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Abstract 

A topological space is a non-empty set X together with a collection T    of 

subsets of X satisfying the conditions: 

(i)   X,    T  , 

(ii)    the union of any class of sets  in T   belongs to T,  

(iii)  the intersection of a finite number of sets belongs to T, 

 T    is called a topology on X. 

         The thesis is a study of several variants of topology obtained by 

generalizing some its aspects, viz, the conditions (ii) and (iii). The variants 

which have been considered here are the following: 

(1) a U-structure, (a topology in which the condition (iii) is omitted), 

(2)  an I-structure, (a topology in which the condition (ii) is omitted), 

(3)  a CU-structure, (a U-structure in which ‘any class’ in (ii) is replaced 

by   ‘a countable class’), 

(4)  a CUI-structure, (a topology in which ‘any class’ in (ii) is replaced 

by ‘a countable class’ ), 
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(5)  an FU-structure, (a U-structure in which ‘any class’ in (ii) is 

replaced by ‘a finite class’),  

(6)  an FUI-structure, (a topology in which ‘any class’ in (ii) is replaced 

by ‘a finite class’). 

         X together with the above structures (1) - (6) have been called a U- space, 

an I-space, a CU-space, a CUI-space, an FU-space and a FUI-space 

respectively. 

         Among these, U-spaces and I-spaces have been defined and studied 

earlier by others and have been called supratopological spaces and 

infratopological spaces respectively. Our studies of these spaces in this thesis 

have considerably larger breadth and depth. 

         The thesis has been divided into seven chapters. The first six chapters 

give detailed study of general properties, different kinds of compactness and 

compactification, several kinds of connectedness, various separation properties, 

projectives in some categories of U-spaces. The U-space version of most of the 

well-known and the important theorems for topological spaces have been 

proved to be valid. Very many suitable examples and counter examples have 

been constructed. In the last chapter the other kinds of the above-mentioned 

spaces have been dealt with. A few properties have been established and a few 

examples have been provided. Most of the properties proved for U-spaces do 

hold for these spaces as well. But these have not been stated and proved to 

avoid monotony or repetitions.   
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CHAPTER – 1 

U-spaces and U-continuous Functions 

 

Introduction 

  The concept of a U-space in a less general form had been considered 

earlier by some authors as a supra- topological space in [4], [9], [27], [28], 

[38]. In this chapter we have introduced the notions: U-spaces and three types 

of continuous functions for these spaces. We have obtained some 

characterizations and proved some properties of U-spaces and continuous 

functions. While some of the properties of U-spaces studied here have been 

studied by the above-mentioned authors for supra-topological spaces, we have 

probed deeper and proved newer properties for the more general set-up, 

namely, U-spaces. We have also defined compact U-spaces, Hausdorff          

U-spaces and studied their properties. 

 

Semi-open sets, pre-open sets, -open sets, -open sets, -open sets, 

locally open sets and locally closed sets play an important part in the 

researches of generalizations of continuity in topological spaces. The 

collections of some these sets form U-structures while the others do not. We 

have verified these facts.  
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Preliminaries  

 

Definition 1.1   A topology on a set X is a collection T     of subsets of X having 

the following properties: 

(i)   and X are in T 

(ii) Any union of members of T   is in T. 

(iii) Any intersection of finite members of T   is in T. 

The ordered pair (X, T   ) is called a topological space. Shortly we can write X. 

The members of T   are called open sets and the complement of an open set is 

called a closed set. 

 

Example 1.1   Let X = {a, b, c}, T  1  = {{a},{a, b}, X, },  T 2  = {X, , {a, b},              

{b, c}, {b}}. Then T  1  and T 2  are topologies on X.  

 

Example 1.2  Let X = R, the set of all real numbers, and  T  = { R, , all 

unions of intervals}. Then T   is a topology on R, called the usual topology on 

R. R, together with the usual topology, will be called the real line. 
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Definition 1.2   For  a topological space X and a subset A of X, the closure of 

A and the interior of A denoted by ClA and IntA respectively are defined by  

ClA = the intersection of all closed supersets of A, IntA = the union of all open 

subsets of A. 

 

Definition  1.3  [28]    A subset A is said to be pre-open if A  Int (Cl(A)). 

Every open set is pre-open but the converse is not true. 

 

Example 1.3  Let X be the real line R and A = Q, the set of all rational 

numbers. Then Q is not open in X, but Q  Int (Cl(Q)) = R. So that Q is            

pre-open. 

The family of all pre-open sets in X is denoted by PO(X). 

 

Definition 1.4  [19]   A subset A is said to be semi-open set if A Cl(Int(A)).  

Clearly, every open set is semi-open. However, the converse is not true.  

 

Example 1.4    X = The real line R and A = (0, 1] or [0, 1) or [0, 1]. Then A is 

not open. Now Cl (Int(A)) = [0, 1], and so, A is semi-open.                        

The family of all semi-open sets in X is denoted by SO(X). 
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Definition  1.5  [34]    A  X, A is an -open set if A Int(Cl(Int(A))).  

Every open set is -open set but the converse is not true. 

 

Example 1.5    Let X = {a, b, c, d} and T     = {X, , {a, b}, {a, b, c}} and let 

A = {a, b, d}. Then A is not open but Int (Cl (Int(A))) = X and so  

A  Int (Cl (Int(A))), i.e. A is an -open set. 

 

Example 1.6   Let X = The real line R, A = (0, 1]  (1, 2) is not open but                   

Int (Cl (Int(A))) = (0, 2)  A. Therefore A is an -open set. 

 The family of all -open set in X is denoted by (X). 

 

Definition 1.6  [34]   A subset A is said to be -open set if A Cl Int (Cl(A))).       

Every open set is -open set but the converse is not true. 

Examples 1.7, 1.8 and 1.9 prove this statement. 

 

Example 1.7   A is open  A = Int(A)  A Int(Cl(A))  Cl (Int(Cl(A))).                

 A is -open.    

 

Example 1.8    If X = The real line R and A = (0, 1], then A is not open. 

However, since Cl (Int(Cl(A))) = [0, 1] & (0, 1]  [0, 1], A is -open.  
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Example 1.9    Let X = {a, b, c, d}, T  = {X, , {a, b, c}} and let A= {a, d}. 

Then A is not open, but Cl (Int(Cl(A))) = X  A and A is a -open set. 

The family of all -open set in X will be denoted by (X). 

 

Definition 1.7  [40]    A  X is a -open set if Int(Cl(A))  Cl(Int(A)).  

Every open set is -open but the converse is not true. 

 

Example 1.10    Let X = The real line R and let A = (0, 1]. Then A is not open.  

However, Cl(Int(A)) = [0, 1] and Int(Cl(A)) = (0, 1).  

Therefore Int(Cl(A))  Cl(Int(A)). Hence A is -open. 

The family of all -open set in X is denoted by (X). 

 

Definition 1.8  [23]    Let X be a topological space with topology T   and A be a 

subset of X. A is said to be locally open if A = G  F, for an open subset G and 

a closed subset F of X.  

Every open set is locally-open set but the converse is not true. 

 

Example 1.11    Let X = The real line R and let A = (0, 2]. Then A is not open, 

but A = (0, 1)  [1, 2], and so, A is locally open. Also, If A = (0, 1], then A is 

not open, but A = (0, 1)  [½, 1], then A is locally open. 

The family of all locally-open set in X will be denoted by LO(X). 
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Definition 1.9  [17]    A subset A of a topological space X is said to be b-open 

(resp. *b- open, b**- open, **b- open) set if A  Cl(Int(A)) Int(Cl(A)) (resp.      

ACl(Int(A)) Int(Cl(A)), A  Int(Cl(Int(A))) Cl(Int(Cl(A))),                           

A Int(Cl(Int(A)))  Cl(Int(Cl(A)))). 

 

Definition 1.10  [6]    A  X, A is said to be locally closed if A = GF, for 

some open subset G and closed subset F of X. 

Every open set is locally-closed set but the converse is not true. 

 

Example 1.12    Let X = The real line R and let A = (0, 2]. Then A is not open,                             

but A = (0, 3)  [-1, 2], and so, A is locally closed. Also, If A = (0, 1], A is not 

open in R, but (0, 1] = (0, 2)  [-1, 1], A is locally closed set. 

The family of all locally-closed set in X will be denoted by LC(X). 

 

Definition 1.11    [36] A subfamily M of the power set P(X) of a nonempty set 

X is called a minimal structure (briefly M-structure) on X if,   M and         

X  M. 

By (X, M), we denote a nonempty subset X with a minimal structure M 

on X and call it M-space. Each member of M is said to be M-open and 

complement of an M-open set is said to be M-closed set.  

Example 1.13   Let X = {a, b, c, d}, M = {X, , {a, b}, {b, c}}.Then (X, M   ) 

is an M - space. 
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U-space 

 

Definition 1.12   A U-structure on a nonempty set X is a collection U of 

subsets of X having the following properties: 

         (i)    and X are in U , 

         (ii)  Any union of members of U  is in U. 

  The ordered pair (X, U ) is called a U-space. A U-space which is not a 

topological space is called a proper U-space. The members of U are called  

U-open set and the complement of U-open set is called U- closed set. 

 

A U- structure and a U-space have been called a supratopology and 

a supratopological space respectively by some authors (see [4], [9], [27], 

[38]) 

       In general we have  

         Topological space  U-space  M-space 

       Topological space   U-space    M-space 

 

Example 1.14  Let X = {a, b, c, d}, U = {X, , {a, b}, {a, c}, {a, b, c}}.               

Here (X, U) is a U-space but not a topological space. 
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Example 1.15   Let X= {a, b, c, d} and M   = {X, , {a, b}, {b, c}}. Then            

(X, M   ) is an M- space but not U-space and also not a topological space. 

 

Example 1.16   Let X be a totally ordered set with an order relation   and U 

is the set of all unions of the form {xX: x < a} and {xX: x > b}. Then U is 

called order U-structure on X.   

 

Example 1.17   Let R denote the real numbers and let U  consist of the empty 

set, all open rays and their unions, then (R, U) is a U-space. This U-space will 

be called the usual U-space R. We note that U is not a topology on R, since          

(2,3) = (-  , 3) (2,  )  U.  

 

Definition 1.13    If (X,U ) is a U-space and A X  .  

Let U A = {A G│GU } is a U-structure in A. For, )()( 





GAGA = and 




G   U. Then (A, U A ) is a U-space and is called a U-subspace of (X, U ). 

Also, we say that A is a U-subspace of X. 

 

Example1.18 Let X =(0,1) and U  the union of the sets{(0,b) :bR,0 < b < 1} 

and  {(a,1) : aR, 0 < a < 1}. Then (X, U ) is a U-space but not a topological 
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space , since 
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1 U . In fact this is the U-space obtained by 

considering (0, 1) as a U-subspace of R with the usual U-structure.  

 

In the usual U-space R, every singleton set {a} is closed in R, since      

{a} = (-  ,a] [a,  ). However, every finite set need not be closed. 

 

Definition 1.14   A sub collection B of P (X) is called a U-base of a          

U-space X if any U-open set of X can be written as a union of members of B. 

In this case we called the U-space X is generated by B. 

 

Example1.19   Let X = {a, b, c, d,e}, U = {X,  , {a},{a, b},{b, c},{a, b, c}}. 

Then   = { X,  , {a},{a, b},{b, c}}. 

 

Remark 1.1   Let X be a topological space. Let the classes of all b-open (resp.            

*b-open, b**-open, **b-open) sets in X be denoted by b(X) (resp. *b(X), 

b**(X), **b(X)). We shall now consider which of (X, PO(X)), (X, SO(X)),  

(X, (X)), (X, LO(X)), (X, LC(X)), (X, (X)), (X, (X)) and (X, b(X)),            

(X, *b(X)), (X, b**(X)), (X, **b(X)) are M-spaces and which are U-spaces, 

where the notations are usual: 

(i): (X, (X)) is a topological space, [34]. So, it is both an M-space and 

U-space. 
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(ii):- (X, PO(X)) is a U-space but not a topological-space, [12].  

(iii):- (X, SO(X)) is a U-space but  not a topological-space, ([23], 

Them.15(i), (ii)). 

(iv):- (X, (X)) is a U-space, but not a topological space, ([23], 

Them.18(i)). 

(v):- (X, LO(X)), (X, LC(X)), (X, (X)) are not  U-spaces but are  

M-spaces, ([23], Them. 16(i), 17(i), 19(i)).  

(vi) (X, b(X)), (X, *b(X)), (X, b**(X)), (X, **b(X)) are U-spaces, [17].  

 

Remark 1.2   Let (X, U ) be  a U-space. Let T U    denote the topology 

generated by U  on X. This will be called the topology induced by U. Also, 

for any sub-collection or super-collection U of T   in P (X) which is closed 

under union is a U-structure on X. (X, U ) is supratopology on X, associated 

with T  . A. S. Mashhour and others have considered and studied these 

supratopologies associated with a topology. We have dealt with U-spaces in 

general. 

 

Definition 1.15   Let (X, U ) be a U-space. For a subset A of X, the U-closure 

of A (UCl(A)) and  the U-interior of A (UInt(A)) are defined as follows: 

 UCl(A) = {F:A F, Fc  U }, UInt(A) = {U:U A, U U }. 

Clearly, we have UCl(A) is U- closed and UInt(A) is U- open.   
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Lemma 1.1   Let X be a U-space and A a subset of X. Then xUCl(A) if and 

only if GA  , for every U-open set G containing x. 

Proof: 

Necessity:  Suppose that there exists a U-open set G containing x such that          

GA = .  Then A  Gc.  Since G is U-open, Gc is U-closed. Therefore 

UCl(A)Gc.  

Hence x  UCl(A). 

Sufficiency: Suppose that xUCl(A). There exists a U-closed set F in X such 

that AF and xF.  Thus there exists a U-open set Fc in X which contains x 

and is such that FcA = .  

 

Lemma 1.2   Let X be a U-space. For subsets A and B of X, the following 

hold: 

 (i)    UCl(Ac) = (UInt(A))c,  UInt(A)c = (UCl(A))c 

          (ii)    UCl() = , UCl(X) = X, UInt() =  and UInt(X) = X 

          (iii) If AB then UCl(A)  UCl(B) and UInt(A)  UInt(B) 

Proof: 

(i) 1st Part: 

Let xUCl(Ac). This implies that for every neighborhood V of x, 

VAc   VA.                

So x is not in UInt(A). This implies that x(UInt(A))c. 
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Therefore, UCl(Ac) (UInt(A))c. 

Again let x(UInt(A))c  xUInt(A) So there does not exist any U-open 

set V containing x such that VA. This implies that for every V containing x, 

VAc. Hence xUCl(Ac). 

Therefore (UInt(A))c  = UCl(Ac). 

 

(i) 2nd Part: 

xUInt(Ac). There exists U-open set V such that xVAc   VA =  

which means x UCl(A). Therefore x(UCl(A))c.  

Hence UInt(Ac) (UCl(A))c 

Again let x(UCl(A))c  x UCl(A). Hence there exists U-open set V 

such that VA=   xVAc .   Hence xUInt(Ac 

Therefore, (UCl(A))C = UInt(A)C. 

 

Proof (ii) is Obvious. 

Proof (iii) is Obvious. 
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Continuous functions 

 

As in the case of supratopological spaces [27], we define 3 types of 

continuity in the following. 

Definition 1.16 Let (X,U ) and (Y,U  ) be two U-spaces. A function f: X →Y 

is said to be U-continuous if for each U-open set H in Y, f 1− (H) is a U-open 

set in X. 

 

Example 1.20  Let X={a, b, c, d }, U  = {X, , {a}, {a, b}, {a, c, d},{b, c, d}} 

Y = {p, q, r}, U   = {Y, , {p},{p, q},{p, r},{q, r}}. Let f: X →Y be defined 

by f(a) = p, f(b) = q, f(c) = r, f(d) = r. Then f is U-continuous.  

 

Definition 1.17   Let (X, U ) be a U-space and (Y, T    ) a topological space. A 

function f: X →Y is said to be U -continuous if for each open set H in Y, 

f 1− (H) is U-open set in X.  

 

Example 1.21   Let X= {a, b, c}, U  = {X, , {a},{b, c},{a, c}}. Y = {p, q, r},  

T   = {Y, , {p}, {p, q}, {p, r}}. Then (X, U ) is a U-space and (Y, T   ) is a 

topological space.  The function f: X →Y is defined by f(a) = r, f(b) = q,             

f(c) = q. Then f is U -continuous. 



 22 

 

Definition 1.18   Let (X, T   ) be a topological space and ( Y, U ) be a U-space.              

A function f: X →Y is said to be U -continuous if for each U-open set H in Y, 

f 1− (H) is open set in X.  

 

Example 1.22   Let X = {a, b, c, d}, T   = {X,,{a},{b},{c},{a, b},{b, c},      

{a, c},{c, d},{a, b, c}, {a, c, d},{b, c, d}}. Then (X, T   ) is a topological space. 

Y = {p, q, r },  U = {Y,,{p},{p, q},{p, r}, {q, r}}. 

(Y, U ) is a U-space but not a topological space. 

The function f: X →Y is defined by f(a) = p, f(b) = q, f(c) = r, f(d) = r.  

Then f is U -continuous. 

 

Theorem 1.1 [ 27, p-503].   Let (X, U) and (Y, U ) be two U-spaces. For a 

function  f: X →Y the following properties are equivalent: 

1) f is U-continuous ; 

2) f 1− (H) = UInt(f 1− (H)) for every H   U ; 

3) f (UCl(A))  UCl (f (A)) for every subset A of X; 

4) UCl(f 1− (B))   f 1− (UCl(B)) for every subset B of Y ; 

5) f 1−  (UInt(B))   UInt(f 1− (B)) for every subset B of Y; 

6) UCl(f 1− (K)) = f 1− (K) for every subset K of Y such that K c  U . 
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Proof:  

(1)  (2)  

          Let H   U and x  f 1− (H). Then f(x) H. There exists G  U 

containing x such that f(G) H. Thus xG f 1− (H). This implies that 

xUInt(f 1− (H)). 

          This shows that f 1− (H)   UInt(f 1− (H)). By Lemma 1.2, we have 

UInt(f 1− (H))   f 1− (H). Therefore, f 1− (H) = UInt(f 1− (H)). 

  (2)  (3)  

Suppose that A is any subset of X and x UCl(A)) and H   U  

containing f(x). Then x   f 1− (H) = UInt(f 1− (H)).There exists GU such that            

x G  f 1− (H). Since x UCl(A)), by Lemma-1.1 G A  and 

)()()()( AfVAfGfAGf  . Since H  U  containing f(x),                   

f(x) UCl(f(A)) and hence f(UCl(A))  UCl(f(A)). 

(3) (4) 

Let B be any subset of Y.  

Then we have f(UCl(f 1− (B)))  UCl(f(f 1− (B)))  UCl(B). 

Therefore, we obtain UCl(f 1− (B))  f 1− ( UCl(B)). 

(4)  (5) 

Let B be any subset of Y .Then we have  

(UInt(f 1− (B)) c  = UCl(f 1− (B c ))   f 1− (UCl(B c )) = f 1− (UInt(f(B))) c  = 

(f 1− (UInt(B))) c .  
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Therefore, we obtain f 1−  (UInt(B))   UInt(f 1− (B)). 

(5)  (6) 

Let K be any subset of Y such that K c
  U . by (5), we have (f 1− (K)) c  = 

f 1− (UInt(K c ))   UInt(f 1− ( K c )) = UInt(f 1− (K)) c   = (UCl(f 1− (K))) c . 

Therefore, we have  UCl(f 1− (K))  f 1− (K)   UCl(f 1− (K)).  

Thus, we obtain UCl(f 1− (K)) = f 1− (K). 

   (6)  (1) 

     Let xX  and H  U containing f(x). By (6), 

 We have (f 1− (H)) c  = f 1− (H c ) = UCl(f 1− (H c )) = UCl(f 1− (H)) c = (UInt(f 1− (H))) c . 

Hence we have xf 1− (H) = UInt(f 1− (H)). Therefore, there exists G  U such 

that xG   f 1− (H). 

Thus xG  U and f(G) H. This shows that f is U-continuous. 
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Compact and Hausdorff U-spaces 

 

Definition 1.19    Let (X, U ) be a U-space. A U open cover of a subset K of 

X is a collection {G  } of U-open sets such that K  


GU . 

 

Definition 1.20    A U-space X is said to be compact if for every U-open cover 

of X has a finite sub-cover. 

A subset K of a U-space X is said to be compact if every U-open cover 

of K has finite sub-cover. 

 

Example 1.23 Let X = N, U = {2 N, 4 N, 8N, 16N, ……. 2 n
N, ......,N, }. 

Then X is a compact U- space. 

Let   A  X and C  be a U-open cover of A. Let n
0
be the smallest 

+ve integer such that 2 0n
N   C.  Then  A 2 0n

N. So {2 0n
N} is a finite       

sub-cover of C. Therefore every subset of X is compact. 

 

Example 1.24  Let X = N and U = {m N: m  N } {}. Then X is a 

compact U- space. 
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Heine-Borel Theorem is an important result for compactness in Topology.  

This states that a subspace A of the real line R is compact if and only if A 

is closed and bounded. 

However, the corresponding theorem does not hold for the usual U-space 

R. For, N is a compact subspace of the usual U-space R but it is neither  

U-closed nor bounded.   

 

As for topological spaces, we have 

Theorem 1.2  Let (X, U ) and (Y, U ) be two U-spaces. If f: X →Y is a                    

U-continuous function and B is a compact subspace of U-space X, then f(B) is 

compact. 

Proof:   Let {H Iii : } be any U-open cover of f(B). For each xB, there exists 

i(x) I such that f(x) Hi(x). Since f is U-continuous, there exists U-open set 

G(x) containing x such that f(G(x)) )(xiH . The family {G(x): x B} is a           

U-open cover of B. Since B is compact, there exists a finite number of points, 

say x1, x2, x3,…….,xn in B such that B }1,:)({ nkBxxG kk  . Therefore, we 

have f(B) }1,:))(({ nkBxxGf kk  }1,:{ )( nkBxH kxi k
 .Thus f(B) is 

compact. 

 

We can similarly prove that the following two results: 

Theorem 1.3   Let (X, U ) be a U-space and (Y,T  ) a topological space. If             

f: X →Y is a U -continuous function and B is a compact subspace of U-space 

X, then f(B) is compact. 
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Theorem 1.4   Let (X, T  ) be a topological space and (Y, U ) be a U-space. If       

f: X →Y is a U -continuous function and B is a compact subspace of U-space 

X, then f(B) is compact. 

 

Theorem 1.5    Every closed subspace of a compact U-space is compact. 

Proof: Let X be a compact U-space and F be U-closed subspace of X. Let 

{V
i
} be U-open cover of F. Therefore F

iV  and V
i
= G i

F, where G
i
is a   

U-open set of X. Therefore F }{ i

c G is a U-open cover of X. Since X is a 

compact U-space, there exists i1, i2, i3,........,in such that  

X = F
niii

c GGG  ........
21

 
niii VVVF  .......

21
. Therefore F is compact.  

 

Definition 1.21   A U-space X is Hausdorff U-space if for each x, y X, with 

x  y, there exists disjoint U-open sets G and H in X such that  xG, yH. 

 

Example 1.25     Let X = {a, b, c, d}, U = {{a},{d},{b, c},{b, d}, {a, d},                

{a, c},{a, b, c},{b, c, d},{a, c, d}, {a, b, d}, X, }.  

Then (X, U ) is a Hausdorff U-space.  

