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ABSTRACT

After a short review of spacetime singularities , blackholes , we introduce one with
the laws of blackhole mechanics and the laws of ordinary thermodynamics. We
discuss the remarkable analogy between the laws of blackhole mechanics and the
laws of thermodynamics. By Bekenstein proposal we explain the flaws arises when
one attempts to draw an analogy between them. We study the Bekenstein-Hawking
entropy, evidence of blackhole entropy, interpretation of blackhole entropy, the
linearity of blackhole entropy with its horizon area , the problem of blackhole
entropy and using thermodynamic relation we obtain Bekenstein-Hawking entropy,
Hawking temperature and some intensive parameters of some different kinds of
blackholes.

In this thesis, we also study the Hawking radiation, its nature and a parallel
discussion with blackbody radiation. The luminosity and lifetime of blackholes are
also studied. By applying Parikh-Wilczek’s semi-classical tunneling method we
obtain the emission rate of massless uncharged particle and the massive charged
particles at the event horizon of blackholes. Finally, we obtain the emission rate at
the event horizon of some kinds of blackholes by applying a new method known as
Hamilton-Jacobi method.

Vi
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CHAPTER ONE

INTRODUCTION

The most exotic entities encountered in the present study of physics are
blackholes. The nature of blackhole spacetime is enough to make the
physics of blackholes more than science fiction. In the prologue to the
Mathematical Theory of Blackholes Subrahmanyan Chandrasekhar sums up
his views on blackholes in a sentence : “The blackholes of nature are the
most perfect macroscopic objects there are in the universe: the only elements
in their construction are our concepts of space and time.” Even more
astounding are the connections of blackhole physics with thermodynamics.
One of the most remarkable developments in theoretical physics that has
occurred in the past forty years, was undoubtedly the discovery of the close
relationship between the certain laws of the ordinary thermodynamics and
the laws of blackhole mechanics. The starting point of this remarkable
developments was the discovery of the four laws of blackhole mechanics by
Bardeen, Carter and Hawking [1]. It appears that the laws of blackhole
mechanics and the laws of thermodynamics are two major pieces of a puzzle
that fit together so perfectly that there can be little doubt that this ‘fit’ is of
deep significance. The existence of this close relationship between these
laws seem to be guiding us towards a deeper understanding of the
fundamental nature of spacetime, as well as understanding of some aspects
of the nature of thermodynamics itself [2].

[t was first pointed out by Bekenstein [3] that a close relationship might exist
between the certain laws satisfied by blackholes in classical general
relativity and the ordinary laws of thermodynamics. He noted that the area
theorem of classical general relativity is closely analogous to the statement
of the ordinary second law of thermodynamics. His proposal was confirmed
by Bardeen, Carter and Hawking[1], they proved that in general relativity,
the surface gravity , «, of a stationary blackhole must be constant over the
event horizon, which is analogous to the zeroth laws of thermodynamics.
The analogue of the first law of thermodynamics was also proved.

It is generally believed that classically a blackhole is nothing but a perfectly
dead star which have an absolute zero as a physical temperature. But it was




not so since Hawking has found a startling discovery that the blackholes
radiates thermally[4], whereas Bekenstein suggested that there is an entropy
associate with the blackhole [5]. However that the blackhole has an entropy
first arose from the realization that its event horizon surface area exhibits
remarkable tendency to increase when undergoing any transformation as
noticed by Floyd and Penrose[6] and later supported by Christodoulou [7].
Hawking [8] was the first to give a general proof that the surface area of the
blackhole cannot decrease in any process and additionally he showed that
when two blackholes coalesce, the area of the resulting blackhole cannot be
smaller than the sum of the initial areas. It is clear that the change in
blackhole generally occur in the direction of increasing area. This is
reminiscent of the second law of thermodynamics which states that the
changes of a closed thermodynamic system takes place in the direction of
increasing entropy. This comparison suggests that it might be useful to
consider blackhole physics from thermodynamic viewpoint, that something
like entropy may play a major role in it. However, physicist were not
convinced about the validity of blackhole entropy before Hawking radiation
was discovered.

