
University of Rajshahi Rajshahi-6205 Bangladesh.

RUCL Institutional Repository http://rulrepository.ru.ac.bd

Department of  Mathematics PhD Thesis

2012

Thermodynamics and Hawking

Radiation of Black Holes

Hossain, Md. Ismail

University of Rajshahi

http://rulrepository.ru.ac.bd/handle/123456789/752

Copyright to the University of Rajshahi. All rights reserved. Downloaded from RUCL Institutional Repository.



Thermodynamics and Hawking Radiation of Black Holes 

THESIS SUBMITTED FOR THE DEGREE 

OF 

DOCTORS OF PHILOSOPHY 

IN 

MATHEMATICS 

BY 

MD. ISMAIL HOSSAIN

B Sc Hon's( 1st. class), MSc (1st class) 

DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF RAJSHAHI 

RAJSHAHI-6205 

BANGLADESH 

ROLL NO. 09319 

REG. NO. 3570 

SESSION: 2009-2010 

SEPTEMBER- 2012 



Dr. M. Abdullah Ansary 
Professor 
Department of Mathematics 
University of Rajshahi. 
Rajshahi-6205, Bangladesh. 

Residence: 176/Kazla, Rajsl 
Phone:0721-750526 

Fax:: 

Mobile: 01199379144 
E-mail:ansary-math@yahoc

Dated: 29/09/2012 

Certificate from the supervisor 

This is to certify that the thesis entitled "Thermodynamics and Hawking 

Radiation of Black Holes "submitted by MD. Ismail Hossain who got his name 

registered in July/2009 MPhil/ PhD. batch for the award of the degree of Doctor of 

philosophy in mathematics of Rajshahi University , is absolutely based on original 

work under my supervision and neither this thesis nor any part of it has been 

submitted for any degree or any other academic award elsewhere before. 

II 

�. ()(_. � 
(Dr. M. Abdullah Ansary) 

Supervisor 



Declaration 

I do hereby declare that the thesis entitled "Thermodynamics and Hawking 

Radiation of Black Holes" submitted by me to the University of Rajshahi for the 

award of Ph D. degree in mathematics has not been submitted to any institute or 

University for degree or award. 

111 

cRf. o'),J'L
(Md. Ismail Hossain) 

PhD. Fellow 

Department of mathematics 

University of Rajshahi 

Rajshahi-6205, Bangladesh. 



Dedicated 

To 

my parents 

IV 



Acknowledgement 

At first I would like to express my gratefulness to the omnipotent creator and 
sustainer of the universe for enabling me to complete the work of this thesis. 
I am highly thankful and obliged to my esteemed supervisor, my constant source of 
knowledge Dr. M. Abdullah Ansary , Department of mathematics, University of 

Raj shahi, for his guidance, encouragement and support throughout the course of this 
work and in the preparation of this thesis. 

I would also like to express my gratitude to the honorable chainnan, Department of 
mathematics, University of Rajshahi, Rajshahi for providing me the departmental 
facilities. I also wish to record my sincere thanks to all the teachers and staff, 

Department of mathematics , University of Rajshahi, Rajshahi, for their cooperation 
and inspiration that I have had during this work. 

I would like to take this opportunity to remember all my teachers , from whom I got 
lessons and inspiration to carry out advanced study. 

I also express my profound gratitude to my reverend teacher professor (ret.) K. A. 
Dakua for his constant encouragement and inspiration and Dr. Sabur Uddin for his 
valuable advice during this course of work. 

I am grateful to the University Grant Commission (UGC) of Bangladesh for 
awarding a fellowship ( vide no. 10/6094 , Date: 27.06.2010, September 2010-
September 2012) during this course of work. 

I am also grateful to the Ministry of Education, Government of the People's 
Republic of Bangladesh for giving me kind permission and granting me required 
study leave/ Deputation for perusing the PhD. course. 

Many thanks go to my wife for her encouragement and support during the entire 
period of this work. 

The author 

V 



"' 

,-. ABSTRACT 

After a short review of spacetime singularities , blackholes , we introduce one with 
the laws of blackhole mechanics and the laws of ordinary thermodynamics. We 
discuss the remarkable analogy between the laws of blackhole mechanics and the 
laws of thermodynamics. By Bekenstein proposal we explain the flaws arises when 
one attempts to draw an analogy between them. We study the Bekenstein-Hawking 

entropy, evidence of blackhole entropy, interpretation of blackhole entropy, the 
linearity of blackhole entropy with its horizon area , the problem of blackhole 
entropy and using thermodynamic relation we obtain Bekenstein-Hawking entropy, 
Hawking temperature and some intensive parameters of some different kinds of 
blackholes. 

In this thesis, we also study the Hawking radiation, its nature and a parallel 
discussion with blackbody radiation. The luminosity and lifetime of blackholes are 
also studied. By applying Parikh-Wilczek's semi-classical tunneling method we 
obtain the emission rate of massless uncharged particle and the massive charged 
particles at the event horizon of blackholes. Finally, we obtain the emission rate at 
the event horizon of some kinds of blackholes by applying a new method known as 
Hamilton-Jacobi method. 
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CHAPTER ONE 

INTRODUCTION 

The most exotic entities encountered in the present study of physics are 
blackholes. The nature of blackhole spacetime is enough to make the 
physics of blackholes more than science fiction. In the prologue to the 
Mathematical Theory of Blackholes Subrahmanyan Chandrasekhar sums up 
his views on blackholes in a sentence : "The blackholes of nature are the 
most perfect macroscopic objects there are in the universe: the only elements 
in their construction are our concepts of space and time." Even more 
astounding are the connections of blackhole physics with thermodynamics. 
One of the most remarkable developments in theoretical physics that has 
occurred in the past forty years, was undoubtedly the discovery of the close 
relationship between the certain laws of the ordinary thermodynamics and 
the laws of blackhole mechanics. The starting point of this remarkable 
developments was the discovery of the four laws of blackhole mechanics by 
Bardeen, Carter and Hawking [l]. It appears that the laws of blackhole 
mechanics and the laws of thermodynamics are two major pieces of a puzzle 
that fit together so perfectly that there can be little doubt that this 'fit' is of 
deep significance. The existence of this close relationship between these 
laws seem to be guiding us towards a deeper understanding of the 
fundamental nature of spacetime, as well as understanding of some aspects 
of the nature of thermodynamics itself [2]. 

It was first pointed out by Bekenstein [3] that a close relationship might exist 
between the certain laws satisfied by blackholes in classical general 
relativity and the ordinary laws of thermodynamics. He noted that the area 
theorem of classical general relativity is closely analogous to the statement 
of the ordinary second law of thermodynamics. His proposal was confinned 
by Bardeen, Carter and Hawking[l], they proved that in general relativity, 
the surface gravity , K, of a stationary blackhole must be constant over the 
event horizon, which is analogous to the zeroth laws of thermodynamics. 
The analogue of the first law of thermodynamics was also proved. 

It is generally believed that classically a blackhole is nothing but a perfectly 

dead star which have an absolute zero as a physical temperature. But it was 
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not so since Hawking has found a startling discovery that the blackholes 
radiates thermally[ 4 ], whereas Bekenstein suggested that there is an entropy 
associate with the blackhole (5]. However that the blackhole has an entropy 
first arose from the realization that its event horizon surface area exhibits 
remarkable tendency to increase when undergoing any transformation as 
noticed by Floyd and Penrose[6] and later supported by Christodoulou [7]. 
Hawking [8] was the first to give a general proof that the surface area of the 
blackhole cannot decrease in any process and additionally he showed that 
when two blackholes coalesce, the area of the resulting blackhole cannot be 
smaller than the sum of the initial areas. It is clear that the change in 
blackhole generally occur in the direction of increasing area. This is 
reminiscent of the second law of thermodynamics which states that the 
changes of a closed thermodynamic system takes place in the direction of 
increasing entropy. This comparison suggests that it might be useful to 
consider blackhole physics from thermodynamic viewpoint, that something 
like entropy may play a major role in it. However, physicist were not 
convinced about the validity of blackhole entropy before Hawking radiation 
was discovered. 

An incredible outcome of the Einstein theory of gravity are blackholes. They 
were thought that no matter inside could escape and so invisible from 
outside. In 1970s, Hawking startled all the physical community by proving 
that the blackholes are not actually black[ 4,9]. They can radiate thermally 
like a blackbody with Hawking temperature T

H 
= 'flK where K is the surface

2iC 

gravity of the blackhole. The surface gravity means the acceleration 
measured at the spatial infinity that a stationary particle should undergo to 
withstand the gravity at the horizon. Although the heuristric picture which 
visualizes the source of radiation as tunneling was first proposed by 
Hawking, but his calculation was completely based on quantum field 
theory in curved spacetime which is independent of a tunneling process. 

The classical 'no hair' theorem stated that all the information about the 
collapsing body was lost except three conserved quantity: the mass, the 
angular momentum and the electric charge. So the only solutions of 
Einstein-Maxwell equations in four dimensions is the stationary and rotating 
Kerr-Newman blackhole solutions. In classical theory , the loss of 
information is not a serious problem since it could be thought that the 
information is preserved inside the blackhole but just not very accessible. 
Even , once Hawking thought that the loss of information never recovered. 
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But recently he change his opinion about information loss paradox. However 
, taking quantum effect into consideration , the situation is changed due to 
Hawking discovery that blackholes radiates thermally[ 4,9] 

Due to the emission of thermal radiation blackhole could loss energy, shrink 
and eventually evaporate away completely. Since the radiation with a 
precisely thermal spectrum carries no infonnation , so the information 
carried by a physical system falling toward blackhole singularity has no 
away to be recovered after a blackhole has disappeared completely. This is 
known as so called" information loss paradox"[lO] which means that pure 
quantum states ( the original matter that forms the blackhole ) can evolve 
into mixed states (the thermal spectrum at infinity ). This type of evolution 
violates the fundamental principle of quantum theory, as these prescribe a 
unitary time evolution of basis states[ 11]. 

The information loss paradox can perhaps be attributed to the semi-classical 
nature of the investigations of Hawking radiation. However, researches in 
string theory indeed support the idea that Hawking radiation can be 
described within a manifestly unitary theory, but it still remains a mystery 
how infonnation is recovered. Although a complete resolution of the 
information loss paradox might be within a unitary theory of quantum 
gravity or string/ M-theory , it is argued that the information could come out 
if the outgoing radiation were not exactly thermal but had subtle 
corrections[ 1 OJ. 

After Hawking's discovery that blackholes radiate(4,9], there were 
several approaches to study this effect. The Hawking discovery was 
based on the general relativity and quantum mechanics. This is the key 
link in spacetime quantization. In the last few decades , there were many 
researches on the Hawking radiation and many methods to calculate 
Hawking radiation were obtained. 

There is some degree of mystery remains in the mechanism of blackhole 
radiation. In the original derivation of blackhole evaporations, Hawking 
described the thermal radiation as a quantum tunneling process created by 
vacuum fluctuation near the event horizon [12]. In this process , the 
radiation is like electron-positron pair creation in a constant electric field. 
The energy of a particle can change its sign after crossing the event horizon. 
So a pair created by vacuum fluctuations just inside or outside the horizon 

can materialize with zero total energy, after one member of the pair has 
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tunneled to the opposite side. But in [4] Hawking did not proceed in this 
way. He considered the creation of a blackhole in the cq!ext of a collapse 
geometry, calculating the Bogoliubov transfonnations between the initial 
and final states of incoming and outgoing radiation. However , there were 
two difficulties to overcome this problem. The first was to find a well -
behaved coordinate system at the event horizon. The second was where is 
the barrier. 

Recently , a method to describe Hawking radiation as tunneling process was 
developed by Krause and Wilczek [ 13] and elaborated by Parikh and 
Wilczek[ 14, 15, 16, 17]. It was suggested in the method that the barrier is 
created by the tunneling particle itself. This method involves calculating the 
imaginary part of the action for the ( classically forbidden) process of s-wave 
emission across the horizon, which in turns is related to the Boltzmann 
factor for emission at the Hawking temperature. Using the 
( Wentzel- Kramers -Brillouin ) WKB approximation I the tunneling 
probability for the classically forbidden trajectory of the s-wave coming 
from inside to outside the horizon is given by 
r oo exp(-2 lm S) 

where S is the classical action of the trajectory to leading order in -l1 ( set 
equal to unity). 

Expanding the action in terms of the particle energy , the Hawking 
temperature is recovered at linear order. In other words for 
2S = f3E+O(E 2

) this gives 
r - exp(-2S):::: exp(-/JE) 

which is the regular Boltzmann factor for a particle of energy E and fJ is

the inverse temperature of the horizon. 
Besides treating the Hawking radiation as a tunneling process Krause­
Parikh-Wilczek also took the tunneling particles back reaction into account. 
They obtained the corresponding modified spectrum. 

[ 
1 

For large values of the quantum numbers or of the masses of the particles in the system the quantum 
mechanics gives results closely similar to classical mechanics. For intermediate cases it is found that the 

old quantum theory often gives good results. It is therefore pleasing that there has been obtained an 
approximation method of solution of the wave equation based on an expansion the first tenn of which leads 
to the classical result , the second term to the old-quantum theory result , and the higher terms to 

corrections which bring in the effects characteristic of the new mechanics. This method is usually called the 
Wentzel-Kramers-Brillouin method ( precisely the WKB approximation method)] 

- 4 -



The most interesting result was that they found this modified spectrum was 
implicitly consistent with the unitary theory and could support the 
conservation of information[l 3,14,15, 16]. 

Following this tunneling method , there have been many generalizations 
such as its application to other spacetimes. The Hawking radiation as 
tunneling from various spherically symmetric blackholes were found in 
[l l,18,19,20,21,22,23,24,25,26,27,28,29,30].There are some attempts to 
extend this method to the case of stationary axisymmetric blackholes 
[31,32,33,34,35,36,37,38,39]. Recently, some researchers investigated the 
massive charged particles tunneling from the static spherically symmetric as 
well as stationary axisymmetric blackholes [40,41,42,43,44,45,46]. They all 
found a satisfying result. However , Parikh and Wilczek's tunneling method 
is dependent on coordinates, which means that it should find a Painleve-like 
coordinates. There is a new method which is independent of coordinates and 
known as Hamilton-Jacobi tunneling method developed by Angheben, 
N adalini, Vanzo and Zerbini[3 l]. This variant tunneling method could also 
be considered as an extension of the method used by Padmanabhan 
,Srinivisan, Shankaranarayann and Vegenas [47,48,49,50,51]. More research 
paper in this area are also found [52,53]. 

In this thesis we review spacetime singularity, the blackholes and their 
formation, some classification and some properties in chapter two. Some 
established theorems on blackholes and present observational evidence are 
also added in this chapter. 

In chapter three, introducing one with the laws of blackhole mechanics and 
the laws of ordinary thermodynamics ,we briefly review the remarkable 
analogy between ordinary thermodynamics and blackhole mechanics. We 
also discuss the validity and necessity of the generalized second law (GSL). 
We explain the flaws arises when one attempt to draw an analogy between 
the laws of blackhole mechanics and the laws of ordinary thermodynamics. 

In chapter four, we give some evidence of blackhole entropy, blackhole 
entropy expression, the linearity of blackhole entropy with its horizon area 
and some interpretation of blackhole entropy given by the various 
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researchers. We also discuss the black.hole entropy problem and sums up 
some open questions to which complete answers to these questions is still 
lack. Finally, using thermodynamic relation we obtain Bekenstein-Hawking 
entropy, Hawking temperature and some other intensive parameters of 
various types of blackholes. 

In chapter five, we give a short history of Hawking radiation, the nature of 
Hawking radiation , either the Hawking radiation is continuous or discrete 
and given a parallel discussion between blackhole radiation and blackbody 
radiation. The luminosity and lifetime of blackholes are also discussed in 
this chapter. The tunneling of uncharged massless particles of various types 
of black.holes are also given in this chapter and we obtain the tunneling 
probability of some black.holes. 

In chapter six, we discussed the tunneling probability of massive charged 
particles which are obtained by the some researchers. Following their 
methods and techniques, we obtained the tunneling probabilty of massive 
charged particles from some kinds of black.holes. 

In chapter seven, a new method to study the H.awking radiation as tunneling 
the Hamilton-Jacobi methods are discussed. In this chapter, applying this 
method we obtain the tunneling probability of some blackholes. 
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2.1 Singularities: 

CHAPTER TWO 

SPACETIME SINGULARITY 

Mathematically, a singularity of a function is a condition 
when the function does not give a finite value. For example, in Newtonian
mechanics the gravitational potential energy U of a mass m is given by the 

· GMm 
h G . h N ' . . 1 M . equation U = --- , w ere 1s t e ewton s grav1tat10na constant, 1s

the mass of attracting body and r is the distance between the two centers of 
the bodies. Here U becomes infinite when r = O, therefore r = O is a 
singularity of U. In the context of general relativity theory, spacetime 
singularity means the region or location of the space in which the Einstein 
field equations break down. Einstein field equation are taken to be a 
fundamental description of space and time

. 
At the singularity, objects or 

light can reach a finite time but the curvature of spacetime becomes infinte. 
Singularity lies inside the blackhole where matter is crushed in infinite 
density, the pull of gravity is infinitely strong and spacetime has infinite 
curvature. In the solution of Einstein equations, a situation where matter is 
forced to be compressed to a point is called a spacelike singularity and a 
situation where certain light rays come from a region with infinite curvature 
1s called timelike singularity. 

l 

Black hole 

Singularity 

Figure: 2.1 Formation of singularity. 
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Spacelike singularities are a feature of non-rotating uncharged 
black.holes, while time like singularities are those that occur in charged or 
rotating black.hole exact solution 

Within a few months after Einstein field equations discovered, Karl 
Schwarzschild obtain the solution of Einstein equation, for vacuum space, 

R
µ
,· = o as 

ds 2 =-(l-2M)dt 2 +(l-
2Mr 1 dr 2 +r 2 (d0 2 +sin 2 0 d¢ 2)

r r 

(with G=c=l) 
............................. (2.1) 

Here M is the mass of the matter, r is the distance from the center of the 
matter. The equation (2.1) has a singularity at r = 0 and r = 2M .The 
singularity at r = 0 is a true singularity or physical singularity since it cannot 
remove by any co-ordinate choice. But the singularity at r = 2M is 
not a true singularity since it can be removed by a suitable co-ordinate 
choice. In ingoing Eddington-Finkelstein(EF) coordinate system 
(v,r,0,¢) where v = t + r. with r. is defined as 

r. = f � dr = r + 2M ln(-
r
- -1) ....................................... (2.2) 

1_ M 2M 
r 

In this coordinate system the metric (2.1) takes the form 

2 2M 2 2 2 . 2 2 (2 3) ds = -(I - -)dv + 2dvdr + r (d0 + sin 0 d¢ ) . . . . . . . . . . . . . . . . . . . . .. .. . . 
r 

and we see that there is no singularity at r = 2M. Thus we have two 
characterizations of spacetime singularity in Schwarzschild solution (i) a 
singularity that cannot be removed by any choice of coordinate and (ii) the 
singularity which can be removed by a suitable coordinate choice, while 
these criteria work for black.holes, however, they are not sufficient to capture 
all spacetime singularities. 

