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ABSTRACT 
 

We investigate the Hawking radiation from different kind of black holes 

by massive particle tunneling process near the event horizon of the black 

hole in de Sitter and anti-de Sitter spaces. We calculate the imaginary 

part of the action from the relativistic Hamilton-Jacobi equation avoid 

by exploring the equation of motion of the radiation particle in 

Painleaveَ coordinate system in order to explore the Hawking non-

thermal and purely thermal radiations.  

The thesis is organized as follows: 

In chapter 1 we give a brief discussion about our work of studying of 

massive particle tunneling from black hole spacetime.  
 

In chapter 2 we review the relativistic Hamilton-Jacobi equation to 

perform our prime work. 
 

In chapter 3 to 10 we investigate the Hawking non-thermal and purely 

thermal radiations using massive particles tunneling process by 

employing Hamilton-Jacobi method for Schwarzschild-de Sitter (SdS), 

Schwarzschild-anti-de Sitter (SAdS), Reissner-Nordström-de Sitter 

(RNdS), Reissner-Nordström-anti-de Sitter (RNAdS), Kerr-de 

Sitter (KdS), Kerr-anti-de Sitter (KAdS), Kerr-Newman-de Sitter 

(KNdS) and Kerr-Newman-anti-de Sitter (KNAdS)   black holes. We 

express the position of all kind of black holes in an infinite series in 

terms of black hole parameters so that the spacetime metric becomes 

dynamical and derive the new line elements. Taking  into account the 

energy   conservation,   the angular   momentum  conservation  and   the 
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unfixed  background  spacetime. When  self-gravitation  interaction  is 

considered, the derived emission/radiation spectrums are not purely 

thermal and the tunneling rates are related to the change of the 

Bekenstein-Hawking entropy, which satisfy an underlying unitary 

theory. Our new process provides an interesting correction to the 

Hawking pure thermal radiation of the black hole and in the limiting 

case, the results are accordant with that obtained by Parikh and 

Wilczek’s method of the black hole. 
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Notations, Conventions and Acronyms 
   

 • Greek indices  µ, ν, ... at tensors cycle  the  numbers 0 to 3 and   
      Latin indices i, j, ... cycle only spatial coordinates from 1 to 3. The 
      temporal index is denoted by t and number 0. 

• M or m → Mass of black hole 

• ir   → location of the event horizon before the particles 
     emission 

• fr  → location of the event horizon after the particles 
      emission 

• ADM → Arnowitt, Deser, and Misner 

• AdS   → Anti-de Sitter 

• CFT → Conformal Field Theory 

• dS → de Sitter 

• KdS   → Kerr-de Sitter 

• KAdS → Kerr-anti-de Sitter 

• RN → Reissner-Nordström 

• RNdS → Reissner-Nordström-de Sitter 

• RNAdS   → Reissner-Nordström-anti-de Sitter 

• SdS  → Schwarzschild-de Sitter 

• SAdS       → Schwarzschild-anti-de Sitter 

• WKB → Wentzel–Kramers–Brillouin 

• KN → Kerr-Newman 

• KNdS → Kerr-Newman-de Sitter 

• KNAdS → Kerr-Newman-anti-de Sitter 

• HJE → Hamilton-Jacobi Equation 
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Chapter 1

Introduction

General relativity, which was published by Albert Einstein (1879-1955)

in 1915 [1], was almost as epochal as Newton’s theory. It is sometimes

maintained that general relativity is difficult to understand. If so, the

problem is not that the theory itself would be conflicting or complicated.

On the contrary, it may be considered as one of the most beautiful the-

ories ever developed. The problem is that general relativity forces us to

change our classical conceptions of time and space in a very radical man-

ner. Nevertheless, these changes are necessary if one want to achieve a

deeper comprehension of Nature. In general relativity space and time are

no longer separated but together constitute a four-dimensional continuum

called spacetime. Einstein’s ingenious idea was that matter interacts with

spacetime in such a way that spacetime becomes curved. This interac-

tion between matter and spacetime is described by Einstein’s field equa-

tion. Furthermore, the paths of objects are determined by the geometry of

spacetime which can be applied to spacetime of any shape: Objects with

free fall velocity move along geodesics, i.e., routes of stationary length

1



CHAPTER 1.

between spacetime points. Hence, matter tells spacetime how to curve,

whereas the geometry of spacetime tells matter how to move. In this

sense, gravitation may be considered as a manifestation of the curvature

of spacetime. Thus General relativity describes the effects of curved or

accelerated motion and of gravitational fields on mass, size, and time. It

also states that matter and empty space influence each other in a complex

fashion and that the Universe is finite in size. In classical general relativity,

spacetime is considered as a curved of four dimensional manifold, whose

shape is defined by Einstein’s field equations. The Einstein equations are

unavoidably involved in any matter where the geometry of spacetime is of

consequence. One of the most successful and useful applications of Ein-

stein’s General Theory of Relativity is within the field of cosmology and it

also part of the framework of the standard Big Bang model of cosmology.

The cosmological constant was first introduced into the equations of

general relativity by Einstein himself, who later famously criticized this

move as his ‘greatest blunder’. In his paper of 1917 [2] he found the

first cosmological solution of a consistent theory of gravity. In spite of

its drawbacks this bold step can be regarded as the beginning of modern

cosmology. The relevance of the cosmological constant in modern gravita-

tional physics is manifest, and it is interesting to focus on the solutions of

Einstein’s field equations with cosmological constant, to investigate its role

on different scales. For instance, the Schwarzschild-de Sitter metric, which

describes a point-like mass in a spacetime with a cosmological constant,

has been recently studied in [3, 4, 5, 6]. In particular, the Schwarzschild-de

Sitter metric has been considered to investigate the influence of the cosmo-
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logical constant on gravitational lensing in [7, 8, 9, 10]. The cosmological

constant, conventionally denoted by the Greek letter Λ, is a parameter

describing the energy density of the vacuum (empty space), and a poten-

tially important contributor to the dynamical history of the universe. The

value of Λ in our present universe is not known, and may be zero, although

there is some evidence for a nonzero value; a precise determination of this

number will be one of the primary goals of observational cosmology in the

near future. In a universe with both matter and vacuum energy, there is

a competition between the tendency of Λ to cause acceleration and the

tendency of matter to cause deceleration, with the ultimate fate of the

universe depending on the precise amounts of each component. To a good

approximation, the cosmological constant more precisely, the convention-

ally defined cosmological constant Λ is proportional to the vacuum energy

density ρΛ ; they are related by Λ = 8πG
3c2 ρΛ, where G is Newton’s constant

of gravitation and c is the speed of light. It was not until years after Ein-

stein introduced Λ as a parameter in cosmology that it was realized that

the same parameter measured the energy density of the vacuum.

General relativity has developed into an essential tool in modern as-

trophysics and provides the foundation for the current understanding of

black holes. According to general relativity, a sufficiently compact mass

will deform spacetime to form a black hole. Black holes are very subtle and

mysterious objects in this universe. It can be defined as: “black holes

are regions of space where the gravitational effects are so strong

that even light cannot escape from those regions”. The existence

of such regions was proposed for the first time by Michell and Laplace al-
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ready in the late 18th century (and probably independently of each other)

[11, 12]. Their arguments, however, were based on Newton’s theory of

gravitation. General relativity also predicts the existence of black holes,

and the first black hole solution to Einstein’s field equation was found by

Schwarzschild in 1916 [13]. At first, black holes were thought to be only

theoretical curiosities which would not exist in Nature. However, through

the works of Chandrasekhar, Oppenheimer, Volkoff, and Snyder it is also

quite clear that black holes are born, in some situations, as the final states

of stars [14, 15]. Therefore, one may indeed expect that there exist black

holes in our universe. Classically, black holes do not emit any type of

radiations and are perfect absorbers.

The topic of black hole thermodynamics has been a subject of interest

since the 1970’s when Bekenstein first conjectured that there was a fun-

damental relationship between the properties of black holes and the laws

of thermodynamics [16] and is very important in this regard. It is impos-

sible to define a temperature for black holes because, everything goes into

the black hole and as a result of this, there is no any output. If this is

the case, the second law of thermodynamics would be contradicted due to

entry of matter having its own entropy, into the black hole which results

the decrease of the total entropy of the universe and violates the second

law of thermodynamics. In 1972, again Bekenstein showed that black

holes possess entropy similar to its surface area, whose increase overcomes

the decrease of the exterior entropy such that the second law of thermo-

dynamics is preserved. He also related the surface gravity, which is the

gravitational acceleration experienced at the surface of the black hole or

4
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any object, with temperature of the body in thermal equilibrium. Possi-

bly, black holes are the most perfectly thermal objects in the universe, and

yet their thermal properties are not fully understood. They are described

very accurately by a small number of macroscopic parameters (e.g., mass,

angular momentum, and charge), but the microscopic degrees of freedom

that lead to their thermal behavior have not yet been adequately iden-

tified. Strong hints of the thermal properties of black holes came from

the behavior of their macroscopic properties that were formalized in the

(classical) four laws of black hole mechanics [17], which have analogues in

the corresponding four laws of thermodynamics:

The zeroth law of black hole mechanics is that “the surface

gravity(κ) is constant over the horizon (event) [17, 18] for a stationary

black hole”. This is analogous to the zeroth law of thermodynamics which

states that “the temperature T is constant throughout a body in ther-

mal equilibrium”. So in this sense the surface gravity is analogous to the

temperature.

The first law of black hole mechanics is that “the mass of the

black hole changes in terms of its area, angular momentum, and electric

charge”. These are all related by the equation:

dM = κ
8πdA+ ΩδJ + ΦQ,

where M is the mass of the black hole, κ is the surface gravity, A is the

area of the horizon, Ω is the angular velocity, J is the angular momentum

of the black hole, Q is the electric charge, and Φ is the electrostatic po-

tential (Φ = Q/r for a point charge). This is analogous to the first law of

thermodynamics: dE = TdS+ work terms,

5
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where E is the energy, T is the temperature, and S is the entropy. Notice

that a change in mass is a change in energy (i.e. E =Mc2 and one using

c = 1 units so E =M). The terms ΩδJ+ΦQ are work terms. This implies

that κ
8πdA is analogous to TdS. So the temperature is analogous to surface

gravity and black hole area is analogous to the entropy i.e. this first law

is essentially the same as the first law of black hole mechanics.(This law

expresses the conservation of energy i.e., the first law of thermodynamics

is a statement of energy conservation.)

The second law of black hole mechanics is Hawking’s area theorem

[19], that “the area A of a black hole horizon cannot decrease by any

(classical) process (i.e dA ≥ 0)”. This is obviously analogous to the second

law of thermodynamics which is the fact that the entropy S of a closed

system (or the universe) cannot decrease (dS ≥ 0). So once again area is

seen to be analogous to entropy.

The third law of black hole mechanics is that “the surface gravity

κ cannot be reduced to zero by any finite sequence of operations [20]”. This

is analogous to the weaker (Nernst) form of the third law of thermodynam-

ics, that “the temperature T of a system cannot be reduced to absolute

zero in a finite number of operations”. However, the classical third law of

black hole mechanics is not analogous to the stronger (Planck) form of the

third law of thermodynamics, that the entropy of a system goes to zero

when the temperature goes to zero. The only black holes that have zero

surface gravity are extremal black holes.

Thus the four laws of black hole mechanics are analogous to the four

laws of thermodynamics if one makes an analogy between temperature T

6



CHAPTER 1.

and some multiple of the black hole surface gravity κ and between entropy

S and some inversely corresponding multiple of the black hole area A.

That is, one might say that T = ϵκ and S = ηA, with 8πϵη = 1 , so that

the κdA/(8π) term in the first law of black hole mechanics becomes the

heat transfer term TdS in the first law of thermodynamics.

Even before the formulation of the four laws of black hole mechanics,

Bekenstein [16, 21, 22, 23] proposed that a black hole has an entropy S

that is some finite multiple η of its area A. He was not able to determine

the exact value of η, but he gave heuristic arguments for conjecturing that

it was (ln2)/(8π) (in Planck units, ~ = c = G = κ = 4πϵ0 = 1).

However, for the first law of black hole mechanics to be equivalent to

the first law of thermodynamics, this would logically imply that the black

hole would have to have a temperature T that is a corresponding nonzero

multiple of the surface gravity κ. E.g., if η = (ln2)/(8π) as Bekenstein

proposed, then one would get ϵ = 1/(ln2), so that T = κ/(ln2). But since

it was thought then that black holes can only absorb and never emit, it

seemed that black holes really would have zero temperature, or ϵ = 0,

which would make Bekenstein’s proposal inconsistent with any finite η

[17].

A wonderful discovery [24, 25] by Hawking in 1974 that black holes can

radiate thermally reconciled a serious contradiction among General Rel-

ativity, Quantum Mechanics and Thermodynamics at that time and put

the first law of black hole thermodynamics on a solid fundament. At a big

cost, however, this discovery also caused another controversial problem:

what happen to information during the black hole evaporation? In the
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classical theory, the loss of information was not a serious problem since

the information could be thought of as preserved inside the black hole but

just not very accessible. However, taking the quantum effect into consid-

eration, the situation is changed. With the emission of thermal radiation

[24, 25], black holes could lose energy, shrink, and eventually evaporate

away completely. Since the radiation with a precise thermal spectrum car-

ries no information, the information carried by a physical system falling

toward black hole singularity has no way to be recovered after a black

hole has disappeared completely. This problem is now generally known as

“the paradox of black hole information loss” [26, 27], which means that

pure quantum states (the original matter that forms the black hole) can

evolve into mixed states (the thermal spectrum at infinity). This directly

violates the principle of unitarity for quantum dynamics of an isolated sys-

tem and brings a serious challenge to the foundations of modern physics.

In the past decades, several methods [28, 29, 30, 31] have been suggested

for resolving the “information loss paradox”; none has been successful. In

fact, each failed attempt for a resolution seems to have made the existence

of this paradox more serious and attracted more interest, especially after

the possibility that information about infallen matter may hide inside the

correlations between the Hawking radiation and the internal states of a

black hole was ruled out. While the information paradox can perhaps be

attributed to the semi-classical nature of the investigations of Hawking

radiation [32], researches in string theory indeed support the idea that

Hawking radiation can be described within a manifestly unitary theory,

however, it still remains a mystery how information is recovered. Although

8
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a complete resolution of the information loss paradox might be within a

unitary theory of quantum gravity or string/M-theory, it is argued that

information could come out if the emitted radiations were not exactly

thermal but instead the radiation spectrum contains a subtle non-thermal

correction [33]. On the other hand, the mechanism of black hole radiance

remains shrouded in some degree of mystery. In the original derivation

of black hole evaporation, Hawking described the thermal radiation as a

quantum tunneling process [34] triggered by vacuum fluctuations near the

event horizon. According to this scenario, a pair of particles is sponta-

neously generated inside the horizon. The positive energy particle tunnels

out to the infinity while the negative energy one remains in the black hole.

Alternatively, the positive and negative energy pair is created outside the

horizon, and the negative energy particle tunnels into the black hole be-

cause its orbit exists only inside the horizon, while the positive energy one

remains outside and emerges at infinity.

Indeed, the above viewpoint that regards the radiation as quantum

tunneling out from inside the black hole has been proved very convenient

to explore the issue of dynamics. But, actual derivation [35] of Hawking

radiation did not proceed in this way at all, most of which based upon

quantum field theory on a fixed background spacetime without considering

the fluctuation of the spacetime geometry. Moreover, there is another

fundamental issue that must necessarily be dealt with, namely, the energy

conservation. It seems clear that the background geometry of a radiating

black hole should be altered with the loss of energy, but this dynamical

effect is often neglected in formal treatments. Due to this breakthrough
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in the field of black hole physics, many research works on the thermal

radiation of black holes have been made [36, 37, 38, 39, 40]. This procedure

provides a leading correction to the tunneling probability (emission rate)

arising from the reduction of the black hole mass because of the energy

carried by the emitted massless or massive quanta.

Wilczek and his collaborators have developed two universal methods to

correctly recover Hawking radiation of black holes. One is the gravitational

anomaly method [41] in which the Hawking radiation can be determined

by anomaly canceled conditions and regularity requirement at the event

horizon. Later on, this method is widely used to calculate the Hawking

radiation for different black holes [42, 43, 44, 45, 46, 47, 48, 49, 50].

The another is the semi-classical tunneling method developed by Parikh

and Wilczek [51] presented a greatly simplified model (based upon the

previous introduced by Kraus and Wilczek [52, 53, 54]) to implement the

Hawking radiation as a semi-classical tunneling process from the event

horizon of the four-dimensional Schwarzschild and Reissner-Nordström

black holes by treating the background geometries as dynamical and in-

corporating the self-gravitation correction of the radiation. The radiant

spectra that they derived under the consideration of energy conservation

give a leading-order correction to the emission rate arising from the loss

of mass of black holes, which corresponds to the energy carried by the

radiated quanta. Their result shows that the actual emission spectrum of

black hole radiation deviates from strictly pure thermality, which might

serve as a potential mechanism to resolve the information loss paradox.

Since the semi-classical tunneling method has been successfully applied to
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deal with Hawking radiation of black holes, a lot of work shows its validity

[38, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

73, 74, 75, 76, 77, 78, 79, 80, 81]. But most of them are focus on studying

Hawking radiation of scalar particles tunneling from different-type black

holes.

Based on semi-classical tunneling picture two new methods have been

employed to calculate the imaginary part of the action, one the null

geodesic method developed by Parikh and Wilczek [51, 82, 83, 84] and

another method proposed by Srinivasan and Padmanabhan [85, 86, 87,

88, 89]. The later method then extended by Angheben et. al [90] and suc-

cessfully presented to derive the imaginary part of the action by solving the

Hamilton-Jacobi equation, which is, later called as the ‘Hamilton-Jacobi

method’ [85, 86, 87, 88, 89]. The difference of later method from Parikh’s

is mainly that such method concentrates on introducing the proper spatial

distance and upon calculating the relativistic Hamilton-Jacobi equation.

The latter method also involves consideration of a emitted scalar particle,

ignoring its self-gravitation and assumes that its action satisfies the rela-

tivistic Hamilton-Jacobi equation. An appropriate ansatz for the action

can be obtained from the symmetries of the spacetime which is known

as the Hamilton-Jacobi ansatz. Both the methods show that when the

self-gravitational interaction and the unfixed background spacetime are

taken into account, the actual Hawking radiation spectrum deviates from

the purely thermal one, satisfies the underlying unitary theory and gives

a leading correction to the radiation spectrum. Based on the Hamilton-

Jacobi method, Banerjee and Majhi [91] developed the tunneling method

11
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beyond semi-classical approximation to include quantum corrections and

many researches have been made to calculate quantum corrections of black

hole entropy [92, 93, 94, 95, 96, 97]. In 2005, Zhang and Zhao have first

proposed the Hawking radiation from massive uncharged particle tunnel-

ing [98] and charged particle tunneling [43, 44, 46, 81, 99, 100, 101]. All

the results supported Parikh’s opinion and gave a correction to the Hawk-

ing pure thermal spectrum. Exploiting this work, a few researches have

been carried out as charged particle tunneling [77, 102, 103, 104, 105].

Kerner and Mann [106, 107, 108] extended Kraus and Wilczek’s [53, 54]

work and also developed quantum tunneling methods for analyzing the

temperature of Taub-NUT black holes [109] using both the null-geodesic

and Hamilton-Jacobi methods by ignoring the self-gravitation interaction

and energy conservation of emitted particle. This method is also applied

to higher dimensional black holes [110, 111, 112], black holes in String

theory [113], black strings [114, 115, 116, 117], accelerating and rotat-

ing black holes [118, 119, 120], dilation black holes [121, 122], BTZ black

holes [123], black holes with NUT parameter [109, 124] and Kerr-Newman

black hole [125]. Taking the self-gravitation interaction and unfixed back-

ground spacetime into account Chen, Zu and Yang reformed Hamilton-

Jacobi method for massive particle tunneling and investigate the Hawking

radiation of the Taub-NUT black hole [126]. Using this method Hawking

radiation of Kerr-NUT black hole [65], Kerr-de Sitter black hole [127], the

charged black hole with a global monopole [99, 128] have been reviewed.

In fact, a black hole can radiate all types of particles charged, massless or

massive.

12
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Recently, we have developed a new Hamilton-Jacobi method by re-

formulating the method of Chen et al. [125, 126], for massive particle

tunneling and investigate the Hawking radiation of black holes with cos-

mological constant (SdS black hole [129], SAdS black hole [130], RNAdS

black hole [131]) by considering the self-gravitation interaction and un-

fixed background spacetime. In general relativity, different black holes are

characterized by mass M , charge Q and rotation a parameter. The fourth

parameter is cosmological parameter Λ, which is taken to be constant

since otherwise the calculations would be too complex to solve analyti-

cally. To proceed analytically, we have solved the position of the black

hole as a series of infinite terms so that the spacetime metric becomes dy-

namical. By taking self-gravitational effect and energy conservation into

account we have shown that the tunneling rate is related to the change

of Bekenstein-Hawking entropy and the emission spectrum deviates from

the precisely thermal one which in accordance with Parikh and Wilczek’s

opinion [51, 82, 83] and gives another method to study the Hawking radi-

ation of black hole with cosmological constant. In de Sitter/anti-de Sitter

spaces, very little work have been investigated either for massless/charged

particle or massive particle tunneling from black hole due to tough calcu-

lation. So our present research on black holes with cosmological constant

is important and meaningful.

In recent years, considerable attention has been concentrated on the

study of black holes in de Sitter (dS) and anti-de Sitter (AdS) spaces. The

motivation behind it is based on two aspects: first, the recent observed ac-

celerating expansion [132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
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143, 144, 145, 146, 147, 148, 149, 150, 151, 152] of our universe indicates

the cosmological constant might be a positive one [132, 153, 154]; Secondly,

like the AdS/CFT correspondence [26, 155, 156], an interesting proposal,

the so-called dS/CFT correspondence, has been suggested that there is

a dual relation between quantum gravity on a dS space and Euclidean

conformal field theory (CFT) on a boundary of dS space [157, 158, 159].

The solutions of black holes in Anti-de Sitter spaces come from the Ein-

stein equations with a negative cosmological constant. Anti-de Sitter black

holes are different from de Sitter black holes. The difference consisting in

them is due to minimum temperatures that occur when their sizes are

of the order of the characteristic radius of the anti-de Sitter space. For

larger Anti-de Sitter black holes, their red-shifted temperatures measured

at infinity are greater. This implies that such black holes can be in stable

equilibrium with thermal radiation at a certain temperature. Anti-de Sit-

ter (AdS) geometry has been considered as a challenging field for quantum

field theory in different frameworks, including supersymmetry and string

theory. The string /M-theory have also greatly stimulated the study of

black hole solutions in AdS space. So our study on different kinds of black

holes in de Sitter and anti-de Sitter spaces are meaningful and significant.

The outline of this thesis is the following: the second chapter is a

review work since it contains a review of work done by others in addition

to extension relativistic Hamilton-Jacobi equation that we have done ( i.e

devoted to recall with the well-known relativistic Hamilton-Jacobi equa-

tion). The remaining chapters will consist entirely of original calculations

partly we have done in the papers [129, 130, 131].
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In the third chapter, we have investigated the Hawking radiation of

Schwarzschild-de Sitter (SdS) black hole [129] by massive particles tun-

neling method. Here we have expressed the radius of the SdS black hole

in terms of mass and cosmological parameter in an infinite series and the

new line element near the event horizon is derived which are totally new

ideas of this research. Using Hamilton-Jacobi method, we consider the

spacetime background to be dynamical, incorporate the self-gravitation

effect of the emitted particles and show that the tunneling rate is related

to the change of Bekenstein-Hawking entropy and the derived emission

spectrum deviates from the pure thermal spectrum when energy and an-

gular momentum are conserved. Our result is in accordance with Parikh

and Wilczek’s opinion [51, 82, 83] and gives a correction to the Hawking

radiation of the SdS black hole.

In the fourth chapter, the massive particles tunneling method has

been used to explore the Hawking non-thermal and purely thermal radi-

ations of Schwarzschild-anti-de Sitter (SAdS) black hole [130]. Using the

same view of chapter three we have shown that the non-thermal and purely

thermal tunneling rates are related to the change of Bekenstein-Hawking

entropy and the derived emission spectrum deviates from the pure thermal

spectrum [51, 82, 83].

In the fifth chapter, we have investigated the Hawking purely thermal

and non-thermal radiations of Reissner-Nordström-de Sitter (RNdS) black

hole [160] by including charge parameter to SdS black hole [129]. Consid-

ering the same assumption of SdS black hole [129] we have shown that the

tunneling rate is related to the change of Bekenstein-Hawking entropy and
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the derived emission spectrum deviates from the pure thermal spectrum.

The result is in accordance with Parikh and Wilczek’s opinion [51, 82, 83]

and recovered the new result for Hawking radiation of RNdS black hole.

In the sixth chapter, we have generalized our work given in chapter 4

(SAdS black hole [130]) with charge parameter and introduce the Hawking

non-thermal and purely thermal radiations of Reissner-Nordström-anti-de

Sitter (RNAdS) black hole [131] by massive particles tunneling method.

Like SAdS black hole here we have also shown that the non-thermal and

purely thermal tunneling rates are related to the change of Bekenstein-

Hawking entropy and the derived emission spectrum deviates from the

pure thermal spectrum. The results for the RNAdS black hole is also

in the same manner with Parikh and Wilczek’s opinion [51, 82, 83] and

explored the new result for Hawking radiation of RNAdS black hole.

In the seventh chapter, we have revised the work given in chapter 3

(SdS black hole [129]) with rotating parameter and investigate the Hawk-

ing non-thermal and purely thermal radiations of Kerr-de Sitter (KdS)

black hole [161] using Hamilton-Jacobi method. The dragging coordinates

transformation have been used to derive the new line element near the

event horizon. Taking self-gravitation effect into account we have shown

that the tunneling rate is related to the change of Bekenstein-Hawking

entropy and the derived emission spectrum deviates from the pure ther-

mal spectrum [51, 82, 83]. The explored results gives a correction to the

Hawking radiation of KdS black hole.

In the eighth chapter, using the same opinion as chapter 4 (SAdS

black hole [130]) we have explored Hawking non-thermal and purely ther-
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mal radiations of Kerr-anti-de Sitter (KAdS) black hole by including ro-

tating parameter. Applying the dragging coordinate transformation and

taking self-gravitational effect into consideration we have shown that the

tunneling rates are related to the change of Bekenstein-Hawking entropy

and the derived emission spectrum deviates from the pure thermal spec-

trum and also the obtaining results for the KAdS black hole is in accor-

dance with Parikh and Wilczek’s opinion [51, 82, 83] and gives a correction

to the Hawking radiation of the KAdS black hole.

In the ninth chapter, we have generalized the work given in chapter

7 with charge parameter and derived Hawking non-thermal and purely

thermal tunneling rates employing Hamilton-Jacobi method. Here, as

KdS black hole we have shown that the tunneling rate of Kerr-Newman-

de Sitter (KNdS) black hole is related to the change of Bekenstein-Hawking

entropy and the derived emission spectrum deviates from the pure thermal

spectrum, which is full consistent with Ref. [51, 82, 83].