An incredible outcome of the Einstein theory of gravity are blackholes. They
were thought that no matter inside could escape and so invisible from
outside. In 1970s, Hawking startled all the physical community by proving
that the blackholes are not actually black[4,9]. They can radiate thermally

like a blackbody with Hawking temperature T, = 2—'( where «is the surface
T

gravity of the blackhole. The surface gravity means the acceleration
measured at the spatial infinity that a stationary particle should undergo to
withstand the gravity at the horizon. Although the heuristric picture which
visualizes the source of radiation as tunneling was first proposed by
Hawking, but his calculation was completely based on quantum field
theory in curved spacetime which is independent of a tunneling process.

The classical ‘no hair’ theorem stated that all the information about the
collapsing body was lost except three conserved quantity: the mass, the
angular momentum and the electric charge. So the only solutions of
Einstein-Maxwell equations in four dimensions is the stationary and rotating
Kerr-Newman blackhole solutions. In classical theory , the loss of
information is not a serious problem since it could be thought that the
information is preserved inside the blackhole but just not very accessible.
Even , once Hawking thought that the loss of information never recovered.

<P




But recently he change his opinion about information loss paradox. However
, taking quantum effect into consideration , the situation is changed due to
Hawking discovery that blackholes radiates thermally[4,9]

Due to the emission of thermal radiation blackhole could loss energy, shrink
and eventually evaporate away completely. Since the radiation with a
precisely thermal spectrum carries no information , so the information
carried by a physical system falling toward blackhole singularity has no
away to be recovered after a blackhole has disappeared completely. This is
known as so called “ information loss paradox”[10] which means that pure
quantum states ( the original matter that forms the blackhole ) can evolve
into mixed states (the thermal spectrum at infinity ). This type of evolution
violates the fundamental principle of quantum theory, as these prescribe a
unitary time evolution of basis states[11].

The information loss paradox can perhaps be attributed to the semi-classical
nature of the investigations of Hawking radiation. However, researches in
string theory indeed support the idea that Hawking radiation can be
described within a manifestly unitary theory, but it still remains a mystery
how information is recovered. Although a complete resolution of the
information loss paradox might be within a unitary theory of quantum
gravity or string/ M-theory , it is argued that the information could come out
if the outgoing radiation were not exactly thermal but had subtle
corrections[10].

After Hawking’s discovery that blackholes radiate[4,9], there were
several approaches to study this effect. The Hawking discovery was
based on the general relativity and quantum mechanics. This is the key
link in spacetime quantization. In the last few decades , there were many
researches on the Hawking radiation and many methods to calculate
Hawking radiation were obtained.

There is some degree of mystery remains in the mechanism of blackhole
radiation. In the original derivation of blackhole evaporations, Hawking
described the thermal radiation as a quantum tunneling process created by
vacuum fluctuation near the event horizon [12]. In this process , the
radiation is like electron-positron pair creation in a constant electric field.
The energy of a particle can change its sign after crossing the event horizon.
So a pair created by vacuum fluctuations just inside or outside the horizon
can materialize with zero total energy, after one member of the pair has
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tunneled to the opposite side. But in [4] Hawking did not proceed in this

: . c K
way. He considered the creation of a blackhole in the cotext of a collapse
geometry, calculating the Bogoliubov transformations between the initial
and final states of incoming and outgoing radiation. However , there were
two difficulties to overcome this problem. The first was to find a well —
behaved coordinate system at the event horizon. The second was where is
the barrier.

Recently , a method to describe Hawking radiation as tunneling process was
developed by Krause and Wilczek [13] and elaborated by Parikh and
Wilczek[14,15,16,17]. It was suggested in the method that the barrier is
created by the tunneling particle itself. This method involves calculating the
imaginary part of the action for the (classically forbidden) process of s-wave
emission across the horizon, which in turns is related to the Boltzmann
factor for emission at the Hawking temperature. Using the

( Wentzel- Kramers —Brillouin ) WKB approximation' the tunneling
probability for the classically forbidden trajectory of the s-wave coming
from inside to outside the horizon is given by

[' wexp(-2ImS)

where S is the classical action of the trajectory to leading order in ¥(set
equal to unity).

Expanding the action in terms of the particle energy , the Hawking
temperature is recovered at linear order. In other words for

2S = BE +0(E?) this gives

I ~ exp(-2S) = exp(-BF)

which is the regular Boltzmann factor for a particle of energy E and g is
the inverse temperature of the horizon.

Besides treating the Hawking radiation as a tunneling process Krause-
Parikh-Wilczek also took the tunneling particles back reaction into account.
They obtained the corresponding modified spectrum.

