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ABSTRACT 
 

The spread of communicable diseases is often described mathematically by 

compartmental models. Many epidemiological models have a Disease Free 

Equilibrium (DFE) at which the population remains in the absence of disease. The 

classical Susceptible Infected Removed (SIR) models are very essential as 

conceptual models like as predator-prey and competing species models in 

ecology. Some Susceptible Infected (SI) and Susceptible Infected Susceptible 

(SIS) type models have been considered in this study. There are two major types 

of control strategies available to limit the spread of infectious diseases, viz. 

pharmaceutical interventions (drugs, vaccines, etc.), and non-pharmaceutical 

interventions (social distancing, quarantine, etc.). Vaccination is important for the 

elimination of infectious diseases as an effective preventive strategy. Vaccination 

of susceptible individual has been introduced through Susceptible Infected 

Removed Susceptible (SIRS) models. Effective vaccines have been used 

successfully to control smallpox, polio and measles.  

Some models have been presented in this study for the transmission dynamics of 

infectious diseases to analyze the stability of various equilibrium points 

mathematically. Some Susceptible Vaccinated Infected Susceptible (SVIS) and 

Susceptible Vaccinated Infected (SVI) models have been introduced in this study 

by including a new compartment ‘V’ for vaccinated individual in SIS and SI type 

models respectively. The above models have various kinds of parameters. Mainly 

the stability is analyzed by bifurcation curves in the SVIS models. The basic 

reproductive number (R0) can be calculated due to DFE in the SVI model. Some 

controlling methods have been given by changing the parameters in the SVI 

model through R0. 
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CHAPTER ONE 
INTRODUCTION TO MATHEMATICAL MODELING 

 

1.1 Background of the study 

Epidemiology is a study of infectious diseases, the causes of their occurrence and 

their spread in space and time. Mathematical epidemiology is understanding 

biological phenomena, translating assumptions, regarding biological features to 

mathematical language, finding solutions of mathematical problems and last, but 

certainly not least, translating the results back to biology. Communicable diseases 

may be introduced into a population through the migration of infective individuals 

from outside into the host population. Various kinds of deterministic models for the 

spread of infectious disease have been analyzed mathematically and applied to control 

the epidemic. In this thesis we demonstrate how a mathematical model can describe 

epidemiological phenomena and how we can use such a model to analyze endemic 

states and help eradicate diseases. A model was set up using a system of nonlinear 

ordinary differential equations and this is analyzed mathematically. Computer 

software gives a concrete picture of numerical predictions and indicates the direction 

for mathematical analysis and proof. 

1.2 Basic concept of mathematical modeling 

Mathematical modeling is a technique of translating real world problems into 

mathematical problems, solving the mathematical problems and interpreting these 

solutions in the language of real world. It may not be possibly to solve the resulting 

mathematical problems. As such it is necessary to idealize or simplify the problem or 
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approximate it by another problem which is quite close to the original problem and it 

can be translated and solved mathematically. In this idealization, we try to retain all 

the essential features of the problems other than those features which are not very 

essential or relevant to the situation we are investigating. 

Sometimes mathematical model is a description of a system using mathematical 

concepts and language. The process of developing a mathematical model is termed 

mathematical modeling. Mathematical models are used not only in the natural 

sciences (such as physics, biology, earth science, meteorology) and engineering 

disciplines (e.g. computer science, artificial intelligence), but also in the social 

sciences (such as economics, psychology, sociology and political science); physicists, 

engineers, statisticians, operations research analysts and economists use mathematical 

models most extensively. A model may help to explain a system and to study the 

effects of different components, and to make predictions about behavior. 

Mathematical models can take many forms, including but not limited to dynamical 

systems, statistical models, differential equations or game theoretic models. These and 

other types of models can overlap with a given model involving a variety of abstract 

structures. In general, mathematical models may include logical models, as far as 

logic is taken as a part of mathematics. In many cases, the quality of a scientific field 

depends on how well the mathematical models developed on the theoretical side agree 

with results of repeatable experiments. Lack of agreement between theoretical 

mathematical models and experimental measurements often leads to important 

advances as better theories are developed.  
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1.3 Methods of a mathematical modeling 

The following methods are helpful for good modeling. 

1.3.1 Stages of modeling 

It is helpful to divide up the stages of modeling into the following categories of 

activity: 

i. Gather the following information: what we already know; sources of 

relevant data; our assumptions; what we would like to predict with the 

model; ways of verifying that the model will be built correctly; and ways 

to validate the model. 

ii. Sketch simple diagrams that outline the elements in the model and how 

they are connected to each other. 

iii.  Conduct a throughout literature review. There is no need to re-invent the 

wheel if somebody else has developed a model that may suit our 

purposes already. However, we need to fully understand all the 

assumptions and the applicability of a model before using it.  

iv. Conduct a throughout review of data that we plan to use. Identify the 

discrepancies and inconsistencies between and within the data sets. 

Often, there is missing data, so we have to think carefully about how we 

are going to handle missing data. If possible, quantify the uncertainties 

associated with the data. 

v. Begin with a simple model. In general, there is a simple trade-off 

between complexity and accuracy. Among models with similar 

predictive power, the simplest one is the most desirable.    
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vi. Identify important variables and constants and determine how they relate 

to each other. The most important variables are input and output 

variables. Within the models, we can have other types of models such as 

decision variables, random variables or state variables. 

vii. Construct equations that relate variables to each other. 

viii. Identify the parameters of the equations and develop a plan how to 

estimate the parameters from the data. This could be done simply by 

fitting the equations to the data. However, more complex models may 

require sophisticated parameter calibration methods. 

ix. Validate our model against a data set that we have not used to build the 

model. 

x. Constantly test our model and update our equations based on new data 

and information. 

1.3.2 Dimensional homogeneity and consistency  

The dimension of a physical quantity can be expressed as a product of the basic 

physical dimensions mass, length, time, electric charge, and absolute temperature, 

represented by symbols M, L, T, Q, and Θ, respectively.  The term dimension is more 

abstract than scale unit. Mass is a dimension, while kilograms are a scale unit (choice 

of standard) in the mass dimension. As examples, the dimension of the physical 

quantity speed is length/time (L/T or LT−1), and the dimension of the physical 

quantity force is "mass × acceleration" or "mass×(length/time)/time" (ML/T2 or 

MLT−2). The basic and powerful idea of mathematical modeling that; every equation 

used in a mathematical model must be dimensionally consistent. So, it is completely 

logical every in an energy equation has total dimensions of energy. Similarly, every 
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term in a balance of mall should have the dimension mass. This statement provides 

the basis for a technique called dimensional analysis. 

We know a rational equation is an equation in which every independent term has 

same dimension. So, by taking its completion we can say that the equation is 

dimensionally homogeneous. Thus, we cannot add length to area or time to mass in an 

equation but we can add easily those quantities which have the same dimension even 

that are expressed in different units, e.g., length in meters or length in mile. We 

should remember that a dimensionally homogeneous equation is independent of unit 

of measurement used in this equation. However, we can create unit-dependent 

versions of such equations because they may be more convenient for doing repeated 

calculations. 

1.3.3 Abstraction and scaling  

An important decision in modeling is choosing an appropriate level of detail for the 

problem at hand, and thus knowing what level of detail is prescribed for the attendant 

model. This process is called abstraction and it typically requires a thoughtful 

approach to identifying those phenomena on which we want to focus, that is, to 

answering the fundamental question 

About why a model is being sought or developed. For example, a linear elastic spring 

can be used to model more than just the relation between force and relative extension 

of a simple coiled spring, as in an old-fashioned butcher’s scale or an automobile 

spring. It can also be used to model the static and dynamic behavior of a tall building, 

perhaps to model wind loading, perhaps as part of analyzing how the building would 

respond to an earthquake. In these examples, we can use a very abstract model by 
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subsuming various details within the parameters of that model. In addition, as we talk 

about finding the right level of abstraction or the right level of detail, we are 

simultaneously talking about finding the right scale for the model we are developing. 

For example, the spring can be used at a much smaller, micro scale to model atomic 

bonds, in contrast with the macro level for buildings. The notion of scaling includes 

several ideas, including the effects of geometry on scale, the relationship of function 

to scale, and the role of size in determining limits—all of which are needed to choose 

the right scale for a model in relation to the “reality” we want to capture. 

1.3.4 Conservation and balance principles 

When we develop mathematical models, we often start with statements that indicate 

that some property of an object or system is being conserved. For example, we could 

analyze the motion of a body moving on an ideal, frictionless path by noting that its 

energy is conserved. Sometimes, as when we model the population of an animal 

colony or the volume of a river flow, we must balance quantities of individual animals 

or water volumes, that cross a defined boundary. We will apply balance or 

conservation principles to assess the effect of maintaining or conserving levels of 

important physical properties. Conservation and balance equations are related in fact, 

conservation laws are special cases of balance laws. 

1.3.5 Constructing linear models 

Linearity is one of the most important concepts in mathematical modeling. Models of 

devices or systems are said to be linear when their basic equations whether algebraic, 

differential, or integral are such that the magnitude of their behavior or response 

produced is directly proportional to the excitation or input that drives them. Even 
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when devices like the pendulum are more fully described by nonlinear models, their 

behavior can often be approximated by linearized or perturbed models, in which cases 

the mathematics of linear systems can be successfully applied. We apply linearity 

when we model the behavior of a device or system that is forced or pushed by a 

complex set of inputs or excitations. We obtain the response of that device or system 

to the sum of the individual inputs by adding or superposing the separate responses of 

the system to each individual input. This important result is called the principle of 

superposition. Engineers use this principle to predict the response of a system to a 

complicated input by decomposing or breaking down that input into a set of simpler 

inputs that produce known system responses or behaviors. 

In this section we have provided an overview of the foundational material of 

mathematical modeling and set out a principled approach to doing mathematical 

modeling. We have also outlined some of the important tools that will be covered in 

greater detail later: dimensional analysis, abstraction and scaling, balance laws, and 

linearity. 

1.4 Types of mathematical models 

Mathematical models can be classified according to their nature as follows: 

1.4.1 Linear or nonlinear 

Mathematical models are usually composed by variables, which are abstractions of 

quantities of interest in the described systems, and operators that act on these 

variables, which can be algebraic operators, functions, differential operators, etc. If all 

the operators in a mathematical model exhibit linearity, the resulting mathematical 

model is defined as linear. A model is considered to be nonlinear otherwise. The 
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question of linearity and nonlinearity is dependent on context, and linear models may 

have nonlinear expressions in them. For example, in a statistical linear model, it is 

assumed that a relationship is linear in the parameters, but it may be nonlinear in the 

predictor variables. Similarly, a differential equation is said to be linear if it can be 

written with linear differential operators, but it can still have nonlinear expressions in 

it. In a mathematical programming model, if the objective functions and constraints 

are represented entirely by linear equations, then the model is regarded as a linear 

model. If one or more of the objective functions or constraints are represented with a 

nonlinear equation, then the model is known as a nonlinear model. Nonlinearity, even 

in fairly simple systems, is often associated with phenomena such as chaos and 

irreversibility. Although there are exceptions, nonlinear systems and models tend to 

be more difficult to study than linear ones. A common approach to nonlinear 

problems is linearization, but this can be problematic if one is trying to study aspects 

such as irreversibility, which are strongly tied to nonlinearity. 

1.4.2 Deterministic or probabilistic (stochastic) 

 A deterministic model is one in which every set of variable states is uniquely 

determined by parameters in the model and by sets of previous states of these 

variables. Therefore, deterministic models perform the same way for a given set of 

initial conditions. For example, the model for the motion of a simple pendulum is 

deterministic. Conversely, in a stochastic model, randomness is present, and variable 

states are not described by unique values, but rather by probability distributions. For 

example, if a rubber ball is dropped from a given height and measures the bounce 

with sufficient accuracy it will be found that if the same process is repeated many 

times, the height of bounce may not same every time.  



Chapter One                                   Introduction to Mathematical Modeling 
 

 9

1.4.3 Static or dynamic 

 If in a mathematical model, the model equations are independent of time then model 

is said to be static. The fluid flowing through a rigid diverging tube is an example of 

static model. On the other hand if the time plays a very important role with the 

variables or relation describing the model changing with time, then the model is said 

to be dynamic. Most of the real life problem, e.g., the population growth model, 

bacterial growth model, rocket launching model is examples of dynamic model. 

Dynamic models typically are represented with difference equations or differential 

equations. 

1.4.4 Discrete or Continuous 

 A model is said to be discrete if the independent variables take the discrete value. In 

this model the mathematical equations are taken as difference equations.  On the other 

hand, if the model is based on continuous variables, then it is called continuous 

model. Most of the continuous model formulated by differential equation either 

ordinary or partial. 

1.4.5 Deductive, inductive, or floating 

A deductive model is a logical structure based on a theory. An inductive model arises 

from empirical findings and generalization from them. The floating model rests on 

neither theory nor observation, but is merely the invocation of expected structure. 

Application of mathematics in social sciences outside of economics has been 

criticized for unfounded models. Application of catastrophe theory in science has 

been characterized as a floating model.  
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It is also may be classified according to the subject matter of the models. There are 

mathematical modes in physics, chemistry, biology, medicine, economics, 

psychology, sociology, engineering and so on. Similarly there are mathematical 

models for transportation, urban and regional planning, water resources, optimal 

utilization and renewable resources, pollution, environment, oceanography, blood 

flows, genetics, political systems, land distribution and so on. 

We also classified mathematical models according to the mathematical techniques 

used in solving them as mathematical modeling through classical algebra, linear 

algebra and matrices, ordinary and partial differential equations, difference equations, 

integral equations, integro-differential equations, functional equations, graphs, 

mathematical programming, calculus of variations, maximum principle and so on.  

1.5 Characteristics of mathematical models 
1.5.1 Models are necessarily incomplete 

Model is a representation. There no model which includes every aspect of the real 

world. If it did, it would no longer be a model. In order to create a model, a scientist 

must first make some assumptions about the essential structure and relationships of 

objects and/or events in the real world. These assumptions are about what is necessary 

or important to explain the phenomena. For example, a behavioral scientist might 

wish to model the time it takes a rat to run a maze. In creating the model the scientist 

might include such factors as how hungry the rat was, how often the rat had 

previously run the maze, and the activity level of the rat during the previous day. The 

model-builder would also have to decide how these factors interacted when 

constructing the model. The scientist does not assume that only factors included in the 
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model affect the behavior. Other factors might be the time-of-day, the experimenter 

who ran the rat, and the intelligence of the rat. The scientist might assume that these 

are not part of the "essential structure" of the time it takes a rat to run a maze. All the 

factors that are not included in the model will contribute to error in the predictions of 

the model.  

1.5.2 The model may be changed or manipulated with relative ease 

It must be easier to manipulate the model than the real world. The scientist or 

technician changes the model and observes the result, rather than doing a similar 

operation in the real world. He or she does this because it is simpler, more convenient, 

and/or the results might be catastrophic.  

A race car designer, for example, might build a small model of a new design and test 

the model in a wind tunnel. Depending upon the results, the designer can then modify 

the model and retest the design. This process is much easier than building a complete 

car for every new design. The usefulness of this technique, however, depends on 

whether the essential structure of the wind resistance of the design was captured by 

the wind tunnel model.  

Changing symbolic models is generally much easier than changing physical models. 

