0)+ }y+%(1—cos\/;_1y)]eé;

(4.1.17)
a g

B

Velocity profile in this case for Reynolds number 1,3.5 is given by the Fig-4.1.2.

ni2

1 Re=5

0.8

3 06
04
0.2 4

Figure-4.1.2
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Case III
We choose a function for which the pressure gradient varies as a periodic function of time,
i
F(t)=acostf.
For the above function , we have

2
e, =acostf +La "
ot

Re oy°

(4.1.18)

General solution of the Eq.(4.1.18 ) is
L
u = (k, cos[uy +k, sin/uzy)e % +Esintﬁ (4.1.19)

where k, and k, are arbitrary constants.

Applying the boundary condition in Eq.(4.1.19), we have
R 4.
U= [—T‘an2 +{U(0) + R‘?’T"‘} yle ®e 4 %sin 1. (4.1.20)

Velocity profile in this case for Reynolds number 1,3,5 is given by the Fig-4.1.3.

|
' 1 Re=5
0.8
06 |
=
| 04 |
0.2

b VP DS d NG

Re=1

y

Figure-4.1.3

4.1.4 Plane Couette flow: F(1)=0
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Let us consider the unsteady two-dimensional flow of incompressible viscous fluid
between two parallel plates. Suppose one plate y=0 is fixed and the other plate is moving
with speed U. Again suppose the distance between the plates is one unit. In this case the

differential equation for the flow will be

2
=, P (4.1.21)

o  Re 9’

To solve the above equation we consider the following three cases:
Case I:
U(t) = u, +uyt

General solution of Eq.(4.1.21) is

it

u = (k, cos~/uy +k, sin\[uuy)e & (4.1.22)
where £, and k, are arbitrary constants.
Boundary condition:
u=0 aty=0and u=u,+urat y=1 and u(0)=u,y.

Applying the above boundary condition in Eq.(4.1.22), we have

sin
Juy (4.123)

sin\/; -

Velocity profile in this case is given by the Fig-4.1.4.

u=u,+tu,))
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o O O o o
y

Figure-4.1.4

Case I1:
ity=ue™:
Boundary condition:

)

u=0 aty=0and u=ue™at y=1 and u(0)=u,y.

Applying the above boundary condition, the solution of Eq.(4.1.21) is

u{) Sin '\/;y eru,

sin \/;

Velocity profile in this case is given by the Fig-4.1.5.

U=

4]

(4.1.24)



s 06 -

Case I1I:

Figure-4.1.5

U(t) =u,cosut.

Applying the boundary condition, the solution of Eq.(4.1.21) is

u = (u, smf )

cosu, 1

sin \/_

Velocity profile in this case is given by the Fig-4.1.6.

12
1
08

s 0.6

0.2
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Figure-4.1.6
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4.1.5 Special case: Re =1

Boundary condition:

For Poiseuille flow

u=sinm att=0 for0<x<landu=0atx=0 andx=1 for t>0.

To solve this problem by finite difference method, we let

Setting r = :—2 and using Crank —Nicolson method, the solution of the problem is given

by
AT S Y . (4.1.26)
Tot+r)y MY (D) o
where
1
£y =y, +§r(u,.7u —2u,, +u,,, - (4.1.27)

Finally, using Jacobi’s iteration formula we have the following velocity profile:

AR s
Qt‘s Q,‘\ Qf'b Qr'b Q‘b‘ ()b Q'b QI'\ Q“b Q?’

y

Figure-4.1.7
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4.1.6 Results and discussion

It is clear from the Fig-4.1.2 to Fig-4.1.7 that the veiocity profiles are very similar to the
parabolic nature of the flow, firstly starts with zero velocity and then gradually increases
and attain a mgximum velocity. From Fig-4.1.1 to Fig-4.1.3 the velocity profiles depend

on the Reynolds number and the velocity increases with the increasing value of Reynolds

number.
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CHAPTER 1V

Part: B

Laminar Flow of Incompressible Fluid Due to Lorentz Force
4.2.1 Introduction
Magneto-hydrodynamics is the study of the interaction between magnetic field and moving
conducting fluid. The motion of conducting fluid across the magnetic field generates electric
currents which change the magnetic field, and the action of the magnetic field on these
currents gives rise to mechanical forces which modify the flow of the fluid. A force may be
produced inside a flowing fluid by the application of an externally applied magnetic field as
well as an externally applied electric field. This force is called Lorentz force. Gailitis and
Lielausis [20] iﬁtroduced the idea of using Lorentz force to control the flow of an electrically
conducting fluid over a flat plate. This is achieved by a strip wise arrangement of flush
mounted electrodes and permanent magnets of alternating polarity and magnetization. The
Lorentz force which acts parallel to the plate can either assist or oppose the flow.
Pantokratoras [49,50] obtained the solution of boundary layer flow problem by applying
parallel Lorentz force to the flow direction of conducting fluid. The purpose of the present
chapter is to analyze the boundary layer flow between two parallel plates in presence of
Lorentz force acting parallel to the plates.
4.2.2 Mathematical formulation

Consider a steady laminar two dimensional flow between two horizontal infinite parallel
plates. Again suppose that the fluid flows along the x direction and varies perpendicular

direction y; u and v being the velocity components along x and y directions respectively. It is
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assumed that an electromagnetic field exists at the lower plate and therefore a Lorentz force
parallel to the plates is produced. The fluid is forced to move due to the action of Lorentz
force. For steady two dimensional flow the boundary layer equations with constant fluid
properties (Tsinober and Shtern[73],Albrecht and Grundmann [2], Pantokratoroas[49,50]) are

Continuity equation:

o Oy (4.2.1)
axl' @)F
Momentum equation:
f ’ 2ot H 5 )
u'au - R e 5P +Va L +—7g”MOe a (4.2.2)

= o  par ot 8p
where p' is the pressure , v is the kinematic coefficient of viscosity , j, is the applied
current density in the electrodes , M, is the magnetization of the permanent magnets ., a is the
width of magnets and electrodes and p is the fluid density .The last term in the momentum
equation is the Lorentz force which decreases exponentially with " and is independent of the

flow . For fully developed conditions the flow is parallel, the transverse velocity is zero , and

the flow is described only by the following momentum equation:

' 2.1 : I
I£p_+ a’u+7g”M()eu. S

-y — (4.2.3)
pd dy? 8p
We introduce the following dimensionless quantities :

. 3

f Bt (4.2.4)
8pv

x=X (4.2.5)

a
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y=218 (4.2.6)

a
wa

U= 12 4.2.7)
v

p= ;(’12 : (4.2.8)

Putting the above dimensionless quantities in equation (4.2.3), we get

2 Bl
SR L, pael pl A =1 4.2.9)

dx dy’

The quantity L is dimensionless number and is called Lorentz number. This number expresses
the balance between the electromagnetic force to viscous force.