The metric (2.3) defined for r > 2M since the relation v = t + r. between v 

and r is only defined for r > 2M , but it can now be analytically continued to 
all r > O .Because of the drdv cross term the metric in EF coordinate is 
nonsingular at r = 2M , so the singularity in Schwarzschild coordinates was 
really a coordinate singularity. There is nothing at r = 2M to prevent the star 

collapsing through r = 2M . This is illustrated by a Finkelstein diagram, 

which is a plot of t. = v - r against r. 
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The light cones distorted as r � 2M from r > 2M so that no future 
directed timelike or null world line can reach r > 2M from r � 2M

(54]. 

Spacetime singularities are also explained by geodesics. Geodesics are the 

'possible straightest' path of spacetime. For any geodesics we can extend it 
infinitely on both sides. If this is not possible then it seems that the geodesic 

path comes to an edge or an end in some finite distance. Therefore we give a 
characterization of spacetime singularity in terms of "geodesic 

incompleteness". A spacetime is called singular if it contains geodesics that 

cannot be extended to infinity. In this case it seems that there is an 'edge' or 
an 'end' to spacetime which lies at finite distance. For blackholes it can be 

shown that the geodesic paths can be extended through r = 2M but not r = 0 
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2.2 Black.hole: 

In the realm of science ,blackholes were at first only a 
speculation as a result of calculation of the bodies whose escape velocity is 
greater than the velocity of light. At first , in 1784, John Michell gave this 
idea. After a few years, in 1798, mathematician Pierre Simon Laplace 
discussed about the classical bodies with escape velocity greater than the 
speed of light. But at that time their idea could not attract much attention. 
After discovery of Einstein's theory of general relativity, the theoretical 
discussion about that bodies again started. In 1967, John Wheeler, an 
American physicist coined the term 'blackhole' and thereafter it is popular 
used. 

[ John Wheeler always denied that he coined the term 'blackhole'. He says 
that ,in the fall of 1967 ,he was invited to give a talk on pulsars, then 
mysterious deep space object at NASA's Goddard institute of space studies 
in New York. As he spoke, he argued that something strange might be at the 
center ,what he called a gravitationally completely collapsed object. But 
such a phrase was a mouthful, he said wishing about for a better name. 'How 
about blackhole?' some one shouted from the audience. 

That was it I had been searching for just the right term for months, mulling 
it over in bed, in the bathtub, in my car wherever I had quiet moments, he 
later said. Suddenly this name seemed exactly right. He kept using the term, 
in lectures and on papers and it stuck.] 

The simplest picture of blackhole is that of a body whose gravity is so strong 
that nothing, even light cannot escape from it. The escape velocity of a body 
means the initial speed that required to go from an initial point in a 
gravitational potential field to escape the gravitational pull of the body and 
continue flying out to infinity. For example, the escape velocity of the earth 
is 11.2 km/s and for the moon it is 2.4 km/s. According to the theory of 
relativity, nothing can propagate faster than the speed of light and so if light 
cannot escape due to strong gravity of the body, then neither can anything 
else. So the body is unobservable and treated as a blackhole. 

2.3 Event horizon of black.hole : 

The important key to understanding 
the study of blackholes is event horizon. Simply ,horizon is a boundary in 
spacetime in which matter and light can only goes to inward towards the 
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center of the blackhole. In this sense ,the event horizon is a place of no 
return. More generally, horizon means the boundary between the part of 
spacetime from which light can escape to infinity and the part out of which 
light cannot escape. So it is separating the events from outside universe. 
Within the boundary if an event occurs, the information from that event 
cannot reach outside observer. For a distant observer clocks near a black.hole 
appear to tick more slow down than those further away from the black.hole. 
This effect is known as gravitational time dilation. If an object approach the 
event horizon and cross it, then for a distant observer it would like to move 
slower and slower as it closer and closer to the horizon. Observer seems that 
the object never reach at the horizon though the falling objects pass through 
the horizon in a finite amount of proper time. For a non rotating , uncharged 
Schwarzschild black.hole the spherical surface is referred to an event 
horizon while ·for rotating black.holes, event horizons are distorted non 
spherical. 

r;O SINGULARITY 

TRAPPe:D 

SlffACE-,---iE+-=:::::.l 

�FACE CF 

STAR 

Figure: 2.3 The spherically symmetric collapse of a star, showing the formation 
of an event horizon that is the boundary of the reign of space-time from which it 
is not possible to escape to infinity. In this diagram time is plotted vertically and 
space horizontally, with one spatial dimension suppressed. 
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In fact the more accurate description of event horizon is that, at a 
specific distance from blackhole light cones are so tipped over that 
the outgoing edges of each light cone is vertical in the diagram 
below. 

Tin.e Sing u la 1rjrtlj· 

\7 
Empty Space

�Space
----- Space

-
---

---11'---�:::::­

__,.,-: 
---:---e-:�:-4--�--

Collapsing
ru1atte..-

E"\.f�lllllliti: Horizon 

Figure. 2.4 From Penrose (Scientific American). 

These edges form a surface which is called the event horizon. The boundary 

divides the spacetime into an 'out side' and an 'inside' where as from inside 
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particles and light rays can never escape outside because all of the light 

cones point to the singularity, their world lines will end. 

2.4 Formation of blackhole: 

The solution of Einstein field equations 

suggest that such a bizarre objects , like blackholes could exist in nature. 

But Einstein himself thought that black holes would not form, because he 

held that the angular momentum of collapsing particles would stabilize their 

motion at some radius[55].He claimed that the collapsing matter could not 
reach at zero volume. This led the general relativity community to dismiss 
all results to the contrary for many years. Only a minority of relativists 

continued to contend that blackholes were physical objects[56] and by the 

end of l 960's they infer that there is no obstacle to forming a blackhole in 
nature. 

Consider a very compact and massive star. The strength of gravity of 
the star can be increased if the star shrink or more mass is added. When light 
rays leave the surface of this star radially outwards then gravity affects the 

light due to its particle properties(due to photon mass).To overcome the 
surface gravity and escape from the star ,light has done some work. So its 

energy and hence frequency will be diminished. As a result gravitational red 
shift occur. For more compact and massive star the red shift becomes 

infinite. For example, if a clock at rest in the metric (2.1) and located at a 

distance r ( r > rs ) exhibits, when its ticks are 'read' from infinity via 

electromagnetic signals a red shift measured by [57] 

read al �----

[ds}inf 111//y _ .J-goo(r = 00) _ I 
measured - / ( ) - P?M · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · .. (2.4)

[ds]"'""">' \/-goo r=r 
1--

r 
The red shift (2.4) goes to infinity if r � r_,. Here r, = 2M, Schwarzschild 

radius. To get an idea about Schwarzschild radius it is notable that the 
Schwarzschild radius of the sun is approximately 3 km and for the earth it is 
about 1 cm . This means that if we could collapse all the earth's matter down 
to a sphere whose radius is 1 cm , then it will form a blackhole. 

In actual world blackholes may formed by the following process: 
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2.4(a) Gravitational collapse: 
The primary formation process of 

black.holes is expected to be the gravitational collapse of sufficient amount 
of matter. When a star consumes its nuclear fuel , then it stops all the 
thermal activity that prevents it from collapsing under its won weight. Then 
the star is known as death star and will undergo a gravitational collapse. The 
collapsed may be stopped by the degeneracy pressure of the stars 
constituents condensing the matter in an exotic denser state. The fate of the 
death star depends on the mass of the remnant. In 1931, Subrahmanyan 
Chandrasekhar calculated if the mass of the remnant less than 1.44 times 
solar masses ( known as Chandrasekhar limit ) then electron degeneracy 
pressure of it prevents itself to collapsing. The star is then stable and known 
as 'white dwarf '.If the mass of the remnant lies between 1.44 to 3 solar 
masses ,then the star again collapse and get a size smaller than 'white dwarf 
'.In this case neutron and proton degeneracy pressure counter balance the 
gravity of its weight [58]. 

Figure.2.5 Space-time representation of the formation of a 
black.hole by the collapse of a star. 

The star is again stable and is called the 'neutron star'. The radius of 
the 'neutron star' may be only 10 miles and density per cubic inches 
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billion billion tons[58].Finally if the mass of the remnant exceeds 
about 3-4 solar masses( Tolman-Oppenheimer-Volkoff limit ) then 
there is no known mechanism is powerful enough to stop the collapse 
and the star will form a blackhole. 

2.4 (b) Collapse of star cluster: 
If a galaxy is densely populated with 

stars then after a long time its center become more and more condensed by 
the star cluster. This evolution may form a single supermassive body at the 
center of the galaxy. This supermassive body may then undergo gravitational 
collapse and form a black hole. Some supermassive blackhole with mass I 05

to I 09 solar masses will be form by this process. Also some intermediate 
blackholes are supposed to be formed by the amalgamation of many smaller 
and cosmic bodies. 

Table-2.1 various es of blackhole 

class mass 

Suppermassive 
blackhole 
Intermediate blackhole 

Steelar blackhole 

Micro blackhole 

-10 5 -10 9 
M 

® 

Upto -M,,w011 

size 

-.001-I0AU 

-103 km = R.
0

"" 

-30km

Upto-0.lmm 

[ From Wikipidia,the free encyclopedia] 

2.4 (c) Primordial blackholes: 
It is possible that after a very short time of 

'Big Bang' densities of matter were very much greater allowing for the 
creation of blackholes. The high density alone is not enough to allow the 
formation of blackholes since a uniform mass distribution will not allow the 
mass to bunch up[58]. In other words if the matter density was enhanced in 
some region, then rather than expand with the rest of the uni verse, 
gravitational collapse of the matter in this region to form a blackholes might 
have occurred. Stephen Hawking proposed that trillions of non stellar 
blackholes or primordial blackholes were created along with the universe in 
accordance with 'Big Bang'. Some body suggest that high energy particle 
collisions produce the required dense matter that can create a mini 
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blackhole. But in the present universe 1t 1s not possible to form such 

blackholes because gravitational collapse and collapse of a star cluster 
cannot produce blackholes of very low mass. 

2.5 Different types of black.holes: 

2.5 (a) Schwarzschild blackhole: 

The story of the black.holes 
begins with Schwarzschild discovery of the Schwarzschild solution in 
1916, soon after Einstein formulation of final gravitational field equations 

in 1915. The Schwarzschild solution is the first simplest exact solution of 

the vacuum Einstein equations which is spherically symmetric and 
involving only one parameter M, the mass. This solution or black.hole has 
no angular momentum, no charge and cannot be distinguished from any 

other Schwarzschild blackholes except by its mass. The solution is given 

by the metric (2.1) and has a singularity at r = 0 and r = 2M . The 

singularity at 2M due to its coordinates where the spacetime change their 
meanmgs. 

We see that the light cones in Schwarzschild coordinates are closing up as 
we approach r = 2M . So we can contrast a better coordinate system in that 

region by following casual structure; define new coordinates 
r 

u, v = t ± r. = L ± [r + 2M In(- -1)] .................................... (2.5) 
2M 

r 
and so u, v = t± 

2M 
..................................................... (2.6) 

1--

r 

Thus ingoing null rays have u = constant, while outgoing null rays have 

v =constant.If we write the metric in coordinates(u,r,0,¢) we can extend it 

across r = 2M along ingoing null rays. Similarly the metric in 

coordinates(v,r,0,¢) can be extended across r = 2M along outgoing null 

rays. 

In Kruskal-Szekeres coordinates which are defined by 
11 I (r+t) 

u'=e 4M =(-,,--J)2e 4M .......................................... (2.7)
2M 

1' I (r-r) 
-- r - -

v' = -e 4M = (- -1)2 e 4M • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  (2.8) 
2M 
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In terms of these coordinates , the metric (2.1) becomes 
d 2 - 32M 3 

-2� d 'd I 
2 (d02 . 2 0d,t,2) (2 9) s ----e u v +r +stn ·'f' . • • • • . . • • • . . • • . • . • • • . • . • . . . . • 

Where r(u, v) is defined implicitly by (2.7),(2.8) .These coordinates are 
maximal- all geodesics either extend to infinite affine parameter without 
leaving this chart or meet the singularity at r = O .The singular surface at 
r = 2M in the previous coordinates maps to u'v' = 0 which is manifestly non 
singular. On the other hand, r = 0 ,which maps to u'v' = -1 is still singular; 
this is a curvature singularity. More generally, surfaces of constant t are at 
� = constant , while surfaces of constant r are at u'v' = constant .
v' 

=constant 

t =constf\nt 

Figure:2.6 Kruskal diagram for Schwarzschild 

For large r ,  the metric (2.1) takes the form, 
2 2M 2 2M 2 2 2 . 2 2 (2 10) ds �-(1--)dt +(l+-)dr +r (d0 +sin 0d¢ ) ................ . 

r r 
and from this equation, one can easily show that the Newtonian gravity is 
merely a limiting case of general relativity. Again if we taker--+ oo m 
(2.10) we obtain, 
ds 2 

= -dt 2 +dr 2 +r 2 (d02 +sin 2 0d¢ 2 ) .................................. (2.11) 
Which is Minkowski flat spacetime. 
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2.5 (b) Ressiner-Nordstrom blackhole:
. . Hans Ressiner and Gunnar Nordstromdiscovered the solut10n of Einstein equation for vacuum space for acharged body of mass M. Their solution is given by

2 2M Q 2 
, 2M Q 2 ds =-(l--+2)dr +(!--+-, r'dr2 +r2(d01 +sin 2 0drj}2)r r r ,,-

·········································· ...... (2.12) 
( with G = c = I) 

Here M is the mass of the body and Q is the total charge of the body. The 
singularities of equation (2.12) is given by 

2M Q 2 

1--+-2 = 0 ............. ··· · · · · · · · · · · · · ·  ......... (2.13)
r r 

which gives, 
r± =M±��M-2---Q-2 , for M 2 >Q 2

• • • • • • • • • • • • • • • • • • • • • • • • • (2.14) 
Therefore the two concentric event horizons becomes degenerate for M = IQI 
which corresponds to an extremal blackhole. The blackhole with Q > M are 
believed not to exist in nature. It is notable that the charged blackhole may 
not be observed in nature because the blackhole is already discharged when 
it is in stable state. The time taken by the blackhole from charged to 
discharged state called the characteristic time , is approximately I o-s 

M
M®

second [59].So the blackhole having mass 10-s M® becomes stationary state 
within one second ! 

2.5 (c) Kerr blackhole: 
In 1963, Roy Kerr obtained a solution of Einstein 

equation for uncharged rotating body. The solution is given by the metric
known as Kerr metric or Kerr blackhole as (in the Boyer-Lindquist 
coordinates) 

2 
. 

2 0 ds 2 = -�(dt-asin 2 0d¢) 2 + L dr 2 + p2d02 +�[(r2 +a2 )d¢-adt] 2

p- /j_ p-

where 
/j_ = r2

-
2Mr + a2

p 2 = r 2 + a 2 cos 2 0 
J a=-

....................... (2.15) 
( with G = c = 1 ) 
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Here M is the mass of the body, J is the angular momentum and r is the 
radial distance from the center of the body. The Kerr metric is used to 
describe a rotating black:hole. The singularity of equation (2.15) is given 
by, 

/j. = 0 ....................................... (2.16) 
Which gives, 
r
± 

=M±-J�M- 2 ---a-2 , M 2 >a 2
• •••••••••••••••••••••••••••• (2.17) 

So we may define three distinct region of the Kerr solution bounded by the 
event horizons: 
Region-1 : r

+ 
< r < oo 

Region-2 : r_ < r < r
+

Region-3 : 0 < r < r_

r= 0 

Event horizon Event horizon 

I I 
r = ,- r = ,

+ 

Figure:2.7 Space-time diagram of the Kerr solution in 
advanced Eddington-Finkelstein coordinates. 

The above figure shows that the three regions plotted in a spacetime 
diagram along the equator of the blackhole using advanced Eddington­
Finkelstein (EF) coordinates in which ingoing null rays are straight lines. 
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Therefore the Kerr blackhole have different two surface where the metric 
appears have a singularity. The size and shape of these two surface 
depends on both M and J. The region between outer surface and inner 
surface is called 'Ergosphere'. The outer surface enclose the ergosphere 
and its shape is similar to flattened sphere. The inner surface marks the 

event horizon. Objects which passes through the event horizon can never 

communicate with the outside universe. Objects which comes close 

enough to the blackhole so that they enter the ergosphere are 

Figure:2.8 Kerr black.hole surrounded by an ergosphere. The ergosphere is a 

region inside which nothing can remain stationary. 

forced to rotate in the same direction as the rotating matters which collapse 
to form the blackhole. This feature can be used to extract energy from 
rotating blackhole. [Penrose process] The Kerr blackhole is extremal when 

lal = M i.e. J = GM 2 and if there is no spin i.e. J = O then it reduces to a 

Schwarzschild blackhole. 

2.5 (d) Kerr-Newman blackhole: 

In 1965, Ezra T. Newman obtained the most general 
solution of Einstein equation for charged and rotating body. The solution is 

given by 
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2 • 2 0 ds 2 =- t.; (dt-asin 2 0d¢) 2 +Ldr 2 +p 2d02 +�[(r 2 +a2 )d¢-adt] 2 

p- t., p 
with G = c = 1 

Where 

.......................................... . . . . .  (2.18) 

t. 1 = 
r 2 - 2Mr + a 2 + Q 2 

p2 
= r 2 +a 2 cos 2 0

a=-

M 
The metric (2.18) is Known as Ken-Newman metric or Ken-Newman 

blackhole and it is a generalization of Ken metric for uncharged rotating 
body which had been discovered by Roy Ken two years ago. 

