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PREFACE

The thesis entitled “A THEORETICAL STUDY ON SOME ASPECTS OF
TURBULENT FLOW” is being presented for the award of the degree of Master of
Philosophy in Mathematics. It is the outcome of my researches conducted in the Department
of Mathematics, University of Rajshahi, Bangladesh under the guidance of Dr. M. Shamsul
Alam Sarker, Professor, Department of Mathematics, University of Rajshahi, Rajshahi-6205;

Bangladesh.

The whole thesis has been divided into four chapters. The first is an introductory
chapter and gives the general idea of turbulence and its principal concepts. Some results and
theories, which are needed in the subsequent chapters, have been included in this chapter. A
brief review of the past researches related to this thesis has also been given. Numbers inside
brackets | ] refer to the references which are arranged alphabetically at the end of the thesis.
In the 2" chapter we have discussed the decay of homogeneous dusty fluid turbulence before
the final period for the case of three and four point correlation equations. Finally we have
obtained the energy decay law of dusty fluid turbulence before the final period considering

three and four point correlation equations after neglecting quintuple correlation terms.

In the third chapter, the decay of homogeneous turbulence before the final period in a
rotating system has been studied using three and four point correlation equations. Three and
four point correlation equations have been obtained and the set of equations is made
determinate by neglecting the quintuple correlation in comparison with the third and fourth
order correlation. The correlation equations have been converted into spectral forms by
taking their Fourier transforms and the decay law of turbulence in a rotating system before

the final period has been obtained.

In the fourth chapter, we have discussed the decay of dusty fluid turbulence before
the final period in a rotating system for the case of three and four point correlation equations.

In this problem we have considered three and four point correlation equations and solved

Vi



these equations after neglecting the quintuple correlation term applicable at terms before the

final period. Finally, the energy decay law of fluctuating velocity is obtained.

The following research papers -that are extracted from this thesis have been

communicated for publication in the different reputed Journals.

(i) Decay of homogeneous dusty fluid turbulence before the final period.

(ii) Decay of homogeneous turbulence before the final-period in a rotating system
for the case of three and four point correlation equations.

(iii)  Decay of dusty fluid turbulence before the final period in a rotating system for

the case of three and four point correlation equations.

M5L_ gL\,&m;—vxo\ SL\{{T/\/YW«

Department of Mathematics, (Mst. Shamima Sultana)

University of Rajshahi,
Rajshahi-6205;

Bangladesh.
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GENERAL INTRODUCTION

1.1: Basic Concept on Turbulence

The conception of turbulent flow and the accompanying transition form laminar to
turbulent flow is of fundamental importance. In everyday life, we recognized three states of
matter: solid, liquid and gas. Although different in many respects, liquid and gases have a
common characteristic in which they differ from solids: they are fluids, lacking the ability of
solids to offer permanent resistance to a deforming force. Fluids flow under the action of
such forces, deforming continuously for as long as the force applied. The fluids may be
classified into different types depending upon the presence of viscosity. Osborne Reynolds
shows that two entirely different types of fluids flow exist. In general words, turbulent flow
is a flow, in which the inertia force is dominating over the viscosity. On the other hand,
Laminar flow is a flow, in which the viscosity of the fluid is dominating over the inertia
force. Osborne Reynolds demonstrated this in 1883 through an experiment. Reynold’s
apparatus consist of a tank, containing water and a small tank containing dye. O. Reynold’s
[50] was also the first to investigate in greater detail the circumstances of the transition from
laminar to turbulent flow. The previously mentioned dye experiment was used by him in this

connecxion, and he discovered the law of similarity which now bears his name, which states



ways occurs at nearly the same Reyno\(\ 8

that transition from laminar to turbulent flow al

y \ [ ' = /, A = Cross-
number vd /V | where v = % is the mean velocity (Q = volume rate of flow, A=cr

sectional area). The numerical value of the Reynold’s number at which transition occurs

(critical Reynold’s number) was established as being approximately

R, == =2300,

critical

Accordingly, flow for which the Reynold’s number R <R, , are supposed to be

laminar, and flow for which R > R, , are expected to be turbulent.

Turbulence is one of the most difficult open problems in physics. Turbulence is the
most common, the most important and the most complfcated kind of fluid motion. Applied
mathematicians deal it with very carefully from the mathematical standpoint. It is curious to
note that the meaning of the word “turbulent” to characterize a certain type of flow, namely,
the counterpart of stream line motion. Osborne Reynolds in the study of turbulent flows,
named this type of motion “sinous motion”.

Turbulent means agitation, commotion, and disturbance. This definition is, however,
too general and does not suffice to characterize turbulent fluid motion in the modern sense. It
is common experience that the flows observed in nature such as rivers and winds usually
differ from streamline flows or laminar flows of a viscous fluid.

The mean motion of such flows does not satisfy the Navier-Stokes equations for a

vieeons fluid. Such flows that occur at high Reynolds numbers are often termed turbulent

1
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the pressures are irregularly fluctuating. The velocity and pressure distributions in turbulent
flows as well as the energy losses are determined mainly by turbulent fluctuations. The
essential characteristic of turbulent flows is that the turbulent fluctuations are random in
nature. In 1937, Taylor and Von Karman [67] gave the following definition: “Turbulence is
an irregular motion which in general makes its appearance in fluids, gaseous or liquids when
they flow past solid surfaces or even when neighboring streams of the same fluid flow past or
over one another.”

According to this definition the flow has to satisfy the condition of irregularity.
Indeed, this irregularity is a very important feature; because of irregularity it is impossible to
describe the motion in all details as a function of time and space coordinates. But fortunately
turbulent motion is irregular in the sense that it is possible to describe by the law of
probability. It appears possible to indicate distinct average values of various quantities such
as velocity, pressure, temperature etc. and this is very important. Therefore it is not sufficient
just to say that turbulence is an irregular motion yet we do not have clear-cut definition of
turbulence. This is rather difficult. Hinze [20] suggested that “Turbulent fluid motion is an
~irregular condition of flow in which various quantities show random variations with time and
space coordinates so that statistically distinct average values can be discerned.” The addition
“with time and space coordinates” is necessary; it is not sufficient to define turbulent motion
as irregular in time alone. According to the definition suggested by Taylor and Von Karman
[67], turbulence can be generated by fluid flow past solid surfaces or by the flow of layers of
fluids at different velocities past or over one another. The definition above indicates that

there are two distinct types of turbulence:
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i) Turbulence generated by the viscous effect due to the presence of a solid wall is
designated by wall turbulence;

ii) Turbulence, in the absence of a wall, generated by the flow of layers of fluids at
different velocities is called free turbulence. Turbulent flow through conduits
and past bodies are examples of wall Turbulence and turbulent jet mixing
regions and wakes fall into the category of free Turbulence.

The occurrences of turbulent flows are more frequent and natural. Flows in rivers,
ocean currents, natural streams, natural and artificial channels, flow in water supply pipes,
flow in fluid machinery such as fans, turbines, pumps etc and air flow over land surfaces are
few examples of turbulent flows occurring in every day life.

Turbulence flows always occur from instabilities of laminar motions at very high
Reynolds numbers. The instabilities are closely associated with the direct interaction of the
nonlinear inertia term and the viscous terms in the Navier-Stokes equation. Instability to
small perturbations is also another feature of turbulent flows.

Turbulent motion is three dimensional and rotational. It is also characterized by the
random distribution of velocity in which there is no unique relation between the frequency
and the wave number of the Fourier modes. It is essentially diffusive and dissipative. The
vorticity dynamics plays an important role in the statistical description of turbulence. From
the mathematical point of view, turbulence in an incompressible fluid deals with the
statistical solutions of the Navier-Stokes equation at very high Reynolds number. Physically,
it is concerned with the interaction of eddies of different sizes.

From the experimental point of view the hydro-dynamical turbulence is known to

consists of irregular (random) motion of fluid particles and those fluid particles move in
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lumps rather than individually giving rise to the concept of eddies. The eddies are not of the
same size but of varying sizes and therefore turbulence can be separated by Fourier integrals.
Further these eddies are not separated from each other just like molecules. In fact, small
eddies are embedded in large ones, when these eddies move they affect the fluid surrounding
them. These eddies and their random movements give rise to fluctuations in velocity
components and pressure at any point in the flow field. The movement of these eddies in the
longitudinal as well as in lateral directions imparts to the flow a greater ability for diffusion
and makes the analysis of such a flow extremely complex. The origin of the idea of statistical
approach to the problem of turbulence may be traced back to Taylor’s paper of 1921 [65] in
which he has advanced the concept of Lagrangian correlation coefficient that provides a
theoretical basis for turbulent diffusion. The most important work done by Taylor [66] is that
he gives up the old theories of turbulence based on the kinetic theory of gases and introduces
the idea that the velocity of the fluid in turbulent motion is a random continuous function of
position and time. He introduces the concept of correlation between velocities at two points.
To make the turbulent motion amenable to mathematical treatment he assumes the turbulent
fluid to be homogeneous and isotropic. In this support, he describes the measurements
showing that the turbulence generated downstream from a regular array of rods in a wind—
tunnel is approximately homogeneous and isotropic. In spite of the fact that the turbulence in
nature is not always exactly homogeneous and isotropic, it is essential to study the
homogeneous and isotropic turbulence as a first step to understand the more complicated
phenomenon of non-homogeneous turbulence.

In this case of real viscous fluids viscous effect will result in the conversion of kinetic

energy of flow into heat. Thus turbulent flow like all flow of such flows is dissipative in
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nature. If there is no continuous external source of energy for the continuous generation of
the turbulent motion, the motion will decay. Other effects of viscosity are to make the
turbulence more homogeneous and to make less dependent on direction.

In 1938 Taylor [68] took into account the non-linearity of the dynamical equations and
showed that it results in the skew ness of the probability distribution of the difference
between the velocity components at two points. He showed that the non-linearity of the
dynamical equations is also responsible for the existence of interaction between the
components of the turbulence having different fluctuations. Now instead of giving a detailed
account of historical development of the subject, we shall confine to mere concepts and
method of turbulence together with a few theories of turbulence that have been used in the

subsequent chapters.

1.2: Method of Taking Average
In the mathematical description of turbulent flow the instantaneous velocity

component u, is generally written as

u, =u, +u (1.2.1)

where U; is the ith component of the total fluid velocity , #: is the ith mean velocity

s g g q ;
component and U ; is the ith component of fluctuating velocity. In taking the average of a

turbulent quantity, the result depends not only on the scale used but also on the method of
averaging. In practice, four different methods of averaging [46] have been used to obtain the
mean value of a turbulent quantity (such as velocity, density etc.). If the turbulent flow field

is quasi-steady, averaging with respect to time can be used. In the case of a homogeneous
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turbulent flow field, averaging with respect to space can be used. If the flow field is steady
and homogeneous, space-time average is used. At last, if the flow field is neither steady nor
homogeneous, we assume that averaging is taken over a large number of experiments that
have sarae initial and boundary conditions. We then speak of an ensemble average.
The methods of averaging are:

1.2(a): Time average in which we take the average at a fixed point in space over a
long period of time i.e.,
lim i &

7 s TP [u(x, 5)ds (1.2.3)
oD

P

[ (x.0)), =

In practice the scale used in the averaging process determines the value of the period 2T.

1.2(b): Space average in which we take the average over all the space at a given time,

[ (x.0)], = lim i _[u(s, t)ds (L.2:3)
V, > oV, 4
In practice the value of space Vy, is determined by the scale used in the averaging process.
1.2(c): Space-time average, in which we take the average over a long period of time
and over the space, i.e.,

lim 1 !
J J-u(s,y)d.s'dy (1.2.4)
v,

[1'4 (.\’ A )]‘\J =

T — oV, - 21V,
In practice both the values of T and of V), are determined by the scale used.

1.2(d): Statistical average, in which we take the average over the whole collection of

sample turbulent functions for a fixed time, i.e.,
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[u(x,t,w)], = Jlf(xaIM’)dﬂ(W) (12.5)
Q

over the whole £ space of W, the random parameter. The measure is

J@(‘-t’) =1 (1.2.6)

Q
A random scalar function u(x,f,w) is a is a function of the spatial coordinates x and time £,

which depends on a parameter w. The parameter W is chosen at random according to some

probability law in a space 2.

1.3: Reynolds Rules of Average

At first Osborne Reynolds [50] introduced elementary statistical motions into the
consideration of turbulent flow. In the theoretical investigations of turbulence, he assumed
that the instantaneous fluid velocity satisfies the Navier-Stokes equations of motion for a
viscous incompressible fluid and that the instantaneous velocity may be separated into a
mean velocity and a turbulent fluctuating velocity. Thus the physical quantities

characterizing the flow field are written as,

w,=uitu, p=p+p . p=ptp T=T+T' (13.1)

]
Here the quantities with bar denote the mean values and those with primes are

fluctuations.

e
Furthermore, # =p =T1" =0
In the study of turbulence we often have to carry out an averaging procedure not only

a single quantity but also on products of quantities.
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In order to develop the rule of averaging, consider three arbitrary statistically dependent

physical quantities A, B, C, each consisting of a mean and fluctuating part. i.e.,

A=A+a . B=B+badC=CH+c (132)

Then, A=A+a=A+a=A , whence @ =0 (1.3.3)
The properties used in the above relations are; the average of the sum is equal to the
sum of the average, and the average of a constant time B is equal to the constant times the

average of B.

Then,
AB = (_/I+ cz)(§+b) -~ AB + Ab + Ba + ab
:j§+%+§+g}; (]_3_4)
_AB+ Ab+ Ba+ab
Consequently, AB = AB = AB (1.3.5)

Note that the average of a product is not equal to the product of the averages; terms

suchas g & are called “correlations”.

For the product of three quantities, we have

ABC = (A+a)(B+b)(C+c)= ABC+ Abc + Bac + Cab + abc (13.6)

Also it can be shown that

o4 o4
e P e (13.7)
as oS

and [ads = [Ads (1.3.8)
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1.4: The Navier-Stokes and the Continuity Equations

The Navier-Stokes and the continuity equations for an incompressible viscous fluid

. ) | ﬂ
flow are %-}-(u.V)u = "“**V])Jrl/vzu (]4])
0 P
Vu=0 (1.4.2)

where U = ?»Al(ff) represent the velocity field, p is the pressure, p is the constant density

and Vv is the kinematic viscosity. The Reynolds number (the ratio of inertial and viscous terms
in (1.4.1)) is UL/v where L is the characteristic length scale in which the velocity varies in
magnitude U.

The use of Navier-Stokes equations for the study of the turbulence is perhaps justified
since the each number of an incompressible turbulence flow is small. However, there is still a
controversy for the following additional reasons. First the mathematical theory of the Navier-
Stokes equations is incomplete in the sense that there are no general existence and
uniqueness theorem, which ensure the posedness of the system (1.4.1) — (1.4.2). Second the
closure problem of the Navier-Stokes equations is inconclusive. In view of these inherent
difficulties, Ladyzhenskaya [37] and others suggest to abandon the application of the Navier-

Stokes equations, especially for the study of turbulence. According to Ladyzhenskaya, if a
biharmonic damping term — AV *11 is included in the right hand side of the Navier-Stokes
equations (1.4.1), the existence and the uniqueness of solutions can be established for all
A > 0. She also formulated new equations for the description of the motion of an
incompressible viscous fluid and explained the advantages of her new equations relative to

the Navier-Stokes equations. It is important to make an observation form (1.4.1) —(1.4.2).
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We first take the divergence of (1.4.1) and use (1.4.2) to obtain

v o° Oy
g T 1.4.3
| 0x,0x (L42)
where p, = £ is often referred to as the kinematic pressure.
J2)

It follows from (1.4.3) that the pressure field is determined by the velocity

distribution, and satisfies the Poisson equation.

1.5: Correlation Functions

In 1935, G.I. Taylor [66] introduced new notions into the study of the statistical
theory of turbulence, Taylor successfully developed a statistical theory of turbulence which is
applicable to continuous movements and which satisfies the equation of motion.

The first important new notion was that of studying the correlation, or coefficient of
correlation between two fluctuating quantities in turbulent flow. In his theory, Taylor makes
much use of the correlation between the components of the fluctuations at neighboring

points. Denote the components of the fluctuating velocity at one point p by uy, uy, u3 and at

another point p/ by u|/, uzf, Ug/ The correlation function between any of the u; and uj/ where 1,
j=1,2 or 3, are defined as
Py = U, (1.5.1)

where the bar denotes the average by certain process.

Sometimes it is convenient to use the correlation coefficient such as

B o D Rajshahi University Librasy (1.5.2)
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By Cauchy inequality, we have

— [ [—
wau - u,-z Vu; <0 (1.5.3)

If we consider u,u, as the velocity components in a flow field, the correlation of

equation (1.5.1) is a tensor of rank two. By a different process of averaging we obtain

different kinds of correlations functions. If we consider %;and U ;are the velocity

components at a given point in space, ¥;and U are the functions of time; hence, we should
take the time average in equation (1.5.1) to get the correlations function o .