4.2.3 Couette flow

Suppose that the lower plate is fixed and the upper plate is moving with velocity U .If h

represents the distance between the plates then we get the following boundary conditions:

when y=0 then u=0 (4.2.10)
1 1
whenyzﬁfg4 then u:%Lz. (4.2.11)
a 1%

Using the boundary conditions(4.2.10) and (4.2.11) we get

L o o L . n
it e W Py o _ Dy +L 42.12
€ =D+ ~Dy+Ty (4:2.12)
where
1 1 1
A=-al* l—hL“ and n:%Lz ;

a Vv

The Table-4.2.1 is drown for h=1,U=1,a=2.1,v =1.
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y u

s =1

0 0

| 454162
2 .899085
P 1.337556
4 1.771524
3 2.2.2347
.6 2.630975
7 3.058069
8 3.484094
9 3.909372
1 4.334128

Table-4.2.1

L=3

0

637398

1.244717

1.829141

2.396142

2.94988

3.493525

4.029489

4.559606

5.085273

5.607553
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=5

0

J711172

1.490616

2.16938

2.816151

3.437763

4.03959

4.625858

5.19989

5.764298

6.32114
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Figure-4.2.1
Velocity profile for various values of Lorentz number
4.2.4 Poiseuille flow
Another kind of flow betwe.en parallel plates is the Poiseuille flow(Poiseuille,1840) which is
caused by a constant pressure gradient along the plates while the plates are fixed. Ifh is the
distance between the plates then we have the following boundary conditions:
when y =0 then u=0 . (4.2.13)

1

when y = —h—L“ then u=0. (4.2.14)
a

Using the boundary conditions (4.2.13) and (4.2.14), we get the following analytic solution

e L1 Dy +20- 3y (42.15)

1
A=—nl? | Pt and P, = .
a dx

The Table-4.2.2 is drown for 2 =3.0,P, =2.1,a=2.1.
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L.d

1.2

1.3

1.4

.163055

29587

401234

481094

53681

56933

579318

567236

.533406

478055

40134

303371

.184224

.043953

Table-4.2.2
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=5

0

.284952

518825

708803

.860358

977651

1.063851

1.121369

1.15204

1.157262

1.138097

1.095354

1.029649

941452

831118

I=5

0

403227

7337126

1.002544

1.218371

1.388038

1.51692]

1.609244

1.668331

1.696795

1.696692

1.669637

1.616903

1.539488

1.438179



=3 1 1 ’¢'f."“--—-‘h"'\“ “‘
’.'.' Y8 =
051 /¢ ..
o N
0

Figure-4.2.2

Velocity profile for various values of Lorentz number

4.2.5 Results and discussion

From Fig-4.2.1 we observe that the velocity of the conducting fluid increases when the
distance of the fluid from the lower plate increases. From Fig-4.2.2 we observe that the
velocity of the conducting fluid increases firstly and it attains a maximum value. After some
distances from the lower plate the velocity of the fluid decreases in the same manner and dies
out to zero velocity at the upper plate. Fig-4.2.1 and Fig-4.2.2 also indicate that the velocity
increases for the increasing value of Lorentz number. For couette flow the velocity profile is
linear but it is parabolic for poiseuille flow. The author believes that the results of the present
work will enrich the list with the existing exact solutions of the Navier-Stokes equations and

may help the investigation of flow of electrically conducting fluids like water and liquid

metals.
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CHAPTER V
Laminar Flow of Incompressible Fluid Between Two Parallel Porous Plates

5.1 Introduction

The motion of conducting fluid across the magnetic field generates electric currents that
change the magnetic field and the action of the magneiic field on these currents gives rise to
mechanical forces that modify the flow of the fluid. Since in MHD we are mainly concerned
with conducting fluids in motion, it is necessary to consider first the electrodynamics of
moving media. The electromagnetic field is governed by the Maxwell’s equations and the
motion of continuum is governed by the Navier-Stokes’ equation of motion. The problem for
a non-conducting fluid was considered by Sinha & Chaudury [69] for periodic momentum of
the plate. Das and Sengupta [12] have discussed the unsteady flow of a conducting viscous
fluid through a straight tube . Sengupta and Kumer [64] have developed MHD flow of a
viscous incompressible fluid near a moving porous flat plate. Sengupta Rahman & Kandar
[63] developed the flow between two parallel flat plates. Sreekanth, Nagarajan & Raman [71]
have developed the transient MHD free convection flow of an incompressible viscous
dissipative fluid numerically.

In this chapter the Maxwell’s electromagnetic field equation and the Navier-Stokes’ equation
are considered as basic equations. The mutual interaction between conducting fluid and the
magnetic field are considered here. In Case | the time varying pressure gradient function is
also considered. Small suction and injection are imposed on the plates. The velocity of the
fluid has been obtained under three different cases: (i)pressure gradient varying linearly with

time,(ii) pressure gradient decreasing exponentially with time,(iii)pressure gradient varying
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periodically with time. In Case II of this chapter an attempt has been made to study the MHD
flow of incompressible viscous fluid between an oscillating porous plate and fixed porous
plate. The pressure gradient force is not taken into account. The highly conducting
incompressible viscous fluid is moving under the action of body force. A small uniform
suction is imposed on the fixed plate and a corresponding injection is imposed on the
oscillating plate. It is assumed that the fluid enters on one side of the oscillating plate and is
sucked away to the other side of the fixed plate. The numerical solution is obtained by using
finite difference method. Finally the velocity distribution is shown with the help of graphs.

5.2 Mathematical formulation

A conducting viscous incompressible fluid moving in a magnetic field is governed by the
following set of equations:

Firstly, the equations of electromagnetic field (i. e, Maxwell’s equations):

V.B=0 (5.1)
v-E=£ (5.2)
&
L (5.3)
ot
VxB=p.lJ (5.4)

where E is the electric field intensity, B the magnetic field intensity p_ the electric charge

density, £ the electrical permittivity, s, the magnetic permeability of the medium, J the
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current density. When the frequency of the applied field is considered low, displacement

current is neglected and since no charge separation takes place, p, is also taken zero.

So we can write

V.J=0, (5:5)
Secondly, the mechanical equations embodying the effect of the electromagnetic forces
(Navier-Stoke’s equation):

d—V=—lVP+vvzr7+l(jx§). (5.6)
dt P P

Thirdly, equation of continuity:

V- =0, (5.7)
Fourthly, a conducting fluid moving with velocity V', the total electric force is £+V xB In
this case Ohm’s law gives

J=oc(E +V xB) (5.8)
where o is the electrical conductivity.
When the mechanical force of electromagnetic origin is perpendicular to the magnetic field, it
has no direct influence on the motion parallel to the field . When the motion is perpendicular

to the field we can write

JxB=0(E+V xB)xB . (5.9)
If we consider the electrodes produced by highly conducting wire along the plates such that
the potential at the two electrodes are the same, then the electric field E will be zero. Thus

from Eq.(5.9) we have
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or,
JxB=-o[(B-BW -(B-V)B] .
Assume ¥ is perpendicular to B . From Eq.(5.11) we have
JxB =-oBV .
When the magnetic field is uniform and equal to B, then from Eq.(5.12)

Jx B =-0oB 2?.
0

Eq.(5.6) and Eq.(5.13) give rise to

dv o =
B e P -l 2T
dt P p °

5.3 Case: 1

Consider the two dimensional laminar flow of viscous incompressible fluid between two fixed
long parallel porous plates separated by a distance /, one plate being along the x- axis and the
other plate being along y =/. Porous plates mean the plates with very fine holes distributed
uniformly throughout the plate through which fluid can flow freely and continuously. The

plate from which the fluid is entering into the flow region is called the plate with injection and

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

the plate through which the fluid is going out of the flow region is called the plate with

suction. Let the velocity of injection at y =0 and the velocity of suction at y =/ be equal,
and equal to V; and the flow depends only on y. Then the principle of mass conservation

gives that the velocity component along y -axis is constant through the flow, and so equal to
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V,. Again suppose the conducting flow along x- axis and there is no velocity component
along the direction perpendicular to x -axis i.e., y- axis. For two-dimensional flow, we have

—=0. S.15
> (5.15)

Furthermore the equation of continuity reduces to

Ou
—=0. 5.16
ox ( )

Hence the Eq.(5.14) reduces to

2
%+u@=—la—p+v6?—loﬂ ‘u (5.17)
di o pox o p ©
ap
=D . (5.18)
ay

Eq.(5.18) suggest that Z—p must be a constant or a function of time only. Hence assuming
X

L@ oy (5.19)
vp Ox

Eq.(5.17) reduces to

o g =00 (5.20)

where M represents the magnetic parameter and

M=B,|Z.
pV

Homogeneous part of Eq.(5.20) is

Qa_u.,_ azuilaiu_Mz =0

vy G va o (5-21)
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B. When 6(r) is a transient function of time of the form

o) =ae ™,

Then the general solution of Eq.(5.20) reduces to
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Suppose
u(y,1) = Refe™ f(»)} (5.22)
be a solution of Eq.(5.21).Then from Eq.(5.21) we have

Vdf d*f
de dy*

~m*+2yf=0. (5.23)
1%

The general solution of Eq.(5.21) is
F(») = c, exp[—s + (a+ib)]y +c, exp[—s — (a +ib)]y (5.24)

where ¢, and ¢, are arbitrary constants and

2
s=Yo g _pr=Lo L ap= (5.25)
2v 4y 2v

To determine the solution of the non-homogeneous part, we consider the following three
cases:

A. When () is a linear function of time of the form

o) =p+p . (5.26)
Then the general solution of Eq.(5.20) reduces to

r2
u =c exp[-s+(a+ib)]y+c,exp[-s—(a+ib)]ly— V(a_‘ + fr)
s . y (5.27)
+M2V2( ﬁt M4 3( 18 ) M6 4( +/3_)+__—_
32 4 510 4
B. When 6(t) is a transient function of time of the form

0(0) = ™.