In the tenth chapter, we have investigated the Hawking non-thermal

and purely thermal tunneling rates of the Kerr-Newman-anti-de Sitter

(KNAdS) black hole which is the Kerr-anti-de Sitter black hole [81] gen-

eralized with a charge parameter. As KAdS black hole here we have also

shown that the tunneling rate is related to the change of Bekenstein-

Hawking entropy and the derived emission spectrum deviates from the

pure thermal spectrum [51, 82, 83], and gives a correction to the Hawking

radiation of the KNAdS black hole.

Finally, in chapter eleven we give a brief description of the results of

our prime work from chapter three to chapter ten .
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Chapter 2

A Review of the Elementary Formulation of
the Relativistic Hamilton-Jacobi equation

2.1 Introduction

The relativistic Hamilton-Jacobi equation (HJE) is a necessary condition

describing extremal geometry in generalizations of problems from the cal-

culus of variations. It is named for William Rowan Hamilton and Carl

Gustav Jacob Jacobi. The Hamilton-Jacobi equation is particularly useful

in identifying conserved quantities for mechanical systems, which may be

possible even when the mechanical problem itself cannot be solved com-

pletely. The resultant Hamilton-Jacobi theory and later developments

are presented in several famous texts: Arnol’d (1974), Landau and Lif-

shitz (1969), Gantmacher (1970), Born and Wolf (1965), Lanczos (1949),

Carathodory (1982), Courant and Hilbert (1962).

The equations of motion for a relativistic massive particle moving in an

electromagnetic field written in a form of the second law of Newton. Which

can be reduced with the help of elementary operations to the relativistic
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Hamilton-Jacobi equation. In turn, the action I obeys the Hamilton-

Jacobi equation. The latter is a partial differential equation of the first

order. A transition from Newton’s second law to the Hamilton-Jacobi

equation can be achieved with the help of the algorithm for transform-

ing a system of ordinary differential equations into a partial differential

equation. Although the fact that such transformation algorithm is well-

known (e.g., [162]) the actual transformation of the equations of motion of

a charged relativistic particle in the electromagnetic field into a respective

PDE (the Hamilton-Jacobi equation) is not quoted in the physical litera-

ture to the best of our knowledge. The usual approach to the problem of

derivation of the Relativistic Hamilton-Jacobi equation is to heuristically

introduce classical action I and to vary it (for fixed initial and final times).

The formulation is based on a possibility of transforming the equation of

motion to a completely antisymmetric form.

In the next section, at once time we obtain the principle of least ac-

tion and taking into account it we derive the relativistic Hamilton-Jacobi

equation.

2.2 Formulation of the Relativistic HJ equation

By keeping in mind the momentum as a function of both temporal and

spatial coordinates, we provide an elementary derivation of the Hamilton-

Jacobi where the concept of action emerges in a natural way. This can be

imagined by considering first a non-relativistic classical particle moving

from one point A(say) to another point B(say). The particle can do that

by taking any possible paths connecting these two points. Therefore for
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any fixed moment of time, say t = 1 the momentum would depend on the

spatial coordinate, that is p⃗ = p⃗(x⃗, t). In a sense one have replaced watch-

ing the particle evolution in time by watching the evolution of its velocity

(momentum) in space and time and this situation is in accordance to the

Euler’s description of motion of a fluid (an alternative to the Lagrange

description). The other way, one consider a “flow” of an “elemental”

path and describe its “motion” in terms of its coordinates and velocity

(determined by a slope of the path at a given point). This permits us

to represent Newton’s second law for a particle (mass m) moving in a

conservative field U(x⃗) as follows

dp⃗

dt
=
∂p⃗

∂t
+

1

m
(p⃗ · ∇)p⃗ = −∇U. (2.1)

Taking curl on both sides to the Eq.(2.1), we obtain

∇× dp⃗

dt
=

∂

∂t
(∇× p⃗) +

1

m
∇× (p⃗ · ∇)p⃗ = 0. (2.2)

Using the vector formula

(⃗a · ∇)⃗a =
∇a2

2
+ (∇× a⃗)× a⃗. (2.3)

Eq.(2.2) becomes

∂

∂t
(∇× p⃗) +

1

m
∇× {(∇× p⃗)× p⃗} = 0. (2.4)

The trial solution of Eq.(2.4) is

∇× p⃗ = 0 (2.5)

similar to an irrotational motion in Euler’s picture of a fluid motion. From

Eq.(2.5), one must get

p⃗ = ∇I, (2.6)
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where I(x̄, t) is some scalar function. Generally speaking, one can choose

the negative value of ∇I. The conventional choice is connected with the

fact that the corresponding value of the kinetic energy has to be positive.

Inserting Eq.(2.6) into Eq.(2.1) and with the help of Eq.(2.3) one obtain

the following equation

∇
{∂I
∂t

+
1

2m
(∇I)2 + U

}
= 0. (2.7)

In turn Eq.(2.7) means that

∂I

∂t
+

1

2m
(∇I)2 + U = f(t), (2.8)

where f(t) is some function of time. Defining a new function I ′ = I −∫
f(t)dt one get from Eq.(2.7) the Hamilton-Jacobi equation with respect

to the function I ′ (representing the classical action):

∂I ′

∂t
+

1

2m
(∇I ′)2 + U = f(t), (2.9)

Using the relation p⃗ = mv⃗ in Eq.(2.6) and drop the prime at I ′, the

Hamilton-Jacobi equation can be rewritten as follows

∂I

∂t
+ v⃗ · ∇I =

mv2

2
− U. (2.10)

Now using dI
dt =

∂I
∂t + v⃗ · ∇I, the expression for the action I by integrating

Eq.(2.10) from the point A to B

I =

∫ tB

tA

(
mv2

2
− U

)
dt ≡

∫ tB

tA

L(x⃗, v⃗, t)dt, (2.11)

where L(x⃗, v⃗, t) = mv2

2 − U is the lagrangian of a particle of mass m.

Now we can arrive at the principle of least action (without postulating

it a priori) directly from the Hamilton-Jacobi equation. To this end one
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subject the action I to small perturbations δI ≪ I and (by dropping the

term (∇δI)2) get from Eq.(2.9) the equation with respect to δI

∂δI

∂t
+

1

m
(∇I) · (∇δI) = 0. (2.12)

Since ∇I
m = v⃗ Eq.(2.12) represents the substantial derivative of δI, so

dδI

dt
= 0. (2.13)

Integrating we get

δI = constant. (2.14)

Thus for a specific function I satisfying the Hamilton-Jacobi equation the

respective perturbations δI = constant. On the other hand, according to

Eq.(2.11) the action I is defined on a set of all possible paths connecting

point A and point B. This means that perturbations δI correspond to

perturbations of all these path.

After all one of these paths δI = constant, according to Eq.(2.14).

In order to determine this constant one consider into account that at

the fixed points A and B the paths are also fixed, that is the respective

perturbations δI = 0 at these points. Therefore only for the specific path

determined by the Hamilton-Jacobi equation that is by the second law of

Newton δI = 0, thus yielding the principle of least action:

δ

∫ tB

tA

L(x⃗, v⃗, t) = 0. (2.15)

The formulation given by Eq.(2.15) serves as a guide for a derivation of the

relativistic Hamilton-Jacobi equation for a (relativistic) massive particle

of charge q and mass m moving in the electromagnetic field. Our approach
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is to reduce the respective equations of motion to the form which would be

analogous to an irrotational motion in Euler’s picture. The very structure

of the spacetime metric allows one to arrive at the required result in a

natural way.

Therefore, one start with the second law of Newton for a relativistic

charged particle of a charge q and mass m moving in the electromagnetic

field:

dpα

dt
= q[Eα + ϵαβγυβBγ], (2.16)

where Greek indices α, β, γ... take the values 1, 2, 3, ϵαβγ is the absolutely

antisymmetric tensor of the third rank, pα = mυα

(1−υδυδ)
1/2 is the momentum

of the particle, Eα is the electric field , υα = v⃗ is the velocity of the particle

and Bα is the magnetic field.

For the subsequent analysis one cast Eq.(2.16) into the standard co -

and contra-variant forms and to this end one use the metric gik = gik =

[1,−1,−1,−1] and use units where the speed of light is c = 1. In this

metric x0 = x0 = t, xα = x⃗ = −xα, the four- potential Ai(A0, Aα) whose

scalar part A0 = ϕ (where ϕ is the scalar potential) and Aα ≡ A⃗ is the

vector potential, and the roman indices i, j, k, ...take the values 0, 1, 2, 3.

From the Maxwell equations then follows (e.g.[163]) that the electric field

Eα intensity and the magnetic induction Bα are

Eα = −
(
∂A0

∂xα
+
∂Aα

∂x0

)
(2.17)

Bα = ϵαβγ
∂Aγ

∂xβ
. (2.18)
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In terms of the vector-potential Aα ≡ A⃗, using Eq.(2.18) one express the

second term on the right-hand side of Eq.(2.16)

ϵαβγυβBγ = ϵαβγϵγδλ
∂Aλ

∂xδ
= υβ

(
∂Aβ

∂xα
− ∂Aα

∂xβ

)
. (2.19)

Inserting Eq.(2.18) and Eq.(2.19) into Eq.(2.16) yields

dpα

dx0
= q
[
−
(
∂A0

∂xα
+
∂Aα

∂x0

)
+ βγ

(
∂Aγ

∂xα
− ∂Aα

∂xγ

)]
, (2.20)

where βγ = υγ. In refs.[163], one use in Eq.(2.20) the antisymmetric tensor

F ik such that

F ik =
∂Ak

∂xi
− ∂Ai

∂xk
(2.21)

the relation between contra-(Aα) and co-variant (Aα) vectors(A
α = −Aα),

introduce the spacetime interval

ds ≡ dt
√

(1− βαβα) ≡ dt
√
(1− β2)

and the four-velocity

ui(u0 = 1 =
√

(1− β2), uα = −uα =
βα√

(1− β2)
.

we get

dpα

ds
= qF αkuk = −qF kαuk. (2.22)

The next step is to find the zeroth components of Eq.(2.22). Using the

special relativistic identity for the momentum pi = mui, pip
i = m2 one

find

p0
dp0

ds
≡ −pα

dpα

ds
= pα

dpα

ds
. (2.23)
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Using Eq.(2.23) into Eq.(2.22) one obtain

pα
dpα

ds
= qpα[F αβuβ + F 00u0]. (2.24)

On the other hand, since F ik = −F ki(F 00 = F00 = 0).

pαuβF
αβ = 0.

Hence from Eq.(2.23) and Eq.(2.24) follows that

dp0

ds
= qu0F α0 = qF 0αuα = qF 0iui. (2.25)

Adding Eq.(2.25) and Eq.(2.22) and using the definition of F ik, Eq.(2.21),

one arrive at the equation of motion in the contra-variant form:

dpi

ds
= qF ikuk = q

(
∂Ak

∂xi
− ∂Ai

∂xk

)
uk. (2.26)

The respective co-variant form follows from raising and lowering indices

in Eq.(2.26):

dpi
ds

= qFiku
k = q

(
∂Ak

∂xi
− ∂Ai

∂xk

)
uk. (2.27)

Reducing these equations to a form similar to the condition defining an

irrotational flow in fluid mechanics and for one rewrite (2.26) and (2.27)

in the following form

uk

[ ∂

∂xk
(mui + qAi)− ∂

∂xi
(qAk)

]
= 0

uk
[ ∂

∂xk
(mui + qAi)−

∂

∂xi
(qAk)

]
= 0 (2.28)

and add to the third term the identity

uk
∂uk

∂xi
= uk

∂uk
∂xi

≡ 1

2

∂

∂xi
(uku

k) = 0.
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Therefore, one get

uk

[ ∂

∂xk
(mui + qAi)− ∂

∂xi
(muk + qAk)

]
= 0 (2.29)

or equivalently

uk
[ ∂

∂xk
(mui + qAi)−

∂

∂xi
(muk + qAk)

]
= 0. (2.30)

The expressions mui+ qAi or (mu
i+ qAi) in square brackets of the above

equations represent a four-curl of the four-vector. Both equations are

identically satisfied if this four-curl is 0. Once again, this can be inter-

preted as the fact that the respective vector field is irrotational, that is

the four-vector mu⃗ + qA⃗ (here we use notation a⃗ for a four-vector) is the

four-gradient of a scalar function, say −I

mui + qAi = − ∂I

∂xi
(2.31)

mui + qAi = − ∂I

∂xi
. (2.32)

This scalar function I ( a potential function) is the classical relativistic

action, and choice of the sign is dictated by the consideration that ex-

pressions Eq.(2.31) must become the expressions for the momentum and

energy in the non-relativistic limit. To find the explicit expression for I

one integrate Eq.(2.31) [ or (2.32)] and obtain

I = −
∫ b

a

(mui + qAi)dxi ≡= −
∫ b

a

(m+ Aiui)ds, (2.33)

where a and b are points on the world line of the particle, ds = (dxidxi)
1/2,

and ui =
dxi

ds . Here the expression Eq.(2.33) coincides with the conven-

tional definition of the action (introduced on the basis of considerations
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not connected to the second law of Newton). It is interesting to note that

in a conventional approach to the action, the term Aidxi “cannot be fixed

on the basis of general considerations alone” [163]. Here however this term

is “fixed” by the very nature of the equations of motion.

Eqs.(2.31)and (2.32) produce the determining PDE for the function I

(the relativistic Hamilton-Jacobi equation for a massive charged particle

in the electromagnetic field) if we eliminate ui and u
i from this equations

with the help of the identity uiu
i = 1:(

∂I

∂xi
+ qAi

)(
∂I

∂xi
+ qAi

)
= m2, i = 0, 1, 2, 3 (2.34)

where one have to retain ( in the classical region) only one sign, either

plus or minus.

Following the well-known procedure of reducing the integration of the

partial differential equation of the first order to the integration of a system

of the respective ordinary differential equations [162]. In particular, given

the Hamilton-Jacobi equation (2.34) one derive (2.26). To this end one

subject action I to small perturbations δI

I = I0 + δI (2.35)

and find the equation governing these perturbations. Here I0 must satisfy

the original unperturbed Hamilton-Jacobi equation (2.34), and δI ≪ I0.

Using (35) into (34) one get with accuracy to the first order in δI(
∂I0
∂xi

+ qAi

)
∂

∂xi
(δI) +

(
∂I

∂xi
+ qAi

)
∂

∂xi
(δI) = 0 (2.36)

or equivalently (
∂I

∂xi
+ qAi

)
∂

∂xi
(δI) = 0. (2.37)
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Equation (37) is a quasi-linear first-order PDE whose characteristics are

given by the following equations

dx0
∂I0/∂x0 + qA0

=
dxα

∂I0/∂xα + qAα
. (2.38)

Here the repeated indices do not represent summation, and α = 1, 2, 3. It

is immediately seen that the characteristics of linearized Hamilton-Jacobi

equation (2.38) are the four- velocity ui:

ui =
1

m

(
∂I0
∂xi

+ qAi

)
. (2.39)

Inversely, these characteristics are the solutions of the equations of motion

written in a form of the second law of Newton. To demonstrate that one

divide both sides of (2.39) by ds, use Eqs. (2.31), (2.32) and the fact that

d
ds = uk

∂
∂xk

and obtain

mc
dui

ds

1

m

(
∂I0
∂xk

+ qAk

)
∂

∂xk

(
∂I0
∂xi

+ qAi

)
≡ 1

m

(
∂I0
∂xk

+ qAk

)[ ∂

∂xk

(
∂I0
∂xi

+ qAi

)
+ q

∂Ai

∂xk
− q

∂Ak

∂xi

]
≡ 1

m

(
∂I0
∂xk

+ qAk

)[ ∂
∂xi

(
∂I0
∂xk

+ qAk

)
− q

(
∂Ak

∂xi
− ∂Ai

∂xk

)]
=

1

2m

∂

∂xi
(uku

k) +
1

m
quk

(
∂Ak

∂xi
− ∂Ai

∂xk

)
= qukF

ik (2.40)

that is the second law of Newton, Eq.(2.26). Now one return to the lin-

earized equation (2.37) which one rewrite in the identical form

mui
∂

∂xi
δI ≡ d

ds
δI = 0. (2.41)

Which implies that δI = constant along a certain world line, singled out

of a continuous set of possible world lines according to this condition.

Without any loss of generality one can take the above constant = 0.
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For a specific function I satisfying the Hamilton-Jacobi equation the

respective perturbations δI = constant. On the other hand, according

to Eq. (2.33) the action I is defined on a set of all possible world lines

connecting world points a and b. This means that perturbations δI cor-

respond to perturbations of all these world lines. However, only for one

of these world lines δI = constant, according to (2.41). To determine this

constant one take into account that at the fixed world points a and b the

world lines are also fixed, that is the respective perturbations δI = 0 at

these points. If one apply condition Eq.(2.41) to the action I, Eq. (2.31),

the former would choose out of all possible world lines the only one sat-

isfying that condition, that is one arrive at the classical principle of least

action.

δ

∫ b

a

(mui + qAi)dxi = 0. (2.42)

At last, one demonstrate in an elementary fashion how the same technique

of transforming the equations of motion in the Newtonian form to the

Hamilton-Jacobi equation can be applied to a motion of a charged particle

in general relativity. The equations of motion of a charged particle in

gravitational and electromagnetic field are [164].

M(ul
∂ui

∂xl
+ Γi

klu
kul) = qgimFmku

k, (2.43)

where

Γi
kl =

1

2
gim
(
∂gmk

∂xl
+
∂gml

∂xk
− ∂gkl
∂xm

)
is the Ricci tensor.
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The expression Γi
klu

kul is significantly simplified according to the fol-

lowing identities:

Γi
klu

kul ≡ ul
1

2

[
uk
(
∂gimgmk

∂xl
− gmk

∂gim

∂xl

)
− ukglm

∂gim

∂xk
− ukgim

∂gkl

∂xm

]
≡ −1

2

[
ulum

∂gim

∂xl
+ uluk

(
glm

∂gim

∂xk
+
∂gkl
∂xi

)]
≡ −1

2

[
2ulum

∂gim

∂xl
+ uluk

∂gkl

∂xi

]
≡ −ul

(
∂gimum
∂xl

− gim
∂um
∂xl

)
− 1

2
uluk

∂gkl
∂xi

≡ −ul∂ui
∂xl

+ ulgik
∂uk
∂xl

− 1

2
ul
(
∂gklu

k

∂xi
− gkl

∂uk

∂xi

)
≡ −ul∂ui

∂xl
+ ulgik

∂uk
∂xl

− 1

2

(
ul
∂ul
∂xi

− ul
∂ul

∂xi

)
≡ −ul∂ui

∂xl
+ ulgik

∂uk
∂xl

− 1

2

(
ul
∂ul
∂xi

− ∂ulul
∂xi

+ ul
∂ul
∂xi

)
≡ −ul∂ui

∂xl
+ ulgik

∂uk
∂xl

− ul
∂ul
∂xi

≡ −ul∂ui
∂xl

+ ulgik
(
∂uk
∂xl

− ∂ul
∂xk

)
.

Now inserting this result into (2.43) and use the expression (2.21) for F ik,

one obtain

gikul
[ ∂
∂xl

(Muk + qAk)−
∂

∂xk
(Mul + qAl)

]
= 0. (2.44)

Equation (2.44) is identically satisfied if we set

Muk + qAk = − ∂I

∂xk
, (2.45)

where I is the action and the negative sign, representing a conventional

choice of positive energies in classical mechanics. Raising and lowering the

indices in (2.45), expressing the respective 4-velocities uk and uk in terms
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of ∂I
∂xk , and using the identity gikuiuk = 1, we arrive at the relativistic

Hamilton-Jacobi equation:

gik
(
∂I

∂xi
+ qAi

)(
∂I

∂xk
+ qAk

)
= m2. (2.46)

Since it has to retain (in the classical region) only one sign either plus or

minus in the case of relativistic mass, so as our motivation is to perform

our prime work, we replace −m2 in the place of m2 and then Eq.(2.46)

can be written as

gik
(
∂I

∂xi
+ qAi

)(
∂I

∂xk
+ qAk

)
+m2 = 0. (2.47)

Now if we taking into account the charge as fixed, then the electromagnetic

potential Aµ can be neglected and therefore Eq.(2.47) takes on form as

gik
(
∂I

∂xi

)(
∂I

∂xk

)
+m2 = 0, (2.48)

which is the required relativistic Hamilton-Jacobi equation to perform our

prime work.

————————————————————————————
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Chapter 3

Hawking Non-thermal and Purely thermal
radiations of Schwarzschild-de Sitter Black

Hole by Hamilton-Jacobi method

3.1 Introduction

Hawking radiation is viewed as tunneling process caused by vacuum fluc-

tuation near the event horizon of black hole [24, 25]. A method to describe

Hawking radiation as tunneling process was first developed by Kraus and

Wilczek [52, 53, 54] and then reinterpreted by Parikh and Wilczek [51]

as quantum tunneling by considering a particle with negative energy just

inside, a positive energy just outside the horizon which can be explained

as a virtual particle pair spontaneously created near the horizon of black

hole and materializes as a true particle. The particle with negative energy

tunnels into the horizon and is absorbed, while the particle with positive

energy left outside the horizon to infinite distance and forms the Hawking

radiation.

From the past decade the tunneling method has been successfully ap-

plied to deal with Hawking radiation of black holes. A lot of works for
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various spacetimes [38, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 165] show its validity

and all of these are limited to massless particle. Based on the above tun-

neling picture, two different methods have been employed to calculate the

imaginary part of the action, one by Parikh and Wilczek [51, 82, 83, 84]

and other by Angheben et al. [90] named as null-geodesic and Hamilton-

Jacobi methods respectively. In fact, the method of Angheben et al.

[90] is an extension of the complex path analysis proposed by Padman-

abhan et al. [85, 86, 87, 88, 89]. On the other hand, Hawking radia-

tion from massive uncharged particle tunneling [98] and charged parti-

cle tunneling [100] were proposed by Zhang and Zhao. Following this

work, few researches have been carried out as charged particle tunneling

[77, 99, 101, 102, 103, 104, 105].

Recently, Kerner and Mann developed quantum tunneling methods for

analyzing the temperature of Taub-NUT black holes [109] using both the

null-geodesic and Hamilton-Jacobi methods. The latter method involve

calculating the relativistic Hamilton-Jacobi equation in which the derive

radiation spectrum was only a leading term due to the fact that the self-

gravitation interaction and energy conservation of emitted particle were

ignored. According to the Parikh and Wilczek’s opinion the true radiation

spectrum is not strictly thermal but satisfies the underlying unitary theory

when self-gravitation interaction and energy conservation are considered.

It is clear that the background geometry of a radiating black hole should

be altered (unfixed) with the loss of energy. Taking the self-gravitation

interaction and unfixed background spacetime into account Chen, Zu and
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Yang reformed Hamilton-Jacobi method for massive particle tunneling and

investigate the Hawking radiation of the Taub-NUT black hole [126]. Con-

necting this method Hawking radiation of Kerr-NUT black hole [65] and

the charged black hole with a global monopole [99, 128] have been de-

veloped. We apply these method to investigate the Hawking radiation

of Schwarzschild-de Sitter (SdS) black hole. Since our prime concern of

this work is to calculate the imaginary part of action from Hamilton-Jacobi

equation avoid by exploring the equation of motion of the radiation particle

in Painlevé coordinate system and calculating the Hamilton equation. We

need not differentiate radiation particle, although the equation of motion

of massive particle is different from massless particle. After considering

the self-gravitational interaction and the unfixed background spacetime,

the derived radiation spectrum deviates from the purely thermal one and

the tunneling rate is related to the change of Bekenstein-Hawking entropy.

Study of Hawking radiation on black holes with a positive cosmologi-

cal constant become important due to the two reasons. One, the recent

observed accelerating expansion of our universe indicates the cosmological

constant might be a positive one [132, 153, 154], and conjecture about

de Sitter/CFT correspondence [157, 166, 167]. For black hole with posi-

tive cosmological constant particles can be created at both black hole and

cosmological horizon and there exists different tunneling behaviors. The

outgoing and incoming particles tunnel from black hole and cosmologi-

cal horizon respectively and formed Hawking radiation. For black hole

horizon, the incoming particles can fall into the horizon along classically

permitted trajectories but for cosmological horizon outgoing particles can
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fall classically out of the horizon. So our study of black hole in de Sitter

space is important and meaningful.

This chapter is designed as follows: In the section 3.2 of this chapter we

describe the SdS black hole spacetime with the position of event horizon

and also near the event horizon the new line element of SdS black hole

is derived here. Taking the unfixed background spacetime and the self-

gravitational interaction into account, we review the Hawking radiation of

SdS black hole from massive particle tunneling method in section 3.3. In

section 3.4, the Hawking purely thermal radiation is developed and finally,

in section 3.5, we present our remarks.

3.2 Schwarzschild-de Sitter black hole

The Schwarzschild-de Sitter black hole, which is the solution of Einstein

equations with a positive Λ(= 3/ℓ2) term corresponding to a vacuum state

spherical symmetric configuration of the form

ds2 = gµνdx
µdxν

= −
(
1− 2m

r
− r2

ℓ2

)
dt2 +

(
1− 2m

r
− r2

ℓ2

)−1

dr2 + r2(dθ2 + sin2θdϕ2),

(3.1)

where m being the mass of the black hole and the coordinates are defined

such that −∞ ≤ t ≤ ∞, r ≥ 0, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π. At

large r, the metric (3.1) tends to the dS space limit. The explicit dS

case is obtained by setting m = 0 while the explicit Schwarzschild case

is obtained by taking the limit ℓ → ∞. When ℓ2 is replaced by −ℓ2, the
metric (3.1) describes an interesting nonrotating AdS black hole called the
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Schwarzschild-Anti-de Sitter (SAdS) black hole.