 

Example 1.26   The usual U-space R is Hausdorff , for any x, y R, with x  y 

(say x < y), there exist two disjoint U- open sets (- 
2

,
yx+

 ) and ( 
+

,
2

yx
) 

containing x and y respectively. 
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Example 1.27   (Example of a U-space which is not Hausdorff ) 

 Let X be an infinite set and U = {X, , {G X cG  is a singleton set}} . Then 

(X, U ) is a proper U-space which is not Hausdorff. 

 

Theorem 1.6    Every subspace of a Hausdorff U-space is Hausdorff. 

Proof: It is trivial.   

 

In topology we have 

Theorem 1.7    Every compact subspace of a Hausdorff space is closed.  

 

However, we note that the following. 

Remark 1.3  A compact subset of a Hausdorff U-space need not be closed. 

 

Its truth is proved by the following example: 

Example 1.28  Let A = {1,2,3} R, then clearly A is a compact U-space, but it 

is not closed. Because every U-closed set in R is of the form [b,  ), or (- , a ] 

or their intersection. 
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Definition 1.22  Let (X,U ) and (Y,U ) be two U-spaces. A function f: X →Y 

is said to have a strongly U-closed graph (resp. U-closed graph) if for each                       

(x, y) (XY) - G(f), there exists V  U  containing x and W  U containing 

y such that  [V   UCl(W)]  G(f) =  (resp. [V   W]  G(f)) = ). 

 

Lemma 1.3  Let (X, U ) and (Y, U ) be two U-spaces. A function f: X →Y 

has a strongly U-closed graph (resp. U-closed graph) if and only if for each 

(x,y)(X Y) - G(f), there exist V  U  containing x and W  U containing y 

such that f(V)  UCl(W) =  (resp. f(V)   W = ). 

Proof: It is clear from the above definition. Since f(x)   UCl(W) for any x V.              

Therefore, f(V)   UCl(W) = . 

 

Theorem 1.8  Let (X,U ) and (Y,U ) be two U-spaces. If a function f: X →Y 

is a U-continuous function and (Y, U ) is a Hausdorff U-space, then G(f) is 

strongly U-closed. 

Proof: Suppose that (x, y) (X Y) - G(f). Then y  f(x). Since Y is a 

Hausdorff U-space, there exist disjoint sets V and W in U containing y and 

f(x) respectively. By Lemma-1.1 we have  UCl(V)  W = . Since f is                    

U-continuous, there exists U  U containing x such that f(U) W.  

This implies that f(U)   UCl(V) =  and by Lemma-1.3 G(f) is strongly                       

U-Closed. 

 



 30 

 

Theorem 1.9  Let (X, U ) and (Y, U ) be two U-spaces. A function f: X →Y 

is a surjective function with a strongly U-closed graph, then (Y, U ) is a 

Hausdorff U-space. 

Proof : Let y1 and y2 be any distinct points of Y. Then there exists x1X such 

that f(x1) = y1.Then we have (x1, y2) (X Y) - G(f). Since G(f) is strongly           

U-closed, there exists VU containing x, and WU  containing y2 such that 

f(V)   UCl(W) = . Therefore, we have y1= f(x1)   f(V)  (UCl(W))c. By 

Lemma-1.3 there exists K   U  such that y1  K and K W = . Moreover, 

we have y2W. This shows that (Y, U ) is a Hausdorff U-space. 
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CHAPTER – 2 

 Separation and compactness in U-spaces 

 

 

Introduction 

 

  In this chapter we have generalized to U-spaces the concepts of           

T0-space, T1-space, T2-space, completely Hausdorff space, regular space, 

completely regular space, T
2

1
3

-space, normal space, T4-space, completely 

normal space, locally compact space, compactification, and some results on 

topological spaces occurring in Munkres [33] and  Majumdar & Akhter [24]. 

We have defined product of U-spaces, and given an example of a U-space 

which is regular but not Hausdorff and of a Hausdorff U-space which is not 

regular. We have generalized  Tychonoff’s theorem to U-spaces. 
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Separation in U-spaces 

 

Definition 2.1   A U-space X is T0 -U-space if for each x, y X, with x   y, 

there exist two distinct U-open sets G and H in X such that xG, yH. 

 

Example  2.1  Let X = {a, b, c, d}, U = {{a}, {d}, {b, c}, {b, d}, {a, d},               

{a, c}, {a, b, c}, {a, b, d}, {b, c, d}, {a, c, d}, X,   }. Then (X, U ) is a  

T0- U-space.  

But (X, U ) is not a topological space. 

 

Definition 2.2   A U- space X is T1 -U-space if for each x, y X, with x   y, 

there exist two U-open sets G and H in X such that xG, y G and  xH, 

yH. 

 

Example  2.2   Let X be an infinite set. Let U consist of the sets {a}c, for each 

aX, and their unions. Clearly, X,   U. Then (X, U ) is a T1-U-space.                       

However, (X, U ) is not a topological space. Since {a}c  {b}c = {a, b}c U. 

 

Example  2.3  Let X = {a, b, c}, U = {{a, b}, {a, b, c}, {a, c},  }.                               

Then (X, U ) is a T0 -U-space but not T1-U-space. 

Here T1-U-space   T0 -U- space, but T0 -U- space    T1-U-space.  
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Theorem  2.1 [24]( Theorem-1.3, p. 100) 

A U- space X is T1-U-space iff every subset of X which consisting of 

exactly one point of X is U-closed. 

Proof: Let X be a T1-U-space and x X. We shall show that X – {x} is                

U-open. Let y X – {x}. Since X is a T1-U-space, for each yX, y  x, there 

exist U-open set G y such that y G y  but  x  G y . So, G y   X – {x}. Therefore 

X – {x} is U-open.  

Conversely let every subset containing one point of X be U-closed and 

let x, y X and x   y . Since {x} and {y} are U-closed, G = X – {y},              

H = X – {x} are U-open and xG, y G and xH, yH. Therefore X is            

a T1 -U-space. 

 

Definition 2.3   A Hausdorff U-space is called a T2-U-space. 

 

Example 2.4    Let X = {a, b, c}, U = {X,  , {a}, {b},{b, c},{a, c}, {a, b}}.  

Then ( X, U ) is U-space not a topological space. Here a and b are separated 

by {a} and {b, c}, b and c are separated by {b} and {c, a}, c and a are 

separated by {a} and {b, c}. Here ( X, U ) is a T2-U-space. 

 ( X, U ) in Ex.-2.2 is a T1-U-space but it is not a T2-U-space. 

Hence every T2-U-space is a T1-U-space, but not conversely.  
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Definition 2.4    Let (X, UX) and (Y, U Y) be U- spaces. (X Y, U  ), where U  

is a collection of subsets of X Y,  is called the product of X with Y if U is 

the U-structure on X Y generated by    





















 −



− 
y

yy

Xx

xx GG 11  , 
x : X Y→X,                  

y : XY→Y are the projection maps.  

Hence if (X Y, U ) is the product of (X, UX) with (Y, UY),                

then U  is the smallest  U-structure on X Y such that the projection maps               

x : X Y→X and y : X Y→Y are U-continuous.  

In general, let {X  ,U  }be any non-empty family of U-spaces. Then,   

(


X , U  ), where U  is a collection of subsets of 


X , is called the 

product of {X  ,U  } if U  is the U-structure on


X  generated by 

 −





 UU )(1  U  }, where 



 XX →: is the projection map. 

 

It follows therefore 

Theorem  2.2   (X Y, U ) is the product of (X, U1) with (Y, U2) if and only 

if U is the U-structure generated by {G1 Y: G1   U1} {X G2: G2   U 2}.   
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Our next theorems are generalizations of (Theorem- 2.2- 2.4, p. 102-103) 

in [24] 

Theorem  2.3   The product of any nonempty class of  Hausdorff U-space is               

Hausdorff. 

Proof: Let {Xi} be the product of a nonempty class of Hausdorff U-spaces Xi 

and  X = iX . Suppose x, y X, x   y. If x = {xi} and y = {yi} are two 

distinct points in X, then we must have x
0i

 y
0i
 for at least one index i0. Since 

X
0i
 is a Hausdorff  U-space, there exist two disjoint U-open sets U and V of 

X
0i   such that x

0i    U and y
0i  V. Let G = 

i

iG and H =
i

iH , where U = 
0i

G  

and V = 
0i

H  and for i  i0, Gi  Hi = Xi.  Thus G and H are two disjoint U-open 

sets of X and x G and yH. 

Therefore X is Hausdorff.  

 

Definition 2.5    Let (X, U  ) be a U-space and R an equivalence relation on X. 

For each U  U, let U / = {cls x x  U }. Let U / = {U / U  U }. Then U /  is 

a U-structure on 
X

R
. (

X

R
,U / ) will be called the usual U-space 

X

R
, unless 

otherwise stated, 
X

R
 will denote this U-space. 
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Theorem   2.4    Let X be a U-space and R is an equivalence relation of X. If R 

is a U-closed subset of the product space X X, then 
R

X
 is Hausdorff. 

Proof: Let p : X→
R

X
 be a projection mapping i. e. p(x) = clsx. Let z, z

R

X
.  

So z = p(x), z = p(x), where x, xX. Since R is a U-closed subset of X X, 

there exist two U-open sets U and V such that (x, x ) U V  R. Since p is a 

U-open mapping, p(U), p(V) are  U-open. Clearly, z  p(U), z  p(V).                                                   

Since U V  R,  p(U) p(V) =  . Hence 
R

X
 is Hausdorff. 

 

Theorem  2.5    Let X be a U- space and Y  a Hausdorff U-space and  let                  

f : X→Y be a  U-continuous mapping. Then 
)( fR

X
 is Hausdorff. 

 [Here R(f ) is an equivalence relation of  X, given by (x, x)   R(f )   

f(x) = f(x) ]. 

Proof:  Let clsx and clsy be two distinct elements of 
)( fR

X
. So f(x) and f(y) are 

two distinct elements of Y. Since Y is Hausdorff, there exist two disjoint                

U-open sets G and H of Y such that f(x)G and f(y) H. Since f is                        

U-continuous, f -1(G) and f -1(H) are disjoint U-open sets of X. Hence x  f -1(G) 

and y  f -1(H). 



 37 

 

Again p : X →
)( fR

X
 is a projection mapping, this implies that p(f -1(G)) 

and p(f -1(H)) are two disjoint U-open sets of 
)( fR

X
 containing clsx and clsy 

respectively. Hence 
)( fR

X
 is Hausdorff.  

Definition 2.6   A U-space X is said to be U-T2
2

1
 space or, completely 

Hausdorff if for each x, y X, with x   y, there exist U-open sets G and H 

such that x G and yH and G  H =  . 

 

Example  2.5.   Let X = {a, b, c, d}, U = { X,  , {a, b}, {a, c}, {a, d}, { b, c},      

{b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}. Then X is a proper 

completely Hausdorff U-space. 

 

Definition 2.7    A U-space X is called regular if for any U-closed set F of X 

and any point x X, such that xF there exist two disjoint U-open sets G and 

H such that x G and F  H. 

 

For U- spaces ‘Hausdorff’ and ‘regular’ are independent concepts. 

Example  2.6 (A proper U-space which is regular but not Hausdorff ).  

Let X = {a, b, c, d}, U = {X,  , {a},{d},{a, d},{a, b, c}, {b, c, d}}.            

Then (X, U ) is a proper U-space.  Here the U-closed sets are X,  , {a},{d},              

{b, c},{a, b, c},{b, c, d}. We easily see that X is a regular but it is not 
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Hausdorff, since b and c cannot be separated by disjoint U-open sets. Also                

(X, U  ) is not a topological space.   

 

Example 2.7 (A proper U-space which is Hausdorff but not regular). 

                Let X = R and U is a structure generated by U1   U 2, where U1 is 

the usual space on R and U 2 = {Qc}, where  Q is the set of all rational 

numbers. 

Then (X, U ) is a Hausdorff U- space, since U 1  U. 

If F = Q and x is an irrational number, then F is U-closed, since               

Qc U2  and xF. But x and F can not be separated by disjoint U-open sets. 

Here (X, U ) is not regular. 

 Thus a Hausdorff U-space need not be regular.  

 

We now generalize theorems of  [24](P. 104- 106).  

Theorem  2.6    Any U-space X is regular iff for each xX and each U-open 

set G containing x, there exists a U-open set H of X such that  xH H   G. 

Proof: Let X be regular U-space and let F = G . Then F is U-closed and xF. 

 Since X is regular, there exist U-open sets V1, V2 such that xV1, F  V2 and 

V1  V2 =  . This implies that V1   V2   F. Therefore U   
2V = V2

    G. If 

we write V1 = H. Then we get xH H   G. Now let for every xX and for 

every  U-open set G, there exist U-open sets H, such that xH H   G.  
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Let F is U-closed and x F. F is U-open and xF. According to the 

condition there exist U-open set H, such that xH H   F. Let ( H ) = W.  

Then W is U-open, F  W and W H =  . 

 

Theorem 2.7  The product of collection of nonempty regular U-space is 

regular.  

Proof:  Let {Xi} be collection of nonempty regular U- space and X =  iX . 

We shall show that X is regular. Let xG, G is a U-open set of X. Then                

x = {xi} and G is a U-open basic subset containing 
i

iG where x  iG . 

  Therefore Gi is a U-open set of Xi containing xi. Since Xi is regular, 

there exist U-open set Vi ,  where xVi, iV  Gi. Now let V =Vi . Then x  V 

and V  =  iV   iG  G.  

Hence X is regular. 

 

Theorem  2.8    Every subspace of regular U-space is regular. 

Proof:  Let X be a regular U-space and Y   X. Let yY and B is a U-closed 

set of Y, such that yB. Since B is U-closed in Y, there exist a U-closed subset 

F of X such that B = F  Y. So, yF. Since X is regular, there exist disjoint             

U-open sets G and H such that y G and F H. Let V1 = G Y, V2 = H Y.  

Therefore V1 and V2 are disjoint U-open sets where yV1 and B   V2. 

Hence Y is regular. 
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Theorem  2.9   Let X be regular T1-U-space. R is an equivalence relation of X. 

If the projection mapping p : X
R

X
→  is U-closed, then R is U-closed subset of 

XX. 

Proof:  We shall show that R is U-open. Let (x, y) R. It is sufficient to show 

that there exist two U-open sets W1 and W2 of X such that xW1 and yW2 

and   W1W2  R.  

 This implies that p(W1) p(W2) =   . Since (x, y)   R, p(x)  p(y),                         

i. e. xp-1(p(y)), again since {y} is U-closed and p is U-closed mapping. So 

p(y) is U-closed. Since p is U-continuous, then p-1(p(y)) is U-closed. Thus 

there exists disjoint U-open sets W1 and V such that x W1 and p-1(p(y))  V. 

Since p is a closed mapping, there exist U-open set G containing p(y) such that           

p-1(p(y))   p-1(G)   V.  

If we consider p-1(G) = W, then W1 W2 is a U-open set of R.  

 

Theorem  2.10   Let X be regular T1-U-space. R is an equivalence relation of 

X and    p : X
R

X
→  is U-closed and open mapping.  Then 

R

X
 is Hausdorff. 

Proof: Since p : X
R

X
→  is U-closed, R is a U-closed subset of X X. 

 Let p(x), p(y)  
R

X
. So, x, yR. Since R is a U-closed set of X X, there exist 

two   U-open sets V and W of X such that xV and yW and V W  R.  
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  Therefore p(x)  p(V), p(y)  p(W). Since p is U- open, p(V) and p(W) 

are U-open set of 
R

X
 and V W  R provides p(V)  p(W) =  .  

Hence  
R

X
 is Hausdorff.  

 

Definition 2.8    A U-space X is said to be completely regular if and if for any             

U-closed subset F of X and xX which does not belongs to F, there exists a        

U-continuous function f: X → [0, 1] such that f(x) = 0 and f(F) = 1. Here [0, 1] 

is considered as a subspace of the usual U-space R. 

 

Example 2.8.   Let X = [0, 1] and U = {X, ,{{[(a, 1)], [(0, b)] 0  a, b   1} 

and their unions}}. Then the U-open sets of X are X, , and the sets of the 

form [(0,b)],[(a,1)] and [(0,b)] [(a,1)], b < a.  

Hence, the U-closed sets of X are of the form X, , [(0, a)], [(b, 1)] and 

[(a, b)], a < b. Here [(a, b)] stands for any of (a, b), (a, b], [a, b) and [a, b].  

Clearly, (X, U ) is a proper U-space. 

Let F be a proper U-closed set, i.e.,  F  X. Let cX, cF. 

Then,(i)      F = [(a, b)], for some 0   a, b   1, a < b; or, 

        (ii)      F = [(0, b)], or, (iii) F = [(a, 1)], 0   a, b  1. 

We now consider Y = [0, 1] as a subspace of the usual U-space R. We first 

consider case (i) Define f: X→Y by  

            ( )          f(x) = 1, x(c, 1],   
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                                   = 0, x[0, c], if c is on the left of F; 

            (  )         f(x) = 1, x[c, 1),   

                                  = 0, x(c, 1], if c is on the right of F. 

Then in both the cases of ( ) and (  ), f is U-continuous and f(F) = 1, f(c) = 0.  

Next, we consider the case (ii)  

Define f: X→Y by 

             f(x) = 1, x[c, 1],   

= 0, x(0, c);  

Then f is U-continuous and f(F) = 1, f(c) = 0. 

Finally, we consider the case (iii) 

Define f: X→Y by f(x) = 1, x[0, c],   

                                                = 0, x(c, 1].                                                            

Here again f is U-continuous and f(F) = 1, f(c) = 0.  

Hence (X, U ) is completely regular. 

 

Comment 2.1 

 The above U-space X of Example 2.8 is also Hausdorff, normal and regular. 

We prove these below: 

(i) Let x, yX, x  y. Then for the disjoint U-open sets G1 = [0, 
2

x y+
) 

and G2 = (
2

x y+
, 1], xG1, yG2. Thus, X is Hausdorff. 
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          (ii) Let F1 and F2 be two disjoint U-closed sets in X. We shall show that 

there are disjoint U-open sets G1, and G2 such that F1  G1, F2  G2. We see that 

F1 is the form [0, a)], or [(b, 1], or [(a, b)].  

If F1= [0, a)], F2 is the form     (a, 1], or [(c, 1], or [(c, d)], for some c > a. In the 

first two cases, both F1 and F2 are U-open sets also, we take G1= F1, G2 = F2. 

If F2 = [(c, d)], we take G1 = F1, G2 = ( ,1
2

a c+
]. 

Here X is normal.  

(ii)  Similarly, we can prove that X is regular. 

 

Definition 2.9    A regular U-space X is called T3-U-space if for each singleton 

subset of X is U-closed. 

 

Definition 2.10    A T1-U- space X is said to be T3
2

1
-U-space if X is 

completely regular. 

 

Theorem  2.11 [24](Theorem- 3.8, p. 107) 

Every completely regular U-space is regular. 

Proof: Let X be a completely regular U-space. F is a U-closed set of X and 

xX which does not belongs to F, there exists a U-continuous function f: X → 

[0, 1] such that  f(x) = 0 and f(F) = 1. 
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Let a, b [0, 1] and a < b. Then [0, a] and [b, 1] are two disjoint             

U-open set of [0, 1].    x f -1[0, 1] and F  f -1[b, 1].  

Therefore X is regular. 

 

One can prove that a subspace of regular (a completely regular) U-space 

and a product of regular (a completely regular) U-spaces is regular 

(completely regular). 

 

Definition 2.11  A U-space X is said to be normal if for each pair disjoint                      

U-closed sets F1 and F2 , there exist U-open sets G1 and G2 such that F1   G1,          

F2   G2 and G1  G2 =  .  

 

Theorems in U-spaces corresponding to the standard theorems regarding 

regular, normal and completely regular topological spaces can be shown to be 

valid. In particular, Urysohn's Lemma and Tietze Extension Theorem have 

their analogues for U-spaces.  

  We shall give here examples to show that proper regular and normal      

U-spaces exist and are distinct. 

 

Example 2.9 (A proper U-space which is normal and regular.)  

Let X = {a, b, c, d}, U = {X,  , {a}, {d}, {a, d}, {a, b, c},{b, c, d}}.  

(X, U ) is a proper U-space , since {a, b, c} {b, c, d} = {b, c}  U. 
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Closed sets are X,  , {a}, {d}, {b, c}, {b, c, d}, {a, b, c}. 

Here {b, c} {a, b, c} and {d} {d}. {b, c} and {d} are U-closed and disjoint 

and there exist disjoint U-open sets containing {b, c} and {d} respectively. 

Similarly, we can show that for any pair of disjoint closed sets, there exist 

disjoint U-open sets containing them respectively. Hence X is normal.                   

Here {b, c, d} is a closed set, a{b, c, d} and there exist disjoint               

U-open sets containing a and {b, c, d} respectively. The other cases being 

trivially satisfied, X is regular.  

 

We note that the U-space X in the above example is regular but not a               

T3-U-space. 

 

Example- 2. 10     (A proper U-space which is normal and regular.)                                                                             

Let X = {a, b, c}, U = {X,  , {a}, {c}, {a, b}, {b, c}, {a, c}}. 

(X, U ) is a proper U-space , since {a, b} {b, c} = {b}  U. 

Closed sets are X,  , {a}, {b}, {c}, {b, c}, {a, b}. 

Here {a} {b, c} and {b, c} {b, c}. {a} and {b, c} are U-closed and disjoint 

and there exist disjoint U-open sets containing {a} and {b, c} respectively. 

Similarly, we can show that for any pair of disjoint closed sets, there exist 

disjoint U-open sets containing them respectively. Hence X is normal.  

Here {b, c} is a closed set, a {b, c} and there exist disjoint U-open sets 

containing {b, c} and {a} respectively. So, X is regular. 
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Example - 2.11 (A proper U-space which is normal but not regular.)  

          Let X = {a, b, c, d}, U = {X, , {a, b},{a, c}, {a, b, c}}.                         

(X, U ) is a proper U-space , since {a, b} {a, c}={a}  U. 

Closed sets are X,  , {a}, {c, d}, {b, d}, {d}. 

Here b{c, d}, a{c, d} but none of these can be separated by disjoint U-open 

sets. Hence (X, U )  is not regular.  

However, (X, U ) is normal, since there are no pair of disjoint U-closed sets. 

 

We give below another such example. 

Example 2. 12    Let X = {a, b, c, d, e}, U = {X,  ,{a, b},{c, d, e}, {b, d, e},         

{a, b, d, e}}. (X, U ) is a proper U-space , since {a, b} {b, d, e}={b}  U. 

Closed sets are X,  , {c}, {a, c}, {a, b}, {c, d, e}. 

Here b{a, c}, d{a, c} but none of these can be separated by disjoint U-open 

sets. Hence (X, U )  is not regular.  

Here {a, b} {c} =  ,{a, b} {a, b} and {c} {c, d, e}; {a, b} {c, d, e} =  ,          

{a, b} {a, b} and {c, d, e}  {c, d, e}. So, (X, U ) is normal. 

 

Example -  2.13 (A proper U-space which is not normal and not regular.) 

          Let X = {a, b, c, d, e}, U = {X,  , {d, e},{a, b, c, d}}. 

 (X, U ) is a proper U-space but not topological space. 

Closed sets are X,  , {e}, {a, b, c}.  
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(X, U ) is not normal, since {a, b, c} & {e} are disjoint U-closed sets which 

can not be separated.  

Here b{e}, d{a, b, c} but none of these can be separated by disjoint U-open 

sets. Hence (X, U )  is not regular.  

 

Theorem  2.12 [24]( Theorem- 3.10, p. 108) 

          A U-space X is normal if and if for each U-closed set F and each            

U-open set G containing F, there exists a U-open set H of X such that  

 F  H H   G. 

Proof:   Let X be a normal U-space and F a U-closed set of X and G a               

U-open set containing F. Then G is U-closed set in X disjoint from F.  

