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AABBSSTTRRAACCTT 

 

The flat grain beetle, Cryptolestes pusillus (Schon) (Coleoptera: Cucujidae) and the 

lesser grain borer, Rhyzopertha dominica (Fabricus) (Coleoptera: Bostrichidae) are the 

serious insect pest of stored commodities. C. pusillus is an internal and R. dominica is 

an internal feeder of whole wheat seed, flour, etc. The hemipteran predator, Xylocoris 

flavipes (Reuter) predates the eggs, larvae and pupae both of the pests in storage 

condition and checks their population in considerable level. A newly reduced risk 

broad-spectrum bacterium, Spinosad is effectively control the population of both                 

C. pusillus and R. dominica. The effects of different life stages of both hosts on the 

biology of X. flavipes under laboratory condition were assessed. The influence of 

Spinosad on both hosts and predator and also the combined effects of X. flavipes and 

Spinosad on the population of C. pusillus and R. dominica were subsequently 

investigated.  

The nymphs 1st up to 5th instar and adults of X. flavipes were found efficient to survive 

on eggs, larvae 1st up to 4th instar and pupae of the both insect pest C. pusillus and       

R. dominica. The mean duration of developmental period through five nymphal instars 

on eggs, larvae 1st up to 4th instars and pupae of were 15±2.00, 20±0.00, 22±0.58, 

18±1.00, 14±1.15 and 12±1.15 days in C. pusillus and 18±1.00, 20±0.58, 16±2.00, 

14±1.15, 12±1.15 and 13±0.58 days in R. dominica respectively. The adult female       

X. flavipes survived longer than the male. Average consumption rates of each nymph 1st 

up to 5th instar and adult stage of X. flavipes was found highest on eggs, 1st and 2nd 

instar larvae but lowest on 4th instar larvae and pupae of the both insect pests. The egg 

of R. dominica was more preferable than that of C. pusillus. Moreover, 1st, 2nd and 3rd 

instar larvae of the both host insect were more preferable to the predator than the other 

stages. The female predator always consumed more individuals of both the pests than 

the male. Average survivability rates of nymphs 1st up to 5th instar and adults were 

maximum on 1st and 2nd instar larvae and minimum on 4th instar larvae and pupae. The 

size of the female predator was found larger than the male at all stages studied. Based 
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on ratio 1:1, sex ratio was found the best (male and female almost equal in number) on                

1st and 2nd instar larvae comparatively than that of other stages. Developmental period, 

adult longevity, consumption rates, survivability rates, size and sex ratio of X. flavipes 

always significant (P<0.001) in different life stages of both the insect pests.  

The average percentage of egg hatchability (±SE) was the highest as 25.00±1.15 at 

0.491μl/cm² and the lowest 5.00±1.02 at 7.863μl/cm² when C. pusillus was applied 

different concentrations of Spinosad and the results found highly significant (P<0.001). 

On the other hand, average (±SE) mortality of larvae, pupae and adults were found the 

highest as 14.00±2, 8.33±0.88 and 15.33±1.22 respectively at 7.883μl/cm² after 72h and 

the lowest 3.33±0.88, 1.67±0.33 and 5.00± 0.58 at 0.491μl/cm² Spinosad concentrations 

after 24h of exposure. The larvae (72h LC50 was 0.1755007μl/cm²) and adults (72h LC50 

was 0.839572μl/cm²) were found more susceptible than pupae (72h LC50 was 

35.94058μl/cm²).  

Effects of separate concentrations of Spinosad on different stages of R. dominica were 

investigated and found that average percentage of egg hatchability (±SE) was the 

highest as 15.00±1.14 at 0.491μl/cm² and the lowest 0.33±1.03 at 7.863μl/cm². The 

effect of different concentrations on egg hatchability was highly significant (P<0.001). 

Average (±SE) mortality of larvae, pupae and adults were 13.33±0.88, 8.33±1.45 and 

17.33±1.20 at 7.863μl/cm² after 72h and the lowest 4.67±0.33, 1.00±0.58 and 

6.67±0.88 at 0.491μl/cm² after 24h of exposure periods. Larvae (72h LC50 was 

0.5433412μl/cm²) and adults (72h LC50 was 0.466328μl/cm²) were found more 

susceptible than pupae (72h LC50 was 22.0538μl/cm²).  

Different concentrations of Spinosad on different life stages of X. flavipes were 

investigated and recorded average percentage of egg hatchability (±SE) was highest 

35.00±1.73 in control (untreated) and lowest 25.00±2.12 at 7.863μl/cm² concentrations. 

At 1.966, 0.983 and 0.491μl/cm² concentrations, the egg hatchability was almost similar 

like in control medium. Effect of different concentrations on egg hatchability was not 

significant (P<0.001) comparatively than that of control medium. Average (±SE) 

mortality of nymphs and adults was found highest as 6.67±1.76 and 5.00±0.45 at 

7.863μl/cm² after 72h but lowest 1.00±0.58 and 1.67±0.67 at 0.491μl/cm² Spinosad 
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concentrations after 24h of exposure. A nymph (72h LC50 was 73.82966μl/cm²) was 

found more susceptible comparatively than that of the adult (72h LC50 was 

331.5098μl/cm²). Moreover, at 0.491, 0.983 and 1.966μl/cm² concentrations after 24h 

to 72h of exposure, survivability of adults were found 94 to 84% respectively.  

The adult population of C. pusillus and R. dominica was significantly (P<0.001) 

reduced by X. flavipes and different concentrations of Spinosad alone and their 

combinations after 3, 6, 9 and 12 months of storage than those of control medium. After 

3 months, from Spinosad concentrations reduced the population from 57.69 to 66.12% 

compared to control. In combination this range was from 42.86 to 51.56%. After 6 

months, this reduction percentage rate was increased in both concentrations and 

combinations. After 9 months, this reduction percentage rate was increased 

continuously and after 12 months the effect of both concentration and combination 

were found more effective compare to early storage period. In case of the predator 

alone, the population of the both insect pests was higher than those of concentrations 

and combinations. The population of both insect pests was found more susceptible to 

the combinations comparatively than that of concentrations. The population of              

R. dominica was found more susceptible to different concentrations and combinations 

than that of C. pusillus at all storage periods.        
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INTRODUCTION 

Insect pest of stored products and management scenario: Insects are the most 

diverse group of animals, including more than one million described species which 

are half of all known living organisms (Chapman 2006, Richard et al. 2007 and 

Wilson 2009). They appeared on the earth about 500 million years ago and are the 

oldest inhabitants of this planet (Saxena 1996). Some species of insects produce 

honey, silk and fibres, some of them pollinate flowering plants, and are now 

cultured primarily for pollination management in order to have sufficient 

pollinators in the field, orchard or greenhouse at bloom time (Smith et al. 1991). 

Some insects have also gained attention as potential sources of drugs and other 

medicinal substances (Aaron 2010). Fly larvae (maggots) were formerly used to 

treat wounds to prevent or stop gangrene, as they would only consume dead flesh. 

Some insects are also used as bio-control agents who are usually considered as 

beneficial because they can reduce the impact of pests and the use of pesticides in 

agriculture and food storage systems (Kenis and Branco 2010).  

Although many insects attract the most attention positively but a large number of 

insects, alien insects and mite’s species cause serious socio-economic hazards as 

pests of agriculture, horticulture, stored products, forestry and also may affect 

human or animal health (Kenis and Branco 2010). The struggle between men and 

insects began long before the dawn of civilization, has been continued without 

cessation to the present time and will continue, no doubt, as long as the human 

race endures. It is because of the fact that both men and certain insect species 

constantly want the same things at the same time (Metcalf and Flint 1962).  

Men began to store foodstuffs right from the prehistoric days (Metcalf and Flint 

1962, Retnakaran et al. 1985), to face the future demands and to ensure the supply 

of food but at times, insects cause so much damage to the crops that much of these 

get ruined. The inevitable world population growth placed increasing demands on 

the production of cereal and other food grains which comprise 67-80% of human 

food supply and diet (Kendall and Pimentel 1994, Dyson 1999). It is estimated 



 2 

that losses of cereal grains in storage can range from 10 to 20% of overall 

production and a primary factor in these losses is the depredations of stored 

product insect pests (Phillips and Throne 2010). McEwen (1978) and  Pimentel 

(1978) stated that world crop losses due to pests is approximately 35% of the total 

production in each year despite of  best efforts.The crop loss is further increased at 

the post-harvest systems due to insects and other pests (Wright 1976). Globally 

only insect pests destroy approximately 14% of all potential food production 

(Pimentel 2007).  

Pest problem have increased side by side with the increased amount of food 

stockpiled and the longer duration of storage (Khan and Mannan 1991). It is 

apparent that a number of insects act as enemies to the life of human, their pets 

and plants (Jha 1987). More than 2000 species of field and storage pests annually 

destroy approximately one third of world’s food production, among which highest 

losses occur in developing Asian countries (Ahmed and Grainge 1986). A higher 

quality of the post harvested crops are damaged in the tropical countries by insects 

(Mondal and Port 1995, Mondal and Malek 1996) which are generally expressed 

in terms of direct weight and nutrient loss (Howe 1965a, Krishnamurthy 1975, 

Watters and Shuyler 1977). Moreover food losses due to insect infestation in the 

store is higher in tropical and sub tropical countries than in the temperate climatic 

zones (Girish et al. 1988). The annual costs arising from the two grain beetles 

Oryzaephilus surinamensis and Rhyzopertha dominica vary from 11.2 to 35.3 

million € only in Germany (Reinhardt et al. 2003).  

In some developed countries grain can be downgraded or rejected completely if 

even a single live insect is found (Pinniger et al. 1984, Anonymous 1990). In UK 

the Food Safety Act was amended recently; now all stores containing grain which 

might be destined for human consumption are treated as food premises and subject 

to inspection to ensure that food is not contaminated. The contamination of foods 

and animal feeds with mycotoxins is a worldwide problem (Kabak et al. 2006).  

The insect pests are detected in stored grain very soon after grain is brought in for 

storage (Hagstrum and Throne 1989, Dowdy and Mc Gauphey 1994) and they can 
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cause taint and contamination of grain with their excreta, cast skins and dead 

bodies (Scott 1991). Moreover, the presence of insects in stored foods directly 

affects both quantity and quality of the commodities (Hill 1978, Wilbur and Mills 

1978, Burkholder and Faustini 1991, Khan and Mannan 1991). 

A variety of pests are found in stored grain and cereal commodities and food 

processing facilities, depending upon geographic location, physical nature of the 

facility and the type of food being processed (Abd-El-Aziz 2011). Among the 

insect pests of stored commodities, the beetles (Coleoptera) are by far the most 

numerous group, followed by the moths (Lepidoptera) (Khan and Mannan 1991).  

Among these two groups other insects also share the stored habitat, and these are 

ants (Hymenoptera) (Smith 1965, Mallis 1982), cockroaches (Dictyoptera) 

(Cochran 1982, Mallis 1982), flies (Diptera) (Greenberg 1971, 1973, Mallis 1982), 

silverfish (Thysanura) (Mallis 1982) and springtails (Collembola) (Mallis 1982) 

psocids (Psocoptera) (Turner 1975, Mallis 1982). Globalization increased trade,, 

travel and transport and leading to an unprecedented homogenization of the 

world’s biota by transport and subsequent establishment of organisms beyond their 

natural barriers (Wittenberg 2005). In Europe, 113 alien insect species are pests of 

stored products (Rees 2004) where as in Switzerland, about 800 alien species are 

established (Wittenberg 2005). In USA, a total of 61 species of insects have been 

reported at elevators or in flat storages (Hagstrum et al. 2010). The Canadian 

Grain Commission recognizes over 50 species of insects (including grain mites) as 

pests of stored grain. In Bangladesh 29 species of insect pests of stored products 

are listed by Alam (1971). 

Among the insect pests the flat grain beetle, Cryptolestes pusillus (Schon.) is an 

external feeder of craked grains, a serious cosmopolitan pest of stored product 

commodities, and may subsequently build up huge population within very short time 

(Rahman  et al. 2008).  The genus has two other species C. ferrugineus (S) (Rusty 

grain beetle) and C. turcicus (Grourelle) (Flour mill beetle), having the same feeding 

habits. The lesser grain borer, Rhyzopertha dominica (F) is a primary pest of stored 

grains feeding the grain kernels, found in many regions of the world (Edde 2012). 
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The adults likely to fly back and forth between agriculture and non-agriculture 

land scapes (Edde et al. 2005, Mahroof and Phillips 2007, Jia et al. 2008 Mahroof            

et al. 2010) and is an internal feeder of sound grain. Hagstrum and Flinn (1994) 

reported that in farm bins R. dominica was present in 78.6% and Cryptolestes spp was 

present in 85.8%. Both C. pusillus and R. dominica are economically harmful and are 

available in stored cereal, cereal products and other commodities (Alam 1971).  

Early attempts to control stored grain pests relied on methods such as mixing dry 

soil and wood ash with the grain, causing lethal dehydration of insects and the 

fumigant action of certain indigenous plant materials (Levinson and Levinson 

1989). Control of stored-product pests is necessary to prevent contamination or 

adulteration of human foods. Persons involved in commodity or food storage, 

handling or processing, have the responsibility to prevent food adulteration               

(Abd-El-Aziz 2011). The middle decades of the twentieth century have been years 

of the revolution in the field of pest control triggered during the World War II by 

the discovery of DDT in 1939, and its successful utilization against a number of 

pests. It has been estimated that about 4.5 million metric tones of pesticides are 

used annually in the world agriculture (Smith and Van den Bosch 1967, Pimentel 

1983). Pesticides sales in Bangladesh in 1954 was only 9 tons which up to 18902.5 

tons of formulated products in the year 2000, went costing Tk 3001.56 million 

(Hasanuzzoha 2004) and the amounts of pesticides used in Bangladesh are being 

increased day by day.  

Chemical pesticides are still indispensable in controlling insect pests both in field 

and storage due to their quick knockdown and killing properties. The efficacy of 

insecticides against storage pests varies greatly according to their chemical 

structures, insect species and the storage environment (Suchita et al. 1989). 

Indiscriminate and large-scale use of broad spectrum synthetic pesticides caused 

serious hazard  including its persistence in the environment (Smith 1970,        

Wilkin and Fishwick 1981, Jolly et al. 1989, Bryne et al. 1994, Laliberte 1995, 

Bell et al. 1999, Rajapakse et al. 2000, Daglish and Wallbank 2002); toxicity to 

human beings (Anonymous 1981, Oudejans 1982, Hasanuzzoha 2004, Nayak et al. 
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2005), wild life including pollinator and economically beneficial insects 

(Munakata 1977, Pimentel 1981, 1983, Oudejans 1982, Daglish 2006); 

development of insect resistance to the insecticides (Georghiou and Mellon 1983, 

Champ 1986, Reichmuth 1992, Subramanyam 2006a); and finally, higher cost of 

crop production (Khan and Mannan 1991). Moreover, both multi-resistance and 

cross-resistance to pesticides has been reported in a large number of insects 

(Metcalf 1980, Georghiou and Mellon 1983). Sometimes, toxic residues of 

pesticides accumulate in the ecological food chain and become concentrated by 

bio-magnification (Metcalf and Luckman 1975). Concerns over pesticide operator 

safety and residues in our food and the environmental have led to a review of all 

organophosphorus pesticides by the Pesticide Safety Directorate in UK, their 

current advice is for farmers to avoid to use these pesticides altogether unless there 

is no alternative (Rooker 1999). Presently, their is a great concern in the                  

post-harvest ecosystems throughout the world particularly in developing countries 

including Bangladesh (Champ 1979, Subramanyam and Hagstrum 1995). In spite 

of insecticides being the major means of defense against insect pests, the above 

mentioned problems have generated a sustained search for either alternative means 

of insects control methods for reducing the amount of insecticides required for the 

pest management (Mondal 1984a, Smet et al. 1990, Burkholder and Faustini 1991) 

or to search for eco-friendly new methods.Therefore, stored-product pest control 

strategies tend to emphasize the non-chemical aspects of pest control with the 

judicious use of pesticides (Abd-El-Aziz 2011).  

In this respect, Xylocoris flavipes is a cosmoplitan predator of different preying on 

insect pests of stored commodities namely Tribolium castaneum, T. confusum, 

Cryptolestes pusillus, Rhyzopertha dominica and Trogoderma granarium    

(Ahmed et al.1991).Toews and Subramanyam (2004) found that Spinosad applied 

to stored wheat at 1 ppm was highly toxic to the parasitoids Habrobracon hebetor 

(Say), Theolax elegans (Westwood), and Anisopteromalus calandrae (Howard), 

yet not so to the warehouse pirate bug, X. flavipes (Reuter), which demonstrated 

92% survival and was able to reproduce under these same conditions.  

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib91#bib91
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Spinosad will represent a valuable new addition to the limited arsenal of grain 

protectants and can positively impact global food security (Hertlein et al. 2011). 

Its combination of high efficacy, broad insect pest spectrum, low mammalian 

toxicity, and sound environmental profile is unique among existing products 

currently used for stored-grain protection (Thompson et al. 2000). In several 

countries, Spinosad are being widely used to protect stored products against insect 

pest including C. pusillus and R. dominica (Hertlein et al. 2011). Spinosad is 

minimally disruptive to beneficial insects and compatible with Integrated Pest 

Management (IPM) programs in many crops (Miles 2006 and Arthurs et al. 2007).  

Unmanaged pest problems and unsafe pesticide use practices threaten human 

health and the environment. Full implementation of IPM is affordable and cost-

effective and can reduce pesticide exposure, pesticide use and pest complaints.      

A coordinated global effort is critically needed to make safe and effective insect 

pest management the standard for all of stored products including paddy, rice, 

wheat, wheat flour, pulses, maize and sorghum (Thomas et al. 2009).  

Keeping these views in mind and considering the merit of using natural pest 

control agents like predator, bacteria, etc., the research reported here was initiated 

to investigate the possible combined effects of the predator, X. flavipes and the 

bacterium, Spinosad for the control of two important stored product insect pests    

C. pusillus and R. dominica.   

Test insects, their distribution and damage 

Among the major insect pests causing serious damage to stored products 

Cryptolestes pusillus (Schon) and Rhyzopertha dominica (F.) were selected for the 

present research because they are of great threats to the stored grains and cereals 

of Bangladesh. These two insects have different feeding habit, the former one is an 

external feeder of broken grains and cereals, the later one is an internal feeder of 

whole grain. Both are consumed as prey by the warehouse pirate bug, X. flavipes. 
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Cryptolestes pusillus: C. pusillus, flat grain beetle, is a member of the family 

Cucujidae, order Coleoptera. Granglbour in 1899 described this beetle under 

family named Laemophloeidae which consists of 500 species worldwide (Thomas 

and Leschen 2010). Nine pest species of Cryptolestes occurring in stored products 

are C. capensis (Waltl), C. cornutus (Thomas and Zimmermann), C. divaricatus 

(Grouvelle), C. ferrugineus (Stephens), C. klapperichi (Lefkovitch), C. pusilloides 

(Steel and Howe), C. pusillus (Schonherr), C. turcicus (Grouvelle) and C. ugandae 

(Steel and Howe) (Halstead 1993). In spite of Banks (1980) and Halstead (1993) 

publications, Cryptolestes specimens are usually identified to generic level only. 

Cryptolestes pusillus was first proposed by Schoenherr (1817). C. pusillus has two 

synonyms such as Laemophloeus pusillus and Laemophloeus mintus. The local 

name of C. pusillus is chapta beetle.  

Distribution of C. pusillus : C. pusillus is most prevalent in warmer climates and 

occurs throughout the crop-growing regions of the world. It is particularly 

common in wet tropical and warmer temperate regions, but unable to survive in 

unheated premises in cooler temperate regions (CABI Crop Protection 

Compendium 2008, Halstead 1993). In Canada, C. pusillus has been recoded in 

grain elevators and flour mills feeding on damaged grain, preferably wheat 

(Bousquet 1990). So far, only cosmopolitan C. ferrugineus, C. pusillus and          

C. pusilloides have been detected in Australia (Halstead 1993). Adult beetles can fly. 

Although its origin is unknown, C. pusillus has been transported internationally in 

exported commodities. 

Damage: The flat grain beetle, C. pusillus is one of the smallest and most 

common destructive major insect pests of stored grains (Davies 1949, Pajni and 

Bedi 1974, Barker 1976 and Hole et al. 1976). This beetle feeds on groundnuts, 

Coffee, barley, rice, sorghum, cocoa, wheat, flour, oilseeds, cassava root, dried 

fruits, chilies, maize and other dried stored food commodities (CABI Crop 

Protection Compendium 2008). In cooler and drier regions of the world, it is found 

mainly in cereal and cereal products, while in warmer and humid regions it infests a 

much wider range of products (Hole et al. 1976). The most favoured food of this 
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beetle is cracked cereal grains, which gives insect access to the germ, and provides 

better harborage and oviposition sites (LeCato 1974).  Larvae feed preferentially on 

the germ of the whole kernels, but they also feed on the endosperm and sometimes 

hollow out the entire kernel. Growth of mold in the endosperm renders it more suitable 

as larval food. Cryptolestes species are apparently unable to feed on sound grain, but 

they can feed on kernels with very slight imperfections or injuries. 

Rhyzopertha dominica: The lesser grain borer Rhyzopertha dominica was first 

described by Fabricius in 1792 under the name Synodendron dominicum from 

specimens taken from nuts and roots imported from India (Chittenden 1911). 

Lesne (1896) later recorded the insect as Rhyzopertha  dominica and published a 

full description of the insect under this name. Rhyzopertha  dominica is a member 

of the family Bostrichidae under the order Coleoptera.  There are about 550 

bostrichid species in 99 genera of which 77 species in 26 genera occur in North 

America (Marske and Ivie 2003). Bostrichids are reddish-brown to dark-brown in 

colour of various in sizes, elongated, cylindrical in cross-section, and their head is 

invisible when viewed from above. The insects live mainly in dead and dried 

wood, and are pests of timber also (Potter 1935, Fisher 1950, Mathew 1987,                       

Ivie 2002a, b).  

Distribution: The origin of R. dominica is not known with certainty, but the 

consensus is that the Indian subcontinent is the native home of the insect because 

the region is the focus of many species of bostrichid (Chittenden 1911, Schwardt 

1933 and Potter 1935). Nowadays, R. dominica is widely distributed around the 

world ( Potter 1935 and Chujo 1958) and is a primary pest of stored grain in 

warmer regions lying in the belt between latitude 40° N and latitude 40° S of the 

equator (Potter 1935). R.  dominica is largely distributed during the transport of 

grain (Doane 1919 and Chujo 1958) and was first noticed in the United States of 

America (USA) in specimens of wheat distributed from the Patent Office (Leconte 

1862) and became established in the country in the early 1920s (Back and Cotton 

1922). The establishment of R. dominica in the USA is believed to have been 

http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib180#bib180
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib180#bib180
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib180#bib180
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib180#bib180
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augmented by importation of infested wheat from Australia (Doane 1919), and 

hence the insect sometimes referred as the “Australian wheat weevil” in early 

publications (Cotton and Good 1937). R. dominica is frequently captured in forest 

habitats and in grain storage environments, and the adults are likely to fly back 

and forth between agricultural and non-agricultural landscapes (Edde et al. 2005, 

Jia et al. 2008, Mahroof et al. 2010 and  Mahroof and Phillips 2007).  

R. dominica achieves its maximum reproductive success on dry grains, specially on 

wheat (Chittenden 1911, Schwardt 1933, Potter 1935, Bashir 2002 and Edde and 

Phillips 2006a,b). Published reports have shown that while R. dominica can tunnel 

in many woody plants, reproduction in most of them is generally poor (Wright et al. 

1990, Edde and Phillips 2006a,b, Jia et al. 2008).  

Damage: R. dominica is injurious to cereals; breeds in corn, rice, wheat, and in 

other substrates containing starch (Chittenden 1911). Grain infestations may result 

from residual insect populations inside storage structures and mixing of infested 

and uninfested grain or by R. dominica originating from outside sources (Sinclair 

1982, Fields and Phillips 1994, Vela-Coiffier et al. 1997 and Hagstrum 2001). The 

flying adults generally enter a grain bin through the headspace, alight on the grain 

surface, and gradually moves through the grain mass in a slow downward 

progression (Sharangapani and Pingale 1957, Keever 1983, Vela-Coiffier                 

et al. 1997 and Hagstrum 2001). R. dominica could move down into the grain mass 

to a depth of 12 m, which is deeper than observations for other grain beetles (Flinn 

et al. 2010). A wheat consignment containing more than 32 insect damaged kernels 

(IDK) per 100 g is designated as sample grade (Federal Grain Inspection Service   

1997), which cannot be sold for human consumption (Flinn et al. 2004). There is a 

general trend toward a no tolerance for live insects and domestic flour mill 

contracts specify an upper rejection limit of 7 IDK per 100 g grain sample         

(Kenkel et al. 1993). 

Grains infested by R. dominica have a characteristic sweetish odor, which is due to 

the male-produced aggregation pheromones (Khorramshahi and Burkholder 1981). 

http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib180#bib180
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib129#bib129
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib133#bib133
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Adult feeding activities produce large amounts of frass, most of which consists of 

ovoid granules of apparently undigested endosperm mixed with a finer floury part 

(Breese 1960). The frass contain larvae exuvae, feces, fragments of immature 

insects, and other by-products, which could affect the end-use quality of the 

infested grain (Sanchez-Marinez et al. 1997, Seitz and Ram 2004 and Park et al. 2008). 

The larvae and adult R. dominica feed on both the germ and endosperm and are capable 

of reducing wheat kernels to the pericarp (Winterbottom 1922 and Campbell and Sinha 

1976). The degree of feeding damage caused by adult R. dominica varies with beetle age, 

greater damage being caused by young adults (Rao and Wilbur 1972). 

Several authors (Breese 1960, Campbell and Sinha 1976, Crombie 1944, Gay and 

Ratcliffe 1941, Golebiowska 1969, Howe 1965b, Rao and Wilbur 1972 and Wilbur 

and Halazon 1955) have investigated the amount of grain consumed by 

R. dominica under experimental conditions, but the estimate of losses varied 

among the authors. Campbell and Sinha (1976) reported 17% loss per kernel when 

R. dominica was allowed to develop from egg to pupa in wheat grains, whereas, 

Rao and Wilbur (1972) and Crombie (1944) reported 10 and 23% weight loss per 

wheat kernel, respectively.  

Alternate insect control methods using at present 
The pest management in stored commodities is facing many obstacles such as 

restrictions on the use of certain pesticides which caused resistance in pest 

population, pose possible health hazards and a risk of environmental contamination. 

Entomologists throughout the world spend a great deal of time and effort in attempt 

to determine the presence of insect pests in stored grains, check their infestations 

and design better and safer methods to bring them under control. Control measures 

of different nature are being adopted at farm, market and public sector storage that 

consist of use of native soar natural methods of control by plant materials or contact 

insecticides and fumigants (Maina and Lale 2004, Hussain et al. 2005).  

Control of stored product insects is best achieved through an integration of 

physical, chemical and biological methods (Arthur 1996, Hagstrum et al. 1999, 

http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib226#bib226
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib46#bib46
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib100#bib100
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib182#bib182
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib46#bib46
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib182#bib182
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Phillips and Throne 2010). However, in practice there is still a strong reliance on 

the use of chemicals applied to grains at the time of storage. To control an existing 

infestation, specially in grain that is not treated with a traditional chemical 

protectant, fumigants like phosphine is used. Promising techniques that have been 

developed and continues to be refined, is monitoring populations with insect 

pheromones and/or food attractants for detecting stored-product insects (Abd-El-

Aziz 2011). Some chemical control products are under intense scrutiny due to 

concerns about human safety, insect resistance, environmental impacts and 

presence of chemical residues in raw and processed foods (Daglish and Wallbank 

2002, Nayak et al. 2005, Daglish 2006). Alternative chemical control options to 

protect grain that do not suffer from the concerns outlined above are urgently 

needed and Spinosad is one such product that fills this void. Spinosad is currently 

registered in several countries as a grain protectant at a maximum labeled use rate 

of 1 ppm (1 mg/kg of grain) (Hertlein et al. 2011). Spinosad is effective against 

R. dominica (Subramanyam et al. 2003, Flinn et al. 2004 and Hertlein et al. 2011) 

and other economically important beetle including C. pusillus  and moth pests 

associated with stored grain and is also effective against certain psocid species 

(Hertlein et al.  2011).  

For a long time the biological control is an over-looked component of integrated 

pest management of stored product pest (Flinn 1998). Many species of natural 

enemies of insects occurs in stored product ecosystem (Brower et al. 1996). 

Among these the anthocorid bug, X. flavipes is a cosmopolitan predator of 

different prey (pests) of stored commodities namely T. castaneum, T. confusum,   

C. pusillus, R. dominica and Trogoderma granarium (Ahmed et al. 1991). 

Moreover, Computer-based decision support systems that use biological and 

environmental data to predict population trends and evaluate the need for 

insecticidal inputs have been developed for stored-product storage systems in 

several countries (Abd-El-Aziz 2011). 

Environmental control 
Insects in stored grain can be controlled by manipulating the physical environment 

or applying physical treatments to the grain and insects (Abd-El-Aziz 2011).              

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib67#bib67
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib95#bib95
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The factors of the physical environment are temperature, relative humidity or grain 

moisture content and relative composition of atmospheric gases in the intergranular air. 

Physical treatments include physical removal and physical barriers to prevent the 

entrance of insects, inert dusts, light and sound. Different types of physical control 

practices have been reviewed by a number of researchers (Shejhal 1980, Cline et al. 

1985, Lapp 1986, Armitage 1987, Bell 1987, Lessard 1987, Navarro and Jay 1987, 

Wilkin and Nelson 1987, Cline and Press 1990, Banks and Field 1995, Golob 1997, 

Subramanyam and Hagstrum 2000). 

In the developing countries of Asia and Africa the harvested grains, paddy, 

sorghum, millets, pulses or oil seeds are sun-dried before storage to eliminate 

insects if present (Rajendran and Chayakumari 2003). The eggs of the stored 

product insects could be eliminated by milling wheat to flour or by sieving flour 

through 210μm mesh (Yamanouchi and Takano 1980). Cooling of wheat by low 

volume aeration is used in modern Europe, Canada and United States (Arthur 1996) 

but cost of the cooling equipments and treatment is high (Longstaff 1999) which 

could not justify its economic use in developing countries. High temperature 

fluidized bed have reached a pilot scale for the disinfestations of grains and their 

products, and short exposures to temperature above 60ºC are generally effective 

for the disinfestations of grains (Evans 1981, 1987a, b). Insects coated in inert 

dusts dehydrate and die, so inert dusts have been used for centuries by aboriginal 

people in North America and Africa to control insects in their stored grain. 

According to Fields and Muir (1996) five types of inert dusts  such as i) sands and 

other soil components are traditional insecticides used by aboriginal peoples as a 

protective layer on top of stored seed (Golob and Webley 1980); ii) Silica aerogel, 

produced by drying an aqueous solution of sodium silicate have been reported to 

control a number of insect species including C. pusillus and R. dominica (Le Patoural 

1986, Desmarchelier and Dives 1987, White and Loschiavo 1989, Aldryhim 1991, 

1993, Quarles, 1992); iii) non-silica dusts, such as rock phosphate, have been used in 

Egypt (Fam et al.1974) and lime (calcium oxide) provides insect control (Golob and 

Webley 1980); iv) Particle films (Kaolin and bentonite clays) also have potential 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=moisture+content
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for use as a dry dust material in stored-product environments. The particle film  

M-96-018 was reported to be effective against the Tribolium species and appears 

to have a potential for use in management programs to control beetles within 

storage facilities (Arthur and Puterka 2002); v) Diatomaceous earth (DE) the 

fossilized remains of diatoms having low mammalian toxicity regarded as safe by 

the USA Environmental Protection Agency (Subramanyam and Hagstrum 1995) 

and (Anonymous 1991). DE also showed efficacy against R. dominica on stored 

wheat (Kavallierator et al. 2005, Athansassion and Kavallierator 2005), preventing 

economic damage of stored rice (Chanbang et al. 2008). However, it is difficult                   

to control R. dominica within grain using DE alone (Arthur 2004b, Chanbang               

et al. 2007a, b).  

 Light may be of some use in luring flying insects into traps (Banks and Fields 
1995). A 5-min exposure to 1 MHz sound at 14.5 Wcm-2, killed all life stages of                
S. granarius at 26°C in wheat but commercial application is unexpected (Banks and 
Fields 1995). Controlled and modified atmosphere storage practices for protecting 
grains have also proved to be potential in stored insect pest control (Hyde et al. 1973, 
Anonymous 1984, Evans 1987b, Hulasare et al. 2005). Ozone is known as a sterilant 
of stored product insect pests at levels less than 45ppm (Abd-El-Aziz  2011). Packing 
materials very often produce barrier against the insect infestation in storage.  

Sitophilus spp, R. dominica, Plodia interpunctella, Lesioderma serricorne, Stegobius 
are capable of penetrating food packaging but Tribolium spp, C. pusillus,                         
C. ferrugineus, Oryziphilus spp cannot penetrate intact packages and must enter 
through existing holes in the package (Highland 1991). Sabbaur and Abd-El-Aziz 
(2007) screened the most suitable packaging materials (muslin paper, cheesecloth, 
wax paper, gunny bags and polypropylene) for prevention of broad bean beetle 
infestation.  

Control by radiation control 
Various forms of electromagnetic energy have been considered potentially useful 

for insect control (Nelson 1967). These include ionizing radiation of extremely 

high frequency (X- rays and gamma rays) which may be used to cause mortality or 

to induce sterility. Potentially useful non-ionizing radiations are infrared, visible and 
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ultraviolet; infrared may be used to kill pests directly whereas visible and ultraviolet 

may be used to attract pests to traps (Crowdar 1986). Ionizing radiation damages 

organisms by causing the production of ions or free radicals-charged molecules that 

are highly reactive and chemical bonds can also be broken. Both types of ionizing 

irradiation have been used to control insects in grain stores (Fields and Muir 1996) 

To cause immediate death to stored product insects may require higher doses, 

sterilization of many species of insects can be accomplished at lower doses, but 

Rusty grain beetles are sterilized at only 0.6 kGy but saw-toothed grain beetles and 

red flour beetles require a 2.0 kGy dose (Banks and Fields 1995). The use of 

irradiation to suppress T. castaneum has been widely studied (Fontes et al. 1996, 

Hasan 1995, Khattak and Jilani 1984, Pajni and Virk 1978). To manage the pulse 

beetles (Callosobruchus spp) irradiation has become the major tool (Ghomomu 

1989, 1991, Hussain and Imura 1989). A number of reports are present showing 

that the females coleopterans are more sensitive to gamma radiation than males 

(Ashraf and Brower 1974, Ahmed et al. 1976, Hasan 1995). Microwaves synersise 

with low temperature could provide an effective and friendly environmental 

treatment technique in IPM program (Valizadegan et al. 2009).  

Chemical control  
Chemical control of stored product insect pests includes some low risk 

insecticides, fumigants and the novel insect growth regulators. The developing 

countries of Asia and Africa still depend on the traditional chemical control 

method because of their quick positive results against the insect pests in the 

agriculture and storage system (Ferdous  2006).  

Insecticides  
Large number of insecticides have been used in the grain storages of the world 
since the time of World War II However, the after effects of the inorganic 
insecticides resulted in to develop organic insecticides. A large number of such 
organic insecticides are used in grain and cereals stores throughout the world. 
Many of the organic insecticides gave desired level of control against storage 
pests including C. pusillus and R. domonica in laboratory and in storages (Khan 
1981, Rahman and Yadav 1985, Mondal 1986, Yadav 1987, Mondal 1988,                 

http://209.238.2.121/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=free+radical
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El-Sayed et al. 1988, Islam et al. 1989, Rajendran 1990, Ali et al. 1991, Collins 
and Cook 1998). New reduced-risk chemical insecticides are still developing to 
control the resistant starins of the storage insects.   

Relative to other stored grain insect pests, C. pusillus and R. dominica are the most 
difficult insect pests to control with insecticidal grain protectants (Zettler and 
Cuperus 1990, Lorini and Galley 1999, Collins 2006); many of approved 
insecticides are either not effective against the insect pests including or the insects 
have developed resistance to them (Parween 1996). R. dominica has developed 
resistance to all approved organo-phosphorus insecticides (Navarro et al. 1987, 

Zettler and Cuperus 1990, Guedes et al. 1996, 1997, Lorini and Galley 1999, 
Collins 2006), and resistance of R. dominica to pyrethroid-based grain protectants 
is widespread (Lorini and Galley 1996, Collins 2006).  

Fumigants: Vijayanna (2006) mentioned that fumigants are effective in pest 

control as these gaseous are suffocative or poisonous against the insects. 

Fumigation plays a major role in insect pest elimination in stored products. 

Phosphine and methyl bromide are the two common fumigants used for the 

management of stored-product insect pests worldwise (Rajendran and Sriranjini 

2008). Phosphine once was the most important fumigant to control R.  dominica 

(Collins 2006 and Daglish et al. 2010). However, some species including              

C. pusillus and R. dominica develop resistance to phosphine which became global 

issue (Herron 1990, Zettler and Cuperus 1990, Lorini and Collins 2006, Schlipalius 

et al. 2008, Newman 2010) and control failures have been reported in field 

situations in some countries (Taylor 1989, Collins et al. 2002). Methyl bromide, a 

broad-spectrum fumigant, has been declared an ozone-depleting substance and 

therefore, is being phased out completely in 2015 (Taylor 1994, Fields and White 

2002, Bartholomaeus and Haritos 2005). Chloropicrin and Candorsis have been 

reported from Italy as easiest alternatives to methyl bromide (Spotti 2004). 

Recently, the use of sulphuryl fluoride, a structural fumigant for termite and 

woodborer control, has been expanded to food commodities and food handling 

establishments (e.g., flourmills) in the USA, Canada and Europe (Prabhakaran 

2006). New fumigants such as carbonyl sulphide and ethane dinitrile and the old 

http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib64#bib64
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib231#bib231
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fumigant ethyl formate (alone and in mixture with CO2) can be as alternatives for 

food and non-food commodities from the infestation of insect pests including                 

C. pusillus and R. dominica (Damcevski et al. 2003).  

Insect Growth Regulators (IGRs): The use of insect growth regulators (IGRs) in 

controlling of stored product insect pests was suggested by Thomas and Bhatnagar 

Thomas (1968). On the basis of mode of action, IGRs are divided into three 

categories such as (1) Juvenil hormones (JHs) and their analogues (JHAs) also 

called as juvenoids e.g. methoprene, hydroprene etc. which control physiological 

and behavioural activities (Arthir 2004, Collins 2006, Daglish et al. 1995, Daglish 

2006), (2) ecdyson agonists which regulate the morphogenetic changes during 

metamorphosis and (3) chitin synthesis inhibitors (CSIs) or moult inhibitors (MIs) 

e.g. triflumuron, diflubenzuron etc. which interfere with chitin biosynthesis, 

prevent moulting and produce an imperfect cuticle and are effective suppressors of 

development for entire life cycle of insect pests (Post and Vincent 1973, Mulder 

and Gijswitj 1973, Post et al. 1974,  Wills 1974,  Mulder et al. 1975,  Grosscurt 

1978,  Reynolds 1987, Wing and Aller 1990, Edwards and Menn 1981,  Koolman 

1989, Fox 1990, Heller et al. 1992, Oberlander et al. 1997). IGRs used in stored 

product systems in the United States and elsewhere include the insect juvenile 

hormone analogs (Arthur et al. 2006). Compared with the conventional 

insecticides, IGRs do not exhibit quick knock-down in insects or cause mortality, 

but the long- term exposure to these compounds largely stops the population 

growth as a result of the effects mentioned in both parents and progeny (Mondal 

and Parween 2000). Potentiality of IGRs against Cryptolestes spp. was studied by 

Kostyukovsky et al. (2000). IGRs affect development of immature insects includin 

C. pusillus and R dominica, methoprene affects the egg and larval stages of stored 

product insects and suppress progeny production of R. dominica (Mian and Mulla 

1982a, b, Oberlander et al. 1997).  The efficacy of IGRs against the stored product 

insects have been reviewed by Parween (1996), Mondal and Parween (2000). 
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IGRs represent low-risk, biologically based insecticides with potential for more 

adoption in the food industry in the future. The chemically synthetic nature of 

IGRs, however, are non-toxic to the environment and its biota (Fox 1990) and are 

also effective against the insecticides resistant strains of insect pests (Bengston 1987).  

Botanicals as control measure 
Botanicals are comparatively less expensive and are easy to prepare and use. 

Traditionally the farmers and stockers used plant materials or botanicals at early 

periods to protect stored grains against insect pests in many countries of Asia and 

Africa. Botanical Insecticides are locally available and are widely used to suppress 

stored product insect pests (Golob and Webley 1980). Specially plant may provide 

alternative potential to the currently used insect control agents as they constitute a 

rich source of bioactive molecules (Rajashekar et al. 2012), and are also safe for 

non-target animals, human being and ecofriendly (Srinivasa et al. 1993). Since last 

part of 20th Century number of plants have been screened for their insecticidal, 

repellent and antifeedant activities against the stored product insects, some of the 

latest reports are (Rajashekar et al. 2010, Mandal and Khalequzzaman 2010, 

Sabbur and Abd-El-Aziz (2007, 2010) Maia and Moore (2011), Khater (2012) and 

Dimetry (2012).      

Plant oils are strong insecticides and effectively control the internal feeders of the 

grains at storage (Shukla et al. 1992, Xu et al. 1993, Yadav 1993, Obeng-Ofori 

1995, Sanguanpang 1996, Shaaya et al. 1997, Liuv and Ho 1999, Keita et al. 

2001, Haghtalab et al. 2009).  Powders of different parts of a number of plants 

showed efficacy as repellent, antifeedant and growth inhibition along with toxicity 

against the stored product insects including R. dominica (Dakshinamurthy and 

Goel 1992, Tiwari 1994, El-Lakwah et al. 1994, Jembere et al. 1995, Mahal 

2002). Besides that extracts of plant parts have been proved as potent insecticides 

and suggested to use as grain protectants (Shaaya et al. 1997, Sumita 2006, 

Mondal et al. 2012). In this context the neem-based compounds stand for unique 

position as insecticide in the stored and filled ecosystems (Ahmed and Grainge 1986).  

Compounds derived from plants continue to be assessed for their potential to 
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control storage pests (Allotey and Azalekor 2000). Botanical pesticides are always 

relatively safer for vertebrate animals and environments (Odderskaer et al. 2003). 

Although botanicals are environmentally friendly but they are uses in less quantity 

in Bangladesh due to lack of organized production and marketing (Ali 2004). 

Furthermore, interest has been shown in plant products ie, essential oils and their 

components for fumigants action since it is believed that natural compounds from 

plant sources may have the advantage over conventional fumigants in terms of low 

mammalian toxicity (not true all cases) rapid degradation and local availability 

(Rajendran and Sriranjini 2008).  

Biological control  
Biological control is an important component of integrated pest management of 

stored product pest (Flinn et al. 1998) that included various techniques such as use 

of resistant varieties, pheromones, sterile insects, pathogens, parasitoids, parasites, 

predators, etc. Biological control is a plausible alternative to chemical 

management of stored product pests, and a variety of examples of the use of 

natural enemies to protect stored raw commodities are provided by the literature  

viz., Brower (1990 and 1991), Brower and Press (1988), Brower and Mullen 

(1990), Flinn et al. (1994), Scholler et al. (1996), Flinn 1998, Flinn and Hagstrum 

2001). Biological control was begun to be explored as a management strategy in 

food processing facilities since the last part of 20th Century. Many species of insect 

natural enemies occurs in stored product ecosystem (Brower et al. 1996) and these 

species represent potential biological control agents for the desired pests of food 

processing facilities (Hansen 1998, Prozell and Scholler 1994, 1998, Steidle et al. 