If we consider %;and ¥ ; as the velocity components at a given time, ¥;and u ; are

functions of space co-ordinates x(x,.x,.x,): hence, we should take the space average in
equations to get the correlations function. More generally if we consider ¥;and U;as a

functions of both time 7 and spatial co-ordinates x(xpxz,X;), we should take a space-time

average in equations (1.5.1) to get the correlation function. The correlation function between
the components of the fluctuating velocity at the same time at two different points of the fluid
first introduced by G.I. Taylor [66] has been investigated extensively in the isotropic
turbulence.

The correlation function between two the fluctuating velocity components at the same
point and at the same time gives the Reynolds stress. The correlation function between two

fluctuating quantities may also be defined in a manner similar to above.
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1.6: Reynolds Equations and Reynolds Stresses

In turbulent flow, we usually assume that instantaneous velocity components satisfy

the Navier-Stokes equations,

Ou; ou,; 7iég_+ 621.',

gwlgg oo anox + (1.6.1)

Substituting the expressions for the instantaneous velocity components from (1.2.1)
into Navier-Stokes equations (1.6.1) for an incompressible fluid after neglecting the body
forces and taking the mean values of these equations according to Reynolds rule of averaging

(1.3.1) — (1.3.5), we have the following Reynolds equation of motion for the turbulent flow

of an incompressible fluid:

oU, = oU;|_dp a8 |[ aU,

i fL /
p|l —+U; =- + U —puu, 1.62
ot Ox, ox, ox,|" Ox, : (o)
where i and j run from [ to 3 and Einstein’s summation convection is used. The bar

represents the mean value and the prime, the turbulent fluctuation. Additional terms over the

Navier-Stokes are due to the Reynolds stresses or eddy stresses. The eddy normal stresses are

/2
— pu, and the eddy shearing stresses are — pufui .(1#]) where £ is the density of the

fluid. These stresses represent the rate of transfer of momentum across the corresponding
surfaces because of turbulent velocity fluctuation.

The solutions of the Reynolds equations will represent the turbulent flow, but as in
the case of Navier-Stokes equations it is not at the present time possible to solve the

Reynolds equations for many practical purposes.
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1.7: Isotropic and Homogeneous Turbulence
The turbulence is called isotropic if its statistical features have no preference for any
specific direction and minimum number of quantities and relations are required to describe
its structure and behavior.
Since turbulence is a very complicated problem, in order to bring out the essential
features of the turbulence problem we have to study the simplest type of turbulence. In
isotropic turbulence the mean value of any function of velocity components and their space

derivatives are unaltered by any rotation or reflection of axes of references. Thus, in

particular
o S
H) = Uy = U3
and U, = Ui, = uu, =0

Isotropy introduce a great simplicity into the calculations. The study of isotropic

turbulence may also be of practical importance, since far from solid boundaries it has been

ol =l o
observed that/1 , 2% 2,23 tend to become equal to one another, e.g. in the natural winds at a

sufficient height above the ground and in a pipe flow near the axis.

Another simplest type of turbulence is homogeneous turbulence. It is defined as the
turbulence having quantitatively the same structure in all parts of the flow field. In a
homogeneous turbulent flow field the statistical characteristics are invariant for any
translation in the space occupied by the fluid.

Most of the theoretical works in turbulence and MHD turbulence concern
homogeneous and isotropic field in an incompressible fluid at rest. Throughout the present

work, we have also assumed the homogeneity and isotropy of the turbulent flow field.
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1.8: Spectral Representation of the Turbulence

Theoretical treatment of the turbulence is merely related to the solutions of the
Navier-Stokes equations. These equations, however, contain more unknowns than the
number of equations and therefore additional assumptions must be made. This is known as
the “Closure Problem”. An alternative approach is based on the spectral form of the dynamic
Navier-Stokes equation. The spectral form of turbulence is still underdetermined, but it has a
simple physical interpretation and is more convenient. The spectral approach is, however,
almost exclusively used for the description of homogeneous turbulence [42, 43]. The
principal concepts of spectral representation in the study of turbulence are described below:

If we neglect the body forces from the Navier-Stokes equation (1.6.1) and multiply

the x; component of Navier-Stokes equation written for the point p by u; , and multiply the

Xj- component of the equation written for the point p/ by U, , adding and taking the

ensemble average we get

Quu’ ou. ou’ | op op’
Ll wlu, = v uu — |=——| o] --J——+u,L +viu
' %, ox, P ox,  oOx

LAk ; 1.8.1
Ey u (1.8.1)

2 7

o u 0 u,
2 i 2

| x,

i
Since in the homogeneous turbulence, the statistical quantities are independent of position in

space and considering the points p and p/ separated by a distance vector ¥ and applying the

laws of spatial covariance, a simplified form of Equation (1.8.1) is obtained as

ou u' D opu’ . op'u. 0uu’
_— 7 (ui.uj.u‘ —ujuiu;)JrL S e (1.8.2)
ot or, prl B, or or,

i !
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=
The covariance YU is not suitable for direct analysis of quantitative estimate of the

—f

turbulent flows and it is better to use the three-dimensional Fourier transforms of %% . with

respect to ¥ . The variable that corresponds to 7 in the three-dimensional wave number space

is vector k = (/fl,kz,kg) . We define the wave number spectral density as

,6)- fz;lr 3 Juac expl- ik Ji7
= E}T ”m exp{—i(k,r, +kyr, + k,ry )dr,dr,dr,
T '

—/

It can be shown that if u,u’ has a continuous range of wavelength, ¢, (k) has a continuous

(1.8.3)

distribution in wave-number space. We can rigorously regard ¢, (k }fk ydk , dk  as the

-

contribution of the elementary volume dk;dk>dk; (centered at wave-number k& and

k

2 =
therefore representing a wave-number of length “:‘— in the direction of the vector k) to the
—_—
value of ¥, U  hence the name “spectral density”. This is consistent with the behavior of the
']

inverse transform

wa (r) = [4, (€ Jexp( ik.Fya ¥ (1.8.4)

!
The one dimensional wave-number spectrum of u ,u ~ for a wave-number component in the

X, direction is

o

@, (%)= 51;{ Ju,nj (r, Yexp(—ik,r, )dk, (1.8.5)
whose inverse is
upi ()= [, (K )exp(ik,r,)dk, ) (1.8.6)
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The Equation (1.82) for unstrained homogeneous turbulence becomes on Fourier

transforming

?%(jg_) =iF, (,7;)+ T, (;) 20k, (,7(') (1.8.7)

Where I and 7T are the transforms of the triple product and pressure terms respectively.

1.9: Fourier Transformation of the Navier-Stokes Equations

The principal reason for using Fourier transforms is that they convert differential
operators into multipliers. The equations are so complicated in configuration (or coordinate)
space that very little can be done with them, and the transformation to wave-number (or
Fourier) space simplifies them very considerably.

Another and more Mathematical argument shows that these transforms are right

method of treating a homogeneous problem. Associated with any correlation function

— — — sy
(35(.1(,3( ) is a sequence of eigen functions qﬁ(n,x ) and their associated Eigen values ﬂ(n).

These quantities satisfy the eigen value equation

j¢[;,;’j ons) a'x = 2wl x) e
and the orthonormalization relation
J-y/ (;;)U/(E:()aﬁx_— l ifm=n (1.9.2)
=) otherwise.
These equations imply that ¢ is a scalar. Actually it is a tensor of order two, but

these complete the argument without introducing anything essentially new. The index 7 , is

I
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W
in general, a complex variable and " denotes the complex conjugate of  (strictly, wois

the adjoint of y, but since ¢ is real and symmetric the adjoint is simply the complex

conjugate). The integrations in equations (1.9.1) and (1.9.2) are over all space, which may be

finite or infinite. If the space is finite, # is usually an infinite but countable sequence, while

if space is infinite, 7 will be a continuous variable. Here the eigen functions all have real

eigen values. It follows from (1.9.1)and (1.9.2) that
¢[},}’J:ZQ(E)W(E,Q)W*(E,Z’) (1.9.3)

and this the diagonal representation of the correlation function in terms of its eigen functions.

Evidently these functions are only defined “without a phase” that is, a factor exp(iy) can be

s ey

added to (g, ;) without altering ¢(x,x ) provided y is real and independent of x. For

=

a homogeneous field, ¢ is a function of X—Xx only, and the problem is to find eigen
functions which are also homogeneous within a phase, in the sense that

W (;,;): exp( iy )y (f_’;; + E) (1.9.4)

This equation is satisfied by the Fourier function,

(2,;): exp(ig.;) = exp(in;x;) (1.9.5)

with ¥ =-74,d. In this instance, therefore, “the index” n is a wave-number Equation (1.9.3)

becomes,

qﬁ(; ;c/) = Z A(n) exp{in(; — ;c./ )} (1.9.6)
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—

So, that i(l—‘;) may be identified with ¢(r’!), the Fourier transform of the correlation
function. |

Since we are considering homogeneous isotropic turbulence, the turbulence field
must be infinite in extent. This produces mathematical difficulties, which can only be
resolved by using functional calculus. This difficulty is avoided by supposing that the
turbu.lence is confined to the inside of a large box with sides (a;,a;,a3) and that it obeys

cyclic boundary conditions on the sides of this box. The a, are allowed to tend to infinity at

an appropriate point in the analysis. Thus the Fourier transform is defined by

U,(v)= @r) (aa0,)" S w, (Fyexplikx) (1.9.7)

k

Here k is limited to wave vectors of the form

INgr 2N NS
il »

o a, a, a,

where the »; are the integers while the a; are, as before, the sides of the elementary box. As

these sides become infinitely large. Equation (1.9.7) goes over into the standard form,
U (x)= Iu,(}?)exp (iE.;)d3?. (1.9.8)
The inverse of (1.9.8) is

uj(?c‘): (2z)” jU,(E)exp (f .f?c'.}.)de. (1.9.9)

hox

The Fourier transforms of the Navier-Stokes equation may be written as

[;i+ vk ]u, (/?): M, (E)i U, (p)U, (r) (1.9.10)

!

A
Where " is a short notation for the integral operator in
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”U:‘(zpm(;)‘j(;“;—';}f35d3; (1.9.11)

where 5,{!,”,“ is the Kroneker delta symbol, which is zero unless k = P+

Here, M;,-m(k) is a simple algebraic multiplier and not a differential operator. We have
-~ l ) o
M, \k )= =Py (k) (19.12)
where [)rj‘m (k) - kmp[‘,i (k) + k_; }jim (k)
ki k,
and Fy S, = ki

2 (E) is the Fourier transforms of p, (A) but P (E) is not the transforms of

Dijm (A) As it stands, Equation (1.9.10) cannot describe stationary turbulence since it

contains no input of energy to balance the dissipative effect of viscosity. In real life this input
is provided by effects, such as the interaction of the mean velocity gradient with the
Reynolds stress, which are incompatible with the ideas of homogeneity and isotropy. To
avoid this difficulty, we introduce into the right hand side of Equation (1.9.10) a hypothetical

homogeneous isotropic stirring force f;. The equation then reads,

(i e ]u[_(;): M, (k)ZA U (U, (r)+ f, (?{) (1.9.13)

dt

1.10: A Brief Description of Past Researches Relevant to this Thesis Work

The main characteristic of turbulence flows is that turbulent fluctuations are random
in nature and therefore, by the application of statistical laws, it has been possible to give the

idea of turbulent fluctuations. The turbulent statistical flows, in the absence of external

20
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agencies always decay. Millionshtchikov [40], Batchelor and Townsend [1], Proudman and
Reid [49], Deissler [12,13] and Ghosh [17.18] had given various analytical theories for the
decay process of turbulence so far.

Batchelor and Townsend [1] studied the decay of turbulence in the final period. They
said that the final period of a turbulent motion occurs when the effects of the inertia force in
the momentum equations are negligible. Deissler [12,13] studied the decay of turbulence at
times before the final period. Also Loeffler and Deissler [38] discussed the decay of
temperature fluctuation in homogeneous turbulence before the final period. In their approach
they considered the two and three point correlation equations and solved these equations after
neglecting the fourth and higher order correlation terms in comparison to the lower order
correlation terms. Using Deissler’s theory Kumar and Patel [35] studied the concentration
fluctuation of dilute Contaminants undergoing a first order chemical reaction before the final
period of decay for the case of multipoint and single-time. Kumar and Patel [36] also
extended their problem of [35] for the case of multipoint and multi-time.

Likewise the hydrodynamic turbulence, MHD turbulent fluctuations are random in
nature. The statistical laws can also be applied in MHD turbulence. Sarker and Kishore [54]
studied the decay of MHD turbulence. Kishore and Upadhyay [34] also studied the decay of
MHD turbulence in rotating system. In both the cases they obtained the decay law for the
case of multipoint and single time before the final period.

Funada, Tutiya and Ohji [16] considered the effect of coriolis force on turbulent
motion in presence of strong magnetic field. Kishore and Dixit [27], Kishore and Singh [24],
Dixit and Upadhyay [15], Kishore and Golsefield [29] and Kishore and Sarker [32] discussed

the effect of coriolis force on acceleration and vorticity covariance in ordinary and MHD
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turbulent flow. Shimomura and Yoshizawa [60]. Shimomura [61,62] discussed the statistical
analysis of turbulent viscosity, turbulent scalar flux and turbulent shear flows respectively in
a rotating system by two-scale Direct Interaction approach. Saffiman [52] derived an equation
that described the motion of a fluid containing small dust particles, which is applicable to
laminar flows as well as turbulent flow. Using the equations given by Michael and Miller
[39] discussed the motion of dusty gas occupying the semi-infinite space above a rigid plane
boundary. Sinha [63], Sarker and Rahman [56] considered dust particles on their own works.
By considering the above theories, we have studied the Chapter-11, Chapter-IlI and
Chapter-1V. In Chapter-ll, we have studied the decay of dusty fluid turbulence before the
final period for the case of three and four point correlation equations. In Chapter-111, we have
derived the energy decay law for homogeneous turbulence before the final period in a
rotating system for the case of three and four point correlation equations. In Chapter-1V, we
have generalized the energy decay law of dusty fluid turbulence before the final period in a

rotating system using three and four point correlation equations.

In geophysical flows, the system is usually rotating with a constant angular velocity.
Such large-scale flows are generally turbulent. When the motion is referred to axes, which
rotate steadily with the bulk of fluid, coriolis and centrifugal force must be Supposed to act
on the fluid. The coriolis force due to rotation plays an important role in a rotating system of

turbulent flow, while the centrifugal force with the potential is incorporated into the pressure.

2
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CHAPITER-II

DECAY OF HOMOGENEOUS DUSTY FLUID
TURBULENCE BEFORE THE FINAL PERIOD

2.1: Introduction

The main theme is to seek a possible solution for the dynamics of decaying
homogeneous turbulence. Approximately homogeneous turbulence can be produced, for
instance, by passing a fluid through a grid; various stages in the decay process then occur at
various distances downstream from the grid. Although a considerable amount of work has
been done on the problem of homogeneous turbulence, a satisfactory solution applicable to
the major portion of the lifetime of the eddies has not been obtained previously. The main
difficulty lies in obtaining a determinate set of dynamical equations. One can construct, from
the momentum and continuity equations, equations involving correlations between the
fluctuating quantities at a number of points in the fluid. Deissler [12] developed a theory
‘Decay of homogeneous turbulence for times before the final period’. Deijssler [13] also

generalized the theory to some extent in order to analyze the turbulence at higher Reynolds
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numbers. In his case, the quadruple correlation terms in the three-point correlation equation
are retained. By considering the Deissler’s theory, Loeffler and Deissler [38] studied the
decay of temperature fluctuation in homogeneous turbulence. Saffman [52] derived an
equation that described the motion of a fluid containing small dust particles, which is
applicable to laminar flow as well as turbulent flow. In recent years, the motion of dusty
viscous fluids has developed rapidly. The behavior of dust particles in turbulent flow depends
on the concentration of the particles and the size of 1he particles with respect to the scale of
turbulent flow. Using Deissler’s theory Kumer and Patel [35] analyzed ‘the first order
reactant in homogeneous turbulence before the final period’ for the case of multi point and
single time consideration. Sinha [63] studied the effect of dust particles on the acceleration
covariance of ordinary turbulence. Kishore and Sinha [23] also studied the rate of change of
vorticity covariance of dust particles in hydrodynamic turbulence. Following Deissler’s
approach, Kishore and Sarker [33] analyzed the decay of MHD turbulence before the final
period for the case of multi point and single time. The above problem [33] is extended to the
case of multipoint and multi-time concentration correlation by Sarker and Islam [59].
Analyzing the Deissler’s theories we have studied the decay of homogeneous
turbulence before the final period in presence of dust particles using three and four point
correlation equations. Here a four-point correlation equation is considered. The set of
equations is made determinate by neglecting the fifth order correlation terms in comparison
to the third and fourth order correlation terms. Finally, the energy decay law of dusty fluid

turbulence before the final period is obtained.