Since X is normal, there exist disjoint U-open sets V and H such that G  V 

and  F  H. Therefore H  V. Again since V is U- closed, H   V.  

Hence F  H H  G.  

          Again let F be a U-closed set of X and for each U-open set G containing 

F, there exists a U-open set H such that F H H   G. let A and B be two 

disjoint U-closed set of X. So, A B and B is a U-open set. Therefore there 

exists a U-open set V such that A   V  V   B. Let W = (V ) . 

           This implies that V and W are two disjoint U-open sets such that A  V 

and B  W. 

Hence X is normal. 
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Definition 2.12   A normal U-space with T1 property is called T4-U-space. 

Every T4 -U-space is T3-U-space but T3-U-space may be  or not T4-U-space. 

          A normal U-space may be or not T2-U-space and T2-U-space may  be or 

not normal U-space. 

 

Example – 2.14 (A U-space X is T2-U-space but not regular and normal.)  

          Let F1 = {qQ : q < 3} and F2 = {qQ : q   3}. Then F1 and F2 are      

U-closed subsets of X and F1  F2 =  . F1 and F2 can not be separated as a 

disjoint U-open set.  

Hence the U-space X is not normal. 

 

We now generalize theorems of [24]( p. 110- 120)   

Theorem  2.13    Every second countable regular U-space is normal. 

Proof:   Let X be a second countable regular U-space and   be a countable 

base of X. Let A and B are two disjoint U-closed set of X. Since X is a regular 

U-space, for each xA there exist U-open sets G and H of X such that             

xH  H   G and G B =  . For U-open set V, there exist a U-open sets with 

  basis containing x and contained in V. {Gn} is a countable collection of             

U-open sets covering of A, and for each n, nG  B =  .  

          Similarly, {Hn} is a countable collection of U-open sets covering of B, 

and for each n, nH  A =  . Let G =  Gn and H =  Hn. Then A G,             

B  H but may not be G  H =   (they need not be disjoint). 
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           Therefore for each n, suppose Gn = Gn - 
n

i

iH
1=

 and Hn = Hn - 
n

i

iG
1=

.  

From the definition of Gn, Hn and Gn, Hn. It is clear that the collection {Gn} 

and {Hn} are U-open cover of A and B respectively, where Gn and Hn are 

disjoint to each other. Let G =  Gn and H =  Hn, then A  G , B H  and 

G H =  . Because if x  G H then for any i, j; x  Gi Hi . Here i  j or, 

j   i. Let i   j. Since Hj = Hj - 
j

k

kG
1=

, Gi Hj =  . This is contradiction. A 

similar contradiction arise if j   i. Therefore X is a normal U-space. 

 

Theorem  2.14 (The generalized form of Urysohn lemma) 

          Let X be a normal U-space and A, B be disjoint U-closed subsets of X. 

Then there exists a U-continuous function f : X →[0, 1] such that                   

f(A) = 0, f(B) = 1.  

Proof:  Since A and B are disjoint U-closed subsets of X, A  B, B is U-open. 

Since X is normal. According to the Theorem 2.12, there exist a U-open set U
2

1  

such that A   U
2

1  
2

1U  B. 

         Again A and 
2

1U  are U-closed sets and U
2

1  and B are U-open sets 

respectively containing A and 
2

1U  . So there exist two U-open sets U
4

1  and U
4

3  

such that A   U
4

1  
4

1U   U
2

1  
2

1U   U
4

3 
4

3U  B.  

          If we continue this process, for each rational number of the form 
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 t =
n

m

2
; {m = 1, 2, 3, --------(2n – 1), and  n = 1, 2, 3, ---------}. We have an           

U-open set of the form Ut such that t1 < t2 .   A 
1t

U 
1t

U 
2t

U 
2t

U  B. 

We now define a function f : X→[0, 1] ; f(x) = 0, if for each t, x  Ut  

                                                                         = sup {t : x   Ut }  

It is clear that f(A) = 0 and f(B) = 1.  

          Now we show that f is U-continuous. All intervals of the form [0, a) and 

(a, 1], where 0 < a < 1, constitute a U-open sub base for [0, 1]. It is easy to see 

that f(x) < a iff x Ut  for t < a; i.e. f -1([0, a)) = {x : f(x) < a} = 
at

tU


, which is 

an U-open set. Again {x : f(x)   a} = 
at

t

at

t UU


=  

Therefore f -1((0, a]) = {x : f(x) > a} = 















at

tU , which is an U-open set.  

Hence f is U-continuous.   

  

Theorem  2.15    If A and B are two disjoint U-closed sets of a U-space X and 

if there is a U-continuous function f : X →[0, 1] such that f(A) = 0, f(B) =1, 

then X is normal. 

Proof:  Let A and B are two disjoint closed sets of a U-space X. Then there is a  

U-continuous function f : X →[0, 1] such that f(A) = 0, f(B) =1. Let a, b[0, 1] 

and a < b.  Then [0, a) and (b, 1] are two disjoint U-open sets. Since f is                 

U-continuous,  f -1([0, a)) and f -1((b, 1]) are two disjoint U-open sets of X and          

A   f -1([0, a)), B  f -1((b, 1]). 
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Therefore X is normal. 

 

Theorem  2.16 (The generalized form of  the Tietze extension theorem.)  

          Let X be a normal U-space and F be a U-closed subspace of X and      

 f : F→[a, b] is a U-continuous real function. Then f has a U-continuous 

extension f
___

 : X→[a, b], i.e. there is a U-continuous function f
___

 : X→[a, b] 

such that f
___

 | F = f. 

Proof: If a = b then f is constant function and in this reason f
___

 is also constant 

function with the same value. So let a < b. We may clearly assume that [a, b] is 

the smallest U-closed interval which contains the range of f. Furthermore, the 

device used in the proof of theorem enables us to assume that a = - 1 and b = 1. 

i. e. f : F →[- 1, 1] and [- 1, 1] is the smallest closed interval which contains the 

range of f. 

          Let f0 = f and A0 = {x : f0(x)   - 
3

1
 } and B0 = {x : f0(x)  

3

1
}. Then A0 

and B0 are disjoint nonempty closed subsets of F. Since F is a U-closed subset 

of X, then A0 and B0 are U-closed subsets of X. According to the Theorem 

2.14, there exists a U-continuous function 

 g0 : X →[- 
3

1
, 

3

1
] such that g0(A0) = - 

3

1
 and g0(B0) = 

3

1
. 

 Let f1 = f0 – g0 (here g0 | F = g0 ).Then f1 : F→[- 1, 1] is U-continuous function 

and 
3

2
)(1 xf  .  If A1 = {x | f1(x)   (-

3

1
)(

3

2
)} and B1= {x | f1(x)   (

3

1
)(

3

2
)}. 
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Then A1 and B1  are two non-empties disjoint U-closed subsets of F.  

          Then in the same way as above there exists a U-continuous function         

g1: X →[- 
9

2
, 

9

2
] such that g1(A1) = (-

3

1
)(

3

2
) = - 

9

2
 and g1(B1) = (

3

1
)(

3

2
) = 

9

2
. 

Let f2 = f1-g1 = f0 – (g0 + g1). Then 
2

2
3

2
)( 








xf .  

With the help of this process we get {fn} sequence function on F and {gn} 

sequence function on X, where 
n

n xf 









3

2
)( , 

n

n xg 

















3

2

3

1
)(  and  

fn = f0 – (g0 +g1 + g2+ -------+ gn-1). 

For this subtraction consider gi | F. Assume that sn = g0 +g1 + g2+ -------+ gn-1 .  

Since  
n

n xg 

















3

2

3

1
)( and 



=1n










3

1
n










3

2
 = 1, {sn} converges uniformly. 

Therefore, limit of {sn} is f
___

and f
___

 : X→R is a U-continuous function and 

1)( xs .  

Again since for each x, 
n

n xf 









3

2
)( , then fn(x) →0. So sn →f0 on F.         

i. e. the value of  f
___

 and f are equal on F.  

Hence f
___

 is a U-continuous extension of f. 
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Theorem  2.17     Let X be U-space and Y be Hausdorff U-space and let A be 

a subspace of X. If f : A →Y is a U-continuous mapping, then f has no more 

than one U-continuous extension A →Y.  

Proof: If possible, let g, h: A →Y be two U-continuous extension of f.  

Then A has a limit point x such that g(x)  h(x). Since Y is a Hausdorff                  

U-space, there exist two disjoint U-open sets G and H of Y such that g(x)G 

and h(x)H. Since g, h are continuous, so g -1(G) and h-1 (H) are U-open sets of 

A  and  x  g -1(G) h-1 (H).  

Now x is a limit point of A, (g -1(G) h-1 (H))  A   . 

Let a(g -1(G) h-1 (H))  A, then g(a) G and h(a) H. Since               

g | A = h | A,  g(a) = h(a) G H which is contradicts. 

 

Theorem  2.18   Let f : X →Y be a U-continuous mapping, where X is a                 

U-space and Y is a Hausdorff U-space. Prove that graph of f  i.e. 

{(x, f(x)), xX} is a U-closed subspace of product space X Y. 

Proof: Let A = {(x, f(x)), xX}. We shall show that A is U-closed. i.e. A is       

U-open. Suppose (x, y) A, then y   f(x). Since Y is a Hausdorff U-space, 

there exist two disjoint U-open sets G and H such that yG and f(x) H. 

So (x, y) f -1(H)  G. 

It is enough to show that f -1(H)  G   A for showing A is U-open.  

Let f -1(H)  G A , then (x0, y0) f -1(H)  G. But (x0, y0)  A . 

i. e. (x0, y0) A. 
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Then y0 = f(x0) and x0 f -1(G)   x0 f -1(H)   f -1(G). i. e. f(x0) H  G 

which is contradicts.  

Therefore f -1(H)  G   A.   

 

Theorem  2.19   If X is Hausdorff U-space and pX, then the intersection of 

all  U-closed sets of X containing p equal to {p} and the intersection of all           

U-open sets of X containing p is equal to {p}. 

Proof: Let X be a Hausdorff U-space. Since {p} is a U-closed set of Hausdorff            

U-space. Therefore, intersection of all U-closed sets containing p is {p}.  

Again let the intersection of all U-open sets containing p is A. Obviously, pA. 

If A  {p}, then q A where p  q. Since X is Hausdorff, there exist 

disjoint U-open set G, H such that pG and qH. But qA qG which is 

contradicts. Hence A = {p}. 

 

Theorem  2.20   Let f : X→Y, g : Y→X be U-continuous and g.f = 1x. If Y is                

a Hausdorff U-space, then X is a Hausdorff U-space and f(X) is U-closed of Y. 

Proof:  Let x1, x2X and x1   x2. Since g.f = 1x, f is 1-1. This implies that  

 f( x1 )   f(x2). Since Y is a Hausdorff U-space, there exist disjoint U-open set 

G and H of Y such that f(x1)G and f(x2)H. Since f is U-continuous, f -1(G) 

and f -1(H) are disjoint U-open sets of X and x1  f -1 (G) and x2  f -1 (H).  

Hence X is Hausdorff. 
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Theorem 2.21   Every infinite Hausdorff U-space has countable infinite 

discrete  U-subspaces.  

Proof: Let X be an infinite Hausdorff U-space. Let x1 and x2 be distinct two 

points of X. Then there exist two disjoint U-open sets G1 and G2 of X such that 

x1 G1 and x2 G2.  

Let x3 X which is separate from x1 and x2. Then there exist U-open sets 

H1, H2, H3 and H4 such that x1 H1, x2  H2, x3  H3 and x3  H4 and H1  H3 = 

 . Let H2  H4 =  . Suppose H3  H4 =U3, H1= U1 and H2 = U2. Then U1, U2 

and U3 are disjoint U-open sets. Since X is an infinite, by using induction 

principle, we have for every n   1, x1, x2, x3, -------, xn X and U1, U2, U3,  -----

--, Un are U-open sets such that for each xiUi and for i  j, xi  xj and Ui  Uj = 

 , (i, j = 1, 2, 3, ------, n). 

Let Y = { x1, x2, x3, ------- }. Then Y is a countable infinite                   

U-subspace whose U-open sets are {xi} = Y Ui.  

  

Definition  2.13.   Let X be a U-space and let {xn} be a sequence in X. An 

element xX is called a limit of {xn} if, for each U-open set G of X with xG, 

then there exists a positive integer n0 such that for each positive integer n > n0, 

xnG. 

 

Theorem  2.22   The limit of every convergent sequence of Hausdorff U-space 

is unique. 

Proof: Let X be a Hausdorff U-space and {xn} be a convergent sequence of X. 

Assume that xn → x, xn → y and x  y. Since X is a Hausdorff U-space, there 
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exist two disjoint U-open sets G and H of X such that. x G and y  H. Since 

x1 and x2 are limits of {xn}, there exist two natural numbers n1, n2 such that                          

n > max {n1, n2}, then xnG and xn H. Therefore G H    which is 

contradicts. 

 

Definition 2.14     A U-space X is said to be completely normal if every 

subset of X is normal. 

 

Theorem  2.23    A U-space X is completely normal iff for any two subsets A 

and B, A B =   and A B  =  , then X is separated by two disjoint U-open 

sets A and B. 

Proof: Let X be completely normal. Assume that A and B are two subsets of             

U-space X such that A B =   and A B  =  . Let Y = X - A  B , then                

A, B  Y. Since A  Y and B  Y are two disjoint closed subsets of Y, there 

exist disjoint U-open sets G, H of Y such that A  G G and B   Y H. 

Clearly, A G, B H. Since Y is a U-open set of X, G and H are also U-open 

sets of X. 

Now let for two subsets A and B of X, A  B =   and A B  =  , then 

X is separated by disjoint U-open sets A and B. 

Let Y be a U-subspace of X and A, B are two disjoint U-closed subsets 

of Y. Since A and B are U-closed of Y, then in Y, A  B =   and A B  =  . 

Since A and B are U-closed subsets of Y, if closure of A and B are A  and B  

respectively, then A  B =   and A B  =  .  
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           According to the condition there exist disjoint U-open sets G and H such 

that A  G and B H. Therefore in Y, A and B are separated by disjoint                 

U-open sets Y G and Y H. 

 

Theorem  2.24    Let Y be a Hausdorff U-space and for each point y of Y, the 

closure of every U-open set containing y is regular. Then Y is regular. 

Proof: Let F be a U-closed subset of Y and yY, and yF. Since Y is a 

Hausdorff, for each fF there exist disjoint U-open sets Uf and Vf such that         

y Uf  and fVf. Since every fV such that f Wf  fW  Vf .  

Therefore there exists a U-open set Gf of Y such that Wf  = Gf  fV = Gf  Vf. 

 So, Wf is a U-open set in Y.  

          Now let W = 
Ff

fW


. Then W containing F and W containing Y are               

U-open sets of Y. Clearly, W and W are disjoint. It is enough to show that W   

containing Y for completing the proof. If y W  , then y W  . Therefore for 

every U-open set G of Y containing y, G  W  . i.e. for any f, G  Wf   .  

i. e., y fW  Vf  which is contradiction.  

 

Theorem  2.25    If X is a normal and A is a U-closed subset of X. G is a               

U-open set of X containing A. Then there is a open F  set V such that                  

A   V   G.  
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Proof: Since G is a U-open set containing U-closed set A, X is normal there 

exist  U-open set V
2

1  such that A  V
2

1 
2

1V   G. Again since A  V
2

1   and 

2

1V   G, there exist U-open sets V
4

1  and V
4

3  ,  

 where A  V
4

1 
4

1V   V
2

1  
2

1V  V
4

3 
4

3V  G. 

Repeatedly we use this process and we get a sequence  tV  of closed sets of X, 

where t = 
n

m

2
, n = 1, 2, 3, --------; m = 1, 2, 3, ------,(2n – 1) and if t1 < t2 then  

A  V
1t


1t

V   V
2t
 

2t
V  G. Let V = 

nm

tn
V

,

. Then V is a F  set V and              

A   V   G.  

          Now we shall show that V is U-open. Let xV then for any tn, x
nt

V . 

So,  x
1+nt

V . i. e. x is a interior point of V.  Therefore V is a U-open set. 

 

 

Compact U-spaces 

  

 

Theorem  2.26.   Let (X Y, U ) be the U-product of (X, U 1 ) with (Y, U 2 ). 

Then X Y is compact if X and Y are compact. 

Proof: Let C = {G  } A be a U-cover of X Y. Then for each  ,  
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G  = )()( ,2,1 
JjIi

ji
GXYG



   for some 
i

G ,1  ‘s in U 1 and  
j

G ,2 ’s in U 2. 

 Therefore, 

 X Y =    
Jj A Ii A JjA Ii

jiji
GXYGGXYG

     

=
 





 )]([)]([)]([)]([ ,2,1,2,1  

Then C1 = IiAi
G  ,,1 }{    is a U1-cover of X and C2 = JjAj

G  ,,2 }{    is a U2-cover 

of Y. Since X and Y are compact, C1 and C2 have some finite sub covers, say  

vsurisr
G  1,1,,1 }{   and ///// 1,1,,1

}{
vsurisr

G


 then //
/ 1,1,2,1 }{

urur
rr

GG


   is a finite  

sub cover of C.   X Y is compact. 

 

Definition 2.15    A U-space X is said to be locally compact if for each xX 

there exists a U-open set G containing x of X whose closure is compact.  

 

Example 2.15  The U-space R is locally compact. Because, for a 

neighborhood of any real number x of the form Sa(x) = (-∞, x + a), a > o. aS (x) 

= [-∞, x + a] is compact. However, R is not a compact U-space, since the              

U-open cover {(-∞, a)│a R } of R does not have a finite sub cover. 

Every compact U-space is locally compact but locally compact U-space 

need not be compact. 

 

Theorem  2.27   Every locally compact Hausdorff U-space is regular. 

Proof: Let X be a locally  compact Hausdorff U-space. Then X has one point 

compactification X   and it is Hausdorff and compact U-space.  
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Since every compact Hausdorff U-space is regular, X   is a regular U-space.  

Since the U-subspace of regular U-space is regular. 

Therefore X is regular U-space as X   is U-subspace of X. 

 

Definition 2.16   If Y is a compact Hausdorff U-space and X is a proper                   

U-subspace of Y whose closure equals to Y, then Y is said to be a 

compactification of U-space X.  

Two compactifications Y1 and Y2 of U-space X are said to be equivalent if 

there is a U-homeomorphism h: Y1 →Y2 such that h(x) = x for every xX.  

If Y - X equals to a single point, then Y is called the one-point-

compactification of X.  

 

Theorem 2.28   A U-space X has a one- point-compactification if and only if 

X is  locally compact but not itself compact. 

Proof:  To see this, let X be a U-locally compact U-space but not itself 

compact, and let Y = {y}, where yX. Let Z = X  Y. Declare  a subset V to be 

U-open in Z if either V is U-open in X or V is the Kc the complement of a 

compact U-space K in X. Then Z becomes a compact U-space, and is the                  

one-point-compactification of X. Z will be denoted by X  (as in topology) and 

y denoted by  . 
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Example 2.16 ([33], p. 185) 

           The one-point-compactification of the usual U-space R is 

homeomorphic with the circle. The one-point-compactification of R2 is 

homeomorphic to the sphere S1.  

Let S1 denote the unit circle {(x, y)  R2: x2 + y2 = 1} regarded as a       

U-subspace of the product R R of the usual U-space R with itself. The 

imbedding h: (0, 1) →S1 given by h(t) = (cos2 t)   (sin2 t) induces a  

 compactification. This is equivalent to the one-point-compactification of the        

U-space X. 

 

Theorem  2.29 [24]( p. 93)    If X is a Hausdorff U-space then X  is also a 

Hausdorff U-space. 

Proof: For proving this theorem it is enough to show that for any point x of X 

there exist two U-open sets G and H of X  such that xG,  H and               

G H =  . 

Let xX, then there exists a U-open set G such that xG and G  is a compact 

of U-space X. Let H = Y - G , then G and H are U-open sets of Y and xG, 

 H and G H =  .  

 

Definition  2.17 [24]( p- 134)  . Let A and B be two U-spaces and h: A→B is a  

U-continuous, open and one-to-one map. Then h(A) is a U-homeomorphic 

subspace  of A contained in B. Here A is called U-imbedded in B with               

U-imbedding h. 
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 If A and h(A) are identified with each other, then A is a U-subspace of B. 

 

Definition  2.18   A compact Hausdorff U-space Y is equivalently called a 

compactification(see p-60 ) of a U-space X if there is a U-imbedding                 

h: X→Y such that h(X) is U-dense in Y. i. e. if Y is an extension U-space of 

h(X).  

Example 2.17  Let Y be the U-space [0,1] obtained by regarding (0,1) as a                

U-subspace of the usual U-space R.  Then Y is a compactification of                

(0,1)  obtained by adding one point at each end. 

 

Example 2.18   Let Y = [-1,1]  [-1,1] be a U-subspace of R2 . Here R2  is the 

product R R of the usual U-space R. Let h: (0,1) →Y be a map defined by                         

h(x) = xsin(1/x). Then      h: X → h(X) is a U-homeomorphism and )(Xh is 

the topologist's sine curve. The  U-imbedding h gives rise to a compactification 

of (0,1) quite different from the one-point-compactification and the above two-

point-compactification of (0,1). It is obtained by adding one point at the right- 

hand end of h(X), and an entire line segment of points at the left- hand end. 

)(Xh is compact and Hasusdorff U- space . 

Therefore ( )(Xh , h) is a compactification of the U-space X. 

 

Remark 2.1  Let X = (0, 1) and let X be a U-subspace of the usual U-space R. 

A bounded U-continuous function f: (0,1) → R is extendable to the one- point-

compactification of U-space if and only if the limits 
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                                        lim f(x) and lim f(x) exist and are equal. 

                                         x →0+        x→1- 

 

We conclude the paper with generalization of a theorem in Munkres [33]              

(p- 237) 

Theorem 2.30.   Let X be a U-space. Let h: X→ Z be a U-imbedding of X in 

the compact Hausdorff U-space Z. Then there exists a corresponding                                      

compactification Y of U-space X; which has the property that there is a                

U-imbedding  H: Y→ Z that equals h on X. 

Proof:  Given h, let Xo denote the U-subspace h(X) of Z, and Yo denote its 

closure in Z. Then Yo is a compact Hausdorff U-space and oX = Yo; therefore, 

Yo is an compactification of Xo. 

          We now construct a U-space Y containing X such that the pair (X, Y) is            

U-homeomorphic to the pair (Xo, Yo). Let us choose a set A disjoint from X 

that is in bijective correspondence with the set Yo - Xo under some map                  

k: A→Yo - Xo. Define Y = X  A, and define a bijective correspondence                  

H: Y→ Yo by the rule H(x) = h(x) for x X, H( ) = k( ) for  A. 

Make Y into a U-space by declaring V to be U-open in Y if and only if H(V) is           

U-open in Yo. The map H is automatically a U-homeomorphism; and the                 

U-space X is a U-subspace of Y because H equals the U-homeomorphism h 

when restricted to the U-subspace X of Y. By expanding the range of H, we 

obtain the required U-imbedding of Y into Z. 
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Chapter- 3 

 Connectedness in U-spaces 

 

Introduction  

 

In this chapter, we have introduced the concepts of connectedness in     

U-spaces. The concepts of a component, total disconnectedness, local 

connectedness, path-connectedness, local path-connectedness, connectedness 

im kleinen in the topological spaces ([24], [33]) have been generalized to the 

case of U-spaces.  

We have constructed many examples and proved a number of theorems 

involving these concepts. 

 

 Definition  3.1   Let X be the usual U-space R. A U-space X is said to be                   

connected if X can not be written as a disjoint union of two nonempty U-open 

sets. i.e. if there do not exist nonempty U-open sets G and H such that 

XHGandHG == . 