2001), warehouses, and retail stores (Prozell et al. 1996). The anthocorid bug, 

Xylocoris flavipes (Reuter) is a cosmopolitan predator of different prey (pests) of 

stored commodities namely T. castaneum, T. confusum, C. pusillus, R. dominica 

and T. granarium (Ahmed et al. 1991, Rahman et al. 2009). 

Biological control (Smith 1911) was first used in 1911 against the Mediterranean 

flour moth (Froggatt 1992) as alternative to conventional pesticides (Waage 1991). 

The theory of biological control was based on natural control which can be 
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observed in the balance of predator-prey and parasite-host population (Huffaker 

and Messenger 1976), thus reducing the commodity damage to tolerance levels 

(De Bach and Rosen 1991). Insect control program one aimed to avoidance, 

elimination or reduction of the factors which promote excessive multiplication of 

insects (Nayar et al. 1976). Haines (1989), Van Huis et al. (1991), Islam and Khan 

(2000) reviewed the status or research of the role of parasite and predators in the 

management of the stored pests.     

Recently the predatory beetle Teretriosoma nigrescens (Lewis) has been introduce 

into West Africa to control Prostephanus truncatus (Horn) with moderate success 

(Markham et al. 1994). The impact of pesticides on natural enemies and the 

resulting outbreaks of secondary arthropod pests have been documented in many 

field agricultural systems (Croft 1990). Validation studies on the potential of natural 

enemies as biological controls agents as replacements for insecticidal protectants in 

storage system are in the focus of IPM programme throughout the world.  

It is potential to select for insecticide resistance in certain parasitic and predatory 

species (Baker 1995, Baker and Arbogast 1995). Integrating the use of 

predatory/parasitic mites and insecticides for stored-grain pest management 

requires knowledge of the impact of the insecticides on the natural enemies or, in 

other words, their selectivity to natural enemies (Baker and Arbogast 1995, 

Goncalves et al. 2002). Goncalves et al. (2004) mentioned that the effect of 

insecticides on the mite species Acarophenax lacunatus (Cross and Krantz), an 

egg parasite of the stored grain pest R. dominica (F.). Deltamethrin was less 

selective in favor of the mite species. Nonetheless the parasitic mite was able to 

parasitize eggs of R. dominica on wheat treated with all the insecticides evaluated. 

In some respects the artificial nature of man-made structures may serve to enhance 
biological control because augmentative natural enemies can be contained within 
the system and environmental conditions are relatively stable compared with those 
of natural systems. However, storage systems are also isolated from potential 
reservoirs of natural enemies, making inoculative or conservation biological 
control difficult. Thus, an inundative form of augmentative biological control may 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=insecticide+resistance


 20 

be the most appropriate tactic for finished stored products (Scholler and Flinn 2000, 
Scholler et al. 1997). Releases of the warehouse pirate bug, Xylocoris flavipes, 
resulted in a 79-100% suppression of moth populations in small storages of 
peanuts, up to 99% reduction of sawtoothed grain beetle populations in 35-quart 
lots of corn and a 90-98% suppression of red flour beetles in a simulated peanut 
warehouse. Rice weevils in wheat spillage in small rooms were suppressed 96% 
by the parasitic wasp Anisopteromalus calandrae. When the egg parasitoid 
Trichogramma pretiosum and the larval parasitoid Bracon hebetor were released 
together in simulated peanut warehouses, they suppressed Indianmeal moth 
populations by 84% and almond moth (Cadra cautella) populations by 98%,                 
B. hebetor alone supressed almond moth populations by 97.3%. A variety of 
natural enemies have been evaluated for use against stored product moths, and has 
also been evaluated as a potential biological control agent for stored product moths 
and beetles (Press et al. 1974, 1982, Keever et al. 1986, Krazpulski and Davis 
1988). Furthermore, much of the literature concerning biological control of stored 
product moths involve releases of multiple species of natural enemies, including 
combinations of egg and larval parasitoids (Brower 1990), H. hebetor and V. canescens 
(Press et al. 1982), parasitoids and predators (Press et al. 1974, 1982, Keever et al. 1986, 
Krazpulski et al. 1988). Overall, Trichogramma species and H. hebetor have been the 
most frequently used natural enemies for stored product moths. 

The advantages of biological control are free of side effects, safe to handle or use, 
occurs naturally, high degree of host specificity, cost effective, self perputation, 
searching ability and survive at low density. Research is continuing to determine 
the proper prescriptions for use of natural enemies in stored grain. Behavioral, 
ecological and physiological data are being collected that will facilitate effective 
deployment of parasitoids and predators. Storage situations other than grain bins, 
such as feed mills, food warehouses and food factories may be targeted areas for 
biological control in the future. As part of an IMP system for stored product 
management, biological control should help to reduce the use of pesticides on food 
and provide for high quality food products. Biological control in stored products is 
being regarded with increasing interest since they are nontoxic and do not damage 
human health or the environment. 
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Parasitoids :  Insects that parasitize or damage other insects and arthropods are 

most appropriately known as parasitoid. A parasitoid is parasitic in its immature 

stages but is free livng as adult. In all instances, parasitoids kill their host, but in 

some circumstances, the host may live much of its full time before dying. 

Hymenoptera and Diptera are the most important parasitoid groups of insects 

among six parasitoid including order (Pedigo 1996) which play an important role 

in the management of storage pests. Askew (1971) stated that there are over one 

lakh species of parasitic hymenoptera, but (Kerrich 1960) reported that there are 

five lakh  hymenopteran parasitoids. Kapil and Chowdhury (1973) described nine 

hymenopteran parasitoids for T.  granarius. Parasitoids that have been assessed for 

the biological control of stored product moths include multiple species of egg 

parasitoids within the genus Trichogramma (Hymenoptera: Trichogrammatidae) 

(Brower  1990, Keever et al. 1986,  Prozell and Scholler 1998, Steidle et al. 2001), 

the larval endoparasitoid Venturia canescens (Gravenhorst) (Hymenoptera: 

Ichnuemonidae) (Press et al. 1982) and the larval ectoparasitoid Habrobracon 

hebetor (Say) (Hymenoptera: Braconidae) (Press et al. 1974, 1982, Krazpulski and 

Davis 1988, Brower 1990, Cline and Press 1990). The bethylid parasitoid 

Plastanoxus westwoodi (Kieffer) generally parasitized the larval and pupal stages 

of C. pusillus (Rahman 2006). The parasitoid Theocolax elegans (Westwood) 

reduced the population of S. zaemais, T. castaneum and Cryptolestes sp in a mixed 

infestation and synergistically produced better result with avidin maize powder in 

case of T. castaneum (Flinn et al. 2006). The parasitoid Anisopteromalus 

calandrae (How) attaks Sitophilus sp. C. chinensis, O. surinamensis and                      

R. dominica (Mahal 2002), along with other species (Islam et al.1985).                      

R. dominica is parasitized in the larval and pupal stages by the parasitoids 

Lariophagus distinguendus and Chaetosphila elegans (Durrant 1921). Pteromalid 

parasitoids such as A. calendrae, L. distinguendus and T. elegans are expected to 

suppress population of Sitophilus sp. and R. dominica (Flinn 1998, Imamura et al. 

2004, Steidle et al 2000, Williams et al. 1971). Sixteen species of Hymenopteran 

parasitoids were collected from different localities in Greece (2002) on grain, 

tobacco and dried fruits; eight parasitoids attacked coleopteran hosts, six attacked 
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lepidopterans and two species attacked the both. According to Elipoulos et al. 

(2002) observed that S. oryzae and R. domonica were most frequently parasitized 

by A. calandrae, H. sylvanidis, T. elegans, Venturia canescens, H. hebetor and                

C. tarsalis; whereas, Tribolium spp., Oryzaephilus spp. and Cryptolestes spp. 

Were parasitized by H. sylvanidis and C. tarsalis. The authors also reported that              

V. canescens and H. hevetor preferred moth larvae the degree of dominant waps 

were in decreasing order as, H. sylvanids>, A. calandrae>, Venturia canescens> , 

C. tarsalis> T. elegans. Seven hymenopteran parasitoids belonging to families 

Pteromalidae, Braconidae, Bethylidae and Ichneumonidae were recorded from 

experimental culture of stored Bengal gram (Cicer arietimum L) and Masur (Lens 

esculentus L) in the BCSIR laboratories, Rajshahi, Bangladesh during 1982-1983. 

The parasitoids are Dinarmus basalis Rond., A. calandrae, C. elegans, B. hebetor, 

Rhabdepysis spp, Holepyris and Diplazon spp (Islam et al. 1985).  

Predators  
According to De Back (1964) the potential biocontrol agents either a predator or 
any other organisms must have the adaptability to the different physical conditions 
of the stored ecosystem, high host searching capacity, high reproductive rate, high 
degree of host specificity, good synchronization with the host, maximum host 
consumption rate, ability to survive in host-free period, changes in behaviour in 
relation to the density and dispersal of host or its own population. Predatory 
insects feed on eggs, larvae or nymphs, pupae and adults of host (Khan and 
Selman 1996). Predators that attack stored product insect pests are typically very 
small or larger and have a short life cycle with high reproductive capacity as long 
as hosts available with suitable environmental conditions (Scholer and Flinn 
2000). Natural enemies can be released at a single location of the store and they 
will find and attack pests located deep inside crevices or with grain mass, unlike 
chemical pesticides (Tyler et al. 1983) and insect pathogens (Fuxa 1993). As pest 
insects have not yet developed resistance to parasitoids and predators (Hokkamen 
et al. 1995), continuous research on the prey-predator relationship of different 
predator species are going on. 
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X. flavipes is commonly known as the warehouse pirate bug (Hemiptera, 
Anthocoridae) and is cosmopolitan in distribution (Henry 1988, Gross 1954), 
commonly reported from storage habitats (Jay et al. 1968) in association with its 
prey, Lepidoptera and Coleoptera (Arbogast 1978). Release of X. flavipes resulted 
in a 79-100% suppression of moth populations in small storages of peanuts, up to 
99% reduction of saw-toothed grain beetle populations and 90-98% suppression of 
red flour beetles in a simulated peanut warehouse. According to a number of 
entomologists, X. flavipes is one of the most efficient predators, which can kill and 
consume many stored product insect pests (Table 1).  

Table 1 Stored product insects prey of X. flavipes 

Order/Family Species References 
Coleoptera 
Anobiidae 

 
Lasioderma serricorne (F.) 

 
Abdel-Rahman et al.1978-79 

Bostrichidae Rhyzopertha dominica (F.) Abdel- Rahman et al.1978-79 
Prostophanus truncatus (Horn) Helbig 1999 

Bruchidae Acanthoscelides obtectus (Say) Sing et al. 2008a 
Callosobruchus maculatus (F.) Sing et al. 2008a  

Cucujidae Cathartus quadricollis (Guerin) Press et al. 1979 
Cryptolestes minitus  Wen and Deng 1988 
Cryptolestes pusillus (Schon) Brower and Press 1992 

Curculionidae Sitophilus orzae (L.) Abdel-Rahman et al.1978-79 
Sitophilus zeamais (Motsch.) Wen and Deng 1988 

Dermestidae Anttagenus unicolor (Brahm) Lecato 1976 
Trogoderma granarium Everts Arbogast 1978 

Mycetophogidae Typhaea stercorea (L.) Brower and Press 1992 
Nitidulidae Carpophilus dimidiatus (F.) Brower and Press 1992 
Silvanidae  Oryzaephilus mercator(Fauvel) Press et al. 1979 

Oryzaephilus surinamensis (L.) Abdel-Rahman et al.1978-79 
Ahasversus advena (Waitl) Brower and Press 1992 

Tenebrionidae Latheticus orzae (Waterh) Tawfik et al. 1982 
Tribolium castaneum (Herbst) Lecato 1976 
Tribolium confusum (Duval) Lecato 1976 
Stegobium paniceum (L.) Awadallah et al. 1986 
Polorus ratzeburgi Wen and Deng 1988 
Zabrotes subfasciatus (B.) Sing et al. 2008a 

Lepidoptera 
Gelechiidae 

 
Sitotroga cerealella (Olivier) 

 
Lecato and Arbogast 1979 

Pyralidae Corcyra cephalonica (Staint) Tawfik et al. 1982 
Cadra cautella (Walker) Press et al. 1974 
Ephestia kuehniella (Zeller) Abdel-Rahman et al. 1978-79  
Plodia interpunctella (Hubner) Abdel-Rahman et al. 1978-79  
Galleria mellonella (L.) Arbogast 1978 

Hymenoptera 
Braconidae Bracon hebetor Say Press et al. 1974 
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Bacteria : Microbial pesticides obtained from insect pathogens or their by- 
products are especially valuable biocontrol agent because their toxicity to non-
target animals and human is extremely low compared to other commonly used 
insecticides, and are safe for both the pesticide user and consumers of the treated 
stored products or crops (Abd-El-Aziz  2011).   

Currently, many entomopathogens were used for the control of invertebrate pests 
of agriculture, forestry and food storage (Subramanyam et al. 1999, 2002, Lacey et 
al. 2001, Fang et al. 2002a,b, Daglish et al. 2003, Khashaveh et al. 2008, 
Mahdneshin et al. 2009). Microbial agents are useful commercially only if they do 
not harm other natural organisms at recommended rate of use in the environment 
(Florence et al. 2003). 

Among the entomopathogens bacteria is the most effective and dominant in 
microbial control of insects. Bacillus thuringensis (Bt) is a bacterium when 
sprayed on or eaten by an insect host, infects the host making it sick and then 
causing it to die. Bt variety is very host specific and works only on the caterpillar 
stages of moths and butterflies and to some extents to flies. Another bacterium 
Beuveria bassiana is also found as potent biocontrol aganet against the stored 
product insects.  The effect of two microbial bacteria (B. thuringiensis and                   
B. bassiana) and three plant extracts were studied on three stored product insects, 
P. interpunctella, E. cautella and E. kuehniella, the combined treatment with  
extracts B. thuringiensis caused  significant enhancement of the pathogens,  
increasing the mortality in almost all insects (Sabbour 2003).   

Recently discovered, Spinosad is a fermentation product of actinomycete bacteria, 
(Saccharopolyspora spinosa Mertz and Yao) which showed low mammalian, and 
avian toxicity, short environmental persistence and prescribed to use for control of 
stored product insect pests including C. pusillus and R. dominica (Subramanyam 
et al. 1999, 2002, Fang et al. 2002a,b, Daglish et al. 2003, Nayak et al. 2005, 
Bonjour et al. 2006, Hung et al. 2007, Athanassiou et al. 2008a, Vayias et al. 
2010, Hertlein et al. 2011) in many integrated pest management programs, as, 
Spinosad is reported to kills insects relatively more quickly than other microbial 
pesticides (Bret et al. 1997).   

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=Beauveria+bassiana
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Discovery of Spinosad: During the late 1950’s, companies including The Dow 

Chemical Company and Eli Lilly and Company began to actively look for 

naturally occurring pest control products. As a result of these efforts, a scientist 

from the Natural Products division of Eli Lilly while vacationing in the Caribbean 

in 1982 visited abandoned rum still and collected several soil samples. These 

samples were taken to the laboratory to determine the presence of biological 

activity. Three years later the fermentation products from these samples were 

shown to have insecticidal activity, and by 1986 Eli Lilly’s scientists identified a 

new actinomycete bacteria producing the biologically active substances, they 

named it Saccharopolyspora spinosa.  Scientists identified the most highly active 

metabolites of S. spinosa in 1987. In 1995, because of its favorable environmental 

and toxicological profile, Spinosad was classified by the U.S. Environmental 

Protection Agency (EPA) as a reduced risk product and granted an accelerated 

registration review. During early 1997, the first Spinosad products, Tracer® and 

Conserve® were approved and launched in the U.S. for use on cotton, and on turf 

and ornamentals, respectively.  

Now a day, S. spinosa colonies are grown using natural products such as soybean 

and cottonseed meal. Computers are used to control temperature, oxygen and 

nutrient levels to ensure maximum production of Spinosad. In Kenya, Spinosad 

was first registered for use as a grain protectant in 2003,  registration in the United 

States was achieved in early 2005, with Spinosad’s labeled use rate set at 1 ppm 

(1 mg ai/kg of grain), and its Maximum Residue Limit (MRL) or tolerance 

established at 1.5 ppm (Subramanyam 2006a,b,  Hertlein et al. 2011). Spinosad is 

also currently registered for grain protection in a number of other countries, but 

widespread commercial launch has been deferred while awaiting final MRL or 

tolerance approvals in a few remaining key grain-importing countries (Hertlein         

et al. 2011).  

Application of Spinosad: Spinosad’s suitability as a stored grain protectant has 

been progressively highlighted in a series of scientific publications dating from 1999 

(Subramanyam et al. 1999a, 2002, Fang et al. 2002a and Mutambuki et al. 2002). 
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Since then, Spinosad has been shown to provide highly effective and long-lasting 

control of important stored product pests on various grains (Toews and Subramanyam 

2003, Nayak et al. 2005, Maier et al. 2006, Subramanyam 2006a, b, Huang and 

Subramanyam 2007, Huang et al. 2007, Subramanyam et al. 2007, Daglish et al. 2008, 

Athanassiou et al. 2008a,b, Chintzoglou et al. 2008a,b, Vayias et al. 2010a,b). 

Spinosad effectively controls both the adults and immatures of same insect 

species, some other species are subjected to very high rate of mortality as larvae 

only. Spinosad also gradually reduce the overall population of many insect pests in 

storage and provide a satisfactory level of long control, and has already been 

proved as very effective against a range of stored-grain insect species, even at 

lower rates than the prescribed application rate, in both laboratories (Fang et al. 

2002a, Toews and Subramanyam 2003, Nayak et al. 2005, Daglish and Nayak 

2006) and field tests (Maier et al. 2006, Subramanyam et al. 2007, Daglish et al. 

2008). A large number of stored product insect pests are controlled at 1 ppm 

concentration of  Spinosad on various commodities which already were previously 

determined by many scientists are shown in  Appendix table 1.  

Toews and Subramanyam (2004) reported that Spinosad applied to stored wheat at 

1 ppm was highly toxic to the parasitoids H. hebetor, T. elegans, and A. calandre, 

bit no toxicity was found against  X. flavipes; survival rate was 92%  and the live 

bugs were able to reproduce under the treated same conditions. Results obtained 

from this laboratory study were subsequently supported by field bin trials 

conducted by Parker et al. (2004a, b) in stored sorghum and by Parker and 

Falconer (2004, 2005, 2006 and 2007) in stored corn, where they showed no 

survival of the parasitoid A. calandre and only limited survival of the parasitoid 

C. elegans, over a storage period 10 to 24 months. Long lasting grain protecting 

potentialities against different specific life stages of different stored product insect 

pests make Spinosad the best than other synthetic insecticides. 

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib59#bib59
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib81#bib81
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib91#bib91
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Background of the study 

Bangladesh is one of the major rice, wheat, maize and pulse growing country in 
the world, but large silos, granaries and warehouses are very limited in number. 
So, a large quantity of grains is stockpiled in small warehouses without following 
any scientific steps for keeping infestation away. In rural areas grain is still stored 
according to traditional indigenous methods and the same store or godown is used 
year after year without being properly cleaned. As a result, stores become quickly 
infested by insect pests. Warm and humid climate of the country provides more 
favourable environment for insect pests in storage. Moreover, food commodities 
are imported to this country almost throughout the year from many other 
countries, and new pests get the chance to enter the country.   People have little 
knowledge about sanitation and contamination of insect pests in storage. For this 
cause, heavy loss of grain is occured in storage situation. 

During the storage of grains and cereals or milled products use of insecticide is 
limited. Even within this limited application scientific methods or processes are 
not followed, due to lack of proper knowledge, training and skill (Ferdous 2006). 
Chemical control, in spite of its so many demerits, has been the primary method of 
pest control in the past and is still in use. As mentioned earlier, pesticide use in 
Bangladesh started from mid-fifties and gained momentum in late 1960 (Alam 
1991). Until 2000, 17 companies (national and international) were involved in 
pesticide formulation, repacking, distribution and supply through their own sales 
and distribution network in Bangladesh (Hasanuzzoha 2004). 

It is important that the proper knowledge should be present about the 
toxicological, effects of pesticidal threshold and care (Ali 2004). Prevention of 
food losses during postharvest storage is of paramount economic importance. 
Integrated pest management is now a widely accepted strategy in pest control in 
pre-and systems. Fumigants are used in the food silos, granaries and warehouses, 
but in the small storages usually the chemical insecticides are used. The ban on 
methylbromide and phosphine would affect the insect management in this system. 
Though IPM programmes are running on in both public and private grain stores, 
but more efficient, safe, eco-friendly and cost-effective agents are needed to be 
searched out. So, the present work will be add some new methods into the IPM 
programmes to make it more convenient, cost effective, and safe food to the consumers.    
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Objectives of the research 
Entomologists, specially insect pest specialists are trying globally to solve the 
insect pest problems in storage. Many studies have been conducted in different 
parts of the world for mentioning the predatory abilities of various beneficial 
insects and for identifying the best bacterium to manage the store insect pests. 
Predacious bug, X. flavipes is a very potential biocontrol agent against the insect 
pests in storage (Arbogast 1976, 1978, Brower and Mullen 1990, Brower and 
Press 1992). The bacterium Spinosad obtained the registration for use in the grain 
stores of USA, Australia and Canada, and from the literature it was found that                
X. flavipes can survive and can produce offsprings in Spinosad treated medium 
(Towes and Subramanyum 2004). In this study C. pusillus and R. dominica as a 
model of external and internal feeder respectively were selected as they caused 
serious damage and infestation of important stored commodities like paddy, rice, 
whole wheat, wheat flour, maize, pulses, beans, maize, sorghum in Bangladesh 
(Alam 1971). Keeping these views in mind, this strategic plan was designed to 
accomplish this research by facilitating implementation of the potential of the 
predator, X. flavipes and bacterium, Spinosad in controlling the selected insect pests 
of stored product by treating separately and in combinedly. In this regard, the 
following specific observations were carried out.  

 To detect the host-stage specific effects on biological parameters of X. flavipes 
on C. pusillus and R. dominica. 

 To determine the effects of Spinosad on egg hatchability, 3rd instar larvae, 
pupae and adults of C. pusillus. 

 To evaluate the effects of Spinosad on egg hatchability, 3rd instar larvae, 
pupae and adults of R. dominica 

 To observe the effects of Spinosad on egg hatchability, 3rd instar nymphs, 
pupae and adults of X. flavipes. 

 To find out the effects of X. flavipes and Spinosad on the population of                    
C. pusillus and R. dominica separately and in combinedly.   
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http://www.google.com.bd/imgres?imgurl=http://old.padil.gov.au/pbt/files/uall/CF_lifecycle3a.jpg&imgrefurl=http://old.padil.gov.au/pbt/index.php%3Fq%3Dnode/23%26pbtID%3D198&usg=__TglSzUvOEdZ2EEH6hD6-I-TcDsE=&h=259&w=200&sz=18&hl=bn&start=4&zoom=1&tbnid=akBam8RhLJ3ZJM:&tbnh=112&tbnw=86&ei=bQrwUKziBsSpkwX7joHwCA&prev=/search%3Fq%3Dlarvae%2Bof%2BCryptolestes%2Bpusillus%26hl%3Dbn%26sa%3DN%26gbv%3D2%26tbm%3Disch&itbs=1�
http://www.google.com.bd/imgres?imgurl=http://2.bp.blogspot.com/_6aWjQppdCuo/SYgw26hMxkI/AAAAAAAAAAQ/FK91TsgnWs4/s320/lesser_grain_borer.jpg&imgrefurl=http://grainpestcontrol.blogspot.com/&usg=__jYoSc4ljfKAOY7p8UhVt5rb-fTw=&h=242&w=158&sz=18&hl=bn&start=191&zoom=1&tbnid=fw-s1NkeBX8OuM:&tbnh=110&tbnw=72&ei=1BvwUOfnGsjWkgWSnYGIAg&prev=/search%3Fq%3DLarvae%2Bof%2BRhyzopertha%2Bdominica%26start%3D180%26hl%3Dbn%26sa%3DN%26gbv%3D2%26tbm%3Disch&itbs=1�


 29 

Effects of environmental factors on insects 

Environmental factors such as temperature, moisture, humidity, air, light, sound 

etc. are naturally not remain constant and equal in every parts of the world and 

throughout the year. These factors can change the development, survivability, 

progeny production, abundance and behaviour of insects of stored products. Birch 

(1945a) showed variation in duration of developmental stages of R. dominica at 

different temperature in wheat containing 14% moisture. R. dominica can be 

developed and reproduced even in grain with low moisture content, at a level of 

8% (Golebiowska 1969). Light may be of some use in luring flying insects to 

entrap (Banks and Fields 1995). A 5-min exposure to 1 MHz sounds at 14.5         

W cm-2 killed all stages of S. granarius at 26°C in wheat but commercial 

application is unexpected (Banks and Fields 1995). Arthur and Casada (2010) 

reported that suction aeration would be more beneficial than pressure aeration for 

controlling insect pest in wheat stored in the southern plains of the United States. 

Among the environmental factors temperature and humidity are usually the most 

influential abiotic factors affecting the population dynamics of insects in storage 

system (Flinn and Hagstrum 1990).    

Temperature and humidity 
Insects are poikilothermic and its rate of development varied with temperature and 

humidity (Andrewartha and Birch 1954, Kitching 1977, Flinn and Hagstrum 

1990). The optimum conditions of temperature and humidity for development of 

stored product pests are between 25-35ºC and 50-70% (Howe 1965a, Haines 1991, 

Banks and Fields 1995, Fields and Muir 1996). A threshold for an adequate air 

temperature for aeration is 15ºC which is the lower temperature limit of 

development for most stored product insect pests (Howe 1965a, Fields 1992). 

Burrel (1967) reported that cooling prevented further development of the heavy 

infestation but since the insects were not killed, this control method should be used 

as a preventive rather than a cure. Lowering the temperature of commodities to 

prevent spoilage is an ancient technology. Part of the success of the underground 

storages used in ancient Egypt compared with above ground stores was due to 

http://scialert.net/fulltext/?doi=je.2011.101.122&org=10#7561_bc#7561_bc
http://scialert.net/fulltext/?doi=je.2011.101.122&org=10#7561_bc#7561_bc
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cooler temperatures of the underground stores (Banks and Fields 1995). The 

effectiveness of aeration can be increased in tropical climates or in the summer in 

temperate climates by cooling the air with refrigeration units. Low temperature 

and humidity reduce the rates of development, feeding, fecundity and survivability 

(Longstaff and Evans 1983). Burks et al. (1999) reported that low temperature 

prevents emergence of unparsitized larvae of the rice weevil S.  oryzae while not 

affecting emergence of parasitoid A.  calandrae. 

Laboratory studies on the population of a bruchid, C. maculatus and its parasitoid     

D. basalis have demonstrated that the fecundity, duration of adult life and 

developmental time depended on humidity (Owdraogo et al. 1996). Okamoto 

(1972) observed maximum number of progeny of A. calandrae emerged from its 

host, C. chinensis at 70% rh and also mentioned that A. calandrae completed its 

life cycle within short period on different developmental stages of C. chinensis at 

70% rh. Cave and Gaylor (1988) noted that parasitoid development and progeny 

emergence were higher at 75% rh and also noted that the mean developmental 

time of Telenomus reynoldsi (Hymenoptera:seclionidae) decreased with increasing 

humidity. A calandrae reared on Sitophilus zeamais at 75, 56 and 40% relative 

humidity and found that developmental time decreased slight but significantly 

when humidity increased (Smith 1993).  

Temperature affected the suppression of R. dominica parasitized by  T. elegans, 

the life span of the female adults of R. dominica decreased with increasing 

temperature, ranging between a mean value of 219 days at 20ºC and 75 days at 

35ºC (Faroni and Garcia 1992). The developments of R. dominica was completed 

when relative humidity was 55% and above, but the development was inhibited 

when rh was less than 30% at any temperature (Longstaff 1999). At 30% rh life 

cycle of R. dominica required 30 to 40 days for completion (Potter 1935).  

Development of R. dominica was completed at temperature as low as 18ºC         

(Long staff  1999), the population of R. dominica was peaked in July to September 

and lowest during December to March, when the average temperature was           

<15ºC (Peng 1984). At 30ºC temperature the life cycle of R. dominica required    

http://scialert.net/fulltext/?doi=je.2011.101.122&org=10#546167_ja#546167_ja
http://scialert.net/fulltext/?doi=je.2011.101.122&org=10#546084_ja#546084_ja
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30-40 days for completion (Potter 1935). Birch (1945a) reported that R. dominica 

is a high temperature tolerant insect and it develops from egg to adult in shortest 

time at 34ºC. The larvae of R. dominica reared on whole meal flour required          

29 days to complete their development at 26ºC (Howe 1950). Wheat variety also 

affects development and reproduction of internal grain feeders. Almeida and 

Amorim (1994) studied the reproduction of R. diminica reared on whole and 

broken wheat grains (Variety OC 854 and IAC 5) at 30ºC and 70% rh and found 

the fecundity was greater on variety OC 854 than on IAC 5 and longevity was 

greater on broken grain than on whole grain. Most of the larvae of R. dominica 

moult three times but a few larvae moulted four times before developing into pre 

pupa, pupa and adult, the total developmental time was 44 and 45 days at 26ºC and 

30ºC temperature and 56% rh respectively Elek (1994). At both temperatures the 

first instar larval period was the longest and most variable and the least variable 

stages were none feeding egg, pre pupal and pupal stages.  

Arbogast (1975) stated that the population growth of X. flavipes was greatly 

influenced by temperature and humidity. Development at 20ºC was protracted and 

characterized by a large variance in the duration of the developmental period, the 

time required to reach the adult stage ranged from 44 to 74 days, but at 

temperature increase from 30 to 35ºC produced no further change. Thus 

development was completed in 21-35 days at 25ºC, 14-24 days at 30ºC and 14-21 days 

at 35ºC. Mortality among the immature stages was highest at 35ºC, specially when 

the humidity was either very low or very high. In fact only 9% eggs were hatched 

at 35ºC and 32% rh though most developed to the point that the red compound 

eyes of the nymphs were visible through the chorion. Of the 9 nymphs that 

hatched, 6 died during the intermediate moult, and 3 died before they reached the 

2nd stadium. Mortality was also relatively high at 20ºC when the rh was 35 or 65% 

and at 30ºC when the rh was 96%. The life span and oviposition period were 

longest at 20ºC, but the maximum rate of oviposition occurred at 25 and 30ºC. The 

life span of adult females and the duration of the oviposition period decreased as 

temperature increased. Life span and oviposition period was shortened at the 
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temperatures by high humidity (96-98% rh) and usually at a lesser extent by low 

humidity (33-35% rh). Fecundity was adversely affected by low and high 

temperature, thus the values of (GRR) were lower at 20 and 35ºC. Fecundity was 

also adversely affected by high humidity at all temperatures but low humidity 

apparently had an adverse affect only at 20ºC.  

Abdel-Rahman et al. (1977) reported that the optimum temperature for oviposition 

of X. flavipes was 25ºC, the survivability rates of the eggs and the nymphs were 

increased at 35ºC. Hatching and survival of X. flavipes nymphs were optimum at 

25ºC, the average number of eggs laid/female/days was found to increase by 

raising temperature. The eggs were hatched in between 2-7 days depending on 

temperature, (15 to 35ºC), increase of temperature enhanced development of the 

adult stage of X. flavipes.   

Faroni and Garcia (1992) observed the incubation period of R. dominica at 35, 32, 28, 

24 and 18ºC temperature respectively and recorded the period to be 6.5, 6.7, 8.7, 11.2, 

22.8 and 27.6 days. The incubation period was considerably shorter in summer than in 

winter in Bangladesh (Alam 1971). Parajulee et al. (1995) reported that in case of the 

predator L. campestris 43% rh slightly lowered eclosion rates (70-79%) than the higher 

rh 58 and 75% respectively. Sex differentiation of the predator was not affected by 

relative humidity at 30ºC (Parajulee and Phillips 1992, 1993).  

Hashem (1989) reported the incubation period was 6.5 days at 30ºC temperature. 

Optimal temperature for development of S. oryzae is generally in the range of 22ºC to 

27ºC (Howe 1965a, Field 1992) and in controlled laboratory studies; results indicate 

greater reproduction in S. oryzae at 27ºC versus 32ºC (Arthur and Throne 2003) 

however the reverse was true for R. dominica (Vardeman et al. 2006).  

Russo et al. (2004) reported that the egg survival rate of X. flavipes predating on               

T. castaneum was high at 24 and 32ºC, and larvae survived longer than the first instar at 

19ºC. At 21ºC the number of the larvae completing the immature stage was extremely 

low. Developmental time was significantly short at 32ºC. Female lived longer but 

fecundity was greatly reduced at 21ºC, and egg production was maximum at 32ºC.            
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The adult X. flavipes survived no more than 4-5 days at 19 to 32ºC. The 

developmental time from first instar to adult decreased with the increasing 

temperature, at 32ºC it was 13.7 days.  

Khan et al. (2004) reported that high temperature (studied temperature 20, 25, 30 

and 35ºC) shorten the developmental periods and increased the adults eclosion and 

progeny productions of the pulse beetle C. chinensis. The sex -ratio was distorted at 

higher temperature, but the reproductive potential and percent of fertility of the 

females were increased. Temperature range 25-30ºC has been proved to be the 

optimum for the development of pulse beetle.  

Hasen et al. (2004) observed that in pest S. cerealella maximum fecundity                 

(124 eggs per female) was obtained at 20ºC and 80% rh; and immature 

survivorship was highest at 80% rh and lowest at 44% rh; and minimum 

developmental time required at 80% rh at 32ºC.  

Rees (2004) reported that shortest developmental period of C. pusillus is 22 days 

at 35ºC and 90% rh and breeding takes place at 17.5-37.5ºC and >50% rh where as 

the shortes developmental period of C. pusillus is 21 days at 35ºC and 90% rh 

breeding takes place at 20-42.5ºC and 40-90% rh. Some strains of  C. ferrugineus, 

C. capensis and C. turcicus are highly cold tolerant and able to survive an 

extended period at or below 0ºC temperature. C. ferrugineus and C. capensis are 

able to breed under dried conditions than other species. In warmer regions of the 

world C. ferrugineus is frequently found with C. pusillus.  

Rahman (2006) reported that the life history parameters of X. flavipes on                      

C. pusillus showed optimum values at 25 and 30ºC and 70 and 90% rh. In another 

study, Rahman et al. (2007) observed the effect of temperature on the predator     

X. flavipes feeding on C. pusillus and recorded that highest number of eggs 

laid/female (27.27±2.52) and egg hatching rate (88.25±2.19%) at 30ºC, and the 

respective lowest value were 5.43±1.19 and 30.79±4.63% at 20ºC respectively, no 

eggs were laid at 15ºC. Mortality among immature stages was highest 

(51.71±1.48%) at 35ºC and were lowest (24.25±1.14) at 25ºC. Developmental 
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times decreased with the increased temperature. The sex rates (% female) of         

X. flavipes were 47.04, 56.68, 51.66 and 50.07 for 20, 25, 30 and 35ºC 

respectively, survivorship of oviposing females was highest at 25ºC but lowest at 

35ºC. Rahman and Islam (2007) observed different parameters of life cycle of             

C. pusillus at 30±1ºC and found that oviposition rate, hatching rate, adult 

emergence and longevity of male and female were 4.89±0.35 egg/female/day, 

91.22±1.02%, 88.44%, 156.11±1.37 day and 169.67±2.52 days respectively.           

C. pusillus like warmest areas within the grain bulk and move to the center during 

fall and winter (Flinn and Hagstrum 1998). 

Ferdous et al. (2009) observed some biological parameters of X. flavipes feeding 
on T. castaneum at 30±1ºC temperatures in the laboratory and found the mean 
duration of developmental period through the five nymphal instars was 20.09 
days. The mean incubation and nymphal periods were 3.5 and 16.57 days 
respectively. The percentage of adult emergence was 68.89 and the number of 
eggs laid per female per day ranged from 4.38 to 4.39. The mean life span was             
6.6 days in males and 20.67 days in females. 

Both temperature and relative humidity considerably affect the duration of nymphal 

stage, longevity and oviposition of X. flavipes (Abdel-Rahman et al. 1977 and 

Arbogast 1978). Arbogast et al. (1971) and Awadullah and Tawfik (1973) reported 

that the number of nymphal instars of X. flavipes varied from 2-6, but at 30ºC there 

was always five instars. Preying on P. interpunctela at 30ºC the life cycle of the 

predator was completed from 14-21 days (Arbogast 1975). At this temperature the 

incubation period was 4-5 days (Awadullah and Tawfik 1973, Arbogast 1975, 

1978). Feeding on T. castaneum the longevity of the male and female predator was 

5-43 and 8-37 days respectively, at 30ºC (Awadullah and Tawfik 1973). 

Not only the prey species, but also the diet of the prey insect affected the biology 

of X. flavipes, which was coordinated with temperature and relative humidity 

(Saha 2007). Optimum developmental temperature was recorded as 30ºC and 70% 

rh when the prey species (T. castaneum and T. confusum) were reared on 

agar+flour; the oviposition period was also recorded the maximum at this temperature 
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rearing on the same prey species feeding the same food. Whereas, mortality (%) of 

immature stages was recorded at 25ºC and maximum mortality was observed at 35ºC 

and 30% rh when the prey were reared on yeast+flour.  

Yousefnezhad-Irani and Asghar (2007) evaluated toxicity of Spinosad on adults                   

T. castaneum and S. oryzae at different temperatures and exposure intervals. A 

commercial formulation of Spinosad, Tracer was used against 7-14d old adults of   

T. castaneum and S. oryzae, at 24, 28 and 32ºC and 65±5% RH. Mortality was 

recorded at 24, 48 and 72h post treatment. A dose dependent response was 

observed in both species. Similar trend was detected between mortality and time 

intervals. In both species an inverse relationship between LD50 values and 

temperature was detected. Based on LD50 values and none overlapping of 95% CL 

S. oryzae was more susceptible to Spinosad than T. castaneum.  

Efficacy of Spinosad  against R. dominica was not affected by temperature and 

moisture, during a maximum storage period of four months Fang and 

Subramanyam (2003).Two field studies provide data on residue levels and 

efficacy against R. dominica on wheat stored on farm in the Midwest of the USA. 

In one field study, efficacy and residues of Spinosad were found to be stable 

during 12 months of storage with a grain temperature range from -10 to 32ºC and a 

moisture range from 12.4 to 23% MC (Fang et al. 2002a). In the second field 

study grain temperature ranged from <10 to 35ºC and moisture ranged from 10.7 

to 22.0% MC, but Spinosad efficacy did not change despite reduces falling by 

about 19% during 6 months of storage (Flinn et al. 2004).  

Daglish et al. (2006) reported Spinosad applied at 0.5 and 1mg/kg against                    
R. dominica was completely effective for 9 months at both 55 and 70% relative 
humidity with 100% adult mortality after 14 days of exposure and no live F1 adults 
were produced. Athanassiou et al. (2008 a,b,c) tested the efficacy of Spinosad 
against adults R. dominica, S. oryzae, T. confusum on wheat and P. truncatus on 
maize at three temperatures 20, 25 and 30ºC and two relative humidity levels 55 
and 75%. The author recorded mortality of R. dominica and S. oryzae was high 
even at 0.01 ppm of Spinosad, reaching 100% at 55% relative humidity and 30ºC 
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after 21 days of exposure. In several conditions tested Spinosad efficacy notably 
varied according to the temperature and humidity regimes. At 1 ppm, after 7 days of 
exposure mortality was low <14% but two weeks later >90% of the exposed adults 
were dead at 30ºC. At this exposure, the increase of temperature increased mortality, 
while no significant differences noted between the two relative humidity levels tested 
(Athanassiou et al. 2008 a,b,c).  

Biology of C. pusillus 

Mated female of C. pusillus deposits her eggs in crevices in the grain or in loose 
farinaceous materials. Eggs are small, slender and cylindrical, a typical egg is 
about 0.56 mm in length and 0.16 mm in width. The egg appears shiny white when 
first deposited but as development proceeds, it becomes pale yellowish. The 
incubation period lasts for 3-4 days.  

The neonates are Cigar-shaped about 0.7 mm in length, yellowish-white in colour 
(Alam 1991). There are seven abdominal segments which are uniform in size, a 
longer eighth segment and the ninth segment which bears the anal hooks. The head 
and the spine like appendages are reddish brown; eyes are oval, each with three 
elongated bristles on the inner side. The 1st instar larva is active, restless and 
moves forward by contracting and expanding its body. The 2nd and 3rd instar larvae 
are same as the 1st instars larvae but the body becomes more elongate in shape. 
The head is wider than the rest of the body in the first instar, but then becomes 
narrower than the rest of the body in the later instars. After the first instar, there is 
a pair of lateral setae on the abdominal segments 1-7.   

The mature 4th instar larva is about 3-4 mm in length and 0.33 mm in width, the 
body is milky white except the head and anal region which appear brownish. Two 
pale brownish longitudinal lines precede mid-dorsally starting from 1st thoracic 
segment ending at the 7th abdominal segment. Antennae three jointed, tip of each 
has an elongated hair and two short bristles. Mouth parts are distinct.  

The mature 4th instar larva enters a pre-pupae stage, where the body becomes 

broader and silk glands forms on the prothorax. These glands are used to spin the 

silk cocoon in which pupation occurs (CABI Crop Protection Compendium 2008).  
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The pupal stage occurs within a silken cocoon. The cocoon remains attached to the 

larval food, and food particles may adhere to the surface of the cocoon. The pupa 

is of the exarate form, in which the legs and wings are free from the body and the 

abdomen is movable. The newly formed pupa is white, but becomes darker with 

age. The pupal cocoon is slightly longer than the mature larva (CABI Crop 

Protection Compendium 2008). Six elongated hairs at the frontal regions and 

brownish circular eyes are present. The male pupa is smaller in size (1.57 mm in 

length) and is devoid of the finger-like lobes but female pupa is larger (1.75 mm in 

length) having characteristic finger-like lobe, the gonapophyses. The pupal stage 

lasts for 4-5days. The freshly formed pupa is light yellowish which gradually turns 

to pale reddish before adult emergence.      

Newly emerged adults are minute, flattened, oblong and light-brown in colour, but 

rapidly become reddish-brown. The body is about 1.5-2 mm long, depressed and 

elongate. Tarsi are five-segmented, except for the male hind tarsi which are four-

segmented. However, as the basal segment is rather small, it may be only possible 

to count 4 segments on each tarsus or 3 on the male hind tarsus. The female 

antennae are about half the length of the body, while in the male they are about 

two thirds of the length of the body. Elytra have five parallel ridges. The biology 

of C. pusillus was observed at 30±1ºC temperature and 70±5 % relative humidity 

(Ahmed et al. 1994).  