[l For large values of the quantum numbers or of the masses of the particles in the system the quantum
mechanics gives results closely similar to classical mechanics. For intermediate cases it is found that the
old quantum theory often gives good results. It is therefore pleasing that there has been obtained an
approximation method of solution of the wave equation based on an expansion the first terrn of which leads
to the classical result , the second term to the old-quantum theory result , and the higher terms to
corrections which bring in the effects characteristic of the new mechanics. This method is usually called the
Wentzel-Kramers-Brillouin method ( precisely the WKB approximation method)]



The most interesting result was that they found this modified spectrum was
implicitly consistent with the unitary theory and could support the
conservation of information[13,14,15,16].

Following this tunneling method , there have been many generalizations ,
such as its application to other spacetimes. The Hawking radiation as
tunneling from various spherically symmetric blackholes were found in
[11,18,19,20,21,22,23,24,25,26,27,28,29,30]. There are some attempts to
extend this method to the case of stationary axisymmetric blackholes
[31,32,33,34,35,36,37,38,39]. Recently, some researchers investigated the
massive charged particles tunneling from the static spherically symmetric as
well as stationary axisymmetric blackholes [40,41,42,43,44,45,46]. They all
found a satisfying result. However , Parikh and Wilczek’s tunneling method
is dependent on coordinates, which means that it should find a Painleve-like
coordinates. There is a new method which is independent of coordinates and
known as Hamilton-Jacobi tunneling method developed by Angheben,
Nadalini,Vanzo and Zerbini[31]. This variant tunneling method could also
be considered as an extension of the method used by Padmanabhan
,Srinivisan, Shankaranarayann and Vegenas [47,48,49,50,51]. More research
paper in this area are also found [52,53].

In this thesis we review spacetime singularity, the blackholes and their
formation, some classification and some properties in chapter two. Some
established theorems on blackholes and present observational evidence are
also added in this chapter.

In chapter three, introducing one with the laws of blackhole mechanics and
the laws of ordinary thermodynamics ,we briefly review the remarkable
analogy between ordinary thermodynamics and blackhole mechanics. We
also discuss the validity and necessity of the generalized second law (GSL).
We explain the flaws arises when one attempt to draw an analogy between
the laws of blackhole mechanics and the laws of ordinary thermodynamics.

In chapter four, we give some evidence of blackhole entropy, blackhole

entropy expression, the linearity of blackhole entropy with its horizon area
and some interpretation of blackhole entropy given by the wvarious

.
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researchers. We also discuss the blackhole entropy problem and sums up
some open questions to which complete answers to these questions is still
lack. Finally, using thermodynamic relation we obtain Bekenstein-Hawking
entropy, Hawking temperature and some other intensive parameters of
various types of blackholes.

In chapter five, we give a short history of Hawking radiation, the nature of
Hawking radiation , either the Hawking radiation is continuous or discrete
and given a parallel discussion between blackhole radiation and blackbody
radiation. The luminosity and lifetime of blackholes are also discussed in
this chapter. The tunneling of uncharged massless particles of various types
of blackholes are also given in this chapter and we obtain the tunneling
probability of some blackholes.

In chapter six, we discussed the tunneling probability of massive charged
particles which are obtained by the some researchers. Following their
methods and techniques, we obtained the tunneling probabilty of massive
charged particles from some kinds of blackholes.

In chapter seven, a new method to study the Hawking radiation as tunneling
the Hamilton-Jacobi methods are discussed. In this chapter, applying this
method we obtain the tunneling probability of some blackholes.
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CHAPTER TWO
SPACETIME SINGULARITY

2.1 Singularities:

Mathematically, a singularity of a function is a condition
when the function does not give a finite value. For example, in Newtonian
mechanics the gravitational potential energy U of a mass m is given by the

g GM, . oy B !
equation U =-——~ | where G is the Newton's gravitational constant, M is
7

the mass of attracting body and r is the distance between the two centers of
the bodies. Here U becomes infinite when r=0, therefore »r=0 is a
singularity of U. In the context of general relativity theory, spacetime
singularity means the region or location of the space in which the Einstein
field equations break down. Einstein field equation are taken to be a
fundamental description of space and time. At the singularity, objects or
light can reach a finite time but the curvature of spacetime becomes infinte.
Singularity lies inside the blackhole where matter is crushed in infinite
density, the pull of gravity is infinitely strong and spacetime has infinite
curvature. In the solution of Einstein equations, a situation where matter is
forced to be compressed to a point is called a spacelike singularity and a
situation where certain light rays come from a region with infinite curvature
is called timelike singularity.