The singularity of equ.(2.18) is given by as usual, 6
1 

= O which gives 

r
± 

= M±�M 2 -Q 2 -a 2
, with a 2 +Q 2 S M 2 

.................. (2.19)

Equation (2.19) gives the equation of the event horizons of Ken-Newman 

blackhole. It will be extremal when a 2 + Q 2 = M 2
, while the Schwarzschild

blackhole can never be extremal. To obtain this solution it is assumed that 
the cosmological constant equals to zero. 
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Name of the blackhole 

Schwarzschild 
blackhole 

Ressiner-Nordstrom 
blackhole 

Kerr blackhole 

Kerr-Newman 
blackhole 

Table- 2.2 Properties of blackhole. 

Physical properties Mathematical description 

(i) 

(ii) 
(iii) 
(iv) 

(i)
(ii) 
(iii) 

(iv) 

(i) 

(ii) 
(iii) 

(iv) 

(i) 

(ii) 
(iii) 

(iv) 

no 
momentum 
no charge 

angular (i) J = 0 
(ii)Q = 0 

no energy extraction 
never extremal 

no angular momentum 
charged 
energy can be extracted 
by reducing net charge. 
may extremal. 

having angular 
momentum 
no charge 
energy can be 
extracted by reduction 
of angular momentum 
may extremal 

having angular 
momentum 
charged 
energy can be 
extracted by reduction 
of spin and charge 
may extremal 

- 22 -

(iii) R., = 2M

(iv) M2
= M,! 

(v) A= 4nR; = I 6nM 2 

(i)J = 0
(ii) Q :;t: 0 

(iii)r
+ 

= M + �M 2 -Q 2 

(iv) A= 4n r
+

2 

= 4n[M + �M 2 
- Q2

(v)M 2 =M,, +(Jt__)2

4M,, 
(vi) M = !QI

(i) J :;t: 0 
(ii) Q = 0 

(iii) r
+ 

= M + � M 2 
-a2

. A= 4n(r} +a 2) 
(1v) 

= 4 n[ ( M + � M 2 - a 2 ) 2 + a 2 ]

(v)M 2 =M 2 +� 

" 
4M2 

(vi) jaj = M 
(i) J * 0
(ii) Q :t: 0

,, 

(iii)r
+ 

= M + �M 2 -Q 2 -a 2

(iv) 
A= 4n(r} +a2)

= 4n( ( M + � M 1 
- Q 2 -a 2 ) 2 + a

02 12
(v) M 2 

= M +(-=:_) 2 +--
" 4M 4M 2 

(vi) a 2 +Q 2 =M 2 

Ir ,r 



2.5 ( e) BTZ blackhole: 
In 1992, Maximo Banados, Claudio Teitelboim and

Jorge Zanelli discovered the blackhole solution of Einstein equations in
2+ 1 dimension spacetime with a negative cosmological constant. This
blackhole characterized by mass , angular momentum and charge ,define
by flux integrals at infinity- is quite similar to its 3+ 1 dimensional
blackhole counter part. 

The BTZ blackhole metric is given by,
d 1 N2 d 1 

-2 d 2 2 [ ; 2 (2 20)s =-
(r) I +N (r) .r +r N (r)dt+d¢] 

. . . . . . . . . . . . . . . . . . . . 

with cosmological constant A = -r2 • 

Here the squared lapse N2 
(r) and the angular shift N' (r) are given by

N1( r2 .12 J r) = -M +-, +-, N'(r) = --

2 
••••••••••••••••••••••• (2.21)

1- 4r- 2r
Where -oo < t < oo O < r < oo and O :$ (fJ :$ 21r .
The singularity of equation (2.20) is given by
N 1 

(r) = 0 ............................................... (2.22) 

Which gives
,--------

M � � r± = l 2(1 ± v1-c-Mi) = 'v2(I ± 6) .......................... (2.23)

Where 6 = �1-(�) 2 with imposed the condition

M > 0 and I.JI� Ml .......................... . (2.24)
Equation (2.23) gives the equation of event horizons of BTZ black.hole.
We see that like Kerr blackhole , a rotating BTZ black hole contains an
inner and an outer horizons. 
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eve.at hotizoos 

Figure: 2.9 The 2+ I dimensional BTZ blackhole. This blackhole can be 

visualized as a circular disc with spin .J.

In the extremal case III= Ml., the roots of N 2 (r) = Oare coincide. The radius of 
I 

the curvature I = (-A) -2 provides the length scale necessary in order to have a
horizon in which the mass is dimensionless. If one lets l grow very large the 
blackhole exterior is pushed away to infinity and one is left just with the 
inside[6O].The vacuum space is obtained by setting M � 0 which 
requires J � 0 is 

2 1 

2 r 2 r- -1 2 2 2 (2 25) ds . = - - dt + (-) dr + r d ¢ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
vu, 

,2 ,2 

The BTZ blackhole has an ergosphere and an upper bound in angular 
momentum for any given mass. The thermodynamic properties of BTZ 
blackholes is analogus to the 3+ 1 dimensional blackhole. For example, its 
entropy is captured by a law directly analogous to the Bekenstein bound in 
3+1 dimensional, essentially with the surface area replaced by the BTZ 
blackholes circumfurrence. 

If we set , A= -1 i.e. I= I for the spinless (J = 0) BTZ blackholes we obtain 
from (2.20) as 
ds 2 =-(-M +r 2 )dt 2 +(-M +r 2 f 1 dr 2 +r 2d¢ 2 

• • • • • • • • • • • • • • • • • • • • • • •  (2.26) 
The metric (2.26) is singular at r = JM. Thus r = JM is an event horizon of
the spinless BTZ blackhole. 

2.6 Blackhole Theorems: 

The natural outcome of the solutions of the 
Einstein's equation are black.holes and in theoretical physics, they have a 
fundamental importance. A number of important theorems on classical 
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blackholes have been discovered in the last fifty years. The theorems are as 
follows: 
(a) Singularity theorem (1965).
(b) Area theorem( 1972).
(c) Uniqueness theorem (1975).
(d) Positive energy theorem (1983).
( e) Horizon mass theorem (2005).

2.6 (a) Singularity theorem: 

This theorem developed by S. W. Hawking and 
R. Penrose[61,62] that quantify the specific conditions under which
singularities are the inevitable result of the solutions of the Einstein's
equation in general relativity. These theorems demonstrate that in the
framework of general relativity, every blackhole must contain a singularity
at its center and all expanding universe like ours must have begun with a big
bang singularity.

In 1965, R. Penrose used the methods of global analysis to show that the 
singularities are general phenomena which occur in gravitational collapse 
irrespective of symmetry. The Penrose singularity theorems showed that a 
generic solution of Einstein's equations which satisfies certain reasonable 
physical conditions and contains a closed trapped surface is singular in the 
sense that it is geodesically incomplete. Thus although the theorems show 
that gravitational singularities are a general feature of gravitational collapse 
they do not say very much about the nature of the singularity. Although it is 
likely that the end point of a realistic collapse is a situation similar to the 
Schwarzschild singularity, in which there is a region where the gravitational 
force becomes unbounded and crush matter in infinite density, other sorts of 
weaker singularity are possible. 

Hawking's singularity theorem is for the whole universe and works 
backwards-in-time. According to this theorem, our universe had its origins 
in a singularity. In the beginning all of the matter in the universe was 
concentrated in a single point, making a very small but tremendously dense 
body. This body exploded in a big bang that initiated time and the universe. 
Thus time has a beginning in the big bang and an end in a blackhole. The 
existence of a singularity shows that general relativity breaks down at the 
Planck scale as Hawking says, " The singularity theorems seem to imply 
that either the general theory of relativity breaks down or that there could be 
particles whose histories did not exist before a certain time. My own opinion 
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is that the theory probably breaks down but only when quantum gravitational 
effects become important". 
2.6 (b) Area theorem: 

This theorem discovered by S.W.Hawking in 1972[63]. 
The theorem states that the total surface area of the outer event horizon of a 
blackhole can only stay the same or increase, but will never decrease in any 
classical process .This situation is exactly like the second law of 
thermodynamics which states that the entropy of a system can only stay the 
same or increase, but can never decrease. Eventually it is recognized that the 
area of a blackhole is its entropy and the surface gravity is its temperature. 

2.6 (c) Uniqueness theorem: 

The blackhole uniqueness theorem states that a 
blackhole is uniquely specified by its mass, charge and angular 
momentum[64]. The theorem is also known as the 'no hair' theorem. Thus 
there are only three types of blackholes; the neutral Schwarzschild 

blackhole, the charged Reissner-Nordstr� m blackhole and the rotating Kerr 
blackhole. Two blackholes which have the same mass, charge and angular 
momentum are therefore indistinguishable to an external observer. 
The blackhole uniqueness theorem first announced by Weiner Israel at a 
meeting at Kings college London in 1967[65]. He had investigated an 
interesting class of static assymptotically flat solutions of Einstein's vacuum 
field equations. The solutions had a regular event horizons and obeyed the 
type of regularity conditions that a broad class of non-rotating equilibrium 
blackhole metrics might plausibly be expected to satisfy. His striking 
conclusion was that the class was exhausted by the positive mass 
Schwarzschild family of metrics. This result initiated research on the 
blackhole uniqueness theorems which continues today. 
2.6 (d) Positive energy theorem: 

In general relativity, the positive energy 
theorem states that an isolated gravitational system with non-negative local 
matter density must have non-negative total energy, measured at spatial 
infinity. In other words ,the mass of a blackhole is always positive[66]. 
Since gravity is an attractive force and the gravitational potential energy is 
always negative, so the question arises whether the gravitational binding 
energy of a blackhole is so great that it dominates over matter such that the 
total energy of the system becomes negative. The answer is that it cannot be. 
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2.6 (e) Horizon mass theorem: 
The mass of a blackhole depends on where 

the observer is. The closer one gets to a blackhole the less gravitational 
energy one sees. As a result , the mass of a blackhole increases as one gets 
near the horizon. This is the latest theorem on blackholes called the horizon 
mass theorem[67]. The theorem states that for all the blackholes; neutral, 
charged or rotating, the horizon mass is always twice the irreducible mass 

observed at infinity i.e. M(rJ = 2M,,, . The horizon mass M(r+ ) is the mass 

which cannot escape from the horizon of a neutral, charged or rotating 
blackhole. It is the mass observed at the horizon. The irreducible mass is the 
final mass of a charged or rotating blackhole when its charge or angular 
momentum is removed by adding external particles to the blackhole. It is the 
mass observed at infinity. 

2. 7 Observational evidence of blackhole:

In 1784, John Michell 

wrote in his famous article: 
" If there should really exist in nature any (such) 

bodies, ... we could have no information from sight ; yet,if any other 
luminuous bodies should happen to revolve about them we might still 
perhaps from the motions of these revolving bodies infer the existence of the 
central ones with same degree of probability,as this might afford a clue to 
some of the apparent irregularities of the revolving bodies,which could not 
be easily explicable on any other hypothesis."[68] 

At the very beginning the theoretically predicted properties of 
blackhole were discussed but there were no observational evidence at that 
time. Following the Michell paper, the same argument stated by Laplace in 
1 798. There is a long gap until 1915 when with the coming of the General 
relativity theory by Einstein, the theoretical discussion of blackholes started 
a new. 

Since the blackhole is itself invisible because nothing even light cannot 
escape from it, so it is very difficult to find a blackhole in nature. A 
blackhole can be found indirectly by observing its effect on the stars and gas 
close to it. After discovery of radio astronomy and X-ray astronomy, the 

observational search for blackholes get a new dimension. At present, 
observational evidence supports the idea that blackholes occur ubiquitously 
in nature. Two kinds of blackholes are observed: stellar-sized black.holes in 
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x-ray binary systems, mostly in our own Milky Way galaxy, and
supermassive blackholes in Active Galactic Nuclei(AGN)found at the
centers of our won and other galaxies.

One of the most important evidence for existence of blackhole is binary 
system of stars. In this system the stars are very close to each other. If one of 
this stars explodes catastrophically as a supernova and forms a blackh�le, 
then the gas and dust of the other star might be pulled towards the star w�1ch 
form blackhole. This gas and dust begin to orbit around the event horizon 
and then orbit the blackhole. The gas becomes heavily compressed and the 
frictions among the atoms converts the kinetic energy of the gas and dust 
into heat and X-rays are emitted. From this orbiting material radiations 
scientists can measure its heat and speed. From the motion and speed of the 
circulating matter, scientists can infer the presence of a blackhole . 

During the 1970s and 1980s , particular attention was focussed on the source 
Cygnus X-1, which appeared to be the strongest candidate for containing a 
blackhole. From this source, Cygnus X-l/HDE226868 identified as a binary 
blackhole system, orbiting an unseen companion with an orbital period of 
5.6 days. It showed X-ray variability on a range of timescales extending 
down to one millisecond , indicating that the companion is extremly 
compact and must be a neutron star or a blackhole.But neutron stars cannot 
have arbitrarily large mass; there is a maximum above which the pressure 
can no longer balance gravity. This maximum mass lies between 1.4M® and 
2.SM ® if the neutron star is non-rotating and may be raised by up to 25% if it 
is rotating rapidly. If one could determine that the mass of a very compact 
object is above the maximum for a neutron star, then it would presumably 
have to be a blackhole. This is the line of reasoning that was follwed with 
Cygnus X-1 and with various subsequent blackhole candidates[ 69]. 

We know that HDE 226868 is a member of a binary system because its 
spectrum shows systematic Doppler shifts which can consistent with it 
moving on a binary orbit under the influence of the unseen companion. 
From the Doppler shift data, a radial velocity curve can be constructed, 
giving the variation with time of the component of the star's velocity along 
the line of sight. From this one can extract the orbital period P, the radial 
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velocity amplitude K and, in principle, the eccentricity of the orbit . 
Kepler's laws gives the following mass function which relates observed 
quantities to unknown masses: 

PK 3 M� sin
3 i 

f(M
x

)=-=--- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2.27) 
2nG (Mx +M

c
) 2 

where M
x 

is the mass of the compact object, M,. is the mass of the 

companion star and i is the inclination angle. A crucial fact is that M x 

cannot be less than the value of the mass function. Therefore the best 
blackhole candidates are obtained when the observed mass function exceeds 
3M

® 
- since, according to the theory, a neutron star more massive than this 

limit is unstable and will collapse to form a black.hole. Otherwise , additional 
information is necessary to deduce M x: the spectral type of the primary 

gives approximately M
c
, the presence or absence of X-ray eclipses gives 

bounds to sin i. Hence M
x 

is obtained within some error bar. Black.hole 

candidates are retained only when the lower limit exceeds 3M
®

. At present 

day, about ten binary X-ray sources provide good blackhole candidates. 
They can be divided into two families : the high mass X-ray 
binaries(HMXB ), where the companion star is of high mass, and the low 
mass X-ray binaries(LMXB) where the companion is typically below a solar 
mass. The latter are also called "X-ray transients" because they flare up to 
high luminosities[70]. 

In 1989, the X-ray satellite Ginga discovered a new XRT(X-ray transient)in 
outburst named GS2023+338N 404 Cygni, identify the binary blackhole 
candidate. Many hundreds of X-ray binary systems are known in our Milky 
Way galaxy, but only 10s of these have measured masses, and in about 20 
the measw·ed mass indicates a blackhole. Table 2.3 presents the current list 
of 20 confirmed blackholes based on dynamical arguments,ordered by 
orbital peroid[71]. 
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Table- 2 3 (Confirmed black.holes and mass distributions) 

Po,b f(M) Donor Classification Mx 
System (days) [M®] Spect. 

[M®] 
Type 

GRS 33.5 9.5 ± 3.0 KIM III LMX8/Transient 14±4 

1915+105 
V404 Cyg 6.471 6.09±0.04 KOIV " 12 ± 2 

Cyg X-1 5.600 0.244 ± 0.005 09.7 lab HMX8/Persistent 10±3 

LMC X-1 4.229 0.14±0.05 07 III " 
>4

XTE Jl 819- 2.816 3.13±0.13 89 Ill IMXB/Transient 7.1±0.3 

254 

GRO J 1655- 2.620 2.73 ± 0.09 F3/5 IV ,, 
6.3 ± 0.3 

40 
8WCir 2.545 5.74±0.29 GS IV LMXB/Transient > 7.8

GX 339-4 1.754 5.8 ±0.5 
-

" 

-

LMC X-3 1.704 2.3±0.3 83 V HMX8/Persistent 7.6±01.3 

XTE Jl550- 1.542 6.86±0.71 G8/K8 LMX8/Transient 9.6 ± 1.2 
564 IV 

4U 1543- 1.125 0.25±0.01 A2 V I MXB/Transient 9.4±1.0 
475 

Hl 705-250 0.520 4.86±0.13 K3/7 V LMX8/Transient 6±2 

GS 1124-684 0.433 3.01±0.15 K3/5 V 
,, 7.0±0.6 

XTE 0.382 7.4± 1.1 -

,, 

-

Jl859+226 

GS2000+250 0.345 5.01±0.12 K3/7 V 
" 7.5 ±0.3 

A0620-003 0.325 2.72±0.06 K4 V 
" 11 ±2 

XTE J 1650- 0.321 2.73±0.56 K4 V 
" 

-

500 

GRS 1009- 0.283 3.17±0.12 K7/M0 
" 5.2±0.6 

45 V 
GRO 0.212 1.19±0.02 M2 V 

" 4±1 
]0422+32 

XTE 0.171 6.3±0.2 KS/MO V 
,, 

6.8 ± 0.4 
J1118+480 
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In 1992, a supermassive blackhole detected by Hubble Space Telescope 
(HST) at the heart of the active galaxy M87 located 50 million light years 

from earth in the constellation Virgo. Also an instrument aboard the Hubble 
Space Telescope called the Space Telescope Imaging Spectograph(STIS) 
was installed in February 1997. It is mainly 'blackhole hunter'. STIS found 

the signature of a supermassive blackhole in the center of the galaxy M84. 

The spectra showed a rotation velocity of 400km/s while earth orbits our sun 
at 30km/s. If the earth moves at fast as 400km/s then our year would be only 
27 days long! 
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CHAPTER THREE 

THERMODYNAMICS AND BLACKHOLE MECHANICS 

3.1 Thermodynamics and Gravity: 

Thennodynamics is a branch of 

physics which deals with the energy, heat, work and entropy of a system. It 

was born in 19
th 

century as scientists were first discovering how to build and 
operate steam engines. Thermodynamics deals only with the large scale 
respond of a system which we can observe and measure in experiments. It is 
closely related to statistical mechanics from which many thermodynamic 
relationships can be derived. While dealing with process in which systems 
exchange matter or energy ,classical thermodynamics is not concerned with 
the rate at which such processes take place, termed kinetics. For this reason 

,the use of the term 'thermodynamics' usually refers to equilibrium 
thermodynamics. In this connection a central concept in thermodynamics is 

that of ' quasistatic processes' which are idealized' infinitely slow' 
processes. Time dependent thermodynamic processes are studied by non­
equilibrium thermodynamics. 