If X is not connected U-space then, it is called disconnected U-space. 

Let A be a nonempty subset of X. Then A is said to be connected if A is 

connected as a U-subspace of X. Thus, A is connected if there do not exist               

U-open sets G and H in X such that 

)(,.)()()()(,, HGAOrAHAGAandHAGAHAGA ==
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The empty set   and singleton sets {p} are always connected U-space. 

 

Example  3.1    We consider N as a U-subspace of the usual U-space R. Let  

n0N. Let G = {rN : - < r < n0 + 1} and H = {r N: n0 < r <  }. Then G 

and H are U- open subsets of N and G H = N. N is a disconnected U-space. 

Similarly we can prove that z is a disconnected U-space. 

 

We prove here that Q is disconnected.  

Example  3.2   Let A = Q. Since 2  is irrational, G = ),2()2,( =− Hand  

are U-open in the usual U-space R. Now, 

{G A q  = Q: q < 2  },   {H A q  = Q: q > 2 }. 

So ( ) ( )G A H A   =   and = )()( AHAG Q. Therefore Q is a 

disconnected U-subspace of R.  

 

Example  3.3    R, (- , a), (b,  ) and (a, b), (a, b], [a, b) and every interval in 

R are  connected subsets of usual U-space R. In fact, these are the only 

connected U-subspace of R.  
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The following theorems generalize the corresponding theorems about 

topological spaces [24]( p. 70 - 78). Here we only give the statements of the 

theorem. The proofs are almost exactly similar to those for topological spaces. 

The proof of Theorem 3.10 (Theorem 1.9, [24]) has been given to show that 

the arguments really hold. Also we have proved the proofs of the theorems 

about the continuous images, since these are different here from those in 

topology.  

 

 Theorem  3.1   If (X, U ) is a U-space and A and B are connected U-subspace 

of X such that A B   , then A B is connected. 

  

Theorem 3.2   Let (X, U  ) be a U-space and {A
i
} Ii  a collection of connected           

U-subspace of X . If i
i I

A

   , then i

Ii
A


  is connected. 

 

Theorem  3.3   The U-space R and each interval of R is connected and these 

are the only connected U-subspace of R. 

 

Theorem  3.4     A U-continuous image of a connected U-space is connected. 

Proof: Let X be a connected U-space and Y a U-space and f: X→ Y is a            

U-continuous mapping. We shall show that f(X) is connected. If f(X) is not 

connected, let f(X) = (f(X)  G)  (f(X)  H) be separation of f(X). G and H 

be nonempty U-open sets of Y and f is a U-continuous function.  

Therefore f - 1(G) and f - 1(H) are U-open sets of X and  
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X = (X  f - 1(G))  (X  f - 1(H)) = f - 1(G)  f - 1(H), f - 1(G)   , f - 1(H)    

and f - 1(G) f - 1(H) =  . 

Hence X is disconnected, contradicting the assumption. 

Therefore f(X) is connected. 

 

Theorem  3.5    A Ū-continuous image of a connected U-space is connected. 

Proof: Let X be a U-space and Y  a connected space and f: X→ Y is a  

Ū-continuous mapping. We shall show that f(X) is connected. If f(X) is not 

connected, let f(X) = (f(X)  G)  (f(X)  H) be separation of f(X). G and H 

be nonempty open sets of Y and f is a Ū-continuous function. 

 Therefore f - 1(G) and f - 1(H) are U- open sets of X and 

X = (X  f - 1(G))  (X  f - 1(H)) = f - 1(G)  f - 1(H), f - 1(G)   , f - 1(H)    

and f - 1(G) f - 1(H) =  . 

 Hence X is disconnected, contradicting the assumption. 

Therefore f(X) is connected. 

 

Theorem  3.6   A U*-continuous image of a connected U-space is connected. 

Proof: Let X be a connected space and Y  a U-space and f: X→ Y is a  

U*-continuous mapping. We shall show that f(X) is connected U-space. If f(X) 

is not connected, let f(X) = (f(X)  G)  (f(X)  H) be separation of f(X). G 

and H be nonempty U-open sets of Y and f is a U*- continuous function. 

Therefore f - 1(G) and f - 1(H) are open sets of X and 
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 X = (X  f - 1(G))  (X  f - 1(H)) = f - 1(G)  f - 1(H),  f - 1(G)   , f - 1(H)    

and  f - 1(G) f - 1(H) =  .  

Hence X is disconnected, contradicting the assumption. 

Therefore f(X) is connected. 

 

Theorem  3.7    Let X be a connected U-space. Then there exists no U-closed-

open subsets of X except X and  . 

 

Theorem  3.8    Let X be a U-space and A is a connected U-subspace of X .If 

B is a U-subspace of X such that A  B  A , then B is connected;  

in particular A  is connected. 

 

Theorem 3.9  A U-space X is disconnected if and only if there exists a                 

U -continuous mapping X onto the discrete two point space {0,1}. 

Proof: Let X be a U-space and E is the discrete two point space {0, 1}. 

Suppose that X is disconnected. Then X has two disjoint U-open sets G and H 

such that X = G H. 

Let us define a map f: X→ E such that f(x) = 0, x   G 

                                                                      = 1, x  H 

Also G and H are U-open sets. This implies that f is U -continuous. 
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Conversely, suppose that there exists a U -continuous map f: X→ E. 

Then f -1({0}) and f -1({1}) are disjoint U-open sets of X and                                     

X = f -1 ({0})  f -1 ({1}). So X is disconnected. 

 

Theorem  3.10  A finite Cartesian product of connected U-spaces is connected. 

Proof: Let X1, X2, X3, -------, Xn be connected U-spaces and  

X = X1  X2 X3  -------  Xn. 

 We shall use induction rule.  

          Let n = 2, then X = X1 X2.  Let (a, b) X1 X2. Since X1 {b} and X1 

and for each x1X1, {x1}  X2 and X2 are homeomorphic. So X1 {b} and 

{x1}  X2 are U-connected. 

 Again since (x1, b)  (X1 {b}) ({x1}  X2 ).  

This implies that U x 1
 = (X1 {b})  ({x1}  X2 ) is connected. 

          Let U = 
 11 Xx

U x 1
. This union is connected because it is the union of a 

collection of connected U-spaces that have the point (a, b) in common. Since 

this union U = X1 X2, the space X1 X2 is connected.  

Now let X1  X2 X3  -------  Xn-1 be connected for n > 2. 

Since X1  X2 X3  -------  Xn-1 Xn and (X1  X2 X3  -------  Xn-1 )   Xn are 

homeomorphic, X1  X2 X3  -------  Xn is connected as in the case of  X1 X2 

.  

Theorem  3.11   Let {Xi} Ii  be collection of nonempty connected U-space and  

X = Xi, then X is connected. 
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Theorem  3.12 (The generalized form of the Intermediate value theorem).  

          Let f: X→Y be a U -continuous map, where X is a connected U-space 

and Y is an ordered set with the order U-structure. If a and b are two points of 

X and if r is a point of Y lying between f(a) and f (b), then there exists a point c 

of X such that f(c) = r. 

Proof: Let A = f(X) {yY: y < r} and B = f(X) {yY: r < y}. So,  

A B =   and A   , B    because f(a) A and f(b) B. Since A and B are 

U-open, if there were no point c of X such that f(c) = r, then f(X) = A  B and 

f(X) is disconnected, contradicting the fact that the image of a connected       

U-space under a U -continuous map is connected. 

 

Definition 3.2   Let X be a U-space. A subset M of X is said to be                  

U-component or connected component if (i) M is connected, (ii) if A is a 

connected subset of X such that M   A   X, then A = M or A = X, i.e. M is a 

maximal subset of a U-space X.  

 

Example - 3.4   Let X = [3, 5)  (6, 9) be a subspace of the usual U-space R. 

Here X is a disconnected U-space and [3, 5) and (6, 9) are two components of  

U-space.  

 

Example-  3.5    N, Z, Q are subspaces of usual U-space R. Singleton subsets 

are the only components of the above U-subspaces. 
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Example  3.6   Let X = {a, b, c, d, e}, U  = {X,  ,{e},{a, b}, {c, d}, {a, b, c}, 

{a, b, e}, {c, d, e},{a, b, c, d}, {a, b, c, e}}. Then X is a disconnected U-space 

and {a, b}, {c, d}, {e}, are the components of X. 

 

Theorem  3.13    Let X be a U-space. 

               (i) Every connected U-closed-open subset of X is a component of X. 

               (ii) Every component of X is U-closed. 

               (iii) Every element of X is contained in a unique component of X. 

               (iv) Every connected subset of U-space X is contained in a unique 

component of U-space X. 

 

Definition  3.3   Let X be a U-space. A U-space X is called totally 

disconnected U-space if for every pair of distinct points x and y (x  y), there 

exists a non-empty disjoint U-open set A, B such that X = A B with xA and 

y B. 

 

Example  3.7    The U-subspaces N, Z, Q and Q / (the set of irrational 

numbers) of the U-space R are totally disconnected U-spaces.                                                                       

We shall prove the truth of the statement here.  

            (i)  Let m, n N with m < n.                                                                                   

                      Then, {1, 2, 3,........., m}  {m + 1,m + 2, m + 3,.........} is a 

disconnection of N . Here, {1, 2, 3, .........m} = N  (-  , m + 
2

1
) and   
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{m + 1,m + 2, m + 3,.........} = N  (m + 
2

1
,  ) are U-open subsets of  N 

which contain m and n respectively. 

Thus N is totally disconnected. 

           (ii) The proof that Z is totally disconnected is similar. 

           (iii) Let a, bQ with a < b. Then there exists an irrational number x 

such that a < x < b. Then, A B, where A = {yQ : y < x } and  

B = {yQ : y > x } is a disconnection of Q. Then aA, bB, and  

A = Q  (-  , x ), B = Q  (x,  ). So that A and B are U-open in Q. Hence 

Q is totally disconnected. 

(iv) We can prove similarly that Q '  is totally disconnected. 

 

 Example 3.8   Every discrete U-space consisting of more than one element is 

totally disconnected. This is obvious.   

 

Theorem  3.14    The U-components of totally disconnected U-spaces consists 

of exactly one element. 

Proof: Let X be a totally disconnected U-space. It is enough to prove that 

every U-subspace of X with two distinct elements is disconnected. Let x, yX 

and x  y. Since X is totally disconnected, there exist X = A  B such that xA 

and yB. Thus {x, y} = (A {x, y}) (B {x, y}).  

Hence {x, y} is disconnected. 
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Definition  3.4    A U-space X is said to be locally connected if for every 

xX, and for every neighborhood G of x, there is a connected U-open set V of 

X, such that xV G. X is a locally connected U-space if and only if X is 

locally connected U-space at each of its points. 

 

Our Theorems 3.15-3.22 are generalizations of theorems in ([24], P-123-131) 

Theorem  3.15   Every U-open subspace of a locally connected U-space is 

locally  connected. 

Proof: Let X be a locally connected U-space and G be a U-open subspace of 

X. Let H be a U-open set containing a point x of G. Since G is U-open, so H is 

a U-open set of X. Since X is locally connected, there exists a connected             

U-open set V in X which contains x and is contained in H. Also V is a U-open 

set of G.  

Hence G is locally connected. 

 

Theorem  3.16   The image of a locally connected U-space under a mapping 

which is both U-continuous and U-open is locally connected. 

Proof: Let X be a locally connected U-space and Y be a U-space. Let f : X→Y 

be U-continuous, U-open and onto mapping. Let yY and G be a U-open set of 

Y containing y. For each xX, y = f(x) and f -1(G) is U-open set of X 

containing x.  

Since X is locally connected, there exists a connected U-open set V of    

f -1(G) containing x. i.e. xV   f -1(G). Since f is U-open and U-continuous.  



 74 

 

f(V) is a connected U-open set of Y and f(x) = y = f(V). Since V   f -1(G),             

f(V)  G.  

Hence f(X) = Y is locally connected.  

 

Theorem  3.17   The product space of two locally connected U-spaces is 

locally  connected. 

Proof: Let X and Y be locally connected U-space. We shall show that X Y is 

locally connected.  

Let (x, y)  X Y and G be a U-open set of X Y containing (x, y). Since 

projection mapping X : X Y →X is U-open, X (G) is a U-open set containing 

x. Since X is locally connected, so there exists a connected U-open set V1 of X 

containing x of X (G). 

 Again Y (G) is a U-open set and there exists a connected U-open set V2 

of Y containing y of a locally connected U-open set Y (G). Therefore V1 V2 is 

a connected U-open set of X Y containing (x, y) and V1 V2   G. 

Hence X Y is locally connected.  

 

Theorem  3.18   A U-space X is locally connected if and only if for each                   

U- component of every U-open set of X is U-open. 

Proof: Let X be a locally connected U-space and let G be a U-open set in X. 

According to the above Theorem 3.15 G is locally connected. Let C be a 

component of G and let aC. Since G is a locally connected U-space, there 
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exists connected U-open set V of G containing a. i.e. V  G. Since C is a 

component and aC, V C. Therefore C is U-open in X. 

Conversely, suppose that U-components of U-open sets in X are open. 

Suppose xX and a neighborhood G of x. Let C be the U-component of G 

containing x. C is U-open in X by hypothesis. So C is a connected U-open set 

of G containing x.  

Hence X is locally connected. 

 

Definition  3.5   Let X be a U-space and let f : [0,1]→X be a U-continuous 

mapping. 

If f(0) = x, f(1) = y, then f is called path from x to y. 

 

Definition  3.6    Any U-space X is called path connected U-space if there is a 

path in X from x to y. 

 

Definition  3.7  [24]( p. 131) 

A U- space X is said to be locally path connected U-space at x if for 

every open set G of x have a open subset V which is path connected U-space 

containing x. 

If X is locally path connected at each of its points, then it is said to be locally 

path connected U-space. 
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Example 3.9  Each interval and each ray in the usual U-space R are                

connected, locally connected, path-connected and locally path-connected       

U-spaces. 

Each of the subspaces [-1, 0)   (0, 1] and [1, 2]   [3, 4] of R is neither 

connected nor path-connected but each is both locally connected and locally 

path-connected. 

 

Example  3.10   Let C = ([0,1]  {0}) ({
1

n
:nZ} [0,1]) ({0} [0,1]) be a       

U-subspace of R 2  and let D = C - {0} (0,1) be a U-space. Here C is the union 

of connected U-subset I  , where I  = [0,1]  {0}, 
1

n

 
 
 

 [0,1] or {0} [0,1]. 

Since each I  is connected and I  I

 

 
   

 
. Therefore C is a connected      

U- space and also D is a connected U-space and D = C. If p is any point on  

{0} [0,1], then for any open sphere S

(p) with centered at p there exist a      

U-open set G   S

(p) such that G is disconnected. Therefore, C is not locally 

connected U-space. If we consider p is (0,1), then similarly we can show that D 

is locally disconnected. 

 

Theorem  3.19    Every path connected U-space is connected. 

Proof: Suppose X be a path connected U-space and xo X. Then for any x X 

there is a path from xo to x. That means there exists a U-continuous mapping          

f : I→X such that f(0) = xo , f(1) = xo. Since I is a connected U-space, f(I) is 
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connected U-subset of X. Therefore xo and x are contained in same component 

of X. Since for any x X true that X has only one component.  

Therefore X is connected.  

 

Theorem  3.20   The image of a U-continuous mapping of path connected          

U-space is path connected. 

Proof: Let X be a path connected U- space and Y be a U-space. Let   : X→Y 

be a onto U-continuous mapping. We shall show that Y is a path connected                 

U-space. Let y1 and y2 are two points of Y. Then there exists x1, x2 X such 

that   (x1) = y1 and   (x2) = y2. 

Since X is a path connected U-space, there exists a U-continuous mapping                 

f : I→X such that f(0) = x1  and f(I) = x2. Then   (f(0)) = y1,  (f(I)) = y2.  

So  f : I→Y is a U-continuous mapping i.e. Y is path connected.  

 

Theorem  3.21   The product space of any finite number of path connected                

U-spaces is path connected. 

Proof: Let X1, X2, X3, ---------, Xn be path connected U-spaces and  

X = X1 X2 X3 -------- Xn. Suppose x, yX, then x = (x1, x2, x3, -------, xn) 

and y = (y1, y2, y3, --------, yn), xi, yi Xi. Since each Xi path connected, there 

exists a U-continuous mapping fi : [0, 1] →Xi such that fi(0) = xi, fi(1) = yi. 

 If f : [0, 1]→X defined by f(a) = (f1(t), f2(t),------,fn(t)),                                          

then  f(0) = (x1, x2, x3, -------, xn) = x and f(1) = (y1, y2, y3, --------, yn) = y.  
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We shall show that f is U-continuous. Let G be a U-open set of X, then 

i (G) = Gi, Gi is a U-open set of Xi, where 
i (G): X→Xi is a projection 

mapping. Since fi is U-continuous, fi 
-1(Gi) is a U- open set of [0, 1]. 

Now f-1 (G) = f1
-1(G1)  f2

-1(G2)  -------- fn
-1(Gn). 

Therefore f-1(G) is U-open. i.e. f is U-continuous. 

 

Remark 3.1    The closure of a path connected subsets of U-space may not be 

path connected.  

 

Example 3.11   Let S = {(x, sin
x

1
) : 0 < x   1} be a subset of the product        

U-space RR. Then it is a path connected U-space but the closure S  is not a 

path connected U-space. 

Here, we see that S  is connected but not path connected. 

 

 Definition  3.8    Let X be a U-space and a and b be two separate point of X. A 

finite sequence of subsets A1, A2, A3, ------, An of X is called simple chain 

from a to b if a only belongs to A1 and b only belongs to An and Ai  Aj   iff 

1− ji . 

 

Theorem   3.22.   If a and b are two separate points of connected U-space X 

and {U  } is a U-open cover of X, then there exists a simple chain of U   from 

a to b. 
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Proof: Let {U  } be a U-open cover of X and let Y be a collection of points y 

of X and there exists a simple chain of U  from a to y. Then Y is U-open. 

Because if yY and U1, U2, U3, -----, Un (Ui{U }) from a to y is a simple 

chain, then U1, U2, U3, ------, Un or U1, U2, U3, ------, Un-1 from a to y '  for each 

y '
Un is a simple chain. So, y '

Y and Un  Y. Therefore Y is a U-open set. 

          Now we shall show that Y is closed. Suppose y be a limit point of Y. 

Then there is a point y '  (y '
 y) of Y in each U-open set U containing y.  

          Therefore the exists a simple chain U1, U2, U3, ……, Un from a to y. 

Now we can consider y '  is a point of Y in which n is the smallest. 

Since Un  U  , U1, U2, U3, …  , Un, U from a to y will be simple chain if for 

each i < n, Ui  U =  . Because if Ui  U   (i0 < n) and let y ''  U
0i

 U. Then 

y '' Y and U1, U2, U3, ..., U
0i
 from a to y ''  is a simple chain. Since i

0
< n which 

is contradictory to the smallest n. So U1, U2, U3, …. , Un, U from a to y is a 

simple chain. i.e. yY.    

Hence theorem is proved.  

 

Definition 3.9    Let X be a U-space and xX, X is said to be connected im 

kleinen at x if , for each U-open set V of X with xV, there exists W V 

which containing x and is such that, for each yW, there is a connected subset 

C of W with x, y C.              

If a U-space X is locally connected at x, then it is connected im kleinen at x. 

However, the converse need not be true. 
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pThe example given by the following figure of the U-subspace of X X, where 

X is the usual U-space R, is connected im kleinen at x1, x2, x3, x4, ........ but it is 

not locally connected at these points. 
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CHAPTER - 4  

Paracompact U-spaces 

 
 

 

Introduction 

 
 

The concept of paracompactness for topological spaces was defined by 

Dieudonne [10]. This concept has been proved to be very important and useful.  

In this chapter the notion of paracompact U-spaces has been introduced and a 

number of sufficient conditions for paracompactness for such spaces have been 

established.  

In connection with paracompactness of U-spaces, we have generalized 

the concepts of refinement, locally finite, countably locally finite, star and 

barycentric refinements in U-spaces, and proved the U-space-versions of a few 

theorems concerning paracompact topological spaces ([11], [24] and [33]). A 

few relevant examples have been provided. 
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Paracompactness in U-spaces 

 

  We start with a few necessary definitions in U-spaces which generalize 

the corresponding topological concepts.  

Definition  4.1   Let G be a collection of subsets of the U-space X. A collection 

B of subsets of X is said to be a U-refinement of G ( or is said to be refine G) 

if for each element B of B , there is an element G  G , such that B G. If the 

elements of B are open sets, we call B a U-open refinement of G ; if they are 

closed sets, we call B a U-closed refinement of G.  

 

Definition  4.2   A collection G of subsets of a U-space X is locally finite if 

every point of X has a neighborhood that intersects only finitely many elements 

of G. 

Thus, for a U-space X and  a collection {Aα} of subsets of  X, {Aα} is locally 

finite if, for each x X, there exists a U-open set G containing x such that 

 G  A α   , for only a finite number of  ’s. 

Locally finite collections are also called neighborhood- finite. 

 

Example - 4.1   Let X = N and let U  consist of X,   and all subsets of N of 

the form Gn = {n, n + 1, n + 2, n + 3} and their unions. Then (X, U  ) is a 

proper U- space, since G1  G2 = {2, 3, 4}  U. Let C  denote the family of 
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sets Ck = {n N n k }, k N. Let xX. Then x = n0, for some n0  N. For 

the neighborhood, G n
= {n0, n0 +1, n0 + 2, n0 + 3} of x, G n kC   , only for 

k = 1, 2, 3, , n0 + 3.  

Hence C is locally finite.                  

 

Definition  4.3   A collection C of subsets of a U-space X is said to be 

countably locally finite if C  is a countable union of  locally finite collections 

Cn  i.e., C = 


=1n

Cn.  

 

Example - 4.2   Let (X, U  ) be the proper U-space of example 4.1. For each 

positive integer k and m, let C k, m = {n N 
k

n
m

 }, Let C
m

 = { C k, m }
k N

. 

For each m, C
m
is locally- finite.  

Therefore C = 
m

 C
m

 is countably locally- finite.    

                                            

Definition  4.4   A U-space X is paracompact if X is Hausdorff and every             

U-open cover C of X has a locally finite U-open refinement of C that covers 

X. 

Clearly, any compact Hausdorff U-space is paracompact.   
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We now give a non- trivial example of a paracompact  U-space. 

Example  4.3    Let X = Z and U = The collection of all An's and their unions, 

where for n Z, An = {xX : n  x  n + 3}. Then, U  is a U-structure  but not 

a topology, since A1 A2 = {xX : 2   x   4} which does not belong to U.   

Also, (X, U ) is Hausdorff. For, if m, n  Z, m   n, then let m < n, m   Am-3,              

n  An, and Am-3 An =  . 

 We shall now show that every U-open cover of X has a locally finite 

refinement. Let C be a U-open cover of X. For each xX, x An,x  Gx, for 

some An,xAn, where Gx is a member of C. ( Such An,x and Gx exist. Gx exists 

because C is a U-open cover of X. And, by definition, Gx is a union of a class 

of An's at least one of which must contain x. Call this An  An,x ).  

            Let A  = {An,x: xX}. Then A is a refinement of C which covers X. 

Let x0X and let G = A
n ,

0x . Then G is a U-open set containing x0 and G 

intersects only seven members of A,  

viz, A
3−n ,

0x  , A 2−n ,
0x , A

1−n ,
0x , A

n ,
0x , A 1+n ,

0x , A 2+n ,
0x , A 3+n ,

0x . 

Thus, A  is locally finite refinement of C which covers X. 

 Hence X is a paracompact U-space which is not a topological space. 