Then the general solution of Eq.(5.20) reduces to
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u =c exp[-s+(a+ib)ly+c,expl-s—(a+ib)y+ ave—Mz (5.28)

C. When 0(t) is a periodic function of time of the form
O(t) =asin At .
Then the general solution of Eq.(5.20) reduces to
u =c, exp[-s+(a+ib)]y+c, exp[-s—(a+ib)]y
av (5.29)

+W(ACOSZJ LVMQ sin /11)
+v

5.4 Case: 11

Let us consider a laminar flow of conducting incompressible viscous Newtonian fluid flowing
between a oscillating and a fixed plate. Again suppose that the porous plates are distributed
uniformly. We consider that the suction velocity and the injection velocity are constant and
fluid moves under the action of body force only.

For two-dimensional flow the equation of continuity reduces to

ou
o 5. 5.30
o (5.30)
Hence the4 Eq.(5.14) reduces to

2
@—+v%:va—u—iaB “u. (5.31)

a —dv @y p ©
Let the suction velocity and the injection velocity is same and is equal to V. Then the

Equ.(5.31) reduces to

bR e i M*u=0 (5.32)
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where

M=B, | 2.
pv

Let us consider the porous plate y =1 is at rest and the plate y =0 is oscillating harmonically

in its own plate with a prescribed frequency m. We have the boundary conditions

u(1,0)=0
ou(0,1) _,
o (5.33)

u(0,1) = sin’ 7.

The Equ. (5.32) is a linear partial differential equations and are to be solved by using the

boundary conditions (5.33).The equivalent finite difference scheme of equation(5.32) is as

follows:
d c b
Uing = ;(u;,ﬁl —u, )t ;uz‘,; +Eui-i,j (5.34)
where
1 ¥,
a=—+—
h* vk
v
b= ——1; R
h*  2vh
c= h% +M?
At
2vK

Here the index i refers to y,j refers to time. The mesh system is divided by taking #=0.1

and £ =.09.
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Let

u, , =u(ih, jk). (3:33)

So, the boundary conditions become

u(10,0)=0
u(0, jk) =sin’ kjz, j =1,2,3......10.

(5.36)
At first the velocity is computed along the plate y =0 for various values of time. Then the
velocity at the end of coordinate step viz. u(i+1, j)(j = 1,10) is computed in terms of velocity
at points on the earlier coordinate step . The procedure is repeated until y = I(ie.,i =10).The

computations were carried out for ¥V, =22.1,v =1.5,M =1.2. To judge the accuracy of the

convergence and stability of finite difference scheme , the same program was run with smaller

values of Ay and Ar and no significant change was observed . Hence we conclude that the

finite difference scheme is stable and convergence.

Velocity profile

MHD flow
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Figure-5.1

5.5 Case: 111

Let us consider a steady laminar flow of a incompressible viscous fluid between two parallel
porous places. Suppose the plate y = 0 is fixed and the plate y =1, is in uniform motion. A
small injection of the same fluid is imposed on the fixed plate and a corresponding uniform
suction is imposed on the moving plate.

In absence of magnetic field, the Eq.(5.17) reduces to

2
p L pd % (5.37)
o dy dy
In this case the boundary condition will be:
V=103 =10, v=V,
ped u=U_, v=F,
Solving Eq.(5.37), we get
u e -1
—= 5.38
U, e*-1 (538)
where r]=Z and /'Lz—ﬂ.
h v
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Table-5.1
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U
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0

.032608

072837

122466

183692

259225

352409

467367

.609189

784151

999998



12

dimensionless velocity

dimensionless distance

Figure 5.2
5.7 Results and discussion‘
Because of the motion of the fluid in the magnetic field, an associated electrical field is
produced, which according to Ohm’s law sets up electric currents in the fluid. The interaction
between these currents and magnetic field results a body force. From Eq.(5.27), Eq.(5.28) and
Eq.(5.29) we see that the velocity distribution can be drown by choosing suitable initial and

boundary conditions. In Fig-5.1, the velocity distribution u is drawn against t for y =.5. It is

shown that the velocity distribution is similar to the parabolic nature of the flow . It starts
with a zero velocity and then gradually increases and attains a maximum value. After some
times the velocity diminishes in the same manner as time increases and ultimately dies out to
zero velocity. From Fig-5.2 we see that the velocity of the fluid increases as the distance

increases and finally attains a maximum velocity.
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CHAPTER VI_
Laminar Flow of Incompressible Fluid Over a Suddenly Accelerated Flat Plate

6.1 Introduction

If a magnetic field is placed before a moving conducting fluid then the motion of the fluid is
changed by the influence of the magnetic field. The magnetic field is also perturbed by the
motion of the fluid: one affects the other and vice versa. The motion of the conducting fluid
across the magnetic field generates electric-current, which changes the magnetic field and the
action of magnetic field on these currents gives rise to mechanical forces which modify the
flow of the fluid. In recent years, the study of MHD phenomena in liquid conductors has
received considerable impetus on account of its theoretical, experimental and practical
applications. Stokes (Schlichting [62]) studied the problem of an incompressible viscous fluid
flow problem produced by the oscillation of a plane solid wall. This problem is also known as
Stokes second problem. Panton [51] obtained the transient solution for the flow due to the
oscillation plane. Von Keregek and Davis [74] performed the linear stability theory of
oscillating Stokes layers. Erdogan [17] derived the analytic solutions for the flow produced by
the small oscillating wall for small and large time by Laplace transformation method.
Recently Poria,rMamaloukas, layek & Magumdar [52] derived the solution of laminar flow of
viscous conduction fluid produced by the oscillating plane wall. They solved the problem
both analytically and numerically in presence of magnetic field. In this chapter the main aim
is to investigate the effects of a transverse magnetic field on the incompressible electrically

conducting fluid flow produced by a moving plate. An attempt has been made to investigate
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the analytic solutions for the problem. The problem has also been solved numerically using

well known Crank Nicholson Implicit scheme.

6.2 Mathematical formulation

Let us consider a flat plate extended to large distances in x' and z' directions. Again we
consider an incompressible viscous conducting fluid over a half .plane solid wall y'=0.
Suppose the fluid is at rest at time ¢’ < 0. At " = Othe plane solid wall y' =0 is suddenly set
in motion in x' direction at constant velocity U, . As a result, a two dimensional parallel flow
will be produced near the plate. Since the fluid flows alongx’ direction and there is no

velocity component along the direction perpendicular to the direction of flow, so the equation

of conservation of mass reduces to

ou'
ox'

=0 . 6.1)

As the flow is only kept in motion by the movement of the plate, one may set the pressure

r

_=0.

gradient P
Ox
For unsteady case Eq. (4.14) reduces to

i 2T 2
ou o‘u’ oB, - 62)

arr ayl'l p
Eq. (6.1) indicates that ' is a function of y" and ¢'.

Boundary conditions:
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u' =0when ¢' <0 forall )’
u'=U, aty'=0 when t'>0 (6.3)
i’ =0 aty = when = 0.

We introduce the following non-dimensional quantities

where L and T represent the characteristic length and characteristic time respectively .