In absence of dust particles the result reduces to one obtained earlier by Deissler [13].
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2.2: Basic Equations

The equation of motion and continuity for turbulent flow of dusty incompressible

fluid are given below:

i

", N o(u,u,) _ 1 op ey u, +f(u, -v,) (2.2.1)
At Ox, P Ox, Ox,0%;
ov, . ov, K ( )
3 =——(v, —u, 222
Py k 2, = (2.2.2)
Ou, Ov, 0
q b D - 223
an o, A% ( )

The subscripts can take on the values 1, 2 or 3.
Here u4; turbulent velocity components; v;, dust particle velocity components; 22,

fluid density; V' | kinematics viscosity: p. instantaneous pressure; m = gnR\_}p_\_, mass of

N

a single spherical dust particle of radius R ; £, . constant density of the material in dust

. N . / . . ~
particles; K, stock’s drug resistance; f = KN dimensions of frequency; N, constant

0

number density of dust particle.

2.3: Correlation and Spectral Equations

The equations of motion of turbulent flow in presence of dust particles for the points

/ Y /
p, p and p separated by the vector t and I are

Ou, a5 o(u,u,) _ L op i ou,

+ flu, —v, e A
ot 0x, P ox, Ox,0x, /1 ) e



‘ Chapter-I11
W

ou'  ou'u! d otu’
Lot (j I)=~—l—ap L+ (ui—-vj.)

+v 2.3:2
ot Ox, P 8x; Ox, dx, ( )

" ioow u 2
ou, o O(uyuy) 1 0p iy 0 uy " f(u;f 3 v:’) (2.3.3)

ot ox; - ; Ox, Ox; dx/)

50 . /"
Multiplying equation (2.3.1) by u iu JL(232) by u, U, and (2.33) by u, u j ,
adding the three equations and taking space or time averages, we obtain

[0 a ‘o1 a ro a
u >+‘——<II o, u )+——<u.u U >+———<H u
k k- k
] a 7 a / ] e " /

/ i !

fo 0
_,fu!‘r U >

0
—{uu
a{(h

1 & 75 o , 0
:*;{a@”j”D‘Faﬂp u; “f)Jr@X—f(PH”,-uDJ

J

M uu)y O uuwly 0w
+v Lok o i S i
O e e B

+ f(3(u,ujz‘ff> — vty =i )y = (v uu, )) (2.3.4)

0 0 0 0 0 0 o

Using the transformations ; and = —— into

ox! or, ~ox!  ar/ ax,  or  on

equations (2.3.4), we get,

6] d G, ) 9,
3 (u,rrj ]l o énlv(u,.uj,.ufu,) = ——I—(u,.z.rf,.n,{,’u,, Y+ — (u,uj.ufuf) e ATl uj-ufuf)
A " ry f)rl Y
Ll @, o oy o & oy g B ooom g
Sm—| =Pttty ) ———{ PU U yH— AP uup y+—(p uu;
pl o or; . ory
- 8’ (uiu; uf) N 9* (u,-uj-uf) \ 62(u,ujuf>
0,0, or, or/ or/ or/
- f(3(ufuj-uf - (v,-uj,-uf) —(u; v_’;, ) — {u, vag ) (2.3.5)

In order to convert equation (2.3.5) to spectral form, we can define the following six

dimensional Fourier transforms:
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(u, ! (F)uf (7)) = j mj(ﬁ, BB (k). exp [f(k- r k’wj)]dkdk L 236)

oy (ryuy )y = [ [(B, B, ﬁ_:mﬂ;’(kf)>.exp[f(f_c'r+k_’-rf)]dkdk’ (237)

—on—o0

3

(pu'l (rmu (r')) = ik r+ kW’Ar’)]dkdk J (2.3.8)

8 —

[<ap VBl (k") exp

and (v, u’ (ru, (r")) = T?{y,ﬁ;(k)ﬁ;’(k’)>.exp [,'(k.,g k’.r_’)]dkdk " 3.9)

Interchanging the subscripts 7 and 7 and then interchanging the points p and p give

Gl () () (1)) = Gy ul (=r )y (7' = 1))

= [ [¢8,8, B/ k=K BLK . explithe o k- Jakak’ (2.3.10)

)

(u, u.: (r)uf (r' )uf"'(r/ V=t r.r!‘"(-—f'f))r.f“;’(f' =)

= T](/J’kﬂ, B~k k"B (k )>.exp[i(/§~;:+ k_’-r’)]dkdk’ (2.3.11)

—on—on

where the points p and p/ are interchanged to obtain equation (2.3.10). For equation (2.3.11),
p is replaced by p/, p/ is replaced bypﬁ and pﬂ is replaced by p.
Similarly,

(u, p' () (1)) = (pu) (=r)u (' = 1))

= TI(aﬂ,-’(—k - k’)ﬂi’(k’)>.exp[f(f_c- ek’ r_’)}a’ka’k’ (2.3.12)

{u, u.jp”(r" V= dpu, (=r" Yu', (r ="))

= ﬂ(aﬁ!(%%')ﬁ;’(f’c )>.exp[i(1_c-;;+ k_’-r__’)]dkdk’ (2.3.13)

-0

2
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{u, v’fﬂi’ﬂ(r")> = (vfuf(——r)uf(;" - r))
o o)

= [ [t ,B/(=k =&)Y B] (k')).exp [f(lf-r+ k_’-r’)]dkdk / (2.3.14)

—on—m

(u,.u_’;(r)vf (r)) = (vku,"(—r "u ’;’(1' =Y

= vj?(hﬁj(k kA (k Yyexp [,-(;(.H k.’-f")}fkdk ; (2.3.15)

—on—0o0

Substituting the preceding relations into equation (2.3.5), we get

Ci([)’,. BB 2k ek k7 ) B BB

=+ X B BB =ik, (B, B, B eI VBN =ik B B, Bk~ VB (K]
—;l; [m ik, +kYap Bl )+ ik (o (~k =k VB (")) + ik (o (k= k)] (k))]+

1B(B. 5108 G (1, BB )~y Bl kOB D)k -kBIR)] @316

The tensor equation (2.3.16) can be converted to a scalar form by contraction of the

indices 7 and j and inner multiplication k& ;

L)k on k)

= {r’k,;.(k, +kf )(/3’, B BB )ik (ﬂ, B B k= KOVB D) = ik k] (B Bl k=) ﬂu(,{»]

_% ik, + ko ) itk oy kK B+ ikl (e & —k’)/)’,“’(k)>]+

& [3<ﬁ’ ARG =, B ED) = (1 KB~ & --k")/f.f”(k))} 23.17)
To obtain the four-point equation, we consider the equation of motion of turbulent flow in

presence of dust particles of the points p, p’l p’ and pw as

: o’
cu, - o(uu,) 1 &p iy u,

S : F S, =) (2.3.18)
ar avr m p a-\’f a.\‘ m ax m
ou' O’ 1 on' ' o

o) 0p L, ¢ Lee e S0, =) (2.3.19)
ot ox, p ox| ox. Ox,,
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ou 6 u u 1 op” ou; -
i, O H’”) = fﬁ +v——t—t f(u] —v)) (2.3.20)
ot Ox,, p Ox, Ox, Ox,,
il ~y I = it " B
C"u, i a(u; u, ) *“l—-fﬁ-firv a H,g n f(u _1;;,0) (2.3_21)

/i - /i
ot ox,) g o%j ox ' ax "

m n

where the repeated subscript in a term indicates a summation.

Multiplying the first equation by ’fu D" the second by i3 f u ,m , the third by

1y ) Lo ; . : ' :
u;u u, and the fourth by 2, u 20, respectively, then adding and taking space or time

averages, we get

a !/ /I
—{uululul Y+
at S |

d Lo i 0 "
I
T Ul rui z.r; ul + — (U u jlg Uy Uy,
I L i I
Ox &5

m S m

Lo N 6, P
u U up U, - ;g g,
Gx,, ox!,

__1|.9® i 0 - 0 /B d m, o4
= == <prr g u] >+ —T<17 T TySTH >+7}7 prusu gy Y+ —- (Pl U uuy
ax; dx a dx,

#Y;(
I/ " / ol
82<u,- U U > 0 (u ity u,’) 0 <z.r 1 z.!£ u, > 0° <u uu g >

¥ + * T * P 3

ax”? axﬂ? ax"l a'xlﬂ at 3 m axi’” axi’”

LW I i I, i Fos At ]
f(— <v,- z;jui uj >+<u u uku,’ > <zr ViU Uy > + <u ey >

1 { zodlo il !, 0 4
<u uj wu; >+ <u u u,i u)” > - (u, ujzri. V) >+ (:.', u_ju,i u) >) (2.3.22)

Equation (2.3.22) can be written in terms of the independent variables r, ¥ and #’ as

0 ;oo\ 0 Lol d pouomy @ P
—(u, u fufc 1 >— (u th, 10,1 1) >~—f<n ORTETATA ) % (u 0,1 u,(u,’ )
o ‘ or or

-m m & m

n

a 3 3 FoN
+— ” ”" Il'" N'f.ff(]w '+'*'T' ” H"H”'Hﬂuﬁf et H ” u IH II’
Fmtk a’ k / ,)’ { et

“m “m O n

‘ 5 a / ( "o '} / 9 8
= =l 7(])2/”?14”) 7 <[J nj,ufzrf”) = (pl/h'f( Hf[ > -<H’p Hfln’f) + —-—(H Iljpﬁl{,{ﬁ) +"-—F<H,- Ll':‘,-”fpw>
Moyt a; o' a, & o

2 rog 1ol ' il 2
62<u,- u’;-ufufﬂ> 5} (u,. r.'Jufuff> & (H ua ) o (rr wu > o (u wty ) 6“<u u t;fuf )
+ + + -

4 +
&, &, 0 anon, an aory

m n n mn

LA il . / It i
+f{—(1.v’ ”_1”;?”; )—(u,- Vit ) (u U 1£n,’ > <7r 74 HAI', ) Hl(zr v )) (2.3.23)

+2)
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where the following transformations were used:

0 0 3, 0 8 5 %, 0 0 0
= = = —— and == =

ox' or T ox!  or!ax’ T o) Ox or, or, or)

m m m m X m m m m m

In order to convert equation (2.3.23) to spectral form, we define the following nine-

dimensional Fourier transforms:

<u ' () () (" >: jJ-J}qu,(k‘k’.k”)exp[_f(l_c-1_'+lcmf-1-‘_’+k7”-1:”)]dkdk/dk” (2.3.24)

— -0

o o) o)

(e, 0t ¢ ) = [ [ [Frslk K yexplthr k' + k" dkak k' (2.3.25)

—on—0n—-0n

(])H‘:.(?‘).'!f(}'f)I.l;w(f > j J .l‘(sh.‘,,(!’(./(;.f(ﬁ)eXp[-f(%-f_'-{-kj'I:_"Jrkj/-.F_‘ﬂ)]dkdkfdkﬂ (2.3.26)

jy S (kKK yexpliChr+ k" v+ k" ") dkdK dk”  (2.3.27)

-on

(vuj(}')?f,‘ (." ”;W(’ )) rfj-

é!_..._.,S

<u v, (e (" )> = <v!u:(—r)uf(r” —ru," (" —r))

I g g o , (2.3.28)
= [ [y (k=K =K K K yexpliCh 7k '+ Ykl ol

— D000

Similarly,

<11, H;. vy D" " ))
gl

(1,0l 0 ] ()

Y0, (

— 00

I

Vdkdk' dk"” (2.3.29)

il

S'——:S

~k—k' k" kK" yexplitk-r+ k¥ + k" p

ij Sy (k= k' k" kk" yexplitk-r+ k' -1+ k" "y \dkdk' dk" ) (2.3.30)

—G0— 00

Substituting the preceding relations into equation (2.3.23), we get
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i iyl i
* 21}(!{ + klnkm i kmkm 3 k *: kmkm + k )}/UM

l,'H

:[I(k +k! +kﬁ )yin;ﬂc.’(k’.k"’kﬁ)Mikln}/‘ﬂmﬂ(ik 7](” 7k”’kf’kﬁ)

m m

_rk/}/f“”!'lf(mkmkf ﬁkﬁ"k’kﬂ) .'h‘j/ﬂ'HH,l;(( k% k" K, k' )]

m

itk FENS k! K" Y ik S, (~k =K' k" K ")

o)
+1/f5

it

+ f14y, (oK K"y =,8 Uk kY =y S~k =K' —k" K k")
7,8, (k=K =" k") =,6, (~k — k' =k k)] (2.331)

(—k—k' ="k k") +ik]S (~k k' —k" k. k"))

To obtain a relation between the terms on the right hand side of equation (2.3.31)
derived from the quadruple correlation terms, pressure terms and the dust particle terms in

equation (2.3.23), take the divergence of the equation of motion and combine with the

GRS 0% (u,u,
continuity equation to give — =35 (2.3.32)

p ax m ax m ax m ax n

s . 1o . o
Multiplying the equation (2.3.32) by u i, U, | taking ensemble average and writing

. oo . ; 7 .
the resulting equation in terms of the independent variables »  and r’, gives

1 82<pu:ufw+2i <pu u, u,”’>.+2 9’ <pu 1 u”)

. . . M
p a’ m a] m 9 m a’ " (3] m a] m
2 / W 2 A [l
0 <pufu u, > 0 <;mli‘.r,'cu, > o’ </)u uku,'>
N O e P ""+'—"Trﬁ'
’ m f m ] m ] m ( ’ n

2 1 2 L () 2 i
3, <H u,u' u,{u, ) 0 <umunulnkr.r, > 0° <1 u,u ukrr, >
=— + : — +

8].,” 6"” a"ﬂl? af‘” a‘rm ar”

2 1 2 Lol 2 H
0 <z ' u,‘u, > %, <umu”u,u,¢ 1 >+8 (u u,u zr,{ u, >

a el I~ it -
a"‘m a}.ﬂf ar’” ar” ,‘H} aj_”
2 L 2 i 2 L0
0 < u uk'u, > 0 <u TRTM VI TH > d <H”,H”H W o >
7
+ + P, + T (25337
or, or or, ' or ar>ar’

mooon m "
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The Fourier transform of equation (2.3.33) is

—l(kuzk ky, + 2k, k, + k" 2k k, -»k”?)S,H

mom m m m m

yo,
= / " / Ipt P /" "yt "yt
=1 (km"(u o kmkn + kurkn h kmkn L k.'nkn + kmkn i ]{mku + kuﬁkn % kmkn )?/nuy'kn'
/ I / fpl I i iyl iyt
1 5 (kmkn Jr](mk” * kmkn +kmkn i km](n i ]"mkn Jr‘kmku Jrkmkrr +'I{m“'(n L’!m:jk.’
g (6242, 42k k> 20 i (339
+ 2K, Ky + 2K, K KA 2K K, +

Equations (2.3.31) and (2.3.34) are the spectral equations corresponding to the four-
point correlation equations. The spectral equations corresponding to the three point

correlation equations are

d 9 )

— B+ 2007 bkl + 5 Yk B

[4

= ik (ky + &) o (e k) = ihky By (ke — b K'Y~ i ] Bk — K k)

ik

1
—4[— ik, (k; + kDo (kK Y v ik ke, (—k — K &Y+ ik ke, (<k _k’,k)]+ Rk, (2.3.35)
p

here. A A/ B = (B4 A )~ (1. B VB KD) = (7. B -k =KV Bl (KD)) = (3, B/ (K — k) B (K ) (s2y)
R is an arbitrary constant and

1 k, k, + /c,//cm + k, /{i’ + ]cf/(,:i
Ay = ; Iz (2.3.36)
P /62+2/(, /(;Jrk/

Here the spectral tensors are defined by

oy o

(H, zr.';(r)u,f(r ; )> = J j D (/{,k"‘)expl_i({(_- r+ k_f-r_’ )| dkdk' (2.3.37)
<u, o ()} (rﬁ)> = I Jﬁf,},‘_ (k.k' yexpli(k-r+ k' r'j )]dkdk' (2.3.38)
(pu () = | [0 ok yexplith r+ &' Ykl (2.3.39)
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. . . y . .
A relation between S, and y,, can be obtained by letting #* = 0 in equation

(2.3.24) and comparing the result with equation (2.3.38)

B (k. k") = _[?’gkf (k, k' k" )dk” (2.3.40)

The spectral equation corresponding to the two-point correlation equations in presence of

dusty fluid is
d ) : . 3
';[_;(/6,‘, + (ZVk i Q/ )qj.'_; = 'rkk ¢M‘1 (k) - ]kk ¢ka (_k) (2‘34 f)

where ¢‘f_, and ¢,/(; are defined by

<uJu ';(r)>: Uj‘gﬁn(k)exp( fr’i'-}"')(ﬁ( (2.3.42)
<u,u,{ u j (?‘)) = dj.;zﬁ,kf (k)exp (i k-r)dk (2.3.43)
and 04,4/ =2 (k) - <u,;,-’ (F)) = (11,8 (=k)) is an arbitrary constant.