 

It is clear that an infinite number of such proper paracompact U-spaces can be 

similarly constructed. 
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 Our next example is a proper U-space which is not paracompact but in 

which every U-open cover has a locally finite refinement that covers X. 

Example 4.4  Let X = Z, fix xoZ. For each x  Z, let Ax ={xo, x, x + 1,x + 2}.                               

Let U be the collection of  , all Ax’s, x  Z and their unions. Then (X, U ) is          

U-space, but not a topological space. Since A 1+x   A 5+x  = {xo}  U. 

            Let C  be an U-open cover of X. Let xX. Then there is a GxC such 

that xGx and so x Ay, for some yX. Let D be the collection of all sets By’s 

such that for some yo, B
oy = A

oy , and for each y  yo, By = Ay – {xo}.  

             Then D is a refinement of C and covers X. Now Ay is a U-open set 

containing x and it is clear that Ay intersects only a finite number of By’s.  

Thus D  is a  locally finite refinement of C . 

            We now note that (X, U ) is not Hausdorff, since for each x, y   Z, 

Ax  Ay    .  

Hence X is not paracompact. 

 

We recollect that the usual U-space R is R with the U-structure consisting of 

all subsets of R of the forms (-∞,a) and (b, ∞ ) and their unions. 

Remark -  4.1   R with the usual topology is paracompact. But the usual                  

U- space R is not paracompact. We prove its truth below: 
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For C = {(-∞, a)|a R } is an open cover of R. If x R, and xG with G is                

U-open, then G is the form ]),(),[(
,


ji

ji ba − , for some ai’s, bj’s, and x 

belongs to some (-∞,ai) or, some (bj, ∞). 

 If D  is a refinement of C  which covers R, then D is a collection of sets 

of the form (-∞, c), where c < a, for each a with (- ∞, a)   C. Clearly, D is an 

infinite collection of U-open sets, and G meets infinitely many members of D. 

So D is not locally finite.  

Thus C  has no locally finite refinement.  

 

Let (X, U  ) be  a U-space and T   = T U be the topology generated  by U on X. 

Then we have the following theorem. 

Theorem  4.1    If (X, U ) is paracompact, then  (X, T U)= (X, T  ) is 

paracompact. 

Proof: Clearly (X, T  ) is Hausdorff if (X, U ) is Hausdorff. Let C be an open 

cover of X in (X, T  ). For each xX, there exists Gx in C such that xGx. 

Then Gx contains a set Hx such that xHx and Hx is the intersection of a finite 

collection of sets U1,x, U2,x,….,Ur,x in U. Choose any Ui,x and call it Ux. 

Let D = {Ux : xX} . Then, D is a U-cover of X.  

Since (X, U ) is paracompact, D has a locally finite refinement say D /  

which covers X. For each y in X, let yVy   D. Let Hy = Gy  Vy. 
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           Then C /  ={Hy: yX} is a open cover of X.  C /  is a locally finite 

refinement of C , since D /  is a locally finite refinement of D. Thus (X, T U) is 

paracompact. 

 

Our next theorems are generalizations of theorems for topological spaces. 

Theorem   4.2 ( [24], Theorem 9.1, p. 160,161) 

Every paracompact Hausdorff U- space X is normal. 

Proof: Let X be a paracompact U-space. Firstly, we shall show that X is 

regular. Let x X and B be a U-closed subset of X, where x B. Since X is 

Hausdorff, for every bB there exist two disjoint U-open sets Ub, Vb such that 

x Ub and b , Vb . So x bV .Then C = {Vb}bB  {X - B} is a U-open cover of 

X. Since X is paracompact, there exists a locally finite refinement D of C 

which is a U-open cover of X. Let E be the subcollection of D consisting of all 

those members of D which intersect B. Then E is a U-open cover of B. Since 

for every bB, x bV , so for every EE, x  E  . 

            Let W = 
E

E , then W is U-open set of B. We shall now show that  

 


=
E

EW . Obviously, WE
E







. If possible, suppose x W  . Then for every     

U-open set G containing x, G W   . since E  is locally finite, G intersects 

only a finite number of members say E1, E2, E3,------,Er of E.  

          Let W1= E1  E2  E3  ------- Er and W2 = 
rEEEEEE

E

....,,.........,, 321




. 
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 So, G W2 =  . This implies that x  W 2 .  Since W  = W 1  W 2,                               

x  W 1 = E 1  E 2  E 3  ------- E r. So, 



E

EW   

Thus, 



E

EW . But this is a contradiction, since x E  for each E. So, x W . 

Hence W  is a U- open set containing x. Therefore X is regular. 

          Now let A and B be two U-closed subsets. Since X is regular, for every 

aA and for B there exist disjoint U-open set Ua and Va such that aUa and 

B  Va. One merely repeats the same argument, there exists a U-open set 

W=
E

E  containing A, where (i) E is a locally finite U-open cover of A and (ii) 

Every E  B = . Since E is locally finite, 
−



=
E

EW , and B W .Hence X is 

normal.  

 

Theorem 4.3 ([24], Theorem 9.2)  

Every U-closed subspace of a paracompact U-space is paracompact. 

Proof: Let X be a paracompact U-space and Y a U-closed subspace of X. 

Obviously, Y is Hausdroff. Let C /   = { 
/C } be a U-open cover set of Y. Then 

for each YCC = 
/

, where C is a U-open set of X. Now suppose                   

C = { C }. 

           Then D = {C  } {Yc} is a U-open cover of X. Since X is  

paracompact, there exists a locally finite U-open cover E of X which is a 

refinement of D . G is the subcollection of those members of E which are not 
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subsets of Yc and G is refinement of C. For this reason G is a U-open cover of 

Y and a refinement of C / . Since E is locally finite, G is locally finite. 

Hence Y is paracompact. 

 

Remark- 4.2. A U-subspace of a paracompact U-space need not be  

paracompact. 

Since this statement is true about topological spaces (see [24], p. 108,161), it is 

also true about U-spaces.  

For proof, we need to define a special U-structure on R which is called the 

lower limit U-structure. This U-space is denoted by Rl. 

 

Definition 4.5  Let C be the collection of  subsets of the form                                      

[a, b) = {n a x b  }, where a < b, the U-structure generated by C is called the 

lower limit U-structure on R.   

                 

Theorem 4.4  Product of two paracompact U-spaces need not be                  

paracompact. 

Proof: As for topological spaces one can be shown that the U-space Rl is 

paracompact, but Rl   Rl  is not normal, and hence, not paracompact. 
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Our next theorems generalize a few more results for topological spaces. The 

proofs however are almost similar to those for topological spaces. So, we omit 

proofs of some of these theorems in some cases. 

Theorem  4.5 ([24], Lemma 9.3)   Let X be a regular U-space and let C be a   

U-open cover of X. Consider the following conditions on C: C has a 

refinement which is 

      (i)  a U-open cover of X and countably locally finite, 

      (ii) a cover of X and locally finite, 

      (iii) a U-closed cover of X and locally finite, 

      (iv) a U-open cover of X and locally finite. 

Among the above four conditions on C, the following implications hold;                 

(iii)   (iv)  (i)   (ii). 

Proof: It is trivial that (iv)   (i). 

(i)   (ii)   

Let G be a U-open cover of X. Let B be an U-open refinement of G that 

covers X and is countably locally finite i.e. B =   Bn ,where B is a  locally 

finite. Let Vi = 
BU

G  and for each n N and each G  B, define  

Sn(G) = G-
ni

iV


. 

          Let Cn = {Sn(G)│G   Bn }. Then Cn is refinement of Bn, because               

Sn(G)  G, for each G  Bn Let C =  Cn . We shall show that C is a locally 

finite collection refinement of G, covers X. Suppose x X . We shall show that 

for any Sn(G), xSn(G) a neighborhood of x that intersects only a finite 
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elements of C . Since B covers X, there is a smallest positive integer number 

n0 such that x G  B
0n . Since x does not belong to any member of B

i
 for        

i < n0,  x  
0nS (G)   C. Since each collection Bn is locally finite, we can 

choose for each n = 1, 2, 3, ..........n0 a neighborhood Wn of x that intersects 

only finitely many members of Bn .Now if Wn intersects the member Sn(V) of 

C, Wn must intersect the member V of Bn , since Sn(V) V. 

           Therefore, Wn intersects only finitely many members of C
 . 

Furthermore, because G  Bn
 
, G does not intersect any  element of C n , for  

n > n0. As a result, the neighborhood  W1  W2  W3  ------------  Wn
0

 G of x 

intersects only finitely many elements of C. 

(iii)   (iv)  

           Let G be a U-open cover of X. Using (iii) Choose B  a refinement of G  

that is locally finite and a U-closed cover of X. Now we consider for every             

B  B a U-open set D(B) B that the collection {D(B)|B  B }is also locally 

finite refinement of G. Since B is locally finite. For every xX, there exist a 

neighborhood Nx of x that intersect finite members of B. Then {Nx | xX} is a 

U-open cover of X. 

           According to (iii) There is a refinement C of {Nx | xX} which is a               

U-closed cover of X. Clearly, for every CC   intersects finite members B  B. 

For each B  B, let C (B) = {C : C   C  and C  X - B}.  
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Again let, E(B) = X - 
)(BC

C


 . Then 
)(BC

C


 is closed by a lemma 8.1 of [24] 

which has the following statement:  

“Let {Aα} be locally finite collection of subsets of X. Then  

          (a) Any subcollection of {Aα}  is locally finite.  

          (b)  A  is locally finite. 

          (c) 






 AA =  .”  

          So E(B) is an U-open set. According to the definition E(B)  B. The 

collection {E(B)}is a U-open cover of X. For each BB , F(B)G, where 

F(B) B. 

          Let D = {E(B)  F(B)|B B }. Then the collection D is refinement of G 

and U-open cover of X. Since B   E(B)  F(B) and B is a U-open cover of  X. 

Suppose  xX. Now we shall show that D is locally finite. Since C is locally 

finite, there exists a neighborhood W of x that intersects only a finite number 

of members of C, (say) C1, C2, C3, ------, Cn. Since C is U-cover of X, so,           

W  C1  C2  C3  ------ Cn . 

          Now if any member C of C  intersects the set E(B)  F(B), then  

C  X - B. Therefore C intersects B. Since C intersects a finite number of 

members B, so C will intersect at most this number of members of D. 

Therefore W will also intersect finite number of members of D . 

          Now if we write E(B)  F(B), the collection D = {D(B)|B  B} is 

refinement of G and is a locally finite open cover of X.  
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Comment  4.1    The properties (i) - (iv) of the above Theorem  4.5 can also be 

stated as :  

          (a) Each U-open covering of X has a U-open refinement that can be 

decomposed into an at most countable collection of locally finite families of            

U-open sets. 

          (b) Each U-open covering of X has a locally finite refinement, consisting 

of sets not necessarily either U-open or U-closed.  

     (c) Each U-open covering of X has a U-closed locally finite refinement.    

                (d) X is paracompact. 

Dugunji [11] uses these properties in ( [11], Theorem 2.3) 

 

Theorem   4.6  ([24], Theorem 9.5)  If a locally compact Hausdorff U-space X 

is a countable union of compact U-spaces then X is paracompact. 

Proof: Let X be a locally compact Hausdorff U-space and X = 
n

nC , where Cn 

is compact. Let for each n, Cn  Cn+1 (We can assume this, for otherwise we 

can consider C´n instead of Cn where C´n = 
n

i

iC
1=

). At first we shall show that  

X =  Wn , where Wn is U-open, nW   is compact and nW  Wn+1. Let xC1 

and let Gx be a neighborhood of x, where xG  is compact. Then {Gx}
1Cx is a          

U-open cover of C1. Since C1 is compact, there is a finite U-open subcover 

{
nxxx GGG ,,,

21
−−−−−− } of C1. Let W1 = 

n

i

xi
G

1=

. 
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          Therefore 1W is compact, this implies that 12 WC  is compact. Suppose 

W2 is a U-open set of 12 WC   obtained in the same way as the U-open set W1 

of C1. So 2W  is compact, C2  W2 and 1W  W2. Let, for each m< n, the U-open 

set Wm be defined in a similar member such that Cm  Wm, mW  is compact and 

mW   Wm+ 1. Proceeding as before we get for each positive integer n 2 a        

U-open set Wn of Cn 1−nW  , where nW  is compact and nn WW −1 . 

          Let W  = {G  } be a U-open cover of X and  Kn = nW -Wn-1. Then Kn is 

compact. Now for every x Kn , there is a neighborhood Vx of x such that for 

any , Vx  G .Assume that Vx  Wn+1, since nW  Wn+1 and Vx  Wn-2 = , 

since 12 −−  nn WW .Since Kn is compact, so there is a finite cover  

Dn = {
nxxx VVV −−−−−

2
1
, } of Kn. We denote by V   the union of the finite covers 

Dn of  Kn for all n.  Then V   is a U- open cover of X and since Vx  V  is 

contained in a G  W .  V  is refinement of W. Suppose xX. Then there 

exists a least natural number n such that x   nW . Since xWn - 1, so,  x Kn. As 

a result there is a neighborhood V  V  which intersect only finite member of 

those members of V   which covers Kn-2,    Kn-1,Kn and Kn+1. 

 

Theorem  4.7 ([24], Theorem 9.6)   A locally compact Hausdorff U-space 

with a countable basis is paracompact. 
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To prove the next theorem we need a lemma. 

Lemma 4.1 ([11], Lemma 3.3)  If X, Y are U-spaces with X normal, and       

p: X→ Y is a U-continuous U-closed surjection, then Y is too normal. 

Proof: Let A and B be two disjoint U-closed sets in Y. Since p is                            

U-continuous, p 1− (A) and p 1− (B) are disjoint U-closed sets in X. X being 

normal, there are disjoint U-open sets G and H in X such that p 1− (A)  G, 

p 1− (B)  H. Since p is U-closed, p(G) and p(H) are disjoint U-open sets in Y 

whith A  p(G), B p(H). Thus Y is normal. 

 

Theorem  4.8 ([11], Theorem 2.6)   Every U-continuous closed image of a 

paracompact U-space is paracompact. 

Proof:  Let X and Y be U-spaces with X paracompact, and let p: X →Y be               

U-continuous U-closed surjection mapping. Let {G   A } be any U-open 

covering of Y. Since X is normal and p is U-continuous, U-closed and 

surjection, Y is normal. By Theorem 4.5 and comment 4.1it suffices to show 

that{G   A } has an U-open refinement which can be decomposed into at 

most countably many locally finite families. We assume A is well-ordered and 

begin by constructing a U-open covering {V ),(, nn   A    Z + } of X such 

that:  

          (i). For each n, {V  n,  A } is a U-covering of X and a precise locally 

finite refinement of {p −  )(1 G  A }. 

          (ii). If    then p( 1, +nV  ) = )( , nVp  . 
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Proceeding by induction, we take a precise U-open locally finite refinement of       

{p )(1

G− } and shrink it by normality of X to get {V 1, }. Assuming {V i, } to 

be defined for all i   n, let W 






−−

+ −= VppGpn ()( 11

1, n, ). Each W 1, +n is                

U-open, since by local finiteness 


V n, is U-closed and p is a U-closed map. 

          Furthermore,{ W 1, +n   A } is a U-covering of X: given xX, let 

 be the first index for which x p )(1

G− ; then x   W 1, +n , since                     

p 1− p (V n, ) )(1

Gp− for each  . Taking a precise, U-open locally finite 

refinement of { W 1, +n   A }, shrink it to get { 1, +nV  }. Clearly, condition 

(i) holds, and since 1, +nV   is not in the inverse image of any p( nV , ) for   , 

condition (ii) is also satisfied. 

 

          For each n and  , let H n, = Y – p(






nV , ) which is an U-open set.            

We have  

          (a) H n,  p( nV , )  G   for each n and  . Indeed,  

 p 1− ( H n, ) = X - p 1− p(






nV , )  X - p 1− p(X - nV , )  nV ,    p 1− ( G  ). 

          (b) H n,  H n, =  for each n whenever   .                                                 

In fact, y H n, py  ( nV , ) and is in no other p( nV , ). 

          c) {H ),(, nn   A    Z + } is an U-open covering of Y. Let yY be 

given; for each fixed n there is, because of (i), a first n with yp( nn
V , ); 
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choosing now }{min += Znnk  , we have yp( kk
V , ). If 

k  , then the 

definition of 
k  shows yp( 1, +kV  ); if 

k  , then by (ii), we find that y 

p( 1, +kV  ); therefore we conclude that y  H 1, +kk . 

           To complete the proof, we need only modify the H n, slightly to assure 

locally finiteness for each n. Choose a precise U-open locally finite refinement 

of { p 1−  (H ),(), nn   A   Z + }, and shrink it to get an U-open locally finite 

covering {K n, } satisfying p( nK , )  H n, . For each n, let S
n
= {y some nbd 

of y intersects at most one H n, }; S
n
is U-open and contains the U-closed 




p ( nK , ) = p (


nK , ),so by normality of Y we find an U-open G
n
with 




p ( nK , )  G
n

 nG   S
n
.The U-open covering {G

n
 H ),(, nn   A   Z + }, 

with the decomposition { G
n

 H  n,  A } for n = 1, 2, 3, ------- satisfies the 

conditions of Theorem 4.5 and Comment 4.1 for the given {G  }. 

 

Definition  4.6    Let  G = {G   A } be a covering of U-space X. For any 

B  X the set  { G   GB } is called the U-star of B with respect to G , 

and is denoted by St (B, G ). 

 

Definition  4.7   A  U-covering B  is called a U-barycentric refinement of a    

U-covering G  whenever the covering {St (x, B ) Xx  } refines G.  
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Theorem  4.9  ([11], Theorem 3.2)     Let X be normal U-space, and                  

G = {G   A } a locally finite U-open covering. Then G has an U-open 

barycentric refinement. 

Proof:  Shrink G to an U-open covering B = {V   A } such that  GV   

for each  ; clearly, B is also locally finite. For each xX, define                    

W(x) =  {  } VxG { C  VxV  }.  

            We show that B* = {W(x) xX} is the required U-open covering. 

Note that each W(x) is U-open: the locally finiteness of B assures that the first 

term is a finite intersection and that the last term, C  V  is a U-open set. 

Next, B* is a U-covering, since x W(x) for each xX. Finally, fix any x  X 

and choose a V containing x  . Now, for each x such that x  W(x), we must 

have x V  also, otherwise W(y)   C V ; and because x V , we conclude 

that W(x)  G  . Thus, St(x  , B* )  G  , and the proof is complete. 

 

Definition  4.8    A U- covering B = {V  B } is called a U-star refinement 

of the U-covering G  whenever the U-covering {St ( V  , B  B } refines 

G.   

 

Theorem  4.10   ([11], Theorem 3.4)    A U-barycentric refinement B* of a        

U-barycentric refinement B  of G  is a U-star refinement of G.  
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Theorem  4.11  ([11], Theorem 3.5)   A T1-U-space X is paracompact if and 

only if each U-open covering has an U-open barycentric refinement. 

Proof:  Only the sufficiency requires proof. We first show that any U-open 

covering G = {G   A } has a refinement as in Theorem- 4.5 and Comment 

4.1. 

           Let G*  be an U-open star refinement of G and let { G n 0n } be a 

sequence of U-open coverings, where each G 1+n  U-star refines G n and G 0 

U-Star refines G* . Define a sequence of U-covering inductively by B1= G 1 ,           

B2 = {St(V, G2 ) V  B1}......, Bn = {St(V, Gn ) V  Bn-1}, ........ 

           Each Bn is an U-open refinement of  G  ; in fact, each covering            

{St(V, Gn ) V  Bn} refines G   : this is true for n = 1 and, proceeding by 

induction, if it is true for n = k – 1, its truth for n = k follows by noting that 

whenever V = St(V  , Gk ) for some V    Bk-1 , then St(V  , Gk ) =          

St[St(V  ,Gk ), Gk ] St(V  , Gk-1 ) because Gk is a U-star  refinement of  Gk-1 .  

           ow well-order X and for each (n, x) XZ  +  define                                  

En(x) = St(x, Bn) -   {St(z, Bn+1 ) z precedes x}.                                                   

Then D = {En(x) (n, x) XZ  + } is a U-covering: given p  X, the set                    

A = {z 


=


1i

p St(z, Bi )} is not empty, since p   A; if x is the first member of 

A, then p  St(x, Bn) for some nZ+ and p  St(z, Bn+1 ) for all z preceding x, so           

p  En(x). Moreover, since Bn refines G 0, we find that D refines G*.    
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           Each G  Gn+1 can meet at most one En(x): for, if G En(x)   , then 

there is a V  Bn with x   V and V G    , so x V G  V  Bn+1 and                 

G  St(x, Bn+1). Thus, if En(x) is the first set G meets, it cannot meet any En(p) 

for p following x. Now let Wn(x) = St(En(x), Gn + 2 ).  

Then B * = {Wn(x) (n, x) XZ  + }  is clearly an U-open covering of X. 

Furthermore, B * refines G   because  D  refines G* .  

           Finally, for each fixed n Z+, the family {Wn(x) xX} is locally finite: 

indeed, each G  Gn + 2   can meet at most one  Wn(x), because  G Wn(x)   , 

if, and only if, En(x)  St(G, Gn + 2 )    and St(G, Gn + 2) is contained in some 

G    Gn - 1  which we know can meet at most one En(x). 

            The theorem will follow from Theorem 4.5 and Comment 4.1, once we 

show that X is regular U-space. To this end, let B   X be U-closed and xB. 

Since in a T1-U-space each point is a U-closed set, G = {X – x, CB} is an       

U-open covering. Let B be an U-open star refinement. Then St(x, B) and  

St(B, B) are the required disjoint neighborhoods of x and B: for if there were a 

V containing x and a V / meeting B such that V   V /
  , then St( V, B ) would 

contain x and points of B, which is impossible. The theorem is proved. 

 

Definition  4.9  Let G = {G   A } be an U-open covering of X. A 

sequence {Gn n Z+} of U-open coverings is called U-locally starring for 

G  if for each xX there exists an nbd V(x) and n Z+ such that                         

St(V, Gn )  some G  . 
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Theorem  4.12 ([11], Theorem 3.7)  A T1-U-space  is paracompact if and only 

if each U-open covering G there exists a sequence {Gn n Z+} of U-open 

coverings that is U-locally starring for G .   

Proof:  “Only if” is trivial. “If”: We can assume that Gn + 1   Gn for each         

n Z+. Let B = {V open in X  GVn [:  Gn ]  [ St(V, Gn )  some G  ]}. 

For each V  B, let n(V ) be the smallest integer satisfying the condition. 

Because {Gn n Z+} is locally starring for G, it follows that B is a U-open 

covering; we will show that B is in fact a U-barycentric refinement of G. 

            Let xX be fixed, let n(x) = min{n(V)  VXx ()(  B )}, and let          

V   B  be a set containing x such that n(V  ) = n(x).  

For any V  B containing x, we have n(V)   n(x), and consequently                                        

St(x, B )  {St(x, Gi ) i n(x)}. Since Gi + 1   Gi for each i, this shows 

St(x, B )  St(x, Gn(x) )  St(V  , G )( Vn )  some G  . 

Therefore by Theorem-4.11, X is paracompact. 
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CHAPTER - 5 

Projectives in some categories of Hausdorff U-spaces 

 

Introduction 

            We have started this chapter with some definitions in the theory of 

categories. We have generalized to U-spaces the concepts of projective 

topological spaces, Stone Čceh compactification, perfect maps, extremally 

disconnected spaces. We have also generalized to U-spaces some results on 

topological spaces occurring in [8], [10], [13], [14], [24] , [31], [33], and [37]. 

These concepts and results have been used later in the chapter. 