Setting these non-dimensional quantities in Eq.(6.2) ,we get

2
B _5 B, gy (6.4)
ot oy
where
pLv=U
Mo=B,L JE |
y7i
Here the number M is a non-dimensional number and is called Hartmann number.
In this case the boundary conditions may be written as
tSO:u(y, O):O for all y
(6.5)
120:u(0,7)=1, u(o0,1) = 0.
6.3 Analytic solution
We introduce the Laplace transformation and inverse Laplace trans formation as
L{u(y,0}=U (3,5 (6.6)
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LUy, )f=u(y.0).
We have

oU

L{at}zsl,{u} - ul(y,0)=sU

and

From (6.4), we have

d*U

d 2

H{s+M*U=0 .

With the help of boundary condition (6.5),we get

U (o,s) = L{u(0,5)} o,
s

The Solution of Eq.(6.10) subject to boundary condition (6.11) is

1 e 2
U(5,.8) = g @™ e

Since u is finite for y— o« we must have ¢; = 0.

Eq. (6.12) reduces to

U(y, S)=02 e—y S+M;a.
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(6.10)

(6.11)

(6.12)
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a5 00, 8) =6, =S =l.
5

Thus the Eq. (6.12) reduces to
l —-yy‘l.‘.q’ME
U(ys) = ol : (6.14)

Taking inverse Laplace transformation of Eq. (6.14) we have

1 1 1 1

u(y, 1) :;ew'[e”"erfc(%ytz + Mt?) +eM”erfc(%y13 —Mt?) (6.15)

6.4 Numerical Solution

The Eq.(6.4) with initial and boundary conditions Eq.(6.5) is solved by finite difference
technique. The Crank-Nicholson implicit scheme is used to solve the parabolic type of
equation. In this scheme, the time derivative term is represented by forward difference
formula while the space derivative term is represented by the average central difference

formula. To do this the temporal first derivative can be approximated by

ou _ @™ —ul)

L) 6.16
ot AT ( )

The second derivative in space can be determined at the midpoint by the averaging the
difference approximations at the beginning ( ') and at the end

( "' ) of the time increment.
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{ + + +
82?; El{uwl _Zuni :-uﬁ—l o u:+11 _2uf 12+u:_11 (617)
2 (An) (An)
Substituting Eq. (6.16 ) and Eq. ( 6.17 ) into Eq.(6.4), we get
1+1 ! i I ! I+1 I+1 1+1 2
MERST S —2u, +u. =2 ;
ul uf =l ul-i-l uz 5 uz—] i MHI ur 2+u i-1 | _ M (H:H + u,f) (618)
Az 2 (An) (An) 2
or
rutl —r+s+ 0w +rult = Qr=1+s)ul —r@l, +ul,) (6.19)
where
At ATM*
P o= , § = s
2(An)? 7
The Eq.(6.19) may be written as
—rult thu "t —rult = r(ul vl )+ kul (6.20)

where

k =1+2r+s and  k,=1-2r-s.
The system of algebraic equations in tri-diagonal form that follows from (6.20) is solved by
Thomas algorithm for each time level. In this problem some grid points have been considered

for numerical computation. u is obtained at each grid points at each time interval.

The Fig.-6.1 is drawn for various values of y when t=.5.
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The effect of the magnetic field on velocity of fluid for different space
6.5 Results and discussion
Numerical results are displayed by the Fig-6.1. These figure shows that the velocity of the
fluid decreases as the magnetic field increases. The velocity decreases gradually and attains
almost zero velocity at a sufficient large distance from the plate. The Fig-6.1 indicates that for
a small value of Hartmann number the velocity profile is almost linear. When the Hartmann
number increases then the shape of velocity profiles becomes parabolic type. It is observed

from Fig-6.1 that the velocity decreases in the direction perpendicular to the flow direction.
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CHAPTER VIl
Part: A

Temperature Distribution of Laminar Flow of Incompressible Fluid

7.1.1 Introduction:

The transfer of heat from solid body to liquid or liquid to solid body is a problem whose
consideration involves the science of fluid motion. In order to determine the temperature
distribution it is necessary to combine the equation of motion with those of heat conduction. If
a solid body is placed in a fluid and is heated so that its temperature is maintained above that
of the surroundings then it is clear that the temperature of the stream will increase only over a
thin layer in the immediate neighborhood of the body. In analogy with flow phenomena this
thin layer is called thermal of boundary layer.

In general thermal conductivity of liquid is small. In this case there is a very steep temperature
gradient at right angles to the wall and heat flux due to conduction of same order of
magnitude as that is due to convection only a thin layer across near the wall. When a
temperature difference is established between the vertical plate and stationery fluid, the fluid
adjacent to the wall will move upward if the wall temperature is higher than of fluid, and
downward if the wall temperature is lower. The cause of the moment is the temperature
gradient itself. This sets up density gradients in the fluid resulting in buoyancy forces and free

convection currents.
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The Prandtl number of some fluids is very small. On the other hand Prandtl number of some
fluid is very large. As for example the Prandtl number of mercury is 0.044 and the Prandtl

number of lubricating oil is 7250.

Thermal boundary layers in laminar flow have been presented in many standard books of.
Arora & Domkundwar [5], Bansal [7], Rogers & Mayhew [58], & Schlichting [62]. Sparraw,
Eichhorn and Gregg. [70] studied the combined force and free convection in a boundary layer
theory. Lahiri, Chakraborty & Mazumdar [37] described the effects of temperature dependent
viscosity on an incompressible fluid over a stretching sheet. Basic equations in this chapter
are the equation of continuity, the equation of motion and the equation of energy. The
equation of continuity and the equation of motion can be solved for velocity components and
the pressure and the result so obtained can be used to solve the equation of energy to
determine the desired temperature field.

7.1.2 Plane couette flow

Let us consider a two dimensional steady laminar flow of incompressible viscous fluid
between two parallel plates separated by a distance h. Again suppose that x be the direction of
the flow, y the direction perpendicular to the flow. The fluid flows in such a way that all the

flow parameters depend only y-axis. If one plate y =0 is kept at rest and the other plate
y=h is allowed to move with velocity /_ then the velocity distribution as mentioned in

Chapter-111, is given by

.
u=Us? (7.0.1)

(]
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Without heat addition the energy equation for the steady two dimensional flow of

incompressible viscous fluid is

uai—k(ﬂ_*_azi)_}_ (@
;x.P ax axZ ayZ j,l ay

)? (7.1.2)
where T is the temperature of the fluid , p the density of the fluid, x the coefficient of

viscosity, ¢, the specific heat at constant pressure.

Since all the flow parameters depend only on y, we have

oT

—=0 7.1.3

. ( )
2 Tod-4

0 ?2" —o0. ( )

ox

Thus the Eq.(7.1.2) reduces to

2 2
Zy{:—%(i@ ). (7.1.5)

Solving Eq.(7.1.5) under the boundary conditions

I'=T, when y =0
T=T, when y=h
we have
=% 2, lp p2g-2 (7.1.6)
I,-T, h 2 h h
where
U2
c: o0
cp(T;_TD)
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is Eckert number.

and

is Prandtl number.

Let d = =1, ,then the temperature distribution is given by the Fig-7.1.1.
=l
Table-7.1.1

Y d=0 d=2 d=4 d=6 d=38

h

0 0 0 0 0 0

1 1 19 28 37 46
s 2 .36 52 .68 .84
2 2 ‘ 51 32 93 1.14
4 4 .64 .88 1L.12 1.36
¥ 5 75 1 1.25 1.5
.6 6 .86 1.08 1.32 1.56
7 7 91 % b 1.33 1.54
.8 .8 .96 12 1.28 1.44
2 9 99 1.08 l.i? 1.26
1 1 1 1 1 1
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dimensionless temperature
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dimensionless distance

Figure-7.1.1
Temperature distribution for couette flow
From the Fig-7.1.1, we see that the dimensionless temperature varies with dimensionless

distance for different values of £ _,Pr.