The relation between ¢f&'/' and ﬁuk obtained by letting 1 = 0 in equation (2.3.37) and

comparing the result with equation (2.3.43) is

Gy (k) = J‘ﬁw (e, k" )dlle! (2.3.44)

2.4: Solution Neglecting Quintuple Correlations

Equation (2.3.34) shows that if the terms corresponding to the quintuple correlations
are neglected, then the pressure force terms also must be neglected. Thus neglecting first and
second terms on the right side of equation (2.3.31), the equation can be integrated between t,

and t to give

Yo :(y”k,)lexpl_{fQV(kz +k K +k K+ kT kK +k”?)—Sf'}(r—tt)] (2.4.1)

m--m m-m m-oom
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%(k;( B+ 2K +h k! + K Ve B, — BTk,

——l—exp {—2v(ik2 +lk,kf ~I—Ekﬂ)—Sf1(£~tl )
3 3 4 2 4 |
@vy (-1~

3

—— 3 Jﬂ%exp { 21/(318 +h k| k" )me}(t_l‘ )}
@v)* (t-1)*  ~
; - | |
. . ijjmirexp {— (k> +kk, F%kf )—Sf}(l_fn )} (2.4.3)

@ (-1 -

where the bracketed quantities in equation (2.4.2) have been abbreviated as shown.

Integration of equation (2.4.3) with respect to time, results in

kB = (e extll- vk 1k + )= Rt =1

3

2 i )
i 1 S S ~-—a:2(ik2--r~lk,fq’+3k’ Y= St —4)

v 4 2 4 i

1 |

1, 1, 1.2) %02 )R ; SUCRLPTRLITSY 2
+2(4k +Ek,!(, +Zk ] expl-a@ (k™ +kik; +k )~—AS/(I—I|)J: 4 277 4 exp(x”)dx

:

2 2
i ) {m w’ exv[m Wi’-(% 2 kk] + kY= S - z,)}

v : 2

! it l
N 7)
+k exp{m W (K2 +kk! +&" )= Sft -4 )] Jexp(e? J
0

[N

+ﬂﬂl{_ i ex[‘{#(g)Z(kz e +ik’2 )=S/(0~1, )}

%

LY
+k exp[— (R +hok! & )=8f (1t -1, )]Lé“’" exp(xz)a’x} (2.4.4)

1
where @ = [2V(f —t, )]i



Chapter-11
In order to simplify the calculations, we shall assume that [a]; = O ; that is, we

assume that a function sufficiently general to represent the initial conditions can be obtained

by considering only the terms involving [b], and [c],

The substitution of equations (2.3.44) and (2.4.4) in equation (2.3.41) and setting
dE
E = 27rk2¢:,f results in EJr (2vk* ~Qf YE =W (2.4.5)

where,

W = k2 [2zilke o (ko k')~ ki Bog (—k=k Dy expl{-2v (k> + k] + k) = RF}(¢ ~ 10k’

5

+k2 Oj‘ 27(2.!
1%

—-00

[b(k, k')~ h(wfc,mk/)]]{— w! cxp[——wz(jkz + k] kY= ST -1)]

|
+kexp[-w (k> + k k! + kY= SF(—1)] B v exp(xz)dx}}dkf

5
27 272 / / -1 %58 " ;
+k I [e(k, k") —c(~k,—k)] )4 —w exp[-w (k" + kK +Zk JreaSE (i)
— 0 V
L g ,
1k exp[—wi(k® + kk + k) =S -1)] I?k exp(xz)dx}dk’ (2.4.6)

The quantity E is the energy spectrum function, which represents contributions from
various wave numbers or eddy sizes to the total averages. W is the energy transfer function,
which is responsible for the transfer of energy between wave numbers. In order to find the

solution completely and following Deissler [ 13], we assume that *

@Y il B (s k') = ey B (—ls—k ), = =By (kK" = kK™ (2.4.7)

For the bracketed quantities in equation (2.4.6), we let
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2 2 R G
i i[b(k,k’)mb(fk,fk’)]i:ﬂi[c’(k,k’)—c(—k;k’)],——2y,(k"’k’ —kgk’) (2.4.8)
1%

V

where the two bracketed quantities are set equal in order to make the integrands in

equation (2.4.6) anti symmetric with respect to k and K

By substituting equations (2.4.7) and (2.4.8) in equation (2.4.6) remembering that

d' = 2z K d(cos Q)dk and kiki = kk' cos@ (8 is the angle between k and 15/), and carrying

out the integration with respect to 0 ,we get

W~w B KK —KK Yk exp[I +k K +K ) =R ~1,)] . WK WYk
_ (Al Kk kK 1 i ST
6 M) | explHRUR —k K k) =R G—1,)]

x{((:f' exp{{uz(ikz vk kK )=SAr -1, - expla’ (3 kK +k V=St —1,)/1
+a' explfar’ (° +k K +v§rkﬁ )=SAt—1, )|~ exprar (K —k K +g K )=SAr—1,)]

‘m’f

kexpha(E —k K +5 Y =St —1, ) ~kexpta? K +k K +K ) =Sfr —1,)]} Jexpf)dx

0

|
o’

+{K expba’ (K —k K +K ) =Sfit 1, )|~k expta’ & +k K +kY—Sfr—1, )J}ij.exp.&z)cix ¥ (249)

0
1
where @ = [21/(1‘ - [ )]2
The integrand in this equation represents the contribution to the energy transfer at a
wave number k, from a wave number k' The integral is then total contribution to W at k,

from all wave numbers. Carrying out the indicated integration with respect to k' in equation
(2.4.9), where results in

W=Ww,+Wy

(2.4.10)
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Here
[
T2
(2} i 3
Wy =- = = ex[{(—-igz)(l()‘Ee;"6 +455° 195" —3e) - RA —10)} (2.4.11)
25602 (1 —t,)?
and
L}
p e e B ad O e (B, e A0S o VAS e e
W, = o exp{( n )(128 n fg;] |64 7 = n e i ] Sf(1 tl)}

v -1,)"°| 16

2 4
+2H exp{L——%)]zJ( 169 '+ 40-1;'4—E-r]'2 a5 IU—EF]SJ—Sf(l—I])}

— S
43 19683 729 27 162] 18
1]
/g A
() ¥
9 3" 5 3 5.3 & 21 o 105 5 945 5 .
= exps (—=1 ex | —n +-n" +—n" ———n  -—n |-Sft-t
o p(zz)ﬂj p(y)c,{Mz St e = =S =)

1

2
+?§*6Xp{(*%ﬂ2)(5.386?73 +9.1187" +3.01717" +0.17937" ~0.031067"

~0.004942 7" =3.615x10 "™ —1.890 x 10 *n™ -7.561x10 " n™
—2.447 x107% % —6.64 %10 "™ ~1.55%10 "n" ... ) - SF(t mz,)}] (2.4.12)

1 1 |
where 7=v?(t—1)’k and e=v (l-1,)k.

The quantity Wﬁ is the contribution to the energy transfer arising from consideration

of the three-point correlation equation W, arises from consideration of the four-point

equation. Integration of equation (2.4.10) over all wave numbers shows that

j Wdk =0 (2.4.13)

0

indicating that the expression for ¥ satisfies the conditions of continuity and

homogeneity.
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In order to obtain the energy spectrum function E, we integrate equation (2.4.5) with

respect to time. This integration results in

E=E +E; +E, (2.4.14)
where E, = —Ej—exp{— 2&* ~Of(t—t )} (2.4.15)
"3t -1, ‘ o
L :
' 2 W2
E, :—m———(zf)zﬁ" —ex (—352) —156° -125° +z£'°+j—(?5'2—£-£”exp(ff—) Jexp@)z)dy] -Rftt—-1,)| (24.16)
: 3 W2 275
25607 (- 1,)?

and
1
2 C
71 T 189 3 1029 10 287 12 95 14 71 71 18 e 3
E =" ! _—g ) T =A== =0 ———1 Texpl NE{*) - 0577 | - Sf(t —¢
T -y |32 ”{( 7[ 256" 256" 51" 5127 512" ver ) A==

1
2 4 0] 7 8 497 10 1001 12 761 14 1963 16 3926 |3 2 21 2 2 :
H ol exp|—=7 |- +—n +——n "+ i Wit sl Evs 05777 |- Sfir -1
(SJ r{[ 37197 3247 Tiasg’ Taa7d’ 19683 59049 © ~37 f(3n) -5/t -1)

3
+ ”2_ exp{e5 71023077 40363272 +0.15027' + 0.04463;'° - 0.01326;'® exp{—% i )[Ei(%rf )-0.5777

+2459:1077'8 4+ 2.935x 10777 + 2.846x 1077722 4 2525 107072 41,695 10771720 +1.25% 1078528
+5.80x107% + 4.00x 1075 oo - Sf(r =)}

1
1
g 5(;:)2 exp{eng)n_mm" +24147° 1140872 +0.44167'* +0.1898,'
! 1
—0.0899;‘8expe- :;z)ws(— ) =05773+ 657510755 1327110752 4 1.270x 10702

+4.03x10°% 7% +1.08x nr"n’(’ +250x 1072 £ 5,09 10720 4o =St -1} (24.17)

The quantity £, is the energy spectrum function for the final period, where as Eﬁ

and £, are the contributions to the energy spectrum arising from consideration of the three

and four point correlation equations respectively.
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Integration of equation (2.4.14) can be integrated over all wave numbers to give the

total turbulent energy

I o0
E<u,.u,> = JEdk (2.4.18)
0
The result carrying out the integration is, in dimensionless form,
4 8
iy JS0 v -2
( ’2’> =20 SV : =T 2 exp| OF (1 = 1,)] + 0.2296 T 7 exp[ R (i — 1)]
B |32(27)?
6 &
9J9 —{ __B __]_?A
AT TEIEL LI T el § (- 1))] (2.4.19)
~ 1y

Thus the energy decay law of velocity fluctuations of dusty fluid turbulence may be

written as
19

5 19 =,
(1) = AT 2 expIQf ~19)1+ BT explRf 1))+ (T2 (L"T’J el (-] (2420)

0

2 é o B
t—1 v®J) (¢, =t Hv¥JE 11

where ?Mf =] A = . I ”4) : : T (2.4.21)

il 2 4 i

( /6()} l’)SIJ/'F()

a2
roY YA =ty

- 2 (2.4.22)

and A, B, C are arbitrary constants.
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2.5: Conclusion

In equation (2.4.19) we obtain the decay law of dusty fluid turbulence before the final
period considering three and four point correlation equations after neglecting quintuple
correlation terms. The equation (2.4.19) shows that turbulent energy decays more rapidly in
an exponential manner than the energy decay for clean fluid. This decay law contains a term

19 5
. ; w5 = . . .
in 7 2, as well as the terms in 7 2 and 7" . Thus the terms associated with the higher

order correlations die out faster than those associated with the lower order ones. The factor

(f_tl)

(t—1,) occurring in the last term in equation (2.4.19) will cause that term to decay even
0

faster, so longas {;, =1, > 0.

If the fluid is clean, i.e., in absence of dust particles, we put f = 0, the equation

(2.4.20) becomes

,,'? .fAt 7]2() 19
2 -7 : ] -
Wy = AT 2+ BT +C|-—L| T2
< > =g, 2.5.1)

which is obtained earlier by Deissler [13].

Considering higher order correlations in the analysis, we may also generalize more

terms in higher power of 7" will be added to equation (2.4.19).
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CHAPTER-III

DECAY OF HOMOGENEOUS TURBULENCE BEFORE THE FINAL
PERIOD IN A ROTATING SYSTEM FOR THE CASE OF THREE AND
FOUR POINT CORRELATION EQUATIONS

3.1: Introduction

In geophysical flows, the system is usually rotating with a constant angular velocity.
Such large-scale flows are generally turbulent. When the motion is referred to axes, which
rotate steadily with the bulk of the fluid, the coriolis force and centrifugal force must be
supposed to act on the fluid. The coriolis force due to rotation plays an important role in a
rotating system of turbulent flow while the centrifugal force with the potential is incorporated
into the pressure. Batchelor and Townsend [1] studied the decay of turbulence in the final
period.

Deissler [12,13] developed a theory “Decay of homogeneous turbulence for times
before the final period”. Kishore and Dixit [27], Kishore and Singh [25], Kishore and
Golsefied [29] analyzed the effect of coriolis force on acceleration covariance in ordinary
and MHD turbulent flows. Shimomura and Yoshizawa [60], Shimomura [61] & [62] also
discussed the statistical analysis of turbulent viscosity, turbulent scalar flux and turbulent
shear flows respectively in a rotating system by two-scale direct interaction approach.
Loeffler and Deissler [38] discussed the decay of temperature fluctuations in homogeneous

turbulence. In their approach they considered the two and three point correlation equations
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and solved these equations after neglecting the fourth and higher order correlation terms.
Kishore and Upadhyay [34] studied the decay of MHD turbulence in rotating system. Islam
and Sarker [21] also studied the decay of dusty fluid turbulence before the final period in a
rotating system using two and three point correlation equations. It can be shown that when
the system is non- rotating, the result reduces to the same as obtained by Deissler [13].

Here, we shall derive an expression for the energy decay law of homogeneous
turbulence before the final period in a rotating system using three and four point correlation
equations and solved these equations afler neglecting the quintuple correlations in
comparison to the third and fourth order correlation terms. Finally the energy decay law of

homogeneous turbulence in a rotating system before the final period is obtained.

3.2: Basic Equations

The equations of motion and continuity for turbulent flow of incompressible fluid in a

rotating system are given below:

0’1
Oty O O L T sk & (3.2.1)
ot Ox, o Ox, Ox,0x,
y ou, Ov, 0 (32.2)
r r—— T e (IT L.
- Ox,  Ox,

where the subscripts can take on the values 1,2 or 3.

Here w; turbulent velocity components; v; , dust particle velocilty components; p
fluid density; v, kinematics viscosity; (), , constant angular velocity components; & . ,

alternating tensor; p, instantaneous pressure.
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3.3: Correlation and Spectral Equations

The equations of motion of homogeneous turbulence in a rotating system for the

points p, p’ and p” separated by the vector rand r'are

ou, u, , 9
" + (u,”;) = e —!—“ ap + Vv o + 25;};;‘;‘ Q wl (33!)
ot Ox, o 0x, Ox,0x,
Au' O(u'u! | f 0u’
i g ( ,.Ir) =f7,apf i et B +25;,;;Qn“$ (3.3.2)
a1 dx, p Ox, Ox,0x;
" "o i 2,0
Ouy a(”kff ) _ _l_@pﬂ b aﬁ”’* b D, O ] (3.3.3)
ot dx, o B, x| ox, =

/o
Multiplying equation (3.3.1) by ¥ U,  (3.2.2) by u,uf , and (3.3.3) u,uj, , adding
the three equations and taking space or time averages, we obtain

/)

%) 0 / 0 i 0 ; ;
a(muiuf) + 5~(zr,.u_’fu,’{‘ u,)+ Q(u;u_;u,“ uy Y+ é——ﬂ—(rx,z;;ufu,")

e X )
l a I a ! i a i /
=——| —{puu, )+ —(puu )+ 2w u )
p[a‘xi <p J k> ax: <] k > ax’:'; (l 1
. 8% (u,uuy . 8w u)) Ej(u}ujuf}
Ox,0x, ox, Ox; ox, ox;
- 2(8”,,, Q. (u,.uju” &g, 1, <u,.u';uf> +6,,82, <uiniuf >) (3.3.4)
— ; i 0 0 0 3] y 0 5, %,
sing the transformations ——= -, ;7 =~ 5/ an == -
2 ox, ar,  ox/  ar ox, o, or

into equations (3.3.4) , we get
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0 0 ;
— ?r 0, Y+ —— (urr'nfu,>+--?(?.f,u;ufu;f)

0
—{u, u 1, )— (u,zr TATRES
C ,' : [ 6)" "” %
1 0 0
= _%I__Qm ;'.rf(>— (,rm u‘>+ (p'u 1“)4 ;77<p u )
O , ,: L

o, or,; o or/ o/ o

a{’-’,“,”k > (,?<u,ztlzfﬁ > r_')(uﬁufn* )
+ gl B A SO - s &

2(8 Q <u u H;(>+{ ,;£2”<u,u;u;_'ﬁ>+£q“£2q<zf,1f’;uf>) (3.3.5)

ml=“m

In order to convert equation (3.3.5) to spectral form, we can define the following six

dimensional Fourier transforms:

e [ [en pliopl ke itk e k0 ks ¢a6

b, w (f;)uf (r

Cwad, (ul ¢y = [ [(B, B, B, VB (k' )exp ik ek )]d/_cd K33
ol ) = [ e gL e ke kD lka k' @)
(v, (r)uf (7)) = J [ B,V BY (K" ))exp [f'(lf k! -rj_’)]d kdk' (33.9)
Interchanging the subscripts 7 and j and then interchanging the points p and p give

(uu, (r Ju | (r Yy (r')) = {u uu; (- f)zf:'(}"’ =)

= [ [B,p, B~ k=K (K ))exp [f(/; 4k .H)]d kdk' (3.3.10)

-0 —00
/ ! i /
D o= uuu (- ryu (r=r ))

(u,.uj.(r j (r ) (f

[ [¢BuB Bl k= k)B] )y-exp R R T TCERTE

8'_..._‘8
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where the points p and p/ are interchanged to obtain equation (3.3.10)

(3.3.11), pis replaced by p/, p/ is replaced by p’// and p// is replaced by  p.