            We have next introduced the notion of projectiveness in some 

categories of Hausdorff U-spaces. A few important properties of such U-spaces 

have been studied. A number of interesting examples have been constructed to 

prove non- trivialness of such results.  

            For most of the cases the proofs of the above generalizations to            

U-spaces run parallel to those for topological spaces. But we have given the 

proofs in detail to show that these really do hold in the present cases. 

            We have constructed 2 examples of proper projective U-spaces which 

are locally compact but not compact and two examples of proper projective 

compact U-spaces.  

In this chapter a U-space will mean a Hausdorff U-space, unless otherwise 

mentioned. 
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                      Projectives in some categories of Hausdorff U-space 

 

Definition  5.1   A category consists of 

            (i)   A class C of objects A, B, C,…..  

            (ii)  For each pair of objects A, B a set hom(A, B) whose elements are 

called morphism, with the property that  

            (a)  hom(A, B) and  hom(B, C) implies there exists  hom                

(A, C) which is written      =   ; 

            (b)  For each A C, there exists 1Ahom(A, A) such that for each B  

C and for each  hom(A, B),  = 1A, and  =1B , 

            (c) Let  hom(A, B),  hom(B, C),  hom( C, D) then                       

 (   ) = (  ) . 

If   =    =   then   is an epimorphism or, epic (onto); 

If   =    = , then  is a monomorphism or, monic (one – to – one). 

 

Definition  5.2  [8]( p- 89)   Let A and B be groups and C be a subgroup of A 

and B. Let two maps be  : A→C and  : B→C. We consider the different 

ways of completing them to a commutative square. We can regard these 

commutative squares as objects of another category, a morphism being a map 

between the new vertices so as to obtain a wedge with commutative faces. A 

final object in this category is called pullback of  ,  . 
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Definition  5.3  [8]( p- 90)   Let A and B be two groups and C is a subgroup of 

A and B, then their pushout is the ‘free product of A and B amalgamating C ’. 

We note that the product of A and B is a special case of the pullback, obtained 

by taking C to be a final object, and the co product is a special case of the 

pushout obtained by taking C to be an initial object. Sometimes the pullback is 

called ‘fibre product’ and the pushout ‘fibre sum’. 

                                                                

Definition  5.4 [14]( p- 3)  A U-space P is projective, if for any pair of          

U-spaces, X, Y and pair of U-continuous maps h: Y →X and f: P →X, with h 

onto, there exists a U-continuous map r: P→ Y such that hr(p) = f(p) for every 

pP. 

                                                           Y 

                                                 r              h 

                                          P                   X     

Definition  5.5  [37]( p- 7)   A U-continuous function f: X →Y where X and Y 

are arbitrary Hausdorff U-spaces is called U-perfect if f is U-closed and the set 

f–1(y) is compact for each y in Y. 

 
P B 

C A 

    

 

 
C A 

Q B 

    

  

f 
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Definition  5.6  [13]( p- 482)    A U-space X is extremally disconnected if the 

closure of every U-open set is U-open. 

 

Definition  5.7    A U-space Y is an extension U-space of another space X if X 

is dense in Y. 

 

The generalization of the construction of the Stone- Čech compactification 

for a completely regular U-space 

                Let X be a completely regular T1-U-space. Let {f


}
A

 be the 

collection of all bounded U-continuous real-valued function on X, indexed by 

some index set A.  

For each  A, choose   I


= (- , sup f


(X)], J


= [inf f


(x),  ) regarded as                   

U-subspaces of the usual U-space R. Then define h:X→ 
A

I


 by the rule                 

h(x)= (f  (x))
A
 . Since X is completely regular T1-U-space, for two distinct 

points x1, x2, {x2} is U-closed and x1 {x2} so there exists f


such that  

 f


(x1)  f


(x2). 

Hence h(x1)  h(x2). Therefore h is one-one. Since f


: X→I


is U-continuous, 

it follows from the definition of 
A

I


 that h is U-continuous.  

 We shall show that h is U-open. Let V1 be a U-open set of X and 

y0h(V1). Let x0V1 such that h(x0) = y0. Since X is completely regular, there 

exists f  such that f   (x0) (- , sup f  (X)) and f   (X - V1) = sup f  (X). Let            
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V2 =
1−

 (-  , sup f


(X)). Then V2 is U-open in 
A

I


 , and  W = V2  h(X) is a    

U-open set of h(X). 

           We shall show that y0W h(V1). Since y0h(V1) h(X) and  h(x0) = 

f


(x0), y0 = h(x0)= 1−

 f (x0)  V2. Therefore y0W.  

           Let yW. Then for any xX, y = h(x) and  (y) (- , sup f


(X)). 

Since  (y) =  h(x) = f


(x) and f


(X – V1) = sup f


(X), so xV1, i.e.,             

y = h(x) h(V1). 

Therefore h: X→ 
A

I


 is an U-imbedding. Hence ( )(Xh , h) is a 

compactification of X. )(Xh  is usually written  (X) and is called the  

generalized form of Stone- Čech compactification of X.  

 

Definition 5.8 [37]( p- 8)   Let P be the category of all paracompact            

U-spaces and perfect U-maps and T be the category of all Tychonoff U-spaces 

and  perfect U-maps. It is to be noted that both of these categories contain C, 

the category of compact U-spaces and U-continuous maps, as a full 

subcategory. P is also a full subcategory of T.   

 

 

Theorem  5.1 [37]( p- 8)    The category P has pullbacks.    

Proof:  Let f: X→Z and g: Y→Z be two morphisms in the category P (that is 

X, Y, Z be paracompact U-spaces and f, g are perfect U-maps). We have to 

show the existence of a pullback diagram for f and g. 



 107 

 

q2 
P* Y 

Z X  

 q1  G 

F 

Let P = {(x, y) X Y: f(x) = g(y)} and p1 and p2 be the projection on X 

and Y respectively. Suppose there exist p1: P→X and p2: P→ Y such that 

fp1 = gp2.   

Define h: P→ X Y as follows:  

h(t) = (p1(t), p2(t)), tP. Since fp1 = gp2, h(t) P that is, h:P→P such that 

p1h = p1 and p2h = p2. It is easy to see that the map h is unique. Thus the 

diagram 

                                         

is a pullback for f and g. We show that this diagram belongs to P, that is, that 

the maps p1 and p2 are U-perfect. 

Consider the pullback diagram 

 

                                                       

 

for the maps F:  X →   Z and G:  Y →  Z where F and G are the 

extensions of the map f and g onto  X  and  Y respectively (  X ,  Y 

and  Z are the  generalization of Stone- Čech compactifications and X , Y  and 

Z  are reflector maps of X, Y and Z respectively).   

We have F X = Z f, G Y = Z g and P*= {(x*, y*)  X  Y: F(x*) = 

G(y*)}. q1 and q2 are projections of P* to  X and  Y respectively. 

p2 
P Y 

Z X 

 p1  g 

f 
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Again, let p1*:  P →  X, p2*:  P →  Y be the extensions of p1 and p2 

onto  P. Hence X p1 = p1* P , Y p2 = p2* P . Since fp1 = gp2, Z fp1 = Z  gp2. 

Note that Fp1* P = F X p1 = Z fp1 and Gp2* P = G Y p2 = Z gp2.  

           Therefore, Fp1* P  = Gp2* P . Since P (P) is U- dense in  P  

we have Fp1* = G p2* on  P. 

From the definition of pullback there exists a (unique) mapping h:  P→P* 

such that p1* = q1h and p2* = q2h. Again, for the maps X p1: P  →  X and    

Y p2:P →  Y , we have F X p1 = G Y p2 (this equality is already noted earlier). 

From the definition of pullback once again we get a map k: P →P*such that            

X p1= q1k and Y p2 = q2k. It is easy to see that the map k is as follows:  

k(x, y) = ( X p1(x, y), Y p2(x, y)) = ( X (x), Y ( y)), (x, y) P. k clearly turns 

out to be a U-homeomorphism into P*. Moreover it is not difficult to notice 

that k = h P . Now k is a U-homeomorphism of P onto k(P)  P*. From the 

property of generalization form of Stone- Čech compactification it follows that  

(i) h(  P - P (P))  )(Pk - k(P)  P*. 

Now q2k = Y p2, that is, 

                                                             

is a commutative diagram. So we consider the pullback diagram for                      

q2 : P*→  Y and Y : Y →  Y say 

p2 
P Y 

Y P
*
 

 k  Y 

q2 



 109 

 

                                                                                           

Where W is given by {(s, y) P* Y: q2(s) = Y (y)} and 1 , 2  are the 

respective projections to P* and Y. Since q2(s) = q2(x*, y*) = y*, q2(s) = Y (y) 

implies y* = Y (y).  

Consequently, W = {((x*, Y (y)), y) P* Y: Y (y)= y*} 

                             = {((x*, Y (y)), y) (  X  Y )  Y : F(x*) = G( Y (y))}. 

If F(x*) = G( Y (y)) then F(x*)= G( Y (y)) = Z g(y). Since f is a            

U-perfect map, F(  X - X (x))   Z - Z (Z). As a consequence, x*  X (x), 

that is, x* = X (x) for some xX. So we have  

W = {(( X (x), Y (y) ), y) (  X  Y )  Y : F( X (x)) = G( Y (y))}.                                    

Again Z g(y) = G( Y (y)) = F( X (x)) = Z f(x) and this naturally implies                  

f(x) =  g(y).    

We then get,  

          (ii)  W = {(( X (x), Y (y) ), y) (  X  Y )  Y : f(x) = g (y)} 

                = {k(x, y),y): (x, y) P and p2(x, y) = y}.  

Since Y p2 = q2k there exist a unique map j: P→W as follows: 

                  j(x, y) = (k(x, y), p2(x, y)), (x, y)P. 

Easy to see from (ii) that j(P) = W. In fact j is a U-homeomorphism of P and 

W. Now W is, by construction, a U-closed subset of P* Y which is 

T T2 
W Y 

Y P* 

 TT1  Y 

q2 
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paracompact U-space (as P* is compact U-space and Y is paracompact          

U-space). As a result W is paracompact U-space. This makes P paracompact 

U-space and J is a U-isomorphism of P and W in the category P. We then 

obtain that the diagram  

                                                      

is a pullback diagram. Note that Y  is a one-one map, that is, Y  is a                          

U-monomorphism. From the definition of inverse image we see that                        

P = q2
-1(Y) as a sub object of P*.In terms of sets this means that  

k(P) = q2
 – 1( Y  (Y)). As a result  

q2(P*- k(P))   Y - Y  (Y). We know from (i) that  

h(  P - P (P))  )(Pk - k(P)  P*- k(P), so that 

p2*(  P - P(P)) = q2h (  P - P (P)) =  

                                                 q2[h(  P - P (P))]  q2(P*- k(P))   Y - Y  (Y). 

Hence, by the characterization of Henriksen and Isbell mentioned at the 

beginning, p2 is a U-perfect map. Similarly, p1 is a U-perfect map. 

 

 

 

 

p2 
P Y 

Y P* 

 k  Y 

q2 
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The proof of Theorem - 5.1 also yields the following theorem. 

We generalize the theorems, Lemmas and Corollary of [13] ( p- 482- 484)  

Theorem 5.2   In any category of U-spaces and maps satisfying conditions   

                (a) all admissible maps are U-continuous, 

                (b) if A is an admissible space and {p, q} is a two element space, 

then A{p, q} and the projection map of this U-space onto A are admissible, 

                (c) if A is an admissible space and B is a U-closed subspace of A, 

then B and the inclusion map of B into A are admissible, a projective U-space 

is extremally disconnected. 

Proof: Let X be a projective U-space in such a category. Let G be any U-open 

subset of X; we must prove G is U-open.  

In X {p, q} consider the U-closed set  

Y = ((X - G)   {p}) (G  {q}), and its inclusion map i. Let   be the 

projection of X {p, q} onto X. Our hypothesis on the category implies that           

  o i is an admissible map of Y onto X and that the identity   is an admissible 

map of X into X. Since X is projective U- space, there is an admissible map   

of X into Y such that   =   o i o  . Because  o i is one -to-one on G {q} it is 

clear that  (x) = qx, for xG; from the continuity of   follows  

 (x) = qx, for x G .Similarly, for x G ,  (x) = px, .  

Thus we have proved G = -1(G  {q}). Since   is U-continuous and G  {q} is  

U-open in Y,  G  is U-open in X as required. 
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Theorem  5.3  In an extremally disconnected U-space no sequence is 

convergent unless it is ultimately constant. 

Proof: Suppose that the sequence {xn} converges to p in the extremally                                   

disconnected U-space X. Assume this sequence is not ultimately constant, we 

shall deduce a contradiction.  

First we construct inductively a disjoint sequence {Ui} of U-open sets in 

X such that each Ui contains a member xn(i) of the given sequence, where {n(i)} 

is an increasing sequence of integers. Let n(1) be an index for which xn(1)  p, 

and choose a U-open set U1 such that xn(1) U1 but p 1U . Suppose we have 

chosen disjoint U-open sets U1,U2,U3,……..,Uk and increasing integers 

n1,n2,n3,……..,nk such that xn(i) Ui and p iU  for i = 1,2,3,……..,k. Then       

V = X - ( kUUUU  ...........321 ) is an U-open neighborhood of p, so xqV 

for all sufficiently large q. By a suitable choice of n(k + 1) we shall have n(k + 1)> 

nk, xn(k + 1) V but xn(k + 1)  p since the original sequence is not ultimately 

constant. Choose an U-open set W such that 

 xn(k + 1) W but p W , and let Uk+ 1 = W V. This completes the inductive 

construction. 

Let G = qU 2 . Since X is extremally disconnected U-space, G  is an         

U-open set, and p G  being the limit of {xn(2q)}. Thus G  is a neighborhood of 

p, so xr G  for all large r; in particular, xn(s) G  for some odd integer s. Since 

Us is a neighborhood of xn(s), Us  G is not empty, contrary to the definition of 

G and disjointness of the U’s.  
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Definition 5.9   A U-space is said to have a countable basis at x if there is a 

countable collection B of neighborhoods of x such that each neighborhood of x 

contains at least one of the elements of B. 

 A U-space that has a countable basis at each of its points is said to satisfy the          

first countability axiom, or to be first-countable.  

 

Corollary 5.1   In a category in which all Hausdorff U-spaces satisfy the first 

axiom of countability and properties 

            (a) all admissible maps are U-continuous, 

            (b) if A is an admissible space and {p, q} is a two-element space, then  

A{p, q} and the projection map of this space onto A are admissible, 

            (c) if A is an admissible space and B is a U-closed subspace of A, then 

B and the inclusion map of B into A are admissible hold, then every projective 

Hausdorff U-space is discrete topological Hausdorff U-spaces. 

 

Lemma  5.1   Let A and E be U-spaces. Suppose f is a U-continuous map of E 

onto A such that f(Eo)  A for any proper closed subset Eo of E.  

Then, for any U-open set G  E, f(G)  ( )A f E G− − . 

Proof: There is nothing to prove if G is empty. Suppose otherwise, let a be any 

point of f(G), and let N be any U-open neighborhood of a.  

The lemma will follow if we prove that N  (A - f(E-G)) is not empty. Because  

G f-1(N) is a nonempty U-open subset of E, f(E – (G f-1(N)))  A.  
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Take xA - f(E – (G f-1(N))); clearly xA - f(E – G). Since f is onto, x = f(y) 

where evidently y(G f-1(N)). Therefore x = f(y) f (f-1(N)) = N, 

 so xN   (A - f(E - G)), and the latter set is not empty.  

 

Lemma  5.2    In an extremally disconnected U-space, if U1 and U2 are disjoint            

U-open sets, then 1U  and 2U are also disjoint. 

Proof: First, 1U  and U2 are disjoint because U2 is U-open; then 1U  and 2U  are 

disjoint because 1U  is U-open. 

 

Lemma  5.3  Let A be an extremally disconnected Hausdorff compact                

U-space, and let E be a compact U-space. Suppose f is a U-continuous map of 

E onto A such that f (Eo)  A for any proper U-closed subset Eo of E.  

Then f is a U-homeomorphism. 

Proof: We need only show that f is one-to one. Suppose, on the contrary, that 

x1 and x2 are distinct points of E for which f(x1) = f (x2). Let G1 and G2 be 

disjoint U-open neighborhoods of x1 and x2 respectively. Both the sets E - G1 

and E - G2  are compact, so A -f (E – G1) and A - f(E - G2) are U-open.  

             The latter sets are disjoint because E = (E – G1)   (E – G2). By the 

Lemma- 5.2, 1( )A f E G− −  and 2( )A f E G− −  are disjoint. On the other hand, it 

follows from Lemma- 5.1 that f(x1) =f (x2) is a point common to these sets. 

This contradiction establishes Lemma- 5.3. 
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Lemma  5. 4 [13]( p- 484)   Let A and D be  compact Hausdorff U-spaces, and 

let f  map D continuously onto A. Then D contains a compact U-subspace E 

such that f(E) = A but f(Eo)  A for any proper U-closed subset Eo of E. 

Proof: This is a well known consequence of Zorn’s Lemma. 

 

Theorem- 5.4   In the category of compact U-spaces and U-continuous maps, 

the projective U-spaces are precisely the extremally disconnected U-spaces. 

Proof: To prove that all projective U-spaces in the category are extremally               

disconnected U-space, we have only to verify the conditions of Theorem-5.2. 

We turn to the opposite inclusion. 

            Let A be an extremally disconnected compact U-space, let B and C be  

compact U-spaces, let f be a U-continuous map of B onto C, and let   be a              

U-continuous map of A into C. We must prove that there exists a U-continuous 

map   of A into B such that  = f . 

            In the space A B consider D = {(a, b) )(a =f(b)}. This set is clearly 

closed and therefore compact U-space. Since f is onto, the projection 1  of 

AB onto A carries D onto A. By Lemma- 5.4 there is a U-closed subset E of 

D such that 1 (E) = A but 1 (Eo)  A for any proper U- closed subset Eo of E. 

Let   be the restriction of 1  to E. Lemma-5.3 asserts that   is a                                  

U-homomorphism. Let   = 2  -1, where 2 is the projection of A B into B; 

this is the required map. Suppose aA; since  -1(a) D,                                          

f( 2 (  -1(a))) =  ( 1 (  -1(a))) =  (a).  

Thus   = f 2  -1 = f ; this completes the proof.  
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Definition 5.10   A map is said to be U-proper if and only if it is U-continuous 

and the inverse image of every compact U- space is compact. 

 

Example- 5.1 (Proper extremally disconected compact U- space).                    

Let X = {a, b, c, d}, U  = {X,  , {a, b}, {a, c}, {a, b, c}, {d}, {a, b, d},          

{a, c, d}}. Since {a, b} {a, c}={a} U. U  is a U-structure. 

Then (X, U ) is a proper U-space. 

Here },{ ba = },{ ca = },,{ cba = {a, b, c}, }{d = {d}, },,{ dba  = X, },,{ dca  = X .  

Hence X is a proper extremally disconnected and compact U-space. 

 

Example - 5.2  (a proper projective compact U-space) 

Let X = {a, b, c, d} and U = {X, , {a, b},{a, c}, {a, d},{b, c}, {b, d},               

{c, d},{b, c, d}, {a, c, d}, {a, b, d}, {a, b, c}}. Then X is a proper U-space 

which is clearly, Hausdorff, compact and extremally disconnected U-space. 

Thus X is a proper projective compact U-space. 

 

Example - 5.3   Let X =N be U-space, no is a fixed element of N and 

 let U  ={{ N, } {{n  N n   no}, {nN n > no}, {n N n < no + 3}, 

{n N n   no + 3},  no  N }}, and their unions. 

Now { n N n < no + 3} {n  N n > no } = { no + 1, no + 2} U.  
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Thus U is a U-structure but not a topology, and so, (X,U ) is a proper                

U-space. 

(i )  X is clearly compact.  

          (ii) X is Hausdorff. For, if n1, n2  N and n1  n2, say n1 < n2, then                 

n1U1 = {1,2,3,.........,n1}, n2U2 = {n N n > n1 } and U1  U2=  .  

          (iii) X is extremally disconnected U- space, since, for each U-open set 

G of X, G = G is U-open. 

Hence by Theorem 5.5, X is a proper projective compact U-space. 

 

Definition 5.11   If A X, a U-retraction of X onto A is a U-continuous map            

r: X →A such that r A is the identity map of A. If such a map r exists, we say 

that A is a U-retract of X.   

  

We now generalize the theorems of ([37], p- 11-12)    

Theorem   5.5   Let X be any extremally disconnected object from the category 

P. Any perfect U-mapping f: A→X of another object A onto X is a                      

U-retraction. 

Proof:  We have f: A→X onto. Then we can draw the following diagram 

                               

f 
A X 

X A 

 A  X 

F 
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   Where F is the unique U-continuous extension of f onto  A taking values in 

 X. Since f is a surjection, F is also onto. But  X is extremally disconnected 

U-space and F is an onto map. Since  X is projective U-space in the category 

C. F is a U-retraction, that is there exists a mapping g:  X→  A such that   

Fg = 1
X

= the identity map on  X. Since f is a perfect U-map, F(  A – A (A)) 

=  X – X(X). Therefore, g( X (X))  A (A). Put h = A -1g X : X →A. Now 

fh(x) = f A -1g X (x). But F (g X (x)) = X (x) and   g( X (x))  A (A), that is, 

g( X (x)) = A (a) for some aA. Therefore, X (x)= F( A (a))= X f(a). So,               

a = A - 1( A (a)) =  A - 1g X (x) and x = f(a) and hence, f(a) = f A -1g X (x) = x. 

Consequently fh(x) = x for each xX, that is, fh = 1x.Naturally f is a                    

U-retraction. 

 

Theorem 5.6   The category P has projectives that is any paracompact U-space 

is the perfect U-image of a projective U-space object. In fact, for every object 

X there is a projective U-space objects P and an onto U-perfect mapping               

p1: P→X such that p1 maps no proper U-closed subspace of P onto X. For any 

other such object P and p1:P→X there is an U-isomorphism e: P→P such 

that p1 = p1e. 

Proof: Let X be any object of P. Look at  X, the Stone - Čech 

compactification of X. There exists an extremally disconnected compact             

U-space Y and a U-continuous onto map f: Y →  X such that f(S)   X for 

any proper  U-closed subspace S of Y. Consider the pull- back diagram 
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for the morphisms X : X →  X and f: Y →  X, 

where P = {(x, y) X Y : X (x) = f(y)} and p1 and p2 are projections to X and 

Y respectively. We do not claim that this is a pullback in P. Clearly,              

X p1 = fp2. Since X  is a U-monomorphism, p2 is U-monomorphism. Since f is 

onto, p1 is onto. Again, P is a U-closed subset of X Y and the latter is 

paracompact U-space P is, hence, paracompact U-space. p1 is also U-closed so 

that p1 becomes a perfect U-map.  fp2 = X p1   fp2 (P) = X (X). Let                 

W = p2(P). Since f is a U-closed map, .)())(( 2 XWfPpf ==  Observe that W  is 

a  U-closed subset of Y and f(W ) =  X. From the choice of Y it follows that 

W = Y, that is,W = p2(P) is dense in Y. Y is extremally disconnected U-space 

rendering W extremally disconnected U-space. Now it is not very difficult to 

see that p2 is a U-perfect map onto W. Since P is paracompact U-space and p2 

is a U-perfect map onto W, W is a paracompact U- space. 