Differentiation Eq.(7.1.6) w. r. to y and putting y = h, we get.

L
T-T, dyv™ 2
or, Nu=% E, Pr=1 (7.1.7)
where
Nu: - h (a_T)y=h
T,-T, dy

is Nusselt number .

From Eq.(7.1.7), we draw the following conclusions:
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(1) when E_Pr>2, then Nu>0.
In this case the heat will be transferred from fluid to the upper plate.
(11) When E_ Pr <2, then Nu <0.
In this case the heat will be transferred from upper plate to the fluid.
(iii)  When E_Pr=2,then Nu=0.
In this case there will be no transfer of heat between the fluid and the upper plate.

When both the plates are kept at constant temperature, then the value Nu for both the plates

will be 4. In this case the temperature distribution will be parabolic.

7.1.3 Plane Poiseuille flow
We now consider the steady laminar flow of incompressible viscous fluid between two fixed

infinite plates y = +h. If all the flow parameters are same as mentioned in the case of couette

flow, then the velocity distribution is given by

u=£(h2 - y?) (7.1.8)
2u
where L ==f,
ox

In this case the Eq. (7.1.2) reduces to

dzT:—ﬁ—zyz. (7.1.9)

dy’ kp

If both the plates keep at constant temperature 7' =7, then
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| 182})4 ﬁ2h4

-T, = i = T (7.1.10)
The maximum temperature 7, exists in the middle of the cannel. In this case the
dimensionless temperature will be given by
r-T
H__;O=1_(i’.)4_ | (7.1.11)
Table-7.1.2
y T-T,
h A i
0 1
| 9999
2 9984
3 2919
4 9744
5 H375
6 8704
7 7599
8 5904
9 3439
1 0

Yy
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Figure-7.1.2
7.1.4 Temperature distribution near a heated flat plate
Consider the steady laminar flow of a incompressible viscous fluid over a flat plate placed

along the direction of a uniform stream of velocity U_ and temperature 7, . Let the origin of

coordinates be at the leading edge of the plate, x axis along the plate and y axis normal to it.
The basic equations are:

ou dv
4+ —=

=t 0 (7.1.12)

d 0 ’u d
p(ua—z+r)§=ya}/—?—£+pgxﬁ(7’—7’w) (7.1.13)

2
pcp(ug—TnLua—T):ka T+,u(a—u)2 (7.1.14)
x

vy

where £ is the coefficient of thermal expansion.
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According to boundary layer theory the pressure gradient fzpcan be evaluated from the free

stream velocity. i.e.

dp dU
-—=p U =, 7:.1.15
g~ Pl ( )

If we consider the free stream velocity to be constant, then the above sets of equations reduces

to

P LA (7.1.16)

Ox Oy

ou ou d%u

o e s +g B(T-T 7.1.17

L Uay Vayz g.B8( ) ( )
2

ua—T+u@:aa—f+i(ﬁﬁ)2 (7.1.18)

x oy c,

where v=% and a= L; and they are called the kinematics viscosity and thermal
7 ?

diffusivity respectively.
Suppose that the buoyancy force is neglected and fluid flows in such a way that the velocity is
large but temperature difference between the wall of the plate and 7 are small. Then the basic

equations for boundary layer reduce to

%h%):o (7.1.19)
X
2
u%iw%:vgy‘; (7.1.20)
X
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2
I S L ) (7.1.21)

B - 2
ox oy oy ¢, Oy
We consider the following boundary conditions:

=0 u=p=0T=1, or,a—TZO
Oy

y=o0: u=U_T=T..
In general, the velocity field is independent of temperature field so that the two flow
equations (7.1.19) and (7.1.20) can be solved first and the result can be employed to evaluate
the temperature field. If the generation of heat due to friction is neglected and « is replaced
by T then the Eq.(7.1.20) and Eq.(7.1.21) are same provided that v=a. The relation v=«
indicates that the Prandtl number Pr =1 . If the generation of heat due to friction is neglected,
then the temperature field exists only if there is a difference in temperature between the wall

and external flow e.g. if 7, — 7, > 0(cooling). Hence for small velocities the temperature and

velocity distributions are identical provided that the Prandtl number is equal to unity:

b 998 18 (7.1.22)
-7 U,
T

or, % ], (7.123)
T U

w 0 oo

The local Nusselt number for heat transfer is given by
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~X(—) -0
_
Nu(x)= T -1
-2 &,
U, (7.1.24)

where

T
R =U°"'x and Cf= Ld
2 o

5 .

Eq.(7.1.24) leads us to the formulation of the important Reynold; analogy between heat
transfer and skin frictions.

Now we introduce stream function i such that

2V
6}; £7.1.25)
g X
ox

Again we take the new dimensionless distance parameter 1]=§ so that

L (7.1.26)
VX

Hence we have

w.=wU, f(n) (7.1.27)

u=U,["(n) (7.1.28)
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u:%JVU—‘“ af' - f). (7.1.29)
X

The above transformations reduce Eq.(7.1.20) and Eq.(7.1.21) to

f+2f7=0 (7.1.30)
2 2

e "Z+Efd—T=—PrULf”2 (7.1.31)

dn® 27 dn 2¢c,

with boundary conditions

n=0: f=f1"=0; T=T

w

H=h fi=l. =1

s}

The solution of Eq (7.1.30) under the boundary conditions n=0:f =f'=0, n=w: f'=1
is given in Chapter-II.
It is convenient to represent the general solution of Eq. (7.1.31) by the superposition of two

solutions of the form

2

U
Fi=t.=Colnysg =05t (7.1.32)

Cp

where C is an arbitrary constant to be determined. Here 6, (77)is the general solution of
homogeneous part of Eq. (7.1.32) and 6, is the particular solution of non homogeneous part
of Eq. (7.1.32) . As 6,(n)and 68,(n)are solutions of homogeneous and non homogeneous

part, from Eq. (7.1.31) we have

0, + %Pr 16! =0 (7.1.33)
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62"+%Prﬂ9;=—2Prf"2. (7.1.34)

Eq. (7.1.33) is also obtained by putting &, = g_? in Eq (7.1.21) when dissipation term is

w -]

neglected. In this case the boundary conditions will be
n=0: 6,=1; n=o: 6,=0.
The problem under the above boundary condition is known as cooling problem. The solution
of Eq.(7.1.33) was first given by E. Pohlhausen as
[lrr@)"ag

6,(n,Pry=22 . (7.1.35)
[lrr©f ae
£=0

The temperature gradient at the wall is given by

Pr,
- (%% peo = 2y (PE) == (0.332) (7.1.36)

[rr©lac

0

where f"(0)=0.332.

E. Pohlhausen calculated &, Pr for a wide range of values of Pr given in Table -7.1.3.
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Table-7.1.3

P, @, 0332p,3
0.6 0.276 0.280
0.7 0.293 0.294
0.8 0.307 0.308
1.0 0.332 0.332
1.1 0.344 0.342
7.0 0.645 0.630
10.0 0.730 0.715
15.0 0.835 0.820

It can be seen from the table that «, (Pr ) may be approximated with good accuracy by the
formula

,(Pr)=0.332Pr”*  for 0.6<Pr<10.
Limiting cases:

(a) Pr -0 (e.g. for mercury , Pr =0.044).

When u isreplaced by U_ then f'(r)=1 and f()=1.

Thus Eq. (7.1.33) reduces to
g +%Pr Finy=0. (7:1:37)

Solution of Eq.(7.1.37) is
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(7.1.38)

Therefore,

d o,
(Pt )== (Do

1

[#4

Pt
[exp(==-n")dn
; 4

=0.564Pr? . (7.1.39)
(b) Pr >0
When Prandtl number is large then the thermal boundary layer is much thinner than the

velocity boundary layer. Using Blasius method, the solution of Eq.(7.1.30) for small value of

77 may be written as

2 8 4
¢ a2 6 5.1l & 375¢" 4
= = — + —
FO =y =557 * 5™ ~1m

where ¢ is a unknown constant.