Similarly,

G, (e () = (poe] (=] (=)

o (af (k=& B (k" y.explitk r+ k" .+ Ydkd k'
f ot ek 0 et i

oD—0

Gt p" () = (il (= (=)

[ ! k=B e pexplitrs k'l kd k'

vy () = (v, (=) =)

ie.r+ . )]dkdk’

Kiruper '

= [ [tr, Bl (k= k) B (K Dexp

2

to e ! Pl /
uaad v, (r ) =V (=1 e, (r=17))

= ] Qj[(}/,([)’,"f(-— k— f{_’ )ﬂf(k)).exp[i(k T kj .rj )]dkdk’

—-on

Substituting the preceding relations into equation (3.3.5), we get
d : ’
YR G R e (Y
. / Il : ! / 1z ! v/ /
[+ X o881 ) =ik (.5, Bl k=KL ) =ik (o Bl - -
%[# ik, + k) YaB) B{ Y+ ik, (aﬂ,’uc @’)ﬂf({c’>>+ iky (aﬁ,’(mff—f_c’)ﬁ:’

Il
- z[gmh'Q il + Em',"Qlf + gqt’i{ !)"r,r K/}.-/j,;ﬁfr >

. For equation

(3.3.12)

(3.3.13)

(3.3.14)

(3.3.15)

BTAGH

)]

(3.3.16)

The tensor equation (3.316) can be converted to a scalar form by contraction of the

indices i and j and inner multiplication &, ;
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%(k,{( BBBY zv(k2 k] ),rc,‘ (BB ﬁf))
=[ﬂck (k,+k KB, 3, BB ) - ik k, </i B, B (k=K (K )) - ik, kf(/if, B, B (~k—k' )ﬁ,-”(ff))]

_ %[m ik, (k, + k) {af 1) + ik, <a[5’ (k=K' Bl (K )> ik k! <aﬁ,’ (~h=k")p! (k)ﬂ

e Zkk [gm.'rgz.'n F: E”',,.Q" % g(ﬂ‘r’( Qq Kﬂr ﬁif /)’;"> (33 | 7)

In order to obtain the four-point equation, we consider the equation of motion of turbulence

. ; ; a V
in rotating system at the points p, o, p and " as
g sy p PP /

ou, N o(u,u, )

I 071
Lo .,

= — — - 2g,  Q  u, (3.3.18)
ot dx , B 0%, dx, 0x,, "
du'  o(u'u | apt o’u’
L+ '/”) - — ‘If +y ——t——2s Q u (3.319)
ot g p ox E s
u; Otu!u’ | Byp® T
koo (u, . e . e _ k — 25{,;”:\- 0 Ju ;(‘f (3.3.20)
af axm p ax:‘; axm 3,\1 F‘H
oul” o(u ul 1 ap” o
. Lo 1w . = 2% ! a TV I : o 26, Q ,u fw (3.3.21)
ot ax., 7 g% Ox, 0x,

where the repeated subscript in a term indicates a summation.

o B3 . , )l i, .
Multiplying the first equation by U;Uk U, . the second by U, u, U, , the third by

/i : ’oi ; : ; g
u;u U, and the fourth by U U, respectively, then adding and taking space or time

averages, we get
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ff

i tm

0

0

o ift {7/

(u TRTRTET >+V<u ) u ’)
ax

=-1 gx<pu_;u,”u, >4 ;j<p 10, 1) >+£7(p“u, Hi?!,m> +5x’(i U u,(>

! o, ahy

+1

N,

1 2 I/ 2 Lo 1
0 <u u H;{H, ) Fa (u, U, ) F@ <u, o, > a0 <H 1 Hku, )

/ / A
axm axm axm ax.'n armarm

pooN ool ol foals dF b A gF
_z(gum."c}' <“i u,'uf( ”u' >-| (P.INIUQ <uﬁ u.,'ui: l{:’ ) ;m.’rQ <Hf ”f”k ”I ) JHH'Q (ui u,iup'r u.’ >)

Equation (3.3.22) can be written in

/ I
roriand r" as

a / m a £
<u u u u, >,7,<”r U, >—
ot or, ' or,

m m

0 "o
i e U1 £ 24' L{ U Uy

or, or,

n

%, 0
=—L| ———{(pu'uu" )~ —
Pl o (/ # M > Py

E ! i |

i k Ty

+2v

terms of the

g <u u nﬁ n 'u, >+;:,<

iz 2 fo I
0’ (u ' u, > 0 <u, TaTH u,”> &’ <u w1,
+ ‘ 2

or,or,

m

— ¥
a'r H a? i

2 / i 2 o 2 b d o
%, <u u, ul, >+6 <u! Ty > d <M,.t.(j?-|’f‘ 1, >

or or”
ne m

. - =
a] a" nr a] m a’ m

m

Al
aj‘ n a; i

Fo M £ £
2( £, .8, <“:”;”f( u, >+£W£2P<?gn;zfﬁ_ 1, >+ £ $2, <z{,?r,ud ", >

where the following transformations were used:

0 0 0 0 0 %,
ox’ or  ox”

mn i n in SEE “Tm
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W
a“m axm

(3322

independent variables

3, ST d
i ! i
—/<u, U U, >—- = <u i u u! T >
or

e

i i
u u,c u, u, >

T/ a 1t
[}'H’,H‘, U,. . ;5]“‘“ p” H’,‘ ?I",

+86' <u P u,{ u,”f>+gcz~<u u,p H;W> +(?a*(u u uk 28 >

)

l 1
B S0 <u u u,c u, >)

(3.3.23)
o 9 8 0
a X m al m a] m arl::/
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In order to convert equation (3.3.23) to spectral form, we define the following nine-

dimensional Fourier transforms:
<a.¢,uj(_{)uf(aj’)u,’"’(r”’)) = j j Iyw(/{,kf‘k’" yexplith-r + k' v+’ + k" r"Vdkdk’ dk” (3.3.24)

j;/ (kKK yexplithr ko kN kd K d k" (33.25)

—eh

N
<u,umul el el (" )> = J'
o

Qe

5.__,3

(! (Pl " ) = |

L e—

[ ek K yexplithr+ k"' k-1 ldkdk dk" - (3.3.26)

<v,.uj.(r)u{j({)u,’”(r”)>: j‘_['[J/,ciw(!(,k’,k”)exp[i(k-::+k’-r_"+k”~r”]dkdk'dk” (3.3.27)

—an—on—on

Similarly,
(] o0 ¢ ) ) = j”y,cs,,(,(wkfk,’ KK K yexpi(k rrk kT YakdkdK (3328

<u,zr;(;:)vf(;:f)z.f,m(; )s ”jym”,( k— k fk ok exp[r(f( 1+k ¥ +k” r”)]a’kdk dkﬁ (3.3.29)

R s )

(u,u; il (el )> = [ 10 ok =k kK Yexplichera k' + k" kd k' d kT (33.30)

Substituting the preceding relations into equation (3.3.23), we get

mem mm mom ikl

"5[(”#“)*2"(" w bkl BB 487 LIRS 4 P

= [i(km + kf:’l + k”: ikt (k’k”’ kﬁ )— ikm}/_,imn'\‘! (A !f_ ffj— kﬁ’ ki’ kﬁ)

- ikf':l?/kmm’ (7 k- kf_ k”fﬂk’kﬁ) ’km}/fmt;»’c (W ]{_, kf— }ff’k’k/)]

__L[mg(k,+/¢,’+k;’ W(k k' kﬁ)Jr.rkj(S,”( k—ictk”,k’,k”)
p =l = W it o

p
+ ik, 0,

(— k- k' k”,k,k”)+ ik} S, (f -k’ - f("’,k,k’)]

- 2( nnni £2 + £ sl P + gc;m;‘; Qq & grmi Q r)}/ry,’u’ (3331)

oy
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To obtain a relation between the terms on the right hand side of equation (3.3.31)
derived from the quadruple correlation terms, pressure terms and rotational terms in equation
(3.3.23), take the divergence of the equation of motion and combine with the continuity

equation to give

82p o Gz(umun)

1
P axmaxm ax,,,ax” (3332)

g s : Lo ,
Multiplying the equation (3.3.32) by # i, U, | taking ensemble average and

writing the resulting equation in terms of the independent variables t and ¢, gives

izl 2
1 82<pu oy ) . 82<pu U, 1;,’”) s 8’(1)1;{,1;1’11,’”)

A . ] AW
)O a’ma'rm a’ Hla] m a] a’

m "

2 fo i 2 AN Y 4 2 Foidlin

0 (,mffuﬁ, u, ) 0 <1)11,1sz1, > 0 <pul.ukuf >
+ / / T 2 ! /" ¥ 1 "
or,or, or, or ar, or

ni m m

2 [ 2 froce 1 wanill 2 Fpuidl yith
0 <u,,,u”u,nk u, >+8 <1.;mu,,z.rjuﬁ,u, > 0 <umn”uju,(u, )

; Al g i
or,or, or, or, or, or,

2 Lo 2 Bre o, JIE 2 -]
0 <Hm?.{”?ff1{k i, ) 0 <umnnuluku, > d <rr”,zr,,1;j1.'k ", >
/ + i ! + ! "
arl" a"il ai..‘" ar” a""”l arﬂ'
2 I meilonadll 2 Froaon Bl 2 Lol JIE
0 <z.rmz.r”u‘l,u& ", > N d <umunu1uﬁ_ ", >4 0 <umn,,rrfn,(u, >

T ’ W A Al
or, or, or,, o BBy

" "

+

N (3.3.33)

The Fourier transform of equation (3.3.33) is

= L(fcz +2k kD 42k kIl vk 2k k) k" )§W

Jo,
/ 1 !y iy d [ I iy ! "oy i
= (k mkn + kmkn + kmkn + k m A 7 + k " /(n + k n k " s k m k n F kmkn * kmkn mujki

/ "o gl YRR Y Wl o gl

= _]_(5 e r(@ ](” + ]cﬂ?kl'l Af_ /CJH ]{H -.I_ /(f” /C”' + /cH.' ](H _!_ /(l.’il(f? + /CH! ]cli + klh‘ ]CFT _*— ]C.'” ’{” )
kT 2

g (/c?‘ +2k k! w2k kv kD 2k KD+ k )

?/nmﬂd

(3.3.34)
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e e — e

Equations (3.3.31) and (3.3.34) are the spectral equations corresponding to the four
point correlation equations. The spectral equations corresponding to the three point

correlation equations are
d 2 / /?
E(kkﬁmf)Jer(k +kk +k e, B
= jkk (k,' +k.: )/gwf (k:kl)7ikkkﬁ'ﬂh‘:k(_k—kf“kl)7?.kkkf/ﬂfchf(_k—k”wk )

1 [f ik, (k, + kYo, (k&' Y+ ik, ko, (—k Jc’Jc’)Hk,{k,fa,,(-—k—k’,k)]
yoj

- 2kk [Emh‘Qm + gnlr'Qu +5qfkg2q ]/EJ ﬁ; ﬂ;’ (3335)

1 fe ke, +klk, vk kD +k k) 5
and =y = Imik 3.3.36
£ /f2+2k/kf+{ ' ( )

Here the spectral tensors are defined by

<u,u ';():)uf({'f')> = I Jﬁuk (;’{,_;_fgl)exp[ f(;’f , Py k' .rj ) d !f d {(; (3.3.37)

iy

ol
<u, uu ;.(r)uf (f'f > I

Sc_..._‘s

k({{,f’f!)exp[ 5(15.544_{’.;{)14@1;(’ (3.3.38)

<p1{ (r) uy 7‘f > J Ja’ i (k. k" yexp [1'(!( Tk ‘f .r_f)lf kdk' (3.3.39)

A relation between S, and y,, can be obtained by letting gﬂ = (} in equation

(3.3.24) and comparing the result with equation (3.3.38)

B (/fa/f!): _[ rjl'(/(k k kﬁ)dkﬁ (3.3.40)

The spectral equation corresponding to the two-point correlation equation in a

rotating system is
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d _
aqﬁi,i 4 (2‘//(2 oie 28:1:!(.‘£2m + ZSHMQH )¢i.i = ikk¢1f<: (/f) = ik.fc ¢n’d (A f_() (334 l)

where ¢,:,,° and @ ,, are defined by

<u,ui(f:)>ﬁ [, kyexp( ife - p)d k (3.3.42)
and <uiukuj(r)> = .J‘gz},,g (/E)exr)( ik p)d {c (3.3.43)

The relation between ¢,'1(' and ,8,-1{ obtained by lettin ¥ =0 inequation
f i Y g q

(3.3.37) and comparing the result with equation (3.3.43) is

¢ ikj (k ) = J.ﬁ itk (k i k f )Ci k / (3344)

3.4: Solution Neglecting Quintuple Correlations

Equation (3.3.34) shows that if the terms corresponding to the quintuple correlations
are neglected, then the pressure force terms also must be neglected. Thus neglecting first and
second terms on the right side of equation (3.3.31), the equation can be integrated between

{yand 7 to give

Vow = o v explli=2v(E® + ke, k + kk, + Kk k"

m m m m

126, 0, +8,,Q, +£,,Q, +6,Q, - 1)] (3.4.1)

biif

where (?/W )I is the value of }/fﬂ”’ at ¢ = {; . The quantity (J/,-,-k;), can be considered also

. / i L \
as the value of 7y at small values of k, k" and k', at least for times when the quintuple

correlations are negligible.
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w
Equations (3.3.40) and (3.4.1) can be converted to scalar form by contracting the

indices i andj,as well as k and /. Substitution of equations (3.3.36), (3.3.40) and (3.4.1)

into the three point scalar equation (3.3.35) results in
d ( 2 / :2),
;;wdz)+2vk+w¢,+k b

. ko, +kk, vkl ik,
= i| ik, (k, +k, ))/,,k,(k k'K )ik,‘ (!(,. +k,’) i q{f i m T y,,k,,,(k,kf,kﬁ)
2 k* +2k,k,’ +k" -

1

5 - 2V(k -+ km km + ](m](m 2 k’f + km m kﬁ //
X jexl [ )
—o i Z(E;mug2 pimg)' qm.’{Q s Fuan
kb b,k
+|:ikf<kfj/l'i.f(.'(— k_'k/ﬂkkaﬁ) (IC"( ; i ] .’rkin( = ]/:k/akﬁ):\
A e = s :

—2v(k? +k Kovk” =k kv ke )

meem neom

XE]CX
o+ 2 + 8 i€, + E i 2y + E 2

nnii prii ok “ el

ko ki)
+L%ﬁﬁﬂ(kkk )P ”’%]Mikf kkﬂ

(I_[l) kﬁ
) | 2

k' |
- - 21/(/( +k k! +k” kK kﬁ?)
T 1)
=00 i 2( wmQ s g,')an e ‘qukQ + gum’Q )J
~2k ( mn’rgl + F!iu’.‘Q * quRQq )/Biif( (342)

; V
where the } ’s have been assumed independent of & at 7.

1
Substituting d k = dk Hdk dkg in equation (3.4.2) and carrying out the

: . . / I f I / 1
integration with respect to /¢ » /5 and K3 we get
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d S s o
E‘ (kk[Jii."() + 2416 + kfkf e k )kp’( ﬁ:’:’fr + Zkr'( (Em.'ig)‘m + gm’ig)): * gr,n‘.’cglq ))Buk

3
2 . 5 3
= T ; ___[aJI.—3 e}([{i{* 2}(3 k° +é J{(‘,kf +E f(" }LF 2(5,,”,9,, ,,,,,,Q }-dek()q HHQ )}( ):l

QY (1—1,)

2 b 3., 2
+ 3 l JI 3 exf {'*2{4 kﬁ +kﬁ'kﬂ‘/ +l(/ jwkz(gnm;)\r pr +8qm&Q +gnuf(%)}<t Al‘i)
@) -1 - i

! 9 3 12 .
- ——exp {— 21{}&' +k,/(f +gr k ]'i‘ 2{6”,”,Q,} +<‘5,,,,,pr +€W”AQ +S””,Q_)}(l ~t,) (3.4.3)
(2v)? (¢ —arl)2 - =

where the bracketed quantities in equation (3.4.2) have been abbreviated as shown.