By Theorem-5.5, p2 is a U-retraction. Since p2 is a U-monomorphism 

and a U-retraction also, it is an U-isomorphism, that is p2 is a U-

homeomorphism of P and W. Thus P is an extremally disconnected 

paracompact U-space. So P is projective U-space due to “In the category P, the 

projective objects are precisely the extremally disconnected paracompact              

U-spaces”. Since p1 is a U-perfect map of P onto X, X is a U-perfect image of a 

projection object. Let Q be a proper U-closed subset of P. Then p2(Q) is a 

proper  U-closed subset of p2(P)= W. Write p2(Q) = W(F) where F is a                  

p2 
P Y 

X X 

p1  f 

X 
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U-closed subset of Y. Since p2(Q) is a proper U-closed subset of W, F is a 

proper U-closed subset of Y.  

If p1(Q)= X, then X (X) = X p1(Q)= fp2(Q)=f(W(F))  f(F). Since f is a                 

U-closed map of X onto  X, f(F) is a U-closed and hence equals  X. This is a 

contradiction. Consequently P enjoys the property that no proper U-closed 

subspace of P is mapped onto X by p1.  

          If possible let P / be a projective paracompact U-space with a U-perfect 

map p1: P→X such that p1 (P) = X and if Q is any proper U-closed subspace 

of P then p1 (Q)  X. Then there exist a morphism e : P →P and a morphism 

e: P→P such that p1 =p1e and p1= p1e. Then p1(P) = X =p1 (P)   p1e(P) = 

X = p1e (P). Naturally, e and e /  are onto; we shall show that ee = 1p, that is, e 

is a U-co-retraction. If ee   1p, there exists a proper U-closed subset S of P 

such that d-1(S)  S = P where d =ee.  

          Obviously, d(d-1(S))  S whence p1d(d-1(S))   p1(S). But p1d = p1ee = 

p1e = p1, hence p1(S)  p1d(d-1(S)) = p1(d
-1(S)); so that p1(S) = p1(P) = X, a 

contradiction as S is a proper U-closed subset of P. We thus conclude that e is a   

U-co-retraction. Already e is a U-retraction; hence e is a U-isomorphism, that 

is, e is a U-homeomorphism of P onto P.  

 

Theorem   5.7 [14]( p- 7)   Let P be a compact Hausdorff U-space. Then P is  

projective if and only if for every compact Hausdorff U-space W and                        

U- continuous g: W →P, onto, there exists a U-continuous s: P →W such that 

gos(p) = p.  
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Proof: Assume that P is projective U-space and let s be a lifting of the identity 

map on P. 

Conversely, assume that P is projective U- space and let X and Y be U-spaces 

and h: Y → X and f: P→X , U-continuous map with h onto. Then there exists a                 

U-continuous map r: P→ Y such that hor(p) = f(p) for every pP.  

          Let W = {(p, y) P Y: f(p) = h(y)} and define g : W →P by  g(p, y) = p 

and q: W →Y by q(p, y) = y. If s: P →W is as above then r = qos is a lefting of 

f. 

 

Theorem   5.8 [31]( p- 70)    If P is a U-retract of P and P is projective, then P 

is projective. 

Proof: Let P→P→P = 1P. If A →A is an U-epimorphism and P→A is any 

morphism, then using projectivity of P we have P→A = P→P→P→A = 

P→P→A→A for some morphism P→A. This establishes U-projectivity of 

P. 

 

Theorem  5.9 [31] ( p-70)  If P is projective U-space in A, then every                     

U-epimorphism A→P is a U-retraction. Conversely if P has the property that 

every U-epimorphism A→P is a U-retraction, and if A ether has projective or 

is abelian, then P is projective U- space. 

Proof: If P is projective U-space, then given a U-epimorphism A →P there is a 

morphism P→A such that P → A →P is 1P. In other words P →A is a                  

U-retraction. 
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          Conversely, suppose that every U-epimorphism A →P is a                    

U-retraction.  

          If A has projective then we may take A projective and then it follows 

from Theorem 5.8. On the other hand, if A is abelian, then, given an                          

U-epimorphosm f: A →A" and a morphism u:P→A", we can form the pullback 

diagram 

                                                   

we know that g is an U-epimorphism. Then by assumption we can find                 

h: P →X such that gh = 1P. Then we have fvh = ugh = u. This proves that P is 

projective U-space. 

 

Theorem  5.10 [37]( p- 12)   In the category P, the projective U-space objects 

are precisely the extremally disconnected paracompact U-spaces.  

Proof: If P is projective U-space, then given a U-epimorphism A →P there is a 

morphism P→A such that P → A →P is 1P. In other words P →A is a                  

U-retraction. 

          Conversely, suppose that every U-epimorphism A →P is a                      

U-retraction. If A  has projective then we may take A projective U-space and 

then it follows from Theorem 5.8. On the other hand, if A is abelian, then, 

given an U-epimorphosm f: A →A" and a morphism u:P→A", we can form the 

pullback diagram 

g 
X P 

A" A 

  v  u 

f 
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we know that g is an U-epimorphism. Then by assumption we can find               

h: P →X such that gh = 1P. Then we have fvh = ugh = u. This proves that P is 

projective U-space. Therefore the projective U-space objects of P are the 

objects for which perfect U-maps onto them are U-retraction. 

Hence the theorem follows from theorems 5.5, 5.8 and 5.9. 

          Let X be any extremally disconnected U-space object from the category 

P. By theorem- 5.5 we can prove that any U-perfect mapping f: A→X of 

another object A onto X is a U-retraction. 

          By theorem- 5.8 ‘If P is a U-retract of P and P is projective U-space, 

then P is projective U-space’ And theorem- 5.9 “If P is projective U-space in 

A, then every U-epimorphism A→P is a U-retraction. Conversely if P has the 

property that every U-epimorphism A→P is a U-retraction, and if A has 

projective U- space, then P is projective U- space.” P is projective U-space. 

Hence the theorem is proved.  

 

 

 

 

 

g 
X P 

A" A 

  v  u 

f 
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Examples of proper projective U-spaces which are locally compact but not 

compact. 

Example- 5.4  Let X = R ,U  ={X, , (-  ,
2

1
 ),[0,1), [

2

1
,1), [1,2),..,[n, n + 1), 

…., and their unions}. 

(i) Then (X, U ) is a U-space  but not a topological space.  

           Since (- ,
2

1
 )   [0, 1) = [0,  

2

1
 ) U.  

(ii) X is not compact, since C = {(- ,
2

1
 ),[0, 1), [1, 2),…..,[n, n + 1),….,} 

is  U-open cover of X but it has no finite sub cover. 

(iii) X is locally compact. For let xoX. If xo<
2

1
, then (- ,

2

1
 ) is a 

neighborhood of xo whose closure is (- ,1), which is compact U-space, 

since every U-open cover of (- ,
2

1
 ) must contain either X or both             

(-  ,
2

1
 ) and [

2

1
,1) and each such cover is clearly finite.  

           If x 
2

1
, x[n, n + 1) for some n{0} N. Then 1,[ +nn ) = [n, n + 1) 

which is obviously compact, since [n, n + 1) is U-closed. 

(iv)    All the U-open sets except (-  ,
2

1
) and [0, 1) are both U-open and              

U-closed & so the U-closure of any union of these is U-open. Also, 









−

2

1
, = (-  , 1),  )1,0 = (- , 1). 

 Hence the closure of every U-open set is U-open. 
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Thus X is extremally disconnected U-space, and so, X is projective           

U-space. 

 

Example  5.5   Let X = Z ,U  ={X,  ,{n  Z -  < n 1}, {0,1,2}, 

{3,4,5},{6,7,8} and their unions}. X is a proper U-space. 

For {n Z -  < n  1} {0,1,2} = {0, 1} U. 

 (i) X is not compact. For the U-open cover 

{{n Z -  < n 1},{0,1,2}, {3,4,5},{6,7,8},…………….} has no finite sub 

cover . 

           (ii) However, X is locally compact. To sec this, let xoX. If xo  1, 

the {n Z -  < n  1} is a U-open neighborhood of x0 and its closure is             

{n Z -   < n  2} which is clearly compact. If x0 >1, then for x0 = 2,                  

{0, 1, 2} is a U-open neighborhood of x0 and its closure is  

{n Z -  < n   2} which again is  U-compact, and for x0 = n >2,  

x{3r, 3r + 1, 3r + 2} for some positive r, and this set is a U-open 

neighborhood of x0. Also, it is its own closure.  

Clearly it is compact.  

Thus X is locally compact U-space. 

      (iii)  The sets {3r, 3r + 1, 3r + 2} are both U-open and U-closed for each  

r  1, }1{ − nZn = {n Z -  < n   2} = 

                                                                     {n Z -   < n   1} {0, 1, 2}  
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           (iv) which is U-open. Also, }2,1,0{ = {n  Z -   < n   2} is U-open, as 

before.  

           Hence X is extremally disconnected U-space.  

           Therefore X is projective U-space.  

 

 

 

Cover of compact Hausdorff U-space 

 

 

We now generalize definitions of  [14] ( p- 7 - 8 ) 

Definition 5.12   Let X be a compact Hausdorff U-space. A pair (C, f) is called 

a U-cover of X, provided that C is a compact Housdorff U-space and f: C → X 

is a U-continuous map that is onto X. 

 

Definition 5.13  Let X and C be compact Housdorff U-space and f: C →X a         

U-continuous map that is onto X. A pair (C, f) is called a U-essential cover of 

X if it is a U-cover and whenever Y is a compact, Hausdorff U-space               

h: Y →C is U-continuous and f(h(y)) = X, then necessarily h(Y) = C. 
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Definition 5.14   Let X and C be compact Housdorff U-space and f: C →X a               

U-continuous map that is onto X. A pair (C, f) is called a U-rigid cover of X if 

it is a U-cover and the only U-continuous map h: C →C satisfying               

f(h(c)) = f(c) for every cC is the identity map. 

 

Theorem  5.11   Let X be a compact Hausdorff U-space and let (C, f) be a                  

U- essential cover of X. Then (C, f) is a U- rigid cover of X. 

Proof: Let h: C →C satisfy f(h(c)) = f(c) for every cC. Let C1 = h(C) which 

is a compact U-subset of C that still maps onto X. The inclusion map of            

i: C1→C satisfies, f(i(C1)) = X and hence must be onto C. Thus h(C) = C. 

           Next, we claim that if G C is any non- empty U-open set, then G h-

1(G) is non- empty. For assume to the contrary, and let F = C \ G. Then F is 

compact U-space and given any cG there exist yh-1(G) with h(y) = c. 

Hence, yF and f(c) = f(h(y)) = f(y). Thus f(F) = X, again contradicting the 

essentiality of C. Thus, for every U-open set G, we have that G h-1(G) is non-

empty. 

            Now fix any cC and for every neighborhood G of c pick                         

xG G  h-1(G). We have that the net {xG} converges to c. Hence, by 

continuity, {h(xG)} converges to h(c). But since h(xG) G for every G, we also 

have that {h(xG)} converges to c. Thus, h(c) = c and since c was arbitrary, C is 

U-rigid cover of X. 
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Theorem  5.12    Let (C, f) be a U-cover of X with C a projective U-space. 

Then (C, f) is a U-essential cover if and only if (C, f) is a U-rigid cover. 

Proof:  We already have that a U-essential cover is always a U-rigid cover. So 

assume that (C, f) is a U-rigid cover. Let h: Y → C with f(h(Y))= X. Since C is 

projective, then there exists a map s: C → Y with (foh)os = f. We have                   

hos : C →C and f(hos(c))= f(c) and so by rigidity, hos(c)= c for every cC. In 

particular, h must be onto and so C is U-essential cover. 

 

Theorem  5.13    Let (Y, f) be a U-cover of X and let C   Y be a minimal, 

compact U-subset of Y that maps onto X. Then (C, f) is a U-rigid, essential 

cover of X.  

Proof: First, we prove U-essential. Given any compact Hausdorff U-space Z 

and h: Z →C such that f(h(Z)) = X, we have that h(Z)   C is compact U-space 

and hence h(Z) = C by minimality. 

Since (C, f) is a U-essential cover of X, by the above results it is also a U-rigid 

cover. 
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CHAPTER- 6 

Anti-Hausdorff U-spaces 

 

Introduction 

 

                In this chapter the concept of anti-Hausdorff U-spaces has been 

introduced and a few important properties of such spaces have been studied. A 

number of interesting examples have been constructed to prove non- trivialness 

of such results.                        

                We have generalized some results on anti-Hausdorff topological 

spaces in  [25] to U-spaces. 

 

Definition 6.1 A U-space X with 2X is said to be  anti-Hausdorff U-space, 

if for every pair of distinct points x, y in X and pair of distinct U-open sets G 

and H such that xG, xH, G H  , i.e., if no two distinct points can be 

separated by disjoint U-open sets. 

Here, X  denoted the number of elements of X. A anti-Hausdorff          

U-space which is not a topological space will be called a non-trivial anti-

Hausdorff U-space. Otherwise it is called trivial. It is easily seen that an anti- 

Hausdorff U-space X is non-trivial only 3X . 

 Example 6.1  Let X = {a, b, c}, U1 = {X,  , {a, b},{a, c}} and                                      

U 2  = {X,  ,{b, c},{a, c}}. 
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Then (X, U1 ) and (X, U 2 ) are non-trivial  anti-Hausdorff  U-spaces. 

 

Example  6.2   Let X = {a, b, c, d} and U1 = {X,  , {a, b, c},{a, d}},  

U 2  = {X,  ,{a, b},{a, c},{a, b, c}}. Then (X, U1 ) and (X, U 2) are non-

trivial   anti-Hausdorff  U-spaces. 

 

Example 6.3  Let X = N, U  = {X,  , {1, 2, 3},{1, 4, 5}, {1, 2, 3, 4, 5}}.  

Then (X, U ) is a non-trivial anti-Hausdorff U-space. 

 

Example 6.4   Let X = R, U  = {X,  , N, Z, 2 Z, N 2Z }. 

Then (X, U  ) is a non-trivial anti-Hausdorff U-space. 

 

Theorem  6.1  A U-subspace of a non-trivial anti-Hausdorff U-space need not 

be anti-Hausdorff. 

Proof: Let us consider the U-space (X, U ), where  X = {a, b, c, d} and                              

U = {X,  ,{a, b},{a, c}, {a, b, c}}.  

Then (X, U ) is a non-trivial anti-Hausdorff U-space, since there is no pair of 

disjoint non-empty U-open sets in X. Now let Y = {b, c}.  

Then as a subspace of X, Y has the U-structure, U  = {Y,  , {b},{c},{b, c}}. 

Obviously, Y is not anti-Hausdorff U-space. 
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Theorem  6.2   If A and B are two non-trivial anti-Hausdorff U-subspaces of a            

U-space X, then the subspace A  B need not be a non-trivial anti-Hausdorff                

U-space. 

Proof: Let X= {a, b, c, d, e, f }, U  = {X,  , {a, b, c},{ b, c, d},{a, b, c, d}, 

{b, c, d, e, f} }. Clearly (X, U ) is a non-trivial U-space. Let A = {a, c, d, f } 

and B = {a, b, d, f}. Then A and B are U-subspace of X with  

U A = {A,  , {a, c},{c, d}, {a, c, d}, {c, d, f}}, U B = {B,  ,{a, b},{b, d},   

{a, b, d},{b, d, f}}.  

Clearly both A and B are non-trivial anti-Hausdorff U-subspaces of X.     

Now A B = {a, d, f } and U A  B ={A B,  , {a}, {d},{a, d},{d, f}}.                                                     

Then A B is a trivial U-space, which is not anti-Hausdorff.  

Thus A B is not a non- trivial anti-Hausdorff U-space.  

 

In the situation of Theorem-6.2, it is also possible that A  B is a non-

trivial anti-Hausdorff U-space as is shown by the following example.  

Example  6.5   Let X= {a, b, c, d, e}, U = {X,  , {a, b},{a, b, c},{a, c, d, e}}. 

Clearly ( X, U ) is a non-trivial U-space. Let A = {a, b, c, d} and  

B = {a, b, c, e}. Then A and B are U-subspace of X with U A  = {A,  , {a, b}, 

{a, b, c},{a, c, d}},  U B  = {B,  , {a, b},{a ,b, c},{a, c, e}}.  

Clearly both A and B are non-trivial anti-Hausdorff U-subspaces.  

Now A B = {a, b, c} and UA  B = {A B,  ,{a, b}, {a, c}} which is a non- 

trivial  anti-Hausdorff U-space. 
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Remark   6.1    If A1 and A2 are two non-trivial subspaces of a non-trivial             

U-space X, then the subspace A1  A2 may be non-trivial anti-Hausdorff               

U-space even if neither A1 nor A2 is so. 

Proof: Let  X = {a, b, c, d, f }, U = { X, ,{a}, {b, c},{c, d}, {a, b, c},               

{a, c, d}, {f}, {b, c, f}, {c, d, f }, {a, f }, {a, b, c, f }, {a, c, d, f }, {b, c, d},    

{a, b, c, d},{b, c, d, f}}. 

 Clearly U is U-structure on X. 

Let A1 = {a, b, c, d} and A2 = {b, c, d, f }. 

 Then the U-structure U A 1
 and UA 2

on A1 and A2 respectively are                             

U A 1
= {A1,  , {a}, {b, c}, {c, d}, {a, b, c}, {a, c, d}, {b, c, d}} and 

 UA 2
 = {A2,  , {f}, {b, c}, {c, d}, {b, c, f}, {b, c, d}, {c, d, f }}.  

Clearly both A1 and A2 are non-trivial subspaces of a U-space X, neither of 

which is anti-Hausdorff. 

 Now A1  A2 = {b, c, d} and UA 1  A 2
 ={A1  A2,  , {b, c}, {c, d}}.  

Thus A1  A2  is a non- trivial anti- Hausdorff U-space. 

 

 

Theorem 6.3  Let A1 and A2 be two anti-Hausdorff U-spaces with U-structures  

U 1   and U 2  respectively. Then (A1  A2,  U1   U 2 ) need not be anti-

Hausdorff U-space.Here U1  U 2 is the U-structure generated by                     

U 1   U 2 in A1  A2.  
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Proof:  Let A1 = {a, c, d, e} U 1 = {A1,  , {a},{a, c}, {a, c, d},{a, d, e}}, and 

A2 = {b, c, d, e}  U 2 = {A2,  , {b},{b, c},{b, c, d},{b, d, e}}. Then (A1, U1 ) 

and (A2, U 2 ) are non-trivial anti-Hausdorff U-spaces. 

           Then  A = A1  A2 = {a, b, c, d, e}. Let U be the U-structure on A 

generated by   U1   U 2  , i.e., U  ={A, A1, A2,  ,{a},{b},{a, c},{b, c},        

{a, c, d}, {a, d, e},{b, c, d}, {b, d, e},{a, b},{a, b, c},{a, b, c, d},{a, b, d, e}}. 

So, in (X, U ), a{a}, b{b} with {a},{b}  U  and {a} {b} =  . 

Hence (X, U ) is not an anti- Hausdorff U-space.  

 

Theorem  6.4    Every U-continuous image of an anti- Hausdorff U-space is                

an anti-Hausdorff U-space.  

Proof: Let X, Y be two U-spaces where X is anti-Hausdorff U-space. Let f be 

a U-continuous map of X onto Y. Let y1 and y2 be two distinct points of Y, and 

let H1and H2 be two U-open sets in Y such that y1H1, y2H2. Since f is onto 

there exist x1, x2 in X such that f(x1) = y1, f(x2) = y2. Let G1 = f 1−  (H1),           

G2 = f -1(H2). Since f is U-continuous, both G1 and G2 are U-open sets. Since X 

is anti-Hausdorff U-space, G1  G2   . Let x G1  G2, then f(x)H1  H2. 

Thus H1  H2   . So, Y is anti-Hausdorff U-space. 

Definition 6.2   Let (X, U ) be U-space and R an equivalence relation on X. 

The equivalence class for each xX is denoted by x . We define U-structure U  

on the collection of equivalence classes 
R

X
 of X with respect to R as follows. 

Any subset V  of  
R

X
 will be a member of U  iff {xX| x  V }  U, i.e., the 
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collection of equivalence classes of every U-open set V of X is U-open in 

R

X
and these are the only member of 

R

X
.  

           This U-structure  U   is called the identification U-structure or the 

quotient U-structure on X and (
R

X
,U ) is called the identification U-space or 

the quotient U-space of X with respect to R. 

 

Example  6.6. The torus (surface of doughnut) can be constructed by taking a 

rectangle and identifying its edges together appropriately. 

 

Corollary 6.2. If X is an anti-Hausdorff U-space and R is an equivalence 

relation on X, then the quotient U-space 
R

X
 is anti-Hausdorff U-space. 

Proof: It follows from the definition of quotient U-space that the map                   

f : X →
R

X
 given by f(x) = cls x is continuous and onto. The proof is then 

obvious.  

 

Definition 6.3  A U-space X is said to be U-irreducible if every pair of non-

empty U-open sets in X intersect. 

Thus a U-space X is U-irreducible if, for every pair of non-empty U-open sets 

V, W in X, V W   . 
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Theorem   6.5   Let X be a U-space. For the  statements:  

 (i)  X is anti-Hausdorff. U-space, 

          (ii)  X is U-irreducible, 

          (iii)  Every non- empty U-open set in X is connected U-space, 

          (iv)  Every non- empty U-open set in X is dense in X, 

 following implications hold: (i)  (ii), (iii)   (ii) and  (ii)   (iv). 

Proof:   We first prove (i)  (ii).  

           To prove (i)   (ii) let X be a anti- Hausdorff U-space. If possible 

suppose that X is not U-irreducible. Then there exist non- empty U-open sets V 

and W in X such that V  W =  . Since V and W are non- empty, there exist 

xV and yW. Since V W =  , x  y.  X being  anti-Hausdorff U-space, 

this is a contradiction. Therefore X is U-irreducible. 

 

           We now prove (ii)   (i). Let X be U-irreducible. If possible, let X be 

not anti-Hausdorff  U-space. Then there exist x, y X with x  y and U-open 

sets V and W in X with V  W =   and xV, yW. Since V and W are non-

empty, this is a contradiction to the fact that X is U-irreducible. 

Hence X is anti-Hausdorff U-space. 

            To prove (iii)  (ii), let every U-open set in X be connected                   

U-space. If X is not U-irreducible, then there exist non-empty U-open sets V1 

and V2 in X, such that V1  V2  =  . This implies that the U-open set               

V = V1  V2  is a disconnected U-open set in X. This is a contradiction to our 

hypothesis. Hence X is U-irreducible. 
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            We now prove (ii)   (iv). Let X be a U-irreducible space. Let V be a 

non- empty U-open set in X and let xX. Let W be a U-open set in X such that 

xW. Then W   . Since X is   U-irreducible, V W   . So,  x V . Thus X 

= V . Thus (ii)   (iv).    

           Conversely, suppose every non-empty U-open set in X is dense in X. 

Let V and W be two non-empty U-open sets in X and let xV. Since W = X 

and V is a neighborhood of x, V W   . So X is U-irreducible. 

 Therefore (iv)   (ii).  The proof of the theorem is thus complete. 
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Chapter- 7 

I-spaces, CU-spaces, CUI-spaces, FU-spaces and FUI-spaces 

 

Introduction 

 

           In this chapter we have introduced the concepts of I-spaces, CU-spaces, 

CUI-spaces, FU-spaces and FUI-spaces as generalization of topological 

spaces. I-spaces have been called infratopological spaces by some authors [16], 

[29], [30]. The concepts of limit point of a set, Interior point of a set, closure of 

a set, three types of continuity, compactness, connectedness, disconnectedness 

and Heine-Borel Theorem and separation axioms in the topological spaces 

have been generalized to the case of I-spaces.  

            These concepts can be defined similarly for CU-spaces, CUI-spaces, 

FU-spaces and FUI-spaces. 