The horizons of the SdS black hole are located at the real positive roots

of 1
ℓ2r(r − rh)(r − rc)(r− − r) = 0, and there are more than one horizon if

0 < Ξ < 1/27 where Ξ = M 2/ℓ2. The black hole (event) horizon rh and

the cosmological horizon rc are located, respectively, at

rh =
2m√
3Ξ

cos
π + ψ

3
, (3.2)

rc =
2m√
3Ξ

cos
π − ψ

3
, (3.3)

where

ψ = cos−1(3
√
3Ξ). (3.4)

In the limit Ξ → 0, one finds that rh → 2m and rc → ℓ, and it is obvious

that rc > rh, i.e., the event horizon is the smallest positive root. The

spacetime is dynamic for r < rh and r > rc. The two horizons coincide:

rh = rc = 3m (extremal), when Ξ = 1/27, and the spacetime then becomes

the well known Nariai spacetime. Expanding rh in terms of mass and

cosmological parameter with Ξ < 1/27, we obtain

rh = 2m

(
1 +

4m2

ℓ2
+ · · ·

)
, (3.5)

that is, the event horizon of the SdS black hole is greater than the Schwarzs-

child event horizon, rSch = 2m. For Ξ > 1/27, the spacetime is dynamic

for all r > 0, that is, the metric (3.1) then represents not a black hole but

an unphysical naked singularity at r = 0. For the convenient of discussion,

we define ∆ = r2 − 2mr − r4

ℓ2 and then the line element becomes

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2(dθ2 + sinθdϕ2). (3.6)
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The position of black hole horizon is same as given in Eq. (3.5). Near the

black hole horizon, the line element takes of the form

ds2 = −∆,r(rh)(r − rh)

r2h
dt2+

r2h
∆,r(rh)(r − rh)

dr2+r2h(dθ
2+sin2θdϕ2), (3.7)

where

∆,r(rh) =
d∆

dr

∣∣∣
r=rh

= 2(rh −m− 2
r3h
ℓ2
). (3.8)

Since the event horizon of SdS black hole coincides with the outer infinite

redshift surface, here we can apply the geometrical optics limit. Within

WKB approximation [168] the relationship between the tunneling rate and

the action of the radiative particle is as

Γ ∼ exp(−2ImI).

3.3 The Hamilton-Jacobi (HJ) Method

Here we used the method of Chen et al. [125, 126] to discuss the Hawking-

Radiation from the action of radiation particles. As mention before this

method is different from Parikh and Wilczek’s method in which the action

mainly relies on the exploration of the equation of motion in the Painlevé

coordinates systems and the calculation of Hamilton equation. In the

Hamilton-Jacobi method we avoid this and calculate the imaginary part

of the action from the relativistic Hamilton-Jacobi equation.

The action I of the outgoing particle from the black hole horizon sat-

isfies the relativistic Hamilton-Jacobi equation

gµν
(
∂I

∂xµ

)(
∂I

∂xν

)
+ u2 = 0, (3.9)
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in which u and gµν are the mass of the particle and the inverse metric

tensors derived from the line element (3.7).

For the metric (3.7), we get non-null inverse metric tensors

g00 = − r2h
∆,r(rh)(r − rh)

, g11 =
∆,r(rh)(r − rh)

r2h
,

g22 =
1

r2h
, g33 =

1

r2hsin
2θ
. (3.10)

Using Eq. (3.10), we have from Eq. (3.9)

− r2h
∆,r(rh)(r − rh)

(
∂I

∂t

)2

+
∆,r(rh)(r − rh)

r2h

(
∂I

∂r

)2

+
1

r2h

(
∂I

∂θ

)2

+
1

r2hsin
2θ

(
∂I

∂ϕ

)2

+ u2 = 0. (3.11)

It is very difficult to solve the action I for I(t, r, θ, ϕ). Considering the

properties of black hole spacetime, the separation of variables can be taken

as follows

I = −ωt+R(r) +H(θ) + jϕ, (3.12)

where ω and j are respectively the energy and angular momentum of the

particle. Since SdS black hole is nonrotating, the angular velocity of the

particle at the horizon is Ωh = dϕ
dt

∣∣∣
r=rh

= 0. Using Eq. (3.12) into Eq.

(3.11), we obtain

− r2h
∆,r(rh)(r − rh)

(ω)2 +
∆,r(rh)(r − rh)

r2h

(
∂R(r)

∂r

)2

+
1

r2h

(
∂H

∂θ

)2

+
j2

r2hsin
2θ

+ u2 = 0.

⇒ ∆,r(rh)(r − rh)

r2h

(
∂R(r)

∂r

)2

=
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r2h
∆,r(rh)(r − rh)

(ω)2 − 1

r2h

(
∂H

∂θ

)2

− j2

r2hsin
2θ

− u2

⇒ ∂R(r)

∂r
= ± r2h

∆,r(rh)(r − rh)

×

√√√√{ω2 − ∆,r(rh)(r − rh)

r2h

[
1

r2h

(
∂H

∂θ

)2

+
j2

r2hsin
2θ

+ u2

]}

Therefore, R(r) yields

R(r) = ± r2h
∆,r(rh)

∫
dr

(r − rh)

×

√
ω2 − ∆,r(rh)(r − rh)

r2h
[g22(∂θH(θ))2 + g33j2 + u2]. (3.13)

We consider the emitted particle as an ellipsoid shell of energy ω to tunnel

across the event horizon and should not have motion in θ-direction (dθ =

0) and therefore, finishing the above integral we get

R(r) = ± πir2h
∆,r(rh)

ω + ξ, (3.14)

where ± sign comes from the square root and ξ is the constant of inte-

gration. Inserting Eq. (3.14) into Eq. (3.12), the imaginary part of two

different actions corresponding to the outgoing and incoming particles can

be written as

ImI± = ± πr2h
∆,r(rh)

ω + Im(ξ). (3.15)

In the classical limit [169], we ensure the incoming probability to be unity

when there is no reflection i.e., every thing is absorbed by the horizon.

In this situation the appropriate value of ξ instead of zero or infinity can
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be taken as ξ =
πir2h

∆,r(rh)
ω + Re(ξ). Therefore, ImI− = 0 and I+ give the

imaginary part of action I corresponding to the outgoing particle. Namely,

we get

ImI =
2πr2h

∆,r(rh)
ω

=
πr2h

rh −m− 2
r3h
ℓ2

ω. (3.16)

Using Eq. (3.5) into Eq. (3.16), we get the imaginary part of action as

ImI =
π4m2

(
1 + 4m2

ℓ2 + · · ·
)2

2m
(
1 + 4m2

ℓ2 + · · ·
)
−m− 2

ℓ2{2m
(
1 + 4m2

ℓ2 + · · ·
)
}3
ω. (3.17)

Since the SdS spacetime is dynamic, we fix the Arnowitt-Deser-Misner

(ADM) mass of the total spacetime and allow the SdS black hole to fluc-

tuate. When a particle with energy ω tunnels out, the mass of the SdS

black hole changed into m − ω. Since the angular velocity of the parti-

cle at the horizon is zero (Ωh = 0), the angular momentum is equal to

zero. Taking the self-gravitational interaction into account, the imaginary

part of the true action can be calculated from Eq. (3.16) in the following

integral form

Im = π

∫ ω

0

4m2
(
1 + 4m2

ℓ2 + · · ·
)2

2m
(
1 + 4m2

ℓ2 + · · ·
)
−m− 2

ℓ2{2m
(
1 + 4m2

ℓ2 + · · ·
)
}3
dω′.(3.18)

Replacing m by m− ω we have

ImI = −π
∫ (m−ω)

m

4(m− ω′)2
(
1 + 4(m−ω′)2

ℓ2 + ··
)2

2(m− ω′)
(
1 + 4(m−ω′)2

ℓ2 + ··
)
+ A

× d(m− ω′), .(3.19)
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where A = −(m− ω′)− 2
ℓ2{2(m− ω′)

(
1 + 4(m−ω′)2

ℓ2 + ··
)
}3.

Within WKB approximation, we can neglect the terms (m − ω′)n for

n ≥ 5. Therefore, we rewrite Eq. (3.19) of the form

ImI = −4π

∫ (m−ω)

m

(m− ω′)
(
1 + 8(m−ω′)2

ℓ2

)
(
1− 8(m−ω′)2

ℓ2

) × d(m− ω′),

= −π
2

[
4(m− ω)2

(
1 +

8(m− ω)2

ℓ2

)
− 4m2

(
1 +

8m2

ℓ2

)]
.

(3.20)

Therefore, the tunneling rate for the SdS black hole is given by

Γ ∼ exp(−2ImI) = exp{π[4(m− ω)2
(
1 +

8(m− ω)2

ℓ2

)
−4m2

(
1 +

4m2

ℓ2

)
]}

= exp[π(r2f − r2i )]

= exp(∆SBH). (3.21)

Here, ri = 2m
(
1 + 4m2

ℓ2

)
and rf = 2(m − ω)

(
1 + 4(m−ω)2

ℓ2

)
are the lo-

cations of the SdS event horizon before and after the particles emission,

and ∆SBH = SBH(m−ω)−SBH(m) is the change of Bekenstein-Hawking

entropy.

3.4 Purely Thermal Radiation

It is clear from Eq. (3.21) that the radiation spectrum is not pure thermal

although gives a correction to the Hawking radiation of SdS black hole.

Expanding the tunneling rate in power of ω upto second order, the purely
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thermal spectrum can be derived from Eq. (3.21) as discussed by Liu et

al. [65] of the form

Γ ∼ exp(∆SBH)

= exp

{
−ω∂SBH(m)

∂m
+
ω2

2

∂2SBH(m)

∂m2

}
. (3.22)

The derivatives are calculated from

SBH(m− ω) = 4π(m− ω)2
(
1 +

8(m− ω)2

ℓ2

)
.

Thus Eq. (3.22) becomes

Γ ∼ exp(∆SBH) = exp

{
−8πω

[(
m+

16m3

ℓ2

)
− ω

2

(
1 +

48m2

ℓ2

)]}
.

(3.23)

When ℓ→ ∞, the pure thermal spectrum can be reduced for Schwarzschild

black hole as Γ ∼ exp(∆SBH) = exp
[
−8πω

(
m− ω

2

)]
. Obviously our

result in accordance with the result of Parikh and Wilczek [51, 82, 83] .

The radiation spectrum given by Eq. (3.23) is more accurate and provides

an interesting correction to Hawking pure thermal spectrum.

3.5 Concluding Remarks

In this chapter, we have presented the Hawking radiation as massive par-

ticle tunneling method from SdS black hole [129]. We have found that

the tunneling rate at the event horizon of SdS black hole is related to

the Bekenstein-Hawking entropy, and the factual radiation spectrum de-

viates from the precisely thermal one when energy conservation and self-

gravitational interaction are taken into account. Specially, when ℓ → ∞,
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i.e., Λ = 0, the SdS black hole reduces to the Schwarzschild black hole. The

positions of the event horizon of Schwarzschild black hole before and after

the emission of the particles with energy ω are ri = 2m and rf = 2(m−ω).
From Eq. (3.21), the tunneling rate of Schwarzschild black hole can be

written as

Γ ∼ exp(−2ImI) = exp
{
π
[
4(m− ω)2 − 4m2

]}
= exp[π(r2f − r2i )]

= exp(∆SBH), (3.24)

which is fully consistent with that obtained by Parikh and Wilczek [51,

82, 83].

————————————————————————————
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Chapter 4

Hawking Non-thermal and Purely thermal
radiations of Schwarzschild-anti-de Sitter
Black Hole by Hamilton-Jacobi method

4.1 Introduction

According to the information loss paradox [24, 25], the information carried

out by a physical system falling toward black hole singularity has no way to

recover after a black hole has completely disappeared because the state of

the radiation is determined only by the geometry of the black hole outside

the horizon, and the black hole has no hair that records any detailed

information about the collapsing body. With the emission of thermal

radiation [24, 25], a black hole has radiated away most of its mass and

becomes smaller and smaller until evaporate away completely. In this

basis, many research works on the thermal radiation of black holes have

been made [36, 37, 38, 39, 40]. This procedure provides a leading correction

to the tunneling probability (emission rate) arising from the reduction of

the black hole mass because of the energy carried by the emitted massive

quanta.
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In 1974, Bekenstein first conjectured was strengthened by Hawking,

who was able to show that black holes can radiate when quantum effects

are taken in account [25, 34, 37, 170] and hence the situation is changed. It

seems that an initially pure quantum state (original matter), by collapsing

to a black hole and then evaporating completely, has evolved to a mixed

states (the thermal spectrum at infinity) that violates the fundamental

postulate of quantum mechanics due to prescribe a unitary time evolution

of basis states. When the black hole has evaporated down to the Planck

size, quantum fluctuations dominate and the semi-classical calculations

would no longer be valid, as spacetime is subject to violent quantum fluc-

tuations on this scale. Therefore, it is still mysterious how the information

be recovered. Recent development of string/M theory and the AdS/CFT

correspondence argued that the information could be recovered if the out-

going radiation were not exactly thermal but had subtle corrections [36].

Other possibilities include the information being contained in a Planckian

remnant left over at the end of Hawking radiation or a modification of the

laws of quantum mechanics to allow for non-unitary time evolution.

Wilczek and his collaborators have developed two universal methods to

correctly recover Hawking radiation of black holes. One is the gravitational

anomaly method [41] in which the Hawking radiation can be determined

by anomaly canceled conditions and regularity requirement at the event

horizon. Later on, this method is widely used to calculate the Hawk-

ing radiation for different black holes [42, 43, 44, 45, 46, 47, 48, 49, 50].

The another is the semi-classical tunneling method initiated by Kraus and

Wilczek [52, 53, 54] that has been used to describe Hawking radiation suc-
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cessfully for various spacetimes [38, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 165], where a

particle moves in dynamical geometry and all of these works are limited

to massless particle. This method involve calculating the imaginary part

of the action for the process of s-wave emission across the horizon, which

in turn is related to the Boltzmann factor for emission at the Hawking

temperature. Applying this method, two different methods have been em-

ployed to calculate the imaginary part of the action, one the null geodesic

method developed by Parikh and Wilczek [51, 82, 83, 84] and other by

Angheben et al. [90]. In fact, the method of Angheben et al. [90] is an

extension of the complex path analysis proposed by Padmanabhan et al.

[85, 86, 87, 88, 89]. The latter method involves consideration of a emitted

scalar particle, ignoring its self-gravitation and assumes that its action sat-

isfies the relativistic Hamilton-Jacobi equation. An appropriate ansatz for

the action can be obtained from the symmetries of the spacetime which is

known as the Hamilton-Jacobi ansatz. Both the methods show that when

the self-gravitational interaction and the unfixed background spacetime

are taken into account, the actual Hawking radiation spectrum deviates

from the purely thermal one, satisfies the underlying unitary theory and

gives a leading correction to the radiation spectrum.

On the other hand, Hawking radiation from massive uncharged particle

tunneling [98] and charged particle tunneling [100] from black hole was first

proposed by Zhang and Zhao. Exploiting this work, a few researches have

been carried out as charged particle tunneling [99, 101, 102, 103, 104].

Recently, Kerner and Mann developed quantum tunneling methods for
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analyzing the temperature of Taub-NUT black holes [109] using both the

null-geodesic and Hamilton-Jacobi methods. In the latter method the

self-gravitation interaction and energy conservation of emitted particle

were ignored to calculate the thermal radiation spectrum. Parikh and

Wilczek have shown that these radiation spectrum is not strictly thermal

but satisfies the underlying unitary theory when self-gravitation inter-

action and energy conservation are considered. Considering Kerner and

Mann’s process Chen, Zu and Yang reformed Hamilton-Jacobi method

for massive particle tunneling and investigate the Hawking radiation of

the Taub-NUT black hole [126]. Using this method Hawking radiation of

Kerr-NUT black hole [65], the charged black hole with a global monopole

[99, 128] and Schwarzschild-de Sitter (SdS) black hole [129] have been re-

viewed. We apply these method to investigate the Hawking radiation of

Schwarzschild-anti-de Sitter (SAdS) black hole.

The solutions of black holes in Anti-de Sitter spaces come from the

Einstein equations with a negative cosmological constant. Anti-de Sitter

black holes are different from de Sitter black holes. The difference consist-

ing in them is due to minimum temperatures that occur when their sizes

are of the order of the characteristic radius of the anti-de Sitter space. For

larger Anti-de Sitter black holes, their red-shifted temperatures measured

at infinity are greater. This implies that such black holes can be in stable

equilibrium with thermal radiation at a certain temperature. Moreover,

recent development in string /M-theory greatly stimulate the study of

black holes in anti-de Sitter spaces. One example is the AdS/CFT corre-

spondence [155, 156, 171] between a weakly coupled gravity system in an
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anti-de Sitter background and a strongly coupled conformal field theory

on its boundary. So our study on the Schwarzschild-anti-de Sitter black

holes is reasonable and meaningful.

The next section will outline the position of event horizon of SAdS black

hole. In section 4.3, we then consider the unfixed background spacetime

and the self-gravitational interaction into account, we review the Hawking

non-thermal radiation of SAdS black hole from massive particle tunneling

method. The new line element of SAdS black hole near the even horizon

is also derived in this section. In section 4.4, we have derived the Hawking

purely thermal radiation from non-thermal rate. Finally, in section 4.5,

we present our remarks.

4.2 Schwarzschild-anti-de Sitter black hole

The Schwarzschild-anti-de Sitter black hole with mass M and a negative

cosmological constant Λ = −3/ℓ2 is given by

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2(dθ2 + sin2θdϕ2), (4.1)

where the lapse function f(r), is given by

f(r) = 1− 2m

r
− Λr2

3
, (4.2)

and the coordinates are defined such that −∞ ≤ t ≤ ∞, r ≥ 0, 0 ≤ θ ≤ π

and 0 ≤ ϕ ≤ 2π. The lapse function vanished at the zeros of the cubic

equation

r3 + ℓ2r − 2mℓ2 = 0. (4.3)
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The only real roots of this equation is

r+ =
2

3

√
3ℓ sinh

(
1

3
sinh−1

(
3
√
3
m

ℓ

))
. (4.4)

Expanding r+ in terms of m and ℓ with 1/ℓ2 << m2/9, we obtain

r+ = 2m

(
1− 4m2

ℓ2
+ ....

)
. (4.5)

Therefore, we can write r+ = 2mη, with η < 1. The event horizon of the

SAdS black hole is smaller than the Schwarzschild event horizon, rH = 2m.

4.3 The HJ Method for Non-thermal Radiation

We next consider the method of Chen et al. [125, 126] for calculating the

imaginary part of the action making use of the Hamilton-Jacobi equation

[90]. We assume that the action of the outgoing particle is given by the

classical action I satisfies the relativistic Hamilton-Jacobi equation

gµν
(
∂I

∂xµ

)(
∂I

∂xν

)
+ u2 = 0, (4.6)

in which u and gµν are the mass of the particle and the inverse metric

tensors derived from the line element (4.1). Since the event horizon of

SAdS black hole coincides with the outer infinite redshift surface, here we

can apply the geometrical optics limit. Using the WKB approximation

[168], the tunneling probability for the classically forbidden trajectory of

the s-wave coming from inside to outside of SAdS event horizon is given

by

Γ ∼ exp(−2ImI). (4.7)
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As mention before, this method is different from Parikh and Wilczek’s

method (Null geodesic) in which the action mainly relies on the exploration

of the equation of motion in the Painlevé coordinates systems and the

calculation of Hamilton equation. But in the Hamilton-Jacobi method

we avoid this for calculating the imaginary part of the action I. For the

convenient of discussion, we define ∆ = r2 − 2mr + r4

ℓ2 and then the line

element (4.1) can be written as

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2(dθ2 + sinθdϕ2). (4.8)

Near the event horizon, the above line element can be rewritten as

ds2 = −∆,r(r+)(r − r+)

r2+
dt2 +

r2+
∆,r(r+)(r − r+)

dr2

+r2+(dθ
2 + sin2θdϕ2), (4.9)

where

∆,r(r+) =
d∆

dr

∣∣∣
r=r+

= 2(r+ −m+ 2
r3+
ℓ2
). (4.10)

For the metric (4.9), the non-null inverse metric tensors are

g00 = −
r2+

∆,r(r+)(r − r+)
, g11 =

∆,r(r+)(r − r+)

r2+
,

g22 =
1

r2+
, g33 =

1

r2+sin
2θ
. (4.11)

The Hamilton-Jacobi equation (4.6), with the help of Eq. (4.11) becomes

−
r2+

∆,r(r+)(r − r+)

(
∂I

∂t

)2

+
∆,r(r+)(r − r+)

r2+

(
∂I

∂r

)2

+
1

r2+

(
∂I

∂θ

)2

+
1

r2+sin
2θ

(
∂I

∂ϕ

)2

+ u2 = 0. (4.12)
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It is crux to solve the action I for I(t, r, θ, ϕ). Considering the properties

of black hole spacetime, the separation of variables can be taken as follows

I = −ωt+R(r) +H(θ) + jϕ, (4.13)

where ω and j are respectively the energy and angular momentum of the

particle. Since SAdS black hole is nonrotating, the angular velocity of the

particle at the horizon is Ω+ = dϕ
dt

∣∣∣
r=r+

= 0. Using Eq.(4.13) into Eq.

(4.12) and solving R(r) yields an expression of

R(r) = ±
r2+

∆,r(r+)

∫
dr

(r − r+)

×

√
ω2 − ∆,r(r+)(r − r+)

r2+
[g22(∂θH(θ))2 + g33j2 + u2].(4.14)

We consider the emitted particle as an ellipsoid shell of energy ω to tunnel

across the event horizon and should not have motion in θ-direction (dθ =

0) and therefore, finishing the above integral we get

R(r) = ±
2.πir2+
∆,r(r+)

ω + ξ

= ± i4πm2

(r+ −m+ 2
r3+
ℓ2 )

(
1− 4m2

ℓ2
+ ....

)2

ω + ξ, (4.15)

where ± sign comes from the square root and ξ is the constant of integra-

tion. Inserting Eq. (4.15) into Eq. (4.13), the imaginary part of actions

corresponding to outgoing and incoming particles can be written as

ImI± = ± 4πm2

(r+ −m+ 2
r3+
ℓ2 )

(
1− 4m2

ℓ2
+ ....

)2

ω + ξ. (4.16)

According to the classical limit given in Ref. [169], we ensure that the in-

coming probability to be unity when there is no reflection i.e., every thing
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is absorbed by the horizon. In this situation the appropriate value of ξ in-

stead of zero or infinity can be taken as ξ = 4πm2

(r+−m+2
r3+
ℓ2

)

(
1− 4m2

ℓ2 + ....
)2
ω+

Re(ξ). Therefore, ImI− = 0 and I+ give the imaginary part of action I

corresponding to the outgoing particle with the help of Eq. (4.10) to the

form

ImI =
4πm2

(r+ −m+ 2
r3+
ℓ2 )

(
1− 4m2

ℓ2
+ ....

)2

ω. (4.17)

Substituting Eq. (4.5) into Eq. (4.17), the imaginary part of action takes

the form

ImI =
4πm2

(
1− 4m2

ℓ2 + ··
)2
ω

2m
(
1− 4m2

ℓ2 + ··
)
−m+ 2

ℓ2

{
2m
(
1− 4m2

ℓ2 + ··
)}3 .

(4.18)

Since the SAdS spacetime is dynamic due to the presence of cosmological

constant, we consider the ADM (Arnowitt-Deser-Misner) mass of the total

spacetime to be fixed and permit the SAdS black hole to fluctuate. When

a particle with energy ω tunnels out, the mass of the SAdS black hole

changed into m − ω. Since the angular velocity of the particle at the

horizon is zero (Ω+ = 0), the angular momentum is equal to zero. Taking

self-gravitation interaction into account it has been shown in refs. [53, 172]

that the black hole radiation is no longer thermal and therefore in view of

this assumption, the imaginary part of the true action can be calculated

from Eq. (4.18) in the following integral form

ImI = 4π

∫ ω

0

m2
(
1− 4m2

ℓ2 + · · ·
)2

2m
(
1− 4m2

ℓ2 + · · ·
)
−m+ 2

ℓ2{2m
(
1− 4m2

ℓ2 + · · ·
)
}3
dω′.
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Replacing m by m− ω, we have

ImI = −4π

∫ (m−ω)

m

(m− ω′)2
(
1− 4(m−ω′)2

ℓ2 + ··
)2

2(m− ω′)
(
1− 4(m−ω′)2

ℓ2 + ··
)
+ A

× d(m− ω′),(4.19)

where A = −(m− ω′) + 2
ℓ2{2(m− ω′)

(
1− 4(m−ω′)2

ℓ2 + ··
)
}3.

Employing WKB approximation, we neglect the terms (m − ω′)n for

n ≥ 5, and rewrite Eq. (4.19) as

ImI = −4π

∫ (m−ω)

m

(m− ω′)
(
1− 8(m−ω′)2

ℓ2

)
(
1 + 8(m−ω′)2

ℓ2

) × d(m− ω′)

= −π
2

[
4(m− ω)2

(
1− 8(m− ω)2

ℓ2

)
− 4m2

(
1− 4m2

ℓ2

)]
(4.20)

Therefore, from Eq. (4.7) the tunneling probability for the SAdS black

hole is given by

Γ ∼ exp(−2ImI) = exp{π[4(m− ω)2
(
1− 8(m− ω)2

ℓ2

)
− 4m2

(
1− 4m2

ℓ2

)
]}

= exp[π(r2f − r2i )]

= exp(∆SBH), (4.21)

where ri = 2m
(
1− 4m2

ℓ2

)
and rf = 2(m − ω)

(
1− 4(m−ω)2

ℓ2

)
are the lo-

cations of the SAdS event horizon before and after the particle emission,

and ∆SBH = SBH(m−ω)−SBH(m) is the change of Bekenstein-Hawking

entropy.
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4.4 Purely Thermal Radiation

The radiation spectrum described by Eq. (4.21) is not pure thermal al-

though gives a correction to the Hawking radiation of SAdS black hole.

The purely thermal spectrum can be derived from Eq. (4.21) by expand-

ing the tunneling rate in power of ω upto second order as discussed by Liu

et al. [65] of the form

Γ ∼ exp(∆SBH) = exp

{
−ω∂SBH(m)

∂m
+
ω2

2

∂2SBH(m)

∂m2

}
. (4.22)

It is clear from Eq. (4.21) that

SBH(m− ω) = 4π(m− ω)2
(
1− 8(m− ω)2

ℓ2

)
, (4.23)

which gives

∂SBH(m− ω)

∂m
= 8π(m− ω)

(
1− 16(m− ω)2

ℓ2

)
,

∂2SBH(m− ω)

∂m2
= 8π

(
1− 48(m− ω)2

ℓ2

)
, (4.24)

with ω = 0, the above equation takes the following simple form

∂SBH(m)

∂m
= 8

(
m− 16m3

ℓ2

)
,

∂2SBH(m)

∂m2
= 8

(
1− 48m2

ℓ2

)
. (4.25)

The purely thermal spectrum described by Eq. (4.22) can be reduced with

the help of Eq. (4.25) of the form

Γ ∼ exp(∆SBH)

= exp

{
−8πω

[(
m− 16m3

ℓ2

)
− ω

2

(
1− 48m2

ℓ2

)]}
. (4.26)

If we replace ℓ2 with −ℓ2, the Hawking non-thermal spectrum and pure

thermal spectrum agree with these of SdS black hole [129].
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4.5 Concluding Remarks

In this chapter, we have presented an extension of the classical tunnel-

ing framework [58, 65, 128] for the spherically symmetric black hole cases

to deal with Hawking radiation of massive particles as tunneling process

through the event horizon of SAdS black hole. By treating the background

spacetime as dynamical, the energy and the angular momentum as conser-

vation, we have found the non-thermal and purely thermal tunneling prob-

abilities of SAdS black hole when the particle’s self-gravitation is taken

into account. The non-thermal tunneling probability of particle emission

is proportional to the phase space factor depending on the initial and final

entropy of the system (the change of the Bekenstein-Hawking entropy),

which implies that the emission spectrum actually deviates from perfect

thermally but is in agreement with an underlying unitary theory. The

similar results have been shown under the same assumption for massive

particles tunneling across the event horizon of SdS [129] and Taub-NUT

[126] black holes. Our motivation also indeed support the results ob-

tained by massless or massless charged particles tunneling from different

spacetimes such as charged black hole with a global monopole [99, 128],

Kerr-NUT black hole [65] and Kerr and Kerr-Newman black holes [103]

as well as other cases [48, 172]. We therefore come to the conclusion that

the actual radiation spectrum of SAdS black hole is not precisely ther-

mal, which provides an interesting correction to Hawking pure thermal

spectrum.