Sex differences: Male and female adults of C. pusillus can be identified by 

genitalia dissection under the microscope, the male genitalia is two banned 

accessory sclerites, curved shaped which middle is expand and both ends are 

gradually pin like and about 0.08 mm in size; whereas female genitalia is two 

closed banned accessory sclarites, long tube shaped which one end is spiracle and 

other end is open and about 0.125 mm in size with sclerotised part of burse (Figure -3) 

(Andras Szito 2011).   
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    Adult male          Adult female 

     
     Male genetalia         Female genetalia 

Figure 2  Distinction between male and female of C. pusillus (Andras Szito 2011) 

 

Biology of R. dominica 
Mated female of R. dominica laid eggs singly or a raft or cluster among the frass 

or only on the food medium. The frass consists of half chewed or cutting food 

materials which are produced by R. dominica. The egg is opaque, whitish in colour 

with a waxy appearance when freshly laid, but after a little while takes on a 

pinkish colour (Kucerova and Stejskal 2008). The egg is about 0.5-0.6 mm in 

length and 0.2-0.25 mm in diameter (Thompson 1966, LeCato and Flaherty 

1974 and Kucerova and Stejskal 2008). The average weight of 10 eggs was 

determined as 3×10 to 6×10 mg.  The egg surface appears smooth, but scanning 

electron micrograph (SEM) magnification reveals a distinct granulated 

microstructure. The chorion, which has two layers, is about 2.7 μm in thickness 

(Kucerova and Stejskal 2008). The dark rusty tips of the mandibles and the 

abdominal thorn of the larva are visible through the chorion at the end of egg 

development (Kucerova and Stejskal 2008). 
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The mean daily oviposition rate is 10.4 eggs/day with a range of 4-15 eggs when 

the beetles are reared at 25°C and 70% rh (Howe 1950), the rate was somewhat 

lower, 6.5 eggs/day, for beetles reared at 29°C and 75% rh (Thompson 1966). The 

maximum number of eggs laid by female R. dominica in a day varies between 33 

(Thompson 1966) and 45 eggs (Howe 1950). The pre-oviposition period was 

found to vary from 6 days (Thompson 1966) to 15 days (Schwardt 1933), and the 

oviposition period varies from 43 days at 25°C and 70% rh (Howe 1950) to 4 

months at 34°C and 70% rh (Birch 1945 b,c). 

The first instar larva is campodeiform, white or light yellowish in colour, with 

mandibulate mouthparts about 0.78 mm long and 0.13 mm wide across the head 

capsule (Potter 1935). The larva is very active, and moves rapidly about the grains 

(Winterbottom 1922). A terminal median spine is present in the first instar, (Potter 

1935 and Howe 1950) has a short antennae beset with hairs. Thorax was three 

segmented and abdomen ten segmented. A number of long hairs were present 

dorsally and laterally on the abdominal segments. The larva often moved with a 

looping action. The duration of first instar larva was about 6 to 12 day. The 2nd 

instar larva losts the dorsal median spine at the posterior region of the body. 

The second instar is similar in shape to the first instar, but larger in size 

(Winterbottom 1922), being about 1.1 mm long, and 0.17 mm across the head capsule 

(Potter 1935). The thoracic region is more differentiated from the abdominal region;. 

the last abdominal segment was horse shoe shaped, the two ends of the horse shoe 

slightly protuberated. The second instar larva lasts for 4-7days.  

Third instar larva is recurved but they are able to straighten out. The thorax is 

somewhat larger in circumference than the abdomen, prothorax markedly enlarged. 

End of the abdominal segment showed a well-marked anal furrow. In its natural 

recurved state it has distinct lateral hypoplueral folds. Ventral surface of the body is 

flattened. The average body length and diameter of the head capsule of the third instar 

are 2.04 and 0.26 mm, respectively (Potter 1935).The third instars larva moults after 

4-6days. 

http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib123#bib123
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib123#bib123
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib123#bib123
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib180#bib180
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib226#bib226
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib180#bib180
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib180#bib180
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib123#bib123
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib226#bib226
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib180#bib180
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib180#bib180
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Head of the fourth instar larva is retracted into the thorax and longer than width, 

antennae are present at the sides of the head. The body is recurved with distinct 

pleural folds on the sides of the flattened ventral surface. Regularly arranged short 

hairs are present on body surface. Fifth to eighth segments of the body are much 

extended. The legs of pro-meso- and meta thoracic segments are equal in size; 

each leg is three segmented highly curved brown claw. Ventral region is whitish, 

head is light brown, and mandibles are dark-brown or nearly black (Chittenden 

1911 and Winterbottom 1922). Length of the mature fourth instar is approximately 

3.2 mm and the head is approximately 0.41 mm in diameter. The fourth instars 

larva lasts for 4-8days.    

The pre-pupal stage does not involve moulting and can be distinguished from the 

mature larvae by their more elongated cylindrical shape and extended head as if 

forced out by the pressure of the fluid in the body (Potter 1935). It is a none 

feeding stage, relatively immobile, but is capable of limited wriggling. The 

average body length is 3.15 mm and diameter of the head capsule is 0.5 mm. The 

duration of the prepupal stage is very short, lasting about 1½ days. The pupae of 

R. dominica are exarate, i.e., the appendages are not fixed to the body. They are 

inactive, and body movement is limited to the abdominal segments. Young pupae 

are whitish in colour, later, brown pigment is laid down in the eye and mouthparts 

(Winterbottom 1922). Average lengths of the body and head capsule are 3.9 and 

0.6 mm respectively. The rate of pupal development is proportional to 

temperature. At 70% rh, the pupal stage is completed in about 8 days at 25°C and 

5-6 days at 28°C (Howe 1950). The optimum conditions for rapid development of 

the pupal stage are 34 °C and 70% rh in wheat kernels of 14% moisture content 

(Birch 1953, Birch 1945a,b,c); under these conditions, development of the pupa is  

completed in 4 days. The pupa exhibits the characteristic depressed head and 

enlarged thorax of the adult. The pupa lies in a cell excavated by the larva inside 

the grain. However, a pupal cell is not required for successful completion of the pupal 

stage (Schwardt 1933). If larvae are reared on flour, pupation occurs in an oval-

shaped cavity hollowed out by the larva in the floury material (Winterbottom 1922). 

http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib226#bib226
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib180#bib180
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib226#bib226
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib123#bib123
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib34#bib34
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib226#bib226
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During the pupal stage, it is possible to distinguish between the sexes. Sexual 

dimorphism is displayed at the tip of the abdomen. The genitalia of the females are 

divergent, three-segmented, and protuberant, whereas those of the males are 

convergent, two-segmented, and protuberant (Potter 1935 and Halstead 1963). 

The newly formed adults emerge from the kernel by chewing through the outer 

grain layer and might go without food for about 3-5 days after emergence 

(Schwardt 1933). The adult beetle is 2-3 mm long and 0.8-1.0 mm in wide. Fresh 

body weight ranges from 0.99 to 1.38 mg, with a mean about 1.20 mg (Edde and 

Phillips 2006b). The insect is reddish-brown to dark brown in colour. The anterior 

margin of the dome-shaped thorax is crenulate, the surface of the thorax and the 

elytra are pitted. The pits on the elytra are arranged in 10-11 longitudinal 

punctures, giving them a striated appearance (Winterbottom 1922, Beiriger and 

Sites 1996). The pits become smaller toward the posterior of the abdomen. Each 

elytron has short setae that curve backward (Beiriger and Sites 1996). The elytra 

are slightly convex and there are no carinae or other protuberances to the declivity. 

The antenna is short, ten-segmented, and has a terminal three-jointed loose club 

(Chittenden 1911 and Chujo 1958). 

Mean longevity of adult male and female R. dominica fed on wheat kernels at 

28°C and 65% rh is 26 and 17 weeks respectively, about 4% of the male and 3% of 

female beetles tested in study lived for approximately 52 weeks (Edde and Phillips 

2006b). Birch (1953) found that female R. dominica reared at 32.3°C and 70% rh 

on wheat kernels lived for 17.2 weeks on the average. However, mean longevity of 

male beetles in Birch’s experiment was 20 weeks, which is 6 weeks shorter than 

observed by Edde and Phillips (2006b). This difference may relate to the fact that 

Birch kept males and females together while Edde and Phillips kept them 

separately. The extra resources spent in courtship may have shortened the lifespan 

of the male beetles in Birch (1953). Mean longevity values of starved adult male 

and female were 5.7 and 4.7 days, respectively (Edde and Phillips 2006b). 

Negative effects on reproduction and movement of adult R. dominica may occur 

http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib180#bib180
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib226#bib226
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib29#bib29
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib29#bib29
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib29#bib29
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib49#bib49
http://www.sciencedirect.com/science/article/pii/S0022474X1100083X#bib34#bib34
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after 4 days of starvation (Daglish 2006 and Nguyen et al. 2008). The effects of 

starvation are more pronounced on female R. dominica, presumably due to the 

greater energy demand on them for reproduction (Nguyen et al. 2008). 

Sex differences: Adults of both sexes can be reliably separated by using the 
methods of Crombie (1941). Working under a dissecting microscope, the last three 
ventral abdominal segments of a live or freshly killed specimen can be gently 
squeezed until the tips of the genitalia appear. Often, squeezing may not be 
necessary for sexing female R. dominica because the tips of female genitalia are 

slightly extruded and easily discernible (Halstead 1963). In order to reduce 
mortality caused by squeezing, the insect can be sexed at the immature stage using 
the sexual dimorphism as described above for the pupal stage. A major setback to 
sexing the pupae is that it is found within whole grain kernels, making the 
collection for sexing difficult. This problem could be minimized by rearing the 
pupae on ground media of particle size between 1.4 and 2.0 mm diameter, which 
allows pupae to be removed from the medium easily, get sexed, and held for adult 
emergence (Cline 1973, Longstaff and Starick 1989). For males pupae, the genital 

papillae are convergent, 2- segmented and not protoberant while they are 
divergent, 3-segmented and protuberant while they are in females (Figure 4) 
(Potter 1933, Halstead 1963)  

                              

            Adult male         Adult female 
 

 
Male pupal genital papillae  Female pupal genital papillae  

Figure 2  Distinction between male and female of R. dominica. (Halstead 1963)  
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http://www.google.com.bd/imgres?imgurl=http://2.bp.blogspot.com/_6aWjQppdCuo/SYgw26hMxkI/AAAAAAAAAAQ/FK91TsgnWs4/s320/lesser_grain_borer.jpg&imgrefurl=http://grainpestcontrol.blogspot.com/&usg=__jYoSc4ljfKAOY7p8UhVt5rb-fTw=&h=242&w=158&sz=18&hl=bn&start=191&zoom=1&tbnid=fw-s1NkeBX8OuM:&tbnh=110&tbnw=72&ei=1BvwUOfnGsjWkgWSnYGIAg&prev=/search%3Fq%3DLarvae%2Bof%2BRhyzopertha%2Bdominica%26start%3D180%26hl%3Dbn%26sa%3DN%26gbv%3D2%26tbm%3Disch&itbs=1
http://www.google.com.bd/imgres?imgurl=http://2.bp.blogspot.com/_6aWjQppdCuo/SYgw26hMxkI/AAAAAAAAAAQ/FK91TsgnWs4/s320/lesser_grain_borer.jpg&imgrefurl=http://grainpestcontrol.blogspot.com/&usg=__jYoSc4ljfKAOY7p8UhVt5rb-fTw=&h=242&w=158&sz=18&hl=bn&start=191&zoom=1&tbnid=fw-s1NkeBX8OuM:&tbnh=110&tbnw=72&ei=1BvwUOfnGsjWkgWSnYGIAg&prev=/search%3Fq%3DLarvae%2Bof%2BRhyzopertha%2Bdominica%26start%3D180%26hl%3Dbn%26sa%3DN%26gbv%3D2%26tbm%3Disch&itbs=1
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Biology of X. flavipes 

Mated female of X. flavipes lays eggs on the food medium, scattered loosely 

throughout the habitat. Eggs are translucent, milky, elongate-oval and blackish 

with yellow spots. The egg ranged from 0.55 mm in length, the posterior end is 

broader than the anterior end. The anterior end is capped by a nearly circular 

operculum surrounded by an expanded rim of chorion. As eggs develop, they 

acquire a pale brownish colour. The egg hatchs in 4-6 days at 30±0.5ºC 

temperature and 70±0.5 % relative humidity. 

Descriptions of the various life stages of X. flavipes is provided by Arbogast et al 

(1971) and Awadallah and Tawfik (1972). The nymph emerges by forcing open 

the operculum which usually remains attached to the shell by the embryonic 

cuticle. The 1st instar nymph looks pale brownish-yellow, lightly pigmented, with 

reddish eyes, antennae and legs. The nymph is about 0.60 mm in length and 0.09 

mm in head capsule width. The nymph becomes large in size after the first moult 

and wings are visible. The developing ocelli appear after the second moult as 

small orange-red spots. Extensive black colouration first appears in the fourth 

instar, which is darker in the fifth. Fifth instar nymphs are dark brownish-yellow 

coloured with black tings on head and thorax. Black spots are present on the 

abdomen, wing pads are developed and extended up to metathorax. The 5th instar 

mature nymphs are about 1.50 mm in length and 0.25 mm in width. The mature 

nymphs are more predaceous than the immature nymphs. 

The most sharply pronounced modifications are concentrated in the last moult of the 

5th instars nymph to the adult. The adults are shining brownish black with irregularly 

distributed pale setae. The rostrum, antennae and legs appeared to be brownish 

yellow. Pronotum is slightly convex, sautellum is raised anteriorly and antennae are 

four segmented. Setae present on the third and fourth segments of the antennae.  

Sex differences: Sexes of the adults are distinguished by the shape of the 

abdomen. The abdomen is bilaterally symmetrical in females, and in males it is 

notched on the left side of segments 8 and 9. The aedeagus of male arises within 
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the 9th segment and is directed to the left (Arbogast 1978). The piercing aedaegus 

of a male and abdomen of mated female of X. flavipes are shown in figure 5 

(Backhouse et al. 2012). The females are larger than the males. Total 

developmental periods from egg to adult emergence of X. flavipes are 14-18 days. 

Both brachypterous and macropterous forms occur in X. flavipes, although the 

short-winged form was found to be most common in a sampled population 

(Arbogast 1978).  

                      
          Male adult          Female adult 

 

        
Male piercing aedeagus  Female abdomen 

 

Figure 3 Distinction between male and female of X. flavipes (Backhouse et al. 2012) 

 
Managenemts techniques of C. pusillus and R. dominica    

Insect identification programs can indicate the presence and abundance of particular 

species (Vela- Coffier et al. 1987, Reed et al. 1991 and Hagstrum 1998) and can 

reduce the illegal use of pesticides. In general, losses can be minimized when 

infestations are quickly identified and appropriate control measures implemented 

http://rsbl.royalsocietypublishing.org/content/early/2012/05/01/rsbl.2012.0091/F1.expansion.html
http://rsbl.royalsocietypublishing.org/content/early/2012/05/01/rsbl.2012.0091/F1.expansion.html
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(Abd-El-Aziz 2011). Many techniques are conducted from the beginning to still 

now for identification of insect pests in pre and post-harvest cereals and other 

commodities in storage and fields by many scientists viz., Burkholder and Ma 

1985, Campbell et al. 2002, Loschiavo and Atkinson 1967, Loschiavo and Smith 

1986, Lippert and Hagstrum 1987, Vela Coffier et al. 1997, Wakefield and Cogan 

1999, Towes et al. 2005 Flinn et al. 2007, Schatzki and Fine 1988, Shumon et al. 

1996, Panford 1987, Atui 2006, Magan and Evans 2000, Flinn et al. 2009 and 

recently, Computer based pest management (Abd El Aziz 2011) are used to 

identify the presence and manage the population of insect species in storages.  

Cryptolestes pusillus   

There have been several field trials (Reed and Harner 1998a, b, Casada et al. 2002, 

Arthur and Casada 2005) and modeling simulation studies (Flinn et al. 1997, Arthur 

and Flinn 2000) showing that an initial summer cooling cycle cooling to a level of 

about 24ºC, followed by second cooling to 15ºC in early autumn, severely limits 

population growth of stored product insects including C. pusillus in stored wheat. 

Oliveira et al. (2003) reported that the biocontrol potential of the mite species 

Acarophenax lacunatus was able to parasitize eggs of C. ferrugineus. The mite caused 

significant reduction of 26% in the larval populations of C. ferrugineus. A. lacunatus 

can occur on colonies of C. ferrugineus (Cross and Krantz 1964, Faroni 1992). 

Rahman (2006) observed bionomics of Plastanoxus westwoodi (Kieffer) on               

C. pusillus in the laboratory and reported that larval and pupal stages of C. pusillus 

are generally parasitized by beythylid parasitoid P. westwoodi. Fifty mated female 

of P. westwoodi suppressed the population of C. pusillus up to 81.31±4.54%.            

This parasitoid can be used as biocontrol agent of C. pusillus for easy handling, 

inexpensive culture techniques and their optimum progeny production. Female 

parasitoids are more active to suppress C. pusillus than male. 

Effectiveness of aeration for controlling insect pest populations including 

Cryptolestes spp. in wheat during the summer months in the central and southern 

plains of the United States had reported (Reed and Harner 1998a, b, Arthur and 

http://scialert.net/fulltext/?doi=je.2011.101.122&org=10#546080_ja#546080_ja
http://scialert.net/fulltext/?doi=je.2011.101.122&org=10#546080_ja#546080_ja
http://scialert.net/fulltext/?doi=je.2011.101.122&org=10#546093_ja#546093_ja
http://scialert.net/fulltext/?doi=je.2011.101.122&org=10#334775_ja#334775_ja
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Casada 2005) and in rice stored in Arkansas (Ranali et al. 2002) and in eastern 

Texas (Arthur et al. 2008). 

Arthur et al. (2010) conducted field trials in metal wheat storage bins to determine 

whether pressure aeration, pushing ambient air from the bottom or suction 

aeration, pulling air down from the top would be more effective at cooling the 

wheat mass and there by limiting insect population growth. Aeration was 

accomplished at an approximate air flow of 0.22 to 0. 31 m3/ min/t and was done 

by adjusting thermostatic controllers to operate the aeration fans when ambient 

temperatures fell below specified thresholds. Summer and autumn cooling cycles 

using suction aeration cooled the warmest part of the bin, the top of the grain mass 

always remained warmer than with suction aeration. This cooling effects was most 

pronounced in the upper surface of the grain mass and insect pest populations as 

measured by pith fall traps were consistently less in bins with suction versus 

pressure aeration. Results seem to indicate that suction aeration would be more 

beneficial than pressure aeration for controlling insect pests including C. pusillus 

in wheat stored in the southern plains of the United States. 

Rhyzopertha dominica 

The mite species Acarophenax lacunatus showed highest rate of parasitism on the 

egg of R. dominica and T. castaneum, leading to a significant decrease of 

populations of both species, and also reduced wheat weight loss (Cross and Krantz 

1964) at 28±2ºC temperature and 65±5% relative humidity for 40 days (Oliveira et 

al. 2003). The mite caused a significant reduction of 61% in the larval population of 

R. dominica; Faroni (1992) and Faroni et al.  (2000, 2001) stated that A. lacunatus is 

a potential biocontrol agent to regulate R. dominica. 

Biocontrol agent used against stored grain insects will have to interact with 

insecticides used as grain protectants due to their heavy use especially in tropical 

areas. Therefore, the interaction between the pyrethroid insecticides bifenthrin and 

deltamethrin and A.  lacunatus was assessed against R. dominica in a range of mite 

densities and insecticide doses for each compound. Despite the mite species 

presence on all insecticide doses, the lowest instantaneous rate of increase of              
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A. lacunatus was recorded with the highest doses of insecticides. The presence of 

the biological control agent at all doses of both insecticides suggests its tolerance 

to these compounds, which is a positive point for IPM programs. The biology of 

A. lacunatus and its potential as regulatory agent of population of R. dominica 

were reported by Faroni et al. (2000, 2001). There are reports of registance to 

organophosphates and the pyrethroid deltamethrin in Brazillian populations of            

R. dominica (Guedes et al. 1996, 1997, Lorini and Galley 1999, 2000). 

Mahal et al. (2005) observed potentiality of A. calandrae in controlling residual 

populations of R. dominica in wheat grain in bulk at 46 m² room and found that 50 

pairs of A. calandrae suppressed 83% of R. dominica in June to July and 74% in 

August- September.  

The interaction between A. lacunatus and A. calandrae may be the promising tool 

for the integrated pest management of R. dominica (Goncalves et al. 2006) The 

use of A. calandrae alone demonstrated a low instantaneous rate of increase of            

R. dominica and a high protection of the wheat grains during 60 days storage. The 

association of A. calandrae with A. lacunatus led to the lowest number of 

immatures of R. dominica.  

Chanbang et al. (2007) conducted laboratory trials to determine the effectiveness 

of diatomaceous earth (DE) against R. dominica on rough rice stored for eight 

weeks. DE products (Two) were equitoxic to pest insect. Mortality increased from 

15.8 to 69.2% depending on the exposure interval. There was extensive progeny 

production in all treatments (including controls) and more progeny were produced 

at 32 than at 27ºC. Results showed that the two DE products did not completely 

suppress R. dominica on rough rice and combination treatments with another 

insecticide may be necessary to give complete control. 

Efficacy of DE generally declines with increased relative humidity or grain 

moisture content and although mortality generally increases with temperature, 

mixed results have been reported for specific insect species and DE products 

(Arthur 2000, Fields and Korunic 2000, Vayias and Athanassiou 2004, 

Athanassiou et al. 2005). Other studies have repeatedly noted variation in 
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mortality of R. dominica and other stored grain insects exposed to commercial DE 

formulations, depending on grain type (Subramanyam et al. 1994, Arthur and 

Throne 2003, Arthur 2004, Athanassiou and Kavallieratos 2005).Tests with newer 

formulations of DE also show efficacy toward R. dominica on stored wheat 

(Kavallieratoes et al. 2005, Athanassiou and Kavallieratos 2005), and the research 

is still going on. 

 The natural enemy of the stored product insects, C. elegans was found to be very 

effective for suppressing R. dominica populations with augmentative release 

(Flinn et al. 1994, 1996). Flinn et al. (1996) observed 98 and 91%  suppression of 

R. dominica compared to the control by C. elagans in 1993 and 1994 respectively. 

Spinosad remained effective against house flies as well as against its cyclodiene 

resistant strain (Scott 1998, Scott et al. 2000), R. dominica, S. oryzae (Toews and 

Subramanyam 2003), O surinamensis (Fang et al. 2002). R. dominica is a leading 

pest species, which has developed resistance to several registered grain protectants 

over the years (Champ and Dyte 1976, Herron 1990, Collins et al. 1993, Zettler 

and Cuperus 1990, Collins 1998). Malathion resistant R. dominica strains are 

common in Australia and these insects are also cross-resistant to the 

organophosphorous compounds. Most of the results revealed that Spinosad was 

very effective R. dominica with an application rate 1mg/kg achieving complete 

control of all strains of this species (Fang et al. 2002a, b, Fang and Subramanyam 

2003, Toews and Subramanyam 2003, Nayak et al. 2005). 

Predatory abilities of X. flavipes       

This predacious bug is considered to be a promising polyphagous candidate for 

biological control programmes as it has some advantageous characteristics.             

The minimum prey requirement for complete development is low. A high 

proportion of nymphae (33%) developed to adulthood with a food supply of only 

one larva per week (Lecato and Collins 1976). The predator is supposed to be easy 

to handle, because it uses cannibalism as its strategy for survival in times without 

prey. Arbogast (1978) found that the first nymphal stage is necessary prey for 

nymphae and adults in order to achieve complete development. However these 
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survival strategies are very important for this insect since it can only survive for a 

very short time without food (Arbogast et al. 1977). After a starvation period of         

5 days, 95% of adult X. flavipes were dead. Brower and Press (1992) reported that 

the hemipteran predators suppressed 70-100% stored product pest population in 

the laboratory condition. Predatory hemipteran may invade prey both as immature 

and adults (Pedigo 1996). X. flavipes has shown promise as an effective biological 

control agent by suppressive growth of stored product insects in small (Jay et al. 

1968) as well as moderate (Press et al. 1975, Arbogast 1976) volumes of 

commodities. Arbogast (1978) stated that X. flavipes has a high capacity to 

increase in number relative to its prey. Lecato and Collins (1976) mentioned that 

X. flavipes destroys large quantities of prey when prey is abundant. Awadallah                

et al.  (1986) reported that X. flavipes when preyed only on the larvae of different 

pest insects, the predator fed on 105 larvae of Corcyra cephalonica, 112 larvae of 

T. confusum, 30 larvae of Stegobium panicerum, 148 larvae of Lasioderma 

serricorni,during 43 days of life span.          

X. flavipes had been reported to suppress effectively the population of a number of 

direct grain feeders and also an efficient predator on different secondary feeders 

(Arbogast 1978 and Helbig 1999). X. flavipes efficiently predates on both 

coleopteran and lepidopteron pests (Arbogast 1975, Abdel Rahman et al. 1978-79, 

Brower and Mullen 1990, Jay et al. 1968, Lecato and Arbogast 1979, Lecato et al. 

1977). X. flavipes developed faster, lived longer as an adult, survived better in the 

immature stages and laid more eggs when fed coleopteran larvae rather than 

lepidopteran larvae (Abdel Rahman et al. 1978-79). Ahmed et al. (2004) reported 

that a female X. flavipes killed 47.3±4.88 larvae of C. pusillus and laid 20.1±1.66 

eggs during her life time (25.4±1.26 days).    

Arbogast (1976) reported that the Sawtoothed grain beetle O. surinamensis 

population growth reduced 95% (after 16 weeks) when only 5 pairs of X. flavipes 

were introduced. Press et al. (1975) observed that X. flavipes effectively 

suppressed T. castaneum on 6-bu (ca, 227 liter) lots of farmers stock of peanuts 

contained in 64 cu-ft (ca 1812 liter) bins. X. flavipes suppressed about 97% 
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population of almond moth, Cadra  cautella (Press 1989), and 90.4% population 

of C. pusillus, when only 50 pairs of X. flavipes were introduced (Brower and 

Press 1992). 

Ishijima et al. (2005) studied the suppression effects of two predatory bugs,                

X. flavipes and Joppeicus paradoxus on the stored product insect T. confusum on 

whole wheat flour and found that the predators reduced 33% population of                 

T. confusum after 25 days.  

Lecato and Davis (1973) observed and reported that early and late instar nymphs 

and adult X. flavipes when exposed simultaneously to early or late instar larvae of 

the Indian meal moth, P. interpunctella, the red flour beetle, T. castaneum, the 

sawtoothed grain beetle, O. surinamensis and the Cigarette beetle, L.  serricorne. 

X. flavipes preyed on early and late instars of all species but the number killed 

depended partly on the size of the prey and sourse other factors. Press et al. (1973) 

demonstrated that X. flavipes can be reared on frozen or irradiated eggs of the 

indian meal moth P.  interpunctella.  

Lecato and Davis (1973 cit by press et al. 1974) found that X. flavipes preferred 

small larvae of large species and large larvae of small species.  

Donnelly and Phillips (2001) compared the functional responses of X. flavipes 

with different densities of the prey species viz., T. castaneum, O. surinamensis,                     

P. interpunctella and R. dominica in two different habitats, empty glass jars and 

glass jars filled with wheat kernels that were designed to stimulate more natural 

conditions in stored grain. Differences in the functional response of X. flavipes to 

all combinations of prey densities and grain conditions were compared with the 

predicted functional response curves from Holling’s type 1 and type 11 models 

and to Hossell’s type 111 model. The functional response of X. flavipes was best 

described by Holling’s type 11 model, but a type 111 response occurred with prey 

that were more difficult to subdue, such as larvae. Numbers of prey attacked by 

females were greater than those T. castaneum attacked by males (P<0.05) in both 

habitats for some of the prey life stages and species. The maximum attack rates for 
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the different prey species in empty glass jars over 24h were as follows                        

T. castaneum 27.3 small larvae, 1.6 large larvae O. surinamensis 24.3 small 

larvae, 17.4 large larvae, P. interpunctella 27.2 eggs, 23.7 small larvae,                      

R. dominica 26.4 eggs and 16.6 internally feeding larvae. The maximum number 

killed for the different prey species in glass jars containing wheat over 48h were as 

follows O. surinamensis 13.7 small larvae, 12.8 large larvae, P. interpunctella 

41.4 eggs, 14.7 small larvae, R. dominica 22.0 eggs and 12.1 internally feeding 

larvae. Experiments with wheat filled jars showed that single X. flavipes could 

locate and kill 27.1 out of 50 P. interpunctella eggs and 8.1 out of 10 R. dominica 

larvae inside kernel mixed into ≈ 18000 kernels of wheat in 48h.  

Sing (1979) studied the functional response of X. flavipes to several different bruchid 

species infesting legumes. The authors reported that the true bug X. flavipes 

exhibited a type 11 functional response to the majority of cosmopolitan bruchid 

species evaluated when data were fit to Holling’s disc equation. A negative 

correlation was detected between mean pest species body weight and rate of 

predation. The rate of attack on adult prey was quite low but fairly consistent with 

the large sized female predators generally more effective. The eggs and neonate 

larvae of Acanthoscelides obtectus were only accessible immature stages among 

all prey species examined. Predation on A. obtectus eggs and larvae was higher 

than on any adult bruchids. Mean predator kill of A. obtectus immature stages was 

40 first instars or 10-20 eggs per 24h interval. 

 X. flavipes were successful at locating and killing R. dominica larvae that were 

feeding inside wheat kernels. In empty dish trials were observed and found that 

predators examined infested wheat kernels until the beetle larva’s entrance hole 

was found, then the predator would insert its stylet through the entrance hole to 

bite and feed on the prey. Predators successfully found and killed nearly half of 

the R. dominica larvae feeding inside the small numbers of kernels dispersed 

among the 18000 kernels of wheat jar experiments (Donnelly and Phillips 2001). 

Murata et al. (2007) evaluated the suppression of the confused flour beetle                  

T. confusum by the anthocorid bug X. flavipes and the reduviid bug Amphibolus venator. 
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After 25 days X. flavipes alone showed 96.9% suppression of T. confusum,  and            

A. venator alone showed 76.2% suppression, and both the predator bugs together 

showed 95.6% suppression of pest population. The rate of loss of whole wheat 

flour as an index of damage caused by T. confusum were 2.7, 6.4, 3.6 and 11.7% 

in X flavipes adults, A. venator adults, A. venator adults +X. flavipes adults, and 

control respectively. Furthermore A. venator attacked X. flavipes adults but not           

X. flavipes nymph. The author discussed on possibility of using both X. flavipes 

and A. venator against T. confusum.  

X. flavipes preys on eggs of C.  cautella (Brower and Mullen 1990), larvae of            

T. castaneum and P.  truncates (Helbig 1999, Russo et al. 2004) and eggs and larvae 

of R. dominica and P. interpunctella (Brower and Press 1992). X. flavipes reduced 

population growth of O.  surinamensis by 95% (Arbogast 1976), small population of 

C. cautella and P. interpunctella by more than 70% (Brower and Mullen 1990) and 

several species of small beetles including T. castaneum,Typhaea stercorea and         

C. pusillus by 100% (Brower and Press 1992). X. flavipes is one of the most 

dominant predators of many stored product insect pests including C. pusillus 

(Rahman et al.  2007). Although X. flavipes is the most successful against small 

sized externally developing prey particularly accessible eggs and early larval stages 

those are neither heavily selerotized nor overly hirsute (Lecato and Davis 1973).  

Stimulated X. flavipes direct a scent gland exudates thought to be defensive in 

nature over a wide area (Remold 1963). The consistent rapid liquefaction of large 

adult bruchid prey after attack by X. flavipes suggests that the predator utilizes                    

enzymatic salivary venom for extra oral digestion a common strategy of 

predaceous arthropods preying on large prey with intractable cuticles (Cohen 

1995). The potential of a knockdown or disorientation effect from the scent gland 

secretion (Phillips et al. 1995) combined with the catastrophic disruption of 

neuromuscular function (Blum 1981) caused by the injection of salivary venom 

could account for the predators ability to kill the comparatively more difficult 

adult bruchid prey. 
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Imamura et al. (2008) observed biological aspects and predatory abilities of 

predatory bugs that prey on stored product insects. Biological controls in stored 

products are being regarded with increasing interest since they are nontoxic and do 

not damage human health or the environment. Several species of predatory bugs 

have been studied as biological control agents. Specifically X. flavipes is 

advantageous because it has high population increase capacity and wide 

distribution. X. flavipes has been reported to suppress population of small insects 

but it can not predate large insects and internal grain feeding insects. As                

A. venator, P. biannulipes and J.  paradoxus can attack large insects. 

Ishijima et al. (2005) conducted laboratory experiment to test the suppression 

effects of X. flavipes and another predatory bug J. paradoxus, whose adults can 

attack large prey. The reduction rates of T. confusum populations with the release 

of X. flavipes and J. paradoxus were 97% and 67% respectively. In the                        

J. paradoxus treated groups, T. confusum adults were completely eliminated by               

J. paradoxus adults. However, when X. flavipes and J. paradoxus were released 

simultaneously the reduction rate was only 35%. Intraguiled predation has also 

been reported between X. flavipes and Bracon hebetor (Say) which is a parasitoid 

of pyralid moth larvae (Press et al. 1974). The reduction rates of P. interpunctella 

with the release of B. hebetor and X. flavipes were 74% and 22% respectively. 

When B. hebetor and X. flavipes were released simultaneously, the reduction rate 

was 52.6%. The number of B. hebetor was also reduced when X. flavipes was 

present indicating that X. flavipes had fed on B. hebetor as well. 

The biocontrol efficacy of the anthocorids Lyctocoris campestris (Parajulee et al. 

1994) and X. flavipes (Lecato 1976, Lecato et al. 1977, Brower and Press 1992, 

Brower et al. 1996, Donnelly and Phillips 2001) against stored product pests under 

a variety of environmental conditions is well documented although evaluations 

with bruchid prey have been comparatively limited. 

Sing (1979) and Sing and Arbogast (2008a,b) evaluated X. flavipes  predation 

under highly simplified conditions that excluded assessing the potential for the 

stored commodity, predator density and the lag between infestation and predator 

introduction to confound host finding and attack success. Intra specific competition 
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and prey predator population oscillation as influenced by predator density and the 

timing of predator introduction to the stored commodity would also play an 

important role in the development of an effective treatment protocol for any 

operational use of X. flavipes to manage bruchid infestations of stored legumes. 

Predative association with either one species feeding on another or both species 

feeding on each other may occur in grain silos and predation among stored grain 

beetles on the trophic level has been described extensive in laboratory experiments 

(Lefkovitch 1968, Sokoloff 1974, Ciesielska 1975, Lecato 1975, Suresh et al. 

2001, Hulasare et al.  2005). 

Ferdous et al. (2009) studied some biological parameter of X. flavipes feeding on        

T. castaneum in the laboratory. A single X. flavipes consumed 45 larvae of                  

T. castaneum in its 1st, 2nd and 3rd nymphal instars. One predator can consume 135 

larvae and 56 pupae on T. castaneum in its total life time. A mass culture 

technique of X. flavipes on T. castaneum was studied under laboratory conditions. 

The predator separately produced 1974.67 F1 progeny from a single release of 50 

mated females. The percentage of female predator in the culture was 48.89. A 

single predator in its five nymphal stages consumed 48-64 prey larvae of                   

C. pusillus (Rahman 2006). Saha (2007) reported that the highest fecundity of               

X. flavipes was found to be 39.6 and 39.4 when T. castaneum and T. confusum fed 

on agar +flour respectively. Rahman (2006) reported an average of 677.0 adults of 

X. flavipes was mass produced after 45 days feeding on C. pusillus. Islam and 

Kabir (1992) described the mass culture technique of another pteromalid 

parasitoid Dinarmus basalis on C. chinensis in the laboratory. 

An ideal bacterium: Spinosad is a reduced risk broad-spectrum bacterium, 

commercially available product from Dow Agro Sciences (Indianapolis, Indiana, 

USA). Spinosad is derived by fermentation from a naturally-occurring soil 

actinomycete, Saccharopolyspora spinosa (Mertz and Yao 1990) (Bacteria: 

Actinobacteridae) (Boek et al. 1994), belongs to a new class of insecticides called the 

NATURALYTES. As these products are created by biosynthesis of S. spinosa, so 

Spinosad has been classified as a bioinsecticide (Copping and Menn 2000). 
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Spinosad is active after contact (Spark et al. 1999), It affects nicotinic 

acetylcholine and gamma amino butyric acid (GABA) receptor sites of the insects 

nervous system and so far has proved non-cross-resistant to any other known 

insecticide (Salgado and Sparks 2005). In addition, Spinosad exhibits low 

mammalian toxicity and a high favorable environmental profile (Thompson et al. 

2000, Cleveland et al. 2001), and no adverse effects on predatory insects such as 

ladybirds, lacewings, big eyed bugs or minute pirate bugs (Dow Elanco 1994, 

Williams et al. 2003, Stark et al. 2004). Spinosad’s impact on beneficial insect 

populations under field conditions are typically short lived and followed by rapid 

recovery (Williams et al. 2003, Miles and Eelen 2006). In the environment, 

Spinosad degrades when exposed to sunlight and is quickly metabolized when 

washed into soil (Saunders and Bret 1997, Liu et al. 1999). Moreover, Spinosad 

residues are highly stable on grains stored in bins, with a length of protection 

ranging from 6 months to 2 years (Hertlein et al. 2011). All these attributes make 

Spinosad an ideal bacterium for use in the stored product integrated pest 

management and insecticide resistance management programs.  

Chemical description of Spinosad 

The chemical name of Spinosad is Spinosyn A and Spinosyn D. Chemical 

structures of Spinosad  and  naturally occurring mixture of Spinosyns A and D are 

shown below (Figure 4 and 5). When the bacterium S. spinosa is allowed to grow 

aerobically in an aqueous growth medium, it produces a number of biologically 

active metabolites called Spinosyn, which are large complex molecules containing 

mostly carbon, hydrogen and oxygen arranged in a unique 4-ringed system, one 

ring of which is a macrocyclic lactone. The 4-ringed system has two sugar 

molecules attached. About 24 Spinosyn are produced in the fermentation and there 

are only minor structural differences, such as the presence or absence of a methyl 

group in various locations (Crouse et al. 1999), Spinosyn D has one more methyl 

group than Spinosyn A. Extraction of the medium and subsequent recrystallization 

gives Spinosad, which contains about 90% Spinosyns and 10% impurities from the 
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growth medium, and the Spinosyn fraction contains about 85% Spinosyn A and 

15% Spinosyn D in the final products (Mertz and Yao 1990, Kirst et al. 

1992 and Sparks et al. 1999).  

 

 

Figure 4 Chemical structure of Spinosad. 

 
Spinosyn A is 2-[(6-deoxy-2,3,4-tri-O-methyl-alpha-L-mannopyranosyl)oxy)-13-

[(5- dimethylamino)tetrahydro-6-methyl-2H-pyran-2-yl)oxy)-9-ethy l2, 3, 3a, 5a, 

5b, 6, 9, 10, 11, 12, 13, 14, 16a,16b-tetradecahydro-14-methyl-1H-as-indaceno(3,2-d) 

oxacyclododecin-7,15-dione. 

Spinosyn D is 2-((6- deoxy-2,3,4-tri-o-methyl-alpha-L-mannopyranosyl)oxy)-13-

((5-(dimethylamino)tetrahydro-6-methyl-2H-pyran-2-yl)oxy)-9-ethyl-2, 3, 3a, 5a, 

5b, 6, 9, 10, 11, 12, 13, 14, 16a,16b-tetradecahydro-4,14-dimethyl-1H-as-indaceno 

(3,2- d)oxacyclododecin-7,15-dione (Dow 1997, Jachetta 2001).  

Molecular formula of Spinosyn A and D are C41H65 NO16 and C 42 H67 NO16 

respectively; molecular weight are 731.98 and 745.99 respectively. The trade 

names of Spinosad are Success® Naturalyte®, Tracer®, Spintor, Spinoace, 

Boomerang, Laser and Extinosad    
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Figure 5 Spinosad: A naturally occurring mixture of spinosyns A and D. 

 
Properties of Spinosad: Tan or white low melting crystals (m.p.84-99.5°C 

Spinosyn A, m.p. 161-170°C) Spinosyn D, which have low volatility and an earthy 

odor. Crystals are soluble in a number of organic solvents, Solubility is higher in 

polar solvents (acetone, dichloromethane, acetontrile, and methanol) than in non-

polar solvents (hexane). Crystals have low solubility in water, though spinosyn A 

is more soluble than spinosyn D. Water solubility increases as solutions become more 

acidic. The aqueous solutions are basic with pH about 8, and the Spinosyn react with 

acids to form salts that have higher water solubility (Thompson et al. 2000).  A major 

degradative pathway for Spinosad is photolysis (Saunders and Bret 1997) and this 

limits its residual efficacy in crop markets to about 7-14 days. However, in farm 

bins and other enclosed grain storage environments where sunlight is lacking, 

Spinosad can be highly stable. A total of eight studies evaluated the stability of 

Spinosad residues in corn and wheat by using analytical techniques. Six of these 

were field studies (Fang et al. 2002b, Flinn et al. 2004, Daglish and Nayak 2006, 

Maier et al. 2006, Subramanyam et al. 2007 and Daglish et al. 2008), and two 

were laboratory studies (Blanc et al. 2004 and Chintzoglou et al. 2008b). In 

general, Spinosad residues on treated wheat and corn appear to be relatively stable 

over storage periods ranging from 6 to12 months, even when subjected to wide 

fluctuations in temperature (−10–32 °C) and humidity (35–85%). Szabela (2005) 

indicated that analytical measures of Spinosad residues through time support the 

conclusion that in some cases Spinosad is capable of adequately protecting grains 

http://www.plantmanagementnetwork.org/elements/view.aspx?ID=4174
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib75#bib75
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib30#bib30
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib32#bib32
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib25#bib25
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib51#bib51
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib87#bib87
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib26#bib26
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib11#bib11
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib15#bib15
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib88#bib88
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in storage for up to two years. Where used, linked bioassays confirmed no loss in 

biological efficacy over these same time periods. Total Spinosad residue declines 

in these studies ranged from 39% loss over seven and half months to virtually nil 

loss over 12 months, with other reported values in-between. Chintzoglou et al. 

(2008b) reported unusually rapid degradation of Spinosad residues on corn – much 

higher than those observed on wheat or rice in the same study; this is the only 

study showing degradation of a dry Spinosad formulation. 

Efficacy of Spinosad 

Spinosad is currently targeted only at Lepidoptera and thrips, spinosyns and 

spinosoids are inherently broad spectrum, showing activity against insects in the 

orders coleoptera, diptera, homoptera, hymenoptera, isopteran, orthoptera, 

Lepidoptera, siphonaptera and thysanoptera as well as mites (Thompson et al. 

1995). 

The efficacy of Spinosad on the insect nervous system is unique and different 

from that of other insect control products (Salgado 1997). Spinosad is practically 

non toxic to predator insects and insect pathogen (Bret et al. 1997), though it is 

toxic to insect parasitoids and honey bees but the toxicity is significantly much 

less than many synthetic insecticides (Schoonover and Larson 1995, Bret et al. 

1997). Insects that are resistant to known synthetic insecticides do not cross 

resistant to Spinosad. Spinosad is rapidly absorbed and extensively metabolized in 

a rat. Within 48h of dosing, 60-80% of Spinosad or its metabolites are excreted 

through urine or feces (EPA 1997, Dow 1997). 

 Subramanyam et al. (1999b) evaluated the effectiveness of Spinosad applied to 

14% moisture wheat grain against adults of R. dominica, S. oryzae,                             

O. surinamensis, T. castaneum and larvae of P. interpunctella.  Spinosad at             

1 mg/kg provided complete control of R. dominica adults within 8 days, and 

completely suppressed emergence of P. interpunctella adults. No F1 adults of          

R. dominica were produced after 14 days of exposure. O. surinamensis and                      

T. castaneum were moderately and least susceptible to Spinosad, respectively, 

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib15#bib15
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib15#bib15
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based on adult mortality. However, significant of reductions in the production of 

F1 adults of S. oryzae, O. surinamensis and T. castsneum occurred at rates ≥ 3mg/kg.  

Toews et al. (2003) evaluated contact toxicity of Spinosad to adults of                           

R. dominica, S. oryzae and T. castaneum after 24 or 48h of exposure. Spinosad at a 

dose >0.05 mg/cm² affected significantly R. dominica at 24 and 48h exposures 

followed by S. oryzae and T. castaneum. The 24h LD50 values were 0.0004, 0.077 

and 0.189 mg/cm²  for R. dominica, S. oryzae and T. castaneum respectively. All                        

R. dominica adults were dead following 48h exposure Spinosad where as mortality 

of S. oryzae and T. castaneum ranged from 10 to 85% and 12 to 48% respectively. 