All that is required is rewriting the model using different symbols. Determining the 

effects of such models is not always so easily accomplished. In fact, much of the 

discipline of mathematics is concerned with the effects of symbolic manipulation.  

If the race car designer was able to capture the essential structure of the wind 

resistance of the design with a mathematical model or computer program, he or she 

would not have to build a physical model every time a new design was to be tested. 
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All that would be required would be the substitution of different numbers or symbols 

into the mathematical model or computer program. As before, to be useful the model 

must capture the essential structure of the wind resistance.  

The values, which may be changed in a model to create different models are called 

parameters. In physical models, parameters are physical things. In the race car 

example, the designer  might vary the length, degree of curvature, or weight 

distribution of the model. In symbolic models parameters are represented by symbols. 

For example, in mathematical models parameters are most often represented by 

variables. Changes in the numbers assigned to the variables change the model.  

1.6 Areas of modeling 

Mathematical modeling is an art of translating real life problems from an application 

area into tractable mathematical formulations whose theoretical and numerical 

analysis provides insight, answers, and guidance useful for the originating application. 

So, Mathematical modeling 

(i) is indispensable in many applications, 

(ii) is successful in many further applications, 

(iii) gives precision and direction for problem solution, 

(iv) enables a thorough understanding of the system modeled, 

(v) prepares the way for better design or control of a system, 

(vi) allows the efficient use of modern computing capabilities. 
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Learning about mathematical modeling is an important step from a theoretical 

mathematical training to an application-oriented mathematical expertise, and makes 

the student fit for mastering the challenges of our modern technological culture.  

1.6.1 A list of applications of modeling 

In the following, I give a list of applications which modeling I understand, at least in 

some detail. All areas mentioned have numerous mathematical challenges. 

This list is based on my own experience; therefore it is very incomplete as a list of 

applications of mathematics in general. There are an almost endless number of other 

areas with interesting mathematical problems. 

Indeed, mathematics is simply the language for posing problems precisely and 

unambiguously (so that even a stupid, pedantic computer can understand it). 

Anthropology: Modeling, classifying and reconstructing skulls  

Archeology: Classifying ancient artifices, Reconstruction of objects from preserved 

fragments  

Architecture: Virtual reality  

Artificial intelligence: Computer vision, Image interpretation, Robotics, Optical 

character recognition, Reasoning under uncertainty, Speech recognition  

Arts: Computer animation (Jurassic Park)  

Astronomy: Correcting the Hubble telescope, Evolution of stars, Detection of 

planetary systems, Origin of the universe  
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Biology: Animal and plant breeding (genetic variability), Evolutionary pedigrees, 

Humane genome project, Morphogenesis, Population dynamics, Protein folding, 

Spreading of infectuous diseases (AIDS)  

Chemical engineering: Chemical equilibrium, Planning of production units  

Chemistry: Chemical reaction dynamics, Electronic structure calculations, Molecular 

modeling  

Computer science: Image processing, Realistic computer graphics (ray tracing)  

Criminalistic science: Face recognition, Finger print recognition 

Economics: Labor data analysis  

Electrical engineering: Microchip analysis, Power supply network optimization, 

Stability of electric curcuits  

Finance: Risk analysis, Value estimation of options  

Fluid mechanics: Turbulence, Wind channel  

Geosciences: Earth quake prediction, Map production, Prediction of oil or ore 

deposits  

Internet: Optimal routing, Web search  

Linguistics: Automatic translation  

Materials Science: Microchip production, Microstructures, Semiconductor modeling  
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Mechanical engineering: Crash simulation, Stability of structures (high rise 

buildings, bridges, air planes), Structural optimization  

Medicine: Blood circulation models, Computer-aided tomography, Radiation therapy 

planning  

Meteorology: Climate prediction (global warming, what caused the ozone hole?), 

Weather prediction  

Music: Analysis and synthesis of sounds  

Neuroscience: Neural networks, Signal transmission in nerves  

Pharmacology: Docking of molecules to proteins, Screening of new compounds  

Physics: Elementary particle tracking, Laser dynamics, Quantum field theory 

predictions (baryon spectrum)  

Political Sciences: Analysis of elections  

Psychology: Formalizing diaries of therapy sessions  

Space Sciences: Flight simulation, Trajectory planning, Shuttle reentry  

Transport Science: Air traffic scheduling, Automatic pilot for cars and airplanes, 

Taxi for handicapped people  

1.7 Limitations of mathematical modeling 

Mathematical modeling is a multi-stage process in which there requires a variety of 

concepts and techniques. There are thousands of mathematical models, which have 
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been successfully developed but their results are not match with the real world 

problems. Infect mathematical physics, biomathematics, mathematical economics, 

operation research etc. are almost synonymous with mathematical modeling. 

However, there are still a large number of situation, which have not mathematically 

modeled yet. Because either the situation is sufficiently complex or the models 

formed are mathematically not correct. 

During the formulation of any model we make some assumptions, therefore the model 

is only as good as the assumptions made while formulating it and any extrapolation 

which violate the assumption may be dangerous. 

For example: If we consider a population model in which model equation is  

N
dt
dN λ= , 

where  )(tN  represent the population at time .t  

Then its solution is teNtN λ
0)( = , where 0N  is the population at time 0t . The solution 

gives ∞→)(tN  as ∞→t ; this means the population grows exponentially without 

any bound. The above result is not found in the nature. Thus, there is a need to modify 

the model.  

The powerful computer has enabled to mathematically model a large number of 

situations. Moreover it has been possible to make more realistic model and to obtain 

better agreement with observations.  



Chapter One                                   Introduction to Mathematical Modeling 
 

 17

However there are not available successful guidelines to choose the number of 

parameters and estimate the values for these parameters. In fact, by choosing a 

number of parameters an accurate model can be developed to fit any data. 

Mathematical modeling of large-scale system presents its own special problems. 

These arise in study of world models and in global models of environment, economic 

condition, oceanography, pollution control etc.  

However mathematical modelers from all disciplines, such as mathematics, statistics, 

physics, computer science, engineering, social science are meeting the challenges 

with courage. 

1.8 Conclusion 

In this chapter we have given a fundamental overview of mathematical modeling. For 

this purpose, it has been defined mathematical modeling, provided Basic Concept of 

Mathematical Modeling, its use in science and engineering and set out a principle 

approach to doing modeling. Also we have outlined some of the important tools such 

as Types of modeling, its application and limitation of mathematical modeling. 

 

  

 



CHAPTER TWO 
QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS 

 

2.1 Phase space and trajectory 

A multidimensional space in which each axis corresponds to one of the coordinates 

required to specify the state of a physical system, all the coordinates being thus 

represented so that a point in the space corresponds to a state of the system. It yields 

the following definition: 

Definition 2.1.1 An ideal space in which the coordinate dimensions represent the 

variables that are required to describe a dynamical system is called the phase space or 

phase portrait of the dynamical system. 

In particular, if the dynamical system is two-dimensional then the phase space is 

called phase plane. 

In autonomous systems there is a way of visualizing the solutions that can be very 

powerful. Instead of plotting values of x and y as functions of time, we view these 

values as coordinates of a point in the x-y plane. As the system changes, the point     

(x, y) will trace out a curve in this plane. The point (x, y) is called a state. The solution 

curves that get traced out in phase space are called trajectory. 

2.2 Linear approximation 

The next question is the linear approximation of a function of two variables. For a 

function of one variable linear approximation is based on the definition of the 

derivative 
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h
xfhxf

h
Lim

xf )()(
0

)( −+
→

=′  

If we write this formula without the limit, we get an approximate equality, instead of 

the exact equality: 

h
xfhxfxf )()()( −+

≈′  

 or, )()()( xfhxfhxf ′≈−+  (2.2.1) 

and finally we can find that: 

 )()()( xfhxfhxf ′+≈+  (2.2.2) 

This formula tells us that if we know the value of function and its derivative at any 

point x, we can approximately find it at a (close) point which is at distance h from x. 

This formula will be more accurate if h will be closer to 0. We will use this formula 

for approximation of function of two variables. For that, let us reformulate it first in a 

more general way. We can say about formula (2.2.2) as that: 

Conclusion: Difference of a function f at points x  and hx +  is approximately equal 

to the rate of change of function at the point x times the distance between these points. 

Let us derive a similar formula for a function of two variables ),( yxf . 

 Let us assume, that we know ),( yxf  and its partial derivatives at some point 

),( yx and we want to find the value of the function at the point ),( kyhx ++ which is 

closed to ),( yx (see figure 2.2.1).  
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Let us move to the point ),( kyhx ++ in two steps. Let us first move from the point 

),( yx to the point ),( yhx +  i.e. in the x-direction, and then from ),( yhx +  to the 

point ),( kyhx ++ , i.e. in the y-direction. Let us apply the formula for approximation 

of function of one variable in formulation of above conclusion at each part of this 

motion. Because at the first part we move along the x direction the change of the 

function 1f∆  will be given as a product of the  rate of change of function in the x 

direction 
x
f
∂
∂   times the distance between the points ),( yx and ),( yhx + : 

 h
x
fyxfyhxff
∂
∂

=−+=∆ ),(),(1  (2.2.3) 

Similarly, on the second part of our motion, we move along the y axis, and the change 

of  the function here ( 2f∆ ) will be given as a product of the rate of change of 

function in the y direction 
y
f
∂
∂   times the distance between the points ),( yhx + and 

),( kyhx ++ : 

 k
y
fyhxfkyhxff
∂
∂

=+−++=∆ ),(),(2  (2.2.4) 

Now from (2.2.3) and (2.2.4) we get  

 k
y

yxfh
x

yxfyxfkyhxf
∂

∂
+

∂
∂

+=++
),(),(),(),(  (2.2.5) 

),( yhx +  

x

),( yx  

),( kyhx ++  y  

Figure 2.2.1 linear Figure 2.2.1: Linear approximation 



Chapter Two                             Qualitative Analysis of Differential Equations 

 
 

 21

This expression is called a linear approximation, as the independent variables h, k are 

in the first power only. 

Example 2.2.1: Find the linear approximation for the function yxe 2+  at the point 

0=x , 0=y . 

Solution: We use the formula (2.2.5) 

Here  yxeyxf 2),( +=  and  0=x , 0=y . 

Now 2yxe +=
∂
∂

x
f  and 2yx2e +=

∂
∂
y
f  

So at the point 0=x , 0=y ; 

  1),( =yxf , 1 =
∂
∂

x
f  and 2 =

∂
∂
y
f . 

Finally khekhf kh 211),( 2 ++== +   

At 1.0=h , 1.0=k the approximate formula gives: 3.11.021.012 =×++=+ khe . The 

exact value of 3498.13.02 ==+ ee kh  

2.3 Linearization of a system and jacobean 

Consider a general system of two autonomous differential equations: 

 
⎪
⎩

⎪
⎨

⎧

=

=

),(

),(

yxg
dt
dy

yxf
dt
dx

 (2.3.1) 

Definition 2.3.1: A point ),( ** yx  is called an equilibrium point of the system (2.3.1) 

if 0),(),( **** == yxgyxf . i.e., if the system is placed to the equilibrium it will stay 

there forever. Thus this trajectory will contain just one point.  
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Definition 2.3.2: An equilibrium point of a linear autonomous dynamical system is 

stable, if there is a neighborhood of this equilibrium, such that all trajectories which 

start at this neighborhood will converge to the equilibrium and the equilibrium point 

is called unstable, if there is at least one diverging trajectory from each close 

neighborhood of this equilibrium. 

We want to study it close to its equilibrium points. For that let us approximate the 

functions of two variables ),( yxf and ),( yxg , using the linear approximation (2.2.5) 

and later solve the approximated system and find the phase portrait close to 

equilibrium. 

Assume that system (2.3.1) has an equilibrium point at ),( ** yx . This means that:  

 
⎩
⎨
⎧

=
=

0),(
0),(

**

**

yxg
yxf

 (2.3.2) 

Let us approximate ),( yxf close to the equilibrium ),( ** yx  using the formula (2.2.5): 

k
y

yxfh
x

yxfyxfkyhxf
∂

∂
+

∂
∂

+=++
),(),(),(),(

****
****  

As we assumed ),( ** yx  is an equilibrium, i.e. 0),( ** =yxf  and we get 

 k
y

yxfh
x

yxfkyhxf
∂

∂
+

∂
∂

=++
),(),(),(

****
**  (2.3.3) 

A similar approach for ),( ** kyhxg ++ yields: 

 k
y

yxgh
x

yxgkyhxg
∂

∂
+

∂
∂

=++
),(),(),(

****
**  (2.3.4) 

Thus using these approximate formulas we can find the right hand side functions of 

(2.3.1) at any point which is located at point ),( kh  relative to the equilibrium 

point ),( ** yx . Now let us substitute these approximations to system (2.3.1). For that 



Chapter Two                             Qualitative Analysis of Differential Equations 

 
 

 23

we need to replace the right hand sides of (2.3.1) by their approximations (2.3.3), 

(2.3.4), but it would be also good to rewrite the derivatives 
dt
dx  and 

dt
dy in the same 

relative coordinates h, k . We see that hxx += *  and its derivative with respect to 

time t is 
dt
dh

dt
dh

dt
xd

dt
dx

=+=
)( *

 as *x is a constant. Similarly, 
dt
dk

dt
dk

dt
yd

dt
dy

=+=
)( *

. 

After substitution of (2.3.3), (2.3.4) and the expressions for 
dt
dx  and 

dt
dy into (2.3.1) 

we get: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

∂
∂

+
∂

∂
=

∂
∂

+
∂

∂
=

k
y

yxgh
x

yxg
dt
dk

k
y

yxgh
x

yxf
dt
dh

),(),(

),(),(

****

****

 (2.3.5) 

System (2.3.5) is simpler than the original system (2.3.1), as the partial derivatives in 

(2.3.5) are constants (numbers). If we denote the local coordinates relative to the 

equilibrium point as: 

 *xxhu −==  and *yykv −==  (2.3.6) 

We can rewrite (2.3.5) as: 

 
⎪
⎩

⎪
⎨

⎧

+=

+=

dvcu
dt
dv

bvau
dt
du

 (2.3.7) 

System (2.3.7) is a linearization of the system (23.1). It is expressed in terms of 

functions u and v, which are relative values of our variables with respect to the 

equilibrium point ),( ** yx . If we find these unknown functions u and v we can easily 

find the original functions x, y using (2.3.6) as *xux += and *yvy += . 

Geometrically these relative coordinates mean that the phase portrait of system (2.3.7) 
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which we draw on the uv-plane will appear around the equilibrium point ),( ** yx on 

the xy-plane (figure 2.3.1). 

 

 

 

 

 

 

Note that formulas (2.3.3) and (2.3.4) work only for small h, k, i.e. close to the 

equilibrium point ),( ** yx . 

Conclusion: System (2.3.7) close to the origin (u = 0, v = 0) has a phase portrait 

similar to the phase portrait of system (2.3.1) close the to equilibrium point ),( ** yx . 

To find the phase portrait of (2.3.1) close to equilibrium, we can first find a phase 

portrait of (2.3.7) and then place it around the equilibrium ),( ** yx . 