In the limiting case, i.e., when Λ = 0, our results for non-thermal and
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purely thermal radiations are reduced to

Γ ∼ exp(−2ImI) = exp
{
π
[
4(m− ω)2 − 4m2

]}
, (4.27)

and

Γ ∼ exp(∆SBH) = exp{−8πω(m− ω

2
)}. (4.28)

These are the non-thermal and purely thermal tunneling rates of Schwar-

zschild black hole, where ri = 2m and rf = 2(m− ω) are the positions of

the event horizon of Schwarzschild black hole before and after the emission

of the particles. Obviously, both the results are fully consistent with that

obtained by Parikh and Wilczek [51, 82, 83].

————————————————————————————
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Chapter 5

Hawking Non-thermal and Purely thermal
radiations of Reissner-Nordström-de Sitter
Black Hole by Hamilton-Jacobi method

5.1 Introduction

A wonderful fact of black hole radiation [24, 25] have discovered by Hawk-

ing in 1975 and several works have been done to calculate this quantum

effect [34]. Nowadays, the radiation of black holes is called ‘Hawking ra-

diation’. Furthermore Hawking proposed that the radiation of black holes

can be shown as tunneling and the emission spectrum in light of quantum

field theory in curved spacetime with the exception of following the tun-

neling picture. The tunneling phenomenon has been extensively studied

[169, 173, 174, 175, 176, 177, 178, 179, 180] and a lot of work has already

been successfully applied on various black hole spacetimes in references

[38, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73,

74, 75, 76, 78, 79, 80, 81, 165, 181]. Here, a particle moves in dynamical

geometry and all of these works are limited to massless particle and gives a
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correction to the emission rate arising from loss of mass of the black hole

crresponding to the energy carried by radiated quantum. The method

delineated Hawking radiation as tunneling process was first disclosed by

Kraus and Wilczek [53, 54] and then reinterpreted by Parikh and Wilczek

[51]. In this method the tunneling rate is related to the calculating of the

imaginary part of the action for the process of s-wave emission across the

horizon, which in turn is related to the Boltzmann factor for emission at

the Hawking temperature. In general, based on semiclassical tunneling pic-

ture two universal methods are applied in references to derive the action.

One method is called as the Null Geodesic method developed by Parikh

and Wilczek [51, 82, 83] and another method, proposed by Angheben et

al. [90] known as Hamilton-Jacobi methods and it is an extension of the

complex path analysis proposed by Padmanabhan et al.[85, 86, 87, 88, 89].

In 2005, Zhang and Zhao have proposed the Hawking radiation from

massive uncharged particle tunneling [98] and charged particle tunneling

[100]. Following this work several researches have been carried out as

charged particle tunneling [99, 101, 102, 103, 104]. Kerner and Mann have

developed quantum tunneling methods for calculating the thermal radia-

tion spectrum of Taub-NUT black holes [109] using both the null-geodesic

and Hamilton-Jacobi methods by ignoring the self-gravitation interaction

and energy conservation of emitted particle. However, according to the

Parikh and Wilczek’s opinion [51], the radiation spectrum is not strictly

thermal but satisfies the underlying unitary theory when self-gravitation

interaction and energy conservation are considered. Considering Kerner

and Mann’s process Chen, Zu and Yang reformed Hamilton-Jacobi method
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for massive particle tunneling and investigate the Hawking radiation of the

Taub-NUT black hole [126]. Using this method Hawking radiation of Kerr-

NUT black hole [65], the charged black hole with a global monopole [99]

have been reviewed.

Recently, we have reformed Hamilton-Jacobi method and investigate

the Hawking radiation of the SdS black hole [129] where the position of

the black hole horizon is taken in a series of black hole’s parameters so that

the spacetime metric becomes dynamical and self-gravitation interaction

are taken into account. Here, we also assume that the changed of back-

ground geometry can be treated as the loss of radiated energy of the black

hole. In this chapter, the same method have been applied to investigate

the Hawking radiation of Reissner-Nordström-de Sitter (RNdS) black hole

[160]. In order to narrate Hawking-Radiation from the action of radiation

particles the method of Chen et al. [125, 126] is used. Our chief purpose

concerned of this work is to calculate the imaginary part of action from

Hamilton-Jacobi equation avoid by exploring the equation of motion of

the radiation particle in Painlevé coordinate system and calculating the

Hamilton equation. Though the equation of motion of massive particles

are different from massless particle, We no need differentiate radiation

particle. Above all as the self-gravitational interaction and the unfixed

background spacetime are not assumed, the derived radiation spectrum

deviates from the purely thermal one and the tunneling rate is related to

the change of Bekenstein-Hawking entropy.

The cosmological constant with positive sign plays a prominent role in

two reasons. First, the accelerating expansion of our universe indicates the
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cosmological constant might be a positive one [132, 153, 154]. Secondly,

conjecture about de Sitter/CFT correspondence [166, 167] has been sug-

gested that there is a dual relation between quantum gravity on a dS space

and Euclidean conformal field theory (CFT) on a boundary of dS space

[157, 159]. The outgoing particles tunnel from black hole horizon and in-

coming particles tunnel from cosmological horizon and formed Hawking

radiation and the incoming particles can fall into the horizon along classi-

cally permitted trajectories for black hole horizon, but outgoing particles

can fall classically out of the horizon for cosmological horizon.

The latter section of this chapter describes the RNdS black hole space-

time with the position of event horizon. Near the event horizon the new

line element of RNdS black hole is also derived here. The unfixed back-

ground spacetime and the self-gravitational interaction are taken into ac-

count, we review the Hawking radiation of RNdS black hole from massive

particle tunneling method in section 5.3. In section 5.4, we have devel-

oped the Hawking purely thermal rate from non-thermal rate. Finally, in

section 5.5, we present our remarks.

5.2 Reissner-Nordström-de Sitter black hole

The line element of Reissner-Nordström-de Sitter black hole, which is the

Schwarzschild black hole generalized with a charge parameter and a posi-

tive cosmological constant Λ(= 3/ℓ2) has the form

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2(dθ2 + sin2θdϕ2), (5.1)
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where the metric function f(r) is given by

f(r) = 1− 2m

r
− r2

ℓ2
+
q2

r2
.

Here, m being the mass, ℓ the cosmological radius, q the total charge(elec-

tric plus magnetic) with respect to the static de Sitter space are defined

such that −∞ ≤ t ≤ ∞, r ≥ 0, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π. At large

r, the metric (5.1) tends to the dS space limit. The explicit dS case is

obtained by setting m = 0 while the explicit Reissner-Nordström case is

obtained by taking the limit ℓ → ∞. When ℓ2 is replaced by −ℓ2, the
metric (5.1) describes an interesting nonrotating AdS black hole called

the Reissner-Nordström-Anti-de Sitter (RNAdS) black hole.

The spacetime causal structure depends strongly on the singularities

of the metric given by the zeros of f(r). Depending on the black hole

parameters M , q and ℓ, the function f(r) may have three, two, or even

no real positive zeros. For the RNdS black hole case we are interested in

which f(r) has two simple real, positive roots: rh and rc. Here we indicate

rh as the outer (event) horizon and rc the cosmological horizon. To get

these zeros of f(r), we have r4 − ℓ2r2 + 2mℓ2r − ℓ2q2 = 0. The black hole

event horizon rh and the cosmological horizon rc are located, respectively,

at

rh =
ℓ√
3
sin
[1
3
sin−1 3m

√
3

ℓ
√

1 + 4q2

ℓ2

]

×
(
1 +

√√√√1− q2ℓ√
3m

.
2

1 + δ
cosec

[1
3
sin−1 3m

√
3

ℓ
√

1 + 4q2

ℓ2

])
, (5.2)
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rc =
ℓ√
3
sin
[1
3
sin−1 3m

√
3

ℓ
√

1 + 4q2

ℓ2

]

×
(√√√√1 +

(1 + δ)ℓ3m

2
√
3

cosec3
[1
3
sin−1 3m

√
3

ℓ
√
1 + 4q2

ℓ2

]
− 1
)
, (5.3)

where

δ =

√√√√1− 4q2

3m2
sin2

[1
3
sin−1 3

√
3m

ℓ
√
1 + 4q2

ℓ2

]
. (5.4)

Expanding rh in terms of m, ℓ and q with 27m2

ℓ2 < 1 as well as 3
√
3m

ℓα < 1

and setting δ = 1, we obtain

rh =
m

α

(
1 +

4m2

ℓ2α2
+ · · ·

)(
1 +

√
1− q2α

m2

)
, (5.5)

which can be written as

rh =
1

α

(
1 +

4m2

ℓ2α2
+ · · ·

)(
m+

√
m2 − q2α

)
, (5.6)

where α =
√

1 + 4q2

ℓ2 .

that is, the event horizon of the RNdS black hole is greater than the

Reissner-Nordström event horizon rRN = m+
√
m2 − q2.

Again it gives the Reissner-Nordström (RN) black hole [99] for ℓ→ ∞
and Schwarzschild-de Sitter black hole [129] for q = 0. The metric (5.1)

represents an interesting asymptotically de-Sitter extreme RN black hole

for q2 = αm2, while for q2 > αm2 it does represent any black hole but an

unphysical naked singularity at r = 0. We now define ∆ = r2+q2−2mr− r4

ℓ2

and then the line element (5.1) becomes

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2(dθ2 + sin2θdϕ2). (5.7)
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The position of black hole horizon is same as given in Eq. (5.6). The line

element near the black hole horizon becomes

ds2 = −∆,r(rh)(r − rh)

r2h
dt2+

r2h
∆,r(rh)(r − rh)

dr2+r2h(dθ
2+sin2θdϕ2), (5.8)

where

∆,r(rh) =
d∆

dr

∣∣∣
r=rh

= 2(rh −m− 2
r3h
ℓ2
). (5.9)

The relationship between the tunneling rate and the action of the radiative

particle using the WKB approximation [168] is as

Γ ∼ exp(−2ImI).

5.3 The Hamilton-Jacobi Method

In the Hamilton-Jacobi method we avoid the exploration of the equation

of motion in the Painlevé coordinates system. To calculate the imaginary

part of the action from the relativistic Hamilton-Jacobi equation, the ac-

tion I of the outgoing particle from the black hole horizon satisfies the

relativistic Hamilton-Jacobi equation

gµν
(
∂I

∂xµ

)(
∂I

∂xν

)
+ u2 = 0, (5.10)

in which u and gµν are the mass of the particle and the inverse metric

tensors derived from the line element (5.8).

The non-null inverse metric tensors for the metric (5.8) are

g00 = − r2h
∆,r(rh)(r − rh)

, g11 =
∆,r(rh)(r − rh)

r2h
,

g22 =
1

r2h
, g33 =

1

r2hsin
2θ
. (5.11)
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We can write Eq. (5.10) with the help of Eq. (5.11) as

− r2h
∆,r(rh)(r − rh)

(
∂I

∂t

)2

+
∆,r(rh)(r − rh)

r2h

(
∂I

∂r

)2

+
1

r2h

(
∂I

∂θ

)2

+
1

r2hsin
2θ

(
∂I

∂ϕ

)2

+ u2 = 0. (5.12)

It is not easy to done to solve the action I for I(t, r, θ, ϕ). Considering

the properties of black hole spacetime, the separation of variables can be

taken as follows

I = −ωt+R(r) +H(θ) + jϕ, (5.13)

where ω and j are respectively the energy and angular momentum of the

particle. Since RNdS black hole is nonrotating, the angular velocity of the

particle at the horizon is Ωh = dϕ
dt

∣∣∣
r=rh

= 0. Inserting Eq. (5.13) into Eq.

(5.12) and solving R(r) contains an expression of

R(r) = ± r2h
∆,r(rh)

∫
dr

(r − rh)

×

√
ω2 − ∆,r(rh)(r − rh)

r2h
[g22(∂θH(θ))2 + g33j2 + u2].(5.14)

We consider the emitted particle as an ellipsoid shell of energy ω to tunnel

across the event horizon and should not have motion in θ-direction (dθ =

0) and therefore, finishing the above integral we get

R(r) = ± πir2h
∆,r(rh)

ω + ξ, (5.15)

where ± sign comes from the square root and ξ is the constant of inte-

gration. Inserting Eq. (5.15) into Eq. (5.13), the imaginary part of two

different actions corresponding to the outgoing and incoming particles can
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be written as

ImI± = ± πr2h
∆,r(rh)

ω + Im(ξ). (5.16)

In accordance with classical limit [169], we make certain the incoming

probability to be unity when there is no reflection i.e., everything is ab-

sorbed by the horizon. In this situation the appropriate value of ξ instead

of zero or infinity can be taken as ξ =
πir2h

∆,r(rh)
ω+Re(ξ). Therefore, ImI− = 0

and I+ give the imaginary part of action I corresponding to the outgoing

particle of the form

ImI =
2πr2h

∆,r(rh)
ω

=
πr2h

rh −m− 2
r3h
ℓ2

ω. (5.17)

Using Eq. (5.6) into Eq. (5.17), we get the imaginary part of action as

ImI =

1
α2

(
1 + 4m2

ℓ2α2 + ··
)2

(m+
√
m2 − q2α)2

1
α

(
1 + 4m2

ℓ2α2 + ··
)
(m+

√
m2 − q2α)−m− A

ω, (5.18)

where A = 2
ℓ2α3

(
1 + 4m2

ℓ2α2 + ··
)3

(m+
√
m2 − q2α)3.

ImI =
1
α2 (m+

√
m2 − q2α)2

1
α

[(
1− 4m2

ℓ2α2 + ··
)
(m+

√
m2 − q2α)−mα

(
1− 8m2

ℓ2α2 + ··
)
−B

]ω,
where B = 2

ℓ2α2

(
1 + 4m2

ℓ2α2 + ··
)
(m+

√
m2 − q2α)3.

Now for the simplicity, neglecting m3 and its higher order terms, we

then get

ImI =
1

α
.

(m+
√
m2 − q2α)2

(m+
√
m2 − q2α)−mα

ω. (5.19)
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In presence of cosmological constant, RNdS spacetime is dynamic, we

fix the ADM(Arnowitt-Deser-Misner) mass of the total spacetime and al-

low the RNdS black hole to fluctuate. When a particle with energy ω

tunnels out, the mass of the RNdS black hole changed into m− ω. Since

the angular velocity of the particle at the horizon is zero (Ωh = 0), the

angular momentum is equal to zero. Taking the self-gravitational interac-

tion into account, the imaginary part of the true action can be calculated

from Eq. (5.19) in the following integral form

ImI = π
1

α
.

∫ ω

0

(m+
√
m2 − q2α)2

(m+
√
m2 − q2α)−mα

dω′ (5.20)

ImI = π
1

α
.

∫ ω

0

(m+
√
m2 − q2α)2√

m2 − q2α + (1− α)m
dω′. (5.21)

For the maximum value of integration, neglecting (1 − α)m. Equation

(5.21) becomes

ImI = π
1

α
.

∫ ω

0

(
m+

√
m2 − q2α

)2
√
m2 − q2α

dω′. (5.22)

Replacing m by m− ω we have

ImI = −π 1
α
.

∫ (m−ω)

m

(
m− ω′ +

√
(m− ω′)2 − q2α

)2
√

(m− ω′)2 − q2α
d(m− ω′) (5.23)

ImI = −π 1
α
.

∫ (m−ω)

m

2(m− ω′)2 + 2(m− ω′)
√
(m− ω′)2 − q2α− q2α√

(m− ω′)2 − q2α

×d(m− ω′). (5.24)
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Finishing the integral we get

ImI = −π 1
α
.[(m− ω)

√
(m− ω)2 − q2α+ (m− ω)2 −m

√
m2 − q2α−m2].

(5.25)

Therefore, the tunneling rate for the RNdS black hole is given by

Γ ∼ exp(−2ImI) = exp{π. 1
α
[2(m− ω)2

+2(m− ω)
√

(m− ω)2 − q2α− 2m
√
m2 − q2α− 2m2]}

= exp[π(r2f − r2i )]

= exp(∆SBH). (5.26)

Here, ri =
1√
α
[m+

√
m2 − q2α] and rf = 1√

α
[(m−ω)+

√
(m− ω)2 − q2α]

are the locations of the RNdS event horizon before and after the parti-

cles emission, and ∆SBH = SBH(m − ω) − SBH(m) is the difference of

Bekenstein-Hawking entropy.

5.4 Purely Thermal Radiation

The radiation spectrum is not pure thermal although gives a correction

to the Hawking radiation of RNdS black hole as point out by Eq. (5.26).

In the form of a thermal spectrum, using the WKB approximation the

tunneling rate is also related to the energy and the Hawking temperature

of the radiative particle as Γ ∼ exp(−∆ω
T ). If ∆ω < 0 is the energy of

the emitted particle then due to energy conservation, the energy of the

outgoing shell must be −∆ω, then above expression becomes

Γ ∼ exp(
∆ω

T
).
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Now using the first law of thermodynamics, we can write Γ ∼ exp(∆S),

which is related to the change of Bekenstein-Hawking entropy as follows

Γ ∼ exp(∆SBH) = exp{SBH(M − ω)− SBH(M)}. (5.27)

We establish Eq.(5.27) as developed by Rahman et al. [129] in power of ω

upto second order using Taylor’s theorem of the form

Γ ∼ exp(∆SBH) = exp

{
−ω∂SBH(m)

∂m
+
ω2

2

∂2SBH(m)

∂m2

}
. (5.28)

Using Eqs. (5.26) and (5.27), we obtain from Eq. (5.28) as follows

Γ ∼ exp(∆SBH)

= exp
[
− 2πω

α
{(2m+

√
m2 − q2α +

m2√
m2 − q2α

)

−ω
2
(2 +

3m√
m2 − q2α

− m3

(m2 − q2α)
3
2

)}
]
. (5.29)

When ℓ → ∞, then α = 1 the pure thermal spectrum can be reduced

for the Reissner-Nordström black hole [99]. It is clear that the result in

accordance with the result of Parikh and Wilczek [51, 82, 83]. The radia-

tion spectrum given by (5.29) is more accurate and provides an interesting

correction to Hawking pure thermal spectrum.

5.5 Concluding Remarks

Hawking radiation as massive particle tunneling method from RNdS black

hole [160] have been presented in this chapter. By taking into account the

self-gravitational interaction, the background spacetime as dynamical and

the energy as conservation, we have recovered that the tunneling rate
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at the event horizon of RNdS black hole is related to the Bekenstein-

Hawking entropy. Specially, when ℓ → ∞, then α = 1 the RNdS black

hole reduces to the Reissner-Nordström black hole [99]. The positions

of the event horizon of Reissner-Nordström black hole before and after

the emission of the particles with energy ω are ri = m +
√
m2 − q2 and

rf = (m − ω) +
√

(m− ω)2 − q2. From Eq. (5.26), the non-thermal

tunneling rate of Reissner-Nordström black hole can be written as

Γ ∼ exp(−2ImI) = exp{π[{(m− ω) +
√

(m− ω)2 − q2}2

−{m+
√
m2 − q2}2]}

= exp[π(r2f − r2i )]

= exp(∆SBH), (5.30)

and the purely thermal rate of Reissner-Nordström black hole can be writ-

ten as

Γ ∼ exp(∆SBH) = exp
[
− 2πω{(2m+

√
m2 − q2 +

m2√
m2 − q2

)

−ω
2
(2 +

3m√
m2 − q2

− m3

(m2 − q2)
3
2

)}
]
. (5.31)

It is interesting that when q = 0, Eq. (5.26) gives the result of SdS black

hole [129]. Also, when ℓ→ ∞ and q = 0 our results coincide with that ob-

tained by Parikh and Wilczek [51, 82, 83] for spherically symmetric black

holes.

————————————————————————————
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Chapter 6

Hawking Non-thermal and Purely thermal
radiations of Reissner-Nordström-anti-de
Sitter Black Hole by Hamilton-Jacobi

method

6.1 Introduction

By the information loss paradox [24, 25], the information carried out by

a physical system falling toward black hole singularity has no way to re-

cover after a black hole has completely disappeared. The loss of informa-

tion was considered as preserved inside the black hole and so was not a

serious problem in the classical theory. In 1976 a semi-classical calcula-

tion of black hole radiance was proposed by Hawking and showed that the

emitted radiation is exactly thermal. In particular, the detailed form of

the radiation does not depend on the detailed structure of the body that

collapsed to form the black hole. With the emission of thermal radiation

[24, 25], black holes could lose energy, shrink, and eventually evaporate

and becomes smaller and smaller until disappears completely. In this ba-

sis, many research works on the thermal radiation of black holes have been
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made [38, 51, 52, 53]. It seems that an initially pure quantum state, by

collapsing to a black hole and then evaporating completely, has evolved to

a mixed state and in this situation it is impossible for one to predict about

certainty what the final quantum state will be even if the initial quantum

state were precisely known and therefore violates the fundamental princi-

ples of quantum theory due to prescribe a unitary time evolution of basis

states. When the black hole has evaporated down to the Planck size,

quantum fluctuations dominate and the semi-classical calculations would

no longer be valid, as spacetime is subject to violent quantum fluctuations

on this scale. There are various ideas about how the paradox is solved.

Since the 1997 proposal of the AdS/CFT correspondence, the predom-

inant belief among physicists is that information is preserved and that

Hawking radiation is not precisely thermal but receives quantum correc-

tions. Other possibilities include the information being contained in a

Planckian remnant left over at the end of Hawking radiation or a modi-

fication of the laws of quantum mechanics to allow for non-unitary time

evolution.

Hawking radiation from massive uncharged particle tunneling [98] and

charged particle tunneling [100] from black hole was first proposed by

Zhang and Zhao. Accomplishment this work, a few researches have been

carried out as charged particle tunneling [99, 101, 102, 103, 104]. By the

null-geodesic and Hamilton-Jacobi methods, for analyzing the temperature

of Taub-NUT black holes [109], Kerner and Mann developed quantum tun-

neling methods and Hamilton-Jacobi method is rolled up for calculating

the relativistic Hamilton-Jacobi equation. Here the radiation spectrum
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was only a heading term because the fact that the self-gravitation interac-

tion and energy conservation of emitted particle were ignored. Parikh and

Wilczek’s opinion the true radiation spectrum is not strictly thermal but

satisfies the underlying unitary theory when self-gravitation interaction

and energy conservation are considered. Clearly the background geome-

try of a radiating black hole should be altered (unfixed) with the loss of

energy. Self-gravitation interaction and unfixed background spacetime are

taken into account Chen, Zu and Yang reformed Hamilton-Jacobi method

for massive particle tunneling and investigate the Hawking radiation of

the Taub-NUT black hole [126] and using this method Hawking radiation

of Kerr-NUT black hole [65] and the charged black hole with a global

monopole [99, 128] have been developed. These method have been ap-

plied to investigate the Hawking radiation of Reissner-Nordström-anti-de

Sitter (RNAdS) black hole [131]. Our chief purpose concerned of this work

is to calculate the imaginary part of action from Hamilton-Jacobi equa-

tion avoid by exploring the equation of motion of the radiation particle in

Painlevé coordinate system and calculating the Hamilton equation. Many

scientist have developed two universal methods to correctly recover Hawk-

ing radiation of black holes. One is the gravitational anomaly method [41]

in which the Hawking radiation can be determined by anomaly canceled

conditions and regularity requirement at the event horizon. Later on, this

method is widely used to calculate the Hawking radiation for different

black holes [43, 44, 45, 46, 47, 48, 49, 50]. Other is the semi-classical

tunneling method initiated by Kraus and Wilczek [52, 53] that has been

used to describe Hawking radiation successfully for various spacetimes
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[38, 50, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73,

74, 75, 76, 78, 79, 80, 81], where a particle moves in dynamical geometry

and all of these works are limited to massless particle. This method in-

volve calculating the imaginary part of the action for the process of s-wave

emission across the horizon, which in turn is related to the Boltzmann fac-

tor for emission at the Hawking temperature. Two different methods have

been employed to calculate the imaginary part of the action, one the null

geodesic method developed by Parikh and Wilczek [51, 82, 83] and other

by Angheben et al. [90]. Actually, the method of Angheben et al. [90] is

an extension of the complex path analysis proposed by Padmanabhan et

al. [85, 86, 87, 88, 89].

Recently, Rahman et al. [130] have developed the Hawking radiation

of Schwarzschild-anti-de Sitter black hole by Hamilton-Jacobi method. In

this method, the imaginary part of the action come from the relativistic

Hamilton-Jacobi equation when the self-gravitational interaction and the

unfixed background spacetime are taken into account, the actual Hawking

radiation spectrum deviates from the purely thermal one, satisfies the

underlying unitary theory and gives a leading correction to the radiation

spectrum. In this chapter, we have investigated the hawking radiation of

RNAdS black hole by Hamilton-Jacobi method.

In the last few years, people have growing interest to investigate hawk-

ing radiation in anti-de sitter space due to AdS/CFT correspondence

[166, 167]. According to the AdS/CFT correspondence, a large static

black hole in asymptotically AdS spacetime corresponds to an (approx-

imately) thermal state in the CFT. So the time scale for the decay of
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the black hole perturbation, which is given by the imaginary part of its

action, corresponds to the timescale to reach thermal equilibrium in the

strongly coupled CFT [158]. Further, recent development in string /M-

theory greatly stimulate the study of black holes in anti-de Sitter spaces.

Thus our study on the Reissner-Nordström-anti-de Sitter black hole is

plausible and worthwhile.

In the remainder of this chapter we describe the RNAdS black hole

spacetime with the position of event horizon in section 6.2 and also near

the event horizon the new line element of RNAdS black hole is derived here.

In section 6.3, the unfixed background spacetime and the self-gravitational

interaction are taken into account, we review the Hawking non-thermal

radiation of RNAdS black hole from massive particle tunneling method.

In section 6.4, we have derived the Hawking purely thermal radiation from

non-thermal rate. Finally, in section 6.5, we present our remarks.