            We have constructed many examples and proved a number of theorems 

involving these concepts in case of I-spaces. For the other types of spaces some 

of these have been dealt with briefly. 
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I-spaces 

 

Definition 7.1   Let X be a non- empty set. A collection  I  of subsets of X  is 

called an I- structure on X if  

(i)       X,    I,   

  (ii)      G1, G2, G3, G4, G5, , Gn   I , implies  

G1  G2  G3  G4  G5   Gn   I .  

Then (X,  I   ) is called an I-space.    

                                             

Example 7.1    For a non- empty X, {X,  } is an I-structure. In fact every 

topology is an I-structure on X, and so, every topological space is an I-space. 

 

Example 7.2    Let X = Z, and I  = {{m Z m N} { }  }.  

Then mZ  m /
Z = l Z, where m, m / N and l = l.c.m of m and m / .  

Then (X, I  ) is an I-space. However, X is not a U-space. 

 

Definition 7. 2   An I-space which is not a topological space is called a proper            

I-space. 

 



 139 

 

Example 7.3   Let X ={a, b, c, d}, I  = { X, ,{a},{a, b},{a, c},{a, d},{a, b, d},         

{a, c, d}} is a proper I-structure which is not a topology, since {a, b} {a, c} 

= {a, b, c} I.   

 

Definition 7.3   Let X = R and I = {R, , all finite intersection of sets of the 

form (a, b), a, b R}. Then (X, I ) is an I-space and is called the usual                 

I-space R of the first kind. Thus, I  consists of R, and the intervals (a, b).  

 

Definition 7.4   The usual I-space R of the second kind is the I-space (R, I ), 

where I = The collection of the finite intersection of all rays (- , b) and (a, ) 

together with R and  . Thus, I   consists of the sets of the form R, , (- ,b), 

(a,  ) and (a, b). 

 

          We may define the interior points and the interior of a set in an I-space 

as in the case of a topological space. The limit points and the closure of a 

subset in an I-space may be defined similarly. But in an I-space the interior and 

the closure of a subset may not have the properties of those in a topological 

space. 
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          We consider below the following definitions in this situation.                    

Let (X,  I   ) be an I-space. Let A X. We have thus the following definitions.   

Definition 7.5    A point xX such that, for each I- open set G which contains 

x, G A contains an element other than x, is called a limit point of A. The set 

of all limit points of A is called the derived set of A and is denoted by D(A).     

  

Definition 7.6    The closure of A written A , is the subset of X consists of the 

elements x such that for each an I-open set G containing x, G A   . i.e.,            

A = {xX for each G  I  with xG, G A   .}. Clearly, A = A D(A) 

 

Definition 7.7    A point xX is called an interior point of A, if there is an            

I-open set G such that xG and G  A. 

 

Definition 7.8      The set of all interior points of A is called the interior of A 

and is denoted by IntA.  Thus, IntA = { xX   G  I  such that xG A } 

 

Comment  7.1    

For a subset A of a topological space X,                   

          (i) A  is an I-closed set and is the intersection of all I-closed supersets of 

A. 

          (ii) IntA is an I-open set and is the union of all I-open subsets of A. 
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But these properties may or may not hold for A and IntA in I-spaces. The 

truth of the comment follows from the following theorems and 

illustrations;  

 1. (i) Let X = The usual I-space R. Let A = Q. Then A  = R and R is  an              

I-closed and is the intersection of all I-closed supersets of  Q. 

(ii) Let X ={a, b, c, d} and I  ={X, ,{a},{a,b}, {a,c},{a, d},{a, b,d}, {a,c, d}} 

is proper I-structure on X. Then (X,  I  ) is a proper I-space.  

 The I -closed sets are {c, d}, {b, d},{b, c, d}, {c}, {b}, {b, c}, X,  . 

          Let A = {b}. Then A = {b}. A  is an I-closed and is the intersection of 

all I-closed supersets of A.   

2.       Let A = {d}. Then A = {d}. A  is not an I-closed, but is the intersection 

of all I-closed supersets of A.  

 

3.(i)   Let X be the usual I- space R and let A = N. then A = N, and N is 

neither I-closed nor is the intersection of all I-closed supersets of N.  

(ii)   Let X ={a, b, c, d} and I  = {X, ,{b},{d}, {a, b},{b,d}} is a proper               

I-structure. Then (X,  I   ) is a proper I-space.  

 The I-closed sets are {a, c, d}, {a, b, c},{c, d}, {a, c}, X,  . 

         Let A = {b}. Then A = {a, b}. A  is neither I-closed nor is the 

intersection of all I-closed supersets of A.  
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Theorem  7.1  Let (X,  I   ) be an I-space and let A X. Then, A  is an I-closed 

and A = F0, the intersection of all I-closed supersets of A.  

Proof: Suppose that A  is an I-closed. Since A  is an I-closed, A   F0. Let x  F0 

Then, x F0 , for each I-closed superset of A. Hence x A . So, F0   A .   

  

4.(i)   Let X = The usual I- space R, A = Q. Then IntA = Int Q =  , and so 

IntA is an I - open and is the union of all I- open sets G A = Q.  

(ii)     Let X ={a, b, c, d} and I  = {X, ,{a},{a, c}, {a, d},{a, b, d}} is a proper 

I- structure. The (X,  I   ) is a proper I- space.  

          Let A = {a}. Then IntA = {a}, and so IntA is an I-open and is the 

union of all I- open sets G A. 

 

 5. (i)  Let X = {a,b,c,d} and I  = {X, ,{a},{d},{a, c},{a, d},{b, d}} is a 

proper I-structure. The (X,  I   ) is a proper I-space.  

          Let A = {a, c, d}. Then IntA = {a, c, d}, and so IntA is not an I-open 

and is the union of all I-open sets G A. 

(ii)     Let X be the usual I-space R, and Let A = [a, b] [c, d],  

where a <b <c < d. I-open sets are of the form (- ,b),(a, ),(a, b).  

IntA = (a, b)  (c, d) is not an I-open set but is a union of I-open sets.  
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           We shall now show that for an I-space the interior of a subset is the 

union of all I-open sets contained in the subset.  

Theorem  7.2    Let (X,  I   ) be an I- space and let A X. Then, IntA = V, the 

union of all I-open sets G in X which are contained in A. 

Proof: Let G be an I-open set in X, which is contained in A. Then, by the 

definition of IntA, G  IntA. Hence V IntA. 

          Now, let xIntA. Then, there exists an I-open set G such that xG A. 

Hence xV. Thus, IntA V.   

  

 

 

                                      I-continuity 

  

           We define I-continuous, I -continuous and I*-continuous similar to                          

U-continuous, U -continuous and U*-continuous.  

Definition 7.9   If X, Y are I-spaces (resp. X I-space, Y top-space; X top-space, 

Y I-space) a map f: X →Y is said to be I-continuous (resp. I -continuous,                 

I*-continuous) if for each I-open set (resp. open, I-open) H in Y, f -1(H) is an 

I-open (resp. I-open, open ) set in X . 

Example 7.4    Let X ={a, b, c, d }, I   = {X, , {a}, {b}, {d}, {a, b},                    

{a, d}, {b, c, d}} 
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Y = {p, q, r, s}, I    = {Y, , {p}, {q}, {s}, {p, q},{p, s},{q, r, s}}.                 

Let f: X →Y be defined by f(a) = p, f(b) = q, f(c) = r, f(d) = s. 

Then f is I-continuous.  

 

Example 7.5    Let X= {a, b, c, d}, I  = {X,,{a},{b},{a, b},{a, c},{b, d}}.  

Let Y = {p, q, r }, T   = {Y, , {p}, {q}, {p, r}}. Then (X, I  ) is an I-space and           

(Y, I  ) is a topological space. The function f: X →Y is defined by f(a) = p,             

f(b) = q, f(c) = r, f(d) = q. Then f is I -continuous. 

 

Example 7.6    Let X = {a, b, c, d}, T   = {X, ,{b},{c},{b, c},{c, d},{b, c, d}} 

Y = {p, q, r, s },  I  = {Y,, {p}, {q}, {p, q}, {p, r}, {q, s}}. Then (Y, I   ) is     

an I- space. The function f: X →Y is defined by f(a) = p, f(b) = q, f(c) = q,              

f(d) = s.  

Then f is I *-continuous. 
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Compactness 

 

Definition 7.10    Let (X,I  ) be an I- space. An I-open cover of K is a 

collection {G  } of I-open sets such that K  


GU . 

 

Definition 7.11    An I-space X is said to be compact if every I-open cover of 

X has a finite sub-cover. 

A subset K of a I-space X is said to be compact if every I-open cover of 

K has finite sub-cover. 

 

Example 7.7   Let X =N and let A n
={nN n n  }, I   = { ,{A n

n N}}. 

Then ( X,  I   ) is an I-space. In this I-space, N is compact, because every              

I-open cover of N must contain A1 = N. 

 

Comment 7. 2 We note however that 

(i)      For I-space (N,  I   ),  

where I   = { N, } {n  + 1, n  + 2, ....... n  + r  n  , rN}.  N is not 

compact. 

(ii)     In the usual I-space R, of the first kind, (and also of the second kind)  N 

is not compact.  
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For, {(n - 
1

2
, n + 

1

2
) nN} is an I-open cover of N which does not have a 

finite subcover. 

 

Theorem 7.3     Every I-continuous image of a compact I-space is compact. 

The proof is similar to that in topology. 

 

The Heine-Borel Theorem of topology, ‘A subset A of the usual space R is 

compact if and only if A is closed and bounded’, has the following forms in 

the case of the usual I-space R of the first kind:  

Theorem 7.4  

          (1) The compact subsets of R are precisely the finite subsets of R.  

          (2) No non-empty compact subset is I-closed. 

          (3) No non-empty I-closed subset is compact. 

Proof : 

(1)     For, if A is an infinite subset of R, let A = {an} Nn
 be a countable subset 

of R, and suppose an < an +1, for each n. Consider the intervals  

In = 






 
+


−

2
,

2

n

n

n

n aa , where 
nnn aa −= +1
. Then, = /nn II , if n = n / . If {I

n
} 

covers A, let C  be this cover. Otherwise, let {J k } be a collection of I-open sets 

such that (i) J =







 

n

nk I , for each k, and (ii) {In} {Jk} is a cover of A. In 
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this case, let C denote this cover. In both the cases, C does not have a finite 

subcover. Thus, the compact subsets of R are finite. 

 

(2)     For, the definition of the I-structure on R is shows that every non-empty 

I-closed set must contain subsets of the form (-  ,a] and [b, ) both of which 

are infinite. Hence (2) follows. 

(3)      The discussions in (1) and (2) prove (3). 

 

For the usual I-space R of the second kind, the theorem corresponding to 

the Heine-Borel Theorem in topology is the following:  

Theorem 7.5 

(i)   a compact subset need not be I-closed, 

(ii)  a compact subset need not be bounded, 

(iii)  every I-closed and bounded subset is compact. 

Proof : 

(1)    Since the I-closed subsets of R are R,  the I-closed intervals [a, b]                 

(a < b), and the singleton sets {c}, the subset {1, 2, 3,.......,n} of the usual              

I- space R of the  second kind is compact. But it is not I-closed, since the non- 

trivial I-closed subsets of R are of the form (- , a], [b,  ), [a, b]). This proves  
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(2)      Any I-open cover C  of N must contain either R, or an I-open subset of 

the form (b,  ). Then (i) {R} or (ii) {(b,  )} together with a finite number of 

sets in C  covers N. This is because 

(i) there exist at most [b] positive integers preceding b, where [b] is the 

largest positive integer  b, and  

(ii) there exist at most [b] sets in C   which cover {1,2,3, ,[b]}. Thus, N 

is compact. 

Clearly N is unbounded. 

 

(3)       Let F be an I-closed and bounded subset of R. Then F =   or                

F = [a, b] or F = {c}, for some a, b, c R, a < b.   and {c} are obviously 

compact. The proof that [a, b] is compact is exactly similar to corresponding 

proof in topology. 

 

Definition  7.12   A subset A of an I- space (X, I  ) is said to be disconnected 

if there exist I- open sets I1and I2 of X such that A I1  I2  =   and I1  I2  A. 

A said to be connected if it is not disconnected. 

 

Example 7.8   Let X = {a, b, c, d} and I  = {X,  , {c}, {a, c}, {c, d}, {a, b, c},       

{a, c, d}}. Then (X, I  ) is an I-space. Let A = {b, c, d} and B = {b, d}. Then A 

is connected and B is disconnected. 
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Example 7.9      In the usual I-spaces R of the first and the second kinds, all 

intervals are connected subsets. 

 

Remark 7.1    As in topological spaces, the closure of a connected subset of              

I-space is connected too.  

Remark 7.2    Although in the usual topological space R and the usual              

U-space  R, N, Z, Q are disconnected, in the usual I-space R of the first 

kind, the above subsets of R are connected. However, these subsets are 

again disconnected in the usual I-space R of the second kind. 

 

A Housdorff (resp. normal, regular, completely regular) I-space is defined as in 

topology. The usual I-spaces R of the first and the second kind are Hausforff. 

Remark 7.3    A compact subset of a Hausdorff topological space is closed. 

But a compact subset of an I-space need not be I-closed. 

Its truth follows from (2) of Theorem 7.4 as well as (1) of Theorem 7.5. 

 

Remark 7.4     Unlike the usual topological space R and the usual U-space 

R, the usual I-spaces R of the first kind and the second kind are normal 

but not regular. 

Proof: Let X denote the usual I-space R of the first kind. The I-closed sets of 

X are R,  and sets of the form (- , a] [b,  ) with a < b.                                

Let F = (- , a] [b,  ) and xF. Then x(a, b). But the only I- open set 

containing F is R and it also contains x. Hence X is not regular. 
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           The only pairs of disjoint I-closed sets of X are {R, } and {F, }. 

Then the disjoint I-open sets R and   separate each of these pairs of disjoint   

I-closed sets. Thus, X is normal. 

           Now, let Y denote the usual I-space R of the second kind.  

Then the I-closed sets of Y are R, , and the sets of the form (- , a], [b,  ),  

(-  , c] [d,  ) with c < d. As in the case of X, if F = (-  , c] [d,  ) and xF, 

then x(c, d). The only I-open set of Y which contains F is R which also 

contains x. Hence Y is not regular. 

            The only pairs of disjoint I-closed sets of Y are P1 = {(- , a],                

[b,  )} (a < b), P2 = {(-  , a] [b,  ),  }, P3 = {R, }. Then P1 is separated 

by the each of disjoint I-open sets 









+







 +
− ,

22
,

ba
and

ba
, while P2 and P3 is 

separated by the disjoint I-open sets R and  . Hence Y is normal. 
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CU – spaces 

 

Definition 7.13     X be a non empty set and let CU a collection of subsets of 

X such that  

(i) X,    C U  

            (ii)          C U is closed under countable unions. 

Then C U is called a CU-structure on X and (X, CU) is called a CU-space. 

[Clearly, every topology T (resp. every U-structure U ) on X is CU-structure 

on X and (X, T  ) (resp. (X, U ) ) is a CU-space.] A CU-space, which is neither 

a topological space, nor a U-space will be called a proper CU-space.  

 

Example 7.10    Let X be an uncountable set and let CU consists of X,  and 

all countable unions of finite subsets of X. Then (X, C U ) is a proper                 

CU-space.  

 

Example 7.11      The   algebra B of Borel sets on R is a proper CU-structure 

on R. Hence (R, B ) is a proper CU-space. 

 

To see this, we first note that every singleton subset of R belongs to B. Let A 

be a proper uncountable subset of Qc, the set of irrationals. Then A = 
Ax

x


}{ , 

A  B. So, B is a proper CU-structure.  
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Example 7.12  let X = R, CU = { R, , all countable unions of all closed 

intervals [a, b]}. Then (X, CU) is a CU-space. C U  properly contains the 

usual topology on R.  

For,  

(i)   (a, b) = 
1 1

1 1
,

m n

a b
m n

 

= =

 
+ −  

 
 C U and every proper open set in the usual 

topology of R is a countable union of open intervals (a, b). 

(ii)  [a, b]  CU, but it does not belong to the usual topology of R.  

 

Definition 7.14  The usual U-space R is also a CU- space. It is called the 

usual CU-space R. 

 

Definition 7.15  The closure of A written A , is the subset of X consisting of 

the elements x such that for each CU-open set G containing x, G  A  . i.e,                     

A  = {xX for each G  CU with xG, G A  }. 
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CUI-spaces 

 

Definition 7.16    Let X be a non- empty set. A collection CUI  of subsets of 

X is called a CUI-structure on X if X,    CUI  and  CUI  is closed under 

countable union, and finite intersection. Then (X, CUI  ) is a CUI-space. 

 

Examples 7.10 and 7.11 of CU-spaces are examples of CUI-spaces too. 

Example 7.13      Let X = R and CU  = {R,  , and the infinite countable 

subsets of R}. Then (X, CU) is a CU-space. Let A = {n Z 5− n } and  

B = { n Z − n7 }. Then A, B  CU.  A B = {- 6, - 5, - 4, - 3, - 2, - 1, 0, 

1, 2, 3, 4}  CU. CU is a proper CU-space but not I-space. 

 

Example 7.14  Let X = R and C = {R,  ,  {(n, ) n  Z},  {(- , n) n Z}, 

{[( , ) ( , ), ,m n m n   − Z}}.  

Then (R, C ) is a U- space and so, a CU-space but not an I-space. 

 

Example 7.15     Let X = N or, Z, and I  = {X,  , all finite subsets of X}.  

Then (X, I  ) is an I-space but not a CU-space, and hence, not a U-space. 

Definition 7.17     The usual topological space R is defined to be the usual  

CUI- space R. 
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FU-spaces 

 

Definition 7.18    Let X be a non-empty set and let FU  be a collection of 

subsets of X such that  

(i) X,    FU  

 (ii)  FU is closed under finite unions. 

Then FU  is called an FU-structure on X and (X, FU ) is called an FU-space.  

 

Example 7.16     Topological spaces, U-spaces and CU-spaces are                  

FU-spaces. 

 

Definition 7.19     A FU-space which is not a CU-space (and hence neither a               

U-space nor a topological space) is called a proper FU-space. 

 

Example 7.17     Let X be an infinite set and let FU be the collection of all 

finite subsets of X. Then (X, FU) is a proper FU-space.  

 

Example 7.18     Let X be R and FU  the collection of all finite union of sets 

of the form (- , a) and (b,  ). Then (X, FU) is FU-space.  
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Definition 7.20    The usual FU-space R is R with the FU-structure consisting 

of R,  , and all finite unions of the  sets of the form (- , a), (b,  ) and (c, d). 

 

We thus note:  

Remark 7.5     The FU-structure of the usual FU-space R consists precisely 

of the sets R,   and sets of the form (-  , a), (b,  ), (- , a) (b,  ) (a < b) 

and    (a1, b1) (a2, b2)  (ar, br), for some positive integer r with ai < bi, 

1 i  r. 

 

Definition 7.21     Let (X, FU) be an FU-space and let A be a subset of X. For 

xX, x is called an interior point of A if xG A, for some FU-open set G in 

X. 

Definition 7.22     The set of all interior points of A is called the interior of A, 

and is denoted by IntA. 

 

Remark 7.6    Unlike in topological spaces, IntA need not be FU-open in an 

FU-space. 

To see this, let us consider the usual FU-space R. Let A = 
1

(2 , 2 1)
n

n n


=

+ . 

Then, A = IntA . But A is not FU-open. 
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Remark 7.7    However, for every FU-open set A in an FU-space, A = IntA. 

The FU-closed sets of X are the complements of FU-open sets. 

 

Definition 7.23     The FU-closure A of a subset A of an FU-space X is defined 

by   A  = {x GxX  for some FU-open set G in X with G  A   }. 

 

Theorem 7.6      Let X be an FU-space, 

(i) For every FU-closed set F of X, F= F, 

(ii) For a subset A of X, A need not be FU-closed. 

Proof: (i)  Let x F . If xF, then xFc. Now  x F  and since Fc is FU-open, 

and xFc, Fc  F  , a contradiction. Hence xF. 

(ii) Let X be the usual FU-space R and A = (1, 2) (3, 4). 

Then, A = [1, 2]  [3, 4]. But this is not an FU-closed set in X, since the FU-

closed subsets of X are precisely R,   and sets of the form [a, b] and [- , 

a1] [a2, b1]   [ar, br-1]  [br,  ](a1 < b1 < a2 < b2 < --------<ar < br). 

 

Definition 7.24     A subset A of an FU-space X is called compact if every 

FU-open cover has a finite subcover. 
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Example 7.19     In the usual FU-space R,N and the intervals [a, b] are 

compact subsets. 

The proof that [a, b] is compact is similar to that in topology. 

To see that N is compact, we note that every FU-open cover of N must 

contain a FU-open set of the form (a,  ). Then, at most [a] more FU-open sets 

of the cover are needed to cover A, where [a] is the largest positive integer less 

than or equal to a. Thus, N is compact.  

 

Theorem 7.7      Every FU-closed subsets of a compact FU-space is compact. 

The proof is as in topology. 

 

Remark 7.8     The following is the FU-version of the Heine-Borel Theorem 

in topology:  Let X be the usual FU-space R.  

(i)  Every FU-closed and bounded set in X is compact, 

(ii)  A compact set in X may be neither FU-closed nor bounded. 

Proof:  (i)       It follows from the nature of the FU-closed sets in X that every       

non-empty FU-closed bounded set in X is of the form [a, b] which is obviously 

compact.   

(ii) We have proved above (in Example 7.19) that N is compact.  

However, N is neither FU-closed nor bounded.  
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Definition 7.25       A non-empty subset A of an FU-space X is called 

disconnected  if there exist FU-open sets G1 and G2, such that 

A G 21 GA  , A G1  G2 =  , A 21 GG  . A is called connected if it is 

not disconnected. 

 

Example 7.20     In the usual FU-space R, the connected subsets are precisely 

R,   and sets of the form (-  , a), (b,  ) and (c, d). 

 

As in topology, we have every FU- continuous image of a connected set is 

connected. 

 

 

 

FUI-spaces 

 

Definition 7.26     Let X be a non-empty set. A collection FUI  of subsets of X 

is called an FUI-structure on X if  

(i) X,    FU I 

(ii) UI  is closed under finite unions and finite intersections. 

           Then FUI  is called an FUI-structure on X and (X, FU I ) is called an   

FUI-space.  
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Example 7.21    Every topological space and every CUI-space is an FUI-space. 

 

Example 7.22    Let X be an infinite set and FUI  = {R, ,all finite subsets of 

X}. Then, (X, FUI  ) is an FUI-space which is neither a CUI-space nor a 

topological space. 

 

Example 7.23     Let X = R and FUI  = The subsets of R obtained from the 

sets of the form (- , a) and (b,  ) under finite unions and intersections. 

Then, (X, FUI  ) is an FUI-space. It is called the usual FUI-space R. We 

note that here FUI consists of R,  and the sets of the form (- , a), (b,  ) 

and (a1, b1) (a2, b2)  (ar, br).Thus, the usual FUI-space is exactly the 

same as the usual FU-space R. 

 

Remark 7.9     Let X be a FUI-space. As in the case FU-spaces, 

(i) for each FUI-open subset A of X, A = IntA;  

   but (ii)  InA need not always be FUI-open. 

The first part is obvious and the second part follows the example in Remark 

7.6. 
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Remark 7.10       Example 7.18 is an FU-space but not an FUI-space. Thus, 

the class of FU-spaces and the class of FUI-spaces are distinct. 

 heorem 7.8        Let X be an FUI-space, 

(i) For every FUI-closed set F of X, F= F, 

(ii) For a subset A of X, A need not be FUI-closed. 

The proof is exactly similar to that of Theorem 7.6. 

All the statements about the compact sets and the connected sets proved earlier 

for an FU-space, and in particular the statement corresponding to the              

Heine-Borel Theorem, hold for an FUI-space.  
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