Sanon et al. (2010) reported that a dry Spinosad formulation applied at 0.94 ppm 

to cowpeas provided up to six months of continuous protection when these treated 

seeds were bagged in plastic and then stored under typical warehouse conditions in 

Burkina Faso. Control of C. maculatus by Spinosad was better than that provided 

by the commercial standard pyrethroid, deltamethrin. Ghelani et al. (2009) 

demonstrated that Spinosad controlled key stored grain pests of pearl millet in 

India (R. dominica, T. castaneum, and C. cephalonica) for up to 12 months of 

storage. However, this study was conducted under laboratory conditions, and 

Spinosad was applied at a rate of 2 ppm instead of its anticipated global-wide 

registered use rate of 1 ppm. Thus, these results cannot be considered directly 

predictive of future commercial performance. In a laboratory study, Vayias et al. 

(2010a) showed that a Spinosad liquid SC formulation applied to barley at 1 ppm 

provided nearly complete control of R. dominica and S. oryzae for six months and 

adequate control of C. ferrugineus for four to six months. Control of T. confusum 

was only moderate in this study. 

Spinosad applied to wheat at 0.1 and 1.0 mg/kg resulted in adult mortality and 

preventing population growth of R. dominica (Fang et al. 2002a,b, Subramanyam       

et al. 1999), and of 1 mg/kg was necessary for complete control and progeny 

suppression of C. ferrugineus, C. pusillus and T. castaneum (Subramanyam                   

et al.  1999). 

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib74#bib74
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib36#bib36
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib94#bib94
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib94#bib94
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Huang et al. (2007) also reported more or less similar results from Spinosad 

treated stored corns. More or less each of the Spinosad formula showed 

potentialites against almost all the insect pest of stored grains. Number of such 

successful reports have been published from different countries of the world, 

specially from USA  and Australia. The works of Thompson et al. (1997), Nayak    

et al. (2005), Daglish and Nayak (2006), Getchell (2006), Yousefnezhad Irani et 

al. (2007)   Athanassiou et al. (2008a,b,c), Daglish et al. (2008), Hussain et al. 

(2009), Mollaie et al. (2011), Mutambuki et al. (2012), Subramanyam et al. (2012) 

should be reviewed before introducing Spinosad in any IPM programme.       

Toews et al. (2003) reported contact toxicity of Spinosad to adults of R. dominica, 

S. oryzae, T. castaneum, T. confusum, C. ferrugineus and O. mercator on four 

different surfaces. Aqueous Spinosad suspension was sprayed to concrete, 

galvanized steel, unwaxed floor tile and waxed floor tile to obtain deposits of 0.05 

or 0.1mg/cm². Approximately 24h after application, 30 adult beetles were confined 

by species to each untreated and Spinosad treated surface, and knowckdown for 

24h was assessed. Mortality of all other species exposed to Spinosad was                   

99-100%. Tribolium spp. were highly susceptible to Spinosad on concrete                   

(99-100% mortality), however on unwaxed floor tile, steel and waxed floor tile 

recovery on food after knockdown resulted in only 72-92% mortality. Results 

suggest that Spinosad has excellent contact activity against adults of stored 

product insects, especially on concrete and has potential for use as a general 

surface, spot or crack/crevice spray to control insects in empty bins, warehouses, 

food processing facilities and retail stores. 

More field evaluations of Spinosad are necessary to establish its future 

performance in commercial stored product environments. Field studies are 

particularly valuable as predictive tools, because they tend to reflect the combined 

impact of Spinosad on adults, immatures, and progeny production under 

conditions of continuous exposure-aspects of which are difficult to simulate under 

laboratory conditions (Toews and Subramanyam, 2004). Published field studies 

with Spinosad are comparatively less (Fang et al. 2002a, Flinn et al. 2004a,b and  

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib91#bib91
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib29#bib29
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib32#bib32
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Subramanyam et al. 2007), and in Bangladesh context published literature on 

Spinosad efficacy against the stored product insects are  very scare. 

Toews et al. (2005) investigated the survival of stored product insect natural 

enemies in wheat treated with Spinosad in laboratory and pilot scale experiments. 

The predator X. flavipes and the parasitoids H. hebetor, T. elegans and                  

A. calandrae when exposed to wheat treated Spinosad at 0.05-1 mg/kg, X. flavipes 

was the only species that survived (92% survival). However,when combined 

treatments with Spinosad and X. flavipes was tried against T. castaneum, about 

90% inhibition of immature population was achieved, both in laboratory and field 

trials. There is substantial evidence to show that Spinosad at 1 mg/kg is not 

effective in killing all exposed adults but this rate is effective in suppressing 

progeny of T. castaneum (Fang et al. 2002a,b) thereby limiting any population 

growth to contamination from external sources or other forms of immigration. 

A general lack of survival among hymenopterans exposed to Spinosad was also 

reported in the literature (Tillman and Mulrooney 2000, Mason et al. 2002, 

Michaud 2003). There is limited evidence to suggest that X. flavipes is more 

pesticide tolerant than parasitoids and pest insects (Baker and Arbogast 1995, 

Press et al. 1978). This a good sign for storage managers to use both thesetwo 

natural enemies to control the stotred product insects 

Yousefnezhad Irani et al. (2007) observed toxicity of Spinosad on adults                    

T. castaneum and S. oryzae at different temperatures and exposure intervals and 

reported based on LD50 values and more overlapping of 95% CL, S. oryzae was 

more susceptible to Spinosad than T. castaneum. The trend of species 

susceptibility to Spinosad was similar to those reported by (Subramanyam et al. 

2004, Hung et al. 2004 and Flinn et al. 2004a, b).  

Spinosad is primarily a stomach poison with some contact activity and it 

represents a new class of insecticides acting by a neurotoxin with a novel mode of 

action and act as against at the post synaptic cholinergic ion channels and GABA 

gated ion channels (Salgado 1998, Salgado et al. 1998, Thompson et al. 2000). 

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib87#bib87
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 Spinosad has an excellent environmental and mammalian toxicological profile 

(Crouse and Sparks 1998, Sparks et al. 1999, Thompson et al. 2000). Spinosad 

exhibits wide margin of safety to many beneficial insects and related organisms 

(Schoonover and Larson 1995, Elzen et al. 2000) and is therefore considered a 

selective insecticide (Miles and Dutton 2000).  

Suppression of the subsequent generation is one of the basic characteristics of a 

successful grain protectant (Arthur 1996). Spinosad is capable to giving long term 

protection without a loss in efficacy (Fang et al. 2002a, Maier et al. 2006), through 

contact, ingestion and through the nervous system.  
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Selection of the test insects: pests and predator  
Pests: The flat grain beetle, Cryptolestes pusillus (Schon) is one of the common 

major pests of stored grains, it is particularly common in wet tropical and warmer 

temperate regions (Halstead 1993, CABI Crop Protection Compendium 2008). It 

is an external feeder of the stored cereal and other commodities. Incubation, larval, 

pre pupal and pupal period of C. pusillus are 3-4d, 19-21d, 3-4d and 4-5d respectively 

and the total developmental period is 30-35d. The eggs, larvae, pre-pupae and 

pupae are normally visual. Culture of C. pusillus in the laboratory is simple and 

subsequently produces huge population within short time. Both larvae and adults 

of C. pusillus damage a number of stored commodities (Cotton 1963). 

The lesser grain borer, Rhyzopertha dominica (Fabricus) is another serious 

damaging pest of stored grains it is an internal feeder and cosmopolitan in 

distribution. The incubation, larval, pre pupal and pupal periods are 4-6d, 18-33d, 

1d and 2-4d respectively. Total developmental time required as 30-41d. Eggs, 

larvae, pre pupae, pupae and adults are normally visual. Culture of R. dominica in 

the laboratory is easy. By feeding and making circular holes into the cereals          

R. dominica causes heavy weight loss and also affects the nutritional and baking 

quality as well as germination capacity of the grain (Patel and Valand 1994). So 

for easy culture techniques, requisite quantity of both the pest species were 

available within a short time under the laboratory conditions. 

Predator: Under the laboratory conditions hemipteran predators can suppress 

about 70-100% stored product insect pest populations under the laboratory 

conditions (Brower and Press 1992). Among the hemipteran predators, the 

warehouse pirate bug, Xylocoris flavipes (Reuter) is a potent candidate to suppress 

the coleopteran and lepidopteran stored-product insect pests. It is cosmopolitan in 

distribution (Gross 1954, Arbogast 1979). The incubation and nymphal periods are 

4-5d and 10-16d respectively. The developmental period is required 20d which 

may vary 14-15d depending on food, temperature and humidity. Adult male and 

female longevity are 6d and 20d respectively. Culture of X. flavipes is easily 

established in laboratory. X. flavipes is commercially available in USA to manage 
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the stored products insect pests (Mason et al. 2001). They are commonly found in 

grain storage facilities and their presence usually indicates an established infestation 

of grain pests. X. flavipes lives on eggs, larvae and pupae of insect pests. 

Selection of bacterium   
Spinosad is a reduced-risk commercial bacterial insecticide which belongs to a 

new class of insecticides called the NATURALYTES. Spinosad provides highly 

effective and long-lasting (up to two years) control of more or less all species of 

stored insect pests on various grains (Hertlein et al. 2011) and so far has proved 

non-cross-resistant to other insecticides (Salgado and sparks 2005). In addition, 

spinosad exhibits low mammalian toxicity and a highly environmental profile 

(Cleveland et al. 2001). Spinosad shows wide margins of safety to many beneficial 

insects and related organisms (Schoonover and Larson 1995, Elzen et al. 2000). It 

degrades quickly when exposed to sunlight (UV light) (Liu et al. 1999), therefore 

it is considered as a selective insecticide (Miles and Dutton 2000). Spinosad is 

already registered as a grain protectant in Kenya, USA, South Africa, Canada, 

European Union,  Australia, Japan etc. at the maximum use rate of 1ppm (1mg/kg 

of grain) and its Maximum Residue Limit (MRL) established at 1.5ppm (Hertlein 

et al. 2011). Moreover, Spinosad’s unique and non-cross-resistant mode of action 

will make it a valuable new tool in stored grain resistance management.   

Food medium used 
Food for host: White wheat, whole wheat flour and Brewer’s yeast were collected 

from the granaries of Shaheb Bazer, Rajshahi, Bangladesh. Wheat grains were 

cleaned by sieving through 500 micrometer aperture sieve (Wire cloth company, 

Newark, New Jersey 07104, USA) and sterilized in an oven at 100 ºC for 8h. 

Whole wheat flour and powdered Brewer’s yeast ratio was 19:1 (Park and Frank 

1948, Park 1962, Zyromska-Rudzka 1996) were mixed. Both wheat flour and 

yeast were passed previously through 125 micrometer aperture sieve (Wire cloth 

company, Newark, New Jersey 07104, USA) and were sterilized at 120 ºC for 6h 

in an oven. The sterilized wheat and standard food mixture were kept in separate 

plastic containers for 15 days to equilibrate its moisture content with that of the 
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laboratory with the minimum of 13% (Khan 1981, Mondal 1984a) and were used 

throughout the experiments. New foods wheat and standard food were prepared 

wherever necessary.           

Food for predator: Continuous supply of eggs, larvae up to 4th instars, pupae of 

C. pusillus and R. dominica were provided as food for X. flavipes during 

maintained culture in the laboratory. Culture of beetles was maintained according 

to Mondal and Parween (1997) in beakers containing food medium. 

Culture of C. pusillus   
Collection of beetle: Adults of C. pusillus were collected from the rearing culture 

maintained in the Integrated Pest Management Laboratory (IPM), Institute of 

Biological Sciences, University of Rajshahi since ten years. 

Collection of eggs: Six hundred unsexed adults of C. pusillus were collected and 

divided into three groups, each having 200 adults and were introduced to separate 

glass petri dishes (9cm diame) containing 50g food (whole wheat flour and 

Brewer’s yeast, ratio19:1) and allowed to oviposit. After 24h, the adults were 

sieved and eggs were collected sieving by 125 micrometer aperture sieve. The 

collected eggs were cleaned by gently tapering the paper on a piece of black paper 

and by separating flour particles. Cleaned eggs were identified under compound 

microscope and transferred to petri dishes with the help of fine camel hair brush. 

Eggs were kept 3-4d for hatching.    

Collection of larvae, pre-pupae, pupae and adults: After hatching, 1st, 2nd, 3rd 

and 4th instars larvae were obtained from 4-5d, 5-6d, 4-5d and 6-7d respectively. 

Pre pupae and pupae were seen into the cocoon at 3-4d and 4-5d. The larvae and 

pupae were confirmed by random examining under a magnifying glass.                 

Pupae emerged as adults at 4-5d. All the cultures were conducted in the Control 

Temperature (CT) room at 30±0.5ºC temperature and 70±0.5% relative humidity 

to ensure constant and regular supply of different life stages of C. pusillus of 

known age throughout the study period. 
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Determination of sex: The male-female sexes were determined by the following 

characters 

i)  Antennae was about two thirds length of the body in male and half length 

of the body in female.  

ii) Male hind tarsi were 4 segmented but female hind tarsi were 5 segmented 

iii) Males were normally small in shape-size than females.  

 

Figure 6  Culture of C. pusillus 

Culture of R. dominica  
Collection of beetle: Adults of R. dominica were collected from the stock culture 

maintained in Integrated Pest Management Laboratory, Institute of Biological 

Sciences, University of Rajshahi since ten years. 

Collection of eggs: Six hundred unsexed adults of R. dominica were collected and 

divided into 3 groups, each having 200 adults and were kept in separate petri 

dishes (15 cm daime) containing 100g of white wheat and allowed to oviposit. 

After 24 h, the adults were sieved out and eggs were separated using by 500 and 

125 micrometer aperture sieves for adults and eggs respectively. Eggs were 

examined under compound microscope and transferred to glass petri dishes (15 cm 

daime) with the help of fine camel hair brush. The collected eggs were kept 4-6d 

for hatching. 
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Collection of larvae, pre pupae, pupae and adults: After hatching, the 1st, 2nd, 

3rd and 4th instars larvae, pre pupae and pupae were obtained from 6-12d, 4-7d,                

4-6d, 4-8d, 1d and 2-4d respectively and were confirmed by random examining 

under a magnifying glass. Adults were emerged directly from pupae. All cultures 

were conducted in the Control Temperature room at 30±0.5ºC temperature and 

70±0.5 % relative humidity to ensure constant and regular supply of various kinds 

of life stages of R. dominica of known ages. 

Determination of sex: It is difficult to identify the sex of R. dominica in their 

larval and adult stages. Sex of R. dominica was separated in the pupal stage by the 

microscopic test of exogenital papillae by removed of attached exuvae (Porter 1935). 

The sexed pupae were then placed in separate petri dishes for the emergence of adults. 

Survivorship of pupae was reduced by sexing procedure and the degree of reduction 

varied considerably with the culture media used (Long staff and Starick 1989).   

 

Figure 7  Culture of R. dominica  

Culture of X. flavipes 
Collection of the adult bug: Adults of X. flavipes were collected from the stock 

culture maintained in the Integrated Pest Management laboratory, Institute of 

Biological Sciences and University of Rajshahi for six years.  

Collection of eggs: One hundred adults of X. flavipes were placed in a beaker          

(500 ml) containing sufficient food (1st and 2nd instars larvae and pupae of                  

C. pusillus and R. dominica). After 24 h, adults were replaced with the help of a 

fine camel brush. Eggs were found at the bottom of the beaker and examined them 

under compound microscope. The collected eggs were kept at 4-5d for hatching. 
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Collection of nymphs and adults: The newly hatched nymphs were determined 

using by magnifying glass and transferred very carefully with the help of fine  

camel hair brush to a beaker (500 ml) containing 1st and 2nd instars larvae of                  

C. pusillus and R. dominica as food. The 2nd, 3rd, 4th and 5th instars nymphs were 

obtained from the culture on the 3rd, 5th, 8th and 12th d from hatching respectively 

(Arbogast 1971). The nymphal instars were estimated by counting the exuviae 

deposited in the petri dish. The 5th instars nymphs transferred into adults.   

The culture of X. flavipes was maintained in beakers (500 ml) containing food 

medium (wheat flour and whole wheat infested by either C. pusillus or                          

R. dominica). The mouth of the beaker was covered with fine cloth and tied with rubber 

band. Beakers were kept in the Control Temperature room at 30±0.5ºC and 70±5 % rh. 

Determination of sex: Sex of X. flavipes was separated at the adult stage. Shape 

of the adult female’s abdomen is bilaterally symmetrical and in male it is notched 

on the left side of the segments 8 and 9. 

 

 

Figure 8  Culture of X. flavipes 
 

Source of Spinosad  

Spinosad is light gray to white in colour with slight odor stale water. About 500ml 

of Spinosad (PRN- MAPP-12054, cafno 20012- 019, Lot No–3068404) was 

obtained from Dow Agro Sciences, UK. Concentration of spinosad was 120g 

spinosad/Litre.  
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Figure 9  Source of Spinosad 

 
Preparation of concentration 

Using by 3 ml syringe 0.5 ml (equal to 32 drops) of Spinosad were taken in glass vial 

(5 ml) and using a micropipette 2 ml distilled water were added. The vial was shaken 

vigorously for equal mixing of Spinosad and water. Filter papers (9 cm diameter) 

were soaked in the prepared solution and allowed to evaporate at room temperature 

overnight hanging by strings. This 0.5 ml solution had the concentration equal to 

7.863 µl/cm2, determined using the formula given by Athanassiou et al. 2008. Other 

concentrations of Spinosad as 3.932, 1.966, 0.983 and 0.491 µl/cm2 were than 

prepared by serial dilution, by taking half drops of Spinosad in each step and adding   

2 ml distilled water.        

Precautions 
All experiments were conducted under same laboratory conditions. Frass, spoiled 

substance, faecal materials, dead beetles, cocoon, etc. gradually accumulate in the 

culture media and make it dirty, unhealthy and damped. To avoid such unhealthy 

condition, the original cultures of both predator and prey insects were sieved after every 

10-12d and fresh food was added to the culture. All glass wares, equipments and sieves 

were sterilized at 180ºC for 6h in an oven just before use. Washing detergents were 

used to clean all the materials. The experimental desks were cleaned everyday. 

Statistical analysis 
Data were analyzed by factorial ANOVA, Tukey’s test, Probit analysis using some 

statistical software like Minitab (version 14), MS Excel 2003 and Bio stat 2009.  
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Introduction 
Stored commodities are attacked by Lepidoptera, Coleoptera and Acari (Sing and 

Watters 1985, Khan and Mannan 1991). They are consist of many external and 

internal feeders such as C. pusillus and R. dominica and are found occasionally 

infesting grain (Subramanyam 2006a,b). Insect pest management in stored 

commodities with chemicals is facing many challenges due to concerns about 

human safety, insect resistance, environmental impacts and presence of residues in 

raw and processed foods (Hagstrum et al. 1999, Phillips   et al. 2000, Daglish and 

Wallbank 2002, Nayak et al. 2005, Daglish and Nayak 2006). Therefore, there is 

an urgent need to develop alternative methods for their control. Biological control 

has been studied as an alternative option (Arbogast 1985, Haines 1984, 1991, 

Brower et al. 1996, Scholler and Flinn 2000) and it is also depended on the 

potentiality of biocontrol agents. Among the predatory bugs, the warehouse pirate 

bug, X. flavipes is one of the biological control agents of many stored product 

insect pests (Brower et al. 1996, Scholler    et al. 1997, Visarathanonth et al. 1990, 

1994, Imamura et al. 2008). Actually, X. flavipes showed promise in suppressing 

populations of stored product insect pests (Jay et al. 1968) and preyed on early and 

late instar of many insect species but the number depending partly on the size of 

the prey and possibly other factors (Lecato and Davids 1973). Age of the host 

insect can have a profound effect on development and oviposition of 

parasitoids/predators (Vinson and Iwantsch 1980) because nutritional status and 

accessibility of the host may change with age.  

Several workers have described the effects of temperature, humidity and host 

species as foods on the biology of X. flavipes (Birch 1945a,b,c, Howe 1953 

Arbogast 1975, Press et al. 1976, Russo et al. 2004, Herra et al. 2005, Ferdous 

2006, Saha 2007, Rahman et al. 2009).  Before releasing the predator in the store 

to control insect pests, a thorough knowledge is needed about their biology. Many 

parasitoids/predators lay more eggs in certain host instar than the other. However, 

no specific information has been available concerning host C. pusillus and                   

R. dominica stage specific effects on the biology of X. flavipes. Moreover, it was 
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important to measure the developmental period, adult longevity, consumption rate, 

survivability, size and sex ratio of X. flavipes on different life stages of host                    

C. pusillus and R. dominica. This led to the conduct of the test.               

Materials and Methods 
Host: Two hundreds newly emerged healthy and mated females of C. pusillus 

were collected from previous established culture (Chapter 3). They were 

introduced in a Petri dish (15cm diameter) containing 10g fresh food (wheat flour 

and yeast ratio, 19:1 in weight). After 24 h, adults were sieved out from Petri dish 

and kept them in another Petri dish (15cm diameter) with same fresh food. The 

eggs along with foods were placed in a Petri dish (9cm diameter). The Petri dish 

was kept within wooden folder for the save from other organisms. The wooden 

folder was sifted to CT room at 30±0.5ºC temperature and 70±0.5% relative 

humidity. A series of culture were maintained for regular supply of eggs, larvae up 

to 4th instar and pupae of C. pusillus. Through the same procedure as described 

above eggs, larvae up to 4th instar and pupae of R. dominica were reared for regular 

supply. Different life stages of both hosts were used as food in the present tests. 

Predators: Fifty newly emerged healthy and mated females of X. flavipes were 

collected from earlier established culture (Chapter 3) and introduced in a glass 

beaker (500 ml) with 1st and 2nd instar larvae of C. pusillus and R. dominica as 

food and allowed to oviposite. Two filter papers were placed at the bottom of the 

beaker. Mouth of the beaker was covered with the fine cloth and rubber band to 

prevent moving out of the insects. After 24 h, the adults were removed to another 

beaker (500 ml) using by a fine camel brush and the deposited eggs were collected 

in a Petri dish (9 cm diameter) tapping by the filter papers for hatching. The newly 

hatched nymphs were carefully transferred to Petri dish (9 cm diameter) one by 

one using by fine camel brush. 

Bioassays: Newly hatched healthy 70 nymphs of X. flavipes were kept in 7 Petri 

dishes (9 cm diameter) separately (per Petri dish with 10 nymphs) containing  with 

200 eggs, 25 larvae of each instar and 10 pupae of C. pusillus as food. After every 

24 h, consumed or killed life stages of C. pusillus by X. flavipes were observed 
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and counted. Food were balanced adding by same life stage and were cleaned 

discarding by dead insects daily. Same procedure was followed as described above 

for R. dominica. The nymphs were regularly observed for ecdysis, number of 

nymphal ecdysis was recorded alone with the duration for each instar. Regular 

supply of eggs, larvae up to 4th instar and pupae of C. pusillus and R. dominica 

was maintained until the death of X. flavipes. The numbers of adult’s emergence 

as well as total developmental time and longevity of adults were observed. Prey 

consumption rate and no. of survivability of X. flavipes were observed and 

counted. The length (mm) of male and female adults was measured using by an 

ocular micrometer and the sexes were differentiated by compound microscope. All 

the experiments were replicated three times and conducted in CT room at 30 ± 

0.5ºC and 70 ± 0.5% relative humidity. 

Data analysis: The developmental period, adult longevity, prey consumption rate, 

survivability, size and sex ratio of X. flavipes were determined statistically 

compared to control using by factorial ANOVA. The comparison of mean was 

done by Tukey's test (1953).                

Results and Observation 
C. pusillus as prey of X. flavipes:  C. pusillus were reared on standard food. The 

mean developmental period from egg hatching to adult emergence of X. flavipes 

on different life stages of C. pusillus have shown in Figures 10A and Appendix 

table 2. Developmental period and its variance depended upon the different life 

stages of host (Figure 10B). X. flavipes was found able to complete development 

on eggs, larvae up to 4th instar and pupae of host but not on adults. On eggs, 

larvae up to 4th instar and pupae the mean developmental durations were recorded 

as 15±2.00, 20±0.00, 22±0.58, 18±1.00, 14±1.15 and 12±1.15 days respectively 

(Appendix Table 2).The age specific distribution of each nymph up to 5th  instar 

varied on different life stages of prey (Figure 10A). The developmental period was 

maximum on 2nd instar larvae and was minimum on the pupae Appendix table 2). 

The effects of different life stages of host on the developmental period was highly 

significant (P<0.001) (Appendix tables 3-7). 
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Life span of the predator varied with the different life stages of host. Adult of       

X. flavipes were found to be very active on the 2nd to 4th instar larvae Figure 10A,B). 

The highest longevity of the females was 31±1.15 days on 2nd instar larvae and 

lowest was 14±1.15 days on pupae (Appendix table 2). The effect of different life 

stages of prey on adult longevity was highly significant (P<0.001) (Appendix 

tables 8 and 9). 

Average (%) number of daily consumed or killed eggs, larvae up to 4th instar and 

pupae of C. pusillus by nymphs up to 5th instar and adults of X. flavipes were 

presented in Figure 12A and Appendix table 18. Consumption rate of X. flavipes 

was found to be varied on stages of host (Figure 12B). Effect of different life 

stages of C. pusillus on nymphs and adults of X. flavipes was found highly 

significant (P<0.001) (Appendix tables 19-25). The female predator always 

consumed more prey than the male. 2nd instar larvae of the beetle were found more 

preferable to the predator compared to other stages. A single X. flavipes can 

consume 3.33±0.33, 4.33±0.33, 5.67±0.33, 6.33±0.33, 8.67±0.33, 12.33±0.33 and 

14.33±0.33 2nd instar larvae of C. pusillus per day in its 1st, 2nd, 3rd, 4th, 5th, adult 

male and female stages respectively (Appendix table 18). So an individual                   

X. flavipes needs total 164.97, 129.01, 88.33, 66.01, 25.01 and 31 numbers of 

eggs, larvae up to 4th instar and pupae of C. pusillus to become adult. Number of 

eggs, larvae up to 4th instar and pupae of prey were consumed by X. flavipes as 

130.64, 114.64, 98.64, 77.3, 69.36 and 34.64 respectively in adult male and as 

413.40, 326.60, 286.66, 226.60, 186.60 and 113.40 respectively in adult female.  

Average survivability (%) of X. flavipes (nymphs up to 5th instar and adults) was 

recorded as maximum when fed on eggs, larvae up to 2nd instar 3rd, 4th instar larvae 

and pupae (Figure 14A, Appendix table 34). Survivability of X. flavipes was 

depended upon different life stages of C. pusillus (Figure 14B). The effect of host 

stages on survivability of nymphs up to 5th instar and adults of X. flavipes was 

found highly significant (P<0.001) (Appendix tables 35-41).     

Normally females are larger in size than males. Size of the adult X. flavipes was 

more when they fed on the larvae up to 4th instar of  C. pusillus than when they fed 
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on eggs and pupae (Figures 16A, Appendix table 50). The largest the males and 

females were measured as 1.80±0.01 and 2.10±0.01 mm respectively feeding on 

3rd instar larvae and shortest sizes were 1.50±0.06  and 1.70±0.06 mm respectively 

on eggs (Appendix table 50). The effect of different life stages of host on adult 

size was highly significant (P<0.001) (Figure 16B, Appendix tables 51 and 52). 

Sex ratio of the emerged predators differed while feeding different life stages of        

C. pusillus (Figures 18A, Appendix table 56). Sex differentiation of the emerged 

adults of X. flavipes was affected by the life stages of C. pusillus which were 

preyed by the predator. The sex-ratio of X. flavipes was found to fluctuated 

depending on the larval instar and other stages of prey. In all cases more number 

of female bugs were produced when the immature predators fed in 1st instar host 

larvae, the sex ratio was obtained closer to the normal one, the resulted sex ratio 

(male:female) was 45:55. Effect of different life stages on sex ratio was highly 

significant (χ2 = 13.67, df = 5, P<0.001) (Figure 18B, Appendix tables 57 and 58).   

R. dominica as prey of X. flavipes: X. flavipes were successful at locating and 

killing R. dominica larvae and pupae that were feeding inside wheat kernels. The 

mean developmental period from egg hatching to adult emergence of X. flavipes 

on different life stages of R. dominica have been shown in Figures 11A and 

Appendix table 10. Developmental period and its variance depended upon the 

different life stages of the prey (Figure 11B). X. flavipes  was able to complete 

development on eggs, larvae up to 4th instar and pupae of the prey. On eggs, larvae 

up to 4th instar and pupae the mean developmental durations were 18±1.00, 

20±0.58, 16±2.00, 14±1.15, 12±1.15 and 13±0.58 days respectively (Appendix 

table 10). The age specific distribution of each nymph up to 5th instar varied on 

different life stages of prey (Figure 11A). The developmental period was 

maximum on 2nd instar larvae but minimum on 4th instar larvae (Appendix table 10). 

The effects of different life stages of prey on the developmental period was highly 

significant (P<0.001) (Appendix tables 11-15). 

Life span of the predator varied with the different life stages of prey. Adult of       

X. flavipes were found to be very active on the 2nd to 4th instar larvae. The highest 
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longevity of the females was 34±2.31days on 2nd instar larvae and lowest was 

15±1.15 days on pupae of the host (Appendix table 10). The effect of different life 

stages of prey on adult longevity was highly significant (P<0.001) (Appendix tables 

16 and 17). 

Mean number of daily consumed eggs, larvae up to 4th instar and pupae of            

R. dominica by nymphs up to 5th instar and adults of X. flavipes were presented in 

Figure 13A and Appendix table 26. Consumption rate of X. flavipes was found to 

very on life stages of prey (Figure 13B). Effect of different life stages of                     

R. dominica on nymphs and adults of X. flavipes was found highly significant 

(P<0.001) (Appendix tables 27-33). The female predator always consumed more 

prey than the male. 1st instar larvae of prey were found more preferable to the 

predator comparatively than other stages. One X. flavipes consumed 3.33±0.88, 

4.67±1.20, 5.00±0.58, 6.33±0.88, 8.67±1.20, 10.00±1.15 and 14.00±1.15.33 1st  

instar larvae of R. dominica per day in its 1st, 2nd, 3rd, 4th, 5th, adult male and female 

stages respectively (Appendix table 26). So an individual X. flavipes needs total 

260, 104, 86.32, 78.67, 52.30, and 30.99 numbers of eggs, larvae up to 4th instar 

and pupae of R. dominica to became adult. Number of eggs, larvae up to 4th instar 

and pupae of prey were consumed by X. flavipes as 213.30, 100, 93.30, 86.70, 

63.30 and 30 respectively in adult male and 572.74, 528, 271.26, 249.26, 183.26 

and 88 respectively in adult female.  

Average survivability (%) of X. flavipes (nymphs up to 5th instar and adults) on 

eggs, larvae up to 2nd instar were found maximum comparatively than that of 3rd, 

4th instar larvae and pupae (Figure 15A, Appendix table 42). Survivability of              

X. flavipes was depended upon different life stages of R. dominica (Figure 15B). 

The effect of host stages on survivability of nymphs up to 5th instar and adults of 

X. flavipes was found highly significant (P<0.001) (Appendix tables 43-49).     

Normally females are larger  than males. Adult male and female size of                      

X. flavipes was when the larvae upto 4th instar of R. dominica was fed by the 

predator, whereas the adult size was less when it fed on  4th instar larvae and pupae 

(Figures 17A, Appendix table 53). The highest size of the males and females was 
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1.85±0.01 and 2.15±0.02 mm feeding on 2nd instar larvae, and lowest was 

1.65±0.04 and 1.90±0.03 mm feeding on pupae (Appendix table 53). The effect of 

different life stages of prey on adult size was highly significant (P<0.001) (Figure 17B, 

Appendix tables 54 and 55). 

Sex ratio of the emerged predators differed while feeding on different life stages 

of R. dominica (Figures 19A, Appendix table 59). The sex ratio of X. flavipes 

reared on different life stages of R. dominica always showed preference to the 

females, but fluctuation of the male-female ratio was recorded among the stage of 

the prey insect. Based on ratio 1:1, sex ratio of X. flavipes was found the best on 

1st and 2nd instar larvae comparatively than other stages. Effect of different life 

stages on sex ratio was highly significant (χ2 = 12.76, df = 5, P<0.001) (Figure 19B, 

Appendix tables 60 and 61).   
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Figure 10A Mean developmental time and adult longevity of X. flavipes on different 

life stages of C. pusillus. 

10B Relationship between mean developmental time and adult longevity of 

X. flavipes and different life stages of C. pusillus. 
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Figure 11A Mean developmental time and adult longevity of X. flavipes on different 

life stages of R. dominica 

11B Relationship between mean developmental time and adult longevity of 

X. flavipes and different life stages of R. dominica 
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Figure 12A Average (%) no of C. pusillus (eggs, larvae up to 4th instar and pupae) 

consumed per day by different life stages of X. flavipes  

12B Relationship between consumption rate of X. flavipes and different life 

stages of C. pusillus per day 
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Figure 13A Average (%) no of R. dominica (eggs, larvae up to 4th instar and pupae) 

consumed per day by different life stages of X. flavipes  

13B Relationship between consumption rate of X. flavipes and different life 

stages of R. dominica per day 
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Figure 14A Average (%) no. of survivability of different life stages of X. flavipes on 

different life stages of C. pusillus 

14B Relationship between average no. of survivability of different life stages 

of X. flavipes and different life stages of C. pusillus  
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Figure 15A Average (%) no. of survivability of different life stages of X. flavipes on 

different life stages of R. dominica 

15B Relationship between average no. of survivability of different life stages 

of X. flavipes and different life stages of R. dominica 
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Figure 16A Average size (mm in length) of adult X. flavipes fed on different life 

stages of C. pusillus 

16B  Relationship between average size (mm in length) of adult X. flavipes 

and different life stages of C. pusillus 
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Figure 17A  Average size (mm in length) of adult X. flavipes fed on different life 

stages of R. dominica 

17B  Relationship between average size (mm in length) of adult X. flavipes 

and different life stages of R. dominica 
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Figure 18A Average no. of X. flavipes male and female fed on different life stages of     

C. pusillus 

18B  Relationship between average sex ratio of X. flavipes and different life 

stages of C. pusillus 
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Figure 19A  Average no. of X. flavipes male and female  fed on different life stages of           

R. dominica 

19B  Relationship between average sex ratio of X. flavipes and different life 

stages of R. dominica 
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Discussion  

Different life stages of hosts C. pusillus and R. dominica which used as food 
played an important role in controlling developmental periods, adult longevity,  
survivability, size and sex ratio of the predator X. flavipes. The consumption rate 
of individual predator varied widely depending on the stage of the prey. The 
predator developed faster, lived longer as an adult, survived better in the immature 
stage and laid more eggs when fed on coleopteran larvae rather than lepidopteran 
larvae (Abdel Rahman et al. 1978-79). C. pusillus and R. dominica were the most 
suitable prey of X. flavipes (Brower and Press 1992, Abdel Rahman et al. 1978-79). 
As intrinsic factors both temperature and relative humidity considerably affect the 
duration of nymphal and adult stage of X. flavipes (Abdel Rahman et al. 1977 and 
Arbogast 1978), similar results was found on different life stages of both              
C. pusillus and R. dominica respectively. 

W Islam 1993 found that the developmental time of Anisopteromalus calandrae 

How from egg to adult emergence is 237.6±1.83 h for males and 206.57±0.78 h 

for females at 30±0.5°C and 70±0.05 rh. Dinarmus basalis Rond was found to 
attack and successfully complete its development within the larvae, pre-pupae and 
pupae of Callosobruchus chinensis L. and adult parasitoid emerged after complete 
life cycle within 12-14 days (Islam et al. 1985). At 30ºC  temperature there are 
five nymphal instar of X. flavipes and the instar number may vary from 2-6 
(Arbogast et al. 1971, Awadullah and Tawfik 1973). On P. interpunctella at 30ºC 
temperature, life of the predator was found to complete in 14-21 days (Arbogast 
1975). In the present study mean developmental periods of  nymphal instar was 
obtained as 12±1.15 - 22±0.58 days and 12±1.15 - 20±0.58 days feeding on 
different life stages of C. pusillus and R. dominica respectively.  

Awadallah and Tawfik (1973) reported that adult males and females of X. flavipes  
when provided with T. castaneum, lived for 5-43 and 4-37 days respectively in 
average. However, the present study revealed that the adult males lived for 8±1.15, 
10±1.15, 12±1.15, 11±1.15, 9±0.58, 6±0.58 days and 10±2.31, 12±1.15, 18±0.58, 
10±1.33, 8±1.15, 5±0.58 days and females lived for 20±1.15, 25±2.89, 31±1.15, 
28±1.15, 26±0.58, 14±1.15 days and 22±3.46, 26±0.88, 34±2.31, 24±2.31, 20±.15, 
15±1.15 days in average on eggs, 1st, 2nd, 3rd, 4th instar larvae and pupae 
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respectively of C. pusillus and R. dominica. Abdel Rahman et al. (1977) found 
that raising temperature 15-35ºC enhanced development of the eggs and the 
nymphal stages and shortened the life span of the adult stage of X. flavipes.  

The female Dinarmus basalis Rond fed on body fluids of Callosobruchus 

chinensis L. through the feeding tubes on the way of oviposition like many other 

Pteromalids and continuously deposited their eggs throughout their adult life 

(Islam 1991).  X flavipes consumption on adult insect pests explained not only by 

the greater challenge to subdue large prey, but it also correlated with daily 

ingestion rate and gut capacity, the nutritional resources of large prey generally 

exceed the daily food requirements of small predators (Peters 1983). X. flavipes 

killed significantly more ‘stimulating’ larval prey than ‘easy’ egg prey  (Lecato 

and Arbogast 1979, Russo et al. 2004). Arbogast (1978) stated that X. flavipes has 

a high capacity to increase in number relative to its prey. Lecato and Collins 

(1976) mentioned that X. flavipes destroys large quantities of prey when prey is 

abundant. It was observed in the present study that when an excess of eggs, 1st, 2nd, 

3rd, 4th instar larvae and pupae of C. pusillus and R. dominica were provided, each 

predator killed an average of 300 eggs, 49 larvae and 25 pupae of C. pusillus and 

400 eggs, 49 larvae and 10 pupae of R. domonica during their life time. But when 

the different life stages of host were provided separately, each predator destroyed 

an average of 400 eggs, 60 larvae and 28 pupae of C. pusillus and 500 eggs, 50 

larvae and 20 pupae. The feeding intensity of X. flavipes differs depending on the 

species of the prey and their life stages. Awadallah et al. (1986) reported that the 

predator when preyed only on the larvae of different pest insects, the predator fed 

on 105 larvae of Cocyra cephalonica, 112 larvae of T. confusum, 30 larvae of 

Stegobium panicerum, 148 larvae of Lasioderma serriocorni during 43 days of life 

span. The previous reports showed that X. flvipes reduced population growth of 

Oryzaephilus surinamensis by 95% (Arbogast 1976), small population of                     

C. cautella and P. interpunctella by more 70% (Brower and Mullen 1990) and 

several species of small beetles including T. castaneum, Typhaea sterocorea,              

C. pusillus, R. dominica 70-100% (Brower and Press 1992). Hymenopteran 
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parasitoid, life time reproductive success is strongly correlated with the number 

and quality of parasitized hosts (Potting et al. 1997). However, during this feeding 

period, the predator devoured 63 eggs only why such differences occur in feeding 

activity in relation to the prey species and life stages, the answer lies in the optimal 

diet theory which assumes that predators are able to rank prey in order of 

profitability (Charnov 1976). It is an evident from the present and previous studies 

on the biology of X. flavipes for growth and reproduction potentiality the predator 

needs energy rich food, Hence they feed on less number of pupae than the number 

of eggs or larvae.  

Active feeding period regulates not only oviposition but also duration of egg 

laying and total life span. A female X. flavipes killed 47.3±4.88 larvae of                    

C. pusillus and laid 20.1±1.66 eggs during her life time (25±1.26) days on                  

C. pusillus larvae (Ahmed et al. 2004). It has been reported that an                          

adult X. flavipes killed only 1 or 3 late instar larvae of T. castaneum in 24 h 

(Donnelly et al. 2001). When  can prey on adult  Tribolium. (Nishi et al. 2004)              

X. flavipes does not easily prey on adults. The present study showed that                      

X. flavipes can’t prey on adults of C. pusillus and R. dominica. Imamura et al. (2008) 

observed that the population of internal grain feeding insects such as Sitophilus and 

moth such as C. cautella and P. interpunctella were less affected by the predator 

compared with small external feeder such as O.  surinamensis by the predator. The 

present study indicated the similar results of the above findings.   

Survivability of immature stages of predator was maximum on 2nd instar larva and 

3rd instar larvae and was minimum on pupae of C. pusillus. But in case of  R. dominica it 

was maximum on 1st and 2nd instar larvae and was minimum on 4th instar larvae 

and pupae. Arbogast (1975) reported that survivability among immature stages of 

X. flavipes was lowest at 35ºC temperature. 

Lecato and Davis (1973) reported that the early instar nymph, late instar nymph and 

adult X. flavipes length (mean±SE) was 1.09± 0.01, 1.88± 0.02 and 2.22± 0.05 mm 
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respectively. In thepresent study, it was found that adult male size (length) was 

1.50±0.06, 1.60±0.03, 1.75±0.03, 1.80±0.01, 1.65±0.03, 1.55±0.04 mm  and 

1.75±0.03, 1.80±0.02, 1.85±0.01, 1.81±0.03, 1.76±0.03, 1.65±0.04 mm  and adult 

female size (length) was 1.70±0.06, 1.90±0.03, 2.00±0.03, 2.10±0.01, 1.95±0.03, 

1.85±0.04 mm and 2.00±0.03, 2.20±0.06, 2.15±0.02, 2.10±0.01, 1.98±0.05, 

1.90±0.03 mm in average on eggs, 1st, 2nd, 3rd, 4th instar larvae and pupae 

respectively of C. pusillus and R. dominica.  

The sex ratio (%) of emerging adults of X. flavipes ranged from 0.98 to 0.76 at 

different host stage specific, but it was not significant from 1:1 for any of the life 

stages. Russo et al. (2004) found similar result for X. flavipes. Parajulee and 

Phillips (1993) reported a similar rate of Lyctocoris carpestrist at 30ºC and 60-

70% relative humidity.                  

Taking into account the time of development,   adult longevity, consumption rate, 

survivability, size and sex ratio the most suitable stage of the prey were 2nd instar 

larvae of C. pusillus and R. dominica, which produced the largest predator 

individuals in the shortest period of exposure. Overall X. flavipes proved itself as 

an effective predator of insect pest in grain storage and a potential controlling 

agent against C. pusillus and R. dominica.  
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Introduction 

One of the challenges for 21st Century is to grow more food for the growing 

population of the world, and for food security (Pimental et al. 1994). For the 

protection of stored grains and other food commodities needs sustainable insect 

pest management of stored products, considering the safety of the consumers and 

the environment, within a cost effective way. C. pusillus is one of the serious 

external feeder and common major pests (Halstead 1993, Ahmed and Khatun 

1994) and R. dominica is one of the most injurious internal feeder and a major pest 

(Potter 1935, Crombie 1941), occurring in all areas of the world where grain is 

produced and stored (Chittenden 1911, Chanbang et al. 2007, Jia et al. 2008,   

Edde 2012).   

Both pests virtually feed on all kinds of stored grain and milled cereal products 

and causes immense damage to the tropical and subtropical countries throughout 

the world including Bangladesh (Dhaliwal 1976, Kirkpatrick and Cagle 1978, 

Hossain et al. 1986). The damage is caused by both the larval and adults stages of 

C. pusillus and R. donimica (Cotton 1963, Campbell and Sinha 1976, Arbogast 

1991, Jia et al. 2008). Due to their high fecundity, polyphagous nature, quick 

adaptation against insecticides, control of these pests for a long time is quiet 

difficult and rather impossible. 