{ Black hole

Singularity

Figure: 2.1 Formation of singularity.




Spacelike singularities are a feature of non-rotating uncharged
blackholes, while time like singularities are those that occur in charged or
rotating blackhole exact solution

Within a few months after Einstein field equations discovered, Karl
Schwarzschild obtain the solution of Einstein equation, for vacuum space,
R, =0 as

uv

%) 2M ) 2M - 2 2 2 ) 2
ds? ==(1-=——=)dt* + (1 -—)"'ar? +r°(df” +sin" 0 d¢*)
r r

(with G=c=1)
Here M is the mass of the matter, r is the distance from the center of the
matter. The equation (2.1) has a singularity at »=0 and r=2M .The
singularity at » =0 is a true singularity or physical singularity since it cannot
remove by any co-ordinate choice. But the singularity atr =2M is
not a true singularity since it can be removed by a suitable co-ordinate
choice. In ingoing Eddington-Finkelstein(EF) coordinate system
(v,r,6,¢) Where v=r+r with r, is defined as

]
ro= .[I——iﬁdr :r+2Mln(ﬁ—l) ....................................... (2.2)

B
In this coordinate system the metric (2.1) takes the form
21 2 7) 2 . 2 2
M)dv'+2dvdr+r'(d9'+sm“0d¢') ......................... (2.3)
p
and we see that there is no singularity at r=2M. Thus we have two
characterizations of spacetime singularity in Schwarzschild solution (i) a
singularity that cannot be removed by any choice of coordinate and (ii) the
singularity which can be removed by a suitable coordinate choice, while
these criteria work for blackholes, however, they are not sufficient to capture
all spacetime singularities.

ds? =—(1-

The metric (2.3) defined for »>2M since the relation v=r+r. between v
and r is only defined for » >2A |, but it can now be analytically continued to
all r>0.Because of thedrdv cross term the metric in EF coordinate is
nonsingular at » =2M , so the singularity in Schwarzschild coordinates was
really a coordinate singularity. There is nothing at » = 2M to prevent the star
collapsing through r=2M. This is illustrated by a Finkelstein diagram,
which is a plot of ¢, =v-r against r.
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The light cones distorted as » — 2M from r > 2M so that no future

directed timelike or null world line can reach r > 2M from r <2M
(54].

Spacetime singularities are also explained by geodesics. Geodesics are the
‘possible straightest’ path of spacetime. For any geodesics we can extend it
infinitely on both sides. If this is not possible then it seems that the geodesic
path comes to an edge or an end in some finite distance. Therefore we give a
characterization of spacetime singularity in terms of “geodesic
incompleteness”. A spacetime is called singular if it contains geodesics that

cannot be extended to infinity. In this case it seems that there is an ‘edge’ or
an ‘end’ to spacetime which lies at finite distance. For blackholes it can be
shown that the geodesic paths can be extended through r=2A but not =0

= a7 IR7

Light cone
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2.2 Blackhole:

In the realm of science ,blackholes were at first only a
speculation as a result of calculation of the bodies whose escape velocity is
greater than the velocity of light. At first , in 1784, John Michell gave this
idea. After a few years, in 1798, mathematician Pierre Simon Laplace
discussed about the classical bodies with escape velocity greater than the
speed of light. But at that time their idea could not attract much attention.
After discovery of Einstein’s theory of general relativity, the theoretical
discussion about that bodies again started. In 1967, John Wheeler, an
American physicist coined the term ‘blackhole’ and thereafter it is popular
used.

[ John Wheeler always denied that he coined the term ‘blackhole’. He says
that ,in the fall of 1967 ,he was invited to give a talk on pulsars, then
mysterious deep space object at NASA’s Goddard institute of space studies
in New York. As he spoke, he argued that something strange might be at the
center ,what he called a gravitationally completely collapsed object. But
such a phrase was a mouthful, he said wishing about for a better name. ‘How
about blackhole?’ some one shouted from the audience.