To find the linearized system of (2.3.7) we need to find the equilibrium point ),( ** yx  

and compute the following derivatives of right hand sides of our system at this 

equilibrium: 

x
fa
∂
∂

= , 
y
fb
∂
∂

= , 
x
gc
∂
∂

= , 
y
gd
∂
∂

=  

So, system (2.3.7)  can be written in a matrix form as: ⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

v
u

J

dt
dv
dt
du

 (2.3.8) 

u 

v 

*y  

x 

y 

*x  
Figure 2.3.1: Linearization of a system 
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 Where 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

y
g

x
g

y
f

x
f

J   (2.3.9)   

is called the jacobean matrix of the system (2.3.1). 

2.4 Solution of first order linear system 

In this section we shall discus about the general solution of two first order linear 

differential equations with the help of eigenvalues and eigenvectors of their 

coefficient matrix. 

Definition 2.4.1: Given a square matrix A, suppose there is a constant λ  and a 

nonzero vector x such that xAx λ= , then λ  is called an Eigenvalue of A, and x is an 

Eigenvector of A corresponding to λ . 

Consider a system of two simultaneous first order linear equations  

 
⎩
⎨
⎧

+=′
+=′

dycxy
byaxx

 (2.4.1) 

which can be written in matrix form as AXX =′   

where ⎥
⎦

⎤
⎢
⎣

⎡
′
′

=′
y
x

X , ⎥
⎦

⎤
⎢
⎣

⎡
=

dc
ba

A  and ⎥
⎦

⎤
⎢
⎣

⎡
=

y
x

X  

Here ⎥
⎦

⎤
⎢
⎣

⎡
=

dc
ba

A  is called the coefficient matrix of the system (2.4.1). 

From the first equation of (2.4.1) we get )(1 axx
b

y −′= , so )(1 xax
b

y ′−′′=′  

Therefore from the second equation of (2.4.1) we get  

dycxxax
b

+=′−′′ )(1  

⇒  0)()( =−+′+−′′ xbcadxdax  
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Therefore the above system is equivalent to a second order homogeneous linear 

differential equation. As a result, we know that the general solution contains two 

linearly independent parts. As well, the solution will be consisted of some type of 

exponential functions. Therefore, assume that tkeX λ= is a solution of the system, 

where k is a vector of coefficients (of x and y). Substitute X and tkeX λλ=′ into the 

equation  AXX =′  and we have 

tt Akeke λλλ =  

Since teλ is never zero, we can always divide both sides by teλ and get  

Akk =λ  

We see that this new equation is exactly the relation that defines eigenvalues and 

eigenvectors of the coefficient matrix A. In other words, for a function tkeX λ= to 

satisfy our system of differential equations, the number λ  must be an eigenvalue of 

A, and the vector k must be an eigenvector of A corresponding to λ . Just like the 

solution of a second order homogeneous linear equation, there are three possibilities, 

depending on the number of distinct and the type of eigenvalues of the coefficient 

matrix A has. 

The possibilities are that A has  

I.  Two distinct real eigenvalues  

II.  Complex conjugate eigenvalues  

III.  Repeated real eigenvalus 

A related note that (from linear algebra), eigenvectors that each corresponds to a 

different eigenvalues are always linearly independent from each others. Consequently, 
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if 1λ  and 2λ  are two different eigenvalues, then their respective eigenvectors 1k  and 

2k , and therefore the corresponding solutions, are always linearly independent. 

Case I: Distinct real eigenvalues 

If the coefficient matrix A has two distinct real eigenvalues 1λ  and 2λ , and their 

respective eigenvectors are 1k  and 2k . Then the 2 ×2 system AXX =′ has a general 

solution 

 tt ekCekCX 21
2211

λλ +=  (2.4.2) 

Example 2.4.1: Consider the system 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
′
′

y
x

y
x

34
32

 

We get that the coefficient matrix has eigenvalues 1−=λ and 6=λ . And they each 

respectively has an eigenvector ⎥
⎦

⎤
⎢
⎣

⎡
−

=
1

1
1k  and ⎥

⎦

⎤
⎢
⎣

⎡
=

4
3

2k .  

Therefore, the general solution of this system of differential equations is 

tt eCeC
y
x 6

21 4
3

1
1

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡ −  

i.e.  tt eCeCx 6
21 3+= −  and tt eCeCy 6

21 4+−= −  

Case II: Complex conjugate eigenvalues 

If the coefficient matrix A has two distinct complex conjugate eigenvalues µλ i± . 

Also suppose βα ik +=1  and βα ik −=2  (in this case eigenvectors occur in 

conjugate Pairs) are eigenvector corresponding to the eigenvalues µλ i+  and µλ i−  
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respectively (necessarily has complex-valued entries). Then the 2 ×2 system 

AXX =′ has a real-valued general solution 

 ))cos()sin(())sin()cos(( 21 tteCtteCX tt µβµαµβµα λλ ++−= ,  

where  ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

α
α

α  and ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

β
β

β  

i.e.  ))cos()sin(())sin()cos(( 112111 tteCtteCx tt µβµαµβµα λλ ++−=  

and  ))cos()sin(())sin()cos(( 222221 tteCtteCy tt µβµαµβµα λλ ++−=  

Example 2.4.2: Consider the system 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −−
=⎥

⎦

⎤
⎢
⎣

⎡
′
′

y
x

y
x

53
61

 

We get that the coefficient matrix has eigenvalues i32 ±=λ  and the eigenvector 

corresponding to i32 +  is ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡ +−
0
1

1
1

1
1

i
i

 

So the general solution is 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡−
+

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
)3cos(

0
1

)3sin(
1
1

)3sin(
0
1

)3cos(
1
1 2

2
2

1 tteCtteC
y
x tt  

i.e., { } { })3cos()3sin()3sin()3cos( 2
2

2
1 tteCtteCx tt +−+−−=  

and { } { })3sin()3cos( 2
2

2
1 teCteCy tt +=  

Case III: Repeated real eigenvalues 

Suppose the coefficient matrix A has a repeated real eigenvalues λ , there are 2 sub-

cases.  

(i) If λ  has two linearly independent eigenvectors 1k and 2k , Then the system 

AXX =′ has a general solution 
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tt ekCekCX λλ
2211 +=  

(ii) If λ , as it usually does, only has one linearly independent eigenvector k, Then the 

system AXX =′ has a general solution 

tt ektCkeCX λλ η)(21 ++=  

Where the second vector η  is any solution of the non-homogeneous linear System of 

algebraic equations  

kIA =− ηλ )(  

Example 2.4.3: Consider the system 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
′
′

y
x

y
x

74
41

 

We get that the coefficient matrix has eigenvalue 3−=λ  (repeated) and the only one 

linearly independent eigenvector ⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

k . 

Now from kIA =− ηλ )( , we get  ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−
−

1
1

44
44

2

1

η
η

,    where ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

η
η

η  

This implies,  
4
1

21 =−ηη  

If we take 02 =η , then 
4
1

1 =η  

Therefore ⎥
⎦

⎤
⎢
⎣

⎡
=

0
4/1

η  



Chapter Two                             Qualitative Analysis of Differential Equations 

 
 

 30

So the general solution is 

tt etCeC
y
x 3

2
3

1 0
4/1

1
1

1
1 −−

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
 

i.e. { } tt etCeCx 3
2

3
1 )4/1( −− ++=  

and tt teCeCy 3
2

3
1

−− +=  

2.5 Catalogue of singularities in the phase plane. 

Suppose 1λ  and 2λ are the eigenvalues of the coefficient matrix of the system (2.4.1).  

According to the nature of 1λ  and 2λ , we consider the following three cases. 

Case I: 1λ  and 2λ  are real and distinct 

In this case the general solution is  

 tt ekCekC
y
x

21
2211

λλ +=⎥
⎦

⎤
⎢
⎣

⎡
 (2.5.1) 

(a) 1λ  and 2λ have the same sign. Typical eigenvectors 1k and 2k  are illustrated in 

figure 2.5.1. Suppose 012 << λλ . Then from (2.5.1), for example, for 0,0 21 =≠ CC , 

the general solution is 

tekC
y
x

1
11

λ=⎥
⎦

⎤
⎢
⎣

⎡
 

So the solution in the phase plane simply moves along  1k  towards the origin as 

∞→t  in the direction shown in figure 2.5.1 along PO if 01 >C and along QO if 

01 <C . 
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From (2.4.2) it is clear that every solution tends to )0,0(  as ∞→t since, 012 << λλ ,  

021 →>> tt ee λλ as ∞→t  and so tekC
y
x

1
11

λ≈⎥
⎦

⎤
⎢
⎣

⎡
 as ∞→t . 

Thus, close enough to the origin all solutions tend to zero along 1k as shown in the 

figure 2.5.1. This is called a type I. With 021 <≤ λλ it is a stable node since all 

trajectories tend to )0,0( as ∞→t . On the other hand if 021 >≥ λλ it is an unstable 

node; here all trajectories tend to )0,0( as −∞→t . 

 

 

 

(b) 1λ  and 2λ have the different sign. Suppose for example  21 0 λλ <<  then 

01
1 →tek λ  along 1k  as ∞→t  while 02

2 →tek λ  along 2k  as −∞→t . 

There are thus different direction on 1k  and 2k : the solution near )0,0(  are as shown 

in figure 2.5.2. This is a saddle point singularity. It is always unstable: except strictly 

along 1k any small perturbation from )0,0( grows exponentially. 

y

k1 

x 
O

k2 

P 

Q 

Figure 2.5.1: Node (Type I) singularity 
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Case II: 1λ  and 2λ  are complex 

Suppose the eigenvalues are µλ i± , 0≠µ . In this case the general solution is  

 ))cos()sin(())sin()cos(( 21 tteCtteC
y
x tt µβµαµβµα λλ ++−=⎥
⎦

⎤
⎢
⎣

⎡
 

where ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

α
α

α  and ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

β
β

β  are eigenvectors. 

Here the solution involve teλ , )cos( tµ  and )sin( tµ which implies  an oscillatory 

approach to )0,0( . 

(a) 0≠λ . Here we have a spiral, which is stable if 0<λ   and unstable if 0>λ . 

Figure 2.5.3  illustrates a spiral singularity. 

(b) 0=λ . In this case the phase curves are ellipses. This singularity is called a centre 

and is illustrated in figure 2.5.4. Centres are not stable in the usual sense; a small 

perturbation from one phase curve does not die out in the sense of returning to the 

original unperturbed curve. The perturbation simply gives another solution. In the 

case of centre singularities, determined by the linear approximation to ),( yxf  

x 

y k1 k2 

Figure 2.5.2: Saddle point singularity 
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and ),( yxg , we must look at the higher-order (than linear) terms to determine 

whether or not it is really a spiral and hence whether it is stable or unstable. 

 

Figure 2.5.3: Spiral singularity 

 

 

Figure 2.5.4: Centre singularity 

x 

y 
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Case III: 1λ  and 2λ  are real and λλλ == 21  .  

In general, solutions now involve terms like tteλ and there is only one eigenvectorv 

along which the solutions tend to )0,0( . The t in tteλ  modifies the solution away 

from )0,0( .It is called a node (Type II) singularity, an illustration of which is given in 

figure 2.5.5. 

 

Figure 2.5.5: Node (Type II) singularity 

(b) If the solutions do not contain the tteλ  term we have astar singularity, which may 

be stable or unstable, depending on the sign of λ . Trajectories in the vicinity of a 

star singularity are shown in figure_2.5.6. 

 

Figure 2.5.6: Star singularity 
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The singularity depends on a, b, c and d in the coefficient matrix ⎥
⎦

⎤
⎢
⎣

⎡
=

dc
ba

A  of the 

system (2.4.1).  Figure 2.5.7 summarizes the results in terms of the trace and 

determinant of A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.7: Summarizes of the results 
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2.6 Conclusion 

In this chapter we have given a fundamental overview of qualitative analysis of 

differential equations which is essential for stability analysis of mathematical models. 

It has been shown that how a first order nonlinear system of differential equation is 

approximated to a system of linear differential equation corresponding to an 

equilibrium point, then we have defined its jacobean matrix. Finally we have shown 

that the stability of the equilibrium point depends on the eigenvalues of the jacobean 

matrix. Eigenvalues are generally complex numbers. If real parts of all eigenvalues 

are negative, then the equilibrium is stable otherwise the equilibrium is unstable. 

 

  

 



CHAPTER THREE 
SIMPLE EPIDEMIC MODELS 

 

3.1 Introduction 

Millions of people in the world have been suffering over centuries through the 

prevalence of infectious disease. An epidemic is an unusually large, short term 

outbreak of a disease, for example measles, cholera, AIDS, malaria, etc.  

The outbreak and spread of disease has been questioned and studied for many years. 

The ability to make predictions about diseases could enable scientists to evaluate 

inoculation or isolation plans and may have a significant effect on the mortality rate of 

a particular epidemic. The modeling of infectious diseases is a tool which has been 

used to study the mechanisms by which diseases spread, to predict the future course 

of an outbreak and to evaluate strategies to control an epidemic. 

The first scientist who systematically tried to quantify causes of death was John 

Graunt in his book Natural and Political Observations made upon the Bills of 

Mortality, in 1662. The bills he studied were listings of numbers and causes of deaths 

published weekly. Graunt’s analysis of causes of death is considered the beginning of 

the “theory of competing risks” which according to Daley and Gani is “a theory that is 

now well established among modern epidemiologists”. 

The earliest account of mathematical modeling of spread of disease was carried out in 

1766 by Daniel Bernoulli. Trained as a physician, Bernoulli created a mathematical 

model to defend the practice of inoculating against smallpox. The calculations from 

this model showed that universal inoculation against smallpox would increase the life 
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expectancy from 26 years 7 months to 29 years 9 months. Daniel Bernoulli's work, of 

course, preceded our modern understanding of germ theory. This was soon followed 

by the acclaimed work of A. G. McKendrick and W. O. Kermack, whose paper A 

Contribution to the Mathematical Theory of Epidemics was published in 1927. A 

simple deterministic (compartmental) model was formulated in this paper. The model 

was successful in predicting the behavior of outbreaks very similar to that observed in 

many recorded epidemics. 

In this chapter, we shall study and discuss some simple epidemic models. 

3.2 Basic concepts 

The spread of a disease depends on the model of transmission, susceptibility, infection 

period, resistance and many other factors. That is, usually an infectious disease 

spreads in a population when one or more infective enter into the population from 

outside. Germs of the disease coming from the last outbreak of the disease may also 

manage to survive within the population as a spores which are activated by nature 

under suitable climatic conditions. 

Since a gap of time is taken place between the receipt of infection and the appearance 

of systems in the case of most of the infectious disease, therefore once an individual 

gets infected by a disease, the symptoms of the disease are manifested on the body of 

the person after a time interval. This time interval is called the latent or incubation 

period. 

In a given population we assume that at time t , )(tS denotes the number of 

susceptible, that is, the number of individuals in the population who can be infected, 
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)(tI denotes the number of infected persons in the population and )(tR denotes the 

number of individuals removed from the disease by recovery, death,  immunization or 

other means. Before looking at specific models, we will make the following 

assumptions: 

(i) The disease is transmitted by contact between the infected individual and a 

susceptible individual. 

(ii) There is no latent period for the disease; hence the disease is transmitted 

instantaneously on the contact. 

(iii) All susceptible individuals are equally susceptible and all infected 

individual are equally infected. 