Chemical control has been the most efficient and effective means for protection of 

stored product insect pests, but indiscriminate use of the pesticides has led to 

widespread resistance in insects and other arthropod pests. Continuous and 

enormous use of same or similar groups of synthetic pesticides causes problem of 

pesticide residues in foodstuff and other environmental contamination. Moreover, 

synthetic insecticides are expensive for subsistence farmers and they may pose 

potential risks owing to the lack of adequate technical knowledge related to their 

safe use (Keita et al. 2001). This has promoted the necessity for the development 

of new, safe, biodegradable alternate insecticides that could be feasible and 

effective for insect pest management in the stored ecosystem. 
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Spinosad appears to be one of the most promising new grain protectant 
(Thompson et al. 1997) and derived from soil bacteria, S. spinosa.  Spinosad has 
rapid contact and ingestion activity in insects of fields and stores (Sparks et al. 
1995, Bret et al. 1997, Toews and Subramanyam 2003), causing excitation of the 
nervous system, leading to cessation of feeding and paralysis (Ghosh et al. 2010). 
Because of its low mammalian toxicity and highly favourable environmental 
profile (Cleveland et al. 2001) Spinosad was screened against the insect pests to 
determine its effectiveness as a grain protectant (Bret et al. 1997, Subramanyam  
et al. 1999, 2002, Fang et al. 2002a, Mutambuki et al. 2002). Spinosad was found 
to be highly effective and provide long lasting (6 months to 2 years) control of  
stored product insect pests on various grains (Toews and Subramanyam 2003, 
Nayak et al. 2005, Maier et al. 2006, Subramanyam 2006 a, b, Huang and 
Subramanyam 2007, Huang et al. 2007, Subramanyam et al. 2007, 2012, Daglish 
et al. 2008, Chintzoglou et al. 2008a, b, Vayias et al. 2010a, b, Ghosh et al. 2010, 
Athanassiou et al. 2008a, b, 2009a,b, 2010a,b 2011, Hertlein et al. 2011). 
Although Spinosad is registered in the USA at a level rate of 1ppm and its 
maximum residue limit (MRL) rate of 1.5ppm on stored grains, it is not yet being 
marketed in the USA (Athanassiou et al. 2010, Hertlien et al. 2011). Laboratory 
and field tests on stored wheat showed that Spinosad at 1 mg/kg of grain were 
effective against several insect pests including the R. dominica, C.  ferrugineus, 
and P. interpunctella (Fang et al. 2002a,b,  Flinn et al. 2004  Huang et al. 2004). 
Spinosad cross resistance to organophosphate pyrethroids and methoprene had not 
been observed against a number of stored product insects, and it was found highly 
effective against R. dominica adults, killing them within 7 days and completely 
suppressing the progeny production of the beetle (Subramanyam et al. 2012). 
Previous studies have shown that R. dominica is highly susceptible to liquid or dry 
Spinosad even at low rates (Huang and Subramanyam 2007, Getchell and 
Subramanyam 2008). 

So far the effect of Spinosad on C. pusillus and R. dominica has been conducted in 
a very few levels in Bangladesh. The aim of this study was to evaluate the effect 
of Spinosad on different life stages of C. pusillus and R. dominica at different 
exposure periods under laboratory conditions. 

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib90#bib90
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib59#bib59
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http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib42#bib42
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib42#bib42
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib43#bib43
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http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib26#bib26
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib14#bib14
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib94#bib94
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Materials and Methods  

Insects: 2-d old eggs, 14-19d old larvae, pupae and 2d old adults of C. pusillus 

and 2d old eggs, 26-31d old larvae, pupae and 2d old adults of R. dominica were 

collected from previous established culture (Chapter 3) and were used in different 

tests of the present study. 

Concentrations: The concentrations of Spinosad as 0.491, 0.983, 1.966, 3.932 and 

7.863 μl/cm² were prepared using the method described in Chapter 3 and were used in 

this experiment.  

Bioassays: Prepared concentrations treated filter papers were kept in Petri dishes 

(9 cm diameter) which were cleaned using by cotton with ethyl alcohol and dried 

immediately. 

Eggs: Nine hundred 2d old eggs of C. pusillus and R. dominica were collected 

separately by sieving the food medium using the methods of Khan and Selmon 

(1981). Eggs were placed in Petri dishes containing filter paper either treated 

separately with 0.491, 0.983, 1.966, 3.932 and 7.863 μl/cm² concentrations of 

Spinosad and distilled water only, and all the Petri dishes were covered with lid. 

These Petri dishes were kept in CT (Controlled Temperature room at 30±0.5ºC 

temperature and 70±0.5% relative humidity, without controlling light. Three 

replications were used for each concentration and control also. Fifty eggs were 

used in each replicate (N=150). The eggs were observed daily under compound 

microscope for the hatching of larvae. The numbers of hatched and unhatched 

eggs were counted every 24h up to 10 days. Egg hatching was confirmed by 

counting the number of 1st instar larvae. The mortality of the eggs was assessed by 

counting the unhatched eggs after 10 days. 

Larvae: Three hundred sixty 14-19 d old larvae of C. pusillus and 26 – 31d old 

larvae of R. dominica were placed in the Petri dishes  containing filter paper either 

treated separately with the above mentioned concentrations of Spinosad and 

distilled water only and the Petri dishes were covered with lid. All the Petri dishes 

kept in CT room at 30±0.5ºC temperature and 70±0.5% relative humidity.                
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Three replications were used in each concentration and control. Twenty larvae 

were used in each replicate (N=60). Mortality was recorded after 24-, 48- and 72h-, 

after treatment (HAT). Those larvae that did not move when probed or shaken in the 

light and mild heat considered to be dead (Yousefnezhad-Irani and Asghar 2007). 

Pupae: The experiment was set with the pupae of C. pusillus and R. dominica in 

similar way as set for the egg and larval stages. Three replications were used in each 

concentration and control. Twenty pupae were used separately for each concentration 

of Spinosad (as mentioned) and control. Mortality was recorded after 24-, 48- and                

72- HAT. Pupae were considered dead when they did not move by any proved and 

shaken in the light and mild heat (Yousefnezhad-Irani and Asghar 2007). 

Adults: The experiments were conducted with the same concentrations of 

Spinosad with a control batch using 2-d old adults of C. pusillus and R. dominica.  

Three replications for each of the concentrations and the control were continued. 

The experiments were conducted in Petri dishes similarly like the eggs, larvae of 

pupal stages. Mortality was counted after 24-, 48- and 72- HAT. Adults were 

considered to be dead when probing with a hot needle failed to produce a response 

(Yousefnezhad-Irani and Asghar 2007). 

Data analysis: The mortality data were corrected by Abbott’s (1925) formula 

wherever needed, the formula is  

       Pr =  
Po – Pc

100- Pc
  ×100 

Where, Pr = corrected mortality (%) 
             Po = observed mortality (%) 
             Pc = control mortality (%) 

PRC value was calculated according to Mian and Mulla (1982) by the following formula 

PRC = 
C - T

C  × 100 

Where, C = No. of population in control 
   T = No. of population in treated media  
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All data were analyzed by Factorial ANOVA to compare mortality percentage as 

the response variables with concentrations, life stages, exposure periods. For 

comparison of the means Tukey's test (1953) was used. Lethal concentrations and 

the associated 95% limit of confidence were calculated by Probit analyses.  

Results and Observation 

Effect on egg hatchability: Spinosad showed a concentration related effects on 

the average percentage of egg hatchability of C. pusillus and R. dominica  (Figure 20 

and 21, Appendix table 62 and 77).  

Average percentage of egg hatchability (±SE) was the lowest (5.00±1.02) at 7.863 

μl/cm² concentration and the highest (25.00±1.15) at 0.491μl/cm² concentration in 

C. pusillus. At 7.863, 3.932, 1.966, 0.983 and 0.491 μl/cm² concentrations, the 

average percent of egg hatchability of C. pusillus was less than that of the control  

and PRC value was the highest 88.10% at 7.863μl/cm² and the lowest was 40.48% 

at 0.491 μl/cm²(Appendix Table 62). The effect of different concentrations on egg 

hatchability was found highly significant (P<0.001) (Appendix table 63). 

In case of R. dominica, average percentage of egg hatchability (±SE) was lowest 

0.33±1.03 at 7.863 μl/cm² concentrations and highest 15.00±1.14 at 0.491 μl/cm² 

concentrations. At 7.863, 3.932, 1.966, 0.983 and 0.491 μl/cm² concentrations, the 

average percent of egg hatchability was significantly less than that of the control  

and PRC value was the highest 99.13% at 7.863 μl/cm² concentrations whereas 

lowest 60.53% at 0.491 μl/cm² concentrations(Appendix table 77). The effect of 

different concentrations on egg hatchability was found highly significant 

(P<0.001) (Appendix table 78). 
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Figure 20 Average (%) hatchability of C. pusillus on different concentrations of 

Spinosad. 
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Figure 21 Average (%) hatchability of R. dominica on different concentrations of 

Spinosad. 
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Toxicity on larvae: The larval mortality of C. pusillus was observed on prepared 

concentrations of Spinosad after 24-, 48- and 72 hours after treatment (HAT) and 

the results of the experiments along with statistical analyses are shown in               

Figure 22, Table 2 and Appendix table 64-66, 74. All the Spinosad concentrations 

by contact were found to be toxic to the larvae compare to control. Toxicity of 

Spinosad was increased with the increase of concentration and exposure time. 

There were significant differences in the mean mortality of larvae between 

exposure periods (F=58.038, df=2, P<0.0001) and between concentrations (F=38, 

df-5, P<0.001). In addition, the interaction between exposure periods and 

concentration was significant (Appendix table 74). LC50 at 24-h was 18.208, 48-h 

was 5.912 and 72-h was 0.175 μl/cm2 Figure 15 (Figure 28, Appendix Table 73).   

In case of R. dominica, the larval mortality was observed on prepared 

concentrations of Spinosad after 24, 48 and 72 h of exposure and the results 

statistical analyses are shown in Figure 23, Table 3 and Appendix tables 79-81, 89. 

All the concentrations acted as larvicide by contact. Average mortality (±SE) was 

highest 13.33±0.88 at 7.863 μl/cm² concentration after 72 h and lowest 4.67±0.33 

at 0.491 μl/cm² concentrations after 24 h of exposure (Table 3). There were 

significant differences in the mean mortality of larvae between exposure times 

(F=57.026, df=2, P<0.001) and between concentrations (F=56.006, df-5, P<0.001). 

In addition, the interaction between exposure time and concentration was 

significant (F=7.795, df-10, P<0.001) (Appendix table 89). LC50 at 24-h                     

was 9.22978, 48 h was 2.835366  and 72 h was 0.5433412μl/cm² (Figure 28, 

Appendix table  88).    
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Figure 22 Average mortality of C. pusillus larvae on different concentrations of 

Spinosad after 24, 48 and 72 h period of exposure 
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Figure 23 Average mortality of R. dominica larvae on different concentrations of 
Spinosad after 24, 48 and 72 h period of exposure 
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Toxicity on pupae: Pupal mortality of C. pusillus at different concentrations of 

Spinosad 24-, 48- and 72 HAT was observed and the results were shown in Figure 

24, Table 2 and Appendix tables 67-69, 75. The concentrations were found to 

effective causing pupal mortality by contact action. compare to control. Average 

mortality (±SE) was highest 8.33±0.88 at 7.863 μl/cm² concentration after 72 h 

and lowest was 1.67±0.33 at 0.491 μl/cm² concentration after 24 h of exposure 

(Table 2). There were significant differences in the mean mortality between 

exposure periods (F=30.79, df=2, P<0.001) and between concentrations 

(F=61.524, df-5, P<0.001). In addition, the interaction between exposure period 

and concentration was significant (F=2.558, df-10, P<0.001) (Appendix table 75). 

LC50 at 24-h was 568.5706 , 48 h was 1841.139 and 72 h was 35.94058 μl/cm²       

(Figure 28, Appendix Table 73).     

Pupal mortality of R. dominica at different concentrations of Spinosad after 24, 48 

and 72 h of exposure was observed on and the results were shown in Figure 25, 

Table 3  and Appendix table 82-84,90. The tested concentrations were found to be 

potential causing pupal mortality by contact compared to control. Average 

mortality (±SE) was highest 8.33±1.45 at 7.863 μl/cm² concentration after 72 h 

and lowest 1.00±0.58 at 0.491 μl/cm² concentration after 24 h of exposure     

(Table 3). There were significant differences in the mean mortality between 

exposure periods (F=32.986, df=2, P<0.001) and as well as between 

concentrations (F=23.986, df-5, P<0.001). In addition, the interaction between 

exposure periods and concentration was significant (F=4.622, df-10, P<0.001) 

(Appendix table 90).  LC50 at 24-h was 1138.777, 48 h was 231.1335 and 72 h was 

22.0538 μl/cm² (Figure 28, Appendix table 88).    
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Figure 24 Average mortality of C. pusillus pupae on different concentrations of 

Spinosad after 24, 48 and 72 h period of exposure 
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Figure 25 Average mortality of R. dominica pupae on different concentrations of 

Spinosad after 24, 48 and 72 h period of exposure 
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Toxicity on adults: At all tested concentrations of Spinosad, adult mortality of             

C. pusillus were higher than that of larval and pupal stages (Table 2). Adult 

mortality of C. pusillus on different concentrations of Spinosad after 24-, 48- and 

72 HAT was observed and the results with their statistical analyses are presented 

in Figures 26, Table 2 and Appendix tables 70-72, and 76. The concentrations 

were found to be potential causing adult mortality based on the contact compare to 

control. Average mortality (±SE) was highest 15.33±1.22 at 7.863μl/cm² after      

72 h and lowest was 5.00±0.58 at 0.491μl/cm² after 24 h of exposure (Table 2). 

There were significant differences in the mean mortality of adults between 

exposure periods (F=202.970, df=2, P<0.001) and between concentrations 

(F=42.617, df=5, P<0.001). In addition, the interaction between exposure period 

and concentration was significant (F=8.350, df=10, P<0.001) (Appendix table 76). 

The LC50 values after 24- h was 7.995, 48- h was 2.145  and 72- h was 0.839  

μl/cm²  (Figure 28, Appendix table 73).   

The tested concentrations of Spinosad, 2d old adult mortality of R. dominica were 

higher than that of larval and pupal stages (Table 3). Adult mortality of                 

R. dominica on different concentrations of Spinosad after 24, 48 and 72 h of 

exposure was observed and the results with statistical analyses were shown in 

Figure 27, Table 3 and Appendix table 85-87, 91. Different concentrations were 

found to be potential causing adult mortality by contact compare to control. 

Average mortality (±SE) was highest 17.33±1.20 at 7.863 μl/cm² concentrations 

after 72 h and lowest 6.67±0.88 at 0.491 μl/cm² concentrations after 24 h of 

exposure (Table 3). There were significant differences in the mean mortality of 

adults between exposure periods (F=36.122, df=2, P<0.001) and between 

concentrations (F=83.468, df=5, P<0.001). In addition, the interaction between 

exposure time and concentration was significant (F=2.017, df=10, P<0.001) 

(Appendix table 91). LC50 at 24-h was 6.951654, 48 h was 0.9590641 and 72 h 

was 0.466328 μl/cm² (Figure 28, Appendix table 88). Spinosad showed a 

concentration related effects on adult mortality. The potentiality was higher in all 

treatments with the increase of concentrations and exposure periods. 
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Figure 26 Average mortality of C. pusillus adults on different concentrations of 

Spinosad after 24, 48 and 72 h period of exposure. 
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Figure 27 Average mortality of R. dominica adult on different concentrations of 
Spinosad after 24, 48 and 72 h period of exposure 
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Table 2  Mortality (mean±SE) of 14-19d larvae, pupae and 2d adults of C. pusillus 
at different concentrations of Spinosad after different exposure periods. 

 
Exposure 

periods (h) 
Concentrations 

(µl/cm2) 
Mortality (mean ± SE) 

Larvae PRC Pupae PRC Adults PRC 

24 

Control 0.00±0.00c - 0.00±0.00c - 0.00±0.00d - 

0.491 3.33±0.88b 16.65 1.67±0.33bc 8.35 5.00±0.58c 25.00 

0.983 4.67±0.67b 23.35 2.33±0.33ab 11.65 6.00±0.58c 30.00 

1.966 5.67±0.33ab 28.35 3.00±0.58ab 15.00 6.67±0.67bc 33.35 

3.932 7.33±0.33a 36.65 3.33±0.33ab 16.65 9.00±0.58ab 45.00 

7.863 8.00±0.58a 40.00 4.00±0.58a 20.00 10.00±0.058a 50.00 

48 

Control 0.00±0.00b - 0.00±0.00c - 0.00±0.00d - 

0.491 6.67±0.67a 33.35 3.33±0.67b 16.65 7.33±0.33c 36.65 

0.983 8.33±1.33a 41.65 4.00±0.58b 20.00 8.33±0.33bc 41.65 

1.966 9.00±0.58a 45.00 4.67±0.33ab 23.35 9.33±1.45abc 46.65 

3.932 9.67±0.88a 48.35 5.33±0.33ab 26.65 11.67±0.88ab 58.35 

7.863 10.00±0.58a 50.00 6.33±0.33a 31.65 12.67±1.20a 63.35 

72 

Control 0.00±0.00b - 0.00±0.00c - 0.00±0.00c - 

0.491 10.67±0.67a 53.35 5.00±0.58b 25.00 9.33±0.33b 46.65 

0.983 12.33±0.33a 61.65 5.67±0.67ab 28.35 10.00±0.00b 50.00 

1.966 13.00±1.00a 65.00 6.33±0.33ab 31.65 10.67±0.88b 53.35 

3.932 13.33±1.76a 66.65 7.00±0.58ab 35.00 14.00±0.58a 70.00 

7.863 14.00±2.00a 70.00 8.33±0.88a 41.65 15.33±1.22a 76.65 

Note: Means with same letter do not significantly differed from each other (Tukey’s Test) 
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Table 3  Mortality (mean±SE) of 26-31d larvae, pupae and 2d adults of R. 

dominica at different concentrations of Spinosad after different exposure 
periods 

 
Exposure 

periods (h) 
Concentrations 

(µl/cm2) 

Mortality (mean ± SE) 

Larvae PRC Pupae PRC Adults PRC 

24 

Control 0.00±0.00c - 0.00±0.00a - 0.00±0.00b - 

0.491 4.67±0.33b 23.35 1.00±0.58ab 5.00 6.67±0.88a 33.35 

0.983 5.00±0.58b 25.00 2.67±1.20ab 13.35 7.67±0.88a 38.35 

1.966 6.67±0.88ab 33.35 2.33±0.33ab 11.65 8.67±0.88a 43.35 

3.932 9.00±0.58a 45.00 2.67±0.33ab 13.35 9.33±0.67a 46.65 

7.863 9.33±0.67a 46.65 3.00±0.58a 15.00 10.00±0.58a 50.00 

48 

Control 0.00±0.00b - 0.00±0.00b - 0.00±0.00d - 

0.491 8.33±0.33a 41.65 2.67±0.88ab 13.35 9.00±0.58c 45.00 

0.983 9.00±0.58a 45.00 3.33±1.20ab 16.65 10.00±0.58bc 50.00 

1.966 9.67±0.88a 48.35 4.33±0.33a 21.65 10.33±0.88bc 51.65 

3.932 10.33±0.33a 51.65 4.67±0.67a 23.35 13.33±0.88ab 66.65 

7.863 11.00±1.00a 55.00 5.33±0.67a 26.65 14.00±1.00a 70.00 

72 

Control 0.00±0.00c - 0.00±0.00a - 0.00±0.00d - 

0.491 10.00±0.58b 50.00 4.67±0.88b 23.35 11.00±0.58c 55.00 

0.983 10.67±0.67ab 53.35 6.00±1.55b 30.00 12.00±0.58c 60.00 

1.966 11.67±0.88ab 58.35 6.67±0.33b 33.35 13.33±0.88bc 66.65 

3.932 12.67±0.33ab 63.35 7.33±0.67b 36.65 16.33±0.88ab 81.65 

7.863 13.33±0.88a 66.65 8.33±1.45b 41.65 17.33±1.20a 86.65 

Note: Means with same letter do not significantly differed from each other (Tukey’s Test) 
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Figure 28  Regression lines of probit mortality on log concentration of Spinosad on 

C. pusillus (A = larvae, B = pupae  and  C = adults) and R. dominica                  

(D = larvae,  E = pupae  and  F = adult). 
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Discussion  

Results of the present experiments revealed that there were significant impacts of 

the contact activity different concentrations of Spinosad and exposure periods 

against egg hatchability of C. pusillus and R. dominica. Spinosad concentrations 

were found to be toxic against 14-19 d old larvae, pupae and 2 d old adults of           

C. pusillus and 2d old eggs, 26-31d old larvae, pupae and 2d old adults of                   

R. dominica. Adults were the most susceptible in comparison with that of larvae  

and pupae at concentration and longest exposure period. Mortality of pupae was 

found the least number followed by larvae and adults. Egg hatchability was found 

to be dependent on the concentration. Similar effects of Spinosad have been 

reported on other stored-product insects by Mutambuki et al. (2003), Chintzoglou 

et al. (2008a, b), Aarthi and Murugan (2010), Athanassiou et al. (2010a,b), 

Mollaie et al. (2011). 

Naturally, eggs of R. dominica are laid singly or in groups/clusters on the exterior 

of the kernel (Potter 1935). Eggs hatch and the active neonate bores inside the 

kernel, where it completes development up to the adult stage (Howe 1950, 

Arbogast 1991). Upon reaching the adult stage, R. dominica emerges from the 

kernel and creates a large exit hole (Potter 1935, Rees 1995). Triflumuron caused 

100% egg mortality of O. surinamensis, R. dominica and T. castaneum when they 

were exposed for four weeks (Mian and Mulla 1982a). Similar results were 

reported by Mazid et al. (2006), Eisa et al. (1986), Saxena and Mathur (1981 a, b) 

and Saxena and Kumar (1989). 

LC50 values of Spinosad against the larvae of C. pusillus and R. dominica  24-,  

48-, and 72 HAT were 18.208, 5.912 and 0.1755 and 9.230, 2.835 and 

0.543μl/cm2 respectively, revealed that this bacterial insecticide is quite potent to 

kill the larvae at very low concentration, but will require a longer exposure (72-h). 

Mortality of 50 and 70% were achieved after 48- and 72 h. The toxic effect of 

Spinosad begun during 48-h of exposure. As the treatments were given by contact, 

probably an oral treatment with Spinosad would be able to produce higher rate of 

mortality in the larvae at more lower concentrations and shorter exposure periods.     
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It was reported that E. kuehniella larvae were more susceptible to Spinosad 

compared to P. interpunctella larvae. Spinosad at the concentrations of 0.1, 0.25, 

0.5, 0.75 and 1 mg/kg completely suppressed larval survival of E. kuehniella 

(Mollaie et al. 2011). Spinosad at (1 mg/kg) resulted 95% suppression of larval 

survival and adult emergence of P. interpunctella was achieved. On the contrary, 

Spinosad at 0.1 mg/kg resulted 100% larval mortality of E. kuehniella.  

Differences in toxicity of Spinosad was recorded on the might be due different 

commodity used as pest food (Fang et al. 2002a, Chintzoglou et al. 2008a,b). Fang 

et al. (2002a), Huang et al. (2007), Huang and Subramanyam (2007), reported that 

susceptibility of P. interpunctella larvae to Spinosad was dose dependent. Toews 

and Subramanyam (2003) reported that mortality of T. castaneum was increased 

with increasing the concentrations of Spinosad by contact treatment. In addition, 

the mortality of adults in all concentrations was dependent to exposure time, and 

72 HAT caused the highest mortality. The application rates of 0.1 and 0.5 ppm 

Spinosad gave 83 and 100% mortality respectively of Cryptolestes  spp on 

Spinosad- treated maize (Huang and Subramanyam 2007). Bond et al. (2004) 

reported that the naturally derived insecticide Spinosad is highly toxic to Aedes 

and Anopheles mosquito larvae. Cetin et al. (2005) worked on the evaluation of 

the naturally derived insecticide Spinosad against Culex pipiens L. (Diptera: 

Culicidae) larvae in septic tank water in Antalya. Additional studies have reported 

the larvicidal properties of Spinosad in this and other mosquito species (Liu et al. 

2004a, b, Cetin et al. 2005 b, Darriet et al. 2005, Darriet and Corbel 2006 and 

Romi et al. 2006).  

As pupa is the non-feeding stage of C. pusillus and R. dominica only contact 

treatment is possible to give. As a whole the pupal stage was found to be 

comparatively tolerant (PRC value was <50% at maximum concentration and 

longer exposure) to Spinosad treatment. To achive more toxic effect against the 

pupae of          C. pusillus and R. dominica  more higher concentrations of 

Spinosad have to be applied. There is a lack of literature reporting the Spinosad 
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toxicity at the pupal stages of stored product insects, so the present result is 

quite difficult to compare.   

Bonjur et al. (2011) conducted field experiments with 0, 25, 50 and 70 ppm 

concentrations of ozone in steel bins containing wheat against seven stored grain 

pests after and found that adult pupae of P.  interpunctella were more susceptible 

to those concentrations after 1, 2, 3 and 4 d of exposure. Kovendan et al. (2012) 

found that pupal mortality of Aedes aegypti was 12% by the treatment of Spinosad 

at 20 ppm and it has been increased to 64% at 100 ppm after 24 h and the LC50 

value of pupae was 93.44 ppm. The above results are more or less similar to the 

present findings. 

Athanassiou et al. (2010a, b) evaluated adult mortality of Cryptolestes spp on 

0.1 and 0.5 ppm Spinosad treated wheat and recorded 86.7±3.3 and 

97.80±2.2 % mortal effect respectively after 14 days, however, the mortality 

of control adults was 26.70±5.8 %. In the present study the PRC values were 

50, 63.35 and 76.65 at the highest concentration of Spinosad (7.863 μl/cm2) 

exposed 72-h. The higher concentrations needed in the present study might 

be due to the contact treatement and lower exposure (72 h compared to 14d).  

Subramanyam et al. (1999) carried out an experiment to establish the efficacy of 

1, 3, 6, 10, 15 and 20 mg/kg concentrations of Spinosad on wheat after 8 and 14 d 

of exposure and found that the mortality of R. dominica adults was 100%.  Fang et 

al. (2002a) found 100% mortality of R. dominica adults on wheat treated with         

1 ppm of Spinosad after 7 days of exposure. For instance, Toews and 

Subramanyam (2003) reported that T. castaneum was by far more tolerant to 

Spinosad than R. dominica and S. oryzae. Similar results have also been reported 

by other researchers (Huang et al. 2004, Nayak et al. 2005, Getchell 2006). 

Daglish and Nayak (2006) reported that Spinosad residues were stable for                   

9 months on wheat, without loss of insecticidal activity against R. dominica. In 

another study, Daglish et al. (2006) found that Spinosad applied at 0.5 or 1mg/kg 

was completely effective for 9months at both 55 and 70% RH, with 100% adult 

mortality of R. dominica after 14 days of exposure and no live f1 adults produced. 
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Arthur (2004a, b) reported mortality of R. dominica adults exposed to dust and 

liquid formulations of methoprene. Athanassiou et al. (2008a) found that at 

0.01ppm of Spinosad at 30°C temperature and 75% relative humidity after 7, 14 

and 21 d of exposure average percent mortality of R. dominica (± SE) was 

achieved 55.6 ± 7.0, 84.5 ± 8.1 and  94.4 ± 2.2 respectively. An another 

experiment, Athanassiou et al. (2010a) evaluated the efficacy of 0.1 and 0.5 

ppm concentrations of Spinosad against adults of R. dominica on wheat after 

14 d of exposure and found that average percent mortality of R. dominica (± 

SE) were 100.0 ± 0.0 and 100.0 ± 0.0 respectively whereas 3.3 ± 1.7 mortality 

was in control. C. maculatus appears to be highly susceptible to Spinosad at a low 

rate of 0.3 ppm (Sanon et al. 2010). The present findings are similar to the above 

results.   

The present results indicate that Spinosad is an effective tool to control all the  life 

stages of C. pusillus and R. dominica the degree of toxicity of  Spinosad can be 

ranked as eggs>adults > larvae> pupae. So, it can be concluded that low 

concentrations of Spinosad would be potential to control C. pusillus and                

R. dominica in storage system.   
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Introduction 

Among the predatory bugs, X. flavipes is more stout bodied cosmopolitan            

insect and one of the most challenging efficient predator of many insect pests in 

storage commodities (Gross 1954, Arbogast 1979, Brower et al. 1996 and 

Imamura et al. 2008). This predacious bug successfully controls the population of 

small insect pests of storage particularly by sucking fluids of eggs and early instar 

larvae that are neither heavily sclerotized nor overly hirsute (Lecato and Davids 

1973, Sing and Arbogast 2008a,b). This bug has already been commercialized in 

North-America and is marketed for biocontrol of stored product insects (Mason 

and Hubner 2001).    

There is limited evidence to suggest that X. flavipes is more pesticide-tolerant than 

parasitoids and pest insects. Baker and Arbogast (1995) reported X. flavipes to be 

4-fold and 10-fold more tolerant to malathion than A. calandrae and H. hebetor, 

respectively. Press et al. (1978) reported that X. flavipes generally exhibited 

greater tolerance to the insecticides permethrin, fenitrothion, pirimiphos-methyl, 

pyrethrins_piperonyl butoxide, and malathion than three prey species, including       

T. castaneum, L. serricorne and P. interpunctella.  

Use of synthetic pesticides causes some unfortunate consequences such as 

environmental pollution, pests/hosts resistance and toxicity to other non-target 

organisms including human beings, biological pesticides from microbial origin are 

environmentally safe pesticides. Among microbial insecticides, Spinosad is 

specially valuable because its non-toxicity to non-target animals and human beings 

(Aarthi and Murugan 2010). In field crop markets, where it has been sold since 

1997, Spinosad is minimally disruptive to beneficial insects and compatible with 

Integrated Pest Management (IPM) programs in many crops (Miles 2006 and Arthur 

et al. 2007). A portion of Spinosad’s selectivity in crop markets derives from its 

intrinsic toxicity profile relative to beneficial insects, which can vary by taxa, but 

with Spinosad generally being less toxic to predators than to parasitoids (Michaud 

2003 and Williams et al. 2003). A second important factor contributing to 

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib54#bib54
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib2#bib2
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib2#bib2
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib53#bib53
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib53#bib53
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib97#bib97
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Spinosad’s favorable selectivity is its relatively transient presence in the 

environment due to photolytic breakdown. Spinosad’s impact on beneficial insect 

populations under field conditions are typically short lived and followed by rapid 

recovery (Williams et al. 2003 and Miles and Eelen 2006). However, in grain 

storage environments where sunlight is not present, Spinosad’s residual efficacy 

has been shown to be much longer, on the order of six months to two years. 

Therefore, Spinosad’s impact on beneficial insects can be quite different in grain 

versus crop environments. In a labroatory study, Toews and Subramanyam (2004) 

found that Spinosad applied to stored wheat at 1 ppm was highly toxic to the 

parasitoids H.  hebetor, T.  elegans and A. calandrae yet not so to X.  flavipes, 

which demonstrated 92% survival and was able to reproduce under these same 

conditions. The findings from this laboratory study were subsequently supported 

by field bin trials conducted by Parker et al. (2004a and 2004b) in stored sorghum 

and  Parker and Falconer (2004, 2005, 2006 and 2007) in stored corn, where they 

showed no survival of the parasitoid A. calandrae and only limited survival of the 

parasitoid C. elegans when grain was treated with Spinosad at 1 ppm and 

parasitoid populations were monitored over storage periods ranging from 10 to 24 

months. However, populations of X. flavipes remained relatively unaffected by 

Spinosad in the similar sorghum bin study. These results suggest X. flavipes can 

survive and reproduce in grains treated with Spinosad at rates up to 1 ppm, 

whereas parasitoid populations will be markedly reduced due either to the direct 

toxicity of Spinosad or indirectly through Spinosad’s impact on their host species. 

Spinosad is likely to be no worse than many other grain protectants with respect to 

its impact on beneficial species.  

Spinosad appears to be very compatible with many predatory insects of the crop 

field like green lacewing (Chrysoperla carnea), ladybird beetle (Hippodamia 

convergens), minute pirate bug (Orius laevigatus), big-eyed bug (Geocoris 

punctipes), and damsel bug (Nabis spp.) (Thompson et al. 2000). Moreover, 

Spinosad is safe to nymphs and adults of many natural enemies including                     

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib97#bib97
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib55#bib55
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib91#bib91
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib61#bib61
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib63#bib63
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X. flavipes (Ghosh et al. 2010). Previous research has focused the effects of 

Spinosad on many natural enemies or beneficial insects (Schoonover and Larson 

1995, Bret et al. 1997, Boucher 1999, Tillman and Mulrooney 2000, Thompson             

et al. 2000, Consoli et al. 2001, Mason et al. 2002, Williams et al. 2003, Michaud 

2003, Towes and Subramanyam 2004, Wang et al. 2005, Subramanyum et al. 

2007, Daglish et al. 2008, Ghosh et al. 2010) whereas, very few experiments have 

yet been conducted to explore the effects of Spinosad on X. flavipes. Therefore, 

the present investigation was undertaken to evaluate the stage specific 

susceptibility of X. flavipes to several concentrations of Spinosad at different 

exposure periods in the laboratory condition which are likely to be compatible 

with stored product ecosystems that make the powerful and well Integrated Pest 

Management strategies.  

Materials and Methods:  
Insects: 2d old eggs, 4d old nymphs and 2d old adults of X. flavipes were   

collected from the stock culture (Chapter 3) and used in the present experiments. 

Concentrations used: The concentrations of Spinosad applied to the pests              

C. pusillus and R. dominica, were also used in this experiment to observe that the 

applicable dosages for the pest control is either affect the predator or not.  

Bioassays: Concentration treated filter papers were kept in Petri dishes (9 cm 

diameter) which were cleaned by cotton with ethyl alcohol and dried immediately. 

Eggs: Nine hundred 2d old eggs of X. flavipes were collected by sieving the food 

medium using according to Khan and Selmon (1981). Eggs were placed in Petri 

dish containing filter paper either treated separately with 0.491, 0.983, 1.966, 

3.932 and 7.863μl/cm² concentrations of Spinosad and distilled water only, and 

Petri dishes were covered with lid. The petri dishes were kept in CT (Controlled 

tempareture) room at 30±0.5ºC temperature and 70±0.5% relative humidity,  

Three replications were used for each concentration and control. Fifty eggs were 

used in each replicate (N=150). The egg was observed daily under compound 

microscope until hatching. The numbers of hatched and unhatched eggs were 
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counted every 24h up to 10 days. Eggs hatching were confirmed by counting the 

number of 1st instar nymphs. The mortality of eggs was assessed by counting the 

unhatched eggs after 10 days. 

Nymphs: Three hundred sixty 4d old nymphs of X. flavipes were placed in the 

Petri dishes containing filter paper either treated separately with prepared 

concentrations of Spinosad or distilled water only and the Petri dishes were 

covered with lid. All Petri dishes kept in CT room at 30±0.5ºC temperature and 

70±0.5% relative humidity. Three replications were carried out in each 

concentration and control. Twenty nymphs were used in each replicate (N=60). 

Mortality was recorded after 24,- 48 and 72h after post treatment. Those nymphs 

that did not move when probed or shaken in the light and mild heat considered to 

be dead (Yousefnezhad-Irani and Asghar 2007). 

Adults: The experiment was conducted with the same concentrations of Spinosad,     

with a control batch using 2d old adults in three raplication for eacg of the 

concentrations and the control. The experiment was conducted in Petri dishes 

similarly like the egg and nymphal stages. Mortality was counted after 24, 48 and 

72 HAT. Adults were considered to be dead when probing with a hot needle failed 

to produce a response (Yousefnezhad-Irani and Asghar 2007). 

Data analysis: The mortality data were corrected by Abbott’s (1925) formula. The 

data were analyzed by Factorial ANOVA to compare mortality percentage as the 

response variable and concentrations, life stages and exposure periods. For the 

comparison of means the Tukey’s  test (1953) was used. Lethal concentrations and 

the associated 95% limit of confidence were calculated by Probit analyses. PRC 

values were calculated according to the formula of Mian and Mulla (1982a). 

Results and Observation 
Effects on egg hatchability: Spinosad inhibited egg hatchability of X. flavipes at 

all concentrations (Figure 29, Appendix table 92). In average 25-35% eggs o0f the 

predator were hatched. The hatchability was higher in all treatments with the 

increase of concentrations. Egg hatchability was decreased with the increased 

concentrations, and the PRC values ranged from 2.86-28.57 (Appendix table 92). 
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The effect of different concentrations on egg hatchability was found significant 

(P<0.001) (Appendix table 93). 
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Figure 29 Average % hatchability of X. flavipes on different concentrations of 

Spinosad. 
 

Toxicity on nymphs: 4d old nymphs of X. flavipes were used and mortality 

recorded on different concentrations of Spinosad after 24, 48 and 72 h of 

exposure. The findings with statistical analyses are shown in Figure 30, Table 4, 

and Appendix tables 94-96 and 101. Different concentrations were found to be 

potential causing very few nymphal mortality based on the contact treatment 

compare to control (Table 4). Average percent mortality (±SE) was highest 

6.67±1.76 at 7.863μl/cm² after 72 h and lowest was 1.00±0.58 at 0.491μl/cm² after 

24 h of exposure (Table 4). At 95% confidence limit lower to upper 24 h LC50 was 

432.6535 (2.922949-237196.1), 48 h LC50 was 137.838 (3.740582-5079.244) and 

72 h LC50 was 73.82966 μl/cm² (3.22157-1691.976) respectively (Figure 32, 

Appendix table 100). There were significant differences in the mean mortality of 

larvae between exposure periods (F=37.587, df=2, P<0.001) and between 

concentrations (F=12.611, df-5, P<0.001). In addition, the interaction between 

exposure periods and concentration was significant (F=5.460, df-10, P<0.001) 

(Appendix table 101). Moreover, Nymphal mortality was found higher than that of 

adults (Table 4).  
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Figure 30 Average mortality of X. flavipes nymphs on different concentrations of 
Spinosad after 24, 48 and 72 h period of exposure 

 

Toxicity on adults: Two day old adult  mortality of  X. flavipes were found less 

than that of nymphal stages at all tested concentrations of Spinosad (Table 4). 

Adult mortality of X. flavipes on different concentrations of Spinosad after 24, 48 

and 72 h of exposure and the statistical analyses were shown in Figure 31, Table 4 

and Appendix table 97-99 and 102. The tested concentrations were found to be 

effective causing adult mortality based on the ingestion and contact compare to 

control. Average percent mortality (±SE) was highest 5.00±0.45 at 7.863μl/cm² 

concentrations after 72 h and lowest 1.67±0.67 at 0.491μl/cm² concentrations after 

24 h of exposure (Table 4). At 95% confidence limit lower to upper 24 h LC50 was 

492.8509 (3.859698-62932.93), 48 h LC50 was 348.9742 (4.223628-28833.73) and 

72 h LC50 was  331.5098μl/cm²  (2.651994-41440.03) respectively (Figure 32, 

Appendix table 100). There were significant differences in the mean mortality of 

adults between exposure periods (F=7.386, df=2, P<0.001) and between 

concentrations (F=5.219, df=5, P<0.001). In addition, the interaction between 

exposure period and concentration was significant (F=2.432, df=10, P<0.001) 
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(Appendix table 102). Spinosad showed a concentration related effects on adult 

mortality. The potentiality was higher in all treatments with the increase of 

concentrations and exposure periods. Moreover, at 0.491, 0.983 and 1.966μl/cm² 

concentrations of Spinosad, after 24 h to 72 h of exposure survivability of              

X. flavipes adults were found range 94 to 84% respectively (Table 4).        
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Figure 31 Average mortality of X. flavipes adults on different concentrations of 
Spinosad after 24, 48 and 72 h period of exposure 
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Table 4 Effects of different concentrations of Spinosad on 4d nymphs and 2d adults 
of  X. flavipes at different exposure periods. 

 

Exposure 
periods (h) 

Concentrations 
(µl/cm2) 

Mortality (mean ± SE) 
Nymphs PRC Adults PRC 

24 

Control 0.00±0.00a - 0.00±0.00b - 

0.491 1.00±0.58ab 5.00 1.67±0.67a 8.35 

0.983 1.33±0.67ab 6.65 1.33±0.33a 6.65 

1.966 1.67±0.33ab 8.35 2.00±0.05a 10.00 

3.932 2.33±0.33a 11.65 2.67±0.33a 13.35 

7.863 3.00±0.58a 15.00 3.33±0.33a 16.65 

48 

Control 0.00±0.00c - 0.00±0.00d - 

0.491 2.33±0.33b 11.65 1.33±0.33cd 6.65 

0.983 3.33±0.67ab 16.65 2.00±0.03bc 10.00 

1.966 4.00±0.08ab 20.00 2.33±0.33bc 11.65 

3.932 5.00±0.03a 25.00 3.00±0.03ab 15.00 

7.863 5.33±0.88a 26.65 4.00±0.58a 20.00 

72 

Control 0.00±0.00b - 0.00±0.00d - 

0.491 3.33±0.33ab 16.65 2.00±0.05c 10.00 

0.983 4.00±0.58a 20.00 3.00±0.58bc 15.00 

1.966 5.00±0.58a 25.00 3.33±0.33bc 16.65 

3.932 6.00±0.04a 30.00 3.67±0.33ab 18.35 

7.863 6.67±1.76a 33.35 5.00±0.45a 25.00 

Note: Means with same letter do not significantly differed from each other (Tukey’s Test)   
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Figure 32 Regression lines of probit mortality on log concentration of Spinosad on           
X. flavipes  (A = nymphs and  B = adults). 
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Discussion  
Due to the very low mammalian toxicity (Breslin et al. 2000) and rapid breakdown 

in the environment (Cleveland et al. 2002, Thompson et al. 2002), there can be 

little doubt that Spinosad represents an important improvement over conventional 

synthetic pesticides in terms of safety to farm workers, traders and the consumers 

of pesticide-treated agricultural post harvest cereal, grain products and other stored 

commodities. In total, there were 228 observations on the impact of Spinosad on 

52 species of natural enemies of which 162 involved predators (27 species) and 66 

involved parasitoids (25 species) where as 71% (42/59) of laboratory studies and 

79% (81/103) of field-type studies were conducted on predators in which Spinosad 

was not harmful to predators (Williams et al. 2003). As Spinosad appears to have 

low toxicity to many beneficial insects (Elzen et al.1998), it has potential for use 

in Integrated Pest Management (IPM) systems. In the present study, it is clear that 

there is no impact of 0.491, 0.983 and 1.966μl/cm² concentrations of Spinosad on 

egg hatchability, survivability of nymphs and adults of the predator, X flavipes in 

comparison with the control. The results showed that egg hatchability of               

X. flavipes was almost similar the control at lower three concentrations of 

Spinosad after 10 d of exposure. Previous studies suggesting the safety of 

Spinosad to eggs of Chrysopids employed topical applications and did not assay 

consumption by active life stages.  

Schoonover and Larson (1995) found that LC50 of the predator, Orius insidiosus 

nymph was 200 ppm, Torres et al. (1999) found that LC50 of the predator, Podisus 

nigrispinus nymph was 45 ppm and Vinuela et al. (1998) found that LC50 of           

P. maculiventris nymph was 33 ppm respectively to moderate concentrations         

(30-200 ppm) of Spinosad. Toews and Subramanyam (2004) estimated that the 

mean number of X. flavipes nymphs (F=4.07, df= 1, 11, P=0.069) and adults 

(F=1.88, df= 1, 11, P=0.197) recovered was similar between the control and 

treatments. Effects of fungus Beauveria bassiana strain Bb-RSB on Orius sauteri 

(Hemiptera: Anthocoridae) were examined under laboratory conditions and found 

that O. sauteri nymphs treated with either low or high B. bassiana concentrations 
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were able to complete their life cycle as well as control nymphs, mortality was 

very low and adult longevity was not affected (Gao et al. 2012). These results also 

supported the present findings. 