That was it [ had been searching for just the right term for months, mulling
it over in bed, in the bathtub, in my car wherever I had quiet moments, he
later said. Suddenly this name seemed exactly right. He kept using the term,
in lectures and on papers and it stuck.]

The simplest picture of blackhole is that of a body whose gravity is so strong
that nothing , even light cannot escape from it. The escape velocity of a body
means the initial speed that required to go from an initial point in a
gravitational potential field to escape the gravitational pull of the body and
continue flying out to infinity. For example, the escape velocity of the earth
is 11.2 km/s and for the moon it is 2.4 km/s. According to the theory of
relativity, nothing can propagate faster than the speed of light and so if light
cannot escape due to strong gravity of the body, then neither can anything
else. So the body is unobservable and treated as a blackhole.

2.3 Event horizon of blackhole :
The important key to understanding

the study of blackholes is event horizon. Simply ,horizon is a boundary in
spacetime in which matter and light can only goes to inward towards the



center of the blackhole. In this sense ,the event horizon is a place of no
return. More generally, horizon means the boundary between the part of
spacetime from which light can escape to infinity and the part out of which
light cannot escape. So it is separating the events from outside universe.
Within the boundary if an event occurs, the information from that event
cannot reach outside observer. For a distant observer clocks near a blackhole
appear to tick more slow down than those further away from the blackhole.
This effect is known as gravitational time dilation. If an object approach the
event horizon and cross it, then for a distant observer it would like to move
slower and slower as it closer and closer to the horizon. Observer seems that
the object never reach at the horizon though the falling objects pass through
the horizon in a finite amount of proper time. For a non rotating , uncharged
Schwarzschild blackhole the spherical surface is referred to an event
horizon while for rotating blackholes, event horizons are distorted non
spherical.
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Figure: 2.3 The spherically symmetric collapse of a star, showing the formation
of an event horizon that is the boundary of the reign of space-time from which it
is not possible to escape to infinity. In this diagram time is plotted vertically and
space horizontally, with one spatial dimension suppressed.
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In fact the more accurate description of event horizon is that, at a
specific distance from blackhole light cones are so tipped over that
the outgoing edges of each light cone is vertical in the diagram

below.
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Figure. 2.4 From Penrose (Scientific American).

These edges form a surface which is called the event horizon. The boundary
divides the spacetime into an ‘out side’ and an ‘inside’ where as from inside
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particles and light rays can never escape outside because all of the light
cones point to the singularity, their world lines will end.

2.4 Formation of blackhole:

The solution of Einstein field equations
suggest that such a bizarre objects , like blackholes could exist in nature.
But FEinstein himself thought that black holes would not form, because he
held that the angular momentum of collapsing particles would stabilize their
motion at some radius[55].He claimed that the collapsing matter could not
reach at zero volume. This led the general relativity community to dismiss
all results to the contrary for many years. Only a minority of relativists
continued to contend that blackholes were physical objects[56] and by the
end of 1960’s they infer that there is no obstacle to forming a blackhole in
nature.

Consider a very compact and massive star. The strength of gravity of
the star can be increased if the star shrink or more mass is added. When light
rays leave the surface of this star radially outwards then gravity affects the
light due to its particle properties(due to photon mass).To overcome the
surface gravity and escape from the star ,light has done some work. So its
energy and hence frequency will be diminished. As a result gravitational red
shift occur. For more compact and massive star the red shift becomes
infinite. For example, if a clock at rest in the metric (2.1) and located at a
distance r ( r>r, ) exhibits, when its ticks are ‘read’ from infinity via

electromagnetic signals a red shift measured by [57]

read at

dsf Lall ), - (2.4)

[ds]h:ca//y \/_ gOO (’ =V ) I M
r

The red shift (2.4) goes to infinity if » —»r . Here r, =2M, Schwarzschild

radius. To get an idea about Schwarzschild radius it is notable that the
Schwarzschild radius of the sun is approximately 3 km and for the earth it is
about 1 cm . This means that if we could collapse all the earth’s matter down
to a sphere whose radius is 1 cm , then it will form a blackhole.

In actual world blackholes may formed by the following process:

...............................