Integration of equation (3.4.3) with respect to time. results in

= (B extfl -2 kK )+ 26,02, 46,0, 6,9 1)
3

72 3
i la] J[ W ex{. n)“(% &’ -F% k,kff kpi k”"JJrz(%uQn +5,wQ +QIMQ +r,m,Qr)(t =} )}

v

I I I ! I 3 3 5 f 22
+Z[4 K -yifc,!.r,’ +:1 k J exI{—(u’(k‘Jrk,icj +k )—+-2(£”,”,Q +é&,,8),+&,,£ +8,m,£2)(f l)]

,{'x-h 'k,k,’sz;(” ] )
X J’\" 4R S ENpl )dx}
)

Vv

-F—)‘FE—W[—[,)Jl {w(ol ex{—(o‘ﬁ(g K+ kA ol )4—2(5,,”:9 +&,,82,+6,,8, +runfg2'k’ f’?):|

1 / i 'r’:k 3
‘%kex[_‘[—mz(k”rf(,k; +k )+2(&;WQ +é&,,82,+€,,82, kquﬂf}(t—f‘)“;l exp(\f.”)dx}

%
k[ L {ﬂfu ex{—m (k H(k, o+ k J+2(5M,Q”+£M,,QP+5-;W,(Q +g,m,(2,)(trlg)}
Vv

242 / 2 : I’”"I
—l.-kf ex"{in)— (k' + fcjk; -‘h k" ) Jh‘ﬁi,()‘ﬂ + I)Ui’()’h + l"””'gl Wi“ G‘HH’EZJ)({ _Il )] .[1 expc{z)dx} (3'4'4)
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2
where @ = {21/{\[ e ,'1 )J? |k

In order to simplify the calculations, we shall assume that [a]; = 0 ; that is, we
assume that a function sufficiently general to represent the initial conditions can be obtained
by considering only the terms involving [b], and |c],

The substitution of equations (3.3.44) and (3.4.4) in equation (3.3.41) and setting

. 2 :
E=2mk @, results in

dF
dt

+(Qvk: +2¢,Q, +26,QE=W (3.4.3)

miki ki

where

W=k PJH{@ ”,f( ) kﬂ,,( k ’)])exdﬂm{k’ +—f<,k,”--#k’:)r%Z{gm,,Qmw”hQ“+.rq,k£ )}( )]c {

v

—D

u]lu ’) v( f k)] {—-m” exp -wz(ik%k,k,’ +k’1}+2(z;,,,,,,£'2” +£,,8, +£,,82, +rm,,§)yX!r,):I

+kcx1£~~aﬁ(k2 +h k| +k"').|-2(gm,£1 S 60, o MO0 i, IO, Xh{ ]J:I’“ex;ﬁrz)dv}d!_c’

5
1k j;— [(f k) (Jf.k’)}l{—m" ex% m"'[k? +h k] -l--ik’szZ(gm,Q 8,82, FE,0823 +E,,5L Xf -, :|
1 T

I(J(I
+k ex;{rw K +k,k +k )+2( O 08 L) M”MQXI r ]E e;-cp(cz)a’xJ /_c’ (34.6)
The quantity E is the energy spectrum function, which represents contributions from

various wave numbers or eddy sizes to the total energy. W is the energy transfer function,

which is responsible for the transfer of energy between wave numbers.

In order to find the solution completely and following Deissler [13], we assume that

@V il B ok )=k B e kD] = =B = kK 64
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T RS S e PR TP . - e R

For the bracketed quantities in equation (3.4.6), we let

i 7

2 8 6
iz ib(k,k’)b(--—k,—k’)] 4”;{ (k') = el ——k )| =20, (kK —Kk")  (3.4.8)
v 5 = S R ‘

il

where the bracketed quantities are set equal in order to make the integrands in equation
, o A /
(3.4.6) antisymmetric with respect to k and k'

By substituting equations (3.4.7) and (3.4.8) in equation (3.4.6) remembering that
dk’ = 27k *d(cos Ok and kjk{ = kk cos@ . (9 is the angle between k and k), and

carrying out the integration with respect to 0 ,we get

o it i~ (a/f" k' " ; 2
W = Bo(k"k Kk Yk dexp[{=2v(k” + kk' +k" )+ 2e,,
2 2v(i—1,)

. +é

)]}_ (k" =k k" Yk
J |

—expl{-2v(k® — ki + Ky + 2(6,, 2, +€,82, +&,Q N 4, s
i~

b 3 b i
x[(a)' exp[—a;'(z- o +kk k) +2s,Q, +6,,Q, +€,,Q, +6,,Q ) —1)]

" G:X[)Iéc.r)z(i}r/\f2 K Ak Y+ 2e, Q, 6, O

i mj 'H ffHH'f

O F,m,Q Wi —1,)]

0,

{ 3 2
+m"'exp[4m?(k2+kk'+Ek’)+2g Q +e,,Q g, Q) ~1)]

= &
mnt iy n ffl”l’\'

O+ 8,8 =14 )]

non ,' iy ;m.ﬁ

o expl-@’ (k> —kk' + ir’f )+ s, L2, Q,

+{kexpl-@ (k* —kk' + k") +2e,,, 82, +€,,Q, +&

nmi = p qntk

£2 i gmn'Qr )(f - f' )J

|
— ok
2
—kexp[-@ (kX +kk' + k" )+ 26,2, + €., 2, +£,482, +€,Q )N -]} Jexp(xz)dx

it
0

+ {kl (:'.’XI:)[_VV2 (kz - k‘kl i kfz ) iy 2’(‘C"mmg)‘m & g;m:jg2 I + gr,unkgzr,l + grm!gzr )(I il fI )]

— k' exp[~(gl’(}(? + kk' + £’ Y+ 208, + €588, kaQq +¢g,,8200~-1)]}. J.exp(xz Ydx
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where @ = [21/(1 =, )]L

The integrand in this equation represents the contribution to the energy transfer at a

wave number k, from a wave number k. The integral is the total contribution to W at k, from
. . 0 . . . ,/ . .

all wave numbers. Carrying out the indicated integration with respect to & in equation

(3.4.9), where results in

W=W,+Wy (3.4.10)
where
|
I 2
(2J ﬁn
Wﬂ - 15 s
256v 2 (1 —1,)?
3 )
xexp|:(—5f )1055° +456° ~19¢" - 36" )+ 2(¢,,Q,, +6,,Q, +£,9Q, )(140)]
(3.4.11)
and

J’l s 2 3 6 3 14 21 12 105 10 945 ]
W =- — o/ Rt 7 it /A e B | R +e,,8 +¢g,,0 +¢& 1=t
¥ 1’”,(/ —1 )In r|i( ? [128 ? 8 '? 64 ’? IG 7 '28 l? ( n«'mg!'! ‘i Tp gk mer I)

27! 4 Y 160 40 |, |41455,35
_F%_ex‘{(w_nul__)_ 7 16,4 TV ?",._ r‘,r?"——f .,,,‘7“ ] ( &8 {{””.Q + IW‘Q +£‘{m,.(2rkf—fl}]

37 Noess’ 7297 277 162" 18

(ﬁlz ;
2 3 .\ , (3 b3 e 21, 105, 945 ‘,J
—=—-exp| = 7| lexp07 ) — - 4 —1 ——1 ———1
(27)] PU I 7 7 7

16 32 8 32

1}

+2((=,;"”,Q,, +E,, p +&,, A,Q +g,,8 2,,k/ =1, )]

1
2

+%ex;{(—§ 753867 +9.1187" +3.101%" +0.1793* -0.03 106

~0.004947'* ~3.615%10 77 ~1.890¢ 10 *17> ~7.56 1 10 757" ~ 2,447 10 *17%°

-

~6.64x107 7 ~1.55x10" 7" W 25 2, 45, 2 45, Q) 45, )0 ~1)]] (3.4.12)
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| | | |

where n=vi({t-t)k and g=p =71k
The quantity W 5 is the contribution to the energy transfer arising from consideration

of the three-point correlation equation; I~ arises from consideration of the four-point

equation. Integration of equation (3.4.10) over all wave numbers shows that

j Wdk = 0 (3.4.13)
0
indicating that the expression for I satisfies the conditions of continuity and homogeneity.
In order to obtain the energy spectrum function I, we integrate equation (3.4.5) with

respect to time. This integration results in

E=E +E,+E (3.4.14)

JE ,
B, = s B[ 08 o 2, 00 + B L =1, 3.4.15
J 372_‘/_ (f . to)_ I I nik m nky ”)( )] ( )

1
(27)* B
Eﬂ - s s [k
256v° (1-1,)°
x exp[(=2 &2 )(~15¢° = 12£° 4 L g 2w P2 exp( gz)ﬁexp(f) z’p)
c -8 sl = =S ST g gl gt 23 s b v )d
" 3 3 32 273
+2(6,4,82, +€,Q, +&,Q N —1;)] (3.4.10)
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) % '139 » 1029 4, 287 , 95 7{ .71
E, = -——"—{—exp[(-)}° ( A R e et/ 7' ———n"
v —1,) 32 64 256 256 7312 512 512
xexp(~n" ) Ei(n®)-0.5772])+ 2(s,,,Q, + &, Q + &Sy + €2 - 1,)]

1

) Q C C
+[,E]zexpl(iqg)(zyg L4970 1001 61 1963 3926,

3247 1458 T 374 Tioes3” 500297

xexp(—%—?;z)[ﬂ(—m) 057720} + 28,50, + 8,50, +8,, Q9 +8,Q.)F 1))

HHH iy

:
2

4 %—exp[(—%q’ )(0.23077" +0.363277" +0.1502"" +0.0446375' —0.013267"

x exp(—;n”)[ﬁ‘f(;n? )=0.5772]+2.459x 107" n"* +2.935x107 ™ +2.846x 10>

2

72 +1.69x107 7% +1.25%107* 7 +5.80x107" "7 +4.00x10™"" 72......)
Q, +&,,Q)0-1)]

+2.52x10°
+2(5,,;82, +€,,5, +8&

nmi Py ik rand

|
+ —;—71’ 2 exp[(- % 7n2)(1.0777% + 2.4147" +1.408,7" +0.44167" +0.18987n"

—0.08997;”‘exp(—%q?)m( 72)=0.5772]+6.575x 10 n'* +3.271x107° »*

+1.270><1{)"“s-;3'~’+4.n3><m";f” +108x107° 7 +2.50x 107" 7% +5.09x10™" 5% ...)
+ 2 +e Q. )t~} (3.4.17)

mm pmy Tl ;mA

£u4r

ol

The quantity Ej- is the energy spectrum function for the final period, where £, and

Ey are the contributions to the energy spectrum arising from consideration of the three and

four point correlation equations respectively.
Equation (3.4.14) can be integrated over all wave numbers to give the total turbulent

energy

<u T '-J-Ed/(. (3.4.18)

b | —
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The result carrying out the integration is. in dimensionless form,

14 5

U, v 2
< >:]0 5 I 1 ) expf_z('pnﬁf m Hv’<j ”)l(f )

Iin 32(2:'r)—
402296 " expl2Ae, Q. +&

il m ‘1l

5

Q,+¢,0)0-1,)
505

,9 19 IQ VT()
i ‘](J -1

+6 18 (’— ) 7 j e\([')[__z(gul”fgz” +rf?”.”l£2 7 ,’f”‘gz +E’”i!Qf)J(!7{|)] (3'4'19)
[§ J )
ﬂn’ ‘
5
(7} = AT 2 exp[-2(&,, 2, + £, Q)0 =1,)+ BT 7 exp[2(5,, 2, +5,,Q, +£,Q)I( ~1,)
19
[—1; 2
+CT 2 [zr J XPF2(8, 2, + €, 2, + 8,2, +E, Q200 ~1,) (3.4.20)
piy
where
R % 13
{1 & yvoJy (fl_"to)'/gll](?| _1_
t_¢ - 14 41 T (3.4.21)
i 0
)80 o
LLI.
7,_V°J0°(i ty)
2 (3.4.22)

and A, B, C are arbitrary constants.
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3.5: Discussion and Conclusion
We obtain the energy decay law of turbulence in a rotating system before the final

period from equation (3.4.19) and we consider here three and four point correlation equations

after neglecting quintuple correlations terms. The equation (3.4.19) shows that turbulent

5

energy decays more rapidly in an exponential manner than the energy decay for non-rotating

19
. —_ . i 2 =7
fluid. This decay law contains a term [ as well as the terms 7' and 1’ along

with exponential terms, which contains only rotational terms. Thus the terms associated with

the higher order correlations die out faster than those associated with the lower order ones.

If the system is non-rotating, we put €2’s = 0, the equation (3.4.20) becomes

o

19

5
fous f 14
' r’ (3.5.1)

<u‘2>: AT 2+ BT 7 +C =

o |

system obtained

which gives the same result of homogeneous turbulence in a non-rotating
earlier by Deissler[13].

If the higher order correlations were considered in the analysis, it appears that more

terms in higher power of 'I" would be added to equation (3.4.20).
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CHAPITER-1V

DECAY OF DUSTY FLUID TURBULENCE BEFORE THE FINAL
PERIOD IN A ROTATING SYSTEM FOR THE CASE OF THREE
AND FOUR POINT CORRELATION EQUATIONS

4.1: Introduction

In recent year, the motion of dusty viscous fluids in a rotating system has developed
rapidly. The motion of dusty fluid occurs in the movement of dust-laden air, in problems of
fluidization, in the use of dust in a gas cooling system and in the sedimentation problem of
tidal rivers. When the motion is referred to axes, which rotate steadily with the bulk of the
fluid, the coriolis force and centrifugal force must be supposed to act on the fluid. The
coriolis force due to rotation plays an important role in a rotating system of turbulent flow
while the centrifugal force with the potential is incorporated into the pressure. Batchelor and
Townsend [1] studied the decay of turbulence in the final period. Deissler [12,13]
generalized a theory “Decay of homogeneous turbulence for times before the final period”.
Saffman [52] derived an equation that described the motion of a fluid containing small dust
particles. Dixit and Upadhyay [15], Kishore and Dixit [27], Kishore and Singh [25] discussed
the effect of Coriolis force on acceleration covariance in ordinary and MHD turbulent flows.
Shimomura and Yoshizawa |60}, Shimomura [61.62] also discussed the statistical analysis of
turbulent viscosity, turbulent scalar flux and turbulent shear flows respectively in a rotating

system by two-scale direct interaction approach. Kishore and Upadhyay [34] studied the
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decay of MHD turbulence in a rotating system. Islam and Sarker [21] also studied the decay
of dusty fluid turbulence before the final period in a rotating system using two and three
point correlation equations. In Chapter-Il. we have studied the decay of dusty fluid
turbulence before the final period for the case of three and four point correlation equations
and in Chapter-Ill, we have derived the energy decay law for homogeneous turbulence before
the final period in a rotating system for the case of three and four point correlation equations.
By analyzing the above theories we have studied the decay of dusty fluid turbulence before
the final period in a rotating system using three and four point correlation equations and
solved these equations after neglecting the quintuple correlations in comparison to the third and

fourth order correlation terms. Finally the energy decay law of homogeneous dusty fluid turbulence in

a rotating system before the final period is obtained.

4.2: Basic Equations

The equations of motion and continuity for turbulent flow of dusty incompressible

fluid in a rotating system are given below:

oy Cp) Lip O

i —— 28 QW + i, —v 491

6t ax', p a_\'l_ (3,\’{ 6;‘," mli n f( ) ( )
avf + i 1(( o

a ey om 422

at ‘ 6xk m, ( )
u, ov .

) ) 4.2.3

and = - ( |

where the subscripts can take on the values 1,2 or 3.
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Here 1; turbulent velocity components; V;, dust particle velocity components; o, fluid

density; V', kinematic viscosity; €2, , constant angular velocity components;&,,; ,

m?

. . 4 : ;
alternating tensor; p. instantaneous pressure; m wg- R p., mass of a single spherical
dust particle of radius Rg; p., constant density of the material in dust particles; K, Stock’s
drug resistance; ¢ - KN dimensions of frequency; N, constant number density of dust

P

particle.