6.2 Reissner-Nordström-anti-de Sitter black hole

The line element of Reissner-Nordström-anti-de Sitter black hole with a

negative cosmological constant Λ term is given by

ds2 = −
(
1− 2m

r
+
r2

ℓ2
+
q2

r2

)
dt2 +

(
1− 2m

r
+
r2

ℓ2
+
q2

r2

)−1

dr2

+r2(dθ2 + sin2θdϕ2), (6.1)

wherem being the mass, ℓ is the cosmological radius, q the total charge(ele-

ctric plus magnetic) with respect to the static anti-de Sitter space are

defined such that −∞ ≤ t ≤ ∞, r ≥ 0, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π. At

large r, the metric (6.1) tends to the AdS space limit.
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The black hole parameters M, q, and ℓ are related to the roots of

r4 + ℓ2r2 − 2mℓ2r+ ℓ2q2 = 0 . The black hole (event) horizon r+ (positive

real root) is located at

r+ =
ℓ√
3
sinh

[1
3
sinh−1 3m

√
3

ℓ
√

1− 4q2

ℓ2

]

×
(
1 +

√√√√1− q2ℓ√
3m

2

1 + δ
cosech

[1
3
sinh−1 3m

√
3

ℓ
√
1− 4q2

ℓ2

])
, (6.2)

where

δ =

√√√√1− 4q2

3m2
sinh2

[1
3
sinh−1 3

√
3m

ℓ
√

1− 4q2

ℓ2

]
. (6.3)

Expanding only positive real root r+ in terms of mass, electric charge and

cosmological parameter with 27m2

ℓ2 < 1 as well as 3
√
3m

ℓα < 1 and setting

δ = 1, we obtain

r+ =
m

α

(
1− 4m2

ℓ2α2
+ · · ·

)(
1 +

√
1− q2α

m2

)
, (6.4)

which can be written as

r+ =
1

α

(
1− 4m2

ℓ2α2
+ · · ·

)(
m+

√
m2 − q2α

)
, (6.5)

where α =
√

1− 4q2

ℓ2 .

Now we can write r+ = (m +
√
m2 − q2α)κ, with κ < 1. Therefore,

the event horizon of the RNAdS black hole is smaller than the Reissner-

Nordström event horizon, rh = m +
√
m2 − q2. It gives the RN black

hole [99] for ℓ → ∞ and Schwarzschild-anti-de Sitter black hole [130] for
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q = 0. The metric (6.1) represents an interesting asymptotically anti-de

Sitter extreme RN black hole for q2 = αm2, while for q2 > αm2 it does

represent any black hole but an unphysical naked singularity at r = 0.

As the event horizon of RNAdS black hole synchronizes with the outer

infinite redshift surface, we can apply the geometrical optics limit. Using

the WKB approximation [168], the tunneling probability for the classically

forbidden trajectory of the s-wave coming from inside to outside of RNAdS

event horizon is given by

Γ ∼ exp(−2ImI). (6.6)

The method different from Parikh and Wilczek method (Null geodesic) in

which the action mainly depends on the exploration of the equation of mo-

tion in the Painlevé coordinates systems and the calculation of Hamilton

equation. In the Hamilton-Jacobi method we avoid this for calculating

the imaginary part of the action I. For comfortable discussion, we define

∆ = r2 + q2 − 2mr + r4

ℓ2 and then the line element (6.1) can be written as

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2(dθ2 + sin2θdϕ2). (6.7)

The position of black hole horizon is same as given in Eq. (6.5). The line

element (6.7) near the black hole horizon can be rewritten as

ds2 = −∆,r(r+)(r − r+)

r2+
dt2 +

r2+
∆,r(r+)(r − r+)

dr2 + r2+(dθ
2 + sin2θdϕ2),

(6.8)

where

∆,r(r+) =
d∆

dr

∣∣∣
r=r+

= 2(r+ −m+ 2
r3+
ℓ2
). (6.9)
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6.3 The Hamilton-Jacobi Method

For calculating the imaginary part of the action, we use the method of

Chen et al. [125] and making use of Hamilton-Jacobi equation. The

action I of the outgoing particle from the black hole horizon satisfies the

relativistic Hamilton-Jacobi equation

gµν
(
∂I

∂xµ

)(
∂I

∂xν

)
+ u2 = 0, (6.10)

in which u and gµν are the mass of the particle and the inverse metric

tensors derived from the line element (6.8).

The non-null inverse metric tensors for the metric (6.8) are

g00 = −
r2+

∆,r(r+)(r − r+)
, g11 =

∆,r(r+)(r − r+)

r2+
,

g22 =
1

r2+
, g33 =

1

r2+sin
2θ
. (6.11)

With the help of Eq. (6.11), the Hamilton-Jacobi Eq.(6.10) can be written

as

−
r2+

∆,r(r+)(r − r+)

(
∂I

∂t

)2

+
∆,r(r+)(r − r+)

r2+

(
∂I

∂r

)2

+
1

r2+

(
∂I

∂θ

)2

+
1

r2+sin
2θ

(
∂I

∂ϕ

)2

+ u2 = 0.(6.12)

To solve the action I conveniently for I(t, r, θ, ϕ), we consider the prop-

erties of black hole spacetime, the separation of variables can be taken as

follows

I = −ωt+R(r) +H(θ) + jϕ, (6.13)

where ω and j are respectively the energy and angular momentum of the

particle. Since RNAdS black hole is nonrotating, the angular velocity of
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the particle at the horizon is Ω+ = dϕ
dt

∣∣∣
r=r+

= 0. Inserting Eq. (6.13) into

Eq. (6.12) and solving R(r) holds an expression of

R(r) = ±
r2+

∆,r(r+)

∫
dr

(r − r+)

×

√
ω2 − ∆,r(r+)(r − r+)

r2+
[g22(∂θH(θ))2 + g33j2 + u2].(6.14)

Suppose the emitted particle as an ellipsoid shell of energy ω to tunnel

across the event horizon and should not have motion in θ-direction (dθ =

0) and therefore, finishing the above integral we get

R(r) = ±
πir2+

∆,r(r+)
ω + ϵ, (6.15)

where ± sign comes from the square root and ϵ is the constant of inte-

gration. Inserting Eq. (6.15) into Eq. (6.13), the imaginary part of two

different actions corresponding to the outgoing and incoming particles can

be written as

ImI± = ±
πr2+

∆,r(r+)
ω + Im(ϵ). (6.16)

In accordance with classical limit [169], we make certain the incoming

probability to be unity when there is no reflection i.e., everything is ab-

sorbed by the horizon. In this situation the appropriate value of ϵ instead

of zero or infinity can be taken as ϵ =
πir2+

∆,r(r+)
ω+Re(ϵ). Therefore, ImI− = 0

and using Eq. (6.9) I+ give the imaginary part of action I corresponding

to the outgoing particle of the form

ImI =
2πr2+

∆,r(r+)
ω

=
πr2+

r+ −m+ 2
r3+
ℓ2

ω. (6.17)
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Using Eq. (6.5) into Eq. (6.17), we get the imaginary part of action as

ImI =
π. 1α2

(
1− 4m2

ℓ2α2 + ··
)2

(m+
√
m2 − q2α)2

1
α

(
1− 4m2

ℓ2α2 + ··
)
(m+

√
m2 − q2α)−m+ A

ω, (6.18)

where A = 2
ℓ2α3

(
1− 4m2

ℓ2α2 + ··
)3

(m+
√
m2 − q2α)3.

ImI =
π. 1α2 (m+

√
m2 − q2α)2

1
α

[(
1 + 4m2

ℓ2α2 + ··
)
(m+

√
m2 − q2α)−mα

(
1 + 8m2

ℓ2α2 + ··
)
+B

]ω,
where B = 2

ℓ2α2

(
1− 4m2

ℓ2α2 + ··
)
(m+

√
m2 − q2α)3.

Now for the simplicity, neglecting m3 and its higher order terms, we

then get

ImI = π.
1

α
.

(m+
√
m2 − q2α)2

(m+
√
m2 − q2α)−mα

ω. (6.19)

In presence of cosmological constant, RNAdS spacetime is dynamic,

we fix the ADM(Amowitt-Deser-Misner) mass and angular momentum of

the total spacetime and allow the RNAdS black hole to fluctuate. When

a particle with energy ω tunnels out, the mass of the RNAdS black hole

changed into m − ω. Since the angular velocity of the particle at the

horizon is zero (Ω+ = 0), the angular momentum is equal to zero. Taking

the self-gravitational interaction into account, the imaginary part of the

true action can be calculated from Eq. (6.19) in the following integral

form

ImI = π
1

α
.

∫ ω

0

(m+
√
m2 − q2α)2

(m+
√
m2 − q2α)−mα

dω′ (6.20)

ImI = π
1

α
.

∫ ω

0

(m+
√
m2 − q2α)2√

m2 − q2α + (1− α)m
dω′. (6.21)
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For the maximum value of the above integral, neglecting (1− α)m. Thus

euation (6.21) becomes

ImI = π
1

α
.

∫ ω

0

(
m+

√
m2 − q2α

)2
√
m2 − q2α

dω′. (6.22)

Replacing m by m− ω we have

ImI = −π 1
α
.

∫ (m−ω)

m

(
m− ω′ +

√
(m− ω′)2 − q2α

)2
√

(m− ω′)2 − q2α
d(m− ω′) (6.23)

ImI = −π 1
α
.

∫ (m−ω)

m

2(m− ω′)2 + 2(m− ω′)
√
(m− ω′)2 − q2α− q2α√

(m− ω′)2 − q2α
×

d(m− ω′). (6.24)

Finishing the integral we get

ImI = −π 1
α
.[(m− ω)

√
(m− ω)2 − q2α+ (m− ω)2 −m

√
m2 − q2α−m2].

(6.25)

Therefore, the non-thermal tunneling rate is given by

Γ ∼ exp(−2ImI) = exp{π. 1
α
[2(m− ω)2

+2(m− ω)
√

(m− ω)2 − q2α− 2m
√
m2 − q2α− 2m2]}

= exp[π(r2f − r2i )]

= exp(∆SBH). (6.26)

Here, ri =
1√
α
[m+

√
m2 − q2α] and rf = 1√

α
[(m−ω)+

√
(m− ω)2 − q2α]

are the locations of the RNAdS event horizon before and after the particle

emission, and ∆SBH = SBH(m−ω)−SBH(m) is the change of Bekenstein-

Hawking entropy [51].
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6.4 Purely Thermal Radiation

The radiation spectrum described by Eq. (6.26) is not pure thermal al-

though gives a correction to the Hawking radiation of RNAdS black hole.

The purely thermal spectrum can be derived from Eq. (6.26) by expand-

ing the tunneling rate in power of ω up to second order as discussed by

Liu et al. [65] of the form

Γ ∼ exp(∆SBH) = exp

{
−ω∂SBH(m)

∂m
+
ω2

2

∂2SBH(m)

∂m2

}
. (6.27)

From Eq.(6.26)

SBH(m− ω) =
π

α
{(m− ω) +

√
(m− ω)2 − q2α}2. (6.28)

Using (6.28) in (6.27), we get

Γ ∼ exp(∆SBH) = exp[π(−ωβ +
ω2

2
γ)], (6.29)

where β = 2
α

[
2m+

√
m2 − q2α+ m2

(m2−q2α)
3
2

]
and

γ = 2
α

[
2 + 3m√

m2−q2α
− m3

(m2−q2α)
3
2

]
.

If we put −ℓ2 in the place of ℓ2, the Hawking non thermal spectrum and

pure thermal spectrum agree with these of RNdS black hole.

6.5 Concluding Remarks

Hawking radiation as massive particle tunneling method from RNAdS

black hole [131] have been presented here. By taking into account the

self-gravitational interaction of particle, the background spacetime as dy-

namical and the energy as conservation, we have found the non-thermal

81



6.5. CONCLUDING REMARKS CHAPTER 6.

and purely thermal tunneling probabilities of RNAdS black hole. The

non-thermal tunneling probability of particle emission is proportional to

the phase space factor depending on the initial and final entropy of the

system (the change of the Bekenstein-Hawking entropy), which implies

that the emission spectrum actually deviates from perfect thermally but

is in agreement with an underlying unitary theory. The similar results

have been shown under the same assumption for massive particles tunnel-

ing across the event horizon of SAdS [130] and Taub-NUT [58, 126, 182]

black holes. Our motivation also indeed support the results obtained by

massless or massless charged particles tunneling from different spacetimes

such as charged black hole with a global monopole [99, 128], Kerr-NUT

black hole [65] and Kerr and Kerr-Newman black holes [60, 103] as well as

other cases [48, 172]. We therefore come to the conclusion that the actual

radiation spectrum of RNAdS black hole is not precisely thermal, which

provides an interesting correction to Hawking pure thermal spectrum. In

the limiting case, i.e., when ℓ → ∞, α → 1 our results for non-thermal

and purely thermal radiations reduced to

Γ ∼ exp(−2ImI) = exp{π[{(m− ω) +
√

(m− ω)2 − q2}2

−{m+
√
m2 − q2}2]}, (6.30)

and

Γ ∼ exp(∆SBH) = exp
[
− 2πω{(2m+

√
m2 − q2 +

m2√
m2 − q2

)

−ω
2
(2 +

3m√
m2 − q2

− m3

(m2 − q2)
3
2

)}
]
. (6.31)
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These are the non-thermal and purely thermal tunneling rates of Reissner-

Nordström black hole, where ri = m +
√
m2 − q2 and rf = (m − ω) +√

(m− ω)2 − q2 are the positions of the event horizon of Reissner-Nordström

black hole before and after the particles emission. Obviously, both the re-

sults are fully consistent with that obtained by Parikh and Wilczek [51]

and is also reduced to our previous result of SAdS [130] black hole when

q = 0.

————————————————————————————
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Chapter 7

Hawking Non-thermal and Purely thermal
radiations of Kerr-de Sitter Black Hole by

Hamilton-Jacobi method

7.1 Introduction

A prominent role in black hole physics, the discovery by Hawking in 1974

that black hole can emit particles [24, 25] from the event horizon. At

once time, the picture of the primary state of composing matter leads

to a paradoxical claim of black hole information loss. This is so-called

“the paradox of black hole information loss”. Taking quantum process

into account, the black holes mass becomes small and smaller and even-

tually completely evaporated [27] that is the situation is changed. In the

tunneling mechanism, virtual particles and anti-particles create due to

vacuum fluctuation and a positive energy particle tunnels out of the hori-

zon and materializes as a real particle, while the negative energy particle

tunnels into the horizon and is absorbed and moved to infinite distance

whenever the positive energy particle is left outside the horizon and forms
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the Hawking radiation. A semiclassical tunneling method innovated by

Kraus and Wilczek [53, 54] and then reinterpreted by Parikh and Wilczek

[51] and have shown that the actual emission spectrum deviates from the

purely thermal. People have growing interest and therefore several works

have been done for further development of the tunneling approach, but

all of them are only focused on Hawking radiation of various black hole

spacetime such as those in de Sitter [67, 82, 98, 99, 183], anti-de Sitter

[38, 75, 77, 184] spacetimes, charged black holes [100, 183], rotating black

holes [79, 103] and many other cases in references [55, 56, 57, 58, 60,

61, 62, 63, 64, 68, 69, 71, 72, 74, 76, 78, 80, 81]. All of these works are

limited to massless particle and gives a correction to the emission rate

arising from loss of mass of the black hole corresponding to the energy

carried by radiated quantum when the energy conservation and the self

gravitation interaction are considered . To calculate the action, most of

the researchers introduced Painlevé or dragging coordinates that are well

regular at the horizon of the black hole and found out the motion equation

of the particle, and then calculated Hamilton equation to get it. We have

also used dragging coordinates and express the event horizon of Kerr-de

sitter (KdS) black hole in terms of black hole parameters in an infinite

series and finally show that the tunneling rate is related to the change of

Bekenstein-Hawking entropy.

Based on semiclassical tunneling picture, Angheben et al. [90] proposed

‘Hamilton-Jacobi method’ and in fact this method is an extension of the

complex path analysis proposed by Padmanabhan et al. [85, 86, 87, 88, 89].

This method involves calculating the imaginary part of the action from rel-
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ativistic Hamilton-Jacobi equation in which the derive radiation spectrum

was only a leading term due to the fact that the self-gravitation interac-

tion and energy conservation of emitted particle were ignored. Parikh and

Wilczek [51] have shown that the true radiation spectrum is not strictly

thermal but satisfies the underlying unitary theory when self-gravitation

interaction and energy conservation are considered and the background

geometry of a radiating black hole can be altered (unfixed) with the loss

of radiated energy.

Kerner and Mann promoted quantum tunneling methods for various

black hole spacetime [106, 107, 108, 109] and considering this process Chen,

Zu and Yang [126] reformed Hamilton-Jacobi method for massive particle

tunneling and investigate Hawking radiation of Kerr-NUT black hole [65],

the charged black hole with a global monopole [99, 128] and also applied

to higher dimensional black holes [110, 111, 112], black holes in string

theory [113], black strings [114, 115, 116], accelerating and rotaing black

holes [118, 119, 120] and many other black holes in references [66, 73].

Following their work, several researches have been carried out as charged

particle tunneling [79, 101, 102, 103] and all the results supported Parikh

and Wilczek’s [51] opinion and gave a correction to the Hawking pure

thermal spectrum.

In recent times, we have developed Hamilton-Jacobi method and in-

vestigated the hawking purely thermal and non-thermal radiations of the

SdS [129] black hole where the position of the black hole horizon is taken

in a series of black hole’s parameters so that the spacetime metric be-

comes dynamical and self-gravitation interaction are taken into account
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and the changed of background geometry can be treated as the loss of

radiated energy of the black hole. In this chapter, we have been applied

the same method to investigate the Hawking radiation of Kerr-de Sitter

(KdS) black hole [161]. The method of Chen et al. [125, 126] is used to

describe Hawking-Radiation from the action of radiation particles. Since

our prime concern of this work is to calculate the imaginary part of ac-

tion from Hamilton-Jacobi equation avoid by exploring the equation of

motion of the radiation particle in Painlevé coordinate system and calcu-

lating the Hamilton equation. The equation of motion of massive particles

are different from massless particle though the radiation particles do not

vary. After considering the self-gravitational interaction and the unfixed

background spacetime, the derived radiation spectrum deviates from the

purely thermal one and the tunneling rate is related to the change of

Bekenstein-Hawking entropy.

It is noticed that the cosmological constant plays an important role in

our research because the accelerating expansion of our universe indicates

the cosmological constant might be a positive one [132, 153, 154], and the

conjecture about de Sitter/conformal field theory (CFT) correspondence

[166, 167] has been suggested that there is a dual relation between quantum

gravity on a dS space and Euclidean conformal field theory (CFT) on a

boundary of dS space [157, 159]. The outgoing particles tunnel from black

hole horizon and incoming particles tunnel from cosmological horizon and

formed Hawking radiation and the incoming particles can fall into the

horizon along classically permitted trajectories for black hole horizon, but

outgoing particles can fall classically out of the horizon for cosmological
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horizon. Thus our study of black hole on Kerr-de Sitter black hole [161]

is of great consequence and significant.

We arrange this chapter as follows. The later section describes the

KdS black hole spacetime with the position of event horizon. The new

line element of KdS black hole near the event horizon is derived in sec-

tion 7.3 and the unfixed background spacetime and the self-gravitational

interaction are taken into account, we review the non-thermal radiation

of KdS black hole from massive particle tunneling method. In section 7.4

we discuss the pure thermal radiation. Finally, section 7.5 includes our

remarks.

7.2 Kerr-de Sitter black hole

The line element, describing Kerr-de Sitter black hole solution with a

positive cosmological constant Λ(= 3/ℓ2), rotating black hole in four-

dimensional spacetime with asymptotic-de Sitter behavior in the Boyer-

Lindguist coordinates [185] is given by

ds2 = −f(r)− f(θ)a2 sin2 θ

ρ2
dt2 +

f(θ)(r2 + a2)2 − f(r)a2 sin2 θ

ρ2Σ2
sin2 θdϕ2

+
ρ2

f(r)
dr2 +

ρ2

f(θ)
dθ2 − 2a[(r2 + a2)f(θ)− f(r)] sin2 θ

ρ2Σ
dtdϕ, (7.1)

where

ρ2 = r2 + a2 cos2 θ, f(θ) = 1 +
a2 cos2 θ

ℓ2
, Σ = 1 +

a2

ℓ2
,

f(r) = (r2 + a2)(1− r2

ℓ2
)− 2Mr = (1− a2

ℓ2
)r2 − 2Mr + a2 − r4

ℓ2
. (7.2)

Here ℓ is the cosmological radius, M and a are the mass of the black hole

and angular momentum per unit mass. The specific angular momentum
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a = (JΣ2)/M is kept as a constant through this chapter. The de Sitter

space are defined such that −∞ ≤ t ≤ ∞, r ≥ 0, 0 ≤ θ ≤ π, and

0 ≤ ϕ ≤ 2π. The metric (7.1) describes an interesting rotating AdS black

hole called the Kerr-Anti-de Sitter (KAdS) black hole if we replace ℓ2

by−ℓ2.
The only single positive real root is obtained by r4 − (ℓ2 − a2) + 2Mℓ2r−
ℓ2a2 = 0 and which is located at the black hole (event) horizon rh such

that

rh =
ℓβ√
3
.sin
[1
3
sin−13M

√
3

ℓΣβ

]
×
(
1 +

√
1− a2ℓ√

3Mβ
.

2

1 + δ
cosec

[1
3
sin−13M

√
3

ℓΣβ

])
, (7.3)

where

δ =

√
1− 4a2β2

3M2
sin2

[1
3
sin−13

√
3M

ℓΣβ

]
, Σ = 1 +

a2

ℓ2
, β =

√
1− a2

ℓ2
.

(7.4)

Expanding rh in terms of ℓ, M and a with a2(1 + a2

ℓ2 ) < M 2 and setting

δ = 1, we obtain

rh =
M

Σ

(
1 +

4M 2

ℓ2Σβ2
+ · · ·

)(
1 +

√
1− a2Σ

M2

)
, (7.5)

which can be written as

rh =
1

Σ

(
1 +

4M 2

ℓ2Σβ2
+ · · ·

)(
M +

√
M 2 − a2Σ

)
. (7.6)

It is clear that the event horizon of the Kerr-de Sitter black hole is greater

than the Kerr event horizon rKe = M +
√
M 2 − a2. Again it also shows

that Kerr [81] event horizons for ℓ → ∞(Σ → 1) and Schwarzschild-de

Sitter [129] event horizons for a = 0.
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7.3 The Hamilton-Jacobi Method

Two new methods have been employed to calculate the imaginary part of

the action, one the null geodesic method developed by Parikh and Wilczek

[51, 82, 83] and the other method is called Hamilton-Jacobi method [85,

86, 87, 88, 89]. The difference of later method from Parikh’s is mainly that

such method concentrates on introducing the proper spatial distance and

upon calculating the relaivistic Hamilton-Jacobi equation. For calculating

the imaginary part of the action for the process of s-wave emission across

the horizon, which in turn is related, using the WKB approximation [168],

satisfies Γ ∼ exp(−2ImI), where I is the action of the outgoing particle

and Γ is the emission rate.

In the Hamilton-Jacobi method we avoid the exploration of the equa-

tion of motion in the Painlevé coordinates systems. In order to calculate

the imaginary part of the action from the relativistic Hamilton-Jacobi

equation, the action I of the outgoing particle from the black hole horizon

satisfies the relativistic Hamilton-Jacobi equation

gab
(
∂I

∂xa

)(
∂I

∂xb

)
+m2 = 0, (7.7)

in which m and gab are the mass of the particle and the inverse metric

tensors respectively.

We now define ϕ̇ = dϕ
dt = −g14

g44
on the line element (7.1) and hence the

Kerr-de Sitter black hole can be written as

ds2 = − f(r)f(θ)ρ2

f(θ)(r2 + a2)2 − f(r)a2 sin2 θ
dt2 +

ρ2

f(r)
dr2 +

ρ2

f(θ)
dθ2. (7.8)

The position of the event horizon is same as given in Eq. (7.6). The action
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can be derived from the line element (7.1) and (7.8) respectively. For the

convenience, we select the line element (7.8) and make a treatment to it.

Near the event horizon, the line element (7.8) takes on form as

ds2 = −f,r(rh)(r − rh)ρ
2(rh)

(r2h + a2)2
dt2 +

ρ2(rh)

f,r(rh)(r − rh)
dr2 +

ρ2(rh)

f(θ)
dθ2. (7.9)

In which ρ2(rh) = r2h+a
2 cos2 θ and f,r(rh) =

df
dr

∣∣∣
r=rh

= 2
Σ2 (β

2rh−M−2
r3h
ℓ2 ).

The non-null inverse metric tensors for the metric (7.9) are namely

ḡ11 = − (r2h + a2)2

f,r(rh)(r − rh)ρ2(rh)
, g22 =

f,r(rh)(r − rh)

ρ2(rh)
, g33 =

f(θ)

ρ2(rh)
. (7.10)

We can write Eq. (7.7) with the help of Eq. (7.10) as

− (r2h + a2)2

ρ2(rh)f,r(rh)(r − rh)

(
∂I

∂t

)2

+
f,r(rh)(r − rh)

ρ2(rh)

(
∂I

∂r

)2

+
f(θ)

ρ2(rh)

(
∂I

∂θ

)2

+m2 = 0. (7.11)

To find the solution of the action I for I(t, r, θ, ϕ) in a easy way, we consider

the properties of black hole spacetime, the separation of variables can be

taken as follows

I = −ωt+R(r) +H(θ) + jϕ, (7.12)

where ω is the energy of the particle, R(r) and H(θ) are the generalized

momentums, and j is the angular momentum with respect to ϕ-axis.

So we have ∂I
∂t = −ω + jΩh,

∂I
∂r =

∂R(r)
∂r , ∂I

∂θ = ∂H
∂θ , where Ωh = dϕ

dt

∣∣∣
r=rh

=

aΣ
r2h+a2

is the angular velocity at the event horizon and j = (Ma)/Σ2.

Therefore, inserting above values into Eq.(7.11) and solving R(r) yields

an expression of

R(r) = ±r
2
h + a2

f,r(rh)

∫
dr

(r − rh)
×
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(ω − jΩh)2 −

ρ2(rh)f,r(rh)(r − rh)

(r2h + a2)2

[
f(θ)

ρ2(rh)
.(
∂H

∂θ
)2 +m2

]
.

Finishing the above integral we get

R(r) = ±πi(r
2
h + a2)

f,r(rh)
(ω − jΩh) + σ, (7.13)

where ± sign comes from the square root and σ is the constant of complex

integration. The imaginary part of the action arising due to pole at the

event horizon can be obtained from the complex constant σ and therefore,

we can write the probabilities of ingoing and outgoing particles whenever

crossing rh as follows:

Pin = exp(−2ImI) = exp[−2(ImR− + Imσ)],

Pout = exp(−2ImI) = exp[−2(ImR+ + Imσ)]. (7.14)

In the classical point of view [169], when there is no reflection for the in-

going waves, the incoming probability “Pin” be unity that is everything

is absorbed by the black hole for any ingoing particles passing its hori-

zon. In this case, we take Imσ =
π(r2h+a2)
f,r(rh)

(ω − jΩh), which implies that

the imaginary part of the action I for a massive tunneling particle can

only come out R+. Therefore, we obtain the imaginary part of action I

corresponding to the outgoing particle of the form, namely

ImI = ImR+ + Imσ

=
2π(r2h + a2)

f,r(rh)
(ω − jΩh)

=
Σ2π(r2h + a2)

β2rh −M − 2
r3h
ℓ2

(ω − jΩh). (7.15)
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We now focus on a classical treatment of the associated radiation and

adopt the picture of a pair of virtual particles spontaneously created just

inside the horizon. The positive energy virtual particle can tunnel out

while the negative one is absorbed by the black hole resulting in a de-

crease in the mass. We consider the emitted particle as an ellipsoid shell

of energy ω and fix the Arnowitt-Deser-Misner(ADM) mass and angular

momentum of the total spacetime since in presence of cosmological con-

stant KdS spacetime is dynamic and allow the KdS black hole to fluctuate.