The lack of lethal infections indicates that O. sauteri is not within the 

physiological host range of this strain of B. bassiana (Zimmermann 2007). 

Schoonover and Larson (1995) found that LC50 of Phytoseiulus persimilis adult 

was 200 ppm and Torres et al. (1999) found that LC50 of Podisus nigrispinus adult 

was 53 ppm respectively to moderate concentrations (30-200 ppm) of Spinosad. 

Ludwing and Oetting (2001) obtained ambiguous results with their two tests of 

Spinosad for compatibility with O. insidiosus for control of thrips on greenhouse 

chrysanthemums. Miles and Dutton (2000) reported Spinosad as highly toxic to 

parasitic Hymenoptera in greenhouses, but concluded it was compatible with       

O. insidiosus, C. rufilabris and the coccinellids Hippodamia convergens and 

Coccinella septempunctata. Tillman and Mulroney (2000) observed toxicity of 

Spinosad to three parasitoid species in cotton, Bracon mellitor, Cardiochiles 

nigriceps and Cotesia marginiventris although the coccinellids Coleomegilla 

maculata and H. convergens were unaffected. Similarly, Mason et al. (2002) 

demonstrated toxicity of Spinosad to Trichogramma inyoense, an egg parasitoid of 

Mamestra configurata. Toews and Subramanyam (2004) observed that absolute 

densities derived from sieving all the grain at the end of the study showed 

differences among treatments in the number of X. flavipes adults (F=12.73, df=1,4, 

P=0.023) but not nymphs (F=2.92, df=1,4, P=0.163). These results are similar to 

the present study because the adult survivability was ranged 84 to 94% at lower 

three concentrations of Spinosad after 24 to 72 h of expusure. 

Tillman and Mulrooney (2000) found that counts of a hemipteran predator 

Geocoris punctipes (Say) (Hemiptera: Lygaidae), were not affected by Spinosad in 

cotton fields. X. flavipes is a more stout-bodied insect, and was perhaps, sucking 

behabiour of body fluids of live soft bodied small insects and also less affected by 

the sieving. A general lack of survival among hymenopterans exposed to Spinosad 

was also reported in the literature (Tillman and Mulrooney 2000, Mason et al. 

2002, Michaud 2003). 
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A recent review of predator and parasitoid susceptibility to Spinosad concluded 

that this product represented one of the most judicious insecticides available for 

the conservation of predator populations (Williams et al. 2003). However, the 

majority of laboratory and field studies in natural and semi-natural conditions report 

moderately harmful or harmful effects on populations of hymenopteran parasitoids 

(Bernardo and Viggiani 2000, Hill and Foster 2000, Tillman and Mulrooney 2000, 

Mason et al. 2002). 

Assessment of the impact of Spinosad on non-target insects is particularly relevant 

now that synthetic Spinosyn analogues (Spinosoids) are being developed for 

increased environmental stability and an altered spectrum of insecticidal activity 

(Crouse et al. 2001, Sparks et al. 2001). 

Laboratory dose-mortality studies are of limited use in predicting the impact of a 

toxicant on non-target invertebrate populations in the field (Stark et al. 1995, 

Wright and Verkerk 1995, Longley and Jepson 1997). Species or stage-related 

differences in biology and behaviour can significantly influence the susceptibility 

of natural enemies to pesticides (Longley and Jepson 1997, Verkerk et al.1998). 

This was particularly evident when considering the impact of Spinosad on 

immature parasitoids developing in S. frugiperda eggs and larvae. Similar effects, 

including an inability to spin a cocoon or pupation or Spinosad-induced mortality 

at the moment of adult emergence have been observed in parasitoids of other taxa 

(Suh et al. 2000, Gahbiche 2001, Mason et al. 2002). 

Predators generally suffer insignificant sub-lethal effects following exposure to 

Spinosad, whereas parasitoids often show sub-lethal effects including loss of 

reproductive capacity, reduced longevity, etc. All studies agree that Spinosad 

residues degrade quickly in the field, with little residual toxicity at 3-7 days post 

application (Williams et al. 2003).         

Spinosad shows no effects on predatory insects such as ladybirds, lacewings, big-

eyed bugs or minute pirate bugs (Copping 2001). Spinosad is slow acting 

compared to conventional synthetic insecticides, but is more rapid than most 

entomopathogens (Bret et al. 1997). 
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Clearly, caution is required when making assumptions about pesticide impact on 

beneficial organisms based exclusively on toxicity data generated in laboratory 

studies (Stark et al. 1995). It is becoming increasingly clear that species or stage-

related differences in biology and behaviour and even crop type can significantly 

influence the susceptibility of non-target invertebrates to pesticides (Longley and 

Jepson 1997, Verkerk et al. 1998). Moreover, the fact that a natural enemy 

survives exposure to a poison does not necessarily mean that it will perform as 

well as a non-intoxicated con specific; many of the indirect sub-lethal effects on 

natural enemy function (foraging, predation, etc.) and/or reproduction cannot be 

detected by laboratory dose/mortality assays (Wright and Verkerk 1995, Longley 

and Jepson 1996). In addition, natural enemies subjected to multiple routes of 

exposure to pesticides may respond in unexpected ways that would be impossible 

to predict based on single route laboratory toxicity tests (Banken and Stark 1998, 

Kunkel et al. 2001). 

The need for accurate assessment of the environmental impact of agrochemicals is 

an issue of international concern (Croft 1990, Levitan et al. 1995, Reus et al. 

2002). This information is specially relevant now that large areas are being treated 

with Spinosad, for example to control fruit flies (Peck and McQuate 2000, 

Prokopy et al. 2000, Vargas et al. 2001). Toews and Subramanyam (2004) found 

that the survival of natural enemies, the predator X. flavipes was 87.6±2.7% in 

untreated wheat (control) and was >90% in wheat treated with 1mg/kg Spinosad. 

It can be concluded that there is little impact of 0.491, 0.983 and 1.966μl/cm² 

concentrations of Spinosad on egg hatchability, survivability of nymphs and adults 

of X flavipes which is negligible. These concentrations of Spinosad may be used 

with the predator, X. flavipes for the well management of many stored product 

insect pests. 
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Introduction 
Control of stored product insects is considered the best achieved through an 

integration of physical, chemical, and biological methods ( Arthur 1996, Hagstrum 

et al. 1999, Phillips and Throne 2010). In this context in storage facilities, where 

light is absent the bacterial insecticide Spinosad could be a potential agent; and 

was found to be remain stable for a long period (up to two years), thus it can 

provide long-term protection for stored grains (Fang et al. 2002b, Fang and 

Subramanyam 2003, Arthur et al. 2006, Hertlein et al. 2011). Spinosad has 

already been proved very effective against a range of stored-grain insect species, 

even at lower rates than the application rate, in both laboratory (Fang et al. 2002a, 

Toews and Subramanyam 2003, Nayak et al. 2005, Daglish and Nayak 2006) and 

field tests (Maier et al. 2006, Subramanyam et al. 2007, Daglish et al. 2008) and 

there by The US Environmental Protection Agency approved for its use as a grain 

protectant in 2005, at the application rate of 1ppm (mg/kg of grain) 

(Subramanyam 2006a,b).  

Bret et al. (1997) reported that Spinosad was much less toxic to beneficial insects 

in field crops than synthetic pesticides. Schoonover and Larson (1995) reported 

that Spinosad was practically nontoxic to the insidious flower bug, lady beetle, 

phytoseid mite, and common green lacewing. Boucher (1999) reported that 

Spinosad applied to bell peppers effectively controlled the pepper maggot  but it 

did not reduce populations of beneficial arthropods, including unspecified species 

of Coccinellidae, Chrysopidae, Cecidomyiidae, Syrphidae, Nabidae, and 

hymenopteran-parasitized Aphididae. Mason et al. (2002) found that Spinosad 

was toxic to the parasitoids Trichogramma inyoense Pinto and Oatman 

(Hymenoptera: Trichogrammatidae) and Microplitis mediator Haliday 

(Hymenoptera: Braconidae). Surprisingly, the predacious bug, X. flavipes can 

survive 92% and reproduce at 1ppm Spinosad (Towes and Subramanyam 2004). 

Stored grain insects can coexist with other arthropods, which may act as natural 

enemies, within storage and hence a binary combination of insecticide and 

predator may give more complete control than the application of a single 

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib1#bib1
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib38#bib38
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib38#bib38
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib67#bib67
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insecticide or predator. Many combinations of Spinosad with beneficial insects 

such as predator, parasitoids and with insecticides as a stored grain protectant have 

been progressively highlighted in a series of scientific publications (Towes and 

Subramanyam 2004, Parker et al. 2004a, 2004b, Szabela 2005,  Williams et al. 

2003,  Miles and Eelen 2006, Miles 2006, Arthurs et al. 2007, Bonjour et al. 2006, 

Parker and Falconer 2006, 2007, Nayak and Daglish 2007, Subramanyam et al. 

2007, Daglish 2008, Daglish et al. 2008, Chintzoglou et al. 2008a, Huang 

et al.2009, Ghosh et al. 2010, Vayias et al. 2010b, Athanassiou et al. 2010a,b). 

Combination is needed, specially when mortality from Spinosad is not complete or 

progeny production occurs, even when parental adults are killed on different 

grains (Fang et al. 2002a, Athanassiou et al. 2008c, Chintzoglou et al. 2008). 

Conversely, X. flavipes affects progeny production or immature stages but 

generally adults are not affected (Lecato and Davids 1973, Arbogast 1979, Brower 

and Mullen 1990, Brower and Press 1992, Helbig 1999, Donnely and Phillips 

2001, Russo et al. 2004, Sing and Arbogast 2007). Hence, a combination of                  

X. flavipes and Spinosad may be more effective than the application of each alone. 

Lower rates of Spinosad were used to determine if even small amounts of 

Spinosad combined with X. flavipes would improve the control of different stored 

grain species, including those life stages of insect pests that are not controlled by 

either X. flavipes or Spinosad. Considering these, in the present investigation, the 

potentiality of predator X. flavipes and Spinosad (contact treatment) alone and in 

combination were evaluated to control C. pusillus and R. domonica supplied with 

standard food at different storage periods.  

Materials and Methods 
Insects: Unsexed 2d old adults of predator X. flavipes and 5d old adults of            

C. pusillus and R. dominica were collected from the respective stock culture 

(Chapter 3) using by aspirator and were used in this experiment. 

Standard food: White wheat, wheat flour and brewer’s yeast were cleaned and 
sterilized using the methods as described in chapter 3. Firstly, wheat flour and 
brewer’s yeast were mixed (ratio 19:1 in weight) and prepared mixture food. 

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib88#bib88
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib97#bib97
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib97#bib97
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib55#bib55
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib54#bib54
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib2#bib2
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib12#bib12
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib65#bib65
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib87#bib87
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib87#bib87
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib14#bib14
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib44#bib44
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib44#bib44
http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib95#bib95
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Secondly, the standard food were prepared with white wheat and mixture food 
where the ratio was 3:1 between wheat and mixture food. Finally, the standard 
food 10.5kg was made for the experiments. 

Bioassays: Thirty six pieces of filter papers (9cm diameter) were soaked in 0.491, 

0.983 and 1.966 μl/cm² concentrations of Spinosad and 12 pieces of filter papers 

(9cm diameter) treated with only 2ml distilled water and were dried them at room 

temperature using the methods as described in chapter 5. 200g of standard food 

were taken in a cylindrical plastic container (12 cm diameter, 20 cm in height), 

such 24 containers were prepared for C. pusillus and another 24 containers were 

prepared for R. dominica. One hundred adults of C. pusillus in 1:1 ratio of male 

and female were introduced in each of 24 containers. Similarly 100 adults 1:1 

male and female R. dominica were introduced in another 24 set of containers. The 

mouths of all containers were covered by the fine clothes with the help of rubber 

bands and were kept in the CT room at 30±0.5ºC temperature and 70±0.5% 

relative humidity without controlling light. After 25 days, each filter paper either 

treated with distilled water only (control) or treated with different concentrations 

of Spinosad was divided into 4 pieces and were inserted into standard food of each 

container at different layers separately. Then 30 unsexed adults of X. flavipes were 

released in the container either treated with distilled water or treated with different 

concentrations of Spinosad for both species. The mouths of all the containers were 

covered similarly and were placed in the CT room at same environmental 

conditions.  

After 3, 6, 9 and 12 months the containers were opened, adults were removed 

sieving by 125 and 500 micrometer aperture sieve. The total numbers of live  and 

dead adults were counted separately, the dead adults were discarded. In case of    

C. pusillus, adult predator were not found after every exposure period, so after 

each three months 30 unsexed adults of X. flavipes were added to the container. 

Few larvae of C. pusillus were found, their numbers were added to the adults. In 

case of R. dominica, always there found adult X. flavipes, so there was no need to 

add new predators in the experiment. Only adults were counted for R. dominica as 
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this species complete larval and pupal development within the wheat kernels. After 

counting an additional 5g of standard food was added to each container to avoid the 

conditioning of food medium due to overcrowding or shortage (Mondal 1985).  

Another set of experiment was conducted with 30 unsexed adult predators released 

separately in containers containing either C. pusillus or R. dominica adults rearing 

on same quality of standard food and similar experimental conditions, and stored 

for same periods. For control batch similar numbers of C. pusillus and R. dominica  

adults were released in standard food without providing any predator or Spinosad 

treated filter paper. All the experiments were replicated three times. With each 

concentrations all the experiment were done under same laboratory conditions.  

Data Analyses: All data were analyzed by Factorial ANOVA to compare mortality 
percentage as the response variable and concentrations, life stages, exposure 
periods main effects. For the comparison of means the Tukey’s test (1953) was 
used. The percent reduction of population to control (PRC) was calculated 
according to Mian and Mulla (1982a) by the following formula. 

Percentage reduction in population  

(PRC) = 
No. of population in control - No. of population in treated media

 No. of population in control   × 100  

or, PRC = 
C - T

C  × 100 

Where,  C = No. of population in control  

    T = No. of population in treated media 

Results and observations 

Effects on adult population of C. pusillus: The data of the present experiment 

revealed that the combined effects of different concentrations of Spinosad and       

X. flavipes reduced the population growth of C. pusillus after different storage 

periods in comparison with that of control (untreated) and control (treated with 30  

unsexed adults X. flavipes only) (Figure 33, Table 5). In plastic container within 

standard food after 3, 6, 9 and 12 months of exposure in control batch (untreated) 

the initial 100 adults of C. pusillus were increased up to 400±4.62, 600±5.77, 
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825±2.89 and 1020±5.77 adult individuals respectively where as, the highest 

number of host population were reduced (PRC 55.25, 48.33, 37.09 and 29.90) in 

30 X. flavipes +1.966 μl/cm² combination, among the different used combinations. 

The lowest number of host population were suppressed (PRC 85.50, 79.83, 74.79 

and 70.20) by only 30 X. flavipes at the same periods and conditions. Different 

used concentrations of Spinosad were found potential to reduce maximum number 

of C. pusillus populations in comparison with control (Table 5). From 3 to 12 

months different used concentrations of Spinosad singly or in combination               

with predator, X. flavipes were found effective to suppress C. pusillus population (Table 

5). Each level of concentrations and combinations were found effective to suppress the 

population of C. pusillus significantly (P<0.001) (Appendix tables 103-106). 

 
Table 5 Effects of 2d unsexed adults of X. flavipes with different concentrations of 

Spinosad separately and in combination against the adult population of         
C. pusillus at different storage periods. [Initial prey population 100 adults, 
1:1] 

 

Predator/ 
Concentration 

No/Rates 
(µl/cm2) 

Exposure period (months) 
3 6 9 12 

Total 
population PRC Total 

population PRC Total 
population PRC Total 

population PRC 

Control 
(untreated)  400±4.62a  600±5.77a  825±2.89a  1020±5.77a  

Control (Adult  
X. flavipes 

treated only) 
30 58±4.62g 85.50 121±5.77g 79.83 208±4.62h 74.79 304±2.31h 70.20 

Spinosad 

0.491 83±1.73f 79.25 170±2.89f 71.67 305±2.89g 63.30 429±5.20g 57.90 

0.983 97±4.04ef 75.75 208±4.62e 65.33 343±1.73f 58.42 470±2.89f 53.00 

1.966 115±2.89de 71.25 239±5.20d 60.17 377±4.04e 54.30 516±3.46e 49.40 

Adults  
X. flavipes + 

Spinosad 

30 + 
0.491 

121±3.46d 69.75 241±3.46d 59.83 398±4.62d 51.76 564±2.31d 44.70 

30 + 
0.983 

146±3.46c 63.50 272±1.15c 54.67 444±2.31c 46.18 645±2.89c 36.70 

30 + 
1.966 

179±5.20b 55.25 310±2.89b 98.33 519±5.20b 37.09 715±5.77b 29.9 

Note: Means with same letter do not significantly differed from each other (Tukey’s Test) 
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Figure 33 A, B, C and D showing the effects of unsexed adults X. flavipes with 

Spinosad on the adult population of C. pusillus after 3, 6, 9 and 12 months 
storage periods (Treatment 1 = Control (Untreated), 2 = Control (treated 
with 30 adult X. flavipes), 3 = 0.491 µl/cm2 Spinosad, 4 = 0.983 µl/cm2 
Spinosad, 5 = 1.9966 µl/cm2 Spinosad, 6 = 0.491 µl/cm2 Spinosad + 30 
adults X. flavipes, 7 = 0.983 µl/cm2 Spinosad + 30 adults X. flavipes,           
8 = 1.966 µl/cm2 Spinosad + 30 adults X. flavipes, 
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Effects on adult populations of R. dominica: The data of the present experiment 

revealed that the combined effects of different used concentrations of Spinosad 

and X. flavipes reduced the population growth of R. dominica after different 

storage periods in comparison with that of control (untreated) and control (treated 

with 30 unsexed adult X. flavipes) (Figure 34,  Table 6). In plastic container within 

standard food, after 3, 6, 9 and 12 months of exposure in control batch (untreated) 

the initial 100 adults of R. dominica were increased up to 735±2.89, 1220±11.55, 

1790±11.55 and 2150±5.77 adult individuals respectively where as, the highest 

number of host population were reduced (PRC 42.86, 27.86, 11.28 and 1.10) in 30 

X. flavipes +1.966 μl/cm² combination, among the different used combinations. 

The lowest number of host population were suppressed (PRC 81.77, 74.02, 67.49 

and 61.21) by only 30 X. flavipes at the same periods and conditions. Different 

concentrations of Spinosad were found effective to reduce more number of host 

populations in comparison with control (Table 6). From 3 to 12 months different 

used concentrations of Spinosad singly or in combination with X. flavipes were 

found effective to suppress the host population (Table 6). Each level of 

concentrations and combinations were found effective to suppress the population 

of R. dominica significantly (P<0.001) (Appendix tables 107-110).          

Predator, X. flavipes were not found susceptible to used concentrations. But in all 

used concentrations and combinations R. dominica was found more susceptible 

than C. pusillus at the same time and conditions. Used concentrations of Spinosad 

were found potential during long time singly and in combination with X. flavipes 

to suppress the populations of both hosts (Tables 5 and 6). In case of population 

suppression of C. pusillus and R. dominica limited benefits were achieved at all 

combinations in comparison with singly concentrations of Spinosad or only with    

X. flavipes alone (Tables 5 and 6).  
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Table 6 Effects of 2d unsexed adults of X. flavipes with different  concentrations of 

Spinosad separately and in combination against the adults populations of           
R. dominica at different storage periods. [Initial prey population 100 adults, 1:1] 

 

Predator/ 
Concentrations 

No/Rates 
(µl/cm2) 

Exposure period (months) 
3 6 9 12 

Total 
population PRC Total 

population PRC Total 
population PRC Total 

population PRC 

Control 
(untreated)  735±2.89a  1220±11.55a  1790±11.55a  2150±5.77a  

Control (Adult 
X. flavipes 

treated only) 
30 134±2.31h 81.77 317±4.04h 74.02 582±1.15h 67.49 834±2.31g 61.21 

Spinosad 

0.491 249±5.20g 66.12 621±2.89g 49.10 1032±6.93g 42.35 1411±6.35f 34.37 

0.983 279±6.81f 60.68 691±3.46f 43.36 1134±2.31f 36.65 1598±4.62e 25.67 

1.966 311±5.77e 57.69 723±1.73e 40.74 1208±4.62e 32.51 1780±5.77d 17.20 

Adults  
X. flavipes + 

Spinosad 

30 + 

0.491 
356±3.46d 51.56 781±3.61d 36.15 1257±4.04d 29.78 1978±4.62c 8.00 

30 + 

0.983 
389±4.62c 47.07 835±2.89c 31.56 1354±2.31c 24.36 2054±2.31b 4.47 

30 + 

1.966 
420±2.89b 42.86 880±5.77b 27.86 1588±2.89b 11.28 2127±4.04a 1.10 

Note: Means with same letter do not significantly differed from each other (Tukey’s Test) 
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Figure 34 A, B, C and D showing the effects of unsexed adults X. flavipes with 

Spinosad on the adult population of R. dominica after 3, 6, 9 and 12 
months storage periods (Treatment 1 = Control (Untreated), 2 = Control 
(treated with 30 adult X. flavipes), 3 = 0.491 µl/cm2 Spinosad, 4 = 0.983 
µl/cm2 Spinosad, 5 = 1.9966 µl/cm2 Spinosad, 6 = 0.491 µl/cm2 Spinosad 
+ 30 adults X. flavipes, 7 = 0.983 µl/cm2 Spinosad + 30 adults X. flavipes,           
8 = 1.966 µl/cm2 Spinosad + 30 adults X. flavipes, 
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Discussion  

Combined effects of X. flavipes with different concentrations of Spinosad 

inhibited the population build up of C. pusillus and R. dominica. The published 

reports showed that different concentrations of Spinosad (Fang et al. 2002a, 

Toews and Subramanyam 2003, Nayak et al. 2005, Daglish and Nayak 2006, 

Maier et al. 2006, Subramanyam et al. 2007, Daglish et al. 2008) and X. flavipes 

(Arbogast 1984, Haines 1984, Brower 1990, 1991, Brower et al. 1996, Nilakhe 

and Parker 1990, Scholler et al. 1997, Adler and Scholler 1998, Scholler and Flinn 

2000, Lecato and Collins 1976) separately as potential agents which suppressed            

C. pusillus and R. dominica populations  effectively. 

Toews and Subramanyam (2004) reported that suppression of T. castaneum 

population was achieved in Spinosad or Spinosad +X. flavipes treatments and                

X. flavipes survived (92%) and reproduced in Spinosad treated wheat normally 

which was in agreement with the findings of the present result.  

Arbogast (1976) reported that O. surinamensis population growth reduced 95% 

(after 16 wk) when only 5 pairs of X. flavipes were introduced. Brower and Press 

(1992) reported that X. flavipes suppressed 90.4% populations of C. pusillus when 

only 50 pairs of X. flavipes were introduced.   

A single release of 50 pairs of A. calandrae suppressed 95.3% of residual 

populations of S. oryzae in wheat (Press et al. 1984) but 32.8 and 34.3% of                       

S. oryzae and R. dominica respectively (Ahmed and Kabir 1995). C. elegans was 

very effective for suppressing R. dominica population with augmentative release 

(Flinn et al. 1994, 1996). Flinn et al. (1996) observed 98  and 91% suppression of   

R. dominica compared to the control by C. elegans in 1993 and 1994 respectively.  

Athanassiou et al. (2010a,b) evaluated adults of Cryptolestes spp. and R. 

dominica on wheat treated with 0.1 and 0.5 ppm concentrations of Spinosad 

and 1 and 5ppm concentrations of methoprene applied alone or in 

combination after 14 d of exposure  and  found that average percent mortality 

(± SE) were 86.7 ± 3.3, 97.8 ±  2.2 in Spinosad alone and 37.8 ± 9.7, 37.8 ± 9.7 

in methoprene alone, 80.0 ± 5.8 in Spinosad 0.1 ppm + methoprene 1 ppm, 
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90.0 ± 2.9 in Spinosad 0.1 ppm + methoprene 5 ppm, 98.9 ± 1.1 in Spinosad 

0.5 ppm + methoprene 1 ppm and 98.9 ± 1.1a Spinosad 0.5 ppm + 

methoprene 5 ppm where as 26.7 ± 5.8 was  in control for Cryptolestes and 

were 100.0 ± 0.0, 100.0 ± 0.0 in Spinosad alone and 2.2 ± 1.5b, 5.6 ± 3.0 in 

methoprene alone, 100.0 ± 0.0 in Spinosad 0.1 ppm + methoprene 1 ppm, 

100.0 ± 0.0 in Spinosad 0.1 ppm + methoprene 5 ppm, 100.0 ± 0.0 in Spinosad 

0.5 ppm + methoprene 1 ppm and 100.0 ± 0.0 Spinosad 0.5 ppm + 

methoprene 5 ppm where as 3.3 ± 1.7 was  in control for R. dominica.  

Daglish and Nayak (2006) reported that Spinosad residues were stable for 9 

months on wheat, without loss of insecticidal activity against R. dominica a 

devastating pest of stored wheat worldwide. Spinosad applied at 0.5 or 1mg/kg 

was completely effective for 9 months at both 55 and 70% RH, with 100% adult 

mortality of R. dominica after 14 days of exposure and no live f1 adults produced  

reported (Daglish et al. 2006) in their another study. As Spinosad appears to have 

low toxicity to many beneficial insects (Elzen  et al.1998), it has potential for use 

in Integrated Pest Management (IPM) systems. 

Sharififard et al. (2011) observed interactions between Metarhizium anisopliae and 

sub lethal doses of Spinosad for control of M. domestica and found that average 

percent (±SE) mortality of adults was 44±4,  and 72.4±1.79 for fungus alone, 

21±1.24, 32±1.7 and 39±1.7 for Spinosad alone but ranged from 66–87% and             

89–95% in combination treatments of 105 and 107 spore/g fungus with 0.5, 1 and 

1.5µg/gm doses of Spinosad respectively after 9 d of exposure and concluded that 

the interaction between M. anispliae and Spinosad indicated a synergetic effect 

that increased the house fly mortality as well as reduced the lethal time.     

Kovendan et al. (2012) observed bioefficacy of larvicdial and pupicidal properties 

of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, Spinosad 

against chikungunya vector, Aedes aegypti (Diptera: Culicidae) and found that 

after 24 h of exposure methanolic leaf extract of C. papaya against the first- to 

fourth-instar larvae and pupae of values LC50=I instar was 51.76 ppm, II instar was 

61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 

440.65 ppm, respectively, and bacterial insecticide, Spinosad against the first to 
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fourth instar larvae and pupae of values LC50=I instar was 51.76 ppm, II instar was 

61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 

93.44 ppm, respectively. Moreover, combined treatment of values of LC50=I instar 

was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar 

was 92.78 ppm, and pupae was 107.62 ppm, respectively  

In a laboratory study, Vayias et al. (2010a) showed that a Spinosad liquid SC 

formulation applied to barley at 1 ppm provided nearly complete control of                 

R. dominica and S. oryzae for six months and adequate control of C. ferrugineus 

for four to six months. Control of T. confusum was only moderate in this study. 

They repoted potential use of Beauveria bassiana against the western flower thrips 

Frankliniella occidentalis without reducing the effectiveness of its natural 

predator Orius sauteri (Hemiptera: Anthocoridae) were observed (Gao et al. 

2012). They found that total nymphal developmental time of O. sauteri increased 

3-7% and the adult longevity decreased 9-13%. One explanation is that                     

F. occidentalis larvae contaminated by B. bassiana may be poor quality prey for 

O. sauteri because infection makes the larvae deficient in certain essential 

nutrients (Simelane, Steinkraus and Kring 2008) or creates a buildup of fungal 

toxins or metabolites, which may slow development and shorten adult longevity of 

O. sauteri (Leckie et al. 2008). Although development of immature O. sauteri was 

slowed by feeding on B. bassiana-infected prey, the experiment revealed no 

significant differences in mortality rates among nymphs given different prey types. 

This result indicates that O. sauteri did not acquire lethal amounts of the pathogen 

through transmission from the prey (Gao et al. 2012). Consequently, the results 

presented here suggest that the slight negative effects on O. sauteri when provided 

F. occidentalis larvae contaminated by B. bassiana formulation are most probably 

prey-quality mediated rather than direct effects of the B. bassiana formulation 

(Sobhy et al. 2010). Other strains of B. bassiana have been shown to infect 

Anthocoridae species but with relatively low rates of successful infection (Ludwig 

and Oetting 2001, Dunkel and Jaronski 2003).  

http://www.sciencedirect.com/science/article/pii/S0022474X11000142#bib94#bib94
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Overall, the findings of the present investigation revealed that X. flavipes and 

Spinosad has good potential properties against C. pusillus and R. dominica as 

target species of insect pest control programs. 
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                                                         Summary 

The present study was carried out to observe the effects of two stored product 

insect pests, C. pusillus and R. dominica as the host on the biology of the predator, 

X. flavipes and also to find out the effects of bacterium, Spinosad on the predator 

and the host. Moreover, the predator and bacterium separately and in combination 

were used to suppress the population of the both insect pests. 

Host (C. pusillus and R. dominica) stage-specific effects on biology of X. flavipes  
The eggs, larvae 1st up to 4th instar and pupae of C. pusillus and R. dominica 

played significant (P<0.001) role on the biology of X. flavipes. 

In case of C. pusillus, the developmental time from egg hatching to adult 

emergence of X. flavipes were found as 15±2.00, 20±0.00, 22±0.58, 18±1.00, 

14±1.15 and 12±1.15 days on eggs, larvae 1st up to 4th instar and pupae. Duration 

of each nymph 1st up to 5th instar was fluctuated on different life stages. The 

maximum developmental period occurred in 2nd instar larvae but it was the 

minimum on pupae. The developmental period on the different life stages of host 

was highly significant (P<0.001) which indicated that the developmental periods 

of X. flavipes depended upon different life stages of C. pusillus. The highest 

longevity of the female adult was 38±1.15 days on 3rd instar larvae and male adult 

12±1.15 days on 2nd instar larvae and the lowest 14±1.15 days in female, 6±0.58 days in 

male on pupae. Life span of the predator varied inversely with host stages. The effect of 

different life stages of host on adult longevity was highly significant (P<0.001). 

Nymphs 1st up to 5th instar and adults of X. flavipes consumed more eggs, 1st and 

2nd instar larvae than those of 3nd, 4th instar larvae and pupae of C. pusillus. One 1st 

instar nymph consumed a few number 4th instar larvae (1.33±0.33) and large 

number eggs (7.33±0.33) per day. The 2nd, 3rd, 4th and 5th instar nymphs consumed 

more eggs, larvae 1st up to 4th instar and pupae comparatively than 1st instar 

nymphs. The adult female consumed more number of 1st instar larvae 

(16.33±0.33) than the male (14.33±0.33). The adult was found to consume average 



 135 

number pupae 4.33±0.33 in male and 5.67±0.33 in female daily. No adult of               

C. pusillus was killed or consumed by any life stages of X. flavipes.   

Average number of survivability of X. flavipes (nymphs 1st up to 5th instar and 

adult) on eggs, larvae up to 2nd instar were found maximum comparatively than 

that of 3rd, 4th instar larvae and pupae. Survivability of immature and adult stages 

of predator was maximum on 1st and 2nd instar larvae and minimum on pupae of C. 

pusillus. The effect of host stages was found highly significant (P<0.001).  

Normally, females were found large size in length than males on eggs, larvae 1st 

up to 4th instar and pupae. Larvae 1st up to 4th instar of C. pusillus when fed on, 

adult male and female size (mm length) of X. flavipes were found prolonged than 

eggs and pupae. The highest size in length of the male and females were 

as1.80±0.01 mm and 2.10±0.01mm on 3rd instar larvae and the lowest was 

1.50±1.50 mm and 1.70±0.06 mm on eggs. Adult size was highly significant 

(P<0.001) on different life stages of host. 

Sex ratio of the emerged predators differed on life stages of C. pusillus. Different 

life stages of C. pusillus reared on standard food (Wheat and Yeast; ratio 19:1), 

when fed on X. flavipes, sex of the emergence adults showed preference for more 

number of female production than the male. The immature stages of X. flavipes 

feeding on eggs, larvae up to 4th instar and pupae on the same food, become adult 

and the ratio between male and female were 1:2.33, 1.12:1.42, 1.27:1.94, 

1.27:2.07, 1.17:2.17 and 1.41:3.75 respectively. Based on ratio 1:1, sex ratio was 

found the best on 1st and 2nd instar larvae comparatively than other stages.  

In case of R. dominica, the developmental time from egg hatching to adult 

emergence of X. flavipes were 18±1.00, 20±0.58, 16±2.00, 14±1.15, 12±1.15 and 

13±0.58 days respectively on eggs, larvae up to 4th instar and pupae. Duration of 

each nymph up to 5th instar was found dissimilar on used stages. The maximum 

developmental period occurred in 2nd instar larvae but it was minimum on 4th 

instar larvae. The effects of different life stages of host on the developmental 

period was highly significant (P<0.001) which indicated that the developmental 
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periods of X. flavipes depended upon different life stages of R. dominica. The 

highest longevity of the adult was 34±2.31 days in female, 18± 0.58 days in male 

on 2nd instar larvae and the lowest was 15±1.15 days in female, 5±0.58 days in 

male on pupae. Life span of the predator varied inversely with host stages. The 

effect of different life stages of R. dominica on adult longevity was highly 

significant (P<0.001). 

Nymphs 1st up to 5th instar and adults of X. flavipes consumed more eggs and 1st 

instar larvae than those of 2nd to 4th instar larvae and pupae of R. dominica. One 1st 

instar nymph consumed a few number 4th instar larvae (1.33±0.33) and large 

number eggs (8.00±0.58) per day. 2nd, 3rd, 4th and 5th instar nymphs consumed 

more eggs, larvae up to 4th instar and pupae comparatively than 1st instar nymphs. 

The adult female consumed more 1st instar larvae (14.00±1.15) than the male 

(10.00±1.15). The adult was found to consume average number pupae 3.00±0.58 

in male and 4.00±0.58 in female daily. The results noticed that adult R. dominica 

was not killed or consumed by any stage of X. flavipes.   

Average number of survivability of X. flavipes (nymphs up to 5th instar and adult) 

on eggs, larvae up to 2nd instar were found maximum comparatively than that of 

3rd, 4th instar larvae and pupae. Survivability of immature and adult stages of 

predator was maximum on eggs, 1st and 2nd instar larvae and minimum on pupae 

of R. dominica. The effects of host stages was found highly significant (P<0.001).  

Normally, females were found large size in length than males on eggs, larvae up to 

4th instar and pupae. Larvae up to 4th instar of R. dominica when fed on, adult male 

and female size (mm length) of X. flavipes was larger comparatively than eggs and 

pupae. The highest size in length of the male and females was as 1.85±0.01 mm 

and 2.15±0.02 mm on 2nd instar larvae and lowest was 1.75±0.03 mm on egg and 

1.90±0.03 mm on pupae. The effect of different life stages of host on adult size 

was highly significant (P<0.001). 

Sex ratio of the emerged predators differed in life stages of R. dominica. Different 

life stages of host reared on standard food (Wheat and Yeast; ratio 19:1), when 
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were fed on X. flavipes, sex of the emergence adults showed preference for more 

female production than the male. The immature stages of X. flavipes feeding on 

eggs, larvae up to 4th instar and pupae on the same food, become adult and the 

ratio between males and females were found as 1.23:2.10, 1.05:1.45, 1.30:2.03, 

1.13:2.20, 1.03:2.18 and 1.35:3.65 respectively. Based on ratio 1:1, sex ratio was 

found the best on 1st and 2nd instar larvae comparatively than other stages. 

Overall, X. flavipes proved itself as an effective predator of insect pests in stored 

commodities and a potential controlling agent against C. pusillus and R. dominica. 

Effects of Spinosad on host and predator 
In case of C. pusillus, Spinosad showed a concentration related effects on the 

percentage of average egg hatchability. Average percentage of egg hatchability 

(±SE) was lowest 5.00±1.02 at 7.863μl/cm² but highest 25.00±1.15 at 0.491μl/cm² 

concentrations. At 7.863, 3.932, 1.966, 0.983 and 0.491μl/cm² concentrations, the 

average percent of egg hatchability was less than that of the control medium. PRC 

value was the highest 88.10% at 7.863μl/cm² where as the lowest was 40.48% at 

0.491μl/cm² concentrations. The effect of different concentrations on egg 

hatchability was found significant (P<0.001). 

C. pusillus 14-19d old larvae were used and the mortality was observed on 

different concentrations of Spinosad after 24, 48 and 72h of exposure. The 

concentrations of o.491, 0.983, 1.966, 3.982 and 7.863μl/cm² were found to be 

potential causing larval mortality based on the ingestion and contact compare to 

control. Average mortality (±SE) was the highest 14.00±2.00 at 7.863μl/cm² after 72h 

and lowest 3.33±0.88 at 0.491μl/cm² concentrations after 24h of exposure. At 95% 

confidence limit lower to upper 24h LC50 was 18.208 (4.379743-75.69753), 48h LC50 

was 5.912 (1.421441-24.59105) and 72h LC50 was 0.176μl/cm² (0.01161457-

2.651883) respectively. There were significant differences in the mean mortality of 

larvae between exposure periods (F=58.038, df=2, P<0.001) and between 

concentrations (F=38.389, df=5, P<0.001). In addition, the interaction between 

exposure periods and concentration rates was significant (F=12.411, df=10, P<0.001). 
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Moreover, Spinosad showed concentration rate and exposure period related effects 

on larval mortality.  

The concentrations were o.491, 0.983, 1.966, 3.982 and 7.863μl/cm² were found to 

be potential causing pupal mortality based on the ingestion and contact compare to 

control. Average mortality (±SE) was highest 8.33±0.88 at 7.863μl/cm² after 72h 

and lowest 1.67±0.33 at 0.491μl/cm² Spinosad concentrations after 24h of 

exposure. At 95% confidence limit lower to upper 24h LC50 was 568.571 

(2.246793-143881.9), 48h LC50 was 1841.139 (0.09236452-36700190) and 72h 

LC50 was 35.941μl/cm² (2.061289-626.6588) respectively. There were significant 

differences in the mean mortality between exposure periods (F=30.791, df=2, 

P<0.001) and between concentrations (F=61.524, df=5, P<0.001). In addition, the 

interaction between exposure period and concentration rates was significant 

(F=2.558, df=10, P<0.001). Moreover, Spinosad showed concentration rate and 

exposure period related effects on pupal mortality.  

The above concentrations were found to be potential causing adult mortality based 

on the ingestion and contact compare to control. Average mortality (±SE) was 

highest 15.33±1.22 at 7.863μl/cm² after 72h and lowest 5.00±0.58 at 0.491μl/cm² 

Spinosad concentrations after 24h of exposure. At 95% confidence limit lower to 

upper 24h LC50 was 7.995 (2.947408-21.68888), 48h LC50 was 2.145 (1.191995-

3.860422) and 72h LC50 was 0.840μl/cm² (0.446121-1.580054) respectively. There 

were significant differences in the mean mortality of adults between exposure 

periods (F=202.970, df=2, P<0.001) and between concentrations (F=42.617, df=5, 

P<0.001). In addition, the interaction between exposure period and concentration 

was significant (F=8.350, df=10, P<0.001). Spinosad showed a concentration 

related effects on adult mortality. The potentiality was higher in all treatments 

with the increase of concentration rate and exposure periods.   

In case of R. dominica, Spinosad showed a concentration related effects on the 

percentage of average egg hatchability. Average percentage of egg hatchability 

(±SE) was lowest 0.33±1.03 at 7.863μl/cm² and highest 15.00±1.14 at 0.491μl/cm² 

concentrations. At 7.863, 3.932, 1.966, 0.983 and 0.491μl/cm² concentrations, the 
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average percent of egg hatchability was significantly lower than that of the 

control. The PRC value was the highest 99.13% at 7.863μl/cm² concentrations 

where as lowest 60.53% at 0.491μl/cm² concentrations. The effect of different 

concentrations on egg hatchability was found highly significant (P<0.001). 

R. dominica 26-31d old larvae were used and mortality was observed on different 

concentrations of Spinosad after 24, 48 and 72h of exposure. The observed 

concentrations o.491, 0.983, 1.966, 3.982 and 7.863μl/cm² were found to be 

potential causing larval mortality based on the ingestion and contact compare to 

control. Average mortality (±SE) was highest 13.33±0.88 at 7.863μl/cm² after 72h 

and lowest 4.67±0.33 at 0.491μl/cm² concentrations after 24h of exposure. At 95% 

confidence limit lower to upper 24h LC50 was 9.230 (3.402471-25.03735), 48h 

LC50 was 2.835 (0.0.683601-10.46294) and 72h LC50 was 0.543μl/cm² 

(0.1273662-2.317881) respectively. There were significant differences in the mean 

mortality of larvae between exposure times (F=57.026, df=2, P<0.001) and 

between concentrations (F=56.006, df=5, P<0.001). In addition, the interaction 

between exposure time and concentration rates were significant (F=7.795, df=10, 

P<0.001).  

The pupal mortality of R. dominica on different concentrations of Spinosad after 

24, 48 and 72h of exposure were observed at o.491, 0.983, 1.966, 3.982 and 

7.863μl/cm² concentrations and found to be potential causing pupal mortality 

based on the ingestion and contact compare to control. The average mortality 

(±SE) was highest 8.33±1.45 at 7.863μl/cm² after 72h and lowest 1.00±0.58 at 

0.491μl/cm² concentrations after 24h of exposure. At 95% confidence limit lower 

to upper 24h LC50 was 1138.777 (1.990441-651521.7), 48h LC50 was 231.134 

(2.478723-21552.51) and 72h LC50 was 22.054 μl/cm² (2.711695-179.3602) 

respectively. There were significant differences in the mean mortality between 

exposure periods (F=32.986, df=2, P<0.001) and between concentrations 

(F=23.986, df=5, P<0.001). In addition, the interaction between exposure period 

and concentration rate was significant (F=4.622, df=10, P<0.001).  
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The observed concentrations were found to be potential causing adult mortality 
based on the ingestion and contact compare to control. Average mortality (±SE) 
was highest 17.33±1.20 at 7.863μl/cm² after 72h and lowest 6.67±0.88 at 
0.491μl/cm² concentrations after 24h of exposure. At 95%, confidence limit lower 
to upper 24h LC50 was 6.952 (1.68851-28.62021), 48h LC50 was 0.959 
(0.4546266-2.02328) and 72h LC50 was 0.466μl/cm² (0.2381866-0.912989) 
respectively. There were significant differences in the mean mortality of adults 
between exposure periods (F=36.112, df=2, P<0.001) and between concentrations 
(F=83.468, df=5, P<0.001). In addition, the interaction between exposure time and 
concentration was highly significant (F=2.017, df=10, P<0.001). Spinosad showed 
a concentration related effects on adult mortality. The potentiality was higher in all 
treatments with the increase of concentration rate and exposure period. 

In case of X. flavipes the average percentage of egg hatchability (±SE) was lowest 
25.00±2.12 at 7.863μl/cm² and highest 35±1.73 at 0.491μl/cm² concentrations. At 
1.966, 0.983 and 0.491μl/cm² concentrations, the average percent of egg 
hatchability of X. flavipes was almost similar as in the control (untreated). PRC 
value was highest 28.57 at 7.863μl/cm² where as lowest 2.86% at 0.491μl/cm² 
concentrations. The effect of different concentrations of Spinosad on egg 
hatchability noted highly significant (P<0.001). 