From the above expansion of f(7) near 7 =0 it is reasonable to replace f(n) by its first

2

term % where ¢ =0.332. Hence the Eq.(7.1.33) reduces to

12

[/ 1 .
0, +ZPrgn28 =0, (7.1.40)
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Solution of Eq.(7.1.40) is

Jexp(— Ti_” Y)dn

o - (7.1.41)

Ui

IBXP(—— dn
0

Therefore,

&, (Pr) =0.339Pr | (7.1.42)

The Nusselt number for heat transfer is denoted as

T ~T,

o0, /wa
:_(B_I)FO i (7.1.43)
n v

1
=a,(Pr)Re 2

e}

where Re= Unx .

|4

-1

For adiabatic wall if we put 8, =———
Uye, /2

in Eq.(7.1.21), we get Eq. (7.1.34).

So the boundary conditions are:
n=0: 6,=0; n=00:0,=0.

The solution of Eq. (7.1.34) can be obtained by the method of variation of the parameters as
o Pr &
6,(n.P)=2Pr [[f"(&)] ([ ()" " dr)ds. (7.1.44)
g=n 0

From Eq. (7.1.32) we have
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2
C=T, -T, o
2

6,(0). (7.1.45)
CF

If the adiabatic wall temperature is 7, then we have

Tﬁ‘ _TOO
92 (T]],PT)ZH—T (7146)
Uﬂo
2cp
U 2
o, T, -T, = i =-0,(0,Pr). (7.1.47)
cP
Thus
c=T,-T,)-(T,-T.) (7.1.48)

The general solution for a prescribed temperature difference between the wall and free stream

velocity is thus

2
T-T,={T,-T,)-(, -T. ¥, (n,Pr)+§rT°°82 (6,,Pr). (7.1.49)

P

There the dimensionless temperature distribution becomes

T-T. 1, I '
T T = [1 - 5E892 (0, Pr)} o, (n,Pr)+5 E_8,(n,Pr) (7.1.50)

where E_ is Eckert number.
We consider a heated flat plate of temperature to T,, placed vertically under gravity in large
body of fluid which is otherwise rest and has temperature 7 and density p_. Suppose that

the viscosity and the conductivity of the fluid are small and the motions are caused solely by
the density gradients created by temperature difference. In the case of a vertical plate, the

pressure in each horizontal place is equal to the gravitational pressure and is thus constant.

87



The only cause of motion is furnished by the difference between weight and buoyancy in the

gravitational field of earth. Let the origin is at the lower edge of the plate, x axis along the

plate and y axis normal to the plate. Again suppose that the pressure in the boundary layer is

same as at the outer edge.

Therefore the governing equations of motion are:

ou Ov
+—=

- 0
ox Oy

v s
ox oy oy
where
.
¥ —F

¥ =0 =0, p=0; =1
= i) =0,

b
[
8
[

&

(7.1.51)

(7.1.52)

(7.1.53)

E. Pohlhavsen first obtained the solution of these equations. In order to convert partial

differential into ordinary differential equation he used the following substitutions:

n:{g(Tw—Tw}% ¥ ¥

=c
4°T, oo x

X

w(x,y)=4vext £(17)

where ¢ is a constant.
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We introduce a stream function i such that

g
oy
g 2¥
oy
So that
u=dve*x2 f(zj) . (7.1.56)

Eq. (7.1.52) and Eq. (7.1.53) lead to the following differential equations
fr+34"-2f"+6=0 (7.1.57)
8" +3Pr f0'=0 (7.1.58)
with boundary conditions

p=Qy = =g=1
s = s =il 6=0.

E. Prhlhqusen solved these equation by series taking Pr= 0.733. From his result, we find

(%),?_; ~ ~0.508. (7.1.59)

The local Nusselt number for heat transfer is given by

5
iy
Milpe—b
(T =T)
:_(g)ﬁ) o~ (7.1.60)
—0.508] &8s L. A
' 4°T,
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7.1.5 Results and discussion:

From Fig-7.1.1 we see that the change of temperature with respect to displacement is linear
when the product of the Eckert number and Prandtl number is zero. Other wise temperature
profile is not linear. From Fig-7.1.2 we see that the maximum temperature occurs in the
middle of the channel. When the velocity of the fluid is large, the buoyancy force is neglected

and the temperature difference 7, — 7, is small then the velocity distributions coincide with

temperature distributions provided that Pr=1. From Eq. (7.1.24) we see that there is a
relationship among Reynolds number, heat transfer and skin friction. The rate of heat transfer

can be calculated from the relation (7.1.60).
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CHAPTER VII
Part: B

Unsteady MHD Flow of Incompressible Viscous Fluid Past an Infinite Vertical Plate

7.2.1 Introduction

Raptis & Massalas [56] studied the steady free convective and mass transfer flow of a viscous
incompressible fluid through a porous medium bounded by an infinite vertical porous plate,
with constant heat flux at the plate. Fouzia [19] studied the steady MHD free convective flow
through porous medium bounded by an infinite vertica! porous plate. Sreekanth, Nagarajan &
Ramana [71] described the transient MHD free convective flow of an incompressible viscous
dissipative fluid.

In this chapter, we consider the unsteady MHD flow of an incompressible viscous fluid past
an infinite vertical plate. The uniform flow is subject to a transverse applied magnetic field.
We also consider small magnetic Reynolds number so that induced magnetic field is
neglected. Numerical solutions to the coupled non-linear equations are derived for the
velocity and temperature fields. Effects of the various parameters occurring in the problem
have been discussed with the help o graphs.

7.2.2 Mathematical formulation

A uniform magnetic field of strength H, is acting transversely to the plate. The pressure
gradient force is taken to be zero.

The two dimensional boundary layer equations that govern the unsteady free convective flow

are
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where

2. .r 2 2
é H
Wy T gp(r-T,)- T o
a

oT' | o'T’ ou',
pc =k +i(—
P a[f a}}f} /u(a'yf)

u' = velocity of the fluid in x" direction
T = temperature of the fluid in the boundary layer
T, = temperature of the fluid outside the boundary layer
k = thermal conductivity of the fluid
¢, = specific heat at constant pressure
P = coefficient of thermal expansion
p = density of the fluid
v = kinematic viscosity
M= viscosity of the fluid
g = acceleration due to gravity
M, = magnetic permeability

o = is the electrical conductivity of the fluid

The initial and boundary conditions are

t'<0,u’"=0 when 7' =T forall y

t"20,u=0 when 7" =T for y'=0

r

t'=0, at y'=4'

r
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We introduce the following non-dimensional number:

r

u
UO

rl’
t=—
]

y'
g e g 7.2.6
y==sau (7.2.6)

T
AT

AT =T -T..0= (72.7)

Substitute Eq.(7.2.6) and Eq.(7.2.7) in Eq.(7.2.1), we obtain

2
Bu B TTGE (7.2.8)
a oot U,

where M is the magnetic parameter and

2
M= ou,H T
Yo,

V2

Choosing e , we obtain from Eq.(7.2.8)
%60,

2
% P94 Gro - Mu (7.2.9)
o oy

where

3
Pr=% and Gr=w

v

Substitute Eq.(7.2.6) and Eq.(7.2.7) into Eq.(7.2.2), we obtain

86 _ kI 2’9, T pU, ou
= : =
o Spe, oy’ pAlc, & Oy

iy (7.2.10)

Choosing ;:T - 1, we have from Eq.(7.2.10)
o pc,
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2
?£=6—§+PrEc(a—u)2 (7.2.11)
t oy ay
where
b= U"z
© Alc,

The initial and the boundary conditions (7.2.3), (7.2.4), and (7.2.5) reduce to

1<0,u=0,0=0 forall y=0 (7.2.12)

1>0,u=0,0=1 at y=0 (7.2.13)