3.3 SI model 

We consider a simple deterministic epidemic model in which there are no removals 

from circulation by death, recovery or isolation and everyone in the population is 

either susceptible to the disease or else infected with the disease. 

3.3.1 Model formulation 

Let N  be the size of a population which is considered to be fixed and )(tS and )(tI  

be the number of susceptible and infected individuals at time t . it is assumed that the 

susceptible are homogeneously mixing with each other. 

Let 0S be the initial number of susceptible in the population in which a number of 

infected individual 0I  have been introduce, so that 

[ ] 00)( StS t ==  and [ ] 00)( ItI t ==  
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Then, at the initial time we have 

 =+=+ 00)()( IStItS constant N=  (3.3.1) 

Since the population is considered to be fixed, therefore due to infection, the number 

of susceptible decrease and the number of infected persons increase. 

If we assume that the rate of decrease of )(tS , or the rate of increase of )(tI is 

proportional to the product of the number of susceptible )(tS and the number of 

infected )(tI  then, 

 SI
dt
dS α−=  (3.3.2) 

and SI
dt
dI α=  (3.3.3) 

where α  is a positive constant, called the contact rate and  

 NIS =+  (3.3.4) 

Now from equation (3.3.2) and (3. 3.4) , we get 

 )( SNS
dt
dS

−−= α  (3.3.5) 

which is a non-linear ordinary differential equation and it can be easily solved by the 

method of separation of variables. 
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3.3.2 Solution of model 

From equation (3.3.5) we get 

dt
SNS

dS α−=
− )(

 

or,  NdtdS
SNS

α−=⎟
⎠
⎞

⎜
⎝
⎛

−
+

11  

Integrating both sides, we get 

 ANtSNS ln)ln(ln +−=−− α  

where A is an arbitrary constant. 

Now from the above equation, we get 

 NteA
ANS α+

=  

or,  
SN

SeA
Nt

−
=

α

 

initially, when 0=t , 0SS = , so that 

 
0

0

SN
SA
−

=  

therefore,  NteSNS
NSS α)( 00

0

−+
=  (3.3.6) 

and using equation (3.3.4) we get 

 Nt

Nt

eINI
NeII α

α

)( 00

0

−+
=  (3.3.7) 
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Equation (3.3.6) gives the number of susceptible and equation (3.3.7) gives the 

number of infected persons at any time t . 

3.3.3 Interpretation 

It is clear from equation (3.3.6) that  

 As ∞→t , 0)( →tS and hence NtI →)(  

This result shows that, ultimately all the persons will be infected. 

By plotting )(tS  and )(tI  against t we get the graphical representation of equations      

(3.3.6) and (3.3.7) as follows (Here 1000=N , 9900 =S , 100 =I  and 005.0=α ): 

0

200

400

600

800

1000

0 0.5 1 1.5 2 2.5 3

S
I

 

 Figure 3.3.1: Solution of SI model 

This suggests that in a large population with a small initial number of infective 0I , at 

first the epidemic (as measured by the total number of infective) grows exponentially. 

Then as fewer susceptible are available, the rate of growth decrease, but the epidemic 

does not stop until everyone in the population has contracted the disease. 
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Therefore from this model we can say that once an epidemic begins, everyone in the 

population ultimately contracts the disease. This is because infective remain infected 

forever.  

In practice, the publique health departments usually record the number of new cases 

appearing each time. 

We have from equation (3.3.6) 

 2
00

0
2

0

})({
)(

Nt

Nt

eSNS
eSNNS

dt
dS

α

αα
−+
−

=−   (3.3.8) 

The rate 
dt
dS  is taken with a negative sign because the number of susceptible S 

decrease as the epidemic develops. If we draw a curve of the rate of the  change of the 

number of susceptible 
dt
dS  verses t, and the rate of  change  in the number of infective 

dt
dI  verses time t, remembering 

dt
dI

dt
dS

−= , then we obtaina  curve known as 

epidemic curve, which is shown in the figure 3.3.2 (Here 1000=N , 9900 =S , 100 =I  

and 005.0=α ). 
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Figure 3.3.2: Epidemic curve of SI model 

Obviously the maximum value of 
dt
dS  at tine t is given by  02

2

=
dt

Sd . 

Now from equation (3.3.8)  

⎥
⎦

⎤
⎢
⎣

⎡
−+
−

−=⎟
⎠
⎞

⎜
⎝
⎛

2
00

0
2

0

})({
)(

Nt

Nt

eSNS
eSNNS

dt
d

dt
dS

dt
d

α

αα   

 ⎥
⎦

⎤
⎢
⎣

⎡
−+

−−= 2
00

0
2

0 })({
)( Nt

Nt

eSNS
e

dt
dSNNS α

α

α  

⎥
⎦

⎤
⎢
⎣

⎡
−+

−−+−−+
−−= 4

00

2
000

2
00

0
2

0 })({
})}()({2.})({)( Nt

NtNtNtNt

eSNS
NeSNeSNSNeeSNSSNNS α

αααα ααα

 

[ ]Nt
Nt

Nt

eSNS
eSNS

eSNNS
dt

Sd α
α

αα )(
})({

)(
003

00

0
32

0
2

2

−−
−+
−

−=∴  

Hence  02

2

=
dt

Sd gives  

 )exp()( 000 NtSNS α−=  
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or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
0

0
0 ln1

SN
S

N
t

α
 (3.3.9) 

Hence, the epidemic curve has a maximum value at ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
0

0
0 ln1

SN
S

N
t

α
 when the 

number of susceptible individuals is given by the equations (3.3.6) and (3.3.9) as. 

 
2
NS =  (3.3.10) 

and from the equation (3.3.5), we have at 0tt =  

 
2

2
⎟
⎠
⎞

⎜
⎝
⎛=−

N
dt
dS α  (3.3.11) 

Hence from the equations (3.3.9) to (3.3.11), we conclude that the rate of appearance 

of new infective is maximum at a time ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
0

0
0 ln1

SN
S

N
t

α
, when the density of 

susceptible is 
2
N  and the maximum rate at which the new cases occur is 

2

2
⎟
⎠
⎞

⎜
⎝
⎛=−

N
dt
dS α . That is, the rate of appearance of new cases rises rapidly to its 

maximum value at a time depending on α , N and 0S , and then falls to zero, which is 

shown in the figure 3.3.2. 

3.4 SIS model  

In this model, we assume a susceptible person becomes infected at a rate proportional 

to SI  and then an infected person recovers and again becomes susceptible at rate 

which is proportional to I . 
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3.4.1 Model formulation 

Let N  be the size of a population which is considered to be fixed and )(tS and )(tI  

be the number of susceptible and infected individuals at time t . It is assumed that the 

susceptible are homogeneously mixing with each other. 

Let 0S be the initial number of susceptible in the population in which a number of 

infected individual 0I  have been introduce, so that 

[ ] 00)( StS t ==  and [ ] 00)( ItI t ==  

Then, at the initial time we have 

 =+=+ 00)()( IStItS constant N=  (3.4.1) 

The following figure shows the model structure 

 

 

The basic equations in this model are given by 

 ISI
dt
dS βα +−=  (3.4.2) 

and ISI
dt
dI βα −=  (3.4.3) 

where α  and β is a positive constant and  

 NIS =+  (3.4.4) 

Iβ

S I 
SIα

Figure 3.4.1: Diagram of SIS model 
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From the equations (3.4.3) and (3.4.4) we obtain 

 
2)(

)(

IIN

IIIN
dt
dI

αβα

βα

−−=

−−=
 

Let βα −= NK , then 

 2IKI
dt
dI α−=  

or ⎟
⎠
⎞

⎜
⎝
⎛ −= I

K
KI

dt
dI α1  (3.4.5) 

3.4.2 Solution of model 

Separating the variable of the equation (3.4.5), we get 

 Kdt
I

K
I

dI
=

⎟
⎠
⎞

⎜
⎝
⎛ −

α1
 

or KdtdI
I

K
I

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−
+ α

11  

Now integrating both sides, we get 

[ ] AKtIKI ln)/(lnln +=−− α  

where A is a constant of integration. 

∴ [ ] Kt
IKA

I
=⎥

⎦

⎤
⎢
⎣

⎡
−)/(

ln
α
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or [ ]
Kte

IKA
I

=
−)/( α

 

or [ ] KteIK
IA
−

=
)/( α

 (3.4.6) 

or [ ] KteIKAI −= )/( α  

or [ ] KtKt eKAAeI α/)1( =+  

or [ ]
Kt

Kt

Ae
eKAI

+
=

1
/α  (3.4.7) 

 

Initially when 0=t , 0II =  then from (3.4.6) we get 

0

0

/ IK
IA
−

=
α  

So, from the equation (3.4.7) we get 

 [ ]
Kt

Kt

e
IK

IIK

eKII

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−
=

0

0
0

0

/
1)/(

/

α
α

α  

or [ ]
Kt

Kt

eIIK
eKII

00

0

)/(
/

+−
=

α
α  

or 

0

1)1(
I

e
K

eI
Kt

Kt

+−
= α    , where 0≠K  
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When 0=K , equation (3.4.5) becomes 

 2I
dt
dI α−=  

or  dt
I
dI α=− 2  

Integrating both sides, we get 

                                                  Bt
I

+=α1 , where B is a constant of integration. 

Initially, when 0=t , 0II =  so that 01 IB =  

∴ 
01

1
It

I
+

=
α

 

Hence the solution of equation (3.4.5) is 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
+

≠
+−=

0,
1

1

0,
)/1()1)(/()(

0

0

K
It

K
IeK

e

tI
Kt

Kt

α

α  (3.4.8) 

Since NtItS =+ )()( , i.e., )()( tINtS −= , so from (3.4.8) we get 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
+

−

≠
+−

−
=

0,
1

1

0,
)/1()1)(/()(

0

0

K
It

N

K
IeK

eN
tS

Kt

Kt

α

α  

3.4.3 Interpretation 

We have,  βα −= NK   

i.e.,  
α
β

α
−= NK  
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i.e.,  ρ
α

−= NK  

where 
α
βρ =  is known as relative removal rate 

It is clear from the equation (3.4.8) that as ∞→t  

ρα −=→ NKtI )( , if 0>K  i.e., ρ>N  

and   0)( →tI , if 0≤K  i.e., ρ≤N  

These results are shown in the figure 3.4.2. 

 

 

 

 

 

 

Lemma 3.4.1    If  α  is a function of t, i.e., )(tαα = then  

00 0

0

1)(exp)(

)(exp
)(

I
dvvduuNv

tduuN
tI

t v

t

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎦

⎤
⎢
⎣

⎡
−

=

∫ ∫

∫

ααα

βα
 

t 
O 

I0 

α
K

 

I(t) 

0≤K

K>0 

Figure 3.4.2: Solution of SIS model 
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Proof    In this case the basic equations of SIS model are 

 ISIt
dt
dS βα +−= )(  (3.4.9) 

and ISIt
dt
dI βα −= )(  (3.4.10) 

with  NIStItS =+=+ 00)()(  (3.4.11) 

From equation (3.4.10) and (3.4.11) we get 

 IIINt
dt
dI βα −−= ))((  

or [ ] 2)()( ItINt
dt
dI αβα −−=  

or [ ] )(1)(1
2 t

I
Nt

dt
dI

I
αβα −−=  (3.4.12) 

Let 
I

X 1
= , then 

dt
dI

Idt
dX

2
1

−= , so the equation (3.4.12) becomes 

 [ ] )()( tXNt
dt
dX αβα =−+  (3.4.13) 

Now the equation (3.4.13) is linear differential equation.  

∴    Integrating factor (I.F)= [ ]tdttNe
dtNt

βα
βα

−=∫ ∫
−

)(exp
))((

 

So the solution is ( ) ( )∫ ∫∫ +−=− CdttdttNttdttNX βααβα )(exp)()(exp  
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Now taking the limit of integration from 0=t  to tt = , we get 

 0
0 00

)(exp)()(exp XdvvduuNvtduuNX
t vt

+⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
− ∫ ∫∫ βααβα  

But 
)(

1)(
tI

tX =  so that 
0

0
1
I

X =  

∴ 

00 0

0

1)(exp)(

)(exp
)(

I
dvvduuNv

tduuN
tI

t v

t

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎦

⎤
⎢
⎣

⎡
−

=

∫ ∫

∫

ααα

βα
 

Hence the proof. 

Definition: The individuals are said to be carrier who, although apparently healthy 

themselves, harbor infection which can be transmitted to others. 

Lemma 3.4.2    If the infection is spread only by a constant number C of carriers in 

the SIS model, then  

( ){ }
βα

αβα
βα

α
+

++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
C
CNtC

C
CNItI exp)( 0  

Proof: In the SIS model, the infection is spread only by a constant number C of 

carrier, so the model equation becomes: 

 ICS
dt
dS βα +−=  (3.4.14) 

and ICS
dt
dI βα −=  (3.4.15) 
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where 0)0( SS = , 0)0( II =  and  

 NtItS =+ )()(  (3.4.16) 

From the equation (3.4.15) and (3.4.16) we get 

IINC
dt
dI βα −−= )(  

or ICNCN
dt
dI )( βαα +−=  

or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+= I

C
CNC

dt
dI

βα
αβα )(  

or dtC

C
CNI

dI )( βα

βα
α

+−=

+
−

 

Integrating both sides we get 

 DtC
C

CNI ++−=⎥
⎦

⎤
⎢
⎣

⎡
+

− )(ln βα
βα

α ,  where D is a constant 

Initially, when 0=t , 0II = , then 

 ⎥
⎦

⎤
⎢
⎣

⎡
+

−=
βα

α
C
CNID 0ln  

∴  ⎥
⎦

⎤
⎢
⎣

⎡
+

−++−=⎥
⎦

⎤
⎢
⎣

⎡
+

−
βα

αβα
βα

α
C
CNItCN

C
CNI 0ln)(ln  

or  tC
C
CNI

C
CNI )(ln 0 βα

βα
α

βα
α

+−=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−  
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or  ( )tC
C

CNI
C
CNI )(exp0 βα

βα
α

βα
α

+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−  

∴ ( ){ }
βα

αβα
βα

α
+

++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
C
CNtC

C
CNItI exp)( 0  

Hence the proof. 

Problem 3.4.1   If in the SIS model, infection is spread both by infective and by 

constant number of carrier then find )(tI . 

Solution: Let the constant number of carrier be C and )(tS  and )(tI be the number of 

susceptible and infected persons. Also we assume that the fixed population size is N.  