2.4(a) Gravitational collapse:

The primary formation process of
blackholes is expected to be the gravitational collapse of sufficient amount
of matter. When a star consumes its nuclear fuel , then it stops all the
thermal activity that prevents it from collapsing under its won weight. Then
the star is known as death star and will undergo a gravitational collapse. The
collapsed may be stopped by the degeneracy pressure of the stars
constituents condensing the matter in an exotic denser state. The fate of the
death star depends on the mass of the remnant. In 1931, Subrahmanyan
Chandrasekhar calculated if the mass of the remnant less than 1.44 times
solar masses ( known as Chandrasekhar limit ) then electron degeneracy
pressure of it prevents itself to collapsing. The star is then stable and known
as ‘white dwarf ’.If the mass of the remnant lies between 1.44 to 3 solar
masses ,then the star again collapse and get a size smaller than ‘white dwarf
*.In this case neutron and proton degeneracy pressure counter balance the
gravity of its weight [58].

FLASH
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Figure.2.5 Space-time representation of the formation of a
blackhole by the collapse of a star.

The star is again stable and is called the ‘neutron star’. The radius of
the ‘neutron star’ may be only 10 miles and density per cubic inches
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billion billion tons[58].Finally if the mass of the remnant exceeds
about 3-4 solar masses( Tolman-Oppenheimer-Volkoff limit ) then
there is no known mechanism is powerful enough to stop the collapse
and the star will form a blackhole.

2.4 (b) Collapse of star cluster:

If a galaxy is densely populated with
stars then after a long time its center become more and more condensed by
the star cluster. This evolution may form a single supermassive body at the
center of the galaxy. This supermassive body may then undergo gravitational
collapse and form a black hole. Some supermassive blackhole with mass 10’
to 10° solar masses will be form by this process. Also some intermediate
blackholes are supposed to be formed by the amalgamation of many smaller
and cosmic bodies.

Table-2.1 (various types of blackhole)

class mass size
Suppermassive ~10° —10° M ~.001-10AU
blackhole

Intermediate blackhole ~10° M, ~10’km=R,,,,
Steelar blackhole ~10M ~30km

Micro blackhole Upto~M,,. . Upto ~0.Imm

[ From Wikipidia,the free encyclopedia ]

2.4 (¢) Primordial blackholes:

[t is possible that after a very short time of
‘Big Bang’ densities of matter were very much greater allowing for the
creation of blackholes. The high density alone is not enough to allow the
formation of blackholes since a uniform mass distribution will not allow the
mass to bunch up[58]. In other words if the matter density was enhanced in
some region, then rather than expand with the rest of the universe,
gravitational collapse of the matter in this region to form a blackholes might
have occurred. Stephen Hawking proposed that trillions of non stellar
blackholes or primordial blackholes were created along with the universe in
accordance with ‘Big Bang’. Some body suggest that high energy particle
collisions produce the required dense matter that can create a mini
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blackhole. But in the present universe it is not possible to form such
blackholes because gravitational collapse and collapse of a star cluster
cannot produce blackholes of very low mass.

2.5 Different types of blackholes:

2.5 (a) Schwarzschild blackhole:

The story of the blackholes
begins with Schwarzschild discovery of the Schwarzschild solution in
1916, soon after Einstein formulation of final gravitational field equations
in 1915. The Schwarzschild solution is the first simplest exact solution of
the vacuum Einstein equations which is spherically symmetric and
involving only one parameter M, the mass. This solution or blackhole has
no angular momentum, no charge and cannot be distinguished from any
other Schwarzschild blackholes except by its mass. The solution is given
by the metric (2.1) and has a singularity at »r=0 and r=2M . The
singularity at 2M due to its coordinates where the spacetime change their
meanings.

We see that the light cones in Schwarzschild coordinates are closing up as
we approach r=2M . So we can contrast a better coordinate system in that
region by following casual structure; define new coordinates

vl =1 [F A 2M (o = 1)] e eeer e 2.5
uv=I[tr, =1£[r+ n(ZM )] (2.5)

and sO u, v=1r+— ’m ..................................................... (2.6)

e ==

,.
Thus ingoing null rays have u=constant, while outgoing null rays have
v = constani .If we write the metric in coordinates(u,r,8,4) we can extend it
across r=2M along ingoing null rays. Similarly the metric in
coordinates(v,r,8,4) can be extended across r=2M along outgoing null

rays.
In Kruskal-Szekeres coordinates which are defined by

u | (r+1)
e L NG|
u'=eitM = (=AM e L S e e e 27
. )
N
V= e M o (D)2 @M 2.8
(e 8)
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In terms of these coordinates , the metric (2.1) becomes