When a particle with energy ω and angular momentum j tunnels out, the

mass and angular momentum of the KdS black hole changed into M − ω

and J − j. Assuming the self-gravitational interaction into account, the

imaginary part of the true action can be calculated from Eq. (7.15) in the

following integral form

ImI = πΣ2.

∫ (ω,j)

(0,0)

(r2h + a2)

β2rh −M − 2
r3h
ℓ2

(dω′ − Ωhdj
′)

= −πΣ2.

∫ (M−ω,J−j)

(M,J)

(r2h + a2)

β2rh − (M − ω′)− 2
r3h
ℓ2

×

[d(M − ω′)− aΣ

r2h + a2
d(J − j′)]

= −πΣ2.

∫ (M−ω)

M

r2h

β2rh − (M − ω′)− 2
r3h
ℓ2

d(M − ω′)

−πΣ2.

∫ (M−ω)

M

a2

β2rh − (M − ω′)− 2
r3h
ℓ2

d(M − ω′)

+πΣ3.

∫ (J−j)

J

a

β2rh − (M − ω′)− 2
r3h
ℓ2

d(J − j′),

. (7.16)
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where J − j′ = (M − ω′)a/Σ2 and M will be replaced by M − ω in rh.

Using Eq. (7.6) we evaluate the following

ImI =
Σ2π(r2h + a2)

β2rh −M − 2
r3h
ℓ2

(ω − jΩh)

=
πΣ2(r2h + a2)

β2rh −M − 2
r3h
ℓ2

ω − πaΣ3

β2rh −M − 2
r3h
ℓ2

j. (7.17)

ImI =
π
(
1 + 4M2

ℓ2Σβ2 + ··
)2

(M +
√
M 2 − a2Σ)2

β2

Σ

(
1 + 4M2

ℓ2Σβ2 + ··
)
(M +

√
M2 − a2Σ)−M − A

ω

+
Σ2πa2

β2

Σ

(
1 + 4M2

ℓ2Σβ2 + ··
)
(M +

√
M 2 − a2Σ)−M − A

ω

− Σ3πa

β2

Σ

(
1 + 4M2

ℓ2Σβ2 + ··
)
(M +

√
M 2 − a2Σ)−M − A

j,

where A = 2
ℓ2Σ3

(
1 + 4M2

ℓ2Σβ2 + ··
)3

(M +
√
M 2 − a2Σ)3.

ImI =
π(M +

√
M 2 − a2Σ)2

β2

Σ

[(
1− 4M2

ℓ2Σβ2 + ··
)
(M +

√
M 2 − a2Σ)− MΣ

β2

(
1− 8M2

ℓ2Σβ2 + ··
)
−B

]ω
+

Σ2πa2

β2

Σ

[(
1 + 4M2

ℓ2Σβ2 + ··
)
(M +

√
M2 − a2Σ)− MΣ

β2 − ΣA
β2

]ω
− Σ3πa

β2

Σ

[(
1 + 4M2

ℓ2Σβ2 + ··
)
(M +

√
M 2 − a2Σ)− MΣ

β2 − ΣA
β2

]j,
where B = 2

ℓ2β2Σ2

(
1 + 4M2

ℓ2Σβ2 + ··
)
(M +

√
M 2 − a2Σ)3.

Now for the simplicity, neglecting M 3 and its higher order terms, we

then get

ImI =
πΣ

β2
.

(M +
√
M 2 − a2Σ)2

(M +
√
M 2 − a2Σ)− MΣ

β2

ω +
Σ3πa2

β2
[
M +

√
M 2 − a2Σ− MΣ

β2

]ω
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− Σ4πa

β2
[
M +

√
M 2 − a2Σ− MΣ

β2

]j. (7.18)

To obtain the maximum value, neglecting (1− Σ
β2 )M . Equation (7.18)

becomes

ImI =
πΣ

β2
.
(M +

√
M 2 − a2Σ)2√

M 2 − a2Σ
ω +

Σ3πa2

β2
[√
M 2 − a2Σ

]ω
− Σ4πa

β2
[√
M2 − a2Σ

]j. (7.19)

Now if we replace M by M −ω and j by J − j in the integral form of Eq.

(7.19), then from Eq. (7.16), we obtain [second and third integral vanish]

ImI = −πΣ
β2
.

∫ (M−ω)

M

(M − ω +
√
(M − ω)2 − a2Σ)2√

(M − ω)2 − a2Σ
d(M − ω′)

= −πΣ
β2
.

∫ (M−ω)

M

2(M − ω)2 + 2(M − ω)
√
(M − ω)2 − a2Σ√

(M − ω)2 − a2Σ
d(M − ω′)

+
πΣ

β2
.

∫ (M−ω)

M

a2Σ√
(M − ω)2 − a2Σ

d(M − ω′). (7.20)

Doing the ω′ integral finally yields

ImI = −πΣ
β2

{(M − ω)
√

(M − ω)2 − a2Σ

+(M − ω)2 −M
√
M 2 − a2Σ−M 2}

= − πΣ

2β2
{2(M − ω)

√
(M − ω)2 − a2Σ

+2(M − ω)2 − 2M
√
M 2 − a2Σ− 2M 2}

= −1

2
exp[π(r2f − r2i )]

= −1

2
exp(∆SBH), (7.21)
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where the Bekenstein-Hawking entropy of the black hole is SBH(M) = πr2i

and SBH(M − ω) = πr2f , and ∆SBH = SBH(M − ω)− SBH(M) is the dif-

ference of Bekenstein-Hawking entropy. Setting ri =
√
Σ
β [M+

√
M 2 − a2Σ]

and rf =
√
Σ
β [(M −ω)+

√
(M − ω)2 − a2Σ], which are the locations of the

KdS event horizon before and after the particles emission respectively.

Utilizing WKB approximation [168], the relationship between the tun-

neling rate and the imaginary part of the action of the radiative particle

for the KdS black hole is given by

Γ ∼ exp(−2ImI) = exp(∆SBH). (7.22)

7.4 Purely Thermal Radiation

From Eq. (7.22) we observe that the tunneling rate at the event horizon is

related to the Bekenstein-Hawking entropy, and is consistent with an un-

derlying unitary theory. Again the radiation spectrum is not pure thermal

although gives a correction to the Hawking radiation of KdS black hole.

In the form of a thermal spectrum, using the WKB approximation the

tunneling rate is also related to the energy and the Hawking temperature

of the radiative particle as Γ ∼ exp(−∆ω
T ). If ∆ω < 0 is the energy of the

emitted particle then due to energy conservation, the energy of the outgo-

ing shell must be −∆ω, then above expression becomes Γ ∼ exp(∆ω
T ). By

the first law of thermodynamics, it can be written as Γ ∼ exp(∆S), which

is related to the change of Bekenstein-Hawking entropy as follows

Γ ∼ exp(∆SBH) = exp{SBH(M − ω)− SBH(M)}. (7.23)
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We establish Eq.(7.23) as developed by Hossain et al. [131] in power of ω

upto second order using Taylor’s theorem of the form

Γ ∼ exp(∆SBH) = exp

{
−ω∂SBH(M)

∂M
+
ω2

2

∂2SBH(M)

∂M 2

}
. (7.24)

From Eq.(7.21), we can write

SBH(M − ω) =
πΣ

β2
[(M − ω) +

√
(M − ω)2 − a2Σ]2. (7.25)

At ω = 0,

∂SBH(M)

∂M
=

2Σ

β2

[
2M +

√
M 2 − a2Σ +

M2

√
M 2 − a2Σ

]
, (7.26)

∂2SBH(M)

∂M 2
=

2Σ

β2

[
2 +

3M√
M 2 − a2Σ

− M 3

(M 2 − a2Σ)
3
2

]
. (7.27)

Therefore, the tunneling rate in power of ω upto second order, the

purely thermal spectrum can be revealed from Eq. (7.24) as follows:

Γ ∼ exp(∆SBH) = exp[π(−ωγ +
ω2

2
λ)], (7.28)

where γ = 2Σ
β2

[
2M +

√
M 2 − a2Σ + M2

√
M2−a2Σ

]
and

λ = 2Σ
β2

[
2 + 3M√

M2−a2Σ
− M3

(M2−a2Σ)
3
2

]
.

The radiation spectrum given by (7.28) is more accurate and provides

an interesting correction to Hawking pure thermal spectrum.

7.5 Concluding Remarks

In this chapter, we have discussed the purely thermal and non-thermal

Hawking radiations as massive particle tunneling process from KdS black
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hole by taking into account the self-gravitational interaction, the back-

ground spacetime is dynamical and the energy as conservation by em-

ploying standard Hamilton-Jacobi method. We have explored that the

tunneling rate at the event horizon of KdS black hole is related to the

change of Bekenstein-Hawking entropy. In the limiting case Σ = 1, β = 1

the KdS black hole reduces to the Kerr black hole [81]. The positions of

the event horizon of Kerr black hole before and after the emission of the

particles with energy ω are ri = M +
√
M 2 − a2 and rf = (M − ω) +√

(M − ω)2 − a2. From Eq. (7.22), the tunneling rate of Kerr black hole

can be written as

Γ ∼ exp(−2ImI) = exp
{
π
[
{(M − ω) +

√
(M − ω)2 − a2}2

−{M +
√
M 2 − a2}2

]}
= exp[π(r2f − r2i )]

= exp(∆SBH). (7.29)

Again Eq.(7.22) reduced to our previous result of SdS [129] black hole when

a = 0 and also which is fully consistent with that obtained by Parikh and

Wilczek [51, 82, 83] from spherically symmetric black holes.

In addition, our discussion made here can be directly to the anti-de Sitter

case by changing the sign of the cosmological constant to a negative one,

which have been discussed in later chapter.

————————————————————————————
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Chapter 8

Hawking Non-thermal and Purely thermal
radiations of Kerr-anti-de Sitter Black Hole

by Hamilton-Jacobi method

8.1 Introduction

About four decades ago, an extraordinary invention made by Stephen

William Hawking that black holes radiate thermally. By the black hole

thermodynamics, the thermal radiation with the Hawking temperature

determined by the surface gravity at the event horizon [24, 25] is taken as

entropy [16, 17, 21] and surface gravity is the acceleration measured at the

spatial infinity that a stationary particle should undergo to withstand the

gravity at the event horizon. The two important case, one is the informa-

tion lost and the other one is the technical problem arisen during the study

of Hawking thermal radiation. The loss of information was not a serious

problem in the classical theory, since the information could be thought of

as preserved inside the black hole but just not very accessible. However,

taking the quantum effect into consideration, the situation is changed. On
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the thermal radiation of black holes [38, 51, 52, 53], the emission of Hawk-

ing radiation [24, 25], black holes could lose energy, shrink, and eventually

becomes smaller and smaller until disappears completely. It seems that

pure quantum states (the original matter that forms the black hole) can

evolve into mixed states (the thermal spectrum at infinity) and such an

evolution violates the fundamental principles of quantum theory, as these

prescribe a unitary time evolution of basis states. Derivations in string

theory support the idea that Hawking radiation can be described within

a manifestly unitary theory, it remains a mystery how information is re-

turned. Moreover, when Hawking first proved the existence of black hole

radiation, he described it as tunneling triggered by vacuum fluctuations

near the horizon [24, 25] but actual derivation of Hawking radiation did not

proceed in this way at all. This method also gives a leading correction to

the emission rate arising from loss of mass of the black hole corresponding

to the energy carried by the radiated quantum. Carrying this method, the

Hawking radiation from AdS black holes have investigated by Hemming

and Keski-Vakkuri [38] and Medved has studied those from a de Sitter

cosmological horizon [67]. All these spherically symmetric investigations

are successful.

Many researchers developed two universal methods to correctly recover

Hawking radiation of black holes. First one is the gravitational anomaly

method [41] in which the Hawking radiation can be determined by anomaly

canceled conditions and regularity requirement at the event horizon. Fol-

lowing, this method is widely used to calculate the Hawking radiation

for different black holes [42, 43, 44, 45, 46, 47, 48, 49, 50]. The other
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is the semi-classical tunneling method initiated by Kraus and Wilczek

[52, 53, 54]. Actually their development is not advanced since that the

method applied, is limited to discuss the tunneling rate of the uncharged

massless particles only [38, 55, 57, 58, 59, 60, 61, 62, 64, 65, 67, 70, 71, 72,

73, 74, 75, 76, 78, 79, 80, 81]. For black holes with a charge, the emitted

outgoing particles can be charged also, not only should the energy con-

servation but also the charge conservation be considered [34, 54]. This

tunneling picture can be described in another way, that is, a particle/anti-

particle pair is created just outside the horizon, the negative energy parti-

cle tunnels into the horizon because the negative energy orbit exists only

inside the horizon, the positive energy “partner” is left outside and emerges

at infinity.

Parikh’s [83, 84] and Parikh-Wilczek’ s [51] original calculation only

considered the tunneling process of a massless and uncharged particle,

recently it is shown that such tunneling method can be easily extended

to study the massive [79] and charged particle’s tunneling process [63].

Zhang and Zhao was first proposed by Hawking radiation from massive

uncharged particle tunneling [98] and charged particle tunneling [100] from

black hole and in 2005, Zhang and Zhao et al. extended their work to the

Hawking radiation of massive and charged particles and made a great deal

of success [99, 101, 102, 103, 104], which has effective significance on the

further cognition and research on black holes and also in the same year,

a different method was introduced by Angheben et al. [90]. It is called

Hamilton-Jacobi method. In fact, the method of Angheben et al. [90] is

an extension of the complex path analysis proposed by Padmanabhan et
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al. [85, 86, 87, 88, 89]. Using the null-geodesic and Hamilton-Jacobi meth-

ods, for analyzing the temperature of Taub-NUT black holes , Kerner and

Mann [109] developed quantum tunneling methods and Hamilton-Jacobi

method is rolled up for calculating the relativistic Hamilton-Jacobi equa-

tion. Parikh and Wilczek applied the semi-classical quantum tunneling

model to research on the Hawking radiation of the static Schwarzschild

and Reissner-Nordström black holes [51, 82, 83] and them opinion the

true radiation spectrum is not strictly thermal but satisfies the underlying

unitary theory when self-gravitation interaction and energy conservation

are considered. It is clear that the background geometry of a radiating

black hole should be altered (unfixed) with the loss of energy. Chen, Zu

and Yang reformed Hamilton-Jacobi method for massive particle tunneling

and investigate the Hawking radiation of the Taub-NUT black hole [126]

and using this method Hawking radiation of Kerr-NUT black hole [65] and

the charged black hole with a global monopole [99, 128] developed using

Painlevé coordinate system. In this chapter, this method is applied to in-

vestigate the Hawking radiation of Kerr-anti-de Sitter (KAdS) black hole

and to calculate the imaginary part of action from Hamilton-Jacobi equa-

tion avoid by exploring the equation of motion of the radiation particle

in Painlevé coordinate system and calculating the Hamilton equation. In

this method tunneling rate is related to the change of Bekenstein-Hawking

entropy [51, 82].

Recently, Rahman et al. [129, 130] developed the Hawking radiation

of Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter black holes by

Hamilton-Jacobi method when the self-gravitational interaction and the

102



8.1. INTRODUCTION CHAPTER 8.

unfixed background spacetime are taken into account. In this method, the

imaginary part of the action come from the relativistic Hamilton-Jacobi

equation and the actual Hawking radiation spectrum deviates from the

purely thermal one, satisfies the underlying unitary theory and gives a

leading correction to the radiation spectrum. The imaginary part of the

action for the process of s-wave emission across the horizon, which in turn

is related to the change of Bekenstein-Hawking entropy and using WKB

approximation we get

Γ ∼ exp(−2ImI), (8.1)

where Γ is the emission rate, I is the action for an outgoing positive energy

particle.

Properties of black holes in anti-de Sitter (AdS) spaces especially those

of thermodynamics [109] investigated thoroughly in recent years within the

context of the AdS/CFT correspondence [166, 167] and a large static black

hole in asymptotically AdS spacetime corresponds to an (approximately)

thermal state in the CFT. So the time scale for the decay of the black

hole perturbation, which is given by the imaginary part of its action,

corresponds to the timescale to reach thermal equilibrium in the strongly

coupled CFT [158]. The accelerating expansion of our universe indicates

the cosmological constant might be a positive one [132, 153, 154] and

the recent development in string /M-theory greatly stimulate the study of

black holes in anti-de Sitter spaces and hence our study on the Kerr-anti-de

Sitter black holes is plausible and meaningful.

In order to carry-over this chapter we describe the KAdS black hole

spacetime and near the event horizon the new line element of KAdS black
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hole is derived in the later section. In section 8.3, the unfixed background

spacetime and the self-gravitational interaction are taken into account,

we review the Hawking non-thermal radiation of KAdS black hole from

massive particle tunneling method. In section 8.4, we derived the Hawking

purely thermal radiation from non-thermal rate. Finally, in section 8.5,

we present our remarks.

8.2 Kerr-anti-de Sitter black hole

Kerr-anti-de Sitter black hole, which is the exact solution of the Einstein

field equations with a negative cosmological constant describes rotating

black hole in four-dimensional spacetime with asymptotic-anti-de Sitter

behavior in the Boyer-Lindguist coordinates [185] with cosmological radius

ℓ, mass M and the angular momentum per unit mass a has the form

ds2 = − 1

ρ2
(∆r −∆θa

2 sin2 θ)dt2 +
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2

+
1

ρ2Ξ2
[∆θ(r

2 + a2)2 −∆ra
2 sin2 θ] sin2 θdϕ2

− 2a

ρ2Ξ
[∆θ(r

2 + a2)−∆r] sin
2 θdtdϕ, (8.2)

where

ρ2 = r2 + a2 cos2 θ, ∆θ = 1− a2 cos2 θ

ℓ2
, Ξ = 1− a2

ℓ2
,

∆r = (r2 + a2)(1 +
r2

ℓ2
)− 2Mr = (1 +

a2

ℓ2
)r2 − 2Mr + a2 +

r4

ℓ2
. (8.3)

The coordinates are defined such that −∞ ≤ t ≤ ∞, r ≥ 0, 0 ≤ θ ≤ π,

and 0 ≤ ϕ ≤ 2π. The only positive real root is obtained from the zeroes

of r4+(ℓ2+ a2)− 2Mℓ2r+ ℓ2a2 = 0 and which is located at the black hole
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(event) horizon r+ such that

r+ =
ℓα√
3
.sinh

[1
3
sinh−13M

√
3

ℓΞα

]
×
(
1 +

√
1− a2ℓ√

3Mα
.

2

1 + δ
cosech

[1
3
sinh−13M

√
3

ℓΞα

])
, (8.4)

where

δ =

√
1− 4a2α2

3M 2
sinh2

[1
3
sinh−13

√
3M

ℓΞα

]
, α =

√
1 +

a2

ℓ2
. (8.5)

Expanding r+ in terms of Kerr-anti-de Sitter black hole parameters with

a2(1− a2

ℓ2 ) < M 2 and setting δ = 1, we obtain

r+ =
M

Ξ

(
1− 4M2

ℓ2Ξα2
+ · · ·

)(
1 +

√
1− a2Ξ

M 2

)

=
1

Ξ

(
1− 4M 2

ℓ2Ξα2
+ · · ·

)(
M +

√
M 2 − a2Ξ

)
. (8.6)

Therefore, we can write r+ = (M+
√
M 2 − a2Ξ)β, with β < 1. Obviously,

the event horizon of the Kerr-anti-de-Sitter black hole is less than the

Kerr event horizon rKe = M +
√
M 2 − a2. It also gives Kerr black hole

[81] for ℓ → ∞(Ξ → 1) and Schwarzschild-anti-de Sitter black hole [130]

for a = 0. To study the Hawking radiation of Kerr-anti-de Sitter black

hole effectively, we choose dragging coordinate transformation as follows

dϕ

dt
= −g03

g33
=

aΞ[∆θ(r
2 + a2)−∆r]

∆θ(r2 + a2)2 −∆ra2 sin
2 θ
. (8.7)

Now applying (8.7) on the line element (8.2), then the new line element

of the Kerr-anti-de Sitter black hole takes on form as

ds2 = − ∆r∆θρ
2

∆θ(r2 + a2)2 −∆ra2 sin
2 θ
dt2 +

ρ2

∆r
dr2 +

ρ2

∆θ
dθ2. (8.8)
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The position of the event horizon is same as given in Eq. (8.6). We select

the line element (8.8) and make a treatment to it and therefore, near the

event horizon, the line element (8.8) can be written as

ds2 = −∆r,r(r+)(r − r+)ρ
2(r+)

(r2+ + a2)2
dt2 +

ρ2(r+)

∆r,r(r+)(r − r+)
dr2

+
ρ2(r+)

∆θ
dθ2, (8.9)

where

ρ2(r+) = r2+ + a2 cos2 θ,

∆r,r(r+) =
d∆r

dr

∣∣∣
r=r+

=
2

Ξ2
(β2r+ −M − 2

r3+
ℓ2
). (8.10)

8.3 The HJ Method for Non-thermal Radiation

To calculate the imaginary part of the action from the relativistic Hamilton-

Jacobi equation, we use the method of Chen et al. [125, 126] by giving

up the exploration of the equation of motion in the Painlevé coordinates

systems. In order to calculate the imaginary part of the action from the

relativistic Hamilton-Jacobi equation, the action I of the outgoing parti-

cle from the black hole horizon satisfies the relativistic Hamilton-Jacobi

equation

gab (∂aI) (∂bI) +m2 = 0, (8.11)

in which m and gab are the mass of the particle and the inverse metric

tensors derived from the line element (8.9). The non-null inverse metric

tensors for the metric (8.9) are

g00 = −
(r2+ + a2)2

∆r,r(r+)(r − r+)ρ2(r+)
, g11 =

∆r,r(r+)(r − r+)

ρ2(r+)
,
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g22 =
∆θ

ρ2(r+)
(8.12)

Using (8.12) in Eq. (8.11), we have

g00(∂tI)
2 + g11(∂rI)

2 + g22(∂θI)
2 +m2 = 0. (8.13)

The action I for I(t, r, θ, ϕ) is too difficult to solve. To find the solution

in a convenient way, the separation of variables can be taken as follows

I = −ωt+R(r) +H(θ) + jϕ, (8.14)

where ω is the energy of the particle, j is the angular momentum with

respect to the angular ϕ, R(r) and H(θ) are the generalized momentums.

From Eq.(8.13) and Eq. (8.14), we get

R(r) = ±
r2+ + a2

∆r,r(r+)

∫
dr

(r − r+)
×√

(ω − jΩ+)2 −
ρ2(r+)∆r,r(r+)(r − r+)

(r2+ + a2)2

[
∆θ

ρ2(r+)
(∂θH)2 +m2

]
= ±

πi(r2+ + a2)

∆r,r(r+)
(ω − jΩ+) + ζ, (8.15)

where Ω+ = dϕ
dt

∣∣∣
r=r+

= aΞ
r2++a2

express the angular velocity of the particle

at the event horizon and ± sign comes from the square root and ζ is

the constant of integration. Inserting Eq. (8.15) into Eq. (8.14), the

imaginary part of two different actions corresponding to the outgoing and

incoming particles can be written as

ImI± = ±
π(r2+ + a2)

∆r,r(r+)
(ω − jΩ+) + Im(ζ). (8.16)

With classical limit as mentioned in refs. [169], we make sure the

incoming probability to be unity when there is no reflection i.e., everything
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is absorbed by the horizon. In this situation the appropriate value of

ζ instead of zero or infinity can be taken as ζ =
πi(r2++a2)

∆r,r(r+)
(ω − jΩ+) +

Re(ζ). Therefore, ImI− = 0 and I+ give the imaginary part of action I

corresponding to the outgoing particle of the form

ImI =
2.π(r2+ + a2)

∆r,r(r+)
(ω − jΩ+)

=
πΞ2(r2+ + a2)

α2r+ −M + 2
r3+
ℓ2

(ω − jΩ+)

=
πΞ2(r2+ + a2)

α2r+ −M + 2
r3+
ℓ2

(
ω − jaΞ

r2+ + a2

)
=

πΞ2r2+

α2r+ −M + 2
r3+
ℓ2

ω +
πΞ2a2

α2r+ −M + 2
r3+
ℓ2

ω − πΞ3a

α2r+ −M + 2
r3+
ℓ2

j.

(8.17)

Using Eq. (8.6) into Eq. (8.17), we get the imaginary part of the action

as

ImI =
π
(
1− 4M2

ℓ2Ξα2 + ··
)2

(M +
√
M2 − a2Ξ)2

α2

Ξ

(
1− 4M2

ℓ2Ξα2 + ··
)
(M +

√
M 2 − a2Ξ)−M + A

ω

+
πΞ2a2

α2

Ξ

(
1− 4M2

ℓ2Ξα2 + ··
)
(M +

√
M 2 − a2Ξ)−M + A

ω

− πaΞ3

α2

Ξ

(
1− 4M2

ℓ2Ξα2 + ··
)
(M +

√
M 2 − a2Ξ)−M + A

j, (8.18)

where A = 2
ℓ2Ξ3

(
1− 4M2

ℓ2Ξα2 + ··
)3

(M +
√
M 2 − a2Ξ)3.

=
π(M +

√
M 2 − a2Ξ)2

α2

Ξ

[(
1 + 4M2

ℓ2Ξα2 + ··
)
(M +

√
M 2 − a2Ξ)− MΞ

α2

(
1 + 8M2

ℓ2Ξα2 + ··
)
+B

]ω
+

πΞ2a2

α2

Ξ

[(
1− 4M2

ℓ2Ξα2 + ··
)
(M +

√
M 2 − a2Ξ)− MΞ

α2 + ΞA
α2

]ω
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− πaΞ3

α2

Ξ

[(
1− 4M2

ℓ2Ξα2 + ··
)
(M +

√
M 2 − a2Ξ)− MΞ

α2 + ΞA
α2

]j, (8.19)

whereB = 2
ℓ2α2Ξ2

(
1− 4M2

ℓ2Ξα2 + ··
)
(M +

√
M 2 − a2Ξ)3.

Now for the simplicity, neglecting M 3 and its higher order terms, we then

get

ImI =
πΞ

α2
.