730.2%-0 s 3=i (7.2.14)
oy

The exact solutions of Eq.(7.2.9) and Eq.(7.2.11) are not possible. So we employ explicit
finite difference method for its solutions. The equivalent finite difference scheme of
Eq.(7.2.9) and Eq.(7.2.11) are as follows:

u u

u - 2”:./ +u,,

ij+1 %y i+l o

~=Pr +Gro, , — Mu, 7215
At (Ay)? Y v ( :
9:\;’+1 _9:,_,' = 9r’+l,j . 291,] +9!—|._,' + E P['(HHU _.ur.,,l )2 (7 2 16)

At (Ay)?
where the inde;( i refers to y and jrefers to 7. The mesh system is divided by taking
Ay = 0.1. From the initial condition, we have the following equivalent:
u(0, /) = 0,0(0, j) = Lu(i,0) = 0,0(i,0) = 0 for all i except i =0.
The boundary conditions are expressed in finite difference form as follows

(0, /)=0 6(0,j)=1 forall j
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u(i,0)=0  6(i,0)=0 foralli
Firstly, the velocity at the end of time step viz., wu(i,j+1)(i=1,20) is computed from

Eq.(7.2.15) in terms of velocities and temperatures at points of earlier time step. Them

6(i, j +1) is computed from Eq.(7.2.16). The solutions for # and & thus obtained are plotted
respectively in Fig-7.2.1 and Fig-7.2.2. Fig-7.1.1 is drawn for Pr=0.71 and £, =0.3. Fig-

7.1.2 isdrawn for M =1 and E, =0.3.

u

Velocity profile

Fig-7.2.1
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n.e

2.0 |

D.4

0, 2

Temperature profile

Fig-7.2.2

7.2.3 Results and discussion:

From Fig-7.2.1 and Fig-7.2.2 the velocity profile » is drown against y for different values of

magnetic parameter and time. We observe that the velocity of the fluid increases with the
increasing value of magnetic parameter. Again we notice that the velocity of the fluid starts
with zero velocity and then gradually increases and attains a maximum value there after the
velocity diminishes in the same manner and ultimately dies out to zero velocity. From Fig-

7.2.2 the temperature profile # is drawn against y for different values of Prandtl number and

time. Here we observe that temperature increases with the increase in Prandtl number.
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CHAPTER VIII
Steady Laminar Flow of Incompressible Fluid Through a Circular Tube

8.1 Introduction

A variety of fluid flows in a closed conduit is investigated owing to their applications in
physiological and engineering problems. A closed conduit is a tube or duct through which the
fluid flows while completely filling the cross section. As the fluid flows over the solid
boundary a shear stress will develop at the surface of contact which will oppose the motion. A
flow in a tube is more likely to be laminar if the fluid velocity is low; the diameter of the tube
is small; the density of the fluid is low; and the viscosity of the fluid is high. The four
variables are grouped in the form of a non dimensional parameter called Reynolds number.
The flow of fluid is more likely to be laminar at law Reynold number and is more likely to be
turbulent at high Reynolds number. Flow through a tube is laminar at Reynolds number less
than 2000 and it is turbulent at Reynolds number more than 3000. The flow is said to be in
transition stage at Reynolds number between 2000 to 3000. In a flilly developed tube flow,
the pressure drops linearly along the length of the tube line. In other words, the pressure
gradient along the flow remains constant. The laminar flow through circular tube is discussed
in many standard books of Chorlton [10], Douglas Gasiorek & Swaffield [15], Raisighania
[55], Raptis [56] & Schlichting [62]. Based on Navier-Stokes equation many researchers have
been developed mathematical models for transportation of blood through arteries . McMichael
& Deutsch [44] studied the magneto-hydrodynamics of laminar flow in slowly varying tubes
in an axial magnetic field. Desikachar & Rao [14] calculated the influence of a magnetic field

on the blood oxygenation process. Shah [66] reviewed the fully developed and developing
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solution for blood flowing in a conduit. Krishna & Rao [34] investigated the motion of a
viscous incompressible flow through a non uniform channel under a transverse magnetic field.
Mazumdar, Gunguly & Venkatesan [43] investigated the solution of Newtonian fluid flow
through a circular tube .They solved the problem numerically by shooting method . In this

chapter an attempt has been made to study the laminar flow of incompressible viscous fluid

through a circular tube in presence of magnetic field.

Case I: Steady state

8.2 Mathematical formulation

We consider a steady laminar flow of viscous incompressible fluid through an infinite circular
tube of radius a. Again suppose that the fluid flows in the direction of z-axis and depends
only on the radial distance and also flows symmetrically about the axis of the circular tube. If
we consider cylindrical polar co-ordinates (r,&, z), the velocity vector can be taker as
V =[0,0,u] . In the absence of body force, the mass conservation equation and the

momentum equation reduce to

Z_‘Z‘= 0 8.1)
Z_f;zo (8.2)
_%% =0 (8.3)
0=-L4 it 2% Lo

Oz ror oOr
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Equ. (8.1) shows that u is a function of r alone and the Eq.(8.2) and the Eq. (8.3) show that p

is a function of z alone. If we choose Z—p = —P(a constant) then Eq. (8.4) becomes
z

16, du
ﬂ[;—a;(f”“g)]——f)- (8.5)

Boundary condition:
u=U, atr=0
u=0at r=a.

Solving Eq. (8.5), we get

—rip

4u

U=

e lnr ey (8.6)

where ¢, and ¢, are arbitrary constants to be determined.
Since at the axis of the cylinder the velocity should be finite, we must have ¢, =0. Again if
the circular tube is fixed, u =0 at » = a. Thus from Eq.(8.6), we get

L -y 8.7)
4u a

u=-

2

From Eq. (8.7) the maximum velocity occurs at the axis of the tube and is equal to - 2
y7i

The skin friction in this case will be — P—;— .The average velocity can be measured by the

formula

1 2ra

Uy, =—5 | [urdrdo (8.8)
00

e}

99



2

and is equal to —
8u

The coefficient of skin friction is

_ T
Cf = l——z
2 PU e (89)
16

" Re
where Re is Reynold number.

The total volume of the fluid crossing any section per unit time is given by
a
0= [2mu,,dr
0

4
= (8.10)
8

Eq.(8.10) shows that the total flux is proportional to the pressure gradient and to the fourth
power of the radius of the tube.

8.3 Circular tube flow past across a transverse magnetic field

Let us consider a conducting fluid passing across a transverse magnetic field. Then the new
form of Eq.(8.4) will be

1 d cdu' dp' 2
LR g SR : 8.11
7 dr'( dr') dz P ( )

where B, is uniform magnetic field and o is electrical conductivity .
We introduce the following non dimensional quantities

/ / A
r:L,P:P—ZBx:x_
a pU L

o

/

U
e 8.12
“TU. e
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where L is the length of the pipe.

Then the new form of Eq.(8.11) will be

2
d_z;+l@_M2u:_PO
dr r dr

where

M = BOLJEandd—P =-P,.
M dz

Boundary condition:
it =] gt r=0
u=0atr=1.
Homogeneous part of Eq.(8.13)is

2
: f+l@—M2u=0.
dar ¥ dr

The general solution of (8.15) i.e., the complementary function of Eq.(8.13) is

u, =a,J,(iMr)
where

2 2 4 4 6 6
Batpitiyel] fe By DO (B nin
4 64 = 2304

is Bessel’s function of order zero and a, is an arbitrary constant.

The particular solution of (8.13) is

PO
up =F.

The general solution of (8.13) is
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(8.14)

(8.15)

(8.16)

(8.17)

(8.18)



E
u(r: M) =a0JO(iMr)+ﬂ07.