The ordinary laws of thermodynamics are of very general 
validity and they do not depend upon the details of the underlying 
'microscopic dynamics' of particular systems. This mean that they can be 
applied to systems about which one knows nothing other than the balance 
of energy and matter transfer between them and the environment. Example 
of this include Einstein's prediction of spontaneous emission around the 
term of the 20 th century and the current research into the thermodynamics of 

black holes. 

On the other hand, gravitation or gravity is a natural phenomenon in 

which objects with mass attract one another. Gravitation is most familiar as 
the agent that gives weight to objects with mass and causes them to fall to 
the ground when dropped. It is one of the four fundamental force of nature, 

along with the nuclear force or strong force, electromagnetic force and weak 
force. Einstein describes gravitations using the general theory of relativity, 

in which gravitation is a spacetime curvature instead of a force. He proposed 

that spacetime is curved by matter, and that free falling objects are moving 
along locally straight paths in curved spacetime. 
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From the above discussion it is clear that the topics of 
thermodynamics and gravity lead a rather separate existence in physics. In 
the broadest sense, thermodynamics regulates the organization of activity in 
the universe, and gravity controls the dynamics, at least on the large scale. 
The interaction between these conceptually dissimilar aspects of 
fundamental physics is still now full of paradoxes, muddle and uncharted 
hazards. The main difficulties about the thermodynamics of gravitating 
systems is the apparent absence of true equilibrium. Stars are hot, self­
gravitating balls of gas inside which the weight of the star is supported by its 
won internal kinetic or zero-point quantum pressure. A star is made hotter, 
not by adding energy, but by removing it, which is unlike ordinary 
thermodynamic systems. 

3.2 Laws of ordinary thermodynamics: 

(a) Zeroth law:

The zeroth law of thermodynamics states that,
'if two systems in thermal equilibrium with a third system, then they are in

thermal equilibrium to each other.'
This zeroth law is sort of a transitive property of thermal equilibrium. The
transitive property of mathematics is if A= B and B = C then A= C .The same
is true of thermodynamic systems that are in thermal equilibrium. Systems
are said to be in equilibrium if the small, random exchanges between them
do not lead to a net change in energy. At the beginning of the 20th century,
British physicist Ralph H. Fowler coined the term 'zeroth law' and this law
is more fundamental even than the other laws.

(b) First law:

The first law of thermodynamics is an expression of the principle of the 
conservation of energy. It states that, 
" the change in a system's internal energy is equal to the difference between 
heat added to the system from its surroundings and work done by the system 
on its surroundings." 

This law gives a very simple idea. If heat is added to a system, then there are 
only two things that can be done - change the internal energy of the system 
or cause the system to do work. All of the heat energy must go into doing 
these things. Mathematical form of this law is 
dU = TdS-PdV .. ...................................... (3.1) 

where U is the internal energy, T is the temperature, P is the pressure, S is 
the entropy and V is the volume. 
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( c) Second law:

The second law of thermodynamics is an expression of the universal 
principle of decay observable in nature. It states that, 
" Heat cannot spontaneously flow from a colder location to a hotter 
location." 
This law is formulated in many ways, as will be addressed shortly, but is 
basically a law which, unlike most other laws in physics deals not with how 
to do something, but rather deals with entirely with placing a restriction on 
what can be done. 

In practical applications, this law means that any heat engine or similar 
device based upon the principles of thermodynamics cannot, even 
theoretically be 100% efficient. In 1824,French physicist and engineer Sadi 
Carnot discovered this principle, when he developed his Carnot Cycle 
engine and later German physicist Rudolf Clausius formalized it as a law of 
thermodynamics. This law is perhaps the most popular outside of the realm 
of physics, because it is closely related to the concept of entropy or the 
disorder created during the thermodynamic process. This law can be 
reformulated as a statement regarding entropy as reads, 
"In any closed system, the entropy of the system will either remain constant 
or increase." 
This is one definition used for the arrow of time, since entropy of the 
universe will always increase over time according to the second law of 
thermodynamics. 

( d) Third law:

The third law of thermodynamics is essentially a statement about the ability 
to create an absolute temperature scale, °for which absolute zero is the point 
at which the internal energy of a solid is precisely zero. This law states that, 
"It is impossible to reduce any system to absolute zero in a finite series of 
operations." 
Another statement of this law is, 
" As a system approaches absolute zero, all processes cease and the entropy 
of the system approaches a minimum value." 
The third law of thermodynamics is a statistical law of nature regarding 
entropy and the impossibility of reaching absolute zero of temperature. This 
law also provides an absolute reference point for the determination of 
entropy. 
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3.3 Black.hole and thermodynamics : 

At the biginning of his famous book 
"The Mathematical Theory of Black Holes (1983)", Chandrasekhar 
remarking , 

"The black holes of nature are the most perfect 
macroscopic objects there are in the universe: the only 
elements in their construction are our concepts of space 
and time. And since the general theory of relativity 
provides only a single unique family of solutions for 
their. descriptions, they are the simplest objects as 
well." 

Blackholes are perhaps 'the most perfect objects in the universe', because 
they are completely characterized by a small number of macroscopic 
parameters mass, charge and angular momentum. All the details of the 
matter that formed a blackhole becomes irrelevant as that matter passes 
through the event horizon i.e. the boundary of the blackhole ; there is no 
physical difference between any blackholes of equivalent mass, charge and 
angular momentum, regardless of countless ways such a blackhole can be 
formed. 

Over the last forty years, blackholes have been shown to have a number of 
surprising properties. This properties have revealed unforeseen relations 
between the otherwise distinct areas of general relativity, quantum 
mechanics and statistical mechanics.This interplay, in tum, led to a number 
of deep puzzles at the very foundations of physics. Some have been resolved 
while others continue still now. The thermal properties of blackholes come 
from the behavior of their macroscopic properties that were formalized in 
the four laws of black hole mechanics by Bardeen, Carter and Hawking [l]. 
They dictate the behavior of blackholes in equilibrium , under small 
perturbations away from equilibrium , and in fully dynamical situations. 
Although, these laws are consequences of classical general relativity alone, 
but they have a close similarity with the laws of ordinary 
thermodynamics. The origin of this seemingly strange coincidence lies in 
quantum physics. Although this parallel was extremely suggestive, taking it 
seriously would require one to assign a non-zero temperature to a blackhole, 
while all agreed was absurd because blackhole by its very definition do not 
emit anything, so the only temperature one might be able to assign them is 
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absolute zero. But this idea was overthrown by the discovery of Hawking 
radiation. He proposed that blackholes are not completely black and their 
physical temperature are not absolute zero[9].The surface gravity of 
blackholes can indeed be interpreted as a physical temperature. 

At first in 1971, Hawking stated that the area , A of the event horizon of a 
blackhole can never decrease(but can remain constant) in any process; 
M � 0 ........................................... (3.2) 

When radiation or matter falls through it, or when two blackholes coalesce, 
there is an increase in the total horizon area. In this respect it is much like 
the thermodynamic concept, entropy. The entropy of the universe can 
increase, but it can never decrease. It was later noted by Bekenstein [3] th�t 
this result is analogous to the statement of the ordinary second law of 
thermodynamics, namely that the total entropy , S of a closed system never 
decrease in any process; 
M � 0 ........................................ (3.3) 
The above comparison suggests that it might be useful to consider blackhole 
physics from a thermodynamic view point; something like entropy may also 
play a role in it. The difference of these two laws are ; in thermodynamics 
one can transfer entropy from one system to another and it is required only 
that the total entropy does not decrease whereas in the case of blackhole, one 
cannot transfer area from one blackhole to another since blackholes cannot 
bifurcate. So the second law of black hole mechanics requires that the area 
of each individual black.hole does not decrease in any process. In this sense 
the second law of blackhole mechanics is slightly stronger than the 
corresponding thermodynamic law. 

Bekenstein realized that considerable information was lost within the event 
horizon when the black.hole was formed. He suggested that the entropy of 
the blackhole could be related to the logarithm of this information. This 
information is , in fact , related to the surface area and it was eventually 
shown that the entropy of a black hole S

M 
could be written as ; 

C 

s
h
,,= 4fi Akn ............................................. (3.4)

where A is the surface area of the event horizon, -his the Planck-Dirac 
constant(_!!_), k

11 
is Boltzman's constants. 

21r 

Using this definition Bekenstein proposed the generalized second of 
thermodynamics to include blackholes as 
f:!.Sbh + b,Sc ?. 0 ........ .. , ........................................... (3.5) 
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Where Sc is the common entropy in the blackhole exterior. 

It is already mentioned that Hawking discovered that the surface of a 
blackhole could not have a temperature of absolute zero. Mathematically it 
appeared to have a non-zero temperature. Hawking discovered by applying 
quantum mechanics to the region near the event horizon, that blackholes can 
emit all species of particles and radiation[72]. 
In particular, the spectrum of emission is given by;[73] 

r 
< n >= � ..................................... (3.6) 

e kT -1 

Where < n > is the mean number of quanta emitted in one mode of 
frequency cv, and r is the blackholes absorbivity. The surface temperature 
of black hole is given by; 

T = f}K ........................... (3.7)
2nck

8 

where K is the surface gravity of the blackhole evaluated on the event 
horizon. [72] 
After established that the blackholes have a non-zero surface temperature 
and an entropy it is easy to show that they also obey the zeroth, first and 
second laws of thermodynamics. It is also believed that they may also obey 
the third law in most but not necessarily all cases. To obey it in all cases 
requires that the 'cosmic cencorship hypothesis' be satisfied. This 
hypothesis was made by the British mathematician Roger Penrose, which 
states that when a star collapses to a singularity, this singularity is always 
concealed from the outside world by an event horizon. So far this has not 
been proved and still now it is the number one question in classical general 
relativity. 

3.3(a) zeroth law of black hole mechanics: 

This law states that " The surface gravity , K of a stationary black hole is 
constant over the event horizon". 
AlthoughK is defined locally on the event horizon, it turns out that it is 
always constant over the horizon of a stationary blackhole. This constancy is 
reminiscent of the zeroth law of thermodynamics which states that the 
temperature is constant throughout a body in thermal equilibrium. It suggests 
that the surface gravity is analogus to the temperature. T constant for thermal 
equilibrium for a normal system is analogous to K constant over the horizon 
of a stationary blackhole. The surface gravity is related to the physical 
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Applying Hamilton's equations 
· dH
r = - I 1 •••••••••••••••••.••.•••.•••••• (6.2.21) 

dP 
(r;A,. �,,) 

r 

•- dH
A, = 

- I .............................. (6.2.22) 
dP (A,;r.P,) 

A, 

Substituting equation (6.2.21) and (6.2.22) into equation (6 .2.20) we obtain, 

[mS = Im[{ '°J{

lM

-wt_,,

) 

(� (dH),;A,.PA, -� (dH) A,:,.P) }]dr

r,., (M.£Q) r r 

where 
(dH),:A,.P,., = d (M -a/)= -do/.

Q - q' I (dH)A·rP. =---dq .
,, ' r  

r 

.................... (6.2.23) 

Putting the value of r from (6.2.18) into (6.2.23) we get, 
rm,,(<:J,tj)

{ 
2r�2(M -o/)r - (Q-q')2 

I 2(Q- q')��2( _M ___ m_' _)r ---(Q - --q -,)-2 
I } ImS = -Im[ f f --------- dm -----'---------d q dr]

r,., (0.o> r 2 

- 2(M -m')r + (Q-q') 2 r 2 

- 2(M -m') r + (Q-q') 2 

_ 
,,,.,(w.qJ{2r�2 (M -m') r -(Q-q') 2 

, 2(Q- q')�2(M
1

-m')r -, (Q-q') 2 

d q' }dr]- - Im[ f f , , dm 
, .. (o.oi (r - r+ )(r - r_ ) (r - r+ )(r - r_ ) 

................................... (6.2.24) 
where 
r±

1 

== (M -m') ± �(M -w')2 
- (Q-q') 2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6.2.25) 
1�11 = M + �M 2 -Q2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.2.26) 
r0111 == (M -w) + �(M -m) 2 

- (Q- q)2 
••••••••••••••••••••••••••••••••• (6.2.27) 

We see thatr == r+ is a pole of order one. The integral can be evaluated by 
deforming the contour around the pole, so as to ensure that the positive 
energy solution decay in time. Note that all real parts , divergent or not , can 
be discarded since they only contribute a phase. Doing the r integral first we 
obtain, 

(w,q) 1 2 I (Q ') 
Im S = -27Z' f [ ,

r+ , dw' -

r+ , - � d q'] . . . . . . . . . . . . . . . . . . . . .  (6.2.28) 
(O.OJ (r+ - r_ ) Cr+ - r_ ) 

Finishing the integral we have, 
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lmS=-;[�M-m)+J(M-m) 2 -(Q-q)2 }2 -�+JM 2 -Q2 }2]=-½M13H 

..... ......... . .. . .......... ....... (.6.2.29) 
where M,m is the difference of entropies of the black.hole before and after 
the emission. 
The tunneling rate is therefore 
r - e-

2
lm.'i = 

e t!.
'iHII ...................................• (6.2.30)

Now , if we expand M BH in terms of m, q and take only the first order term 
then 

2n-[M + JM2 -Q2 ]2 

M BH = -/3( m -m
0 ) where /3 = ---;::===---- 1s the mverse Hawking 

JM2 -Q2 

temperature and mo = 

Qq 
M+JM2 -Q2 

So from equation (6.2.30) we obtain, 
r - e-P(m-ltJol ............................ (6.2.31)

From equation (6.2.31) we see that the corrected spectrum is not precisely 
thermal. Only the leading order term gives the thermal Boltzmann factor 
e-P(w-m., > • 

6.3 Charged Particle Tunneling from Kerr Blackhole: 

6.3.1 Painleve- like coordinate transformation of Kerr Blackhole: The 
behavior of a scalar field theory near the event horizon in a rotating 
black.hole background can be effectively described by a two dimensional 
field theory in a gauge field background. Based upon this concept Tao Zhu 
[ 181] proposed that the quantum tunneling from rotating black.hole can be
treated as "charged particle's "tunneling process in its effectively two
dimensional metric. Using this view point and considering the corresponding
'gauge charge' conservation he calculate the non-thermal tunneling rate
from Kerr black.hole and his results are consistent with the Parikh-Wilczek's
original result for spherically symmetric black.holes.
The line element of Kerr metric in the Boyer-Lindquist coordinate system is
given by,

6. . p 2 
, , sin 2 0 ,ds 2 = --, (dt-asin 2 0d¢) 2 +-dr- + p-d02 +--

2
-[(r 2 +a2)d¢-adt]-

p- 6 p 
.... . ................................ (6.3.1) 

where 
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6.=r 2 -2J\lfr+a2 

p 2 
= r 2 + a 2 cos 2 0

J a=-

Here M is the mass of the body, J is the angular momentum and r is the
radial distance from the center of the body. The equation of the event
horizon is given by,

6= 0which gives,r
±

= M±�M 2 -a2
, M 2 >a 2

• 

Now apply the technique of the dimensional reduction near the horizon of
Kerr blackhole in 4-dimensional behaves as the two dimensional spherically
symmetric line element in the region near the horizon is given by [ 181]
ds; = -f(r)dt 2 + f�r) 

dr 2 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  (6.3.2)

Where
f-1 (r) = g 11 , go1 

= g 10 = 0, g oo
= -f(r),

and gauge charge field Aµ is given by
<D=r2 +a 2 

A, =
2 

a 
2 

, A, = 0 ....................................... (6.3.3)
r +a 

' 
dilaton

Now since the tunneling method deals with the region very close to the
horizon, one can investigate the quantum tunneling effect of Kerr blackhole
by using this two dimensional metric [182].
We use the Painleve-like coordinate transformation as

dt
k 

= dt + J2Mr dr .................................... (6.3.4)
I-

2Mr 
r 2 + a i 

Then the line element becomes
2 2Mr 2 fgMr 2 (6 3 5)ds =-(I- , ,)dt

k 
+2 , ,dt

k
dr+dr ................................ . . 

r· +a· r· +a· 
6.3.2 Tunneling rate of charged particle from Kerr blackhole: The radial
null geodesics are given by ( ds 2 = O)
·· 2Mr
r = ±1- , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6.3.6) 

r· + a· 

Where the upper(lower) sign corresponding to the outgoing(ingoing)
geodesics.
As we considering a rotating Kerr blackhole , so the rotation degree of
freedom should be well addressed also. So energy conservation and angular
momentum conservation should be taken into account. Now from the action
[183] 
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f 2 2 • r 
2 + a 

2 
iam 2 t:,. (6 3 7) I = dtdr(r + a )¢1111 [---( Ii, + , , ) - Ii, , , Ii, ]¢1111 

• .. • .. • • • • • • • • • • • 
f),. r- + a- r- + a-

We see that only the magnetic quantum number m of particle is relevant near 
the horizon and the particle which contains quantum number m behaves as a 
"charged " particle with gauge charge m in the background gauge field Aµ.

In this sense the angular momentum conservation means gauge charge m 
conservation. So we can treat the tunneling process as the "charged" 
particle's tunneling. When self-gravitation of the tunneling particle is 
included then equation (6.3.6) should be modified by 

J I J-m h M �M-w, a =-�a=--, t us
M M -w 

�---' 2(M -w)r 
r = ±1- 2 ,2 ............................................. (6.3.8) 

r +a 
where w is the particle energy and J is the total angular momentum of the 
Kerr blackhole. 
When we investigate a charged particle's tunneling process , the effect of the 
gauge field should be taken into account . For this reason, we write the 

F F''" 
Lagrangian function of the system as L =L

A
+ L

111 
where L

A = - Jl"

4 
is the

Lagrangian function of the gauge field corresponding to the generalized 
coordinates A

µ 
= (- 2 

a
2 , 0) . When a charged particle tunnels out , the

r +a
system transit from one state to another. From the expression of L

A 
we find 

that A
1 

is an ignorable coordinate. To eliminate the freedom corresponding 
to A

1 
the action should be written as 

II 

1 = f (L-P
A
, A1 )dt ................................. (6.3.9) 

1, 

The emission rate of the tunneling particle is related by 
r - e-21

111' ••••••••••••••••••••••••••••••••••• (6.3.10) 
The imaginary part of the action is 

II p A 
lm I= lm f (P, -�)dr 

i, r 

= Im f[dP; -�, dP�, ]dr ........................................................... (6.3. l l) 
r 

where P
A 

is the gauge fields canonical momentum conjugate to A
1

• 

I 

By applying Hamilton's equations 
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, dll d(M - eu') 
r- I 

----
dP (r:A, .P,,, ) dP 

r r 

' dH a' dm' 
A- I 

-
- dP 

(A,:r.l�) - - r
2 + a' 2 dP � � 

.............................. (6.3.12) 

J-m' where a'= 
M , and dH<A,;,.P,.>represents the energy change of the blackhole

-(j) 
because of the loss of the gauge charge m when a particle tunnels out. 
As the particle propagating from inside to outside the event horizon, so we 
take positive sign of equation (6.3.8). 
So we have 

(M-m, m)r"'" I 
dr 

Im I= Im f f[d(M - (j)') + ,2: ,2 dm'] ----;=====

(M.0) r.,, 
r a I - 2(M - (j)1)r 

r 2 + a' 2 

.................. (6.3.13) 
where r = r

+

,
= (M -(j)') + �(M -(j)')2 -a' 2 is a simple pole in the above

equation . The integral can be evaluated by deforming the contour around 
the pole. In this way we obtain 

(M-m.J-111) ,2 ,2 , 

Im!= -21r f r
+

, 
+a

, [d(M -(j) 1
)- , 2 

a 
, 2 d(J-m')]

(M . .J) 
r

+ 
-r_ r

+ +a 

where r_ = (J'vf - (j)1
)- �(M - (j) 1)2 

- a'2
• and dm' = -d(J -m').