(M +
√
M 2 − a2Ξ)2

(M +
√
M 2 − a2Ξ)− MΞ

α2

ω +
πa2Ξ3

α2
[
M +

√
M 2 − a2Ξ− MΞ

α2

]ω.
− πaΞ4

α2
[
M +

√
M 2 − a2Ξ− MΞ

α2

]j. (8.20)

Suppose the Arnowitt-Deser-Misner (ADM) mass of the total spacetime

to be fixed and in presence of cosmological constant KAdS spacetime is

dynamic, and hence allow KAdS black hole to fluctuate. When a particle

with energy ω and angular momentum j tunnels out, the mass and angular

momentum of the KAdS black hole should be replaced by M − ω and

J − j respectively. Taking the self-gravitational interaction into account,

the imaginary part of the true action can be calculated from Eq. (8.20) in

the following integral form

ImI =
πΞ

α2
.

∫ ω

0

(M +
√
M 2 − a2Ξ)2

M +
√
M 2 − a2Ξ− MΞ

α2

dω′

+
πΞ3

α2
.

∫ ω

0

a2

M +
√
M 2 − a2Ξ− MΞ

α2

dω′

−πΞ
4

α2
.

∫ j

0

a

M +
√
M 2 − a2Ξ− MΞ

α2

dj′

=
πΞ

α2
.

∫ ω

0

(M +
√
M 2 − a2Ξ)2√

M 2 − a2Ξ + (M − MΞ
α2 )

dω′

+
πΞ3

α2
.

∫ ω

0

a2√
M 2 − a2Ξ + (M − MΞ

α2 )
dω′

109



8.3. THE HJ METHOD FOR NON-THERMAL RADIATION CHAPTER 8.

−πΞ
4

α2
.

∫ j

0

a√
M 2 − a2Ξ + (M − MΞ

α2 )
dj′. (8.21)

For the maximum value of integration, neglecting (1 − Ξ
α2 )M . Equation

(8.21) becomes

ImI =
πΞ

α2
.

∫ ω

0

(M +
√
M2 − a2Ξ)2√

M 2 − a2Ξ
dω′ +

πΞ3

α2
.

∫ ω

0

a2√
M 2 − a2Ξ

dω′

−πΞ
4

α2
.

∫ j

0

a√
M2 − a2Ξ

dj′. (8.22)

Now replacing M by M − ω and j by J − j, we have

ImI = −πΞ
α2
.

∫ (M−ω)

M

(M − ω +
√
(M − ω)2 − a2Ξ)2√

(M − ω)2 − a2Ξ
d(M − ω′)

−πΞ
3

α2
.

∫ (M−ω)

M

a2√
(M − ω)2 − a2Ξ

d(M − ω′)

+
πΞ4

α2
.

∫ (J−j)

J

a√
(M − ω)2 − a2Ξ

d(J − j′), (8.23)

where J − j′ = (M − ω′)a/Ξ2. Therefore Eq. (8.23) becomes

ImI = −πΞ
α2
.

∫ (M−ω)

M

(M − ω +
√
(M − ω)2 − a2Ξ)2√

(M − ω)2 − a2Ξ
d(M − ω′)

= −πΞ
α2
.

∫ (M−ω)

M

2(M − ω)2 + 2(M − ω)
√
(M − ω)2 − a2Ξ√

(M − ω)2 − a2Σ
d(M − ω′)

+
πΞ

α2
.

∫ (M−ω)

M

a2Ξ√
(M − ω)2 − a2Ξ

d(M − ω′). (8.24)

Finishing the ω′ integral finally yields

ImI = −πΞ
α2
.{(M − ω)

√
(M − ω)2 − a2Ξ

+ (M − ω)2 −M
√
M 2 − a2Ξ−M 2}
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= −1

2

{πΞ
α2

[2(M − ω)2 + 2(M − ω)
√
(M − ω)2 − a2Ξ

−2M
√
M2 − a2Ξ− 2M 2]

}
= −1

2
exp[π(r2f − r2i )]

= −1

2
∆SBH , (8.25)

where ∆SBH = SBH(M − ω) − SBH(M) is the change of Bekenstein-

Hawking entropies of the Kerr-anti-de Sitter black hole before and after

the emission of the particles by setting ri =
√
Ξ
α [M +

√
M 2 − a2Ξ] and

rf =
√
Ξ
α [(M − ω) +

√
(M − ω)2 − a2Ξ] respectively.

Therefore, using Eq. (8.1) the tunneling probability for the KAdS black

hole can be obtained as

Γ ∼ exp(−2ImI) = exp(∆SBH). (8.26)

The result shows the actual radiation spectrum deviates from the purely

thermal one and gives a correction to the Hawking radiation of the black

hole.

8.4 Purely Thermal Radiation

It is obvious from Eq. (8.26) the radiation spectrum is not pure thermal

although gives a correction to the Hawking radiation of KAdS black hole.

The purely thermal spectrum can be derived from Eq. (8.26) by expanding

as discussed by Hossain et al. [131] of the form

Γ ∼ exp(∆SBH) = exp

{
−ω∂SBH(M)

∂M
+
ω2

2

∂2SBH(M)

∂M 2

}
. (8.27)
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From Eq.(8.25)

SBH(M − ω) =
πΞ

α2

[
(M − ω) +

√
(M − ω)2 − a2Ξ

]2
. (8.28)

Using (8.28) in (8.27) and finishing the calculation, the purely thermal

emission rate reduces to the form

Γ ∼ exp(∆SBH)

= exp
[−2πΞω

α2
{(2M +

√
M 2 − a2Ξ +

M 2

√
M 2 − a2Ξ

)

−ω
2
(2 +

3M√
M 2 − a2Ξ

− M 3

(M2 − a2Ξ)
3
2

)}
]
. (8.29)

In the limiting case i.e. when Λ = 0, then Ξ = 1, α = 1 and in this case,

non-thermal and purely thermal tunneling rates for the KAdS black hole

reduces to

Γ ∼ exp(−2ImI) = exp
{
π
[
{(M − ω) +

√
(M − ω)2 − a2}2

−{M +
√
M 2 − a2}2

]}
, (8.30)

and

Γ ∼ exp(∆SBH)

= exp
[
− 2πω{(2M +

√
M2 − a2 +

M 2

√
M 2 − a2

)

−ω
2
(2 +

3M√
M 2 − a2

− M 3

(M 2 − a2)
3
2

)}
]
. (8.31)

Which is consistent to the results for the Kerr black hole [81] and where

ri = M +
√
M 2 − a2 and rf = (M − ω) +

√
(M − ω)2 − a2. These are

the positions of the event horizon of Kerr black hole before and after the

emission of the particles respectively.
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For another special case, only when a = 0, the line element (8.2) is

reduced to the SAdS black hole [130]. So the tunneling probabilities for

the SAdS black hole can be written as

Γ ∼ exp(−2ImI) = exp{π[4(M − ω)2
(
1− 8(M − ω)2

ℓ2

)
−4M2

(
1− 4M 2

ℓ2

)
]} (8.32)

and

Γ ∼ exp(∆SBH) = exp

{
−8πω

[(
M − 16M 3

ℓ2

)
− ω

2

(
1− 48M 2

ℓ2

)]}
,

(8.33)

where ri = 2M
(
1− 4M2

ℓ2

)
and rf = 2(M − ω)

(
1− 4(M−ω)2

ℓ2

)
are the lo-

cations of the SAdS [130] event horizon before and after the particles

emission.

Furthermore only when a = 0 and Λ = 0, the line element (8.2) is

reduced to the Schwarzschild black hole [51] and therefore the non-thermal

and purely thermal tunneling rates can be written as

Γ ∼ exp(−2ImI) = exp
{
π
[
4(M − ω)2 − 4M 2

]}
= exp[π(r2f − r2i )] (8.34)

and

Γ ∼ exp(∆SBH) = exp
[
−8πω

(
M − ω

2

)]
, (8.35)

which are full accordant with Parikh and Wilczek’s results [51, 82, 83] and

where ri = 2M and rf = 2(M − ω) are the locations of the Schwarzschild

black hole event horizon before and after the particles emission.
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8.5 Concluding Remarks

We have been presented Hawking radiation as massive particle tunnel-

ing method from KAdS black hole in this chapter. Considering the self-

gravitational interaction, the background spacetime as dynamical and the

energy as conservation, we have explored the Hawking non-thermal and

purely thermal tunneling probabilities of KAdS black hole at the event

horizon. It is noted that the similar result have been shown taking the

same proposition for massive particle tunneling at the event horizon of

SAdS black hole [129], RNAdS black hole [131] and Taub-NUT black holes

[126] and also agree by massless or massless charged particle tunneling

from various spacetime like as charged black hole with a global monopole

[99, 128], kerr-NUT black hole [65], Kerr and Kerr-Newman black holes

[60, 103] etc. Thus the actual radiation spectrum of KAdS black hole

is not precisely thermal and the tunneling probability is related to the

change of Bekenstein-Hawking entropy but satisfies an underlying unitary

theory and also gives a correction to Hawking radiation.

————————————————————————————
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Chapter 9

Hawking Non-thermal and Purely
thermal radiations of

Kerr-Newman-de Sitter Black Hole
by Hamilton-Jacobi method

9.1 Introduction

Many researchers have attempt to provide various methods to correctly

find out the Hawking radiations of different black holes because Hawk-

ing proved that black holes have emission of thermal radiation [24]. To

describe Hawking radiation as a quantum tunneling process, a new win-

dow first opened by Kraus and Wilczek [52, 53, 54] where a particle

moves in a dynamical geometry and then formulated by many researchers

[51, 79, 85, 86, 88, 89, 90]. Recently, several works on rotating black holes

[55, 65, 80, 81, 102, 103, 118, 119, 120, 125, 127, 186, 187, 188] have been

done by using Painleavé or dragging or tortoise or Eddington-Finkelstein

coordinate transformations but most of them are focus on studying Hawk-

ing radiation of massless/scalar particles tunneling from different rotating
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black holes. Here we have used the dragging coordinate transformation

to obtain the same results from the Kerr-Newman-de Sitter (KNdS) black

hole using massive particle tunneling process by expressing the event hori-

zon of KNdS black hole in terms of black hole parameters in an infinite

series and is very interesting point in this research.

This chapter is devoted to investigate the Hawking non-thermal and

purely thermal tunneling rates of the Kerr-Newman black hole in the de

Sitter space. To obtain the correct tunneling rates, we use the method

which regards the action of the emitted particles satisfies the relativistic

Hamilton-Jacobi equation and solving it contains the imaginary part of the

action [90, 186, 187]. It is noticed that the analysis of massive particles

tunneling from the Kerr-Newman-de Sitter black hole parallels to the case

that we have made for Kerr-de Sitter black hole. Here the energy as well

as charge conservation are taken into account.

This chapter is arranged as follows: In section 9.2 we describe the

Kerr-Newman-de Sitter black hole spacetime with the position of event

horizon and derive the new line element of KNdS black hole near the

event horizon. In section 9.3 we describe the Hamilton-Jacobi method

for the KNdS spacetime. Again, we consider the spacetime background

as dynamical and self-gravitational interaction of the emitted particles,

the non-thermal tunneling rate of KNdS black hole from massive particle

tunneling process have been reviewed in section 9.4. In section 9.5 we

develop the Hawking purely thermal rate from non-thermal rate. Finally,

in section 9.6 we give our remarks.
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9.2 Kerr-Newman-de Sitter black hole

The most general black hole [188] solution can be expressed in the Boyer-

Lindguist coordinate [185] as an exact solution of the Einstein field equa-

tions with a positive cosmological constant Λ(= 3/ℓ2) describes charged

rotating black hole in asymptotically de Sitter space with cosmological

radius ℓ, massM , charge q and angular momentum per unit mass a of the

form

ds2 = −f(r)− f(θ)a2 sin2 θ

ρ2
dt2 +

f(θ)(r2 + a2)2 − f(r)a2 sin2 θ

ρ2Σ2
sin2 θdϕ2

+
ρ2

f(r)
dr2 +

ρ2

f(θ)
dθ2 − 2a[(r2 + a2)f(θ)− f(r)] sin2 θ

ρ2Σ
dtdϕ, (9.1)

where

ρ2 = r2 + a2 cos2 θ, f(θ) = 1 +
a2 cos2 θ

ℓ2
,

Σ = 1 +
a2

ℓ2
, f(r) = (1− a2

ℓ2
)r2 − 2Mr + a2 − r4

ℓ2
+ q2. (9.2)

The de Sitter space are defined such that −∞ ≤ t ≤ ∞, r ≥ 0, 0 ≤ θ ≤ π,

and 0 ≤ ϕ ≤ 2π. The metric (9.1) describes an interesting charged rotating

AdS black hole called the Kerr-Newman-Anti-de Sitter (KNAdS) black

hole if we replace ℓ2 by −ℓ2. There are apparent singularities in the metric

at the values of r for which

f(r) = (1− a2

ℓ2
)r2 − 2Mr + a2 − r4

ℓ2
+ q2 = 0 (9.3)

The function f(r) = 0 with ℓ2 > a2 has four distinct roots: rh, r−, rc,

and r−−. The real root rh corresponds to the radius of the black hole’s

outer event horizon, while the other real root r− represents the radius of
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the inner cauchy horizon. Here we indicate rc as the cosmological horizon

and r−− the negative root of f(r) another cosmological horizon. Equation

(9.3) can be written as

r4 − (ℓ2 − a2)r2 + 2Mℓ2r − ℓ2(a2 + q2) = 0. (9.4)

Solving the above equation, the black hole event horizon and cosmological

horizon can be written respectively of the form

rh =
ℓβ√
3
.sin
[1
3
sin−13M

√
3

ℓαβ

]
×
(
1 +

√
1− (a2 + q2)ℓ√

3Mβ
.

2

1 + δ
cosec

[1
3
sin−13M

√
3

ℓαβ

])
, (9.5)

and

rc =
ℓβ√
3
.sin
[1
3
sin−13M

√
3

ℓαβ

]
×
(√

1 +
1 + δ

2
.
3M

√
ℓ√

3β2
cosec3

[1
3
sin−13M

√
3

ℓαβ

]
− 1
)
, (9.6)

where

δ =

√
1− 4(a2 + q2)β2

3M 2
sin2

[1
3
sin−13

√
3M

ℓαβ

]
, (9.7)

α =

√
{1 + a2

ℓ2
}2 + 4q2

ℓ2
, β =

√
1− a2

ℓ2
(9.8)

and r−− = −(rh+r−+rc) is the another cosmological horizon. With δ ≈ 1

the black hole event horizon can be approximated as

rh ≈ ℓβ√
3
.sin
[1
3
sin−13M

√
3

ℓαβ

]
.
(
1 +

√
1− (a2 + q2)α

M 2

)
. (9.9)
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Expanding rh in terms of ℓ, M , q and a with (a2 + q2)α < M 2 , we obtain

rh =
M

α

(
1 +

4M 2

ℓ2β2α
+ · · ·

)(
1 +

√
1− (a2 + q2)α

M 2

)
, (9.10)

which can be written as

rh =
1

α

(
1 +

4M 2

ℓ2β2α
+ · · ·

)(
M +

√
M 2 − (a2 + q2)α

)
. (9.11)

Obviously, the event horizon of the Kerr-Newman-de Sitter black hole is

greater than the Kerr-Newman event horizon rKe =M+
√
M2 − (a2 + q2).

It is interesting to note that it reduced to the Kerr-Newman black hole

[125] for ℓ → ∞, Kerr-de Sitter black hole for q = 0, Kerr black hole [81]

for ℓ → ∞, q = 0 and Schwarzschild-de Sitter black hole [129] for a = 0

and q = 0. We perform the following effective transformation to obtain

the Hawking radiation of the KNdS black hole.

dϕ

dt
=

aΣ[f(θ)(r2 + a2)− f(r)]

f(θ)(r2 + a2)2 − f(r)a2 sin2 θ
. (9.12)

Using (9.12) in the line element (9.1), then the new line element of the

Kerr-Newman-de Sitter black hole becomes

ds2 = − f(r)f(θ)ρ2

f(θ)(r2 + a2)2 − f(r)a2 sin2 θ
dt2 +

ρ2

f(r)
dr2 +

ρ2

f(θ)
dθ2. (9.13)

The position of the event horizon is same as given in Eq. (9.11). The

action can be derived from the line element (9.1) and (9.13) respectively.

Near the event horizon, the line element (9.13) can be rewritten as

ds2 = −f,r(rh)(r − rh)ρ
2(rh)

(r2h + a2)2
dt2 +

ρ2(rh)

f,r(rh)(r − rh)
dr2 +

ρ2(rh)

f(θ)
dθ2,(9.14)

when

ρ2(rh) = r2h + a2 cos2 θ

f,r(rh) =
df

dr

∣∣∣
r=rh

=
2

Σ2
(β2rh −M − 2

r3h
ℓ2
). (9.15)
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9.3 The HJ Method for KNdS Spacetime

In this section, we have applied the standard Hamilton-Jacobi method [85,

86, 87, 88, 89] developed by Angheben et al.[90, 186] which is an extension

of complex path analysis proposed by Padmanabhan et al. [85, 86, 87, 88,

89] to calculate the imaginary part of the true action for the process of

s-wave emission across the horizon. Using the WKB approximation [168],

the emission rate satisfies the following relation

Γ ∼ exp(−2ImI), (9.16)

where I is the action of the outgoing particle.

In the Hamilton-Jacobi method we avoid the exploration of the equation

of motion in the Painlevé coordinates systems. The classical action of the

radiation particle tunnels across the event horizon satisfies the relativistic

Hamilton-Jacobi equation

gij
(
∂I

∂xi

)(
∂I

∂xj

)
+ u2 = 0, (9.17)

where u is the mass of the radiating particle and gij are the inverse metric

tensors derived from the metric (9.14), namely

ḡ11 = − (r2h + a2)2

ρ2(rh)f,r(rh)(r − rh)
, ḡ22 =

f,r(rh)(r − rh)

ρ2(rh)
,

ḡ33 = − f(θ)

ρ2(rh)
, (9.18)

and others are null. Substituting them in the Eq. (9.17), we get

ḡ11
(
∂I

∂t

)2

+ ḡ22
(
∂I

∂r

)2

+ ḡ33
(
∂I

∂θ

)2

+ u2 = 0. (9.19)
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For the HJ equation, to find the solution we use the separation of variables

method for the action I(t, r, θ, ϕ) as follows

I = −ωt+R(r) +H(θ) + jϕ, (9.20)

where ω is the energy of the emitted particle, j is the angular momentum

with respect to angular ϕ, R(r) and H(θ) are the generalized momentums.

The angular velocity of the particle at the event horizon is

Ωh =
dϕ

dt

∣∣∣
r=rh

=
aΣ

r2h + a2
. (9.21)

Using Eq. (9.20) in Eq. (9.19), we obtain an expression as follows

dR(r)

dr
=

√
−ḡ11ḡ22 ×

{
(ω − jΩh)

2 + ḡ11

[
ḡ33
(
dH(θ)

dθ

)2

+ u2

]}

R(r) = ±r
2
h + a2

f,r(rh)

∫
dr

r − rh
×√√√√(ω − jΩh)2 −

ρ2(rh)f,r(rh)(r − rh)

(r2h + a2)2

[
ḡ33
(
dH(θ)

dθ

)2

+ u2

]
. (9.22)

9.4 Non-thermal Tunneling Rate

For the convenience of research, let’s the emitted particle as an ellipsoid

shell of energy ω to tunnel across the event horizon. The quadratic form

of Eq. (9.19) is the reason of ± signatures that summarized in the above

equation. Solution of Eq. (9.22) with “+” signature corresponds to out-

going particles and the other solution i.e., the solution with “-”signature

refers to the ingoing particles. The solution given by Eq.(9.22) is singular
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at r = rh which corresponds to the event horizon. Finishing the above

integral by using the Cauchy’s integral formula, we obtain

R(r) = ±2πi(r2h + a2)

f,r(rh)
(ω − jΩh). (9.23)

Substituting the above result in Eq. (9.20), the imaginary part of the

action I corresponding to the outgoing particle is obtained by π times the

residue of the integrand

ImI =
2π(r2h + a2)

f,r(rh)
(ω − jΩh)

=
πΣ2(r2h + a2)

β2rh −M − 2
r3h
ℓ2

(ω − jΩh). (9.24)

Using Eqs. (9.11) and (9.21) into Eq. (9.24), we get the imaginary part

of the action as

ImI =

πΣ2

α2

(
1 + 4M2

ℓ2αβ2 + ··
)2

(M +
√
M 2 − (a2 + q2)α)2

β2

α

(
1 + 4M2

ℓ2αβ2 + ··
)
(M +

√
M 2 − (a2 + q2)α)−M − A

ω

+
πa2Σ2

β2

α

(
1 + 4M2

ℓ2αβ2 + ··
)
(M +

√
M2 − (a2 + q2)α)−M − A

ω

− πaΣ3

β2

α

(
1 + 4M2

ℓ2αβ2 + ··
)
(M +

√
M 2 − (a2 + q2)α)−M − A

j,

where A = 2
ℓ2α3

(
1 + 4M2

ℓ2αβ2 + ··
)3

(M +
√
M 2 − (a2 + q2)α)3.

ImI =
πΣ2(M +

√
M 2 − (a2 + q2)α)2

β2α
[(

1− 4M2

ℓ2αβ2 + ··
)
(M +

√
M 2 − (a2 + q2)α)−B

]ω
+

πa2Σ2

β2

α

[(
1 + 4M2

ℓ2αβ2 + ··
)
(M +

√
M 2 − (a2 + q2)α)− Mα

β2 − αA
β2

]ω
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− πaΣ3

β2

α

[(
1 + 4M2

ℓ2αβ2 + ··
)
(M +

√
M 2 − (a2 + q2)α)− Mα

β2 − αA
β2

]j,
where B = Mα

β2 (1− 8M2

ℓ2αβ2+··)+ 2
ℓ2β2α2 (1+

4M2

ℓ2αβ2+··)(M+
√
M 2 − (a2 + q2)α)3.

To get the maximum value of the integration, neglecting above second

order terms of black hole parameter ‘mass’ from the denominator, we then

get

ImI =
πΣ2

β2α
.

(M +
√
M 2 − (a2 + q2)α)2

(M +
√
M 2 − (a2 + q2)α)− Mα

β2

ω

+
Σ2πa2α

β2
[
M +

√
M 2 − (a2 + q2)α− Mα

β2

]ω
− Σ3πaα

β2
[
M +

√
M 2 − (a2 + q2)α− Mα

β2

]j (9.25)

Let us now focus on a semiclassical treatment of the associated radiation

and adopt the picture of a pair of virtual particles spontaneously created

just inside the horizon. The positive energy virtual particle can tunnel

out -no classical escape route exists - where it materializes a real particle

while the negative energy particle is absorbed by the black hole, resulting

in a decrease in the mass and angular momentum of the black hole. If the

particle’s self-gravitational interaction is taken into account, equations

(9.1) to (9.25) should be changed. Fixing the ADM mass, charge and

angular momentum of the total spacetime and allow mass and angular

momentum of the black hole to vary. Then we should replaceM byM−ω
and j by J − j, and therefore the imaginary part of the true action can be
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calculated from Eq. (9.25) in the following integral

ImI =
πΣ2

β2α
.

∫ ω

0

(M +
√
M 2 − (a2 + q2)α)2√

M 2 − (a2 + q2)α+ (M − Mα
β2 )

dω′

+
πΣ2a2α

β2
.

∫ ω

0

1√
M 2 − (a2 + q2)α + (M − Mα

β2 )
dω′

−πaΣ
3α

β2
.

∫ j

0

1√
M2 − (a2 + q2)α+ (M − Mα

β2 )
dj′. (9.26)

For the maximum value of integration, neglecting (1 − α
β2 )M . Equation

(9.26) becomes

ImI =
πΣ2

β2α
.

∫ ω

0

(M +
√
M 2 − (a2 + q2)α)2√

M 2 − (a2 + q2)α
dω′

+
πΣ2a2α

β2
.

∫ ω

0

1√
M 2 − (a2 + q2)α

dω′

−πaΣ
3α

β2
.

∫ j

0

1√
M 2 − (a2 + q2)α

dj′. (9.27)

Replacing M by M − ω and j by J − j, we have

ImI = −πΣ
2

β2α
.

∫ (M−ω)

M

(M − ω +
√

(M − ω)2 − (a2 + q2)α)2√
(M − ω)2 − (a2 + q2)α

d(M − ω′)

−πΣ
2a2α

β2
.

∫ (M−ω)

M

1√
(M − ω)2 − (a2 + q2)α

d(M − ω′)

+
πaΣ3α

β2
.

∫ (J−j)

J

1√
(M − ω)2 − (a2 + q2)α

d(J − j′), (9.28)

where

J − j′ =
(M − ω′)a

Σ2
. (9.29)

Using Eq. (9.29) into Eq. (9.28), and finishing the integral, the imaginary
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part of the action can be obtained.

ImI = −πΣ
2

β2α
.

∫ (M−ω)

M

2(M − ω)2 + 2(M − ω)
√

(M − ω)2 − (a2 + q2)α√
(M − ω)2 − (a2 + q2)α

×d(M − ω′) +
πΣ2

β2α
.

∫ (M−ω)

M

(a2 + q2)α√
(M − ω)2 − (a2 + q2)α

d(M − ω′)

. (9.30)

Doing the ω′ integral, finally we get

ImI = −πΣ
2

β2α
{(M − ω)

√
(M − ω)2 − (a2 + q2)α

+(M − ω)2 −M
√
M 2 − (a2 + q2)α−M 2}

= − πΣ2

2β2α
{2(M − ω)

√
(M − ω)2 − (a2 + q2)α

+2(M − ω)2 − 2M
√
M 2 − (a2 + q2)α− 2M2}

= − πΣ2

2β2α
{(M − ω) +

√
(M − ω)2 − (a2 + q2)α}2

−(M +
√
M 2 − (a2 + q2)α)2

= −1

2
exp[π(r2f − r2i )]

= −1

2
exp(∆SBH). (9.31)

Here ri =
Σ

β
√
α
[(M +

√
(M 2 − (a2 + q2)α] and rf = Σ

β
√
α
[(M − ω)

+
√

(M − ω)2 − (a2 + q2)α] are the locations of the KNdS event horizon

before and after the particle emission respectively, and ∆SBH = SBH(M−
ω)− SBH(M) is the difference of Bekenstein-Hawking entropy.

Utilizing Eq.(9.16), the relationship between the tunneling rate and the

imaginary part of the action of the radiative particle for the KNdS black

hole is given by

Γ ∼ exp(−2ImI) = exp(∆SBH). (9.32)
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9.5 Purely Thermal Radiation

The non-thermal emission rate described by Eq. (9.32) is related to the

change of Bekenstein-Hawking entropy, and is consistent with an under-

lying unitary theory and the radiation spectrum is not pure thermal al-

though gives a correction to the Hawking radiation of KNdS black hole.