Then the model equations are 

 ICIS
dt
dS βα ++−= )(  (3.4.17) 

and ICIS
dt
dI βα −+= )(  (3.4.18) 

where 0)0( SS =  and 0)0( II = . Therefore 

 NIStItS =+=+ 00)()(  (3.4.19) 

Now from equation (3.4.18) and (3.4.19) we get 

 ICIIN
dt
dI βα −+−= ))((  

 2)( IICNCN αραα −−−+=  (Here αβρ /= ) 
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Multiplying both sides by α we get 

 2222 )( IICNCN
dt
dI αρααα −−−+=  

or 22 )())(()( IICNCNI
dt
d ααρααα −−−+=  

Let  IX α=  

∴ 22 )( XXCNCN
dt
dX

−−−+= ραα  

or 22 )( XXCNCN
dt
dX

−−−+= ραα  

or ))(( 21 XxXx
dt
dX

+−=  

where      { }[ ])(4)(
2
1 2/12

1 ρρα −−++−−= CNCNCNx  

and          { }[ ])(4)(
2
1 2/12

1 ρρα −−−+−−= CNCNCNx  

Now separating the variables, we get 

 dt
XxXx

dX
=

+− ))(( 21

 

or dtdX
XxXxxx

=⎥
⎦

⎤
⎢
⎣

⎡
+

+
−+ 2121

111  

or dtxxdX
XxXx

)(11
21

21

+=⎥
⎦

⎤
⎢
⎣

⎡
+

+
−
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Integrating both sides, we get 

 DtxxXxXx ++=++−− )()ln()ln( 2121 , where D is a constant. 

or Dtxx
Xx
Xx

++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+ )(ln 21

1

2  

Initially when 0=t , 0II = , i.e., 00 IXX α==  then we get 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=
01

02ln
Xx
XxD  

∴ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

01

02
21

1

2 ln)(ln
Xx
Xxtxx

Xx
Xx  

or txx
Xx
Xx

Xx
Xx )(lnln 21

01

02

1

2 +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+  

or txx
XxXx
XxXx )(

))((
))((ln 21

021

012 +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
−+  

or ( )txx
XxXx
XxXx )(exp

))((
))((

21
021

012 +=
+−
−+  

or ( )txx
Xx
Xx

Xx
Xx )(exp

)(
)(

21
01

02

1

2 +
−
+

=
−
+  

or ( ) ( )txx
Xx
XxXtxx

Xx
XxxXx )(exp)(exp 21

01

02
21

01

02
12 +

−
+

−+
−
+

=+  

or ( ) ( ) 221
01

02
121

01

02 )(exp1)(exp xtxx
Xx
Xxxtxx

Xx
XxX −+

−
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
+  
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or 
( )

( ) 1)(exp

)(exp

21
01

02

221
01

02
1

++
−
+

−+
−
+

=
txx

Xx
Xx

xtxx
Xx
Xxx

X  

∴ 
( )

( ) 1)(exp

)(exp
.1)(

21
01

02

221
01

02
1

++
−
+

−+
−
+

=
txx

Ix
Ix

xtxx
Ix
Ixx

tI

α
α
α
α

α
 [ ]IX α=Q  

where      { }[ ])(4)(
2
1 2/12

1 ρρα −−++−−= CNCNCNx  

and          { }[ ])(4)(
2
1 2/12

1 ρρα −−−+−−= CNCNCNx  

3.5 SIR model  

In general, it is difficult to know in advance when a susceptible becomes infected. The 

existence of the disease only becomes known when symptoms appear. In this case the 

infectivs are removed from the population either by death, isolation or recovery with a 

subsequent immunity to disease. As far as transmission of disease is concerned, 

recovery is a comparatively unimportant even that happens in some cases 

3.5.1 Model formulation 

Suppose the disease is such that the population can be divided into three distinct 

classes: the susceptible, S, who can catch the disease; the infective, I, who have the 

disease and can transmit it; and the removed class, R,  namely, those who have either 

had the disease, or are recovered, immune or isolated until recovered. The progress of 

individuals is schematically represented by figure 3.5.1. 
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Such models are often called SIR  models. The number of classes depends on the 

disease. SI models, for example, have only susceptible and infected classes while 

SEIR models have a suceptible class, S, a class in which the disease is latent, E, an 

infectious class, I, and a recovered or dead class, R. 

 

 

The assumptions made about the transmission of the infection and incubation period 

are crucial in any model; these are reflected in the terms in the equations and the 

parameters. With S(t), I(t) and R(t) as the number of individuals in each class we as-

sume here that:  

(i) The gain in the infective class is at a rate proportional to the number of 

infective and susceptible, that is, SIα , where 0>α  is a constant 

parameter. The susceptible are lost at the same rate.  

(ii) The rate of removal of infective to the removed class is proportional to 

the number of infective, that is, Iβ where 0>β is a constant; β/1 is a 

measure of the time spent in the infectious state. 

(iii) The incubation period is short enough to be negligible; that is, a 

susceptible who contracts the disease is infective right away 

We now consider the various classes as uniformly mixed; that is, every pair of 

individuals has equal probability of coming into contact with one another. The model 

mechanism based on the above assumptions is then 

Figure 3.5.1: Diagram of SIR model 

SIα
S I R Iβ
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 SI
dt
dS α−=  (3.5.2) 

                     )( ραβα −=−= SIISI
dt
dI  (3.5.3) 

where αβρ /=   

                           I
dt
dR β=  (3.5.4) 

 

where 0>α  is the infection rate and 0>β is removal rate of infective. This is the 

classic Kermack–McKendrick (1927) model. We are, of course, only interested in 

nonnegative solutions for S, I and R. This is a basic model but, even so, we can make 

some highly relevant general comments about epidemics and, in fact, adequately 

describe some specific epidemics with such a model. 

The constant population size is built into the system (3.5.2)–(3.5.4) since, on adding 

the equations, 

 NtRtItS
dt
dR

dt
dI

dt
dS

=++⇒=++ )()()(0  (3.5.5) 

where N is the total size of the population. Thus, S, I and R are all bounded above by 

N. The mathematical formulation of the epidemic problem is completed given initial 

conditions such as 

[ ] 0)( 00 >== StS t  , [ ] 0)( 00 >== ItI t  and [ ] 0)( 00 === RtR t  
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From the equation (3.5.3) it is clear that no epidemic (The term ‘epidemic’ means that 

0)( ItI > for some t >0) can start unless 0S<ρ , as for epidemic the necessary and 

sufficient condition is .0
0

>⎥⎦
⎤

⎢⎣
⎡

=tdt
dI  Therefore, 0S=ρ  gives a threshold density of 

susceptible.  

3.5.2 Solution of model 

From equation (3.5.2) and (3.5.4), we have 

 
ρβ

α SS
dR
dS

−=−=  (3.5.6) 

where αβρ /=  is called the relative or effective removal rate, that is the ratio of the 

rate at which individuals are removed from the infected category to the rate at which 

they are added to the same category. 

Integrating both sides of (3.5.6), we obtain 

 DRS +−=
ρ

ln  

where D is a constant of integration. 

Initially when 0=t , 0)( StS =  and 0)( =tR then 0ln SD =  

∴  0lnln SRS +−=
ρ

 

i.e.,   ( )ρRSS −= exp0  (3.5.7) 
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Now from (3.5.4), (3.5.5) and (3.5.7), we have 

  ( ) )exp( 0 RRSN
dRdt

−−−
=

ρβ
 

Integrating both sides between the limit of integration from R=0 to R=R , we get  

  ( )∫ −−−
=

R

RRSN
dRt

0 0 exp
1

ρβ
 (3.5.8) 

In general, this has to be integrated numerically. From (3.5.7) and (3.5. 8), we can 

obtain R and S as implicit function of t. We can prepare numerical table for various 

values of ρ , 0S  and 0I . 

3.5.3 Interpretation 

From equation (3.5.2), it is clear that 0<
dt
dS  for all 0≥t , it follows that S is 

monotonically decreasing function of t. 

From equation (3.5.3), it is clear that 0
0

<⎥⎦
⎤

⎢⎣
⎡

=tdt
dI  if ρ<0S  and also we have 0SS ≤  

(QS is monotonically decreasing function of t). Thus we have  0
0

<⎥⎦
⎤

⎢⎣
⎡

=tdt
dI  if 

ρ<≤ 0SS . Therefore 0<
dt
dI for all t when ρ<0S , which gives that I(t) is 

monotonically decreasing function of t when ρ<0S . This shows that no epidemic 

can even start to build up unless ρ<0S . 

This implies that there is a critical (threshold) value which the initial number of 

susceptible must exceed to enable the epidemic to spread. 
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Here ρ  is the threshold number of susceptible. At the initial stage if only a trace of 

infection is present, then 00 ≈I , i.e., NS ≈0 . 

In this case the threshold number NS ≈= 0ρ . If ρ<N , the initial trace of infection 

will be removed faster than it can communicated to others. If ρ>N , an epidemic 

occur, even only a minute amount of infection is present to being with. 

3.5.4 Asymptotic behavior of the solution 

Since S(t) is monotonically decreasing function of t and is also bounded below 

(Q 0)( ≥tS ), we find that 

  ∞∞→
= StS

t
)(lim    exists. 

Also from equation (3.5.4), it is clear that R(t) is a monotonically increasing function 

of t and is bounded above ( NtR ≤)(Q ) 

Therefore ∞∞→
= RtR

t
)(lim    exists. 

Again since from the equation (3.5.5) , )()()( tRtSNtI −−=  

Therefore ∞∞→
= ItI

t
)(lim    also exists. 

The quantities ∞S , ∞I  and ∞R are called ultimate  densities of the classes of 

susceptible, infective and removals respectively. These are important because they 

determine how the epidemic will ultimately behave. 

If ρ<0S , then I(t) monotonically decreases to ∞I . If ρ>0S , then I(t) initially 

increases and continues to increase till S decreases to ρ  and after that I(t) decreases 

to ∞I . The figure 3.5.2 shows the graph of I(t) with the variation of t. 



Chapter Three                                      Simple Epidemic Models 

 
 

 
 

63

 

 

 

 

 

 

 

Since 0>∞S , then there will always be susceptible in the population and some 

individuals will escape infection. Thus, the ultimate density of susceptible is non-zero, 

i.e., some susceptible will escape the disease altogether. Hence, the spread of the 

disease will not stop altogether for the lack of susceptible. The figure 3.5.3 shows the 

graph of S(t) with the variation of t. 

 

 

 

 

 

0I  

O 

I(t) 

t 

ρ>0S

ρ<0S

Figure 3.5.2: Graph of I(t) 

t O 

∞S  

0S  

S(t) 

Figure 3.5.3: Graph of S(t)
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Also from equation (3.5.4), it is clear that R(t) is a monotonically increasing function 

of t. The figure 3.5.4 shows the graph of R(t) with the variation of t. 

 

 

 

 

 

 

 

Now from equation (3.5.2) and (3.5.4) we get 

  
SdS

dI ρ
+−= 1  

or,  dS
S

dSdI −= ρ  

Integrating both sides, we obtain 

  ESSI +−= lnρ  

where E is constant of integration. 

 

Figure 3.5.4: Graph of R(t) 

t 
O 

∞R  

R(t) 
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Initially, when 0=t , 0II =  and 0SS = , then 

  000 ln SSIE ρ++=  

∴  )/ln( 000 SSSSII ρ+−+=  

or,  )/ln( 0SSSNI ρ+−=  

Dividing both sides by N, we get 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

NS
NS

NN
S

N
I

/
/ln1

0

ρ  

or  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

0
ln1

S
SSI ρ  (3.5.9) 

where NII /= , NSS /= , N/ρρ =  and NSS /00 =  

Since 0>S  for all t and NtRtItS =++ )()()( , so S  is always decreasing. If we 

draw a graph of equation (3.5.9) in the IS -plane (see figure 3.5.5), we get the curves 

which are described from right to left and continue to move to left till 0=
dt
dS  i.e., till 

0=I , when 
dt
dI  and 

dt
dR  also become zero. Therefore 0=∞I  and NRS =+ ∞∞ . 
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Thus,  NR /∞  may be regarded as a measure of the intensity of the epidemic since 

this gives the ultimate proportion of the population which contract the disease. The 

maximum number of infective occurs when ρ=S , and this position is independent of  

0S . 

Differentiating both sides of (3.5.9)  w.r.t  S , we get 

  
00

1.
/
11

SSSSd
Id ρ+−=  

or  
SSd

Id ρ
+−= 1  (3.5.10) 

Figure 3.5.5: Graph of equation (3.5.9) 
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For maximum or minimum value of I , we have 

  0=
Sd
Id  

i.e.,  01 =+−
S
ρ  

or  ρ=S  

Again differentiating both sides of (3.5.10)  w.r.t  S , we get 

  22

2

SSd

Id ρ
−=  which is always negative 

Thus, the maximum number of infective occur when ρ=S , i.e., ρ=S . 

In the figure_3.5.5 we now observe the behavior of curves on either sides of the line 

ρ=S  . If we take the initial point ),( 00 IS to the left of the line ρ=S , the number of 

infective I decrease and falls steadily to zero. On the other hand if ),( 00 IS     is on the 

right of the line ρ=S , the number of infective first increases and then decrease to 

zero. 

3.5.5 Approximate solution 

Let us see the results that can be obtained without numerical integration. 

Since from the equation (3.5.7), we have 

  ( )ρRSS −= exp0   
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So, the equation (3.5.4) can be written as 

  )( RSN
dt
dR

−−= β  

or  )( /
0 ReSN

dt
dR R −−= − ρβ  

Now if ρ  is large and ρ/R  is small, then (neglecting 3rd and higher power of ρ/R ) 

  2

2
/

2
1

ρρ
ρ RRe R +−=−   

∴  
dt
dR = ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−− 2

2

0 2
1

ρρ
β RRSRN  

 = ⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+− 2

2
00

0 2
1)(

ρρ
β

RSRSSN  

 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−− RS
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2
0
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2
2

2
0

0 ρ
ρ

ρ
β  

 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
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⎝

⎛
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⎠

⎞
⎜⎜
⎝

⎛
−−−

2
0
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0
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0
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0
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0

0
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2

2
0

0 1112
2 ρ

ρ
ρ

ρ
ρ

ρ
ρ

β
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S
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S
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S
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⎥
⎥
⎦

⎤
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⎢
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⎡

⎭
⎬
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⎩
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⎠
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S
RSS

S
I  

 =
⎥
⎥
⎦
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⎢
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⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝
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−−−⎟⎟
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 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

2

0

0

2

2
00

2
0

2
0

4

2
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2 ρ
ρ

ρρ
ρ

ρ
β S

S
RISS

S
S  

  ∴ 
dt
dR =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
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⎞
⎜⎜
⎝

⎛
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0
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0
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0 1
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ρρ

ρ
β S

S
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S
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2/1

2
00

2
0 21

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ρρ
ISSA  

Now separating the variables, we get 
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0

0
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0
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1
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⎭
⎬
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⎩
⎨
⎧

⎟⎟
⎠

⎞
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−−−⎟⎟

⎠
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⎛
=

ρ
ρρρ

β

S
S

R
S

A

dRdtS  

Integrating both sides, we get 
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⎭
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⎩
⎨
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⎠
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⎥
⎦
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⎢
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where  ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= − 11tanh 01

ρ
S

A
B =constant 

∴  ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+−= BtAAS

S
R β

ρ
ρ

2
1tanh10

0

2

 (3.5.11) 

Equation (3.5.11) gives the appropriate number of individual removed by time t. 

As ∞→t  equation (3.5.11) gives 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=∞ AS

S
R 10

0

2

ρ
ρ ,  

 if 00 ≈I , ρ>0S , then  

  10 −=
ρ
SA  

∴  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∞

0

12
S

R ρρ  (3.5.12) 

This gives the ultimate size of epidemic. 

If ρ<0S , then 
dt
dI  is initially negative and the epidemic does not build up. Hence the 

epidemic builds up only if 0S<ρ , i.e., only when the effective removal rate is less than 

the initial number of susceptible, and in this case , all the persons do not get infected. A 

stage may be reached when all the infected persons are immediately removed. Thus an 

epidemic builds up only when the density of susceptible is high owing to overcrowding 

and the rate of removal is low due to inadequate isolation facilities. On the other hand, 

if the isolation conditions are good and the density of susceptible is low, the epidemic 
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fades out. 