Mortality was observed on different concentrations of Spinosad after 24, 48 and 
72h of exposure of 4d old nymphs of X. flavipes. The noted concentrations were 
found to be potential causing very few nymphal mortality based on the ingestion 
and contact compare to control. Average mortality (±SE) was highest 6.67±1.76 at 
7.863μl/cm² after 72h and lowest 1.00±0.58 at 0.491μl/cm² concentrations after 
24h of exposure. At 95%, confidence limit lower to upper 24h LC50 was 432.654 
(2.922949-237196.1), 48h LC50 was 137.838 (3.740582-5079.244) and 72h LC50 

was 73.830μl/cm² (3.22157-1691.976) respectively. There were significant 
differences in the mean mortality of larvae between exposure periods (F=15.068, 
df=2, P<0.001) and between concentrations (F=13.562, df=5, P<0.001). In 
addition, the interaction between exposure periods and concentration rates was 
significant (F=3.083, df=10, P<0.001). Moreover, nymphal mortality was found 
slightly higher than that of adults.  
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 The 2d old adult mortality of X. flavipes on different concentrations o.491, 0.983, 

1.966, 3.982 and 7.863μl/cm² of Spinosad after 24, 48 and 72h of exposure was 

observed. The average mortality (±SE) was the highest 5.00±0.45 at 7.863μl/cm² 

after 72h and the lowest was 1.67±0.67 at 0.491μl/cm² concentrations after 24h of 

exposure. At 95%, confidence limit lower to upper 24h LC50 was 492.851 

(3.859698-62932.93), 48h LC50 was 348.974 (4.223628-28833.73) and 72h LC50 

was 331.510μl/cm² (2.651994-41440.03) respectively. There were significant 

differences in the mean mortality of adults between exposure periods (F=7.386, 

df=2, P<0.001) and between concentrations (F=5.219, df=5, P<0.001). In addition, 

the interaction between exposure period and concentration was significant 

(F=2.432, df=10, P<0.001). The potentiality was higher in all treatments with the 

increase of concentrations and exposure periods. Moreover, at o.491, 0.983 and 

1.966μl/cm² concentrations of Spinosad, after 24h to 72h of exposure survivability 

of X. flavipes adults were found ranging 94 to 84% respectively. 

Combined effects of X. flavipes and Spinosad on the population of C. pusillus 

and R. dominica             

The combined effects of different concentrations of Spinosad and X. flavipes 

reduced the population growth of C. pusillus after different storage periods in 

comparison with that of control (untreated) and control (treated with 30 adults              

X. flavipes only). In plastic container within standard food, after 3, 6, 9 and 12 

months of exposure in control batch (untreated) the initial 100 adults of C. pusillus 

were increased up to 400±4.62, 600±5.77, 825±2.89 and 1020±5.77 adult 

individuals respectively where as, the highest number of host population were 

reduced (PRC 55.25, 48.33, 37.09 and 29.90) in 30 X. flavipes +1.966μl/cm² 

combination, among the different combinations. The lowest number of host 

population were suppressed (PRC 85.50, 79.83, 74.79 and 70.20) by only 30               

X. flavipes at the same periods and conditions. Different concentrations of 

Spinosad were found potential to reduce more number of C. pusillus populations 

in comparison with control. From 3 to 12 months different concentrations of 
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Spinosad alone or in combination with X. flavipes were found effective to suppress 

the C. pusillus population. Each level of concentrations and combinations were 

found potential to suppress the population of C. pusillus significantly (P<0.001). 

The combined effects of different concentrations of Spinosad and the predator,              

X. flavipes reduced the population growth of host R. dominica after different 

storage periods in comparison with that of control (untreated) and control (treated 

with 30 unsexed adult X. flavipes). In plastic container within standard food, after 

3, 6, 9 and 12 months of exposure in control batch (untreated) the initial 100 adults 

of R. dominica were increased up to 735±2.89, 1220±11.55, 1790±11.55 and 

2150±5.77 adult individuals respectively where as, the highest number of host 

population were reduced (PRC 42.86, 27.86, 11.28 and 1.10) in 30 X. flavipes 

+1.966μl/cm² combination, among the different combinations. The lowest number 

of host population were suppressed (PRC 81.77, 74.02, 67.49 and 61.21) by only 

30 X. flavipes at the same periods and conditions. Different concentrations of 

Spinosad were found potential to reduce more number of host populations in 

comparison with control. From 3 to 12 months different used concentrations of 

Spinosad alone or in combination with X. flavipes were found effective to suppress 

the host population. Each level of concentrations and combinations were found 

potential to suppress the population of R. dominica significantly (P<0.001).          

X. flavipes were not found susceptible to used concentrations. But in all used 

concentrations and combinations, host R. dominica was found more susceptible 

than the host C. pusillus at the same time and conditions. Used concentrations of 

Spinosad were found potential during long time alone and in combination with 

predator, X. flavipes to suppress the populations of both hosts. In case of 

population suppression of both hosts C. pusillus and R. dominica, limited benefits 

were achieved at all combinations in comparison with alone concentrations of 

Spinosad or only with predator, X. flavipes.  
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Conclusion 

 X. flavipes a well known challenging predator of many stored products insect 

pests is already now a day commercially available in the USA as a biological 

control agent. On the other hand, bacterium, Spinosad provides long term grain 

protection through the control of adult and immature stages of insect pests in 

storage. Spinosad is minimally disrupted to beneficial insects and compatible with 

Integrated Pest Management (IPM) program.  

The present investigation revealed nymph up to 5th instar and adult X. flavipes can 

kill and consume eggs, larvae up to 4th instar and pupae of C. pusillus and                 

R. dominica. Eggs, larvae up to 4th instar and pupae of the both insect pests 

fluctuated duration of developmental periods of each nymph, adult longevity, 

consumption rate, survivability rate, size and sex ratio of the predator. X. flavipes 

preferred 1st, 2nd and 3rd instar larvae followed by the 4th instar larvae and pupae. 

The female predator always consumed more prey than the male.  

Moreover, the effects of different concentration of Spinosad on egg hatchability 

and on mortality of larvae, pupae and adult of the both insect pests were found 

more potential. The concentration rate and exposure period were highly significant 

in all stages of the both pests. In case of the predator, egg hatchability and 

mortality rate of nymph and adults showed results almost same as in the control 

medium. Lower concentrations (0.491, 0.983 and 1.966μl/cm²) were found not 

significant on egg, nymph and adult of the predator. 

Overall, it was found that the effects of X. flavipes and different concentration of 

Spinosad separately and in combination were highly significant (P<0.001) 

comparatively than in control to reduce the adult population of C. pusillus and          

R. dominica after 3, 6, 9 and 12 months of exposure in storage.  

Therefore, the predator, X. flavipes and bacterium, Spinosad can be used 

effectively in the management of C. pusillus and R. dominica in storage, which is 

very important from environmental as well as Integrated Pest Management (IPM) 

and Global Protection Point (GPP) of views.     
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Appendix table 1 Effect of 1ppm of Spinosad against the immature and adult         
stages of different stored product insects  

 
Insect pests Life stage Commodities References 

Plodia 
interpunctella  

Immature Wheat, corn,    
sunflower 

Subramanyam et al. (1999), Fang et al. 
(2002a) and Huang et al. (2007) 

Corcyra 
cephalonica  

Immature Corn Huang and Subramanyam (2003), Shrama and 
Michaelraj (2006)  

Cadra cautella  Immature Corn Subramanyam  (2004)  
Sitotroga 
cerealella Immature Wheat, corn Huang et al. (2007) 

Rhyzopertha 
dominica 

Immature 
Adult 

Wheat, corn, 
rice, sorghum, 

barley 

Subramanyam et al. (1999), Fang et al. (2002a), 
Daglish et al. (2003), Nayak et al. (2005), Bonjour 
et al. (2006),  Huang et al. (2007), Athanassiou et al. 
(2008c), Vayias et al. (2009b, 2010b)  

Prostephanus 
truncatus Adult Wheat Athanassiou et al. (2008c) 

Cryptolestes 
ferrugineus 

Immature 
Adult 

Wheat, corn, 
sorghum, barley 

Daglish et al.(2003), Huang et al. (2007) and Vayias 
et al. (2010b)  

Cryptolestes 
pusillus 

Immature 
Adult Wheat Subramanyam et al. (2002)  

Sitophilus zeamais  Immature 
Adult Wheat, corn Huang et al. (2007)  

Sitophilus oryzae Immature 
Adult 

Wheat, corn, 
sorghum, 

barley, rice 

Subramanyam et al. (1999), Daglish and Wallbank 
(2002), Fang et al. (2002a), Nayak et al. 
(2005), Bonjour et al. (2006), Huang et al. (2007), 
Athanassiou et al. (2008c, 2009a), Vayias et al. 
(2009b, 2010b)  

Tribolium 
confusum 

Immature 
Adult 

Wheat, barley, 
rice 

Huang et al. (2007)  and  Athanassiou et al. 
(2008c)  

Tribolium 
castaneum  

Immature 
Adult 

Wheat, corn, 
sorghum, 
sunflower 

Subramanyam et al. (1999), Fang et al. (2002a), 
Daglish et al. (2003), Nayak et al. (2005), Bonjour 
et al. (2006), Huang et al. (2007)  

Oryzaephilus 
surinamensis  

Immature 
Adult 

Wheat, corn, 
sorghum 

Subramanyam et al. (1999), Fang et al. 
(2002a), Bonjour et al. (2006)  

Lepinotus 
reticulatus 

Immature 
Adult 

Wheat, corn. 
rice Athanassiou et al. (2009a)  

Liposcelis 
entomophila 

Immature 
Adult 

Wheat, corn, 
rice 

Daglish et al. (2003), Nayak et al. (2005), Nayak 
and Daglish (2007), Athanassiou et al. (2009a) 

Liposcelis decolor  Immature 
Adult Wheat Daglish et al. (2003), Nayak et al. (2005), Nayak 

and Daglish (2007), Huang et al. (2009)  

Liposcelis 
bostrychophila  

Immature 
Adult 

Wheat, corn, 
rice 

Daglish et al. (2003), Nayak et al. (2005), Nayak 
and Daglish (2007), Huang et al. (2009), 
Athanassiou et al. (2009a)  

Liposcelis paeta  Immature 
Adult 

Wheat, corn, 
rice 

Daglish et al. (2003), Nayak et al. (2005), Nayak 
and Daglish (2007), Athanassiou et al. (2009a) 
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Appendix table 2 Developmental periods and adult longevity of X. flavipes fed 
on different life stages of C. pusillus under laboratory 
condition at 30±0.5°C temperature and 70±0.5% relative 
humidity 

 
Life 

stages of 
C. 

pusillus 

Di
et 
(g) 

Mean Developmental periods (day) of    
nymphal instar Total duration 

(day) of 
nymphsal stages 

Adult longevity (day)    
of X. flavipes 

Total duration 
(day) 

1st 2nd 3rd 4th 5th Male Female Male Female 

Eggs 2 3±0.58a 2±0.58a 3±0.58ab 3±0.58a 4±1.15a 15±2.00bcd 8±1.15ab 20±1.15cd 23 35 

1st larvae 3 4±0.58a 3±0.58a 5±0.58a 4±0.58a 4±0.58a 20±0.00ab 10±1.15ab 25±2.89bc 30 45 

2nd larvae 3 4±0.58a 3±0.58a 5±0.58a 5±0.58a 5±0.58a 22±0.58a 12±1.15a 31±1.15ab 39 53 

3rd larvae 3 4±0.58a 3±0.58a 4±0.58ab 3±0.58a 4±0.58a 18±1.00abc 11±1.15a 28±1.15a 29 56 

4th larvae 3 3±0.58a 2±0.58a 3±0.58ab 3±0.58a 3±0.58a 14±1.15de 9±0.58ab 26±0.58bc 23 40 

Pupae 2 3±0.0a 2±0.0a 2±0.58b 3±0.58a 2±0.0a 12±1.15d 6±0.58b 14±1.15d 18 26 

Note: Means with same letter do not significantly differed from each other Tukey’s 
Test, P<0.001 

  
Appendix table 3 Factorial ANOVA showing the effects of different life stages of.                             

C. pusillus on longevity of 1st instar nymphs  
 

Source SS DF MS F P value 
Diet 1671 1 1671 5.305 0.254 
Host 18420 5 3684 11.695 0.054 
Rep 4710 2 2355 7.476 0.157 
Host*Diet 4521 3 1507 4.784 0.820 
Host*Rep 908 1 908 2.883 0.528 
Rep*Diet 1321 1 1321 4.194 0.362 
Error 1575 5 315   
Total 33126 18    

 
Appendix table 4  Factorial ANOVA showing the effects of different life stages of                                                     

C. pusillus on longevity of 2nd instar nymphs 
 

Source SS DF MS F P value 
Diet 1674 1 1674 7.440 0.245 
Host 18125 5 3625 16.111 0.054 
Rep 4980 2 2490 11.067 0.125 
Host*Diet 4950 3 1650 7.333 0.820 
Diet*Rep 607 1 607 2.698 0.528 
Rep*Host 998 1 998 4.436 0.321 
Error 1125 5 225   
Total 32459 18    
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Appendix table 5 Factorial ANOVA showing the effects of different life stages of                                                      

C. pusillus on longevity of 3rd instar nymphs 
 

Source SS DF MS F P value 
Diet 1765 1 1765 6.418 0.242 
Host 22590 5 4518 16.429 0.039 
Rep 4682 2 2341 8.513 0.142 
Host*Diet 4503 3 1501 5.458 0.811 
Diet*Rep 936 1 936 3.404 0.415 
Rep*Host 1328 1 1328 4.829 0.326 
Error 1375 5 275   
Total 37179 18    

 
Appendix table 6 Factorial ANOVA showing the effects of different life stages of                                                     

C. pusillus on longevity of 4th  instar nymphs 
 

Source SS DF MS F P value 
Diet 1682 1 1682 4.806 0.251 
Host 18080 5 3616 10.331 0.061 
Rep 4430 2 2215 6.329 0.125 
Host*Diet 4509 3 1503 4.294 0.845 
Diet*Rep 925 1 925 2.643 0.625 
Rep*Host 1319 1 1319 3.469 0.148 
Error 1750 5 350   
Total 32695 18    

 
Appendix table 7 Factorial ANOVA showing the effects of different life stages of                                                     

C. pusillus on longevity of 5th  instar nymphs 
 

Source SS DF MS F P value 
Diet 1648 1 1648 4.395 0.245 
Host 18095 5 3619 9.650 0.071 
Rep 4452 2 2226 5.936 0.136 
Host*Diet 4410 3 1470 3.920 0.645 
Diet*Rep 939 1 939 2.504 0.528 
Rep*Host 1313 1 1313 3.501 0.138 
Error 1875 5 375   
Total 32732 18    

 
Appendix table 8 Factorial ANOVA showing the effects of different life stages 

of C. pusillus on longevity of adult male   
 

Source SS DF MS F P value 
Diet 1653 1 1653 3.983 0.325 
Host 18095 5 3619 8.720 0.072 
Rep 4472 2 2236 5.388 0.145 
Host*Diet 4284 3 1428 3.440 0.645 
Diet*Rep 932 1 932 2.246 0.529 
Rep*Host 1331 1 1331 3.207 0.134 
Error 2075 5 415   
Total 32842 18    
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Appendix table 9 Factorial ANOVA showing the effects of different life stages of                                                     

C. pusillus on longevity of adult female 
 

Source SS DF MS F P value 
Diet 1621 1 1621 3.413 0.245 
Host 17630 5 3526 7.423 0.015 
Rep 4450 2 2225 4.684 0.132 
Host*Diet 4593 3 1531 3.223 0.412 
Diet*Rep 945 1 945 1.989 0.558 
Rep*Host 1363 1 1363 2.869 0.164 
Error 2375 5 475   
Total 32977 18    

 
Appendix table10 Developmental periods and adult longevity of X. flavipes fed on      

different life stages of R. dominica under laboratory condition at 
30±0.5°C temperature and 70±0.5% relative humidity 

 
Life stages 

of  
R. 

dominica 

Di
et 
(g) 

Mean Developmental periods (day) of 
nymphal instar Total duration 

(day) of 
nymphsal stages 

Adult longevity (day) 
of X. flavipes 

Total duration 
(day) 

1st 2nd 3rd 4th 5th Male Female Male Female 

Eggs 2 3±0.58a 3±0.58a 4±0.58a 4±0.58ab 4±0.58a 18±1.00ab 10±2.31b 22±3.46bc 28 40 

1st larvae 3 4±0.58a 3±0.58a 4±0.58a 5±0.58a 4±0.58a 20±0.58a 12±1.15ab 26±0.88ab 32 46 

2nd larvae 3 3±0.58a 2±0.58a 3±0.58a 4±0.58ab 4±0.58a 16±2.00abc 18±0.58a 34±2.31a 34 50 

3rd larvae 3 3±0.58a 2±0.58a 3±0.58a 3±0.58ab 3±0.58a 14±1.15bc 10±1.33b 24±2.31bc 24 38 

4th larvae 3 3±0.58a 2±0.58a 2±0.58a 2±0.58b 3±0.58a 12±1.15c 8±1.15b 20±1.15bc 20 32 

Pupae 2 3±0.58a 2±0.58a 3±0.58a 2±0.58b 3±0.58a 13±0.58bc 5±0.58b 15±1.15c 18 28 

Note: Means with same letter do not significantly differed from each other Tukey’s 
Test, P<0.001 

 
Appendix table 11 Factorial ANOVA showing the effects of different life stages  

of R. dominica on longevity of 1st instar nymphs 
 

Source SS DF MS F P value 
Diet 1771 1 1771 6.440 0.254 
Host 18920 5 3784 13.760 0.054 
Rep 4910 2 2455 8.927 0.157 
Host*Diet 4821 3 1607 5.844 0.820 
Diet*Rep 1008 1 1008 3.665 0.528 
Rep*Host 1421 1 1421 5.167 0.362 
Error 1375 5 275   
Total 34226 18    
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Appendix table 12 Factorial ANOVA showing the effects of different life stages 
of R. dominica on longevity of 2nd instar nymphs 

 

Source SS DF MS F P value 
Diet 1774 1 1774 9.337 0.245 
Host 18625 5 3725 19.605 0.054 
Rep 4910 2 2455 12.921 0.125 
Host*Diet 5121 3 1707 8.982 0.820 
Diet*Rep 998 1 998 5.253 0.528 
Rep*Host 1098 1 1098 5.779 0.321 
Error 950 5 190   
Total 33476 18    

 
Appendix table 13  Factorial ANOVA showing the effects of different life stages 

of R. dominica on longevity of 3rd instar nymphs 
 

Source SS DF MS F P value 
Diet 1765 1 1765 8.209 0.242 
Host 18590 5 3718 17.293 0.039 
Rep 4882 2 2441 11.353 0.142 
Host*Diet 4953 3 1651 7.679 0.811 
Diet*Rep 1036 1 1036 4.819 0.415 
Rep*Host 1428 1 1428 6.642 0.326 
Error 1075 5 215   
Total 33729 18    

 
Appendix table 14 Factorial ANOVA showing the effects of different life stages of                                      

R. dominica on longevity of 4th instar nymphs  
 

Source SS DF MS F P value 
Diet 1782 1 1782 5.940 0.251 
Host 18580 5 3716 12.387 0.061 
Rep 4630 2 2315 7.717 0.125 
Host*Diet 4779 3 1593 0.310 0.845 
Diet*Rep 1025 1 1025 3.417 0.625 
Rep*Host 1419 1 1419 4.730 0.148 
Error 1500 5 300   
Total 33715 18    

 
Appendix table 15  Factorial ANOVA showing the effects of different life stages 

of R. dominica on longevity of 5th instar nymphs 
 

Source SS DF MS F P value 
Diet 1748 1 1748 4.540 0.245 
Host 19095 5 3819 9.919 0.071 
Rep 4652 2 2326 6.042 0.136 
Host*Diet 4536 3 1512 3.927 0.645 
Diet*Rep 1039 1 1039 2.699 0.528 
Rep*Host 1413 1 1413 3.670 0.138 
Error 1925 5 385   
Total 34408 18    
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Appendix table 16 Factorial ANOVA showing the effects of different life stages 
of R. dominica on longevity of adult male 

 

Source SS DF MS F P value 
Diet 1753 1 1753 5.009 0.325 
Host 19095 5 3819 10.911 0.072 
Rep 4872 2 2436 6.960 0.145 
Host*Diet 4884 3 1628 4.651 0.645 
Diet*Rep 998 1 998 2.851 0.529 
Rep*Host 1531 1 1531 4.374 0.134 
Error 1750 5 350   
Total 34883 18    

 
Appendix table 17  Factorial ANOVA showing the effects of different life stages 

of R. dominica on longevity of adult female 
 

Source SS DF MS F P value 
Source SS DF MS F P value 

Diet 1721 1 1721 4.049 0.245 
Host 18630 5 3726 8.767 0.015 
Rep 4850 2 2425 5.706 0.132 
Host*Diet 5193 3 1731 4.073 0.412 
Diet*Rep 1045 1 1045 2.459  0.558 
Rep*Host 1563 1 1563 3.678 0.164 
Error 2125 5 425   

 
Appendix table 18  Average (%) consumption rate by different life stages of        

X. flavipes per day on different life stages of C. pusillus 
under laboratory condition 

 

Life stages 
of C. 

pusillus 

Di
et 
(g) 

Average (%) consumption rate of X. flavipes 
Nymphs Adults 

1st 2nd 3rd 4th 5th Male Female 

Eggs 2 7.33±0.33a 8.33±0.33a 10.33±0.33a 12.67±1.20a 14.33±0.33a 16.33±0.88a 20.67±0.33a 

1st larvae 3 6.33±0.33a 7.67±0.33a 8.67±0.33a 9.33±0.33b 11.67±0.33b 14.33±0.33ab 16.33±0.33b 

2nd larvae 3 3.33±0.33b 4.33±0.33b 5.67±0.33b 6.33±0.33c 8.67±0.33c 12.33±0.33b 14.33±0.33c 

3rd larvae 3 2.33±0.33bc 2.67±0.33c 4.33±0.33b 4.67±0.33cd 6.67±0.33d 9.67±0.33c 11.33±0.33d 

4th larvae 3 1.33±0.33c 1.67±0.33c 2.33±0.33c 3.67±0.33cd 5.33±0.33d 8.67±0.33c 9.33±0.33e 

Pupae 2 1.33±0.33c 1.67±0.33c 2.00±0.58c 2.33±0.33d 2.67±0.33e 4.33±0.33d 5.67±0.33f 

Note: Means with same letter do not significantly differed from each other Tukey’s 
Test, P<0.001 
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Appendix table 19 Factorial ANOVA showing the effects of different life stages of 
C. pusillus on consumption rate of 1st instar nymphs 

 

Source SS DF MS F P value 
Diet 70982 1 70982 4.693 0.258 
Host 15281800 5 3056360 202.073 0.001 
Rep 26152 2 13076 0.865 0.765 
Host*Diet 2033490 3 677830 44.815 0.425 
Diet*Rep 43775 1 43775 2.894 0.502 
Rep*Host 28569 1 28569 1.889 0.762 
Error 75625 5 15125   
Total 17560393 18    

 
Appendix table 20 Factorial ANOVA showing the effects of different life stages of 

C. pusillus on consumption rate of 2nd instar nymphs 
 

Source SS DF MS F P value 
Diet 70859 1 70859 4.973 0.248 
Host 15283175 5 3056635 214.500 0.003 
Rep 26030 2 13015 0.913 0.745 
Host*Diet 2032290 3 677430 47.534 0.158 
Diet*Rep 43625 1 43625 3.0614 0.425 
Rep*Host 28236 1 28236 1.981 0.623 
Error 71250 5 14250   
Total 17555465 18    

 
Appendix table 21 Factorial ANOVA showing the effects of different life stages of 

C. pusillus on consumption rate of 3rd instar nymphs 
  

Source SS DF MS F P value 
Diet 70458 1 70458 3.866 0.246 
Host 1581290 5 3056258 167.696 0.004 
Rep 26724 2 13362 0.733 0.369 
Host*Diet 2014440 3 671480 36.844 0.145 
Diet*Rep 43425 1 43425 2.383 0.369 
Rep*Host 28632 1 28632 1.571 0.758 
Error 91125 5 18225   
Total 3856094 18    

 
Appendix table 22  Factorial ANOVA showing the effects of different life stages of 

C. pusillus on consumption rate of 4th instar nymphs 
 

Source SS DF MS F P value 
Diet 70441 1 70441 4.116 0.252 
Host 15281620 5 3056324 178.576 0.005 
Rep 26916 2 13458 0.786 0.335 
Host*Diet 2017080 3 672360 39.285 0.248 
Diet*Rep 43145 1 43145 2.521 0.365 
Rep*Host 28635 1 28635 1.673 0.762 
Error 85575 5 17115   
Total 17553412 18    
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Appendix table 23 Factorial ANOVA showing the effects of different life stages of 
C. pusillus on consumption rate of 5th instar nymphs 

 

Source SS DF MS F P value 

Diet 70448 1 70448 4.369 0.215 
Host 15281810 5 3056362 189.542 0.002 
Rep 26938 2 13469 0.835 0.333 
Host*Diet 2017410 3 672470 41.704 0.263 
Diet*Rep 43126 1 43126 2.674 0.275 
Rep*Host 28621 1 28621 1.775 0.632 
Error 80625 5 16125   
Total 17548978 18    

 
Appendix table 24 Factorial ANOVA showing the effects of different life stages 

of C. pusillus on consumption rate of adult male 
 

Source SS DF MS F P value 

Diet 70451 1 70451 7.473 0.248 
Host 15283195 5 3056639 194.072 0.021 
Rep 26884 2 13442 0.853 0.312 
Host*Diet 2014680 3 671560 42.639 0.148 
Diet*Rep 43121 1 43121 2.738 0.639 
Rep*Host 28632 1 28632 1.818 0.425 
Error 78750 5 15750   
Total 17545713 18    

 
Appendix table 25 Factorial ANOVA showing the effects of different life stages of 

C. pusillus on consumption rate of adult female 
 

Source SS DF MS F P value 

Diet 60362 1 60362 3.939 0.251 
Host 15282105 5 3056421 199.440 0.002 
Rep 30882 2 15441 1.008 0.452 
Host*Diet 1864740 3 621580 40.560 0.458 
Diet*Rep 40136 1 40136 2.629 0.741 
Rep*Host 28131 1 28131 1.836 0.458 
Error 76625 5 15325   
Total 17381981 18    
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Appendix table 26  Average (%) consumption rate by different life stages of         
X. flavipes per day on different life stages of R. dominica 
under laboratory condition 

 
Life stages 

of R. 
dominica 

Di
et 
(g) 

Average (%) consumption rate of X. flavipes 
Nymphs Adults 

1st 2nd 3rd 4th 5th Male Female 

Eggs 2 8.00±0.58a 10.67±0.67a 14.33±0.88a 16.67±1.20a 19.33±0.88a 21.33±0.88a 24.67±1.20a 

1st larvae 3 3.33±0.88b 4.67±1.20b 5.00±0.58b 6.33±0.88b 8.67±1.20b 10.00±1.15b 14.00±1.15b 

2nd larvae 3 2.33±0.88b 3.67±1.20b 4.33±0.88b 5.67±1.20b 7.33±0.88b 9.33±0.88b 12.33±0.88bc 

3rd larvae 3 2.00±0.58b 3.33±0.88b 4.00±0.58b 5.00±0.58b 6.67±1.20bc 8.67±1.20b 11.33±0.88bc 

4th larvae 3 1.33±0.33b 2.33±0.88b 2.67±1.20b 3.33±1.45b 4.33±0.88bc 6.33±0.88c 8.33±0.88cd 

Pupae 2 1.00±0.00b 1.33±0.33b 1.67±0.33b 2.00±0.58b 2.33±0.88c 3.00±0.58c 4.00±0.58d 

Note: Means with same letter do not significantly differed from each other Tukey’s 
Test, P<0.001 

 
Appendix table 27  Factorial ANOVA showing the effects of different life stages of 

R. dominica on consumption rate of 1st instar nymphs 
 

Source SS DF MS F P value 
Diet 40093 1 40093 5.627 0.480 
Host 2071065 5 414213 58.135 0.015 
Rep 86706 2 43353 6.085 0.001 
Host*Diet 154470 3 51490 7.227 0.999 
Diet*Rep 13449 1 13449 1.888 0.067 
Rep*Host 41535 1 41535 5.829 0.003 
Error 35625 5 7125    
Total 2442943 18    

 
Appendix table 28  Factorial ANOVA showing the effects of different life stages of 

R. dominica on consumption rate of 2nd instar nymphs  
 

Source SS DF MS F P value 
Diet 40091 1 40091 6.440 0.481 
Host 2071075 5 414215 66.540 0.012 
Rep 126738 2 63369 10.170 0.001 
Host*Diet 154350 3 51450 8.265 0.985 
Diet*Rep 13445 1 13445 2.150 0.062 
Rep*Host 41525 1 41525 6.670 0.001 
Error 31125 5 6225   
Total 2478349 18    
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Appendix table 29 Factorial ANOVA showing the effects of different life stages of 
R. dominica on consumption rate of 3rd instar nymphs 

 

Source SS DF MS F P value 
Diet 40085 1 40085 4.859 0.382 
Host 2070625 5 414125 50.197 0.011 
Rep 127250 2 63625 7.712 0.005 
Host*Diet 153750 3 51250 6.212 0.915 
Diet*Rep 13351 1 13351 1.618 0.025 
Rep*Host 41245 1 41245 4.999 0.006 
Error 41250 5 8250   
Total 2487556 18    

 
Appendix table 30 Factorial ANOVA showing the effects of different life stages of 

R. dominica on consumption rate of 4th instar nymphs 
 

Source SS DF MS F P value 
Diet 40152 1 40152 3.287 0.582 
Host 2070710 5 414142 33.904 0.024 
Rep 127272 2 63636 5.210 0.002 
Host*Diet 153150 3 51050 4.179 0.812 
Diet*Rep 13314 1 13314 1.080 0.022 
Rep*Host 41225 1 41225 3.375 0.012 
Error 61075 5 12215   
Total 2506898 18    

 
Appendix table 31 Factorial ANOVA showing the effects of different life stages of 

R. dominica on consumption rate of 5th instar nymphs 
 

Source SS DF MS F P value 
Diet 40521 1 40521 2.952 0.125 
Host 2070560 5 414112 30.172 0.032 
Rep 127348 2 63674 4.639 0.005 
Host*Diet 153300 3 51100 3.723 0.425 
Diet*Rep 13145 1 13145 0.958 0.021 
Rep*Host 41215 1 41215 3.002 0.041 
Error 68625 5 13725   
Total 2514714 18    

 
Appendix table 32 Factorial ANOVA showing the effects of different life stages 

of R. dominica on consumption rate of adult male 
 

Source SS DF MS F P value 
Diet 40314 1 40314 8.860 0.110 
Host 2072125 5 414425 91.082 0.032 
Rep 26204 2 13102 2.880 0.005 
Host*Diet 153360 3 51120 11.235 0.125 
Diet*Rep 13143 1 13143 2.888 0.021 
Rep*Host 41269 1 41269 9.070 0.041 
Error 22750 5 4550   
Total 2369165 18    
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Appendix table 33 Factorial ANOVA showing the effects of different life stages of 
R. dominica on consumption rate of adult female 

 

Source SS DF MS F P value 
Diet 40316 1 40316 7.642 0.120 
Host 2072375 5 414475 78.573 0.014 
Rep 26202 2 13101 2.484 0.006 
Host*Diet 153450 3 51150 9.697 0.131 
Diet*Rep 13140 1 13140 2.491 0.041 
Rep*Host 41251 1 41251 7.820 0.012 
Error 26375 5 5275   
Total 2373109 18    

 
Appendix table 34 Average percent (±SE) no. of survivability of different life 

stages of X. flavipes on different life stages of C. pusillus 
under laboratory condition 

 
Life 

stages of 
C. 

pusillus 

Diet 
(gm) 

Average (%) no. of survivability of X. flavipes 
Nymphs Adults 

1st 2nd 3rd 4th 5th Male Female 

Eggs 2 9.00±0.58a 8.33±0.33abc 7.33±0.33ab 6.33±0.33a 5.33±0.33a 3.67±0.67a 6.33±0.67a 

1st larvae 3 10.00±0.00a 9.67±0.33ab 8.00±1.53ab 8.00±1.53a 7.00±1.15a 4.67±0.88a 5.33±0.88a 

2nd larvae 3 10.00±0.00a 10.00±0.00a 10.00±0.00a 8.67±0.33a 6.67±0.88a 3.33±0.88a 6.67±0.88a 

3rd larvae 3 9.67±0.58a 6.67±1.20c 5.00±1.15b 5.00±1.15a 4.67±1.45a 3.67±1.45a 5.67±0.88a 

4th larvae 3 8.33±0.58a 6.00±0.58c 5.67±0.33b 5.00±0.58a 4.67±0.33a 2.33±0.33a 7.67±0.33a 

Pupae 2 8.00±0.58a 7.00±0.58bc 6.33±0.33ab 5.33±0.67a 4.33±0.33a 2.67±0.33a 7.33±0.33a 

Note: Means with same letter do not significantly differed from each other Tukey’s 
Test, P<0.001 

 
Appendix table 35 Factorial ANOVA showing the effects of different life stages of 

C. pusillus on no. of survivability of 1st instar nymphs 
 

Source SS DF MS F P value 
Diet 299.39 1 299.39 14.022 0.000 
Host 3212.20 5 642.44 30.090 0.000 
Rep 463.50 2 231.75 10.85 0.922 
Host*Diet 268.38 3 89.46 4.190 0.005 
Diet*Rep 70.64 1 70.64 3.308 0.801 
Rep*Host 98.62 1 98.61 4.618 0.330 
Error 106.75 5 21.35   
Total       4519.48  18    
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Appendix table 36 Factorial ANOVA showing the effects of different life stages of 
C. pusillus on no. of survivability of 2nd instar nymphs 

 

Source SS DF MS F P value 
Diet 297.45 1 297.45 14.524 0.005 
Host 3711.55 5 742.31 36.245 0.001 
Rep 622.90 2 311.45 15.208 0.922 
Host*Diet 298.74 3 99.58 4.862 0.005 
Diet*Rep 60.21 1 60.21 2.940 0.801 
Rep*Host 86.32 1 86.32 4.215 0.330 
Error 102.40 5 20.48   
Total 5179.57 18    

 
Appendix table 37  Factorial ANOVA showing the effects of different life stages of 

C. pusillus on no. of survivability of 3rd instar nymphs 
 

Source SS DF MS F P value 
Diet 399.15 1 399.15 21.992 0.005 
Host 3491.25 5 698.25 38.471 0.005 
Rep 462.30 2 231.15 12.736 0.985 
Host*Diet 264.69 3 88.23 4.861 0.005 
Diet*Rep 65.02 1 65.02 3.582 0.785 
Rep*Host 96.32 1 96.32 5.307 0.521 
Error 90.75 5 18.15   
Total 4869.48 18    

 
Appendix table 38 Factorial ANOVA showing the effects of different life stages of 

C. pusillus on no. of survivability of 4th instar nymphs 
 

Source SS DF MS F P value 
Diet 345.31 1 345.31 16.779 0.005 
Host 3710.75 5 742.15 36.061 0.005 
Rep 223.16 2 111.58 5.422 0.995 
Host*Diet 240.54 3 80.18 3.896 0.852 
Diet*Rep 75.42 1 75.42 3.665 0.925 
Rep*Host 95.10 1 95.10 4.620 0.936 
Error 102.90 5 20.58   
Total 4793.18 18    

 
Appendix table 39 Factorial ANOVA showing the effects of different life stages of 

C. pusillus on no. of survivability of 5th instar nymphs 
 

Source SS DF MS F P value 
Diet 295.58 1 295.58 11.614 0.006 
Host 3445.60 5 689.12 27.077 0.005 
Rep 181.16 2 90.58 3.559 0.725 
Host*Diet 267.54 3 89.18 3.504 0.852 
Diet*Rep 55.42 1 55.42 2.178 0.925 
Rep*Host 90.10 1 90.10 3.540 0.859 
Error 127.25 5 25.45   
Total 4462.65 18    
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Appendix table 40  Factorial ANOVA showing the effects of different life stages 
of C. pusillus on no. of survivability of adult male 

 

Source SS DF MS F P value 
Diet 298.12 1 298.12 13.399 0.009 
Host 3126.80 5 625.36 28.106 0.005 
Rep 186.50 2 93.25 4.191 0.814 
Host*Diet 256.86 3 85.62 3.848 0.485 
Diet*Rep 40.43 1 40.43 1.817 0.425 
Rep*Host 92.56 1 92.56 4.160 0.693 
Error 111.25 5 22.25   
Total 4112.52 18    

 
Appendix table 41 Factorial ANOVA showing the effects of different life stages 

of C. pusillus on no. of survivability of adult female 
 

Source SS DF MS F P value 
Diet 345.42 1 345.42 29.243 0.008 
Host 2628.10 5 525.62 29.282 0.006 
Rep 199.24 2 99.62 5.545 0.858 
Host*Diet 585.45 3 195.15 10.872 0.425 
Diet*Rep 90.42 1 90.42 5.037 0.431 
Rep*Host 102.28 1 102.28 5.698 0.574 
Error 89.75 5 17.95   
Total 4040.66 18    

 
Appendix table 42  Average percent (±SE) no. of survivability of different life 

stages of X. flavipes on different life stages of R. dominica 
under laboratory condition 

 
Life stages 

of R. 
dominica 

Diet 
(gm) 

Average (%)survivability of X. flavipes 
Nymphs Adults 

1st 2nd 3rd 4th 5th Male Female 

Eggs 2 9.00±0.58a 8.00±0.58ab 7.33±0.67ab 6.00±0.00a 5.67±0.33a 4.33±1.20a 5.67±1.20a 

1st larvae 3 9.33±0.33a 8.67±0.33a 8.33±0.33a 7.00±0.58a 6.00±0.58a 3.00±0.58a 7.00±0.58a 

2nd larvae 3 8.00±0.58ab 7.00±0.00b 6.67±0.33ab 6.33±0.33a 5.67±0.33a 2.67±0.33a 6.33±0.88a 

3rd larvae 3 8.33±0.33ab 7.67±0.33ab 6.33±0.33b 6.00±0.58a 5.00±0.00a 3.33±0.33a 6.67±0.33a 

4th larvae 3 7.33±0.33ab 7.00±0.00b 5.67±0.33bc 5.00±0.58ab 4.33±0.33ab 3.00±0.58a 6.00±0.00a 

Pupae 2 6.33±0.33b 5.33±0.33c 4.33±0.33c 3.67±0.33b 2.67±0.33b 2.00±0.00a 5.00±1.00a 

 

Note: Means with same letter do not significantly differed from each other Tukey’s 
Test, P<0.001 
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Appendix table 43  Factorial ANOVA showing the effects of different life stages of 
R. dominica on no. of survivability of 1st instar nymphs 

 

Source SS DF MS F P value 
Diet 623.10 1 623.10 4.965 0.016 
Host 23472.00 5 4694.40 37.406 0.000 
Rep 1257.80 2 628.90 5.011 0.025 
Host*Diet 279.30 3 93.10 0.741 0.720 
Diet*Rep 222.50 1 222.50 1.773 0.199 
Rep*Host 154.60 1 154.60 1.232 0.387 
Error 627.50 5 125.50   
Total 26636.80 18    

 
Appendix table 44 Factorial ANOVA showing the effects of different life stages of R. 

dominica on no. of survivability of 2nd instar nymphs 
 

Source SS DF MS F P value 
Diet 623.25 1 623.25 4.888 0.015 
Host 23472.10 5 4694.42 36.819 0.001 
Rep 1257.92 2 628.96 4.933 0.022 
Host*Diet 279.30 3 93.10 0.730 0.625 
Diet*Rep 222.50 1 222.50 1.745 0.215 
Rep*Host 154.60 1 154.60 1.213 0.147 
Error 637.50 5 127.50   
Total 26647.27 18    

 
Appendix table 45   Factorial ANOVA showing the effects of different life stages of R. 

dominica on no. of survivability of 3rd instar nymphs 
 

Source SS DF MS F P value 
Diet 623.35 1 623.35 4.788 0.016 
Host 23474.25 5 4694.85 36.064 0.001 
Rep 1256.50 2 628.25 4.826 0.022 
Host*Diet 2410.56 3 803.52 6.172 0.625 
Diet*Rep 302.48 1 302.48 2.323 0.214 
Rep*Host 154.62 1 154.62 1.188 0.147 
Error 650.90 5 130.18   
Total 28872.66 18    

 
Appendix table 46 Factorial ANOVA showing the effects of different life stages of R. 

dominica on no. of survivability of 4th instar nymphs 
 

Source SS DF MS F P value 
Diet 723.40 1 723.40 5.466 0.018 
Host 27974.25 5 5594.85 42.273 0.001 
Rep 1200.50 2 600.25 4.535 0.022 
Host*Diet 2680.56 3 893.52 6.751 0.622 
Diet*Rep 322.48 1 322.48 2.437 0.214 
Rep*Host 254.63 1 254.63 1.923 0.149 
Error 661.75 5    
Total 33817.57 18    
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Appendix table 47 Factorial ANOVA showing the effects of different life stages of R. 
dominica on no. of survivability of 5th instar nymphs 

 

Source SS DF MS F P value 
Diet 822.38 1 822.38 5.843 0.016 
Host 33471.95 5 6694.39 47.562 0.002 
Rep 1224.48 2 612.24 4.350 0.021 
Host*Diet 2380.26 3 793.42 5.637 0.582 
Diet*Rep         292.82 1 292.82 2.080 0.245 
Rep*Host 354.25 1 354.25 2.517 0.485 
Error 703.75 5 140.75   
Total 39249.89 18    

 
Appendix table 48  Factorial ANOVA showing the effects of different life stages of 

R. dominica on no. of survivability of adult male 
 

Source SS DF MS F P value 
Diet 712.85 1 712.85 5.186 0.020 
Host 33473.10 5 6694.62 38.595 0.002 
Rep 1256.84 2 628.42 4.572 0.022 
Host*Diet 2679.54 3 893.18 6.497 0.592 
Diet*Rep 272.36 1 272.36 1.981 0.250 
Rep*Host 254.47 1 254.47 1.851 0.471 
Error 687.30 5 137.46   
Total 39336.46 18    

 
Appendix table 49 Factorial ANOVA showing the effects of different life stages of 

R. dominica on no. of survivability of adult female 
 

Source SS DF MS F P value 
Diet 622.47 1 622.47 4.585 0.021 
Host 28471.60 5 5694.32 41.947 0.002 
Rep 1396.84 2 698.42 5.145 0.022 
Host*Diet 2380.56 3 793.52 5.845 0.592 
Diet*Rep 252.14 1 252.14 1.857 0.250 
Rep*Host 454.28 1 454.28 3.346 0.471 
Error 678.75 5 135.75   
Total 34256.64 18    

 
Appendix table 50 Average (±SE) adult size (mm in length) of X. flavipes on 

different life stages of C. pusillus under laboratory condition. 
 