The pure thermal radiation spectrum can be derived from Eq.(9.32) by

expanding the tunneling rate in power of ω upto second order as follows

Γ ∼ exp(∆SBH) = exp

{
−ω∂SBH(M)

∂M
+
ω2

2

∂2SBH(M)

∂M 2

}
. (9.33)

From Eq.(9.31), we can write

SBH(M − ω) =
πΣ2

β2α
[(M − ω) +

√
(M − ω)2 − (a2 + q2)α]2. (9.34)

At ω = 0,

∂SBH(M)

∂M
=

2Σ2

β2α

[
2M +

√
M 2 − (a2 + q2)α+

M 2√
M 2 − (a2 + q2)α

]
(9.35)

and

∂2SBH(M)

∂M 2
=

2Σ2

β2α

[
2 +

3M√
M 2 − (a2 + q2)α

− M 3

(M 2 − (a2 + q2)α)
3
2

]
.(9.36)

With the help of Eqs. (9.35) and (9.36), the pure thermal emission rate is

of the form

Γ ∼ exp(∆SBH) = exp[π(−ωη + ω2

2
λ)], (9.37)

where η = 2Σ2

β2α

[
2M +

√
M 2 − (a2 + q2)α + M2√

M2−(a2+q2)α

]
and λ =

2Σ2

β2α

[
2 + 3M√

M2−(a2+q2)α
− M3

(M2−(a2+q2)α)
3
2

]
.
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9.6 Concluding Remarks

We have developed the non-thermal and purely thermal tunneling rates us-

ing massive particles tunneling process from KNdS black hole [161] by tak-

ing into account the self-gravitational interaction, the background space-

time as dynamical and the energy as conservation. We have explored that

the tunneling rate at the event horizon of KNdS black hole is related to

the change of Bekenstein-Hawking entropy. The results are in accordance

with Parikh and Wilczek’s opinion [51, 82, 83] from spherically symmet-

ric black holes. We also conclude that the actual radiation spectrum of

KNdS black hole is not precisely thermal, which provides an interesting

correction to the Hawking pure thermal spectrum.

We now like to point out that some of the previous results existed in

this chapter which can be enclosed as special cases. In particular, when

cosmological constant vanishes, then Σ = β = α = 1 and hence the

pure thermal spectrum can be reduced for the Kerr-Newman black hole

[125]. The position of the event horizon before and after the emission of

the particles with energy ω are ri = M +
√

(M 2 − (a2 + q2) and rf =

(M − ω) +
√

(M − ω)2 − (a2 + q2) respectively. From Eq.(9.32), the non-

thermal tunneling rate for the Kerr-Newman black hole can be written

as

Γ ∼ exp(−2ImI) = exp[π{(M − ω) +
√
(M − ω)2 − (a2 + q2)}2

+{M +
√
M 2 − (a2 + q2)}2]

= exp[π(r2f − r2i )]

= exp(∆SBH), (9.38)
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and the purely thermal rate of the Kerr-Newman black hole can be written

as

Γ ∼ exp(∆SBH) = exp[−8πω(η − ω

2
λ)], (9.39)

where η = 1
4

[
2M +

√
M 2 − (a2 + q2) + M2√

M2−(a2+q2)

]
and

λ = 1
4

[
2 + 3M√

M2−(a2+q2)
− M3

(M2−(a2+q2))
3
2

]
.

It is interesting that for q = 0 , it reduces to the result of Kerr-de Sitter

black hole (chapter 7), and for q = 0, a = 0, it becomes to the result of

SdS black hole [129]. Finally, if one sets ℓ → ∞, a = 0 and q = 0 gives

the result for the Schwarzschild black hole [51].

In addition, our discussion made here can be directly to the anti-de

Sitter case by changing the sign of the cosmological constant to a negative

one, which have been discussed in later chapter.

————————————————————————————
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Chapter 10

Hawking Non-thermal and Purely
thermal radiations of

Kerr-Newman-anti-de Sitter Black
Hole by Hamilton-Jacobi method

10.1 Introduction

Recently, a semiclassical tunneling process applied to find the Hawking ra-

diation of the static Schwarzschild and Reissner-Nordström black holes by

Parikh and Wilczek [51, 82, 83] and their result shows that the radiation

spectrum is not pure thermal but satisfies the unitary principle and sup-

port the result of information conservation. In their process, the tunneling

potential barrier is produced by the self-gravitation interaction and the po-

sition of the horizons before and after the particles emission. Following

this method, several researchers studied the Hawking radiation of various

spacetime [38, 56, 67, 68, 69, 70, 75, 76, 86, 90] by using Painleavé or

dragging or tortoise or Eddington-Finkelstein coordinate transformations

and these radiations are limited to uncharged massless particle only.
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In this chapter, we use the Parikh and Wilczek’s opinion [51, 82, 83] and

employing standard Hamilton-Jacobi method to investigate the Hawking

non-thermal and purely thermal tunneling rates of the Kerr-Newman-anti-

de Sitter (KNAdS) black hole for massive particle. The Kerr-Newman-

anti-de Sitter (KNAdS) black hole which is the KAdS black hole general-

ized with a charge parameter, described by the metric

ds2 = −∆r −∆θa
2 sin2 θ

ρ2
dt2 +

∆θ(r
2 + a2)2 −∆ra

2 sin2 θ

ρ2Ξ2
sin2 θdϕ2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 − 2a[(r2 + a2)∆θ −∆r] sin

2 θ

ρ2Ξ
dtdϕ, (10.1)

where

ρ2 = r2 + a2 cos2 θ, ∆θ = 1− a2 cos2 θ

ℓ2
,

Ξ = 1− a2

ℓ2
, ∆r = (1 +

a2

ℓ2
)r2 − 2Mr + a2 +

r4

ℓ2
+ q2. (10.2)

Here the parameters M , a, ℓ and q are the associated with the mass,

angular momentum, cosmological radius, and charge parameters of the

spacetime respectively in the background of the rotating anti de Sitter

space. The spacetime causal structure depend strongly on the singularities

of the metric given by the zeros of ∆r as follows

∆r = (1 +
a2

ℓ2
)r2 − 2Mr + a2 +

r4

ℓ2
+ q2 = 0. (10.3)

Depending on the black hole parameters, the function ∆r = 0 with ℓ2 > a2

has four distinct roots. For the KNAdS black hole case we are interested

to find the real root of ∆r = 0, namely the real root r+ corresponds to

the radius of the black hole’s outer event horizon, while the other real
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root r− represents the radius of the inner cauchy horizon and rc as the

cosmological horizon. Equation (10.3) can be written as

r4 + (ℓ2 + a2)r2 − 2Mℓ2r + ℓ2(a2 + q2) = 0. (10.4)

Solving the above equation, the position of the black hole horizons are

given by

r± =
ℓβ√
3
.sinh

[1
3
sinh−13M

√
3

ℓαβ

]
×
(
1±

√
1− (a2 + q2)ℓ√

3Mβ
.

2

1 + δ
cosech

[1
3
sinh−13M

√
3

ℓαβ

])
,(10.5)

and

rc =
ℓβ√
3
.sinh

[1
3
sinh−13M

√
3

ℓαβ

]
×
(√

1 +
1 + δ

2
.
3M

√
ℓ√

3β2
cosech3

[1
3
sinh−13M

√
3

ℓαβ

]
− 1
)
, (10.6)

where

δ =

√
1− 4(a2 + q2)β2

3M 2
sinh2

[1
3
sinh−13

√
3M

ℓαβ

]
,

α =

√
{1− a2

ℓ2
}2 − 4q2

ℓ2
, β =

√
1 +

a2

ℓ2
(10.7)

and r−− = −(r+ + r− + rc) is the another cosmological horizon. With

δ ≈ 1 the black hole horizons can be approximated as

r± ≈ ℓβ√
3
.sinh

[1
3
sinh−13M

√
3

ℓαβ

]
.
(
1±

√
1− (a2 + q2)α

M 2

)
. (10.8)
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Taking only the positive sign i.e.the event horizon of KNAdS black hole

as follows

r+ =
ℓβ√
3
.sinh

[1
3
sinh−13M

√
3

ℓαβ

]
.
(
1 +

√
1− (a2 + q2)α

M 2

)
. (10.9)

Expanding r+ in terms of black hole parameters with negative cosmological

constant under the condition (a2 + q2)α < M 2 , we obtain

r+ =
M

α

(
1− 4M 2

ℓ2β2α
+ · · ·

)(
1 +

√
1− (a2 + q2)α

M2

)
, (10.10)

which can be written as

r+ =
1

α

(
1− 4M 2

ℓ2β2α
+ · · ·

)(
M +

√
M 2 − (a2 + q2)α

)
. (10.11)

Now if we set µ = 1
α

(
1− 4M2

ℓ2β2α + · · ·
)
, then r+ =

(
M +

√
M 2 − (a2 + q2)α

)
µ

with µ < 1 and hence the event horizon of KNAdS black hole is less than

the Kerr-Newman [125] event horizon rKN = M +
√
M2 − (a2 + q2). As

the event horizon of KNAdS black hole coincides with the outer infinite

red-shift surface, we apply the geometrical optical limit and the “s-wave”

approximation. Using the semiclassical WKB method [168], the tunneling

probability is found to be related to the imaginary part of the action as

the following form

Γ ∼ exp(−2ImI), (10.12)

where I is the action of the radiating particle.

10.2 The HJ Method for KNAdS Spacetime

The Hamilton-Jacobi method was applied extensively to the non-thermal

radiation in 1990s and attracted people’s attention [88, 90, 109]. In 2005,
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applying semiclassical tunneling method, Angheben, Nadalini, Vanzo and

Zerbini [90] developed Hamilton-Jacobi method [85, 86, 87, 88, 89] ignoring

the self-gravitational effect of the emitted scalar particles. Here we now

consider the method of Chen et al. [125, 126] to calculate the imaginary

part of the action from the relativistic Hamilton-Jacobi equation. The

action of the radiating particle I satisfies the relativistic Hamilton-Jacobi

equation

gij(∂iI)(∂jI) +m2 = 0, (10.13)

where m and gij are the mass of the particle and the inverse metric tensors

respectively.

In this method, we avoid the exploration of the equation of motion

in the Painlevé coordinates systems for calculate the imaginary part of

the action I. For the convenience of our research to study the Hawking

radiation, adopting the transformation dϕ
dt = −g14

g44
on the line element

(10.1), we obtain the new line element of the Kerr-Newman-anti-de Siter

black hole as

ds2 = − ∆r∆θρ
2

∆θ(r2 + a2)2 −∆ra2 sin
2 θ
dt2 +

ρ2

∆r
dr2 +

ρ2

∆θ
dθ2. (10.14)

The position of black hole horizon of the metric given by Eq.(10.14) is

same as given in Eq. (10.11). Therefore, the line element near the event

horizon rewritten as

ds2 = −∆r,r(r+)(r − r+)ρ
2(r+)

(r2+ + a2)2
dt2 +

ρ2(r+)

∆r,r(r+)(r − r+)
dr2 +

ρ2(r+)

∆θ
dθ2,

(10.15)

where ρ2(r+) and ∆r,r are defined as follows

ρ2(r+) = r2+ + a2 cos2 θ
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∆r,r(r+) =
d∆r

dr

∣∣∣
r=r+

=
2

Ξ2
(β2r+ −M + 2

r3+
ℓ2
). (10.16)

Calculating the non-null inverse metric tensors from the metric (10.15)

and employing these in Eq. (10.13) as follows

−
(r2+ + a2)2

ρ2(r+)∆r,r(r+)(r − r+)
(∂tI)

2 +
∆r,r(r+)(r − r+)

ρ2(r+)
(∂rI)

2

+
∆θ

ρ2(r+)
(∂θI)

2 +m2 = 0. (10.17)

To solve action I(t, r, θ, ϕ), we consider the properties of the black hole

spacetime and carry out the separation of variables as

I = −ωt+R(r) +H(θ) + jϕ, (10.18)

where ω is the energy of the emitted particle, R(r) and H(θ) are the

generalized momentums, and j s the angular momentum of the particle

with respect to ϕ-axis. Inserting Eq. (10.18) into Eq. (10.17) to seek a

solution of the following form

R(r) = ±
r2+ + a2

∆r,r(r+)

∫
dr

(r − r+)
×√

(ω − jΩ+)2 −
ρ2(r+)∆r,r(r+)(r − r+)

(r2+ + a2)2

[
∆θ

ρ2(r+)
(∂θH)2 +m2

]
,

(10.19)

where the angular velocity of the particle at the event horizon is

Ω+ =
dϕ

dt

∣∣∣
r=r+

=
aΞ

r2+ + a2
(10.20)

We treat the emitted particle as an ellipsoid shell of energy ω to tun-

nel across the event horizon. Finishing the above integral by using the
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Cauchy’s integral formula, we obtain

R(r) = ±
2πi(r2+ + a2)

∆r,r(r+)
(ω − jΩ+), (10.21)

where ± sign comes from the square root. Therefore, the imaginary part

of the action I corresponding to the outgoing particle is obtained by π

times the residue of the integrand

ImI =
2π(r2+ + a2)

∆r,r(r+)
(ω − jΩ+)

=
Ξ2π(r2+ + a2)

β2rh −M + 2
r3+
ℓ2

(ω − jΩ+). (10.22)

Using Eqs. (10.11) and (10.20) into Eq. (10.22), we get the imaginary

part of the true action of the radiation particle as

ImI =

πΞ2

α2

(
1− 4M2

ℓ2αβ2 + ··
)2

(M +
√
M 2 − (a2 + q2)α)2

β2

α

(
1− 4M2

ℓ2αβ2 + ··
)
(M +

√
M2 − (a2 + q2)α)−M + A

ω

+
Ξ2πa2

β2

α

(
1− 4M2

ℓ2αβ2 + ··
)
(M +

√
M 2 − (a2 + q2)α)−M + A

ω

− Ξ3πa

β2

α

(
1− 4M2

ℓ2αβ2 + ··
)
(M +

√
M 2 − (a2 + q2)α)−M + A

j,

where A = 2
ℓ2α3

(
1− 4M2

ℓ2αβ2 + ··
)3

(M +
√
M 2 − (a2 + q2)α)3.

ImI =
πΞ2(M +

√
M 2 − (a2 + q2)α)2

β2α
[(

1 + 4M2

ℓ2αβ2 + ··
)
(M +

√
M2 − (a2 + q2)α) +B

]ω
+

Ξ2πa2

β2

α

[(
1− 4M2

ℓ2αβ2 + ··
)
(M +

√
M 2 − (a2 + q2)α)− Mα

β2 + αA
β2

]ω
− Ξ3πa

β2

α

[(
1− 4M2

ℓ2αβ2 + ··
)
(M +

√
M 2 − (a2 + q2)α)− Mα

β2 + αA
β2

]j,
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where B = −Mα
β2 (1 +

8M2

ℓ2αβ2 + ··) + 2
ℓ2β2α2 (1 − 4M2

ℓ2αβ2 + ··)C and C = (M +√
M 2 − (a2 + q2)α)3.

To get the maximum value of the integration, neglecting higher order

terms above and equal M 3 in the denominator, we then get

ImI =
πΞ2

β2α
.

(M +
√
M 2 − (a2 + q2)α)2

(M +
√
M2 − (a2 + q2)α)− Mα

β2

ω

+
Ξ2πa2α

β2
[
M +

√
M 2 − (a2 + q2)α− Mα

β2

]ω
− Ξ3πaα

β2
[
M +

√
M 2 − (a2 + q2)α− Mα

β2

]j. (10.23)

10.3 Non-thermal Tunneling Rate

Since the emitted particle can be treated as a shell of energy ω, Eqs.

(10.22) and (10.23) should be modified when the particle’s self-gravitational

interaction is incorporated. Taking into account the energy conservation as

well as angular momentum, the mass parameter and the angular momen-

tum in these equations will be replaced with M →M − ω and j → J − j

when the particle with energy ω and angular momentum j tunnels out

of the event horizon. We fix the ADM mass, charge and angular mo-

mentum of the total spacetime and in presence of comological constant

KNAdS spacetime is dynamic and allow mass and angular momentum of

the black hole to fluctuate. Then the imaginary part of the true action

can be calculated from Eq. (10.23) in the following integral

ImI =
πΞ2

β2α
.

∫ ω

0

(M +
√
M 2 − (a2 + q2)α)2√

M 2 − (a2 + q2)α+ (M − Mα
β2 )

dω′
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+
πΞ2a2α

β2
.

∫ ω

0

1√
M 2 − (a2 + q2)α + (M − Mα

β2 )
dω′

−πΞ
3aα

β2
.

∫ j

0

1√
M2 − (a2 + q2)α+ (M − Mα

β2 )
dj′. (10.24)

For the maximum value of integration, neglecting (1 − α
β2 )M . Equation

(10.24) becomes

ImI =
πΞ2

β2α
.

∫ ω

0

(M +
√
M 2 − (a2 + q2)α)2√

M2 − (a2 + q2)α
dω′

+
πΞ2a2α

β2
.

∫ ω

0

1√
M 2 − (a2 + q2)α

dω′

−πΞ
3aα

β2
.

∫ j

0

1√
M2 − (a2 + q2)α

dj′. (10.25)

Replacing M and j by M − ω and J − j respectively, we obtain

ImI = −πΞ
2

β2α
.

∫ (M−ω)

M

(M − ω +
√

(M − ω)2 − (a2 + q2)α)2√
(M − ω)2 − (a2 + q2)α

d(M − ω′)

−πΞ
2a2α

β2
.

∫ (M−ω)

M

1√
(M − ω)2 − (a2 + q2)α

d(M − ω′)

+
πΞ3aα

β2
.

∫ (J−j)

J

1√
(M − ω)2 − (a2 + q2)α

d(J − j′), (10.26)

where J − j′ = (M−ω′)a
Ξ2 and so there is

ImI = −πΞ
2

β2α
.

∫ (M−ω)

M

2(M − ω)2 + 2(M − ω)
√
(M − ω)2 − (a2 + q2)α√

(M − ω)2 − (a2 + q2)α

×d(M − ω′) +
πΞ2

β2α
.

∫ (M−ω)

M

(a2 + q2)α√
(M − ω)2 − (a2 + q2)α

d(M − ω′).

(10.27)

Finishing the ω′ integral, we obtain

ImI = −πΞ
2

β2α
{(M − ω)

√
(M − ω)2 − (a2 + q2)α
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+(M − ω)2 −M
√
M 2 − (a2 + q2)α−M 2}

= − πΞ2

2β2α
{2(M − ω)

√
(M − ω)2 − (a2 + q2)α

+2(M − ω)2 − 2M
√
M 2 − (a2 + q2)α− 2M2}

= − πΞ2

2β2α
{(M − ω) +

√
(M − ω)2 − (a2 + q2)α}2

−(M +
√
M 2 − (a2 + q2)α)2. (10.28)

Therefore, the non-thermal tunneling rate for the KNAdS black hole is

given by

Γ ∼ exp(−2ImI) = exp[
πΞ2

β2α
{(M − ω) +

√
(M − ω)2 − (a2 + q2)α}2

−(M +
√
M 2 − (a2 + q2)α)2]

= exp[π(r2f − r2i )]

= exp(∆SBH). (10.29)

Here we find that ∆SBH = SBH(M − ω) − SBH(M) is the change of

Bekenstein-Hawking entropy of the KNAdS black hole before and after

the massive particles emission by taking into account ri = Ξ
β
√
α
[(M +√

(M 2 − (a2 + q2)α] and rf = Ξ
β
√
α
[(M − ω) +

√
(M − ω)2 − (a2 + q2)α].

10.4 Purely Thermal Radiation

The radiation spectrum given by Eq.(10.29) is not pure thermal, which

gives a correction to the Hawking radiation of the KNAdS black hole and

is consistent with an underlying unitary theory. We now expand (10.29)

in power of ω upto second order as discussed by Hossain et al. [131] of the
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form

Γ ∼ exp(∆SBH) = exp

{
−ω∂SBH(M)

∂M
+
ω2

2

∂2SBH(M)

∂M 2

}
. (10.30)

From Eq.(10.29), we can write

SBH(M − ω) =
πΞ2

β2α
[(M − ω) +

√
(M − ω)2 − (a2 + q2)α]2. (10.31)

Using Eq.(10.31) in Eq.(10.30), we obtain

Γ ∼ exp(∆SBH)

= exp
[−2πΞ2ω

αβ2
{(2M +

√
M 2 − (a2 + q2)α+

M 2√
M 2 − (a2 + q2)α

)

−ω
2
(2 +

3M√
M 2 − (a2 + q2)α

− M 3

(M 2 − (a2 + q2)α)
3
2

)}
]
. (10.32)

If we put −ℓ2 in the place of ℓ2, the Hawking non-thermal spectrum and

pure thermal spectrum agree with that of KNdS black hole.

10.5 Concluding Remarks

In a nutshell, we have investigated the Hawking non-thermal and purely

thermal radiations of massive particles as a semiclassical tunneling pro-

cess from the KNAdS black hole event horizon by taking into account

the self-gravitation effect of the emitted particles, the unfixed background

spacetime. The results of our work show that the radiant spectrum is

not a pure thermal one and the tunneling rate is related to the change

of Bekenstein-Hawking entropy and is consistent with an underlying uni-

tary theory. The results we have obtained in this chapter provides further

evidence to support the Parikh and Wilczek’s opinion [51, 82, 83] from

spherically symmetric black holes.
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The study of this chapter gives the result for the Kerr-Newman black

hole [125] when ℓ → ∞. For q = 0, the study provides the result of

chapter 8 for the Kerr-anti-de Sitter black hole, while for ℓ → ∞, q = 0,

the result reduces for the Kerr black hole [81]. The result of chapter 3

for the Schwarzschild-anti-de Sitter black hole [130] is obtained if one sets

a = 0 and q = 0. Moreover, the choice ℓ → ∞, a = 0 and q = 0 gives the

result for the Schwarzschild black hole [51].

———————————————————————————
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Conclusion

In this thesis, we have studied Hawking radiations of nonrotating black

holes (SdS, SAdS, RNdS, RNAdS) and rotating black holes (KdS, KAdS,

KNdS, KNAdS) in de Sitter and anti-de Sitter spaces. We have used

the massive particle tunneling mechanism and discuss the Hawking non-

thermal and purely thermal emission rates employing standard Hamilton-

Jacobi method. For nonrotating black holes no coordinates transformation

have been used. By considering the spacetime background to be dynam-

ical, incorporate the self-gravitation effect of the emitted particles and

the conservation laws of energy and angular momentum, we have shown

that the non-thermal and purely thermal tunneling rates of all nonrotat-

ing black holes in de/Anti-de Sitter space are related to the change of

Bekenstein-Hawking entropy and the derived emission spectrum deviates

from the pure thermal spectrum. Such result satisfies an underlying uni-

tary theory and also gives a correction to the Hawking radiation of the

nonrotating black holes in de Sitter and anti-de Sitter spaces. For rotating

black holes only dragging coordinates transformation have been used to

obtain a near horizon metric with rotation. The results we have obtained
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for all rotating black holes by taking the self-gravitation effect into con-

sideration agree with the results obtained for nonrotating black holes. It

is noted that for all the black holes the spacetime metric has been made

dynamical by taking the position of all black holes as a series of infinite

terms in presence of cosmological constant.

We find some virtues in the investigation of Hawking radiation by

Hamilton-Jacobi method.

Firstly, we do not introduce the Painleavé coordinate transformation

which is appropriate for massless particle tunneling method though we

have used the dragging coordinate transformation for massive particle tun-

neling from rotating black holes. For simplicity, we have considered a new

form of spacetime metric.

Secondly, since the derivation of action only depends on the Hamilton-

Jacobi equation, we avoid differentiating massive particles because the

massive particles need to differentiate for time-like character.

Thirdly, we need not to solve the Hamilton canonical equations because

Hamilton-Jacobi method can be used to obtain the actions of radiation

particles from any type of black holes either stationary or non-stationary.

Therefore, the massive particle tunneling method can successfully be

applied to a wide range of spacetimes. We have extended the method

to various types of de Sitter and anti-de Sitter black holes at the event

horizon. Actually this is the extension of the classical framework [58,

99, 103, 128, 181, 189] for spherically symmetric black hole to deal with

Hawking radiation of massive particle tunneling through the event horizon.

The results we have obtained from chapter 3 to chapter 10 of this thesis
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also indeed in accordance with the results obtained by massless or massless

charged particle tunneling from different spacetime such as charged black

hole with a global monopole [99, 128], Kerr NUT black hole [65] and Kerr

and Ker-Newman [103] black holes.

We have derived the the Hawking non-thermal and the purely thermal

tunneling probabilities for the SdS black hole [129] (in chapter 3) and

SAdS black hole [130] (in chapter 4). In particular, results obtained in

Ref. [51, 82, 83] can be recovered from the SdS black hole [130] and SAdS

black hole [130]. For example, if the cosmological radius becomes infinite,

in this case Λ = 0 and therefore the results we have obtained for the

the Schwarzschild-de Sitter black hole [129] and the Schwarzschild-anti-de

Sitter black hole [130] reduce to the results for the Schwarzschild black

hole.

The Hawking non-thermal and purely thermal emission rates developed

in chapter 5 and 6 for the RNdS and RNAdS [131] black holes reduce to

the result for the RN black hole [99] for ℓ → ∞, the SdS [129] (chapter

3) and SAdS [130] (chapter 4) black holes respectively for q = 0 , and

finally the Schwarzschild black hole for q = 0 and Λ = 0 and which is fully

consistent with the result obtained by Parikh and Wilczek’s [51, 82, 83].

The recovered tunneling rates in chapter 7 and 8 for the KdS and KAdS

black holes reduce to the result for the Kerr black hole [81] for ℓ→ ∞, the

SdS [129] (chapter 3) and SAdS [130] (chapter 4) black holes respectively

for a = 0 , and finally the Schwarzschild black hole for a = 0 and Λ = 0

and which is full accordant with Parikh and Wilczek’s [51, 82, 83] result.

The results we have obtained in chapter 9 and 10 for the KNdS and
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KNAdS black holes reduce to the result for the Kerr-Newman black hole

[125] when ℓ → ∞, the KdS (chapter 7) and KAdS (chapter 8) black

holes respectively for q = 0, the Kerr black hole [81] for ℓ → ∞ and

q = 0, the SdS [129] (chapter 3) and SAdS [130] (chapter 4) black holes

respectively for a = 0 and q = 0, and finally support the Parikh and

Wilczek’s [51, 82, 83] opinion for ℓ→ ∞, a = 0 and q = 0.

We conclude that non-thermal and purely thermal emission rates can

be expressed as standard form for each black hole. Both the emission rates

are related to the exponent of the difference in the Bekenstein-Hawking

entropy, ∆S, before and after emission [51, 82, 83]. It is noted that due to

hard calculation very little work have been investigated either for mass-

less/charged particle or massive particle tunneling from black hole in de

Sitter/anti-de Sitter spaces. Therefore, massive particle tunneling from

black hole with cosmological constant in general relativity, both in astro-

physics as well as in cosmology, seems to be a field open to investigation.

So our present work of this thesis is thus well motivated.
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