If we put ∈+= ρ0S , where ∈  is very small and 00 ≈I , then from (3.5.12), we get 

  
1

12212
−

∞ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∈
+∈=

∈+
∈

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈+

−=
ρρ

ρ
ρ
ρρR  

∴  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∈
+

∈
−∈=∞ ............12 2

2

ρρ
R  

i.e.,  ∈≈∞ 2R  

This result predicts that sooner or later the number of persons infected and 

consequently removed will be ∈2 , there ∈  is the amount by which the relative 

removal rate ρ falls very shorts of its threshold value 0S . 

From above discussion, we notice that the initial density of susceptible ∈+ρ  is 

reduced to a final density ∈−ρ , i.e., the final density is as far below the threshold 

value ρ just as the initial density above it. This is known as the kermack-mckendrick 

threshold theorem. 

3.6 Conclusion 

In this chapter we have discussed some simple epidemic models. In section 3.3 we 

have seen that in SI model ones am epidemic begins, every one in the population 

ultimately contract the disease. In SIS model  if 0<−= βαNK , then 0→I  as 

∞→t  and if 0>−= βαNK , then α/KI →  as ∞→t . In SIR model number of 

susceptible is always decreasing and the number of recovered is always increasing. 



 

 

CHAPTER FOUR 
SVIS Model 

 

4.1 Introduction 

In this chapter an SIS type disease has been considered when a vaccination program is 

in effect and there is a constant flow of incoming immigrants. Let )(tS  be the number 

of population who are susceptible to an infection at time t, )(tI  be the number of 

members who are infective at time t, and )(tV  be the number of members who are 

vaccinated at time t. Suppose the total population size at time t is )(tN , with 

)()()()( tItVtStN ++=  for the SIS model (the disease confers no immunity). 

Assume that each infective makes Nα  contacts sufficient to transmit infection in unit 

time, where α is a constant. When an infective makes contact, the probability of 

producing a new infection is NS , since the new infection can be made only when a 

contact is made with a susceptible. Thus, the rate of producing new infections is 

SII
N
SN αα =.. . Suppose susceptible population is vaccinated at a constant rate φ , 

and the rate at which the vaccine wears off is θ . We assume that there can be disease 

related deaths as well as natural deaths unrelated to the disease. The population is 

replenished in two ways, birth and immigration. We assume that all newborns enter 

the susceptible class at a constant rate, Λ , and that there is a constant incoming flow 

A of immigrants where some portion of immigrants p, is infective.  
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In summary, the assumptions we have in this model is as follows:  

• )(tS , )(tI , )(tV  and )(tN  are the numbers of susceptible, infective, 

vaccinated, and total population at time t, respectively. 

• There is a constant flow A of new members into the population per unit time, 

where fraction p of immigrants is infective )10( ≤≤ p . 

• The vaccine has effect of reducing infection by a factor of σ ,  so that  0=σ  

means that the vaccine is completely effective in preventing infection, while 

1=σ  means that the vaccine is utterly ineffective. 

• The rate at which the susceptible population is vaccinated isφ , and the rate at 

which the vaccine wears off is θ . 

• The disease can be fatal to some infective and we define β  to be the rate of 

disease related death. 

• There is a constant per capita natural death rate 0>µ  in each class. 

• Fraction 0≥γ of infective recovers in unit time. 

• Nα  is the infectious contact rate per person in unit time. 

• Λ is the constant natural birth rate, with all newborns coming into the 

susceptible class. 
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The following table shows the summary of notation. 
 

Table 4.1.1: Summary of notation for SVIS model 

Notation Explanation 

)(tS  Number of susceptible at time t 

)(tV  Number of vaccinated individuals at time t 

)(tI  Number of infective at time t 

A Number of immigrants 

p Portion of infective among immigrants 

Λ  Birth rate 

α  Contact rate 
γ  Recovery rate 

φ  Vaccination rate 

σ  Factor by which the vaccine reduces infection 

θ  Rate at which the vaccine wears off 
µ  Natural death rate unrelated to the disease 

β  Disease related death rate 

 

 

 

 

 

 

 

 

pA  

Iβ  Iµ  

Iγ

Vµ

Vθ

Sφ

Sµ  

Ap)1( −  

S V I 

Λ  SIα

VIσα

Figure 4.1.1: Diagram of SVIS model 
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The differential equations of this model are given by 

 
⎪
⎭

⎪
⎬

⎫

+−−=′
++−++=′

+++−−Λ+−=′

VVISV
IVISIpAI

VISSIApS

)(
)(

)()1(

θµσαφ
βγµσαα

θγφµα
 (4.1.1) 

Note that the total population is the sum of three classes: susceptible, infective, and 

vaccinated, i.e.,  

 )()()()( tItVtStN ++=  (4.1.2) 

So,  )()()()( tItVtStN ′+′+′=′  

Using (4.1.1) we get 

 IIVSAtN βµ −++−Λ+=′ )()(  

⇒  INAN βµ −−Λ+=′  [using (4.1.2)] 

The system of equations (4.1.1) is the SVIS model that we will use to investigate the 

behavior of an SIS type disease throughout this chapter. We will study first the 

simpler case of no disease related death. 

4.2 A model of SVIS type without disease-related death 

If the disease causes no fatality )0( =β then we can simplify the model equations 

(4.1.1) by letting 0=β  as follows: 
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⎪
⎭

⎪
⎬

⎫

+−−=′
+−++=′

+++−−Λ+−=′

VVISV
IVISIpAI

VISSIApS

)(
)(

)()1(

θµσαφ
γµσαα

θγφµα
 (4.2.1) 

      with  

 NAN µ−Λ+=′  

The system is clearly asymptotically autonomous, so we can define the limit value of 

N as 

follows: 

 0)( =′
∞→

tN
t

Lit
 

⇒  ( ) 0)( =−Λ+
∞→

tNA
t

Lit
µ  

⇒  0)( =
∞→

−Λ+ tN
t

Lit
A µ  

⇒  KAtN
t

Lit
≡

Λ+
=

∞→ µ
)( , (say) 

Definition 4.2.1 Consider the differential equation 

 )(xfx
dt
dx

== &  (4.2.2) 

where nRtxx ∈= )(  is a vector valued function of an independent variable (usually 

time) and nRUf →:  is a smooth function defined on some subset nRU ⊆ . The 
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systems of the form (4.2.2), in which the vector field does not contain time explicitly, 

are called autonomous. 

Definition 4.2.2 The system ),( ytfy =′  is called asymptotically autonomous on the 

set Ω  if and only if 

1. )(),( yhytf
t

Lit
=

∞→
 for Ω∈y  and this convergence is uniform for y in 

closed bounded subsets of Ω . 

2. For every 0∈>  and every Ω∈y  there exists a 0),( >∈ yδ  such that 

<∈− ),(),( xtfytf ,  whenever δ<− yx  for ∞<≤ t0 . 

According to the theory of asymptotically autonomous system we can reduce it to two 

dimensional system by replacing S with VIK −− . 

So, from the system (4.2.1) we get 

 
[ ]

[ ] ⎭
⎬
⎫

+−−−−=′
+−−−−+=′

VVIVIKV
IIVIKpAI

)(
)()1(

θµσαφ
γµσα

 (4.2.3) 

This is the system that we will analyze in order to find the basic reproductive number. 

For an equilibrium, we can set the right hand side of equations (4.2.3) to be zero, 

which gives the equilibrium conditions: 

 [ ] 0)()1( =+−−−−+ IIVIKpA γµσα  (4.2.4) 

and [ ] 0)( =+−−−− VVIVIK θµσαφ  (4.2.5) 
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From (4.2.5), we get 

 
φµθασ

φ
+++

−
=

I
IKV )(  

Putting the value of V in (4.2.4) we get 

 0)()()1( =+−⎥
⎦

⎤
⎢
⎣

⎡
+++

−
−−−+ II

I
IKIKpA γµ

φµθασ
φ

σα  

After simplifying we get 

( )

0)(

)())(()()( 23

=
++

−

⎟
⎠
⎞

⎜
⎝
⎛ ++−−

+++
+−+++++

α
φθµ

σφθµσ
α

φθµγµσαγµσσφθµασ

pA

IKApIKI
 

⇒  0)( 23 =+++= DCIBIEIIf  (4.2.6) 

where 

 ασ=E  

 KB σαγµσσφθµ −++++= )()(  

 )())(( σφθµσ
α

φθµγµ
++−−

+++
= KApC  

 
α

φθµ )( ++
−=

pAD  
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Proposition 4.2.1. If the system (4.2.1) has three distinct endemic steady states then 

the following two conditions must be satisfied. 

 0)()( <−++++= KB σαγµσσφθµ  

and  0)())((
>++−−

+++
= σφθµσ

α
φθµγµ KApC  

Proof: Here we consider the equation (4.2.6), i.e.,  

 0)( 23 =+++= DCIBIEIIf   

where  

 ασ=E  

 KB σαγµσσφθµ −++++= )()(  

 )())(( σφθµσ
α

φθµγµ
++−−

+++
= KApC  

 
α

φθµ )( ++
−=

pAD  

Note that for all non negative parameters, 0≥E  and 0≤D . If 0≠D , then there are 

either one or three positive roots since 0)0( <f  and ∞=∞→ )(lim Ift . Now 

differentiating )(If  with respect to I , we get CBIEIIf ++=′ 23)( 2 . If 0)( =If  

has three positive roots, then from the Rolle’s theorem  023)( 2 =++=′ CBIEIIf  

has two positive roots. This is possible if 032 >− ECB , 0<B  and 0>C . Thus 

0<B  and 0>C  are the necessary condition for the system (4.2.1) has three distinct 

endemic steady states. 
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4.2.1 Equilibriums and stability analysis  

Now linearize the system (4.2.3) we get the jacobean matrix 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
′∂

∂
′∂

∂
′∂

∂
′∂

=

V
V

I
V

V
I

I
I

J  

i.e., ⎥
⎦

⎤
⎢
⎣

⎡
+++−+−

−−++−−−−
=

)()(
)1()()1(2

IV
IKVI

J
σαφθµσαφ
ασααγµασα

 

Using the equilibrium condition (4.2.4) we get 

 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+++−+−

−−−−=
)()(

)1(

IV

II
I

pA
J

σαφθµσαφ

ασαα  

Now trace of this matrix is  

)(Jtr = I
I

pA α−− )( Iσαφθµ +++− = ⎟
⎠
⎞

⎜
⎝
⎛ +++++− II

I
pA σαφθµα  

Which is always negative for positive parameter. 

The determinant of the matrix is 

)det(J

 = VIII
I

pAII 22 )1()1()()()( σασφασσαφθµφθµαασ −−−−+++++++  

 = [ ] )()()()( I
I

pAIKII σαφθµσγµσασφθµσαα ++++++−−+++  
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Now simplify the determinant using equilibrium condition, we get 

)det(J  = [ ] )()()(2 I
I

pAKI σαφθµσαγµσσφθµσαα ++++−+++++  

 = ( ) )(2 I
I

pABEII σαφθµα +++++  

 = ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++

++
α

φθµαα )(2 pA
I

BEII  

 = ⎟
⎠
⎞

⎜
⎝
⎛ −+ 22

I
DBEIIα  

 = [ ]DBIEI
I

−+ 232α  

)det(J∴ = [ ]DBEII
I

−+ )2(2α  

Since 0)( <Jtr  for all positive parameters, then the steady states are asymptotically 

stable if and only if 0)det( >j  

This implies, [ ] 0)2(2 >−+ DBEII
I
α   

⇒   [ ] 0)2(2 >−+ DBEII  

⇒   DBEII >+ )2(2  

⇒   22
I
DBEI >+  
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∴  EI
I
DB 22 −>  

where   

 ασ=E  

 KB σαγµσσφθµ −++++= )()(  

 
α

φθµ )( ++
−=

pAD  

On the other hand for all positive parameters 0<D  and 0>E . Therefore if 0>B , 

then 0)det( >J . So the steady states are asymptotically stable if 0>B ,  

i.e.,   0)()( >−++++ Kσαγµσσφθµ  

Proposition 4.2.2. The exchange of stability occurs when the slope of bifurcation 

curve φ  vs I , changes.  

Proof: Let us recall the equilibrium condition, (4.2.6). Throughout the stability 

analysis from above, we know that the zero value of the determinant of the Jacobean 

matrix of the system indicates the threshold for stability changes, therefore the 

threshold condition is 

[ ] 02)det( 23 =−+= DBIEI
I

J α  

⇒   02 23 =−+ DBIEI  (4.2.7) 
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Now differentiating (4.2.6) implicitly with respect to φ  we get 

 023 223 =+++++
φφφφφφ d

dIC
d
dCI

d
dIBI

d
dBI

d
dIEI

d
dEI  

⇒  ( ) ⎥
⎦

⎤
⎢
⎣

⎡
++−=++

φφφφ d
dCI

d
dBI

d
dEI

d
dICBIEI 232 23  

⇒  
CBIEI

d
dCI

d
dBI

d
dEI

d
dI

++

++
−=

23 2

23

φφφ
φ

 

When the sign of the slope of the bifurcation curve changes, one can find a threshold 

point by letting  

 ∞=
φd

dI  

i.e.,  023 2 =++ CBIEI   

i.e.,  023 23 =++ CIBIEI   (4.2.8) 

Now, we shall show that these two conditions (4.2.7) and (4.2.8) are equivalent by 

using the equilibrium condition 

 0)( 23 =+++= DCIBIEIIf   

Now,  ( ) ( ) 0)(223 232323 ==+++=−+−++ IfDCIBIEIDBIEICIBIEI  

 DBIEICIBIEI −+=++ 2323 223  



Chapter Four                                                                                               SVIS Model 

 
 

 84

Therefore the two conditions (4.2.7) and (4.2.8) are equivalent. In summary, using the 

equilibrium condition 0)( 23 =+++= DCIBIEIIf , one can show that when 

the sign of the slope of the bifurcation curve changes, its stability changes too. The 

following figure 4.2.1 is the bifurcation curve φ  vs I  (here 7.0=α ,  12=γ ,  

2.0=σ , 1.0=µ , 5.0=θ   p=0.2,and A=2) 

 

Figure 4.2.1: Bifurcation curve φ  vs I  

4.3 A model of SVIS type with disease-related death 

In this case 0≠β . We now consider the original model which includes non-zero 

disease fatality. Recalling the original system of differential equation, let us remind 

the system of differential equations, (4.1.1): 
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VVISV

IVISIpAI
VISSIApS

)(
)(

)()1(

θµσαφ
βγµσαα

θγφµα

+−−=′
++−++=′

+++−−Λ+−=′

   

Here the total population is the sum of three classes, susceptible, infective and 

vaccinated, i.e.  