............. (6.3.14) 

Now the Hawking temperature on the event horizon of the Kerr blackhole is 
given by 

I I r -r 
T' 

= +,2 - , 2 
.......................................... (6.3.15) 

41r(r
+ 

+ a ) 
Thus we have 

l (M-m, J-111) I , a' I I 
Im I = - - f -, [ d ( M - (jJ ) - , 2 , 2 d ( J - m ) ] = - - !:JS BH • 2 (M..Jl T r

+
+ a 2 

.................................. (6.3.16) 
where/:J.S1m is the difference of the entropies of the blackhole before and 
after the emission . The tunneling rate is therefore 
r - e-21111/ 

= 
e ,-,.S

'HII ••••••••••••••••••••••••••••••••(6.3.17) 
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6.4 Charged particle tunneling from Kerr-Newmann Blackhole: 

6.4.1 Phase velocity and electro-magnetic potential of Kerr-Newman 
Blackhole: The line element of Kerr-Newman metric in the Boyer­
Lindquist coordinate system is given by, 

where 
/:::, = r2 

-2Mr+a
2 +Q2 

J J J J 0p-= r- +a-cos-
.] 

a=-

.......................... (6.4.1) 

Here M is the mass of the body, J is the angular momentum , Q is the 
electric charge. The equation of the event horizon is given by, 

t::, = 0 which gives, r
± 

= 
M±�M2 -a 2 -Q2 

, M2 > a 2 +Q2
• 

and the 4-dimensional electro-magnetic potential is given by[21] 
Aa = -p-2Qr[(dtt -asin 2 0(d¢)a] ......................... (6.4.2) 
The line element of Kerr-Newman blackhole in dragged Painleve-Gullstrand 
coordinate is already given in (5.9.11). Since 
(�)" = c___q_/' +n(�)" ............................. (6.4.3) 

6[d 6/ KN 6¢ 

we can easily obtain the component of the electromagnetic potential in the 
dragging coordinate system 
A, =A): t = -p-2Qr[l-a0sin 2 0], A,= A

0
= 0 ...................... (6.4.4) 

ul
d 

where n = - g 03 is the dragged angular velocity and in the Painleve­
g33 

Gullstrand coordinate transformation the component of the electro-magnetic 
potential is unchanged A, = -p-2Qr[1-an sin 2 0], A, = A0 = 0 

..................... (6.4.5) 

Since the charged massive quanta does not follow the radial null geodesics , 
so we consider the outgoing particle is a massive shell ( de Broglie s-wave ). 
According to de Broglie hypothesis , this massive shell is a sort of de 
Broglie s-wave. The approximation wave equation is given by [176], 
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1( J /�.dr-mt) 

lfl(r,t) =Ce ,,-, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6.4.6) 
where r, -& is the initial location of the particle. 

Ifwe let J P,.dr-mt = ¢
0

• • • • • • • • • • • • • • • • • • • • • • •  (6.4.7) 
r,-E 

dr • m then we have - = r = - ........................... (6.4.8) 
dt k 

where k is the de Broglie wave number. 

Comparing equation (6.4.7) with the definition of the phase velocity we 
know that ;, is the phase velocity of the de Broglie wave. Unlike the 
electromagnetic wave , the phase velocity v,, of the de Broglie wave is not 
equal to the group velocity v g • The definition and relationship between them 
are, 

dr , aJ v,,= - = r = - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.4.9) 
dt k 

dr
c 

dm 
v

g 
=-=- ................................. (6.4.10) 

dt dt 

................................. (6.4.11) 

Since the tunneling across the barrier is an instantaneous process, there are 
two simultaneous events during the process , one is particle tunneling into 
the barrier and another is particle tunneling out the barrier. According to 
Landau's theory of the coordinate clock synchronization[l74], the difference 
of coordinate times of these two simultaneous events is 

dt=-�o, dx' =-�01 dr<. (d0=d¢=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6.4.12)
goo goo 

where re denote the location of the tunneling particle. The group velocity is 

v
g 

= :: = -!oo .................................... (6.4.13)
go, 

and the phase velocity is therefore 
A A 

............................... (6.4.14) 
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6.4.2 Tunneling rate of Charged particle from Kerr-Newmann 

Blackhole: 
We consider the spacetime as dynamical and 

incorporating the self-gravitation effect of the tunneling particle when the 
energy conservation, angular momentum conservation and the electric 
charge conservation are taken into account. We assume that the total ADM 
mass ,angular momentum and charge of the hole-particle system are held 
fixed whereas the mass ,angular momentum and the charge of the hole are 
allowed to fluctuate, then the mass and the charge will become M - OJ and 
Q- q when a particle with energy OJ and charge q has tunneled from the
event horizon. So considering the charged massive particle tunnel's out from
the event horizon along the radial direction, we should modify the equation
( 6.4.14) as ,
,. !:::..p r = -----;========= ........................... (6.4.15)

2)cp 2 _ ,;.)[(r 2 + a 2 ) 2 - ,;.a 2 sin 2 0]
-

where !:::.. = r 2 + a 2 + (Q-q) 2 - 2(M - m)r is the horizon equation after the 
em1ss10n of the particle with energy m and charge q. 
we taken into account the effect of the electro-magnetic field to investigate 
the tunneling of charged particle. That is , the matter- gravity system 
consists of the blackhole and the electro-magnetic field outside the hole. We 
write the Lagrangian function of the matter-gravity system as 
L=L

111
+L

c 
........................ (6.4.16) 

where L, = -±F,,vF'"' is the Lagrangian function of the electro-magnetic

field corresponding to the generalized coordinates described by A11 = (A, ,0,0)

in the dragged Painleve-Gullstrand - Kerr-Newman coordinate system 
[ 184]. When a charged particle tunnels out , the system transit from one state 
to another. But from the expression of L

e 
,we find that A"= (A,,0,0) is an 

ignorable coordinate. In addition , the coordinate ¢ does not appear in the 
line element expressions (5.9.5) and (5.9.1 l)[Ref. Chapter Five]. In order to 
eliminate these two degrees of 
freedom corresponding to A" completely, the action for the classically 
forbidden trajectory should be written as 

1ouJ 

S = f (L - P
,.,
, A, - P; ¢)dt .............................. (6.4.17) 

'"' 

which is related to the emission rate of the tunneling particle by 
r - e-2

lmS •••••••••••••••••••••••••••••••••••• (6.4.18) 
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The imaginary part of the action for the charged massive particle is 
, •• , PA P¢ 

lmS = Im{ JcP, __ A_,_, __ ¢_)dr }
' ' 

,;,, r r {'"'" ( P, .Pa, ./'• l d } =Im f[ f (;dp:-,{dP:,-¢dP:)]-: ...................... (6.4.19)
,,.. ( 0 .0 .0 1 r 

where P,, P
A, and P; are the canonical momentum conjugate to r, A, 

respectively. 
rm= M + ��M-2 

___ Q_2 
___ a_2 

, r
0111 = (M -(I})+ J(M -(1}) 2 -(Q-q)2 - a

2 are
locations of the event horizons before and after the charged 
emission. According to the Hamilton's equations, we have 
� = dH 

I p = d(M -(I}) .................................. (6.4.20)
dP (r:¢.P,;A, . . <,) dP r r ,. dH d(M -(I}) 

¢=- I =an-- .............................. (6.4.21) 
dP (¢:r.P,:A,.I\) dP 

¢ ¢ · dH d(Q-q) 
A, = - I , = <P-- .............................. (6.4.22) 

dP (A,:r.l�.¢.',) dP 
� � 

and¢ 
Also 

the 
particle 

where the dragging angular velocity and the electro-magnetic potential in the 
dragging coordinate system are given by 

a(r 2 +a2 -Li) 
n = (r2 + a2)2 -Lia2 sin 2 0 

............................... (6.4.23)

<D =-
(Q-q)r(r 2 + a2 ) .............................. (6.4.24) 

(r 2 + a
2 )2 -Lia

2 sin 2 0
Substituting equation(6.4. l 5) and (6.4.20)-(6.4.24) into equation (6.4.19) 
the imaginary part of the action becomes 

,_,cu -(J).Q-q, dr 
ImS = Im J f[d(M-(l}')-aQ'd(M-(l}')-<D'd(Q-q')]-. 

r,,, (M.(}) r 

, •• , <Af-(J),Q-q> 2J(p 2 - Li')[(r 2 + a 2 )2 - Li'a 2 sin 2 0]
= Im f f[(I - aQ')d(M - {1)

1

)-<D'd(Q-q')] ---------- dr 
,;., (M.(}) 
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, •• , (M-ai.(.)-q)
[{ 

I - a2 (r2 + a2 -.6') } 2
Jcp2 -.6')[(r2 + a2)2 -.6'a2 sin 2 0] d(M -w')

=Im J J (r2+a2)2-.6'a2sin2 0 .6'p 
r,,. (M.{_)) 

where 

(Q-q')r(r2 +a2) 2J(p2 -ti')[(r2 +a2)2 -ti'a2 sin2 0] 
d(Q-q')]c (r2 +a 2 ) 2 -.6'a 2sin2 0 .6'p 

........................................... (6.4.25) 

ti'= r2 + a -(M -w')r + (Q-q')2 = (r -r:)(r -r!)

r: = (M-w')±J(M-w')2 -(Q-q')2 -a2

We see that r = r+

' is a simple pole at the event horizon. The integral can be
evaluated by deforming the contour around the pole, so as to ensure that the 
positive energy solution decay in time. Note that all real parts , divergent or 
not , can be discarded smce they only contribute a phase. Doing the r 
integral first we obtain, 

(M-ai.Q-q) ,2 I 
Q 

, 

lmS=-n f [ ;rT I d(M-w')-2r+� -?) d(Q-q')]
<At.Ql (r+ 

-r_) (r+ 
-r_) 

(M-ai.Q-q) I 

= -n J /+ 1 [2r:d(M -w')-2(Q-q')d(Q-q')] ................. (6.4.26) 
<M .Q) 

r+ 
-r_ 

Now from r; = (M -w') + J(M -w') 2 

- (Q-q')2 
- a2 we obtain the identity 

(r
+ 

- r_ )dr
+ = 2r;d(M -w')-2(Q- q')d(Q-q') ................... (6.4.27) 

Using this identity into equation (6.4.26) we can easily finish the integration 
and yields a simple expression 

,C)I,, 

I
Im S = -Jr Jr: dr: = ; [r,� -r0�,,] = -

2
.6S

11H 
•••••••••••••••••••••••••••••• (6.4.28) 

r,. 

where tiS
11H 

= S
1m

(M-w,Q-q)-S
1m (M,Q) = n[r0

�,, -r;�] is the difference of 
the Bekenstein-Hawking entropies of the Kerr-Newman blackhole before 
and after the paiticle emission. From equation (6.4.18) we obtain the 
tunneling rate 
[ - e

tSBJi •••••••••••••••••••••••••••••• (6.4.29)

Now , if we expand tiS
8H 

in terms of w,q and take only the first order term 
then 
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27i[M+JM2 Q 2 2 ) 2 

� BH = -/J(OJ -OJ0 ) where /3 = - - a is the inverse Hawking JM2-Q2-a2

temperature and OJo = 

Qq . Then from (6.4.29) the emission 
M +JM 2 -Q2 -a2 

rate becomes 
1 - e-P<m-o, .. ) ............................... (6.4.30). 

Also equation (6.4.30) indicates that when the energy conservation , the 
angular momentum conservation and the electric charge conservation as well 
as the particle's self-gravitation are taken into account , the tunneling rate is 
related to the change of blackhole entropy during the process of the 
particle's emission and the radiant spectrum is not precisely thermal. 
6.5 Charged particle tunneling from non-accelerating and rotating 

blackholes with electric and magnetic charges: 

6.5.1 Non-accelerating and rotating blachkholes with electric and

magnetic charge: The Plebanski-Dernianski [169,170,171] metric covers a 
large family of spacetimes which include, among others, the well known 
blackhole solutions like Schwarzschild, Reissner-NordstrO m , Kerr, Kerr­
Newman, Kerr-NUT, Kerr-Newman-NUT and many others. Here we study a 
special case of this family of blackholes with rotation but non-accelerating 
with electric and magnetic charges. The metric of such kind of blackhole is 
given by [172] 
d 2 (ii-a 2 sin 2 0)d 2 p2 d 2 2d02 sin 2 0[(r 2 +a 2

)
2 -a 2iisin 2 0]d¢ 2

s = ------ t +- r + p +----------
p

2 ii p
2 

_ 2a sin 2 0[(r: + a2
) 

-
ii] dtd¢

p-
................... ................... (6.5.1) 

where ii= r 2 + a 2 + e 2 + g2 
- 2Mr, p2 

= r 2 + a 2 cos 2 0. Here Mis the mass 
of the blackhole, e and g are the electric and magnetic charges respectively, 
a is the angular momentum per unit mass. The event horizon equations are 
given by ii= 0 which gives 
r
± 

= M ± JM2 - a2 -e 2 - g2 .... ....... ..... ... .... (6.5.2)
The event horizon area of this blackhole is given by 
A= 47i(r} + a2

) .............................. (6.5.3) 
and Bekenstein-Hawking entropy 
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S A  2 2 [ 
2 / 2  2 2 2 2 2 

JJH = -= 1r(r+ + a ) = 7! 2M + 2M v M - a - e - g - e - g ]
4 

.................................. (6.5.4) 
Also the electric potential and magnetic potential are given by[l80] 
A

µ
= (A,,0,0,A;) and B

µ 
= (B,,0,0,B;) respectively. 

Here, 
er A,=--,' e r asin 2 0 A; = 

2 
•••••••••••••••..•••••••.••••.•••. (6.5.5) 

p- p
grB, =--2 ' p 

B, = grasi,n
2 

0 ............................. (6.5.6)
p-

6.5.2 Dragging coordinate system and infinite red- shift surface of Non­

accelerating and rotating blachkholes with electric and magnetic 

charge: 

The infinite red shift surface is given by g 00 
= 0 which gives 

r
± 
=M±�M2 -a2 cos2 0-e 2 -g 2 

•••••••••••••••••••••••••••.•••••• (6.5.7) 
Obviously the infinite red shift surface does not coincide with the event 
horizon surface , which means that there is an energy layer exists between 
them. So the geometrical optical limit cannot be applied. Also there exist a 
frame dragging effect in the stationary rotating spacetime, the matter field in 
the ergosphere near the horizon must be dragged by the gravitational field 
also, so a reasonable physical picture should be depicted in the dragging 
coordinate system. This hints that we must transform the metric (6.5.1) into 
a dragging coordinate system. 

Let n = d¢ = -g 03 
• . • . • • . • • . • . • • • • • .. . . . . •  (6.5.8)

dt goo 

where n is the angular velocity. 

For the metric (6.5.1) we have, 
-(b.-a2 sin 2 0) p 2 

2 sin 2 0[(r 2 +a2 ) 2 -a2b.sin 2 0] 
g 00 = 

1 ' g I I = 7 ' g 22 = p ' g 33 = 2 p- u p 

g03 = -asin 2 0[(r 2 +a 2 )-b.]
p2 

From (6.5.8), 
n = d¢ = a[(r 2 + a2 )-�] .................. (6.5.9) 

dt (r 2 +a2 ) 2 -a2 �sin 2 0 
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At the horizon the angular velocity becomes, 
a 

.Q I,= 2 J 
''+ + a-

............................ (6.5.10) 

The line element (6.5.1) in the dragging coordinate system becomes, 
" 

ds 2 = g00 dL 2 
+ g 11 dr 2 

+ g22
d0 2 

................... (6.5.11) 
" 2 

/J. 
2 

where = -

g03 
= 

- Pg 00 g 00 [( 2 2) J J A • 2 0] •g
33 

r + a - - a-u sin 

The line element (6.5.11) represents a 3-dimensional hypersurface of 4-
dimensional spacetime. The infinite red-shift surface now coincide with the 

event horizon surface in the dragging coordinate system. So the geometrical 
optical limit can be applied now.In the dragging coordinate system the 

electric potential and the magnetic potential can be given by[l 78] 

A: = -
2 

(:2 

2+ a
2 

)e; 
2 

................... (6.5.12) 
(r +a-) -!J.a sin 0 

B' = - (r 2 + a 2 
)gr ........................................... (6.5.13) 

1 (r 2 +a 2) 2 -tia2 sin 2 0 

6.5.3 Painleve-like coordinate transformation and radial geodesics of 

non-accelerating and rotating blachkholes with electric and magnetic 

charges: 
To investigate the Hawking radiation as tunneling process it is necessary to 
eliminate coordinate singularity at the event horizon. In the expression 
(6.5.11) , there still exists coordinate singularity at the event horizon in the 

dragging coordinate system. So we continue performing a general Painleve 

coordinate transformation[l 73]. This transformation can be done by 
dt � dt+F(r,0)dr+G(r,0)d0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.5.14)

whereF(r,0) and G(r,0)are two determined functions of rand 0 , and 

satisfy the integrability condition 
5F(r,0) liG(r,0) 
--=-- ......................... (6.5.15 ) 

50 5r 
Thus from (6.5.11) we obtain, 

ds' - g:, dt' + { g:, F' (r,0) + g,, }dr' + { g: G' (r,0) + g,, }dB' + 2G(r,0) g� dtd0 

+ 2F(r, 0)G(r, 0) g00 
drd0 + 2F(r, 0) g00 dtdr

................. ············ .... (6.5.16) 

We demand that constant time- slices are flat Euclidean space in radial. So 

we set, 
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"

goo Fi ( r, 0) + g 1 1 = I

=>F(r,0) = ± l -�,,
goo 

............................... (6.5.17) 

foF(r, 0) )From equation (6.5.15), G(r, 0) = --dr+C(0) ............ (6.5.18 
00 

where C(0) is an arbitrary analytic function of 0 . 
Substituting the value of F(r, 0) into equation (6.5.16) we get, 

ds' = g� dt' + dr' + { g� G' (r,0) + g,, }de' + 2J g� (I - g,,) G(r,0)drd0

+ 2 g:
0 G(r, 0) dtd0 ± 2� g:

0 (1 - g 11 ) dtdr
.................... (6.5.19) 

The positive sign ( +) denotes the spacetime line element of the outgoing 
particle and the minus sign (-) denotes the spacetime line element of the 
ingoing particles at the horizon. 