4.3: Correlation and Spectral Equations

The equations of motion of dusty fluid turbulence in a rotating system for the points

5 A
p, p and p// separated by the vector 7" and 7 are

ou. 0 1 4

Oy (O et Ty pi i 26,,,u, + f(u, = v,) 4.3.1)

ot ox, yo, (3’(( 6:( 5,

ou' 6(1{ ) 1 ap’ o'u’ , {

atf axn‘ } = m;é};l_-i. !/.axfa;,’ = zglzhg)’u“j + f(”, - Vj ) (432)
4 O

a 1 a u.’fuﬂ 1 a I a"? " ) :

;: (a;ffl = k; _5;-):—: i A ;k i 2{‘1,&!'2,,“: +.f(”f = "f) (4.3.3)
k k

/ 1/ /
Multiplying equation (4.3.1) by # . (432) by u,u, . and (4.3.3) U, U,

adding the three equations and taking space or time averages, we obtain
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0 %, 0 ;
—U, u H + — H u' H 3!’ 4+ — 1! H Tl' U + —— (U u#uﬂﬂﬁ
.4' // Rl (el

ﬁx, ax, Ox; '

ye, ¥

x.‘ f k

:fﬁ]ﬁ(éaf(pu u) ) + —W(p u u, )+—a—a—<p U, u )}

) /o
6 uu u (3 uu H 8‘ ' u
k R
axfﬁx, r’)x} 8le Ox, Ox,
—2\8, xS L1 wu V+ g Q, (u wu'Yve O luu'u! )
mii A B | nlj s e ¢ olk I e Skt

+ f(3<uruiu£’> — <vlu’luf> ~ <viu, uf) L <vfu, ) >) (4.3.4)

Using the transformations

0 8 o _ 0 0 o o
= = and = = into equations (4.3.4),we get

’ /
Bx/ Or,  xf O ox, or, or

a I i 7 a ! a 1/ a ",
—(uu,u )—_—(uJu u ;) —— vy ) +—u, u iy (uuf u, )
8t< k a?’. i At a]', R a]" kT 671, !
1 0 w 0 ; 0 . N
=——| ——(pu'u) Yy ——(puu Y+ ——{p'u,u Y +—{(p"u u’)
,0( ar, LT G T P e TR e
Aua'y)) Huu'u)) olu u u
o ) ) i
or,or, oo, or, or,
Q(SMQ <u1 “j ui} > +&,8, <141u'; uf> + gq,,{(!q(u,u';u;’))
+ f(3<u, uﬁuf) - <v,.u-': uﬂ> - (zf, vjuf) -~ <u, u, vf)) (4.3.5)

In order to convert equation (4.3.5) to spectral form, we can define the following six

dimensional Fourier transforms:

(1 Yy (7)) = H(ﬁ, BB (K )>-0><p[f(k-f_'+ kr )}r/kdk’ (4.3.6)

— -

(e uy n/,-(r)uf(_/_'f)) = j .I([)’j i [5’_;(!()/3,{/(1{/)).exr(i(»_’f.rnk K .rj_/)—!dkdkf (4.3.7)

—00 =00
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(pu, (ryuy (7)) = J j<aﬁ;’(ff)/)’£’ (k" .explitk.r+k'.r! )]f”f dk' (4.3.8)
ol Ol Oy = [ G BB .exp i(»’f.r_‘+k_’.rj)]d!fd/ff (4.3.9)

Interchanging the subscripts 7 and j and then interchanging the points pand p give

(u, 1;{({')11_: (rf‘)u,ﬁf (r__/ )) =(u,u, u,‘f(—“r)u: (rf =)

= j I<ﬁ;ﬁf /3,/(—/{7— kV'J)[J’,f’I(/f;))exp f(k.f_'+ k’.r_")]ﬂ'/_gd{;f (4.3.10)

= D=0

i " ! i / / / 1 f
(u, u', (r_‘)uk (r_ Ju, (r')) = (g, (uf” Ju, (r- rj )

T f N _ L f (4.3.11)
[P BBk=kD B ovexp it k) e K

—0D—=0D

where the points p and pi are interchanged to obtain equation (4.3.10). For equation
(4.3.11), pis replaced by p’/, p'/i.c; replaced hyp'? and p//is replaced by p.

Similarly,

@, p' () (7)) =pu) (=) (' = 1))

wa o | f (4.3.12)
= J I(a[)’,' (- ]f_ k/ W (k ). exp[f(/f.f_‘+ k .f‘_/ )]a'ifdk
(' p" (")) = (o Gy (r= "))
= I J(aﬁf i l(_’ )3 (f’_()).exp[i(k T+ kj .r__’ )]d k dff’
(u, V_ﬁ“f(f)) =(v,u, (f_‘)uf(?"j“ r))
- (4.3.14)

- Tlo s cr-epiamexlierei Hhkar
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e

(u, u;vf(r;)) = (v‘,u,“(fr”" )u’;""(;ﬂ'u )

IJ()’A f(—k )ﬁff k)) e\(p[(k }+]c )}ikdkf (4.3.15)

—on—on

Substituting the preceding relations into equation (4.3.5), we get

;f{(ﬁ, ﬁ;ﬁ;’)m{k? +h k! + k" )(ﬁ, B,B!)
=[r‘(k-, vk X85 B8 )= ik (B, By B k=K VB KD =ik (B . <_ff—k’>ﬁj’(k)ﬂ
[ 1) it (ol kK VB ) ik o k150
26, + 6,2, + 6,4, )8, B8
w138 B0B )~y BB =1, B =k (B - KBl w) | @3ie

The tensor equation (4.3.16) can be converted (o a scalar form by contraction of the

indices 7 and j and inner multiplication % , :

a0+ 2l ik 8 (.40

ikl + B Xp 5,851k (8.5, 5k} (. AL kKRB
—L[— ik by + ket B )+ k(o (k=K VB )i ot (k=K B )|
26,2, + e, +2,0, 18, 8.5

mli=“m nlh==n

+ 16| 3B, ALy, B 0BG}~ B kKB W) (L =kl )| @31

In order to obtain the four-point equation, we consider the equations of motion of dusty

. . . . ~,
fluid turbulence in a rotating system at the points p, %, pand p”as

[, 0 7 0
Py 2Whted _ AP iy T G Rt + T~ 0 (43.18)
ot Ox p Ox, Ox, Ox
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j 4 3

ou, A(u,u,) 1 op Ou .

ph gl S e b gl ~ BB fE ) @B
af a‘Y nr p 6x ! a"t;” a-r:l{

611 Ol i 1 op’ BT ) _

o ( ‘H Lo ) = __f,,/_: 4 —"— - 2£(I,ifk£2qrf; + f(uf —vf) (4.3.20)
ot ox), P Ox, ox,, 0x,,

au, ! ﬁ(u,wu ") | ap” f331r,’w

S e e B e Qu’ + fd —v) 4321
6, a,\’m[ !) a\,[m 0 ;,u.) W nm.’ ! f( ! ) ( )

where the repeated subscript in a term indicates a summation.

o . . 1y ",
Multiplying the first equation by 1, 1, the second by U, U, U,

roi ~ {1
u,u u, and the fourth by u,u i,

averages, we get

i a i
<” g )"‘ - <H 1w, T

m

ry

-k——(?—- L a ! i
=\ g, —u;u ?{A u )+
C

R 11

/ 0 n O
——(pu:u,f u,’”} +——<p u u,m,”) +—<p U u zr,w>
o’ oxl

, the third by

respectively, then adding and taking space or time

Lol I
(n,. W u )

m

n

nr Tm

" T/
P U II',-II*

L

0
& oot
Y &

" "
H u f.rA zf, )+ i (H uu ) F@ <H uu, u, ) 0 (u u uk ] >

ﬂxav o o

+E I£ 2

- Q <H u HA i, )

“nmi

[0 Lo I
<u, u ) s, <u, uu )

"
ax‘l” axl”

o, ol

+& Q)

rml

B B S
<u, U U U, >)

fo e I Jooll A sl Y fo 0\ o "
f( (1{, w >+<u, w }—(ur v ) f (u, u ) <u, u, v, >+<u g, )

Foall
(u i MJL v, >+<n,. 0, >)

(4.3.22)

N . : . X i . / i
Equation (4.3.22) can be written in terms of the independent variables r, r and 1 as
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6 <u ufu”um>-fa <u u ufu’”u"”)— < <u 1 zz’u”u’“>
o i ek T . (LT R Bl e 77 T T - |
al a} " (F}’ m af m

0 4 0
L0 1 il Lo /s
+—<u, w, U, >+A~7<u, WU, U )-r- 7 <u u uk u, u, >

OF ' or,, ar,,

=2 <;71;’sz”1{'”> A (pu” un) > - ﬁ-q--(/m’ u”u’”>
R A / 1ok M TR
0 or, or,

+— <H plulu >+ (u u p’u,’>+ —:;'<”: ujufp”’)
or, Brk or, ‘

Z fo 2 Lo i f
0 (ui u ) 0 <u, U, > 0° <u ] u’u, >

L i+
. Py o A /"
+ 2 a’ m a’ m a’llfa’l” a’lﬂa‘r m
Vv
2 Lol i 2 ol 1l
0 <u’ U, U, ) 0 <sz U U, > 0" <H u u[u,”>
+ + Al
oror! ar! or PJ ’31

m

fo Fof fo
(rme (zzjuluﬂ, u, > € €2, (Lf,z,f,z.f,{ i, )#wa <u,ujuk u,

a Y
— (w0

* o0 R o/ i i/ . Lo il AT
+_f(—<v, 1 >—<uf vu > <u LV > <n u v, >ﬂr4<u! U, v, >)

where the following transformations were used:

0 0 0 0 3] %, 0

= = e e gnd =

’ ! /AR " /
ox!  or Ox or, " ox! or! ox,,

m m m m m

i I/
>+5,,H,Q (z{fujuk u, >)

(4.3.23)

In order to convert equation (4.3.23) to spectral form, we define the following nine-

dimensional Fourier transforms:

0 o o0

(sl W "N = [ [ [k & Yexpitler +5/-F' +4"
\’f._i‘__ 1\ }/g,-.(n‘_ & Pi

w100y O 0N = [ [k K Yexplicker+ K-+

00

o) o) o)

<pz/ (r)u (J’ ! (1 >: IjJ(S",H(!t_’,l_’t_’;./‘?”)exp[i(]f-;F_‘ﬁ--rrfl°1_i:f+]1{jl"’-.?_'

—0D-E0—0
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<v,uj(r')uf(r’)z.r,’“(r” )> - j Jjy@“(k.k:,k:")expp'(k- Pk R Y dkdk di’ (4.3.27)
Similarly,

<u,v{, ({);4’(;_-’):4”(;;”)> = jj jy,@k,(—f;—k’—k’i K KDexpltk rek o/ +k'-YikdK dk' (4.3.28)
<H,H:.(,'_')vf(f_' )H,W(i ) J'.,—J-},ﬁ (— f( ff —-/( f( f( c\p{(k f+/(’ r +k” H}dek a’k" (4.3.29)

o

(uu ¢ ] ”) j [ [, ok kK Yexplerk -/ +K -+ YyikdK di’ (4.3.30)
Substituting the preceding relations into equation (4.3.23), we get

moom nmoom m m

d / 2
E(yllk,)+2v(k vk kK vk K vk v B R kT )%H

=[i(k, +k +k”

m m m m

)}/HH.“(k k’ k ) fkm}/ mﬂ.(.’( k k ,_,,k'ﬁ k kﬂ)_lk }/ (mk*k!ﬁ'k”)k:k”
) / kanigt . . N o )

! 1 . / / . /i
L C o S S A R S IS SR O LI (.03 BT I G 2 S S 2 23

+ik, o,

il

Ak IR ik 8, kb )
2(5!THHQ +£pnr,lQ + gquQ +gnn.fQ )}/.‘;M

AU K K =78 0K K7 0k K KK R

Py kK =K ) =8,k K k)] (4330

To obtain a relation between the terms on the right hand side of equation (4.3.31)
derived from the quadruple correlation terms, pressure terms, rotational terms and the dust
particle terms in equation (4.3.23), take the divergence of the equation of motion and

combine with the continuity equation to give

L op &) )
0 axmaxm ox,,0x, (4.3.32)
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£ . [ , .
Multiplying the equation (4.3.32) by U, U,‘fll; , taking ensemble average and writing

the resulting equation in terms of the independent variables I and 1, gives

/ i r =y AL e T NP
p @nl&f” a’ a H a (’3; () ’”(’3’ n a’ af‘ &"P a’ m

n

| 2(;}1/14:’14f’>.+26 <pzfuku,w>l+2 0 (;m n; u, ) o <pufufu’ ) 282<pzr;ul.fum> o’ (prfufu;”)

2 "o M H- #oH "o 2 "
6 (M,"H 4 "k H, > 0 (lrmu "' HA, i, ) 8 < ,”H H ”ff u, > a (Hml! U “k H', > 5, <H,”I( . I(k H, >
il M L e S T . o — o .

a’mal n a’l”al? (t}’fll&ﬂ : | a’fﬂa’ - & a ”

2 {:aaff 2 Focillialll 2 I/ 2 L
0 (umu”ufuk u, ) 5} <umu”ujr.rk u, > e, <umunrr u ) %, <umu U, >

oo, aor, T alal | olal (433

m

Il
T

The Fourier transform of equation (4.3.33) is

e ok kv 2k K E 2K K5,

p m m m m
(kmkn + kmkn + kmk:‘ + kmkn + knrkn + kmk: + '[(.v’;;kn i k::kn k::krf mrikl
I (k Ky + oy 4l o) vk, ko 4k ke ok, + Rk, KK W
m-n mn mn nm-n m-on m-n m-n meon m n HHy
falf = (4.3.34)
p (k + 2k Hkl” —}‘ 2k”i kl‘::’ + kl + Zkﬁifkf’;": kﬂ )

Equations (4.3.31) and (4.3.34) are the spectral equations corresponding to the four

point correlation equations. The spectral equations corresponding to the three point

correlation equations are

d o
E(kf(ﬁ!fl{)+2v(k'. +k.’k.' +k )k.ﬁﬂuk

= fk(-(k.‘ + k;)ﬁ;!:k (kk) . fkkk.'ﬂmk (*’?‘ ;f“{lff)_".k.{»k.'fﬁkm("'If"%f*%)

l ! / g .
— ik, (k, + ke, (ko Y+ ik ko, (~k—k' kY v ik ke, (k=K' k)
P : - -
o 21{& [*(;‘nn‘;"gzm * gm’;gzn ‘-l-{;‘m,‘.,glq lﬂf ﬁfﬁ;/ + Rﬂ(}. (4335)
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where, RAf, 5. =3(A,0 L) (7,810 B/ )= (1,8 k=K VB~ (18- k=K 1B (B)
(say), R is an arbitrary constant and

I kk, +kk, +k k| +/( k!

=iy == s (4.3.36)
P k* + 2k, k| + f(

Here the spectral tensors are delined by

oy o)

<u,ui(r)z,ff ({"’ )> = J _[/j”‘, (k.k yexpliCk.r+ A_’ ~";I)|(“f dé’: (4.3.37)

<z.{[u,,u;(.")l.{£(7 >

b!___,S

[ 1B ek explich.r k' rOldkdk’ @339)

<puj({')1[f({‘l)>r [ for, kekyexplich.rs k' r)d kd k' (43.39)

: . : /! . .
A relation between ﬂ,,,,( and ¥, can be obtained by letting t = 0 in equation

(4.3.24) and comparing the result with equation (4.3.38)

B Cek'y= [y ek kY k" (4340

The spectral equation corresponding to the two-point correlation equation in presence

of dusty fluid in a rotating system is

mki= “m

::( @, + (2 =0 +2¢,0, +26, Q. ), =ik, @,.( f() ik @, (— (4.3.41)

where ¢,'_,' and (75,-;\.,- are defined by

<u,”;.(,-)> = [4,0)expli fo- ) & (4.3.42)
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and <H,z” u_': (r )> = _[4’% (’f yexp( i fe - p)d !E (4.3.43)

The relation between ¢,,U and /77!-,-,( obtained by letting }'ﬂl = 0 in equation

(4.3.37) and comparing the result with equation (4.3.43) is

b, ()= [B (kK )d K | (4.3.44)

4.4: Solution Neglecting Quintuple Correlations

Equation (4.3.34) shows that if the terms corresponding to the quintuple correlations
are neglected, then the pressure force terms also must be neglected. Thus neglecting first and

second terms on the right side of equation (4.3.31), the equation can be integrated between

tyand f to give

Yiu = o exp[{-— 2wv(k® +k k) +k k! +k" kK" +k”z)

m -m m-in m -m
+ 2(5-"

j”””gz” TE gzr; * grm.fgzr )— Sf}(f - (| J] (44 l)

> iy

Q,+¢

Z qmik
where

SY g =3 (K, kfa/fﬂ)_?’ffs_;'m({(’/_‘fla‘_](ﬁ)_?/,,(S‘w(_{(_lf/*!fﬂalffv/f”)
1Sk k" e k"), 8, (~k— k'~ k" kK"

is an arbitrary constant and ()/W)I is the value of 7/(,-;(; at ¢ = {; . The quantity (}/:‘jk.’)l

y / /" ;
can be considered also as the value of };; at small values of k, k' and k", at least for times

when the quintuple correlations are negligible.