M} -5

ds® = e XM du'dv' +r*(d6* +sin® 0dg’)

r

Where r(u,v)is defined implicitly by (2.7),(2.8) .These coordinates are
maximal- all geodesics either extend to infinite affine parameter without
leaving this chart or meet the singularity at =0 .The singular surface at
r =2M in the previous coordinates maps to »'v' =0 which is manifestly non
singular. On the other hand, =0 ,which maps to "' =-1 is still singular;
this is a curvature singularity. More generally, surfaces of constant t are at

1

1Z] .
— = constant ,while surfaces of constant r are at «'v' = constant .
v

=constant

t =constant

Figure:2.6 Kruskal diagram for Schwarzschild .

For large r, the metric (2.1) takes the form,

ds® ~ (1 —%)dlz +(1 +ﬂ)dr2 +r2(d6? +sin’0dg*) ..ooiiiin... (2.10)
r r

and from this equation, one can easily show that the Newtonian gravity is

merely a limiting case of general relativity. Again if we taker — o 1in
(2.10) we obtain,

ds® = —di* +dr’ +r*(d0° +sin® 0dg>) ..o (2.11)
Which is Minkowski flat spacetime.
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2.5 (b) Ressiner-Nordstrom blackhole:

1 _ Hans Ressiner and Gunnar Nordstrom
1scovered the solution of Einstein equation for vacuum space for a

charged body of mass M. Their solution is given by

12 2M : 2 2M . 2) 2
ds =—(1—T+%)dl‘+(I—}—+Q—,)"dr'+r‘(a’¢93+sin29d¢2)
.
............................................... (2.12)
(with G=c=1)

Here M is the mass of the body and Q is the total charge of the body. The
singularities of equation (2.12) is given by
L O E e o T (2.13)

i r
which gives,

ri=Mi\/'M2—Q2 g oA GEN 0 R N T RS (2.14)
Therefore the two concentric event horizons becomes degenerate for M =|0|

which corresponds to an extremal blackhole. The blackhole with 9 > M are

believed not to exist in nature. It is notable that the charged blackhole may
not be observed in nature because the blackhole is already discharged when
it is in stable state. The time taken by the blackhole from charged to

: g = . : M
discharged state called the characteristic time , is approximately 107 —

®
second [59].So the blackhole having mass 107 M, becomes stationary state

within one second !

2.5 (¢) Kerr blackhole:

In 1963, Roy Kerr obtained a solution of Einstein
equation for uncharged rotating body. The solution is given by the metric
known as Kerr metric or Kerr blackhole as (in the Boyer-Lindquist
coordinates)

2 (i - asin® 6dg)’ +%er +pldo +
=

sin’ @

BT [ +at)dg-adi)

where
A=ri=-2Mr+a’
p?=r+a’cos’d
J

a=—

M
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Here M is the mass of the body, J is the angular momentum and r is the
radial distance from the center of the body. The Kerr metric is used to
describe a rotating blackhole. The singularity of equation (2.15) is given

by,

Which gives,

o= MENM =@ | MP 3G i, (2.17)

So we may define three distinct region of the Kerr solution bounded by the
event horizons:

Region-1 : r, <r<o
Region-2 : SRS
Region-3 : O<r<r

Event horizon Evenl horizon

A
N

Figure:2.7 Space-time diagram of the Kerr solution in
advanced Eddington-Finkelstein coordinates.

The above figure shows that the three regions plotted in a spacetime
diagram along the equator of the blackhole using advanced Eddington-
Finkelstein (EF) coordinates in which ingoing null rays are straight lines.
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Therefore the Kerr blackhole have different two surface where the metric
appears have a singularity. The size and shape of these two surface
depends on both M and J. The region between outer surface and inner
surface is called ‘Ergosphere’. The outer surface enclose the ergosphere
and its shape is similar to flattened sphere. The inner surface marks the
event horizon. Objects which passes through the event horizon can never
communicate with the outside universe. Objects which comes close
enough to the blackhole so that they enter the ergosphere are

Event horizon

-
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Figure:2.8 Kerr blackhole surrounded by an ergosphere. The ergosphere is a
region inside which nothing can remain stationary.

forced to rotate in the same direction as the rotating matters which collapse
to form the blackhole. This feature can be used to extract energy fr