According to Landau's theory of the coordinate clock synchronization[l 74] 
in a spacetime decomposed in 3+ 1 dimension, the difference of coordinate 
times of two events taking place simultaneously in different place is 

6.T = - f &dx' (i = 1,2,3) ......................... (6.5.20)
goo 

If the simultaneity of coordinate clocks can be transmitted from one place to 
another and has nothing to do with the integration path, components of the 
metric should satisfy[l 75] 

_i_(-�) = �(- gOJ) , (i,j = ),2,3) ....................... . 
(6.5.21) 

ox
1

goo ox' goo 

Now the metric (6.5.19) in the new coordinate system , has a number of 
attractive features : (1) the metric is well-behaved at the event horizon; (2) 
the time coordinate , represents the local proper time for radially free-falling 
observers; (3) the hypersurfaces of constant time-slices are just flat 
Euclidean space in the oblate spheroidal coordinates; ( 4) by substituting the 
components of the metric (6.5.19) into equation (6.5.21), we see that the 
metric satisfy the Landau's condition of the coordinate clock 
synchronization oF(r, 0) = 8G(r, 0) ; (5) the infinite red-shift surface coincide

o0 or 

with the event horizon surface so that the WKB approximation can be used. 
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These attractive features are very advantageous for us to discuss Hawking 
radiation as tunneling and to do an explicit computation of the tunneling 
probability at the event horizon. 

Since the charged massive quanta does not follow the radial null geodesics , 
so we consider the outgoing particle is a massive shell ( de Broglie s-wave ). 
According to de Broglie hypothesis , this massive shell is a sort of de 
Broglie s-wave. The approximation wave equation is given by [176], 

1( J P,.dr-M) 

!f(r,t) = Ce ·;-• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6.5.22) 
where r, - & is the initial location of the particle. 

Ifwe let f P,dr-wt =¢
0

• • • • • • • • • • • • • • • • • • • • • • •  (6.5.23) 
r,-£ 

dr .· lV then we have - = r = - . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6.5.24) 
dt k 

where k is the de Broglie wave number. 

Comparing equation (6.5.24) with the definition of the phase velocity we 
know that � is the phase velocity of the de Broglie wave. Unlike the 
electromagnetic wave , the phase velocity v,, of the de Broglie wave is not 
equal to the group velocity v

g
. The definition and relationship between them 

are, 
dr · lV 

V ,,= - = r = - ................................. (6.5.25) 
dt k 

dr
c 

dw 
v

g 
= - = - ................................. (6.5.26) 

dt dt 

V - V 

p 2 ii 
................................. (6.5.27) 

Since the tunneling across the barrier is an instantaneous process, there are 
two simultaneous events during the process , one is particle tunneling into 
the barrier and another is particle tunneling out the barrier. According to 
Landau's theory of the coordinate clock synchronization[l74], the difference 
of coordinate times of these two simultaneous events is 

dt = -!01 

dx' = -!01 dr
c 

(d0 = d¢ = 0) ................... (6.5.28) 
goo goo 

where r" denote the location of the tunneling particle. The group velocity is 
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v
i:

= : = -!00 
••••.••.••..••••••••.••••.•••••••••• (6.5.29) 

go, 
and the phase velocity is therefore" " 
; 1 1 g 00 1 g 00 tip 
r=v =-v =---=-- =�===========

P 2 g 2" 2 I" 2�(p 2 -ti)[(r 2 +a 2 ) 2 -tia 2 sin 2 0] 
gOI \fgo0Cl-g11 ) 

............................... (6.5.30) 
6.5.4 Tunneling rate of charged particles from Non-accelerating and 

rotating blachkholes with electric and magnetic charges: 
We consider the spacetime as dynamical and 

incorporating the self-gravitation effect of the tunneling particle when the 
energy conservation, angular momentum conservation , the electric charge 
conservation and magnetic charge conservation are taken into account. We 
assume that the total ADM mass ,angular momentum and charge of the hole­
particle system are held fixed whereas the mass ,angular momentum and the 
charge of the hole are allowed to fluctuate, then the mass ,the electric 
charge and the magnetic charge will become M - OJ , e - e, and g -g1 

when a 
particle with energy OJ , electric charge e, and magnetic charge g, has 
tunneled from the event horizon. So considering the charged massive 
particle tunnel's out from the event horizon along the radial direction, we 
should modify the equation (6.5.30) as, 

ti p  
r = ----;:::======== ........................... (6.5.31) 

2J(p 2 _,;)[(r 2 +a 2 ) 2 _,;a 2 sin 2 0]

where ti= r 2 + a 2 + (e - e, )2 + (g- g, )2 -2(M - {J))r is the horizon equation 
after the emission of the particle with energy {J) , electric charge e, and 
magnetic charge g, . 

We taken into account the effect of the electro-magnetic field to investigate 
the tunneling of charged particle. That is , the matter- gravity system 
consists of the blackhole and the electro-magnetic field outside the hole. We 
write the Lagrangian function of the matter-gravity system as 
L = L111 + Le ........................ (6.5.32) 

where L" = _ _!_ F",,F''v is the Lagrangian function of the electro-magnetic
4 

field corresponding to the generalized coordinates described by the equation 
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(6.5.12) and (6.5.13)in the dragged Painleve-Gullstrand coordinate system 
[ 184]. We can find that the generalized coordinate is an ignorable coordinate. 
In addition , the coordinate ¢ does not appear in the line element 
expressions (6.5.11) and (6.5.19). In order to eliminate these two degrees of 
freedom completely, the action for the classically forbidden trajectory 

1
om 

should be written as S = f (L- P
A, A,- P

8, B,- P; ¢)dt 
, .. 

. ............................. (6.5.33) 
Applying the WKB approximation , the emission rate of the tunneling 
particle is given by[l 85] 
[ - e-21111S ••••••••••••• • •••••••••••••••••••••• (6.5.34)

The imaginary part of the action for the charged massive particle is 
{r (P,.11 .P,) 

} 

Im S = Im Jr f (;dp; - A, dP:, - B, dP;, -¢dP:)] �
r

r,., (0.0.0} r 

...................... (6.5.35) 
where P,, P

A , P
8

, and P; are the canonical momentum conjugate to r, A, B, 
and ¢ respectively. 
Also, 

� 2 2 ' ' � 2 ) 2 ( ) 2 2 rm=M+ M -e -g--a- , r0,,1 =(M-m)+(M-m) -(e-e
1 

- g-g, -a

are the locations of the event horizons before and after the charged particle 
emission. According to the Hamilton's equations, we have 
;, = dH 

I " i i = 

d(M - m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6.5.36) 
dP (r.;. ,,A,,',, . JJ,, 'n,) dP r r 

,. dH - d(M-m)¢ = - I p 11 p = an--- .............................. (6.5.37) 
dP (fl. A,. ,1,: ,.Pa,·'·,) dP 

; ; 

, dH d(e-e) 
A,= - I = <D 1 •••••••••••••••••••••••••••••• (6.5.38) 

dP (A,.r ,l',:;.I',, IJ,.l'n,) e dP 
� � 

,. dH d(g-g,) B =- I =<D -- .............................. (6.5.39) 
I dP (B,: r.P,:;,P6 :A,.I',,,) 8 dP IJ, B, 

where the dragging angular velocity n , electric potential <D. and magnetic 
potential <D x in the dragging coordinate system are given by 

-

a(r 2 
+ a 2 

- Ll) 
0=--------

- ............................... (6.5.40) 
(r 1 +a 2) 2 -6.a 2 sin 2 0
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(e-e 1 )r(r 2 +a 2
) 

<I>.= - _ .............................. (6.5.41) 
(r2 +a 2

)
2 -/:ia 2 sin 2 0

(r2 +a2 )(g-g1 )r 

<I> g 
= - _ .................................. (6.5.42) 

(r
2 +a2 )2 -t:ia2 sin 2 0

Substituting equation(6.5.3 l) and (6.5.36)-(6.5.42) into equation (6.5.35), 
then imaginary part of the action becomes 

r0,.,(M-m,e-e1 .)i-gi) 
d 

Im S = Im f f[d(M - co') - a0.'d(M - co')-<l>�d(e - e{)-<l>�d(g - g{ ]�
r,., (M.e.g) r 

, •• ,(M-m.e-e 1 ,!i-!i1l 2 2 I 

lmS=lm f f [(l-a0.')d(M-co')- )(r +� )(e-:1�
r

, d(e-e 1 )
(M.e.Ji) (r- + a 2 )" - !:i'a· sm- 0 

(r
2 +a2 )(g-g{)r 

d( 1
1
dr-------- g-g -

(r 2 +a2)
2 -!:i'a2 sin2 0 1 · 

r 

Im 
s 

= Im 
'u
s
,.,(M-m.e-

f
ei ,g-gl\(1 - a0.')d(M - co'

)- (r
2 + a2 )(e - e:)r 

d(e - el)
(r 2 +a 2 ) 2 -t:i'a 2 sin 2 0 1 

where 

(M.c.Ji) 

2 2) I 
(r + a (g- g1 

)r 
d t 

-
( 

2 2
) 

2 A , 2 · 2 0 
(g - g I ] r +a -u a sm 

2Jcp 2 
- !:i')[(r 2 + a2 )

2 - !:i'a 2 sin 2 0]
, dr 

p(r - r
+ 

)(r - r_) 

............................... (6.5.43) 

!:i' = r
2 + a2 -(M -co')r + (e-e{)2 + (g- g{)

2 

= (r - r:)(r -r!) 

r; = (M-co')±J(M-co')2 -(e-e{)2 -(g-g:)2 -a 2 

We see that r = r: is a simple pole at the event horizon. The integral can be 

evaluated by deforming the contour around the pole, so as to ensure that the 
positive energy solution decay in time. Note that all real parts , divergent or 
not , can be discarded since they only contribute a phase. Doing the r 
integral first we obtain, 
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-

"-'' 

(M-m,e-e1 .g-g1) 

lmS = -n J 
(M,c.g) 

(M-m,e-e1 .g-g1) 

ImS=-n J 
(M.e,g) 

2( I 2 2)r+ + a 
[(1- an' )d(M - a/) 

(r; - r!) ,: 

I 

/+ 
1 

[2r;d(M -a>') 
(r+ - r_) 

- 2(e - e{)d(e -e{)-2(g - g{)d(g - g{)]

...................................... (6.5.44) 
Now from r:=(M-w')+�(M-w')2 -(e-e{)2 -(g-g{)2 -a 2 we obtain the 
identity 
(r;-r!)dr; =2r:d(M-w')-2(e-e{)d(e-e{)-2(g-g{)d(g-g;) 

............................ (6.5.45) 
Using the identity(6.5.45 ) into equation (6.5.44) we can easily finish the 
integration and yields a simple expression 

/�1111 / 

I "7r 2 2 - 1 
Im S = -n Jr+dr+ = 

2
[r111 - rm,,]- -

2 
f:lS BH 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6.5.46) 
rw 

h 2 2 • h w ere IJS8H =S8H (M-w,e-e 1 ,g-g1 )-S8H (M,e,g)= n[r
0111 

-r;,,] IS t e
difference of the Bekenstein-Hawking entropies of the blackhole before and 
after the particle emission. From equation (6.5.34) we obtain the tunneling 
rate 
f'-eM"" .............................. (6.5.47) 

Equation (6.5.47) indicates that the tunneling rate is related to the difference 
of the Bekenstein-Hawking entropies of the blackhole before and after the 
emission of the shell of energy w, electric charge e, and magnetic charge g,. 
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CHAPTER SEVEN 

HAWKING RADIATION VIA HAMILTON-JACOBI METHOD 

7.1 Hamilton-Jacobi Method : In the past two decades, a lot of researchers have 
investigated Hawking radiation of blackholes [ 4,9]. Most of them rely on the 
quantum field theory on the fixed background spacetime and derived radiation 
spectrum is pure thermal[l86]. Parikh and Wilczek [14] employed the semi­
classical tunneling method to research the Hawking radiation of Schwarzschild and 

Reissner-Nordstr; m blackhole. Their research has shown that the derived radiation 
spectrum is not pure the1mal and the tunneling probability is related to the change of 
Bekenstein-Hawking entropy when the self- gravitation interaction and energy 
conservation are taken into account. In their methodology, the key point is the find 
the motion of equation of the emitted particle and to calculate the action by 
Hamilton equation .Thus one has to perform Painleve-Gullstrand coordinate 
transformation. Following the method, great effort has been devoted to the Hawking 
radiation of massless particle and massive charged particle particles, which has 
effective significance for the furthermore cognition and research on blackhole. 

Recently, M. Angheben, M. Nadalini, L. Vanzo and S. Zerbini[l87] developed a 
method to study the Hawking radiation of blackholes , which is known as Hamilton­
Jacobi method and focuses on the calculation of the particle action via the Hamilton­
Jacobi equation to investigate Hawking radiation of blackholes. The main 
characteristics of this method is the covariant treatment of the horizon singularity by 
using the spatial proper distance . However, the derived radiation spectrum is pure 
thermal since they have lost the sight of the self-gravitation of the particle[l 88]. In 
fact the background spacetime of blackholes is not fixed and the self-gravitation 
interaction should be taken into account during the research of Hawking 
radiation[l89]. Now we investigate the Hawking radiation via Hamilton-Jacobi 
method of some different kinds of blackholes. 
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7.2 Hawking radiation as 
Schwarzschild Blackhole: 

tunneling via Hamilton- Jacobi method from 
The line element of Schwarzschild blackhole is 

given by 

ds2 = -(1-
2M )dt 2 + (1- 2M f 1 dr 2 

+ r 2 (d0 2 
+ sin 2 0 d¢ 2 )

r r 

(with G = c = l ) 

ds2 = - f (r)dt 2 
+ j- 1 

(r) dr 2 
+ r 2 (d0 2 

+ sin 2 0 dfp2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7 .2.1) 
2M where f(r) = I - - and r

1
, = 2M = radtusof the event horizon. 

r 
We consider a scalar particle moving in this spacetime without its self-gravitation. 

7.2.1 Tunneling rate of massless particles from Schwarzschild Blackhole: 
Within the semi-classical approximation , the classical I of the particle satisfies the 
relativistic Hamilton-Jacobi equation [ 197] 

gJtV i5J i5J + m 2 
= 0 ................................................... (7.2.2) 

where m is the mass of the scalar particle and gw are the inverse metric tensor 
components obtained from (7.2.1) namely 

g oo 1 11 - 1 _ 2M g 22 
- _I 33 

= 2 
• , and other components are zero. = -

2M 
' g - ' - ' ' g r r- r s,n- 01--

r 
Consider equation (7.2.1), the equation (7.2.2) can be written as 

1 of 2 of 2 1 of 2 1 of 2 2 (7 2 3) --(-) + f(r)(-) +-, (-) +
2 

. 
2 

(-) +m = 0 ............................ . . 
j(r) ot i5r r- i50 r sm 0 0¢ 

By considering the axial symmetry of the blackhole spacetime , we carry out the 
separation of variable to (7.2.3) as 
f =-mt+ W(r) + J(x')

Therefore we have, 
oJ = -m, oJ = W'(r), o

0f = .!0 , o;f = J; .................................. (7.2.4) 

where J
0
and l; are constant respectively. 

From (7.2.3) we have 
1 2 I 2 1 2 I 2 2 (7 2 5) --.-OJ +j(r)W (r)+-,.!

0
+ ,. 2 l;+m =0 ............................ . . 

j(r) r- r- sm 0 
From above equation we obtain, 
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2 {l 2 1_2 2} i OJ -f(r) 2.f o + 
2 

• 
2 

J¢ + m 

I
.\ r r sin 0 

W= ----@ 

f(r) 
So we have , 

2 {1 2 _ 1 2 2} ·I OJ -f(r) -2 .lo + 2 . 2 .!¢ + m 
!=-OJI+ J 

r r_s1_n_0 ____ dr+J(x') ... ... ..... . ........ ... . . ..... (7.2.6) 
f(r) 

By directly use Feynman prescription to deal with the integral over the coordinate , 
we will get one half of the correct one, that is Im I = Im W = w"OJ. [ 190] 

However , if the above calculation making use of the isotropic coordinate defined by 

I 
dr 

t � t, r � p, In p = 
r�f(r) 

................................. (7.2.7)

The metric assumes the form[l 90] 

ds 2 = -f(r(p)) dt 2 + r
2 

(;) {dp2 + p2 (d02 + sin 2 0 d¢ 2 ) }p-

(1-_!l,_)2 .................................... (7.2.8) 
, 4p r, 4 2 , , =-dt----+(1+-') (dp +p-ds;) 

(I +_!l,_)2 4p 

4p 

In this system of coordinate, the spatial metric is no longer singular at the horizon. 
This form of metric is still static , but with a radial part regular at the horizon p = r". 
We may apply again similar formula as (7.2.6) deforming the contour and a direct 
computation gives the correct result Im I= Im w = 2w

1
,0J. 