Equations (4.3.40) and (4.4.1) can be converted to scalar form by contracting the

indices 7 and j, as well as k and /. Substitution of equations (4.3.36), (4.3.40) and (4.4.1) into
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the three point scalar equation (4.3.35) results in

d ;
7 (k Bo) +2v(k> vk k| + k" Yk, B,

ki, +klk, kK, Kk,
=ik, (b ke R K =ik (ke ey ek K]
=% e K42k k! +k S

X jex;{ W +h K vk Kk kK kY4 2Ae, O v, Qv Q,- ,,,,,Q,.)—;f}(z_:,)}fk”

mm mm = n pmi=Sp Tk

oy ik ko,
[ k(KK KK 8 T Vun K K )J

Q, +6,,,) .sf}(!—ll)}f{c”

mni=<n pn= S p qntk rail

xJ'ex;{{—zw vk k" kK k4 2e,, 0, e, Q) +e

neom neem

ik k ki k!
+[ Ik k.'yk l'( k k k JE"H) Ik }/fH,‘l( k / k k )]

jexr[ QR kel K R E Y1 25,02, 48, 2 45, 45,8, ) .g/‘}u—z,)}i;g”

2k (6,2 + 80, +6,422, )8 + R, (44.2)

mili= “m “nli> Sn

where the ) s have been assumed independent of k” at 1.

Substituting dk" = d/('(’a’kfdk]‘” in equation (4.4.2) and carrying out the integration

with respect to &, ,k, and &, ,we get

(k IHIIRI +2‘/(k2 +k|'k.:‘ +k‘;2 )kk/yfl'f( = Rf]i + 2](.’( (gm.'er m’g +é& c;.’l(gzq )ﬁuk

3
- ”23 L4l —expl- 2, S ] kk’ k V4206, +E 2, 46,2 6,0 )-SHE—1,)]
V)2 (t - z/)2
3
""23 Lo}, exp[{Qv{ K4k K+ K ) 426,00, 8,02, 45,0+, )-SHE—1)]
@v)* (- t)z
3

+—"“"—3 Ll 1 exp[2uk +kk’+ 3 Y+ A +6,0 2, 5,0 +6,,0)-SAHE~1)] (443

@)? (1, )2

74



Chapter-1V

o S e e R e i S

where the bracketed quantities in equation (4.4.2) have been abbreviated as shown.

Integration of equation (4.4.3) with respect to time, results in

kkﬁ,*:(kkﬁ,,k)oexrk Ak + k! + K )+2( L +g.C) +FM(2) R/}(t—to)]

i Sm “nli= “n

3

ﬂ{w ex{ @ [4 k2+2kk . ] {2(% ), +8,,8), +é quﬂq+g,,m,Q,_)—Sf}(r—r]):t

%

1 7 I 2 ) / =
%k,k,f +zlk‘ Y expbw (k° +kk, +k )-{"'[ ( £, +&

1
i 2(; kP * f”-’”’ ‘Cr,lmkgl i ‘c‘mm’€2 ) Sf}('{ _!j )]

3

" ’[{4"‘ *Iz"f*"flz" ) exL{ )dxl-kg—} (~o" expfw’ (—k +k i +£7)
50, 4,0, +6,0, +a,f<z) Sfe=1)]

+hexpla’ (6 +hk +5 ")+ {26, +,82, +6,,82 +6,8 )-S5 -1)] [ *exibr ki
3

] » 3.p
+ T‘ {_—(L) 1 exp{—‘(e)z (kz + kfk: + 47. k" ) + {Z(J;H.‘H’()’H + 5"””')(2 +. l,'f”kgll" + gr‘l”fng‘ )—Sj}(t —_!! )]

+k’eer(u K kK K+ {26,,0, +6,0 Q46,08 +6,,) - Sf‘(fq)]y exf’ )iy (44.4)

!
where @ = [ZV(I —1, )]i
In order to simplify the calculations, we shall assume that [a], = 0 ; that is, we
assume that a function sufficiently general to represent the initial conditions can be obtained
by considering only the terms involving [b]; and [c],
The substitution of equations (4.3.44) and (4.4.4) in equation (4.3.41) and setting

2 :
E =27k”¢,; resultsin

E—J-E_'_+ (2Vk2 + 25»:.’(: g)‘ m + 28m'ﬂ'£:2 no Qf)E = ”/ (445)

dt
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where

W=k jzm'[kk B (k& Y=k . (k)] exl{%ZL(kz +hk k)

F 26,0, 15,0, +6,0,) RAYE 1)K

Sl Sm ~HS T

5

jzﬁi[b(k k'Y= b(—k, k")) = e%{—w Cr ekl +k7)
F {2(5”"”£2” + g,lnm‘gzp +C{W’LQ + (CHHQ ) S/I (f — )]

+kexr{ Wk +kk k) +{2e, O+ Q, +&

nmi= “n P gmk

Q, +¢,8,)-5}¢-t)

S

|
2l

xf“ exp®)dvidk + k> j———lc(kk) o(—k.~k" )] {-w ex[i:fw (K> +kk += k’)

{260, + 8,2, 6,02, 6,0 =S —1)| K expEw (K +hk] +K")

pmi=p qmk “rml

Lo
26,0 + 6,00 46,0, 46,2051 exp )ik (4.4.6)

The quantity E is the energy spectrum function, which represents contributions from
various wave numbers or eddy sizes to the total energy. W is the energy transfer function,

which is responsible for the transfer of energy between wave numbers.

In order to find the solution completely and following Deissler [13], we assume that
2. / / 43 /° 670"
(22) Ptk )~ BBk k)| =-AEK —KE) aan)

For the bracketed quantities in equation (4.4.6), we let
7 7
4 47 o
- h(lf k )—b(— /( —k) =——1lc (f( e )’(—/() =2y, (k K-k ) (4.4.8)
Vv Vv

where the bracketed quantities are set equal in order to make the integrands in equation

(4.4.6) antisymmetric with respect to k and K.
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=

By substituting equations (4.4.7) and (4.4.8) in equation (4.4.6) remembering that

dk'= 272k “dicosOdk and kiki = kk cos@ . (0 is the angle between k and k'), and

carrying out the integration with respect to 0 ,we get

] ‘mii= Sm “nly= Sn
: 2V —~t,)

B (kK kK ek 4o o
= J{ﬂo( ) Jexpl£2v(k™ +kk +k )+ 2e,,Q2, +£,,Q, +£,0 )- R}t —1,)]
)

k" — kK k!
Wit -1)

—exp[ £2u(k” — kK +k" )+ 2(e,, 2, +£, 2, +£,0,) - R ~1,)]}-7,

“mli= m i

T p

= 9 3 9 12 £ .
x(((zf' expkm“(zkﬂrb’(%k' )+ {2800 20 + 82, + 6, +6,,82) =830 -1))]

@’ epoU3(%k'~’k/(’+;(’z)+{2(g 0 +e L +g

™ Tn “pmyt Tp ’qu(g!‘r,l + grmn'Q." ) . Sf} (t o lZI )]
- ) 3 2
+ a) ' exp E_a)z (k‘- + ky + E kf ) _}_ {2((9’”7”£-2” + g,’)ﬂ!,'Q,U + g(,l"l’kgzq + ((:””/\g 21" ) - Sf} (f = r' )J
) / 3 72 N
~o 'explo’ (k* —kk +Z K )+ 26,82, €., 6,8 +&,,£2.) -5 ¢ -1)]

+{kexpla’ (k -—fck’+kﬂ)+{_2(5 Q, +&,,Q, &0 +8&, & y-SFHE -]

nmi= “n Syt Sp “gmk”
;m{'
—kexpf@ (k> +kK +k" )+ {2, Q, + €Y, +€,82 +€,2,) = S1E 1)1} J‘ exple’ yx
0
+ {k ; cxp F[UE (k2 - kk’ —{— kl? ) + {2(((:Hmf£2” _+ g'flflrtglj‘ —+ f(’?{j'lfhri\"g)'r,' + ;l'm/QJ") - Lg.f} ('r - t] )]
;m’( d k
K expF@’ (k2 + kK 1k )1 {2e,,00 e, Fe, 82 e, ) - S —1)]}. jexp(x2 Yix

0

(4.4.9)

1
where @ = [QV(I -1 )]2
The integrand in this equation represents the contribution to the energy transfer at a

wave number k. from a wave number k. The integral is the total contribution to W at k, from
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all wave numbers. Carrying out the indicated integration with respect to K in equation (4.4.9),

where results in

W=, +Wy
where

T2
(2] i

15 15

256v2(t—1i,)°

W, =

* EXP[(—%&‘] ¥1056%+ 458" < 19" = 36

(4.4.10)

129 {2(; Q, +&,Q,+¢&,0 Rf}((ft )J (4.4.11)
and
!
7 7’ Y 3 3w, 21 105, 945 8]
W =- exp|l—7 — ™y i, S il =gl
¥ Vm(l—ll)m 6 p[( 7 ([287 87 647 16 128 n
+ {2( nii g2 _me,lQ ) +{"qu Q +(( f)ﬁ‘s'f‘}(’ _!l)]
|
27 2 ( 4 J( 160, 40 ,, 14 ,2- 455 » 35 8)
+ expl | == n n - -—7
43 3 19683 7207 27" e 18
{2({:mm ‘g)‘ + 8,’)!?}} £2 + F;mAQ + rrm.‘ )_ Sf }(t - Il)]
!
3) ”
ol
2 3 5 ) F w 3 21 5 105 ,, 945 )
— expl| —=mn" exp( ¥))dy| —n"" + =" + Z—; — P Em——1
16 }|:( 27J;,” p(; )(“(647 47 32? 8 32 4
+ {Q(EHHHQ + ‘C

phtj Q r i gqrnk

Q, +6,,Q,)-5 Ju—1)]
1

+

- exp[{(—%;yz)(saswg“ +9.1187" +3.10177" +0.1793 "

—0.031067"° —0.004942 1" —3.615 %10 7 —1.890 x 10"
—7.561 %10 ™ —2.447 x10 *17° - 6.64 x10 "7 —1.55x 10"”173" .......... )
+ {2(€IIHHQ + {-,lm; gz + rqmﬁ Q + <(‘-mm‘ ) = S/ }([ B l’Jl )]]

| | 1 !

where n=v?(1—1,)%k and £ =v?(1—1,)*k .
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The quantity Wﬁ is the contribution to the energy transfer arising from consideration

of the three-point correlation equati(m;”/}, arises from consideration of the four-point

equation. Integration of equation (4.4.10) over all wave numbers shows that

dek -0 (4.4.13)

indicating that the expression for I satisfies the conditions of continuity and homogeneity.
In order to obtain the energy spectrum function /<, we integrate equation (4.4.5) with

respect to time. This integration results in

i = b; + Eﬁ + E}, (4.4.14)

where
: Jo&"! 5 \ o
1‘11 = 2 _‘3 exp[—zg + {2({;:”1(:'!2”: _I—énhgzn)_ Qf}(f _ID )J (44]5)

3nv(t—1,)

I
(2r)? i 5 , o 16 ,

Byi= ,—;----ﬁu —exple3e”) (156" ~126" + 55;'” o g

252 (t—1,)°

£

2 2

3 2 53 9

——=g" EXP(JE) fexpo? V)41, + 6,2 + 6,482, ~ RIVE~1,)] (4.4.16)
0

3\/’5 “nly
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S —

7, ;z-" p, T000 o 28 o 95

E, =t L =l f gt R sty + -
d v'”(r—f) { xplC=r” [ 256 | 256" 5127

Tl w71
et gl wu = il noLi(n)y—-0.5772

7 512] p(=n ") Ei(y’ )
+{2( n'm'rgl ,'J'n,l£2 +e& ,lm.kg2 + (‘uu! )7 S/ (/ﬁf )]
|

T § 4 9 7 g 497 10 }001 12 76] 14
+| =] expl(==—n" N—7 + n A

(3] Pl 3 4 )(9 ! 324 : 1458 4374 1

1963 4 3926
+ n -
19683 59049

+{2(e
!

4 3 2 2
+ %exp[( = )(0.23077" +0.36325' +0.15027'" +0.04463 7'

2 o 2 5
n'® exp(far 17 )|_l?i(—3—f]")~ 0.5772 }J

Q +e Q +¢&

nmi=<n pny P qmk

£2q + gum'g).r) i qu}([ - ’I }J

| 1 :
~0.013267' exp(ﬁE-r.']‘ )| F”'(‘g 7°)=0.5772]+2.459 %107 "% +2.935x107*

+2.846 %1077 +2.52x107 " +1.69x107 7" +1.25x107% 7% + 580 %1077
+4.00%107" 7. s )+ {2(5”,,,;2,, + 8, Q, 6, Q, + g,“”,Q,_)—Sf'}(t—JT)]

I 2
to exp](-%r; )(1 0777 +2.4147n" +1.408" +0.441677"" +0.18987"

~0.08997' exp(—--li-r;f])[Ei(é--};z) -0.5772]1+6.575x10 "' 7" +3.271x107°n*

+1.270x 10772+ 4.03x10 7" ™" +1.08x10 "7 +2.50x 10" n** +5.09x 107 ™ )

FA2E G, 8 Sy F Bk B, + 6D, = F W —1)] (4.4.17)

nmi ping qmk

The quantity f; is the energy spectrum function for the final period, where E/; and

b}, are the contributions to the energy spectrum arising from consideration of the three and

four point correlation equations respectively.
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Equation (4.4.14) can be integrated over all wave numbers to give the total turbulent

energy
| o
5(”;”:> = JE(J’[( (4.4.18)
0

The result carrying out the integration is, in dimensionless form

14 5

.9 g 5
<“’”’>:‘]°Z - ] ]7'-?exp[§)f—2(£m£2 +£,, )1 —1,)]
A [322r)
+0.2296I"" exp[{Rf - 2(¢,,L2,, +£,,Q, + 5,02} ~1,)]
5 3 19
a1k ‘;,
+6.18—— {{ ”] T 2 expliSf =206, 2 + €2, + €, +E, QN -] (44.19)
/[30‘)

( ) AT ~exp| Of = 2(&,4 2, + 6, Q) —1,)]

+ BT expl{Rf = 22,9, + £, 92, + £, 2)H ~1,)]

mh niy
19
ELY PR |
+ CT . (;-:;L) Bpr {S.'f 2(5‘””“52” + Elnnygzp + Ef_,'kaq + g.l'ml'gzr )}(t i tl ).l (4‘4'20)
0
ﬁ 5 1/9 (-)4 !3
1—1, e (t, =t v I8 1
where =1- 4 1 oty (4.4.21)
i1 9 81,9 r
0 0 )/I
LI
T "'GJ(;)(t_f())
2 (4.4.22)
9
0

and A, B, C are arbitrary constants.
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4.5: Concluding Remarks
From the above discussion we achieved the decay law of dusty fluid turbulence in a

rotating system before the final period considering three and four-point correlation equations
after neglecting quintuple correlation terms in equation (4.4.19). This equation shows that
turbulent energy decays more rapidly in an exponential manner than the energy decay for

19 5

non-rotating clean fluid. This decay law contains a term 7' % | as well as the terms 7 2

and T " along with exponential terms that also contains rotational terms in presence of dust

particles. Thus the terms associated with the higher order correlations die out faster than

(t—fl)

those associated with the lower order ones. The factor (—1)
T hp

occurring in the last term in

equation (4.4.19) will cause that term to decay even faster, so long as f; =%, > 0

If the system is non-rotating, we put €2°s = 0, the equation (4.4.20) becomes

19
5 ;) 7I‘J

(zf):/ifz expOf(t—t,)}+ BT expRf(t —1,)}+C ;“—I' T 2expf/t-1)} (4.5.1)

Ty
which is same as in Chapter I1.

Again if the fluid is clean, we put { = 0, then equation (4.4.20) becomes

5

<“2> s A ?‘772 eXPPz(ﬁ:JFI\'Jg)p;: + ‘(;ﬂt’(,‘g 2” ) l(’ K ’(1 ) + B’]-J expl—z(‘g

mli

gz;u + g.'rf,"Qn + gq.’»'r Qq )J(’ - !U )

19

19 7
& C"] ? [ul_} CXp FZ(F g‘zn +é& Q_f! + {;'F,‘FHI‘\‘EJE,' +& Qr )I (f 7’I )

“ “ pmy reil
(1,

which is generalized in Chapter 1.
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If the system is non-rotating and the fluid is clean ( £2's

becomes

19
5 19
e 1 e 2

<1£2>: AT 2 4 BT ™" % ]| =—L

I =1,

which is obtained earlier by Deissler] 13].

., I=0), the equation (4.4.20)

(4.5.2)

It appears more terms in higher power of 'T" that would be added to equation (4.4.20)

using higher order correlations in the analysis.
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