 )()()()( tItVtStN ++=  

Thus it follows that 

 IIVSAIVSN βµ −++−Λ+=′+′+′=′ )(  

⇒  INAN βµ −−Λ+=′  

We can get an alternate but yet equivalent model by replacing S with N-V-I. Now the 

model becomes: 

 
INAN

VIIVNV
IVIIIVNpAI

βµ
θµσαφ

βγµσαα

−−Λ+=′
+−−−−=′

++−+−−+=′

)()(
)()(

 

⇒  
[ ]

⎪
⎭

⎪
⎬

⎫

−−Λ+=′
++−−−=′

++−−−−+=′

INAN
VVIINV

IVINIpAI

βµ
φθµσαφ

βγµσα
)()(

)()1(
 (4.3.1) 

We can write the equilibrium conditions by letting the right hand side equations of 

(4.3.1) to be zero. The equilibrium conditions are 

 [ ] 0)()1( =++−−−−+ IVINIpA βγµσα  (4.3.2) 
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 0)()( =++−−− VVIIN φθµσαφ  (4.3.3) 

 0=−−Λ+ INA βµ  (4.3.4) 

From (4.3.4) we get 

 
µ

βIAN −Λ+
=  

Again from (4.3.3) we get 

 
φθµσα

φ
+++

−
=

I
INV )(  

⇒  [ ]
)(

)(
φθµσαµ

µβφ
+++

+−Λ+
=

I
IAV  

µ
βIAN −Λ+

=Q  

Eliminating N and V by substitution of these expressions into the equation (4.3.2), we 

get the equilibrium condition of the form 

 [ ] 0)(
)(

)()1( =++−⎥
⎦

⎤
⎢
⎣

⎡
+++

+−Λ+
−−−

−Λ+
+ I

I
IAIIAIpA βγµ
φθµσαµ

µβφσ
µ

βα  

Now simplifying by wxMaxima, we obtain an expression involving I of the form 

 023 =+++ DCIBIEI , 

where  

 )( µβασ +=E  

 )())(()( βγµσµσφθµµβσα +++++++Λ+−= AB   
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α

φθµβγµµ
σφθµσµ

))(())(( ++++
+++Λ+−−= AApC  

 
α

φθµµ )( ++
−=

pAD  

4.3.1 Equilibriums and stability analysis  

In order to study the stability of steady states we start a qualitative approach by 

linearization of (4.3.1). Now the jacobean matrix of the system (4.3.1) is 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

=

N
N

V
N

I
N

N
V

V
V

I
V

N
I

V
I

I
I

J  

⇒  
[ ]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
++−−+−

−−++−−−−−
=

µβ
φφθµσασαφ
ασαβγµασα

0
)()(

)1()()1(
IV

IIIIVN
J  

Using the equation (4.3.2), we can rewrite the jacobean matrix as 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
++−−+−

−−−−

=
µβ
φφθµσασαφ

ασαα

0
)()(

)1(

IV

III
I

pA

J  

After a complicated computation (with wxMxima), we can obtain its characteristic 

equation as: 

 032
2

1
3 =+++ aaa λλλ , 
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where  

 φθµασ +++++= 2)1(1 I
pAIa  

 
( )

))(1(

2

VI

I
I

pAII
I

pAIa

σαφσα

αβαµσαϕθµµα

+−−

+⎟
⎠
⎞

⎜
⎝
⎛ +++++⎟

⎠
⎞

⎜
⎝
⎛ ++=

 

 
( )

( )II

VII
I

pAIa

σασϕθµαβ

σαφσµασαϕθµαµ

++++

+−−+++⎟
⎠
⎞

⎜
⎝
⎛ += ))(1(3  

By the Routh-Hurwitz Criterion, the steady state is globally stable if and only iff  

 01 >a , 03 >a  and 321 aaa >  

The Figure 4.3.1 is the bifurcation curve φ  vs I  (here 9.0=α , 7.0=β , 12=γ ,  

2.0=σ , 1.0=µ , 5.0=θ   p=0.4, 3=Λ  and A=2) which demonstrates a case where 

an equilibrium graph loses its stability as the vaccination rate φ , increases and 

becomes stable again. At the point where it loses local stability first, Hopf-bifurcation 

occurs and a periodic solution appears for some values of φ . 
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Figure 4.3.1: Bifurcation curve φ  vs I with disease-related death 

4.3.2 The case where there are no infective immigrants  

It is worthwhile to consider the case without infective immigrants since in this case 

the system will have a disease-free steady state that would not exist otherwise. This 

model was proposed by Kribs-Zaleta and Vekasco-Hernandezin. If there is no 

infective portion from immigrants, i.e. p = 0, then our equation becomes 

 
VVISV

IVISII
VISSIAS

)(
)(

)(

θµσαφ
βγµσαα

θγφµα

+−−=′
++−+=′

+++−−Λ+=′
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Recall that the total population is the sum of three classes, susceptible, infective and 

vaccinated, i.e.  

 )()()()( tItVtStN ++=  

Thus it follows that 

 IIVSAIVSN βµ −++−Λ+=′+′+′=′ )(  

⇒  INAN βµ −−Λ+=′  

As before we can make a similar transformation by replacing S with N-V-I. Now the 

model becomes: 

 
INAN

VIIVNV
IVIIIVNI

βµ
θµσαφ

βγµσαα

−−Λ+=′
+−−−−=′

++−+−−=′

)()(
)()(

 

⇒  
[ ]

⎪
⎭

⎪
⎬

⎫

−−Λ+=′
++−−−=′

++−−−−=′

INAN
VVIINV

IVINII

βµ
φθµσαφ

βγµσα
)()(

)()1(
 (4.3.5) 

We can write the equilibrium conditions by letting the right hand side equations of 

(4.3.5) to be zero. The equilibrium conditions are 

 [ ] 0)()1( =++−−−− IVINI βγµσα  (4.3.6) 

 0)()( =++−−− VVIIN φθµσαφ  (4.3.7) 

 0=−−Λ+ INA βµ  (4.3.8) 
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From (4.3.4) we get 

 
µ

βIAN −Λ+
=  

Again from (4.3.3) we get 

 
φθµσα

φ
+++

−
=

I
INV )(  

⇒  [ ]
)(

)(
φθµσαµ

µβφ
+++

+−Λ+
=

I
IAV  

µ
βIAN −Λ+

=Q  

Eliminating N and V by substitution of these expressions into the equation (4.3.2), we 

get the equilibrium condition of the form 

 [ ] 0)(
)(

)()1( =++−⎥
⎦

⎤
⎢
⎣

⎡
+++

+−Λ+
−−−

−Λ+ I
I

IAIIAI βγµ
φθµσαµ

µβφσ
µ

βα  

We can further simplify by multiplying )( φθµσαµ +++I and factoring out a disease 

free Equilibrium 

 0* =I  

In order to obtain an endemic condition as the quadratic equation for the equilibrium 

values of I of the form  

 02 =++ CBIEI , 
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where  

 )( µβασ +=E  

 )())(()( βγµσµσφθµµβσα +++++++Λ+−= AB   

 
α

φθµβγµµσφθµ ))(())(( ++++
+++Λ+−= AC  

In order to study the stability of steady states we linearize (4.3.5), obtaining the 

jacobean matrix. 

 
[ ]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
++−−+−

−−++−−−−−
=

µβ
φφθµσασαφ
ασαβγµασα

0
)()(

)1()()1(
IV

IIIIVN
J  

At the disease free equilibrium  0* =I , The Jacobean becomes 

 
[ ]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
++−+−

++−−−
=

µβ
φφθµσαφ
αβγµσα

0
)()(

0)()1(

0 V
IVN

J  

Now we obtain three real eigenvalues of 0J  as  

 µλ −=1  

 )(2 φθµλ ++−=  

 [ ] )()1(3 βγµσαλ ++−−−= VN  

 )(
)(

))(( γµβ
φθµµ

σφθµα
++−

++
Λ+++

=
A  
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For positive parameters, it is clear that 01 <λ  and 02 <λ . So the disease free 

equilibrium is asymptomatically stable iff 03 <λ . 

⇒  0)(
)(

))((
<++−

++
Λ+++ γµβ

φθµµ
σφθµα A  

⇒  )(
)(

))(( γµβ
φθµµ

σφθµα
++<

++
Λ+++ A  

⇒  1
))((

))((
<

++++
Λ+++
γµβφθµµ

σφθµα A  

Now we can define the vaccine reproduction number
))((

))(()(
γµβφθµµ

σφθµαφ
++++
Λ+++

=
AR . 

Also by using the endemic equilibrium condition, (4.3.6) we can evaluatethe Jacobean 

matrix at endemic equilibriums. 

Using the equation (4.3.2), we can rewrite the jacobean matrix as 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
++−−+−

−−−
=

µβ
φφθµσασαφ
ασαα

0
)()(

)1(
IV

III
J  

with the characteristic equation: 

 032
2

1
3 =+++ aaa λλλ , 
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where  

 φθµασ ++++= 2)1(1 Ia  

 ( )( ) ))(1()(2 VIIIIa σαφσαβµασαϕθµµα +−−++++++=  

 ( ) ( )IIVIIa σασϕθµαβσσασασφθµµα ++++−++++= )1(3  

By the Routh-Hurwitz Criterion, the endemic steady state is stable iff 01 >a , 03 >a  

and 321 aaa > . 

For this model there is a transcritical bifurcation at 

[ ]
)()(

()()(
γµβµσα

αγµβµθµφ
++−Λ+

Λ+−+++
=

A
A  

(This is obtained by solving 1)( =φR  for φ ) and this is demonstrated in Figure 4.3.2  

(here 9.0=α , 15.0=β , 12=γ ,  2.0=σ , 1.0=µ , 5.0=θ   p=0, 3=Λ  and A=2). 

One can easily see that the lower branch of the bifurcation curve is negative for 

[ ]
)()(

()()(
γµβµσα

αγµβµθµφ
++−Λ+

Λ+−+++
<

A
A  , and coincides with the disease free equilibrium 

at [ ]
)()(

()()(
γµβµσα

αγµβµθµφ
++−Λ+

Λ+−+++
=

A
A . Also the disease free equilibrium is locally 

stable for [ ]
)()(

()()(
γµβµσα

αγµβµθµφ
++−Λ+

Λ+−+++
>

A
A  and locally unstable otherwise while 

the lower endemic equilibrium becomes locally unstable for 

[ ]
)()(

()()(
γµβµσα

αγµβµθµφ
++−Λ+

Λ+−+++
>

A
A . In summary these equilibriums exchange 

stability as the endemic equilibrium moves through the diseasefree equilibrium at 
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[ ]
)()(

()()(
γµβµσα

αγµβµθµφ
++−Λ+

Λ+−+++
=

A
A  and there exists only one epidemiologically 

feasible endemic equilibrium for [ ]
)()(

()()(
γµβµσα

αγµβµθµφ
++−Λ+

Λ+−+++
<

A
A . 

 

Figure 4.3.2 : Bifurcation curve φ  vs I with no infective immigrants 

4.4 Conclusion  

The purpose of this chapter is to take a close look at the endemic behavior of the 

diseases of SIS type model. To a simple SIS model with vaccination we added the 

immigration of infective and the disease-related death. As to the contact between 

infective and susceptible we assume a bilinear incidence. The result of mathematical 

analysis indicates that a vaccination campaign φ  has an effect of reducing a 
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reproductive number, which means that the average number of secondary infection 

caused by an average infective becomes smaller when vaccination is in effect. 

Furthermore, in SVIS model, a vaccination campaign meant to reduce a disease’s 

reproductive number below one, may fail to control the disease when there is a 

backward bifurcation. Bringing down the vaccination reproductive number just below 

one may not be good enough to eradicate the disease in such a case. Also if there is no 

immigration of infective, a typical transcritical bifurcation may be observed. The 

disease-free equilibrium and endemic one coincide at 1)( =φR  and they exchange the 

stability at that point.  



CHAPTER FIVE 

SVI Model 
 

5.1 Introduction 

The spread of communicable diseases is often described mathematically by 

compartmental models. In 1927, Kermack and McKendrick proposed, as a particular 

case of a more general model presented in their seminal work. There are two major 

types of control strategies available to curtail the spread of infectious diseases: 

pharmaceutical interventions (drugs, vaccines etc) and non-pharmaceutical 

interventions (social distancing, quarantine). Vaccination, when it is available, is an 

effective preventive strategy. Arino et al introduced vaccination of susceptible 

individuals into an SIRS model and also considered vaccinating a fraction of 

newborns. Buonomo et al studied the traditional SIR model with 100% efficacious 

vaccine. Effective vaccines have been used successfully to control smallpox, polio 

and measles. 

In this chapter we consider an SI type disease when a vaccination program is in effect 

and there is a constant flow of incoming immigrants or newborns. Let )(tS  be the 

number of population who are susceptible to an infection at time t, )(tI  be the 

number of members who are infective at time t, and )(tV  be the number of members 

who are vaccinated at time t. The total population size at time t is denoted by )(tN , 

with )()()()( tItVtStN ++= . Assume that each infective makes Nα  contacts 

sufficient to transmit infection in unit time, where α is a constant. When an infective 

makes contact, the probability of producing a new infection is NS , since the new 
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infection can be made only when a contact is made with a susceptible individuals. 

Thus, the rate of producing new infections is SII
N
SN αα =.. . The susceptible 

population is vaccinated at a constant rate φ . We assume that there is no disease 

related death but natural death, that is, unrelated to the disease is present. The 

population is replenished in two ways, birth and immigration. We assume that all 

newborns and immigrants enter the susceptible class at a constant rateΛ . In summary, 

the assumptions we have in this model is as follows:  

• )(tS , )(tI , )(tV  and )(tN  are the numbers of susceptible, infective, 

vaccinated, and total population at time t, respectively. 

• There is a constant flow Λ  of new members into the susceptible population 

per unit time. 

• The vaccine has effect of reducing infection by a factor of σ ,  so that 0=σ  

means that the vaccine is completely effective in preventing infection, while 

1=σ  means that the vaccine is utterly ineffective. 

• The rate at which the susceptible population is vaccinated is φ . 

• There is a constant per capita natural death rate µ  in each class. 

• Nα  is the infectious contact rate per person in unit time. 
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The following table shows the summary of notation. 

Table 5.1.1 : Summary of notation for SVI model 

 

 

5.2 Model formulation 

 In our model, we have divided the population into three compartments (susceptible, 

vaccinated susceptible and infectious) depending on the epidemiological status of 

individuals. We denote the population of those who are susceptible as S, who are 

vaccinated susceptible as V and those who subsequently infected as I. The model 

transfer diagram indicating the possible transitions between these compartments is 

shown in Figure 5.2.1. 

 

 

Notation Explanation 

)(tS  Number of susceptible at time t 

)(tV  Number of vaccinated individuals at time t 

)(tI  Number of infective at time t 

)(tN  Total number of population at time t 

Λ  Birth rate 

α  Contact rate 

φ  Vaccination rate 

σ  Factor by which the vaccine reduces infection 

µ  Natural death rate unrelated to the disease 
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Populations enter the susceptible class at constant rateΛ . Natural death rate are 

assumed to be µ . The population is assumed to undergo homogeneous mixing. We 

assume that each infective individual contacts an average number α  with other 

individuals per unit time. Hence, the total number of contact by infective per unit time 

is Iα . Susceptible individuals are vaccinated at the rateφ . Since the vaccine only 

provides partial protection to the infection, vaccinated individuals may still become 

infected but at the lower infection rate σα  than fully susceptible individuals. Here 

]1,0[1 ∈−σ  describes vaccine efficacy. when 0=σ , the vaccine is perfectly effective 

and when 1=σ , the vaccine has no effect at all on the immunity of vaccinated 

individuals.  