The reason of this discrepancy can be understood observing that in a curved 
manifold , the non-locally integrable function _!_ does not lead to a covariant r 
distribution 1 

. Because the result above is not invariant under changes of
(r + i.O) 

coordinate within a time slice , we introduce the proper spatial distance defined by 
the spatial metric 
dcr 2 =f- 1 (r)dr2 +r2 (d02 +sin2 0d¢ 2 ) ..................................... (7.2.9) 
so the radial part of the action can read as 
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do­
W(o-) = J 

2 1 2 1 2 2 OJ - f(r(o-))(-2 lo+ 2 • 2 1; +m ) 
r r sin 0 

. . . . . . . . . . . . . . . . . . . . . . .  (7.2.10) 
�f(r(o-)) 

Using near the horizon approximation 
f(r ) = f'(r,,)(r - r,,) + ......................... . 
We get the invariant result 

I= 
2

7r iOJ + (real contribution)= 41r iMOJ + (real contribution) . . . . . . . . . . . . . . . . . . . . .  (7 .2.11) 
f'(r,,) 

And the semi-classical emission rate 
f- e-2

1111/ = e-8
llMtu 

• • • • • • . • • . • • . . • • . . • • • • • • • • • • • • • •  (7.2.12) 
From the above equation we can easily obtain the Boltzman factor /3 = 81rM. 

Now if we take into the self-interaction of the particles; when a particle of energy 
OJ emits throughout the event horizon then due to energy conservation, the mass of 
the blackhole will be M - OJ and event horizon will change from r = 2M to 
r = 2(M -OJ). From (7.2.12) we have

r- -21111/ =e-8lllv!m = -4ll( 2M-m)ru =e4nm2
2 -8,r/v/ru = tSm (7 2 13) e e e . . . . . . . . . . . . . . . . . . . . .  . . 

where t::.sBH =S,JH (M-OJ)-S,JH(M)=41rOJ 2 -81rMOJ is the difference of 
Bekenstein-Hawking entropies before and after the emission of particles. 
This result is accordance with Parikh-Wilczek's result. 

7.3 Hawking radiation as tunneling via Hamilton-Jacobi method from 

Reissner-Nordstr� m blackhole: The line element of Reissner-Nordstr� m 
blackhole is given by, 

ds 2 = -(1- 2M + Q: )dt 2 + (1- 2M + Q: )-1 dr2 + r 2 (d02 + sin 2 0 d¢ 2
) 

r r r r 

Or, ds 2 = -6dt 2 +6- 1 dr 2 +r 2 d02 +r 2 sin 2 0d¢ 2 ........................... (7.3.1) 
With the electromagnetic potential A

11 
= (A, ,0,0,0) 

2M Q 2 Q Where 6 = 1--+- , A,=-- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7.3.2) 
r r

2 
r 

and r,, = M + � M2 
- Q 2 1s the location of the event horizon. In 

Parikh=Wilczek's method one should adopt the Painleve-like coordinate 
transformation in order to the line element is well behaved at the event horizon. 
And the motion of the equation of the particle should be also calculated in order 
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to calculate the action . But these can be avoided in Hamilton-Jacobi method. 
Near the event horizon of the blackhole we can get the line element as [ 191] 
ds

2 =-fl.,(r,,)(r-r,,)d/ 2 +[ll.,(r,,)(r-r,, )r1dr 2 +r}(d02 +sin 2 0d¢ 2 ) ................ (7.3.3) 
ofl where fl ,(r1, ) = - I . 
or 

r;r, 

7.3.1 Tunneling rate of charged particles via Hamilton-Jacobi method from 

Reissner-Nordstr; m blackhole The classical action I of the charged particle 
satisfies the relativistic Hamilton-Jacobi equation [197] 
gpv (oµJ -qAµ)(oJ -qAV) + u 2 = 0 ....................................... (7.3.4) 
where u and q are the mass and charge of the particle and is the inverse 
tensor obtained using by the line element (7.3.3) and substituting it into 
equation (7.3.4) we get [191] 

1 ' ' 1  ' 1  2 2 

----(8,l -qA,)- + ll.,.(r1,)(r-r,,)(o,J)-+-
2 

[(801)-+-.-
2
-(o;f) ]+u = 0 

ll,,(r1,) (r-r,,) r,, sin 0 
........................................ (7.3.5) 

Now considering the axial symmetry of the blackhole , we carry on the 
following separation variable 
I= -(J}t + W(r) + Y(0,¢) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7.3.6) 
where (JJ is the energy of the emitted particles, W (r) is the generalized 
momentum in radial. 
From equation (7.3.5) and (7.3.6) we can obtain 

W(r) = 1 f _!!!_ 
fl .r ( r1, ) r - r1, 

fl (r )(r -r ) b' Y 
((JJ+qA,) 2 - .

r 

" 2  h [(b'0Y-+)+u 2 ] r1, Sin 0 
................................... (7.3.7) 

Introducing the proper spatial distance [187,192] which is defined by 
dCJ2 = [fl.,. (r -r" )r1 dr 2 + r,; (d02 + sin 2 0 d¢ 2 ) ............................. (7.3 .8) 
Limiting to the s-wave contribution that is the bulk of the particle 
emission[ 191] we get 

CJ= 2 �r -r,, 
................................ (7.3.9)

ll.,(r,,) 
Then equation (7.3.7) can be rewritten as 
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2 d b. (r )(r -r ) 8 Y 
W(a-)=--f� (cv+qA,)2- ·' " i  

"[(80Y+-_-;_2-)+u2]
b._,(r1,) a- r1, sin 0 

..................................................... (7.3.10) 
The solution is singular at a- = O which corresponds to the event horizon. 
Thus deforming the integration contour from the real a--axis to the lower 
complex a--plane that avoid the pole a- = O counter clock wise and using the 
Feynman prescription at the event horizon , we obtain the imaginary part of 
the action I as 

2,r Q 1ml =--(cv-q -) ..................................................... (7.3.l 1)b._,(r1,) r" 
Now using WKB approximation , we can get the tunneling probability of the 
emitted particle and find the radiation spectrum being pure thermal. 
However, the recent result shows that the radiation spectrum deviates from 
pure thermal one and the tunneling probability are related to the change of 
Bekenstein-Hawking entropy before and after the particle emitted. The 
reason of pure thermal spectrum is that the self-gravitation interaction of the 
emitted particle was not considered in this process. Now if we taking the 
self-gravitation interaction as well as the conservation of energy and charge 
into account, we tum to return to the Hawking radiation of Reissner-
Nordstr0 m blackhole. Let we fix the mass and charge of the total spacetime 
and allow those of the blackhole to be varied, when a particle of energy cv 
and charge q tunnels out , the parameters of the mass and charge in 
equation(7 .3 .11) should be changed and the modified imaginary part of the 
action is 

Im I= <mt ,
2,r, (dcv' -Q � q' dq')

<O.Ol 6. _,. (r,,) r,, 

(,\f-(u,(J-t/) 2 Q / 

= - f , 1r [d(M -cv') -�d(Q-q')] 
(At .Q) !), .r 

(r1,) r,, 
............................. (7.3.12) 

where , 
6, (r') = 2(M -cv') _ 2(Q-q') 2 

,r I, I /) r1, r" 
r:, = M -cv' + �(M -cv')2 -(Q-q') 2

........................ (7.3.13) 

Substituting equation (7.3.13) into equation (7.3.12) we get 
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(M-w.Q-q) ,3 Q , [m I= - f m-" [d(M m') -q d(Q q')
(M ') , (Q ')2 - --,- -

(M .Ql 
- <1J r" - - q r" 

Finishing the integral we obtain 

Finishing the integral we have, 
1r f, I 2 2 

}
2 {M I 2 2 }

2 1 Iml=--[iM-m)+-y(M-m) -(Q-q) - +-yM -Q ]=--�8H 2 2 
........... ... ······ ......... . .. ... (7.3.14) 

where � BH is the difference of entropies of the blackhole before and after 
the emission. 
The tunneling rate is therefore 
r - e-21111/ = et>,.<;811 •••••••••••••••••••••••••••••••••••• (7.3.15) 

The result show that the tunneling probability is related to the change of 
Bekenstein-Hawking entropy and the radiation spectrum deviates from pure 
thermal one , which supports the Parikh and Wilczek's result. 
7.4 Hawking radiation as tunneling via Hamilton-Jacobi method from 

Kerr blackhole: : The line element of Kerr metric in the Boyer-Lindquist 
coordinate system is given by, 

11 . , p2 , , , sin 
2 

0 , ds2 = --, (dl -asm 
2 0d¢)" +-dr- + p-de- +--,-[(r

2 
+ a-)d¢-adt]2p- !). p-

.................................. (7.4.1) 
where 

11 = r 2 
- 2Mr + a 

2

p2 = r2 +a2 cos 2 0 ................................................ (7.4.2) 
J

a=-

Here M is the mass of the body, J is the angular momentum and r is the 
radial distance from the center of the body. The equation of the event 
horizon is given by, 

11= 0which gives,r
±

= M±-JM2 -a2
, M2 >a2

• 

Since , the event horizon r
± 

= M ±-J M 2 
- a

2 does not coincide with the
infinite red-shift surface r

± 
= M ± -J M 2

- a2 cos 2 
0 , which means that there

is an energy layer exists between them. So the geometrical optical limit 
cannot be applied. So we adopt dragging coordinate system. 

Let n = d¢ 
= 

- g03 ........................ (7.4.3)
dt goo

where Q is the angular velocity. 
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For the metric (7.4.1) we have, 

From (7.4.3), n= d¢ =-g03 = a[(r2 +a2)-Ll]
dt g00 (r2+a2)2-Lla2sin2

0

.................... ... . . . .. (7.4.4) 
At the horizon the angular velocity becomes, 

... ..... ...... ............ .. (7.4.5) 

The line element (7.4 .1) in the dragging coordinate system becomes 
" 

ds
2 = g00 

dt 2 + g 11
dr

2 + g22d0
2 

• • • • • • • • • • • • • • • • • • • (74.6) 
, g2 -Llp2wheregoo =goo-�= 2 2 2 2 · 2 • g 33 (r + a ) - Lla sin 0 

The area and Bekenstein-Hawking entropy corresponding to the outer 
event horizon of the blackhole is given by 
A= f,Fg d0d¢ = 47r(r; +a2

) 

S
8H 

=_i=Jr(r; +a2
) ••••••••••••••••••••••••••••••••••••••••••••• (7.4.7) 

4 

7.4.1 Tunneling rate of massless particle from Kerr blackhole via 
Hamilton-Jacobi Method: 

The classical action I of the radiation particle satisfies the relativistic 
Hamilton-Jaco bi equation as [ 197] 

g''v o,Jo.J + u 2 
= 0 .. ..... .... .. ............ ..... . ...... ..... (7.4.8) 

where u is the mass of the emitted particle and g'"' are the inverse metric 
tensor obtained from (7.4.1 )as 

Ll 22 

' g" = -2 'g = 2 p p 
........................................................... (7.4.9) 

and other components are zero. 
Putting these value into the equation (7.4.8) we have 
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� 00 S:T I I S:T n S:T 
( 01 ) 2 ( 

01 ) 2 •• 
( 

01 ) 2 2 
0 g - +g - +g - +u =

ot or o0 
1 of of of 

or, ---(-
) 2 +M(r,0) (-) 2 +C(r,0) (-) 2 +u 2 

= 0 
P(r,0) ot or o0 

............................................. (7.4. l 0)
where,

(r 2 +a2)2 -b.a 2 sin 2 0
P(r,0) = 

2 , 

!':.p 

b. I
M(r,0) = -

2 , C(r,0) = -
7 

p p· 

.................................. (7.4.11) 
Now considering the axial symmetry of the blackhole , we carry on the
following separation variable 

f = 
-OJt + W(r,0) + }¢ ..................................................... (7.4.12)

where OJ is the energy of the emitted particle , W (r, 0) is the generalized
momentum and J is the angular momentum with respect to the 
From (7.4.12)
of .0¢ 
- = -OJ+ J - = -OJ+ ;0.
ot ot
of oW of oW
-=-

-=-

or or 'o0 o0 

................................... (7.4.13)

Substituting these into equation(7.4.10) we can obtain

";' � �M(r,�)P(r,O) (m-jfl)' -P(r, 0){C(r, 0)(: )' +u' }

...................................... (7.4.14)

¢-axis.

From above equation we can learn that the imaginary part of the emitted
particle 's action is only produced from the pole at the event horizon 
[ 193]. According to the reference [ 185] for getting the correct result , the
proper spatial distance should be introduced, which is defined by 

2 

dCY
2 = :

2 
d1·

2 
+ p 2 

d0
2 

................•....•...••..........•........ (7.4.15)

Since there is no motion in the 0 -direction ,so we have
CY= f 

�M
�
r,B) 

dr . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7.4.16)

. b.smce M(r,0) =-
7 

p· 

Now at the horizon
P(r,0) = P'(r

+
,0)(r-r

+
)+ ....................................... .

M(r,0) = M'(r
+ 
,0)(r - r

+
) + .................................... .
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5 P(r, 0) I _ = P'(r+ ,0) 
Where 5 r r-r. 

5M
r

, 0) l,=r = M'(r+ , 0) 
r . 

Hence a= J ' 
I dr 

� M (r+ , 0)(r - r+) + ......................... .

= 
�Alf'

�·
+ ,0)

�r-r+ .......................................... (7.4.18)

A 
. � I 

gam da = = dr 
�M(r,0) �M'(r+ , 0)(r-r+)+ ............................... . 

...................................... (7.4.19) 
da dr 

Or, -=-- ................................................. (7.4.20)
a 2(r - r+) 

From equation (7.4.14) we have 
2(r - r )

oW = + 

�{ M'(r+ , 0)(r-r+)+ ............ }{ P'(r+>0)(r-r+)+ ............... }

d
: (m-jD.,)

2 -P(r,0){C(r,0) (
oW

�;,°
)
), +u' }

Or, W(o-) = JP'(r.,0;M'(r.,0) f
d

: (w-jD..)' -P(r,0){C(r,0)(
oW

�;
,0)

), + u' }

............................................. (7.4.21) 

where Q + 
=

2 
a 

2 
is the velocity at the event horizon and the solution is 

r+ + a
singular at a = O which corresponds to the event horizon. 

Also 
da = dr . Therefore from equation (7.4.21) we can obtain
a 2(r - r+)

J 
2dr 2 

{ 

oW 2 2 } W= I (OJ-JQ+) -P(r, 0) C(r, 0)(-) +u
2(r - r+ )-v P'(r+ , 0)M'(r+ , 0) 50 

I 
J 

dr / . 2 { , 
} 

2 
=�===== ---y(OJ-JQJ - P (r+ , 0)(r-r+)+ ........ (O+u )

�P'(r+ , 0)M'(r+ ,0) (r - r+) 
. oW 

smce -=0. 
5 0 

Or, W =
1 

J
(OJ- jQJ �1-b(r-r+) dr

�P'(r+ , 0)M'(r+ , 0) (r-r+) 

= (OJ - JQ+) f 
��I --b-(r---r+-) d(r - rJ

�P'(r+ ,0)M'(r+ ,0) (r-rJ 
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W (m-JO + ) J.JI-bz dz h Or, =----====== ---- w ere z = r-r 

JP'(r+ , 0 )M'(r+ , 0 ) z + 

Here the singularity is at z = O. Applying the Cauchy integral formula we
can obtain 

21r 21r Ja ImW=lml=---;::::=====(m-jOJ=---;::::=====(m- 2 2) 
JP'(r+ , 0 )M'(r+ , 0) JP'(r+ , 0 )M'(r+ , 0 ) r+ +a 

....................................................... (7.4.22) 
Now the temperature over the surface of the blackhole is given by[l93]

T- JP'(r+ , 0 )M'(r+ , 0 ) __ I r+ -M- 4rr - 21r r} +a2

1 r} +a2 

or ---;::::===== = ---

' JP'(r+ , 0 )M'(r+ > 0 ) 2(r+ -M)
From (7.4.22) we have
d(Im 1) = 

2rr 
(dm - adj )

JP'(r+ , 0 )M'(r+ , 0 ) r} +a2 

, ·r I= J1r(r} +a 2 )(d - adj )01, m m , , 

r+ -M r; +a-

............................. (7.4.23)

........................................ (7.4.24)

If we fix the total ADM mass and angular momentum of the spacetime and
allow those of the blackhole to vary, then when a particle with energy m and
angular momentum J tunnels out, the mass and angular momentum should
be modified. ReplacingM by M -m and .J by .J -J we obtain the imaginary
part of the actual action as 

A1-<,,.1-; ,,; 2 + a2 
(dm' - adj' )

lml = rr J J < -(M-m') < 2 +a2 
M J 

= -rrM
J
-(JJJ-

J
; < 2 + a2 

{d(M -m') - ad(.! - j') }
1 (M ') , 2 2 

At .1 
r+ - - OJ r+ + a 

............................................. (7.4.25)
where

.J - j' = a(M - m'),

< = (M-m')+�(M-m')2 -a 2 

./-; 

Now , fd(.J- j') = [.J-j']�-; = (.J - J)-J-;:: J -J = o
.I 

j is so small that we assume that J - J - .J. Therefore
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M-tu , 2 2 

lml=-1r f r+ +a d(M-o/) 
M r; -(M-aJ') 

Finishing the integral we have 
Iml=-1r[(M-w)�(M-w)2 -a2 +(M-w)2 -M.JM 2 -a2

-M 2
]

The tunneling rate 
' J ') 2 , � r -2 1m/ 2,r((M-ai) +(M-ai) (M-ait-a -M·-MvM·-a·J t.5

811 
-e =e =e 

where M
/JH 

is the difference of Bekenstein-Hawking entropy of the 
blackhole before and after the particle emission from the blackhole. 

7.5 Hawking radiation as Tunneling via Hamilton-Jacobi method from
Kerr-NUT blackhole: The line element of Kerr-NUT metric is given by 
[194] 

D.
2 p 2 sin 2 0 

ds 2 
= --

2 
(dt - P d¢) 2 +-

2 
dr 2 + p 2d0 2 +--

2
-[(F + l 2 )d¢- a dt] 2

p D. p 

...................................................... (7.5.l) 
where F = r 2 + a2

D. 2 = r 
2 

- 2Mr + a 
2 

- /2

p 2 = r 2 + (l + a cos0 ) 2
•••••••••••••.••••••••••••••••••••••••• (7.5.2) 

a= ..!_ P = a 2 sin 2 0 -21 cos0
M' 

Here M is the mass of the body, J is the angular momentum , l is the NUT 
parameter. The area and Bekenstein-Hawking entropy corresponding to the 
outer event horizon of the blackhole is given by 
A= f H d0d¢ = 41r(r} + a 2 + / 2 ) 

S
8H 

= � = 1r(r} +a2 +/2 ) ••••••••••••••••••••••••••••••••••••••••••••• (7.5.3) 
4 

The infinite red shift surface and the event horizon of the black.hole is 
given by r = M +.JM 2 -a2 cos 2 0+/ 2 and r = M +-JM 2 -a2 +! 2 respectively. 
Obviously they are not coincide to each other which is inconvenient to 
study the Hawking radiation. So we adopt dragging coordinate system. 
Thus we perform the dragging coordinate transformation 
n = d¢ = -go3 

........................ (7.5.4) 
dt goo 

where n is the angular velocity, on the line element (7.5.1) and we get 
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, 2 . 20 2 
d 2 6- p sin d 2 P d 2 2d02 s = ---------------- I +- r + p 

(r2 +a2 +/ 2 )sin 2 0-62 (asin 2 0-2lcos0)2 62 

..................................................... (7.5.5) 
Now the event horizon and infinite red shift surface are coincident with 
each other, which means the geometrical optical limit can be applied now. 
Using WKB approximation we can get the relationship between the 
tunneling rate and the imaginary part of the radiation particle as r - e-21'"'. 