Again applying the boundary conditions, we get

J, (iM) = J 5 iMr)

u(r - M)= TG -1

Table-8.1
r u u
------- M=2 M=4
0.1 992154 995868
0.2 968381 98297
0.3 927965 959736
0.4 .869685 923328
0.5 79178 .869318
0.6 .69189 791226
0.7 .566989 679932
0.8 413293 .522956
09 226168 303608
1 .000001 .000002
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M=6

998141
992047
980025
958761
922585
862441
764558
608833
366917

.000003

(8.19)

(8.20)
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Figure-8.1

Velocity profile for different values of Hartmann number M

8.4 Circular tube flow past a narrow obstacle
Suppose that the steady flow past a narrow obstacle whose surface is give by

LI L — (8.21)
a 2a z

a

where & is the thickness of the obstacle along the normal direction to the flow , @ the radius

of the tube without obstacle, » the radius the tube with obstacle r =a -, z, the

. o . .
constant(—z, <z < z,).Assuming that — << 1.Since at the surface of the obstacle the fluid
a

velocity is zero so the Eq. (8.7) and Eq.(8.10) reduce to

uz—M[a2 L (8.22)
4u
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Q=£}i(—22r(z)4. (8.23)
81

The pressure drop across the length of the obstacle is

1600z, “% 1
Ap= 40 _[sz
a5 F
16 0z 5 -
J104D2 My _p i Sy (8.24)
ma 2 8
where
S
n=—.
a

If& represent the ratio of pressure drop across the length of the obstacle to the pressure

without the obstacle then

¢=av§w—n+§n%a—m%. : (8.25)
Table-8.2
a=10,6 <1 a=10,0 <3
7 3 1 s
.01 1.002004 .01 1.002004
02 1.022462 .05 1.088764
.03 1.043714 . 1.218519
.04 1.065799 A5 1.378809
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.05 1.088764 ol 1.5798825

06 1.112653 25 1.836208
.07 1.137518 3 2.169521
.08 1.163412
.09 1.190392
.1 1.218519

Figure-8.2 is drown for @ =10, <1 and Figure-8.3 is drawn fora =10, <3

14 4 2.5 \[
1.2
/ 2
1 ]
08 1.5 4
06 14
0.4 1
0.2 1 0.5 -
U‘v—mmvmlolr—mm-— 0"—1'— ; SR S O L e T
o c 0o 0o oo o g - T M~ - M © 0 N B @©
o O O 0O O 0 0 o o o O o - = = ™N N W~
Figure-8.2 Figure-8.3
Case 11: Unsteady state
8.5 Formulation of the problem
For unsteady state, the modified form of Eq.(8.1,8.2,8.3,8.4) are:
au(r,z,t) . 0 (8.26)
0z
op(r,z,t)/ or =0 (8.27)
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ou(r,z,t)/ ot +u(r,z, t)ou(r,z,t)/ 0z =— l6‘11'9(1", z,1)/ 0z
1 F (8.28)

+v[82u(r, z,t)/ or* +—0ou(r,z,t)/ or + % u(r, z,t)/@zz]
¥

From Eq. (8.26) and Eq. (8.27) we conclude that « is a function of r and ¢ onlyand p isa

function of zand ¢ only .Eq. (8.26) and Eq. (8.27) reduce the Eq. (8.28) to

o 190 ¥0 . o0, (8.29)

Suppose that
0 s Pe™ (8.30)
Oz
u(r, H=V(r)e™ (8.31)
where i=+/—1.

Using Eq. (8.30) and Eq. (8.31) in Eq. (8.29), we get

2 V -
: I2/+ld——-lzplf=—£- (8.32)
dr“ rdr u 7 .

The general Solution of the Eq. (8.32) is

Vzcl.fol:i%ﬂ/wp 1) +62Y0[i%,/wp/er+—P— (8.33)

wpi
where ¢, and ¢, are arbitrary constants to be determined. In Eq. (8.33) J, and ¥, are Bessel
functions of zero order and are of the first and second kind. When r =0 then both u and V
are finite but ¥, is not finite, so we must have ¢,=0. Again on the surface of the tube (r =a)
the velocity u = 0, we have
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B 1
Clz'“-‘;'*l. y .
P Jo{i QVWP/(W)}
Substituting the value of A in Eq. (8.33), we get
V(r)=-*ii 3 ! % J{i% wp.m}.
B Jo[i Zq/wp/(,uR)}
Finally
24 o
ip JO]:I % wp/(/ur)} 7
u(r, )= - e™

o 3
wp Jo[’.A\/WP /(ﬂa)}
The total value of the fluid crossing any section per unit time is given by
D= Iv 2mrdr
0

2

- ”‘;Z §Pe™| 1~ 23 Ij[tigf;;))dx}
# j,@28) °

where

£ = wpl(ua).
Applying the formula

[Ty (x)dx = %7, (x)
we get

4
wa

P= e Pe™ x(5)

where
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3
Fe)= 1——31@ (8.37)

2§, (i%¢)

'

- pE?

{Lx2(S)coswi + x, () sinwt] =i x, () coswt — x, (S)sinwe]}  (8.38)

where

1(5)211(5)*'1.;(2(5)-

8.6 Results and discussion

From Eq.(8.10) if we consider that Q is constant for all sections of the tube, then the
pressure gradient varies inversely as the fourth power of the surface distance from the axis of
the tube so that the pressure gradient is minimum at the middle of the obstacle and is
maximum at the ends. The Eq.(8.9) shows that the skin friction can be obtained from the
knowledge of Re. The Eq.(8.9) is used to determine energy losses in tube flows . From Fig-
8.1 we observe that the maximum velocity occurs at the middle of the tube and the velocity of
the fluid increases as the radius of the tube increases. The Fig-8.1 also indicates that the
velocity of the fluid increases when the magnetic field increases. It is also noticed that the
typical laminar velocity profile is parabolic. Fig.-8.2 shows that the pressure drops linearly for
small value of the thickness of the obstacle. Fig.-8.3 shows that the pressure drops for large
value of the thickness of the obstacle. The Eq.(8.38) shows that the real part gives the flux
when the pressure gradient is Pcoswtand the imaginary part gives the flux when it is

Pcoswt.
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CHAPTER IX

Conclusion

In this thesis we have considered the laminar flow of incompressible viscous Newtonian
fluid. The nature of the flow of fluid is very complex since the basic laws describing the
complete motion of fluid are not easily formulated and handled mathematically. Several
fluid problems, which are governed by ordinary differential equations, are difficult to
solve analytically. In each such problem, the equations have been put into proper form for
numerical solution. In this thesis, the differential equations related to laminar flow
problem have been solved by either one of the two methods or both methods. In certain
instances, the numerical results from a computer program have been taken. The general
problem of evaluation of velocity boundary layer or thermal boundary layer for a body of
arbitrary shape provides to be extremely difficult. Here we have considered only simple
flat plate at zero incidences. Both velocity boundary layer and thermal boundary layer
have been considered in this thesis.

In Chapter I1I, some numerical methods of boundary layer flow problem have been
discussed. A suitable example is given using shooting method. The effects of pressure
gradient force have been shown both analytically and graphically in part: A of Chapter
IV. Various types of laminar flows between two parallel plates in presence of magnetic
field have been considered in part: B of Chapter IV and in Chapter V. A flow problem
related to porous plates has been investigated in Chapter V. In c_hapter VI we have
considered a flow problem over a suddenly accelerated flat plate which has been tackled

by means of Crank-Nicholson implicit scheme.
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In many cases the temperature field around a hot body in a fluid stream is of boundary
layer type. This layer extends only over a narrow zone in the immediate neighborhood of
the surface, whereas the higher body temperature does not affect the regions at a large
distance from it. The study of heat transfer by convection is concerned with the
calculation rates of heat exchange between fluids and solid boundaries. Heat generation
due to friction is a common phenomenon of fluid dynamics. In chapter VII various
problems related to velocity and temperature have been discussed.

Some problems of fluid flows in circular tube have been investigated owing to their
applications in physiological and engineering problems. The flow through circular tube in
presence of magnetic field and the flow past a narrow obstacle have been investigated in
Chapter VIII.

We believe that the results of the present work will enrich the list of exact and numerical
solutions and may help the investigation of the laminar flow of incompressible viscous
Newtonian fluid like air, water, liquid metals etc. . We also hope that the various methods
discussed in this thesis will help the researchers in working in the field of Fluid

Dynamics.
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