The differential equations of the model are given by: 

 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−+=

−−=

−−−Λ=

ISIVI
dt
dI

VIVS
dt
dV

SSSI
dt
dS

µασα

σαµφ

µφα

 (5.2.1) 

 

SIα

Sφ

Sµ  

VIσα

Iµ  

S V I 

Vµ

Λ  

Figure 5.2.1: Diagram of SVI model 
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5.3 Equilibrium conditions 

We can write the equilibrium conditions by letting the right hand side of equations of 

(5.2.1) to be zero. Thus the equilibrium conditions are 

 0=−−−Λ SSSI µφα  (5.3.1) 

 0=−− VIVS σαµφ  (5.3.2) 

 0=−+ ISIVI µασα  (5.3.3) 

From (5.3.1) we get 

 
φµα ++

Λ
=

I
S  (5.3.4) 

Again from (5.3.2) we get 

 
µσα

φ
+

=
I
SV  (5.3.5) 

⇒  
))(( φµαµσα

φ
+++

Λ
=

II
V  ⎥

⎦

⎤
⎢
⎣

⎡
++

Λ
=

φµαI
SQ  

Now from (5.3.3 factoring out the disease free equilibrium  (DFE), we get 

 0=I  

Then from (5.2.4)  and (5.2.5), we get    

 
φµ +

Λ
=S  

and  
)( φµµ

φ
++

Λ
=V  
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Therefore the disease free equilibrium is 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

Λ
+
Λ

= 0,
)(

,0 φµµ
φ

φµ
P  

In order to study the stability of steady states we linearize (5.2.1), obtaining the 

Jacobean matrix. 

  

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
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⎜
⎝
⎛

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=

dt
dI

Idt
dI

Vdt
dI

S

dt
dV

Idt
dV

Vdt
dV

S

dt
dS

Idt
dS

Vdt
dS

S

J  

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+
−−−
−−−−

=
µασασαα

σαασµφ
αµφα

SVII
VI
SI

J
0

 

5.4 Stability at DFE 

The jacobean matrix at the DFE ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

Λ
+
Λ

= 0,
)(

,0 φµµ
φ

φµ
P  is 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
+
Λ

+
+
Λ

+
Λ

−−

+
Λ

−−−

=

µ
φµµ

σαφ
φµ

α
φµµ

σαφµφ

φµ
αµφ

)(
00

)(

0

0J  



Chapter Five                                                                                               SVI Model 

 
 

 103

0J  has three real  eigenvalues as follows  

 )(1 µφλ +−=  

 µλ −=2  

 and   µ
φµµ

σαφ
φµ

αλ −
+
Λ

+
+
Λ

=
)(3  

 Since all parameters are positive then clearly 01 <λ  and 02 <λ , So the  DFE is 

locally stable if and only if 03 <λ . 

Definition 5.4.1 (Basic reproductive number): The basic reproductive number, 0R , 

is the expected number of secondary infections arising from a single individual during 

his or her entire infectious period, in the population of susceptible. 

Lemma 5.4.1 : The disease free equilibrium  0p  is locally stable if and only if  10 <R  

where 0R  is the basic reproductive number .  

Since the above linear system (5.2.1) is locally stable if and only if 03 <λ , i.e.,  

µ
φµµ

σαφ
φµ

α
<

+
Λ

+
+
Λ

)(
, i.e.,  1

)()( 2 <
+
Λ

+
+
Λ

φµµ
σαφ

φµµ
α . So by the above lemma the 

basic reproduction number 
)()( 20 φµµ

σαφ
φµµ

α
+
Λ

+
+
Λ

=R  

5.4.1 Controlling the epidemic 

Since for 1
)()( 20 <

+
Λ

+
+
Λ

=
φµµ

σαφ
φµµ

αR , there is no epidemic; we can take various 

steps to control the epidemic. 
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Step 1: 

Suppose 0R  is a function ofσ .  i.e, 11200 )()(
)( DMRR +=

+
Λ

+
+
Λ

== σ
φµµ

σαφ
φµµ

ασ  

where 0
)(21 >

+
Λ

=
φµµ

αφM  and 
)(1 φµµ

α
+
Λ

=D . Therefore 0R  is a linear function of 

σ . Since 01 >M (for positive parameters), So there exists a bifurcation value 

Aφα
αµφµµσ Λ−+

=
23

0  of σ  such that if 0σσ < , then 10 <R  and if 0σσ > , then 

10 >R ,  i.e., if 0σσ < , then the DFE 0P  is locally stable  otherwise unstable 

(provided 11 <D ). So if all parameters except σ  are constant, then we can control the 

epidemic by decreasing the value of σ  (increasing the vaccine efficiency) so that 

0σσ < . 

Step 2: 

Suppose 0R  is a function ofα .  i.e, α
φµµ

σαφ
φµµ

αα 2200 )()(
)( MRR =

+
Λ

+
+
Λ

==   

 where 0
)()( 22 >

+
Λ

+
+
Λ

=
φµµ

σφ
φµµ

M . Therefore 0R  is a linear function of α . Since 

02 >M   (for positive parameters), So there exists a bifurcation value 
Λ+Λ

+
=

σφµ
φµµα )(2

0  

of α  such that if 0αα < , then 10 <R  and if 0αα > , then 10 >R ,  i.e., if 0αα < , then 

the DFE 0P  is locally stable  otherwise unstable. Therefore if all parameters except α  

are constant, then we can control the epidemic by decreasing the value of α  

(decreasing the contact rate with infected individual) so that 0αα < . 
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Step 3: 

Similarly (as step 2) We can reduce the value of 0R  by decreasing the value of Λ  and 

we get a bifurcation value 
αφσαµ
φµµ

+
+

=Λ
)(2

0  of Λ  such that if 0Λ<Λ , then 10 <R  and 

if 0Λ>Λ , then 10 >R ,  i.e., if 0Λ<Λ , then the DFE 0P  is locally stable  otherwise 

unstable. Therefore if all parameters except Λ  are constant, then we can control the 

epidemic by decreasing the value of Λ  so that 0Λ<Λ . 

Step 4: 

Suppose 0R  is a function of φ . i.e., 
)()(

)( 200 φµµ
φασ

φµµ
αφ

+
Λ

+
+
Λ

== RR . So for 

positive parameters 0
2

)1(
223

0 <
++
Λ−

=
µφφµµ

σα
φd

dR . ( since 1<σ ) i.e.,   )(0 φR  is 

decreasing. We can reduce the value of 0R  by increasing the value of φ . Therefore 

2

3

0 µασ
αµµφ
−Λ

Λ−
=  is a bifurcation value of  φ such that if 0φφ > , then 10 <R  and if 

0φφ < , then 10 >R ,  i.e., if 0φφ > , then the DFE 0P  is locally stable  otherwise 

unstable. Therefore we can control the epidemic by increasing the value of φ  so that 

0φφ > . 

5.4.2 Numerical simulation 

In order to illustrate the various theoretical results, numerical experiments (using 

Matlab) were carried out to compute the solutions of linear system corresponding to  

(5.2.1) using the parameter values as follows:  
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For step 1: 

Table 5.4.1: Results for step-1. 

 Example-1 Example-3 

φ  (constant) 0.8 0.8 

α  (constant) 0.006 0.006 

Λ  (constant) 0.008 0.008 

σ  0.1 0.3 

µ  (constant) 0.003 0.003 

0σ  0.184453125 0.184453125 

00 σσσσ >< or  0σσ <  0σσ >  

Comment 
I is decreasing 

 (Figure 5.4.1 (a)) 

I is increasing  

(Figure 5.4.1 (b)) 

 

 

 

Fig 5.4.1: Graph of )(tI  for step-1. 
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For step 2: 

Table 5.4.2: Results for step-2. 
 

 Example-1 Example-3 

φ  (constant) 0.8 0.8 

α   0.003 0.007 

Λ  (constant) 0.008 0.008 

σ (constant) 0.18 0.18 

µ  (constant) 0.003 0.003 

0σ  0.006145408163265 0.006145408163265 

00 αααα >< or  0αα <  0αα >  

Comment 
I is decreasing  

(Figure 5.4.2 (a)) 

I is increasing  

(Figure 5.4.2 (b)) 

 

 

 

Figure 5.4.2: Graph of )(tI  for step-2. 
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For step 3: 

Table 5.4.3: Results for step-3 
 

 Example-1 Example-3 

φ  (constant) 0.8 0.8 

α  (constant) 0.006 0.006 

Λ  0.004 0.009 

σ (constant) 0.18 0.18 

µ  (constant) 0.003 0.003 

0σ  0.00702332361516 0.00702332361516 

00 Λ>ΛΛ<Λ or  0Λ<Λ  0Λ>Λ  

Comment 
I is decreasing  

(Figure 5.4.3 (a)) 

I is increasing  

(Figure 5.4.3 (b)) 

 

 

 

Figure 5.4.3: Graph of )(tI  for step-3. 
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For step 4: 

Table 5.4.4: Results for step-4 

 Example-1 Example-3 

φ   0.1 0.3 

α  (constant) 0.007 0.007 

Λ  (constant) 0.008 0.008 

σ (constant) 0.003 0.003 

µ  (constant) 0.003 0.003 

0φ  0.015964673913043 0.015964673913043 

00 φφφφ >< or  0φφ <  0φφ >  

Comment 
I is increasing  

(Figure 5.4.4 (a)) 

I is decreasing  

(Figure 5.4.4 (b)) 

 

 

 

 

Figure 5.4.4: Graph of )(tI  for step-4. 
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5.4.3 Discussion 

In the above simulations we consider the initial value of infected individual is 1, i.e., 

10 =I  . We see from the Table 5.4.1 that if all parameters except σ  are fixed, there 

exist a bifurcation value 0σ . If  0σσ < , then the number of infected individuals is 

decreasing (Figure 5.4.1 (a)) as ∞→t . On the other hand if 0σσ > , then the number 

of infected individuals  is increasing (Figure 5.4.1 (b)) as ∞→t . Similarly from the 

Table 5.4.2 we see that if all parameters except α  are fixed, there exist a bifurcation 

value 0α . If  0αα < , then the number of infected individuals is decreasing 

(Figure 5.4.2 (a)) as ∞→t . On the other hand if 0αα > , then the number of infected 

individuals  is increasing (Figure 5.4.2 b)) as ∞→t . From the Table 5.4.3 there exist 

a bifurcation value 0Λ . If 0Λ<Λ , then the number of infected individuals is 

decreasing (Figure 5.4.3 (a)) as ∞→t . On the other hand if 0Λ>Λ , then the number 

of infected individuals is increasing (Figure 5.4.3 (b)) as ∞→t . Finally from the 

Table 5.4.4 there exist a bifurcation value 0φ . If  0φφ < , then the number of infected 

individuals is increasing (Figure 5.4.4 (a)) as ∞→t . On the other hand if 0φφ > , then 

the number of infected individuals is decreasing (Figure 5.4.4 (b)) as ∞→t . 

 

5.5 Stability analysis of endemic equilibrium 

Usually the stability analysis at endemic equilibrium (here 0>I ) is very difficult. 

Now solving (5.3.1), (5.3.2) and (5.3.3) we get 
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i.e., The endemic equilibrium is  
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Theorem 5.5.1 (Routh–Hurwitz stability criterion) : Given the characteristics 

polynomial  
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where the coefficients ia  are real constant for ni ,......3,2,1= , define the Hurwitz 

matrices using the coefficients ia  of the characteristics polynomial as follows 
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where 0=ja  if nj > . All of the roots of the polynomial equation 0)( =λP  are 

negative or have negative real part iff the determinants of all Hurwitz matrices are 

positive.  

i.e., 0)det( >jH , for nj ,.......,3,2,1= . 

When 2=n , the Routh–Hurwitz stability criterion simplify to  

 0)det( 11 >= aH   

and 0
0

1
21

2

1
2 >=⎥

⎦

⎤
⎢
⎣

⎡
= aa

a
a

H  

or, 01 >a  and 02 >a . For polynomial of degree 3,2=n  and 4, the Routh–Hurwitz 

stability criterion is summarized as follows: 

 2=n : 01 >a  and 02 >a . 

 3=n : 01 >a , 03 >a  and 321 aaa > . 

 4=n : 01 >a , 03 >a , 04 >a  and 4
2

1
2

3321 aaaaaa +> . 

In order to study the stability of steady states we consider the equilibrium conditions 

(5.3.1), (5.3.2) , (5.3.2) and the jacobean matrix  
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Using the condition (5.3.3), i.e., 0=−+ ISIVI µασα , i.e., 0=−+ µασα SV , we get 
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Again from the equilibrium condition (5.3.1), we get 
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use the above value, we get 
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Again from the equilibrium condition (5.3.2), we get 
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use the above value, we get 
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After calculating by wxMaxima we get the characteristic equation of the above matrix 

as 
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where 
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By the Routh-Hurwitz criterion, the endemic equilibrium is stable if and only if  

 01 >a , 03 >a  and 0321 >− aaa  

Clearly  
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5.6 Conclusion 

In this chapter a new deterministic epidemic model is constructed and used to analyze 

the effect of a preventive vaccine on the transmission dynamics of an infectious 

disease. The model is thoroughly analyzed to investigate the stability. From the 

theoretical discussion and numerical simulations for the DFE, we see that if the 

parameters satisfy any of the equivalent conditions 0σσ < , 0αα < , 0Λ<Λ  and 

0φφ >   then there is no epidemic. So, in the initial stage (when the number of infected 

individuals is not large), we shall control the epidemic successfully by controlling the 

parameters. Also for the endemic equilibrium we give a condition for stability (if 

there exist endemic equilibrium). 

 



CHAPTER SIX 
CONCLUSION 

 

The purpose of this study was to take a close look at the endemic behavior of the 

diseases of SIS and SI type models. The study was included the infective immigrant 

and the disease-related death in the simple SVIS model. The result of mathematical 

analysis indicated that a vaccination campaign had an effect of reducing reproductive 

number. The findings indicated that the average number of secondary infective caused 

by an average earlier infective becomes smaller when vaccination is in effect. 

Furthermore, in SVIS models a vaccination campaign meant to reduce disease’s 

reproductive number below one but failed to control the disease when there is a 

backward bifurcation. Bringing down the vaccination reproductive number just below 

one may not be good enough to eradicate the disease in such a case. If there is no 

infective immigrant, a typical transcritical bifurcation is observed. The disease-free 

equilibrium and endemic equilibrium coincided at 1)( =φR  and they exchanged the 

stability at that point.  

The study also analyzed the effect of a preventive vaccine on the transmission 

dynamics of infectious diseases in SVI model. The model was thoroughly analyzed to 

investigate the stability of equilibrium points. This model has a DFE, so the basic 

reproductive number 0R  has been defined. The disease free equilibrium is stable 

when 10 <R . In this study 0R  has been considered as a function of one parameter to 

calculate the condition for 10 <R . From the theoretical discussion and numerical 
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simulations at the DFE, it was found that if the parameters satisfy any of the 

equivalent conditions 0σσ < , 0αα < , 0Λ<Λ  or 0φφ >   then 10 <R , i.e., there is no 

epidemic. So, at the initial stage of identifying infected individuals it is easy to control 

the epidemic successfully by controlling the parameters. Finally a condition was given 

for stability of endemic equilibrium if there exists endemic equilibrium in SVI model. 
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