Adult size (mm in 
length) of X. flavipes 

Different life stages of C. pusillus 
Eggs 1st 2nd 3rd 4th Pupae 

Male 1.50±0.06c 1.60±0.03bc 1.70±0.03ab 1.80±0.01a 1.65±0.03abc 1.55±0.04bc 

Female 1.70±0.06c 1.90±0.03b 2.00±0.03ab 2.10±0.01a 1.95±0.03ab 1.85±0.04bc 

Note: Means with same letter do not significantly differed from each other Tukey’s 
Test, P<0.001 
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Appendix table 51 Factorial ANOVA showing the effects of different life stages 
of C. pusillus on size of adult male 

 

Source SS DF MS F P value 
Diet 219.74 1 219.74 4.867 0.282 
Host 3250.95 5 650.19 14.401 0.002 
Rep 896.30 2 448.15 9.926 0.017 
Host*Diet 265.44 3 88.48 1.960 0.989 
Diet*Rep 75.87 1 75.87 1.680 0.978 
Rep*Host 470.98 1 470.98 10.351 0.002 
Error 225.75 5 45.15   
Total 5405.03 18    

 
Appendix table 52 Factorial ANOVA showing the effects of different life stages 

of C. pusillus on size of adult female 
 

Source SS DF MS F P value 
Diet 199.48 1 199.48 5.659 0.251 
Host 3241.10 5 648.22 18.389 0.003 
Rep 850.30 2 425.15 12.061 0.021 
Host*Diet 298.44 3 99.48 2.822 0.852 
Diet*Rep 96.69 1 96.69 2.743 0.852 
Rep*Host 470.82 1 470.82 13.357 0.003 
Error 176.25 5 35.25   
Total 5333.08 18    

 
Appendix table 53  Average (±SE) adult size (mm in length) of X. flavipes male 

and female on different life stages of R. dominica under 
laboratory condition  

 

Adult size (mm in 
length) of X. flavipes 

Different life stages of R. dominica 
Eggs 1st 2nd 3rd 4th Pupae 

Male 1.75±0.03ab 1.80±0.02a 1.85±0.01a 1.81±0.03a 1.76±0.03ab 1.65±0.04b 

Female 2.00±0.03bcd 2.20±0.06a 2.15±0.02ab 2.10±0.01abc 1.98±0.05cd 1.90±0.03d 

Note: Means with same letter do not significantly differed from each other Tukey’s 
Test, P<0.001 

  
Appendix table 54 Factorial ANOVA showing the effects of different life stages 

of R. dominica on size of adult male 
 

Source SS DF MS F P value 
Diet 120.47 1 120.47 1.717 0.248 
Host 3371.10 5 674.22 9.611 0.005 
Rep 578.30 2 289.15 4.122 0.025 
Host*Diet 57.75 3 19.25 0.274 0.874 
Diet*Rep 16.74 1 16.74 0.239 0.874 
Rep*Host 474.82 1 474.82 6.769 0.006 
Error 350.75 5 70.15   
Total 4969.93 18    
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Appendix table 55  Factorial ANOVA showing the effects of different life stages 
of R. dominica on size of adult female 

 

Source SS DF MS F P value 
Diet 121.47 1 121.47 1.681 0.251 
Host 3371.25 5 674.25 9.332 0.007 
Rep 578.62 2 289.31 4.004 0.026 
Host*Diet 58.08 3 19.36 0.268 0.876 
Diet*Rep 16.25 1 16.25 0.2245 0.858 
Rep*Host 474.74 1 474.74 6.570 0.009 
Error 361.25 5 72.25   
Total 4981.66 18    

 
Appendix table 56 Average (±SE) number (%) of X. flavipes adult male and female 

on different life stages of C. pusillus under laboratory condition. 
 

Adults of X. 
flavipes 

Different life stages of C. pusillus 
Eggs 1st 2nd 3rd 4th Pupae 

No. of  Male 30.00±2.89b 45.00±1.15a 38.33±2.73ab 38.00±2.31ab 35.00±3.46ab 28.33±2.03b 

 No. of Female 70.00±2.89ab 55.00±1.15b 61.67±2.73b 62.00±2.31ab 65.00±3.46ab 71.67±4.04a 

Note: Means with same letter do not significantly differed from each other Tukey’s 
Test, P<0.001 

  
Appendix table 57  Factorial ANOVA showing the effects of different life stages 

of C. pusillus on number of adult male 
 

Source SS DF MS F P value 
Diet 17416 1 17416 2.130 0.148 
Host 348375 5 69675 8.523 0.001 
Rep 24266 2 12133 1.484 0.271 
Host*Diet 17325 3 5775 0.706 0.726 
Diet*Rep 11904 1 11904 1.456 0.276 
Rep*Host 38846 1 38846 4.752 0.006 
Error 40875 5 8175   
Total 499007 18    

 
Appendix table 58 Factorial ANOVA showing the effects of different life stages 

of C. pusillus on number of adult female 
 

Source SS DF MS F P value 
Diet 17258 1 17258 2.297 0.145 
Host 346295 5 69259 9.217 0.002 
Rep 24464 2 12232 2.141 0.262 
Host*Diet 17295 3 5765 0.767 0.459 
Diet*Rep 11941 1 11941 1.589 0.251 
Rep*Host 38936 1 38936 5.182 0.007 
Error 37570 5 7514   
Total 483759 18    
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Appendix table 59 Average (±SE) number(%) of X. flavipes adult male and female 
on different life stages of R. dominica under laboratory condition. 

 

Adults of X. 
flavipes 

Different life stages of R.. dominica 
Eggs 1st 2nd 3rd 4th Pupae 

No. of  Male 37.00±1.73abc 42.00±2.31a 39.00±2.89ab 34.00±1.15abc 31.00±0.58bc 27.00±3.46a 

No. of  Female 63.00±1.73ab 58.00±2.31b 61.00±2.89b 66.00±1.15ab 69.00±2.85ab 73.00±3.46a 

 Note: Means with same letter do not significantly differed from each other Tukey’s 
Test, P<0.001 

  
Appendix table 60 Factorial ANOVA showing the effects of different life stages 

of R. dominica on number of adult male 
 

Source SS DF MS F P value 

Diet 110.74 1 110.74 1.463 0.281 
Host 2950.95 5 590.19 7.850 0.002 
Rep 800.30 2 400.15 5.325 0.017 
Host*Diet 2176.44 3 725.48 9.654 0.945 
Diet*Rep 95.21 1 95.21 1.267 0.962 
Rep*Host 470.98 1 470.98 6.267 0.004 
Error 375.75 5 75.15   
Total 6980.37 18    

 
Appendix table 61  Factorial ANOVA showing the effects of different life stages 

of R. dominica on number of adult female 
 

Source SS DF MS F P value 

Diet 118.62 1 118.62 1.438 0.325 
Host 3251.25 5 650.25 7.885 0.005 
Rep 896.64 2 448.32 5.437 0.019 
Host*Diet 2250.45 3 750.15 9.096 0.814 
Diet*Rep 93.21 1 93.21 1.130 0.478 
Rep*Host 825.23 1 825.23 10.006 0.005 
Error 412.35 5 82.47   
Total 7847.75 18    
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Appendix table 62   Effects of different concentrations of Spinosad on hatchability 
of eggs of C. pusillus  

 

Concentrations 
Dose rates 
(µl/cm2) 

Total no of 
eggs 

Total eggs 
hatched 

Average % of egg 
hatched (±SE) 

PRC value 

Control Untreated 150 126 42.00±1.12a - 

Spinosad 0.491 150 75 25.00±1.15b 40.48 

0.983 150 51 17.00±1.05c 59.52 

1.966 150 33 11.00±1.10d 73.81 

3.932 150 24 8.00±1.11de 80.95 

7.863 150 15 5.00±1.02e 88.10 

Note: Means with same letter do not significantly differed from each other Tukey’s 
Test , P<0.001 

 
Appendix table 63 Factorial ANOVA showing the effects of different 

concentrations of Spinosad on hatchability eggs of C. pusillus 
 

Source SS DF MS F P value 
Concentration 550.770 5 110.154 31.240 0.001 
Exposure period 420.780 2 210.390 59.668 0.002 
REP 14.364 2 7.182 2.037 0.135 
Concentration * REP 34.150 10 3.415 0.969 0.017 
Exposure period * 
Concentration 63.890 10 6.389 1.812 0.011 

Exposure period * REP 8.044 4 2.011 0.570 0.199 
Error 74.046 21 3.526    
Total 1166.044 54      

 
Appendix table 64 Dose mortality data of 14-19d old C. pusillus larvae treated 

with different concentrations of Spinosad after 24 hours of 
treatment. 

 
Concentration        

(µl/cm2) 
Log 

concentration 
No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 10 16.667 17 4.05 4.068 4.037 26.34 4.063 
0.983      0.9925536       60 14 23.333 23 4.26 4.249 4.252 30.18 4.243 
1.966       1.29358      60 17 28.333 28 4.42 4.430 4.420 33.48 4.422 
3.932       1.594607       60 22 36.667 37 4.67 4.611 4.659 36.06 4.602 
7.863      1.895579 60 24 40 40 4.75 4.792 4.740 36.96 4.782 
Y =  3.649872  +  0.5973316 X 
LC50 = 18.20812 µl/cm2 

χ2 = 0.2013416  (3 df) 
95% Conf. limits are 4.379743 to 75.69753 µl/cm2 
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Appendix table 65  Dose mortality data of 14-19d old C. pusillus larvae treated with 
different concentrations of Spinosad after 48 hours of treatment. 

 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 20 33.333 33 4.56 4.630 4.551 36.06 4.627 
0.983      0.9925536       60 25 41.667 42 4.80 4.733 4.792 36.96 4.731 
1.966       1.29358      60 27 45 45 4.87 4.836 4.890 37.62 4.835 
3.932       1.594607       60 29 48.333 48 4.95 4.939 4.940 38.04 4.939 
7.863      1.895579 60 30 50 50 5.00 5.042 5.000 38.22 5.043 
Y =  4.388323  +  0.3452384 X 
LC50 = 5.912253 µl/cm2 

χ2 = 0.5288744  (3 df) 
95% Conf. limits are 1.421441  to  24.59105 µl/cm2 

 
Appendix table 66 Dose mortality data of 14-19d old C. pusillus larvae treated with 

different concentrations of Spinosad after 72 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 32 53.333 53 5.08 5.14591 5.065 38.04 3.14457 
0.983      0.9925536       60 37 61.667 62 5.31 5.24705 5.332 37.62 5.24212 
1.966       1.29358      60 39 65.000 65 5.39 5.34803 5.37 36.96 5.33952 
3.932       1.594607       60 40 66.667 67 5.44 5.44902 5.429 36.06 5.43692 
7.863      1.895579 60 42 70.000 70 5.52 5.55000 5.5 34.86 5.53430 
Y =  4.92096  +  0.3235642 X 
LC50 = 0.1755007 µl/cm2 

χ2 = 0.6214318  (3 df) 
95% Conf. limits are 0.01161457 to 2.651883 µl/cm2 

 
Appendix table 67 Dose mortality data of C. pusillus pupae treated with different 

concentrations of Spinosad after 24 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 5 8.333 8 3.59 3.642 3.596 18.12 3.660 
0.983      0.9925536       60 7 11.667 12 3.82 3.780 3.836 20.16 3.791 
1.966       1.29358      60 9 15 15 3.96 3.916 3.970 24.30 3.923 
3.932       1.594607       60 10 16.667 17 4.05 4.053 4.037 26.34 4.054 
7.863      1.895579 60 12 20 20 4.16 4.190 4.170 28.26 4.186 
Y =  3.356467  +  0.4377169 X 
LC50 = 568.5706 µl/cm2 

χ2 = 0.1827011  (3 df) 
95% Conf. limits are 2.246793 to 143881.9 µl/cm2 

 
Appendix table 68 Dose mortality data of C. pusillus pupae treated with different 

concentrations of Spinosad after 48 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 10 16.667 17 4.05 4.062 4.037 26.34 4.055 
0.983      0.9925536       60 12 20 20 4.16 4.140 4.170 28.26 4.135 
1.966       1.29358      60 13 21.667 22 4.23 4.218 4.218 30.18 4.214 
3.932       1.594607       60 14 23.333 23 4.26 4.296 4.252 30.18 4.294 
7.863      1.895579 60 16 26.667 27 4.39 4.374 4.394 31.92 4.374 
Y =  3.872518  +  0.2643514 X 
LC50 = 1841.139 µl/cm2 

χ2 = 0.1104122  (3 df) 
95% Conf. limits are 0.09236452  to 36700190 µl/cm2 
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Appendix table 69 Dose mortality data of C. pusillus pupae treated with different 
concentrations of Spinosad after 72 hours of treatment. 

 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 15 25 25 4.33 4.312 4.330 31.92 4.309 
0.983      0.9925536       60 17 28.333 28 4.42 4.425 4.420 33.48 4.421 
1.966       1.29358      60 19 31.667 32 4.53 4.538 4.516 34.86 4.532 
3.932       1.594607       60 21 35 35 4.61 4.651 4.605 36.06 4.644 
7.863      1.895579 60 25 41.667 42 4.80 4.764 4.792 36.93 4.755 
Y =  4.053233  +  0.3704698 X 
LC50 = 35.94058 µl/cm2 

χ2 = 0.1278024  (3 df) 
95% Conf. limits are 2.061289 to  626.6588 µl/cm2 

 
Appendix table 70 Dose mortality data of 2d C. pusillus adult treated with different 

concentrations of Spinosad after 24 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 15 25 25 4.33 4.3019 4.330 31.92 4.300 
0.983      0.9925536       60 18 30 30 4.48 4.475 4.480 33.48 4.474 
1.966       1.29358      60 20 33.333 33 4.56 4.648 4.551 36.06 4.648 
3.932       1.594607       60 27 45 45 4.87 4.821 4.890 37.62 4.822 
7.863      1.895579 60 30 50 50 5.00 4.994 4.990 38.04 4.996 
Y =  3.900657  +  0.5777386 X 
LC50 = 7.995372 µl/cm2 

χ2 = 0.5446673  (3 df) 
95% Conf. limits are 2.947408 to 21.68888 µl/cm2 

 
Appendix table 71 Dose mortality data of 2d C. pusillus adult treated with different 

concentrations of Spinosad after 48 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 22 36.667 37 4.67 4.640 4.659 36.06 4.639 
0.983      0.9925536       60 25 41.667 42 4.80 4.812 4.812 37.62 4.809 
1.966       1.29358      60 28 46.667 47 4.92 4.984 4.915 38.04 4.979 
3.932       1.594607       60 35 58.333 58 5.20 5.156 5.190 38.04 5.148 
7.863      1.895579 60 38 63.333 63 5.33 5.328 5.318 36.96 5.318 
Y =  24.249114  +  0.563959 X 
LC50 = 2.145135 µl/cm2 

χ2 = 0.2347469  (3 df) 
95% Conf. limits are 1.191995  to 3.860422 µl/cm2 

 
Appendix table 72 Dose mortality data of 2d C. pusillus adult treated with different 

concentrations of Spinosad after 72 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 28 46.667 47 4.92 4.820 4.942 37.62 4.840 
0.983      0.9925536       60 30 50 50 5.00 5.036 5.000 38.22 5.047 
1.966       1.29358      60 32 53.33. 53 5.08 5.252 5.098 37.62 5.254 
3.932       1.594607       60 42 70 70 5.52 5.468 5.510 36.06 5.461 
7.863      1.895579 60 46 76.667 77 5.74 5.684 5.730 33.48 5.668 
Y =  4.364444  +  0.6877889 X 
LC50 = 0.839572 µl/cm2 

χ2 = 1.608753  (3 df) 
95% Conf. limits are 0.446121 to  1.580054 µl/cm2 
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Appendix table  73 Regression equations, χ2 values, LC50 values and 95% 
confidence limits for Spinosad against 14-19 d larvae, pupae 
and 2 d adults of C. pusillus after 24, 48 and 72 h of exposure.  

 

Concentration      
of Spinosad 

(µl/cm2) 

Life stage of 
C. pusillus 

Exposure 
period (h) Regression equation χ2 for 

heterogeneity 
LC50 

(µl/ cm2) 

95% confidence limits 

Lower Upper 

Control 
0.491 
0.983 
1.966 
3.932 
7.863 

Larvae 

24 Y =3.649872+0.5973316 X 0.2013416 18.20812 4.379743 75.69753 

48 Y =4.388323+0.3452384 X 0.5288744 5.912253 1.421441 24.59105 

72 Y =4.92096+0.3235642 X 0.6214318 0.1755007 0.01161457 2.651883 

Control 
0.491 
0.983 
1.966 
3.932 
7.863 

Pupae 

24 Y =3.356467+0.4377169 X 0.1827011 568.5706 2.246793 143881.9 

48 Y =3.872518+0.2643514 X 0.1104122 1841.139 0.09236452 36700190 

72 Y =4.053233+0.3704698 X 0.1278024 35.94058 2.061289 626.6588 

Control 
0.491 
0.983 
1.966 
3.932 
7.863 

Adults 

24 Y =3.900657+0.5777386 X 0.5446673 7.995372 2.947408 21.68888 

48 Y =24.249114+0.563959 X 0.2347469 2.145135 1.191995 3.860422 

72 Y =4.364444+0.6877889 X 1.608753 0.839572 0.446121 1.580054 

  
Appendix table 74  Factorial ANOVA showing the effects of different concentrations 

of Spinosad on the 14-19d old larval mortality of C. pusillus after 
different exposure periods.  

 

Source SS DF MS F P value 
Concentration 695.780 5 139.156 38.389 0.000 
Exposure period 420.778 2 210.389 58.038 0.001 
REP 14.778 2 7.389 2.038 0.245 
Concentration * REP 35.440 10 3.544 0.978 0.027 
Exposure period * 
Concentration 124.110 10 12.411 3.424 0.001 

Exposure period * REP 15.948 4 3.987 1.100 0.207 
Error 76.125 21 .3.625     
Total 1382.959 54       

 

Appendix table 75 Factorial ANOVA showing the effects of different concentrations 
of Spinosad on pupal mortality of C. pusillus after different 
exposure periods.  

 

Source SS DF MS F P value 
Concentration 804.425 5 160.885 61.524 0.000 
Exposure period 161.038 2 80.519 30.791 0.002 
REP 15.026 2 7.513 2.873 0.140 
Concentration * REP 28.570 10 2.857 1.093 0.389 
Exposure period * 
Concentration 66.890 10 6.689 2.558 0.006 

Exposure period * REP 6.964 4 1.741 0.666 0.154 
Error 54.915 21 2.615   
Total 1137.828 54    
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Appendix table 76 Factorial ANOVA showing the effects of different concentrations 
of Spinosad on the adult mortality of C. pusillus after different 
exposure periods. 

 

Source SS DF MS F P value 
Concentration 898.150 5 179.630 42.617 0.000 
Exposure period 1711.038 2 855.519 202.970 0.000 
REP 7.948 2 3.974 0.943 0.610 
Concentration * REP 402.800 10 40.280 9.556 0.000 
Exposure period * 
Concentration 351.960 10 35.196 8.350 0.000 

Exposure period * REP 19.948 4 4.987 1.183 0.571 
Error 88.515 21 4.215   
Total 3480.359 54    

 
Appendix table 77 Effects of different concentrations of Spinosad on hatchability of 

eggs of R. dominica  
 

Concentrations Dose rates 
(µl/cm2) 

Total no of 
eggs 

Total eggs 
hatched 

Average % of egg 
hatched (±SE) 

PRC value 

Control Untreated 150 114 38.00±0.95a - 
Spinosad 0.491 150 45 15.00±1.14b 60.53 

0.983 150 27 9.00±1.01c 76.32 
1.966 150 12 4.00±0.84cd 89.47 
3.932 150 6 2.00±1.14d 94.74 
7.863 150 1 0.33±1.03d 99.13 

Note: Means with same letter do not significantly differed from each other Tukey’s Test, P<0.001 
 
Appendix table 78 Factorial ANOVA showing the effects of different concentrations 

of Spinosad on hatchability eggs of R. dominica 
 

Source SS DF MS F P value 
Concentration 354.925 5 70.985 13.851 0.001 
Exposure period 400.956 2 200.478 39.118 0.008 
REP 31.050 2 15.525 3.029 0.053 
Concentration * REP 402.910 10 40.251 7.854 0.011 
Exposure period * 
Concentration 407.660 10 40.766 7.954 0.123 

Exposure period * REP 81.412 4 20.353 3.971 0.015 
Error 107.625 21 5.125   
Total 1786.538 54    

 
Appendix table 79 Dose mortality data of 26-31d R. dominica larvae treated with 

different concentrations of Spinosad after 24 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 14 23.333 23 4.26 4.216 4.252 30.18 4.207 
0.983      0.9925536       60 15 25 25 4.33 4.402 4.330 33.48 4.395 
1.966       1.29358      60 20 33.333 33 4.56 4.588 4.544 34.86 4.582 
3.932       1.594607       60 27 45 45 4.87 4.774 4.870 36.96 4.769 
7.863      1.895579 60 28 46.667 47 4.92 4.960 4.915 38.04 4.957 
Y =  3.776951  +  0.6223563 X 
LC50 is 9.22978 µl/cm2 

χ2 = 0.6917343  (3 df) 
95% Conf. limits are 3.402471 TO 25.03735 µl/cm2 
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Appendix table 80  Dose mortality data of 26-31d R. dominica larvae treated with 
different concentrations of Spinosad after 48 hours of treatment. 

 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 25 41.667 42 4.80 4.792 4.792 36.96 4.796 
0.983      0.9925536       60 27 45 45 4.87 4.876 4.890 37.62 4.877 
1.966       1.29358      60 29 48.333 48 4.95 4.960 4.940 38.04 4.957 
3.932       1.594607       60 31 51.667 52 5.05 5.044 5.050 38.22 5.038 
7.863      1.895579 60 33 55 55 5.13 5.128 5.115 38.04 5.118 
Y =  4.611174  +  0.2676746 X 
LC50 is 2.835366 µl/cm2 

χ2 = 0.0251174  (3 df) 
95% Conf. limits are 0.7683601  to 10.46294 µl/cm2 

 
Appendix table 81 Dose mortality data of 26-31d R. dominica larvae treated with 

different concentrations of Spinosad after 72 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 30 50 50 5.00 4.984 4.990 38.04 4.984 
0.983      0.9925536       60 32 53.333 53 5.08 5.097 5.075 38.22 5.096 
1.966       1.29358      60 35 58.333 58 5.20 5.210 5.228 37.62 5.208 
3.932       1.594607       60 38 63.333 63 5.33 5.323 5.318 36.96 5.320 
7.863      1.895579 60 40 66.667 67 5.44 5.436 5.429 36.06 5.432 
Y =  4.726218 +  0.372455 X 
LC50 is 0.5433412 µl/cm2 

χ2 = 0.03347778  (3 df) 
95% Conf. limits are 0.1273662 to 2.317881 µl/cm2 

 
Appendix table 82 Dose mortality data of R. dominica pupae treated with different 

concentrations of Spinosad after 24 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 3 5 5 3.36 3.424 3.360 14.28 3.448 
0.983      0.9925536       60 5 8.333 8 3.59 3.572 3.596 16.14 3.587 
1.966       1.29358      60 7 11.667 12 3.82 3.720 3.836 20.16 3.726 
3.932       1.594607       60 8 13.333 13 3.87 3.868 3.873 22.20 3.865 
7.863      1.895579 60 9 15 15 3.96 4.016 3.955 26.34 4.004 
Y =  3.129547  +  0.4611072 X 
LC50 is 1138.777 µl/cm2 

χ2 = 0.4201939  (3 df) 
95% Conf. limits are 1.990441 to 651521.7 µl/cm2 

 
Appendix table 83 Dose mortality data of R. dominica pupae treated with different 

concentrations of Spinosad after 48 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 8 13.333 13 3.87 3.910 3.878 24.30 3.916 
0.983      0.9925536       60 10 16.667 17 4.05 4.035 4.037 26.34 4.039 
1.966       1.29358      60 13 21.667 22 4.23 4.160 4.246 28.26 4.161 
3.932       1.594607       60 14 23.333 23 4.26 4.285 4.252 30.18 4.283 
7.863      1.895579 60 16 26.667 27 4.39 4.410 4.390 33.48 4.405 
Y =  3.636407  +  0.4053654 X 
LC50 is 231.1335 µl/cm2 

χ2 = 0.2772174 (3 df) 
95% Conf. limits are 2.478723 to 21552.51 µl/cm2 
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Appendix table 84 Dose mortality data of R. dominica pupae treated with different 
concentrations of Spinosad after 72 hours of treatment. 

 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 14 23.333 23 4.26 4.300 4.252 30.18 4.292 
0.983      0.9925536       60 18 30 30 4.48 4.427 4.480 33.48 4.421 
1.966       1.29358      60 20 33.333 33 4.56 4.554 4.544 34.86 4.550 
3.932       1.594607       60 22 36.667 37 4.67 4.681 4.659 36.06 4.679 
7.863      1.895579 60 25 41.667 42 4.80 4.808 4.812 37.62 4.808 
Y =  3.995484  +  0.4286425 X 
LC50 is 22.0538 µl/cm2 

χ2 = 0.1803207 (3 df) 
95% Conf. limits are 2.711695 to 179.3602 µl/cm2 

 
Appendix table 85 Dose mortality data of 2d R. dominica adult treated with different 

concentrations of Spinosad after 24 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 20 33.333 33 4.56 4.576 4.554 34.86 4.565 
0.983      0.9925536       60 23 38.333 38 4.69 4.687 4.686 36.06 4.679 
1.966       1.29358      60 26 43.333 43 4.82 4.798 4.818 36.96 4.793 
3.932       1.594607       60 28 46.667 47 4.92 4.909 4.915 38.04 4.906 
7.863      1.895579 60 30 50 50 5 5.020 5 38.22 5.020 
Y =  4.303998  +  0.3778334 X 
LC50 is 6.951654 µl/cm2 

χ2 = 0.05872917 (3 df) 
95% Conf. limits are 1.68851 to 28.62021 µl/cm2 

 
Appendix table 86  Dose mortality data of 2d R. dominica adult treated with 

different concentrations of Spinosad after 48 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 27 45 45 4.87 4.828 4.890 37.62 4.842 
0.983      0.9925536       60 30 50 50 5.00 5.002 5.000 38.22 5.006 
1.966       1.29358      60 31 51.667 52 5.05 5.176 5.050 38.04 5.170 
3.932       1.594607       60 40 66.667 67 5.44 5.350 5.422 36.96 5.334 
7.863      1.895579 60 42 70 70 5.52 5.524 5.500 34.86 5.500 
Y =  4.465182  +  0.544706 X 
LC50 is 0.9590641 µl/cm2 

χ2 = 1.017773 (3 df) 
95% Conf. limits are 0.4546266  to 2.02328 µl/cm2 

 
Appendix table 87 Dose mortality data of 2d R. dominica adult treated with different 

concentrations of Spinosad after 72 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 32 53.333 53 5.08 5.010 5.075 38.22 5.020 
0.983      0.9925536       60 36 60.000 60 5.25 5.287 5.280 37.62 5.285 
1.966       1.29358      60 40 66.667 67 5.44 5.564 5.416 34.86 5.551 
3.932       1.594607       60 49 81.667 82 5.92 5.841 5.868 30.18 5.816 
7.863      1.895579 60 52 86.667 87 6.13 6.118 6.132 24.30 6.081 
Y =  4.410579  +  0.8814548 X 
LC50 is 0.466328 µl/cm2 

χ2 = 0.8944054 (3 df) 
95% Conf. limits are 0.2381866 to 0.912989 µl/cm2 

 



 251 

Appendix table 88 Regression equations, χ2 values, LC50 values and 95% confidence 
limits for Spinosad against 26-31 d larvae, pupae and 2 d adults 
of R. dominica after 24, 48 and 72 h of exposure.  

 

Concentration of 
Spinosad (µl/cm2) 

Life stage of  
R. dominica 

Exposure 
period (h) 

Regression equation χ2 for 
heterogeneity 

LC50  
(µl /cm2) 

95% confidence limits 
Lower Upper 

Control 
0.491 
0.983 
1.966 
3.932 
7.863 

Larvae 

24 Y =3.776951+0.6223563 X 0.6917343 9.22978 3.402471 25.03735 

48 Y =4.611174+0.2676746 X 0.0251174 2.835366 0.7683601 10.46294 

72 Y =4.726218+0.372455 X 0.03347778 0.5433412 0.1273662 2.317881 

Control 
0.491 
0.983 
1.966 
3.932 
7.863 

Pupae 

24 Y =3.129547+0.4611072 X 0.4201939 1138.777 1.990441 651521.7 

48 Y =3.636407+0.4053654 X 0.2772174 231.1335 2.478723 21552.51 

72 Y =3.995484+0.4286425 X 0.1803207 22.0538 2.711695 179.3602 

Control 
0.491 
0.983 
1.966 
3.932 
7.863 

Adults 

24 Y =4.303998+0.3778334 X 0.05872917 6.951654 1.68851 28.62021 

48 Y =4.465182+0.544706 X 1.017773 0.9590641 0.4546266 2.02328 

72 Y =4.410579+0.8814548 X 0.8944054 0.466328 0.2381866 0.912989 

 
Appendix table 89 Factorial ANOVA showing the effects of different concentrations 

of Spinosad on the 14-19d old larval mortality of R. dominica 
after different exposure periods.  

 

Source SS DF MS F P value 
Concentration 5749.705 5 1149.941 56.006 0.000 
Exposure period 2341.148 2 1170.574 57.026 0.000 
REP 80.704 2 40.352 1.966 0.128 
Concentration * REP 200.410 10 20.041 0.976 0.001 
Exposure period * 
Concentration 1605.670 10 160.567 7.795 0.000 

Exposure period * REP 79.992 4 19.998 0.974 0.417 
Error 431.967 21 20.527.   
Total 10101.596 54    

 
Appendix table 90 Factorial ANOVA showing the effects of different 

concentrations of Spinosad on the pupal mortality of R. dominica 
after different exposure periods.  

 

Source SS DF MS F P value 
Concentration 179.945 5 35.989 11.516 0.000 
Exposure period 151.112 2 75.556 23.986 0.002 
REP 13.334 2 6.667 2.133 0.063 
Concentration * REP 164.890 10 16.489 5.276 0.000 
Exposure period * 
Concentration 144.530 10 14.453 4.622 0.000 

Exposure period * REP 11.588 4 2.897 0.927 0.010 
Error 65.625 21 3.125   
Total 731.024 54    
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Appendix table 91 Factorial ANOVA showing the effects of different concentrations 
of Spinosad on the adult mortality of R. dominica after different 
exposure periods.  

 

Source SS DF MS F P value 
Concentration 1105.945 5 221.189 83.468 0.000 
Exposure period 191.444 2 95.722 36.122 0.003 
REP 4.334 2 2.167 1.635 0.615 
Concentration * REP 25.890 10 2.589 0.977 0.031 
Exposure period * 
Concentration 53.440 10 5.344 2.017 0.001 

Exposure period * REP 10.224 4 2.556 0.965 0.066 
Error 55.650 21 .2.650   
Total 1446.927 54    

 
Appendix table 92 Effects of different concentrations of Spinosad on hatchability of 

eggs of X. flavipes  
 

Concentrations 
Dose rates 
(µl/cm2) 

Total no of 
eggs 

Total eggs 
hatched 

Average % of egg 
hatched (±SE) 

PRC 
value 

Control Untreated 150 105 35.00±1.73a - 

Spinosad 0.491 150 102 34.00±1.15ab 2.86 

0.983 150 99 33.00±1.21ab 5.71 

1.966 150 96 32.00±1.36ab 8.57 

3.932 150 90 30.00±2.89ab 14.29 

7.863 150 75 25.00±2.12b 28.57 
 

Note: Means with same letter do not significantly differed from each other Tukey’s 
Test, P<0.001 

 
Appendix table 93 Factorial ANOVA showing the effects of different concentrations 

of Spinosad on hatchability eggs of X. flavipes 
                              

Source SS DF MS F P value 
Concentration 144.090 5 28.769 12.599 0.001 
Exposure period 64.032 2 32.020 37.489 0.002 
REP 4.702 2 2.231 0.876 0.389 
Concentration * REP 22.452 10 2.278 5.540 0.003 
Exposure period * 
Concentration 15.539 10 1.499 3.608 0.005 

Exposure period * REP 3.305 4 0.849 2.011 0.123 
Error 0.000 0 .   
Total 754.000 54    
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Appendix table 94 Dose mortality data of 4d X. flavipes nymphs treated with 
different concentrations of Spinosad after 24 hours of treatment. 

 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 3 5 5 3.36 3.350 3.360 12.48 3.344 
0.983      0.9925536       60 4 6.667 7 3.52 3.500 3.519 16.14 3.500 
1.966       1.29358      60 5 8.333 8 3.59 3.650 3.596 18.12 3.653 
3.932       1.594607       60 7 11.667 12 3.82 3.800 3.822 22.20 3.807 
7.863      1.895579 60 9 15 15 3.96 3.950 3.970 24.30 3.962 
Y =  2.990045  +  0.5126829 X 
LC50 is 832.6535 µl/cm2 

χ2 = 0.07527256 (3 df) 
95% Conf. limits are 2.922949 to 237196.1 µl/cm2 

 
Appendix table 95 Dose mortality data of 4d X. flavipes nymphs treated with different 

concentrations of Spinosad after 48 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 7 11.667 12 3.82 3.866 3.822 22.20 3.871 
0.983      0.9925536       60 10 16.667 17 4.05 4.008 4.037 26.34 4.010 
1.966       1.29358      60 12 20 20 4.16 4.150 4.170 28.26 4.149 
3.932       1.594607       60 15 25 25 4.33 4.292 4.320 30.18 4.287 
7.863      1.895579 60 16 26.667 27 4.39 4.434 4.390 33.48 4.426 
Y =  3.55203  +  0.4612296 X 
LC50 is 137.838 µl/cm2 

χ2 = 0.16153 (3 df) 
95% Conf. limits are 3.740582  to 5079.244 µl/cm2 

 
Appendix table 96 Dose mortality data of 4d X. flavipes nymphs treated with 

different concentrations of Spinosad after 72 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 10 16.667 17 4.05 4.048 4.037 26.34 4.050 
0.983      0.9925536       60 12 20 20 4.16 4.182 4.170 28.26 4.181 
1.966       1.29358      60 15 25 25 4.33 4.316 4.330 31.92 4.313 
3.932       1.594607       60 18 30 30 4.48 4.450 4.480 33.48 4.444 
7.863      1.895579 60 20 33.333 33 4.56 4.584 4.544 34.86 4.575 
Y =  3.748117  +  004364652 X 
LC50 is 73.82966 µl/cm2 

χ2 = 0.09504318 (3 df) 
95% Conf. limits are 3.22157 to 1691.976 µl/cm2 

 
Appendix table 97 Dose mortality data of 2d X. flavipes adult treated with different 

concentrations of Spinosad after 24 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 3 5 5 3.36 3.386 3.360 12.48 3.396 
0.983      0.9925536       60 5 8.333 8 3.59 3.552 3.596 16.14 3.557 
1.966       1.29358      60 6 10 10 3.72 3.718 3.720 20.16 3.718 
3.932       1.594607       60 8 13.333 13 3.87 3.884 3.873 22.20 3.879 
7.863      1.895579 60 10 16.667 17 4.05 4.050 4.037 26.34 4.040 
Y =  3.027043  +  0.5342836 X 
LC50 is 492.8509 µl/cm2 

χ2 = 0.04168511 (3 df) 
95% Conf. limits are 3.859698 to 62932.93 µl/cm2 
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Appendix table 98 Dose mortality data of 2d X. flavipes adult treated with different 
concentrations of Spinosad after 48 hours of treatment. 

 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 4 6.667      7 3.52  3.532 3.519      16.14      3.537 
0.983      0.9925536       60 6 10 10 3.72       3.684  3.730 18.12  3.687 
1.966       1.29358      60 7 11.667 12 3.82       3.836  3.822      22.20     3.842 
3.932       1.594607       60 9 15 15 3.96      3.988  3.970 24.30 3.997 
7.863      1.895579 60 12 20 20 4.16       4.140 4.170 28.26       4.152 
Y =  3.175748  +  0.514919 X 
LC50 is 348.9742 µl/cm2 

χ2 = 0.07186127 (3 df) 
95% Conf. limits are 4.223628  to  28833.73 µl/cm2 

 
Appendix table 99 Dose mortality data of 2d X. flavipes adult treated with different 

concentrations of Spinosad after 72 hours of treatment. 
 

Concentration        
(µl/cm2) 

Log 
concentration 

No of 
insects 

Kill % kill Corr. % Emp. 
probit 

Expt. 
probit 

Work 
probit 

Weight Final 
probit 

0.491      0.6910847 60 6 10 10 3.72 3.760 3.720 20.16 3.766 
0.983      0.9925536       60 9 15 15 3.96 3.894 3.975 22.20 3.897 
1.966       1.29358      60 10 16.667 17 4.05 4.028 4.037 26.34 4.029 
3.932       1.594607       60 11 18.333 18 4.08 0.162 4.094 28.26 4.160 
7.863      1.895579 60 15 25 25 4.33 4.296 4.320 30.18 4.291 
Y =  3.464713  +  0.4360996 X 
LC50 is 331.5098 µl/cm2 

χ2 = 0.3258066 (3 df) 
95% Conf. limits are 2.651994 to  41440.03 µl/cm2 

 
Appendix table 100 Regression equations, χ2 values, LC50 values and 95% confidence 

limits for Spinosad against 4 d nymphss and 2 d adults of X. 
flavipes after 24, 48 and 72 h of exposure.  

 

Concentration  of 
Spinosad (µl/cm2) 

Life stage of 
X. flavipes 

Exposure 
period (h) Regression equation χ2 for 

heterogeneity 
LC50 

(µl/cm2) 
95% confidence limits 

Lower Upper 

Control 
0.491 
0.983 
1.966 
3.932 
7.863 

Nymphss 

24 Y =2.990045+0.5126829 X 0.07527256 832.6535 2.922949 237196.1 

48 Y =3.55203+0.4612296 X 0.16153 137.838 3.740582 5079.244 

72 Y =3.748117+004364652 X 0.09504318 73.82966 3.22157 1691.976 

Control 
0.491 
0.983 
1.966 
3.932 
7.863 

Adults 

24 Y =3.027043+0.5342836 X 0.04168511 492.8509 3.859698 62932.93 

48 Y =3.175748+0.514919 X 0.07186127 348.9742 4.223628 28833.73 

72 Y =3.464713+0.4360996 X 0.3258066 331.5098 2.651994 41440.03 
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Appendix table 101 Factorial ANOVA showing the effects of different concentrations 
of Spinosad on the nymphsal mortality of X. flavipes after 
different exposure periods.  

 

Source SS DF MS F P value 
Concentration 144.095 5 28.819 13.562 0.000 
Exposure period 64.038 2 32.019 15.068 0.003 
REP 4.704 2 2.352 1.107 0.449 
Concentration * REP 102.850 10 10.285 4.840 0.001 
Exposure period * 
Concentration 65.520 10 6.552 3.083 0.006 

Exposure period * REP 19.408 4 4.852 2.283 0.128 
Error 44.625 21 2.125.   
Total 445.240 54    

 

Appendix table 102 Factorial ANOVA showing the effects of different 
concentrations of Spinosad on the adult mortality of X. flavipes 
after different exposure periods 

 

Source SS DF MS F P value 
Concentration 109.990 5 21.998 5.219 0.000 
Exposure period 61.592 2 30.796 7.306 0.000 
REP 5.098 2 2.549 0.605 0.685 
Concentration * REP 65.870 10 6.587 1.563 0.108 
Exposure period * 
Concentration 102.150 10 10.215 2.423 0.243 

Exposure period * REP 35.664 4 8.916 2.115 0.953 
Error 88.515 21 4.215   
Total 468.879 54    

 

Appendix table 103 Factorial ANOVA showing the effects of adult X. flavipes and  
different concentrations of Spinosad on the adult population of                                                    
C. pusillus after 3 months of exposure 

 

Source SS DF MS F P value 
Treatment 180975 3 60325 65.929 0.281 
Concentration 180531 1 180513 197.303 0.003 
Rep 780033 3 260011 284.165 0.019 
Treatment * Concentration 30555 3 10185 11.131 0.974 
Treatment * Rep 13500 1 13500 14.754 0.962 
Concentration* Rep 170624 2 85312 93.237 0.002 
Error 10065 11 915   
Total 1366283 24    

 

Appendix table 104 Factorial ANOVA showing the effects of adult X. flavipes and  
different concentrations of Spinosad on the adult population of                             
C. pusillus after 6 months of exposure 

 

Source SS DF MS F P value 
Treatment 174039 3 58013 53.966 0.145 
Concentration 245528 1 245528 228.398 0.001 
Rep 982503 3 327501 304.652 0.262 
Treatment * Concentration 32556 3 10852 10.095 0.731 
Treatment * Rep 14225 1 14225 13.233 0.274 
Concentration* Rep 168026 2 84013 78.152 0.004 
Error 11825 11 1075   
Total 1628702 24    
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Appendix table 105  Factorial ANOVA showing the effects of adult X. flavipes and 
different concentrations of Spinosad on the adult population of 
C. pusillus after 9 months of exposure 

  

Source SS DF MS F P value 
Treatment 927675 3 309225 235.152 0.172 
Concentration 652220 1 652220 495.985 0.001 
Rep 45756 3 15252 11.598 0.125 
Treatment * Concentration 271500 3 90500 68.821 0.761 
Treatment * Rep 12740 1 12740 9.688 0.317 
Concentration* Rep 57220 2 28610 21.757 0.003 
Error 14465 11 1315   
Total 1981976 24       

 
Appendix table 106 Factorial ANOVA showing the effects of adult X. flavipes and  

different concentrations of Spinosad on the adult population of                             
C. pusillus after 12 months of exposure 

  

Source SS DF MS F P value 
Treatment 123599 3 41193 24.965 0.016 
Concentration 215000 1 215000 130.303 0.000 
Rep 1450710 3 483570 293.073 0.025 
Treatment * Concentration 1664688 3 554896 336.301 0.720 
Treatment * Rep 143228 1 143228 86.805 0.199 
Concentration* Rep 525000 2 262500 159.091 0.387 
Error 18150 11 1650   
Total 4140355 24    

 
Appendix table 107 Factorial ANOVA showing the effects of adult X. flavipes and  

different concentrations of Spinosad on the adult population of                             
R. dominica after 3 months of exposure 

 
Source SS DF MS F P value 

Treatment 165036 3 55012 66.681 0.084 
Concentration 172517 1 172517 209.112 0.002 
Rep 840198 3 280066 339.474 0.000 
Treatment * Concentration 24555 3 8185 9.921 0.925 
Treatment * Rep 12519 1 12519 15.175 0.754 
Concentration* Rep 166732 2 83366 101.050 0.013 
Error 9075 11 825   
Total 1390632 24    

 

Appendix table 108 Factorial ANOVA showing the effects of adult X. flavipes and  
different concentrations of Spinosad on the adult population of       
R. dominica after 6 months of exposure    

 

Source SS DF MS F P value 
Treatment 159084 3 53028 57.328 0.129 
Concentration 233548 1 233548 252.484 0.001 
Rep 921006 3 307002 331.894 0.000 
Treatment * Concentration 24786 3 8262 8.932 0.951 
Treatment * Rep 12230 1 12230 13.222 0.802 
Concentration* Rep 166124 2 83062 89.797 0.021 
Error 10175 11 925   
Total 1526953 24    
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Appendix table 109  Factorial ANOVA showing the effects of adult X. flavipes and  
different concentrations of Spinosad on the adult population of 
R. dominica after 9 months of exposure  

 

Source SS DF MS F P value 
Treatment 898173          3 299391 244.401 0.000 
Concentration 642440 1 642440 524.441 0.000 
Rep 52500 3 17500 14.286 0.922 
Treatment * Concentration 268383 3 89461 73.029 0.005 
Treatment * Rep 10640 1 10640 8.686 0.801 
Concentration* Rep 53223 2 26611 21.223 0.330 
Error 13475 11 1225   
Total 1938834 24    

 

Appendix table 110 Factorial ANOVA showing the effects of adult X. flavipes and 
different concentrations of Spinosad on the adult population of  
R. dominica after 12 months of exposure  

 

Source SS DF MS F P value 
Treatment 120279 3 40093 25.456 0.480 
Concentration 214213 1 214213 136.008 0.015 
Rep 1390059 3 463353 294.192 0.001 
Treatment * Concentration 1544700 3 514900 326.921 0.999 
Treatment * Rep 113449 1 113449 72.029 0.067 
Concentration* Rep 483096 2 241548 153.364 0.003 
Error 17325 11 1575   
Total 3883121 24    

 