7.5.lTunneling rate of massless particles via Hamilton-Jacobi Method 

from Kerr-NUT blackhole : 

The classical action 1 of the radiation particle satisfies the relativistic 
Hamilton-Jacobi equation as [197] 

g 1
"' 8J8J + u 2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7.5.6) 

where u is the mass of the emitted particle and gµv are the inverse metric 

tensor obtained from (7.5.1) as 
do (r 2 +a2 +/2 )sin 2 0-62 (asin 2 0-2/cos0)2 

6
2 

22 
g = ----------------

' g" = -

J 

'g = 

62p2 sin 2 0 p- p2 

........................................................... (7.5.7) 
and other components are zero. 

Putting these value into the equation (7.5.6) we have 
" OO 

( 01 
) 2 

I I 
( 01 ) 2 

22 
( 01 

) 2 2 Q g - +g - +g - +u = 

& or 80 

or, -
1 ( 81

)2 +M(r,0) ( 81
)2 +C(r,0) (

81 
)2 +u 2 =0

P(r,0) 81 or 80 
............................................. (7.5.8) 

where, 

P(r B) = (
r 2 +a2 +/ 2 )sin 2 0-�2 (asin 2 0-2lcos0)2

' 
A J J • 2 0

' 
u-p- Stn

6
2 

I 
M(r,0) = -2 , C(r,0) = -

2 
p p 

.................................. (7.5.9) 
Now considering the axial symmetry of the blackhole , we carry on the 
following separation variable 

I= -wt+ W(r,0) + )¢ ..................................................... (7.5.10) 

wherew is the energy of the emitted particle , W(r,0) is the generalized 

momentum and J is the angular momentum with respect to the ¢ - axis. 

From (7.5.10) 
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of 
= -w + 1 0¢ = -w + JO.

ot ot 

of oW of oW 
................................... (7.5.11)

or = or ' o0 = o 0 

Substituting these into equation(7.5.8) we can obtain 
oW I . 2 

{ 
oW2 �}

-
= 

J 
(w-;0.) -P(r,0) C(r, 0) (-) +u· 

or M(r,0)P(r,0) o0 

...................................... (7.5.12) 
From above equation we can learn that the imaginary part of the emitted
particle 's action is only produced from the pole at the event horizon 
[ 193]. According to the reference [185] for getting the correct result , the
proper spatial distance should �e introduced, which is defined by

2 

da 2 
= P

2 
dr 2 + p 2 d0 2

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  (7.5.13)
D. 

Since there is no motion in the 0 -direction ,so we have

a= f JM
�
r,B) 

dr ............................. (7.5.14)

• /j.2 

smce M(r,0) = -

2 p 
Now at the horizon
P(r,0) = P'(r+ ,0)(r-r+ )+ ....................................... . 
M(r,0) = M'(r+ ,0)(r-r+ )+ .................................... . 

oP(r, 0) j _ = P'(r+ ,0)
Where or r-,. 

oMr, 0) 
I,=, = M'(r+,0) 

r . 

}······························(7.5.15)

Hence a= f , 
I dr

JM Cr+ ,0)(r -r+ ) + ......................... .

= JM'
�
r+ ,B) 

Jr-r+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7.5.16)

A . 
� 1 gam da-

= 
-;=== = -;============= dr
JM(r, 0) JM'(r+ ,0)(r-r+ )+ ............................... . 

...................................... (7.5.17)

Or, da- = dr ................................................. (7.5.18)
a- 2(r - r+ ) 

From equation (7.5.12) we have
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8W = 2(r-r+) 
J{ M'(r+,0) (r-r+)+ ............ }{ P'(r+> 0)(r-r+)+ ............... }

d
: (a,-jO,)' -P(r,0){C(r, 0) (

8Wi;· 8))' +u' }

Or, W
(if) 

= JP'(r.,O;M'(r.,O) f
d

: (a,- jO.)' -P(r,0){ C(r, 0)(oW1;, 0)), +u' } 

............................................. (7.5.19) 
where n

+ 
= 

2 

a, 
2 

is the velocity at the event horizon and the solution is 
r++a-+l

singular at a = O which corresponds to the event horizon. 
Also da = dr . Therefore from equation (7.5.19) we can obtain 

a 2(r -r+) 

J 2dr 2 

{ 

8W 2 2 } W= 1 (OJ-JQ+) -P(r,0) C(r,0)(-) +u
2(r-r+)vP'(r+ ,0)M'(r+ ,0) 80 

I J dr / . 2 { , 
} 2 =,===== --.,.j(OJ-JQ+) - P (r+,0)(r-r+)+ ........ (O+u) 

..}P'(r+,0)M'(r+,0) (r-r+) 
. 8W smce -=0.

80 

Or, W = 1 
f(OJ-JQJ �1-b(r-r+) dr where b = P'(r+,0)u: 

�P'(r+,0)M'(r+,0) (r - r+) (OJ-JQ+ ) 

= (OJ-JQ+ ) f
�l-b(r-r+) d(r-r+)

J P'(r+ , 0)M'(r+, 0) (r -r+) 

0 W (OJ-JQ+ ) J.Jl-bz dz h r, =--;======= ---- were z=r-r

�P'(r+,0)M'(r+,0) z 
+ 

Here the singularity is at z = o. Applying the Cauchy integral formula we 
can obtain 

21r . 21r }a 
lmW = 1ml = --;======(OJ-;Q+ ) = --;======(OJ- 2 2 2) .jP'(r+,0)M'(r+ ,0) .jP'(r+,0)M'(r+ ,0) r+ +a +l 

....................................................... (7.5.20) 
Now the temperature over the surface of the blackhole is given by[ 193] 

�P'(r+ ' 0)M'(r+,0) I r+ -M 
T=------=- i , , 

41r 21rr++a-+z-
l r

2
+a

2
+z

2 

or -;::::===== = _+ __ _ 

' �P'(r+,0)M'(r+ > 0) 2(r
+ 
-M) 

From (7.5.20) we have 
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d(Im I) = 

2,r (dw - adj )
�P'(r+'0)M'(r+,0) r} +a2 +/2 

I J=f n(r}+a2 +l 2 ) (d _ adj )or, m w 2 2 2 r+ -M r+ + a + l 
........................................ (7.5.22) 

If we fix the total ADM mass and angular momentum of the spacetime and
allow those of the black.hole to vary, then when a particle with energy wand
angular momentum J tunnels out, the mass and angular momentum should
be modified. Replacing M by M -w and J by J -J we obtain the imaginary
part of the actual action as 

, ? ? / 1 d"' 
M-w.J-! r+ - + a- + - (dw' - a 1J )

Im]= Jr 

f 
J r; -(M-w') r; 2 +a2 +! 2 

M .I 

= 

-1rAJ-f,u.1-f1 ,< 2 + a2 + /2 {d(M 
- w')- ad( J -j') }, (M ') , 2 2 12 

M .1 r+ - -w r+ + a + 
............................................. (7.5.23)

where

J- j' = a(M-w'), r+ = M +�M2 -a2 +/2

r; =(M-w')+�(M-w')2 -a2 +/2 
./-; 

Now, fd(J-j') = [J-j']�-1 
= (J-J)-J � J-J = O

./ 

j is so small that we assume that J -J - J. Therefore
M _,,, r, 2 + a 2 + /2 

Im I = -n f + d ( M -w')
M r; -(M-w') 

Finishing the integral we have
Im!= -n[(M-w)�(M-w)2 -a2 +/2 +(M-w)2 -M�M2 -a2 +/2 

-M2 ]
The tunneling rate

l / l , , l / l l l 

r 
-2 1m/ _ 2;r[(M-w) +(M-OJ)"(M-w) -a·+/·-M -M'iM -a +I ] _ 65811 

-e -e -e 

where l:!:.S BH is the difference of Bekenstein-Hawking entropy of the
black.hole before and after the particle emission from the black.hole.
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7.6 Hawking radiation as Tunneling via Hamilton-Jacobi method from 

Kerr-Newman blackhole: The line element of Kerr-Newmann metric in the 
Boyer-Lindquist coordinate system is given by, 

I::;. • , p 2 
, , sin 2 0 , , , 

ds 2 
=--

2 
(dt-asm 2 0d¢)· +-dr· + p 2d0· +--

2
-[(r· +a·)d¢-adt]" 

p /::;. p 

.......................... (7.6.1) 

where 
/::;. = r 2 

- 2lvfr + a2 + Q 2 

p 2 = r 2 +a2 cos 2 0 
J 

a=-

Here M is the mass of the body, J is the angular momentum , Q is the 
electric charge. The equation of the event horizon is given by, 
!::;.=0 which gives, r

±
=M±�M2 -a 2 -Q 2 

, M 2 >a2 +Q 2 • 

In order to investigate Hawking radiation as tunneling from Kerr­
Newmann blackhole we first adopt dragging coordinate system to 
overcome two difficulties. First the event horizon 
r
± 
= M±�M2 -a2 -Q 2 does not coincide with the infinite red-shift surface 

r
± 

= M ± � M 2 - a 2 cos 2 0 -Q 2 
, which means that there is an energy layer 

exists between them. So the geometrical optical limit cannot be applied. 
Second , as there exist a frame dragging effect in the stationary rotating 
spacetime, the matter field in the ergosphere near the horizon must be 
dragged by the gravitational field also, so a reasonable physical picture 
should be depicted in the dragging coordinate system. This hints that we 
must transform the metric (7 .6.1) into a dragging coordinate system. 

Let n = 
d¢ 

= -
g03 

........................ (7.6.2) 
dt goo

where n is the angular velocity. 

For the metric (7.6.1) we have, 
-(!::;.-a 2 sin 2 0) p 2 

goo
= 

P
2 , g11 = -;;, 

-asin 2 0[(r 2 +a 2 )-!::;.]
g03 = 2 

p 

2 sin 2 0[(r 2 +a 2 )2 -!::;.a 2 sin 2 0] 
g22 = p , g33 = 2 p 
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F ( 6 2) � = d¢ = _ g03 = a[(r 2 + a
2 ) - Li] rom 7. . , � ,!. 

, 2 , 2 2 dt g00 (r- + a )- -Lia sin 0 
....... ..... . . . . . .  (7.6.3) 

At the horizon the angular velocity becomes, 

n" - 2 
a

2 
•••••••••••••••••••••••••••• (7.6.4) 

r+ + a 
The line element (7.6.1) in the dragging coordinate system becomes, 

" 

ds2 = g00 dt 2 + g11 dt 2 + g22d02 
• • • • • • • • • • • • • • • • • • • (7.6.5) 

,.. 
g

2 

_ Lip
2

where goo = goo-�= 
2 2 2 2 • 2 

• 

g33 (r + a ) -Lia Sin 0 
7.6.1 Tunneling rate of massless particles via Hamilton-Jacobi Method 

from Kerr-Newman blackhole: 

The classical action I of the radiation particle satisfies the relativistic 
Hamilton-Jacobi equation as [197] 
gJIV o

µ
IoJ + u 2 

= 0 . . . . ...... ................ ................ (7.6.6) 
where u is the mass of the emitted particle and gw are the inverse metric 
tensor obtained from (7.6.5) as 
; 00 = (r 2 +a2 )2 -Lia

2 sin 2 0 , g11=�,g22 = I

6.p 2 p- p2

and other components are zero. 
Putting these value into the equation (7.6.6) we have 
,.. oo of 11 of 22 of g (-) 2 + g (-)

2 + g(-)
2 +u i 

= 0& or 80 
or, - 1 ( 01 )2 +M(r,0) (

01)2 +C (r,0) (
01 )2 +u 2 =0 P(r,0) 81 or 80 

...................................................... (7.6.7) 
where, 

2 2 2 2 • 2 

P(r,0)= (r +a) -�a Sin 0
,6.p-

6. I M (r,0) = -, , C (r,0) = -2 p- p 
.................................. (7.6.8) 

Now considering the axial symmetry of the blackhole , we cany on the 
following separation variable 

I= -wt+ W(r,0) + }¢ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7.6.9) 
wherew is the energy of the emitted particle , W(r,0) is the generalized 
momentum and J is the angular momentum with respect to the ¢ - axis. 
From (7.6.9) 
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of = -w + 1 0¢ = -w + Jn
ot ot 

of oW of oW 
or 

= 

or ' 80 
= 

80 

................................... (7.6.10) 

Substituting these into equation(7.6.7) we can obtain 
8W I . 2 

{ 
8W , 2 }

- = -----===== ( w-;0.) -P(r, 0) C(r, 0) (-t +u 
Or JM(r, 0)P(r, 0) 80 

...................................... (7.6.11) 
From above equation we can learn that the imaginary part of the emitted 
particle 's action is only produced from the pole at the event horizon 
[ 193]. According to the reference [185] for getting the correct result , the 
proper spatial distance should be introduced, which is defined by 

2 

dCY
2 

= f!_dr 2 + p 2d0 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7.6.12) 

L'l 

Since there is no motion in the 0 -direction ,so we have 
CY= f 

�M�r, 0) 
dr . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7.6.13)

. L'l smce M(r, 0) = -, 
p-

Now the 
P(r, 0) = P'(r+ , 0)(r - r+ ) + ...................................... .. 
M(r, 0) = M'(r+ , 0)(r-r+ )+ .................................... . 

oP(r, 0) 
I = P'(r 0) 

t5; 
r=r 

+' 

Where r 
oMr, 0) /,=r = M'(r., 0) r 

horizon 

}·······························(7.6.14) 

Hence CY
= f ' 

1 dr 
J M (r+ , 0)(r - r+ ) + ......................... . 

= 

JM'�r+ , 0) 
Jr-r+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7.6.15)

A . � Igam d CY = .J = dr 
M(r, 0) J M'(r+ , 0)(r - r+ ) + ............................... . 

...................................... (7.6.16) 
dCY dr 

Or, - =-- ................................................. (7.6.17) 
CY 2(r - r+ ) 

From equation (7 .6.11) we have 
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c5W = 
2(r - r+ ) 

J{ M'(r+ ,0)(r-r+ )+ ............ }{ P'(r+ ,0)(r-r+ )+ ............... }

d
o- (cv-j0.J2 -P(r,0){C(r,0)(

c5W(r,e)
)2 +u2 

}
a- 00

r, W(a-) =--====== - (cv-JO.+ t -P(r,0) C(r,0)(---) +u 0 
I fda- , 

{ 

c5W(r,0) 2 2 } 

)P'(r+,0)M'(r+ ,0) a- o0 

............................................. (7.6.18) 

where 0. + = 2 
a , is the velocity at the event horizon and the solution is

r+ + a· 
singular at a- = O which corresponds to the event horizon. 

Also 
d

o-= dr . Therefore from equation (7.6.18) we can obtain 
a- 2(r - r+ ) 

f 2dr , 
{ 

c5W 2 , } W = 
I (cv-JO.J· -P(r,0) C(r,0)(-) +u· 

2(r-r+ )'/ P'(r+ ,0)M'(r+ ,0) o0 
I f dr / . 2 { , 

} 
2 

=---;====== --'J(cv-10. + ) - P (r+ ,0)(r-r+ )+ ........ (O+u) 
�P'(r+ ,0)M'(r+ ,0) (r -r+ ) . c5W 

smce -=0.
00 

Or, W =
1 

f(cv-jQJ )1-b(r-rJ dr 

JP'(r+,0)M'(r+ ,0) (r - r+ ) 

= (cv-J0. + ) f
Jl-b(r-r+ ) d(r-r+ ) 

JP'(r+ ,0)M'(r+,0) (r-r+) 

0 W (cv-_i0..) 
J

.Jl-bz dz h 
r, =---;====== ---- were z= r-r 

)P'(r.,0)M'(r.,0) z • 
Here the singularity is at z = o. Applying the Cauchy integral formula we 
can obtain 

21r . 21r ja lmW = 1ml =---;======(CV-JO..) =--======(CV- , , ) 
JP'(r+ ,0)M'(r+ ,0) JP'(r+,0)M'(r+ ,0) r+ · +a· 

....................................................... (7.6.18) 
Now the temperature over the surface of the blackhole is given by[193] 

)P'(r+ >0)M'(r+,0) I r+ -M 
T-------------

41r 
-

21r r} + a2 

, 2 
I r+· + a 

or -;:::===== =---'---' )P'(r+ ,0)M'(r+ ,0) 2(r+ -M) 

From (7.6.18) we have 

............................. (7.6.19) 
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d(lm I) = 2,r (dOJ - t
dj 2)

�P'(r+,0)M '(r+,0) r+ +a 

l I= f
,r(r} + a2) (d _ adj ) or, m ---- OJ , , r -M r- +a-

........................................ (7.6.20)

+ + 

If we fix the total ADM mass and angular momentum of the spacetime and
allow those of the blackhole to vary, then when a particle with energy OJ and
angular momentum J tunnels out, the mass and angular momentum should
be modified. Replacing M by M -OJ and J by J -J we obtain the imaginary
part of the actual action as 

,2 2 
d"'

M-wJ-J r+ + a (dOJ' - a lj ) 
Im I= ,r f f r; - (M -0J

1
) r; 1 

+ a2 

M J 

= -1rM
f
-w.1-

f

1 
r;

2 
+ a2 

{d(M -OJ')-ad (J -j') }r' -(M-OJ') r'2 +a 2 

M J + + 

..................................................... (7.6.21)
where

J-j' = a (M-w'), j 1 1 J r+ = M +vM- -a- -Q-

r; = (M-OJ 1)+�(M -OJ 1)
2 -a 2 -Q 2 

./-; 

Now , f d(J -j') = [J -j']�-1 
= (J -J)-J::::: .J -J = O

j is so small that we assume that J -J -J. Therefore
M-w 

r
' 2 + 02 

Im!= -,r f + d (M -OJ')
M r;-(M-o/) 

Finishing the integral we have
Im! =-1r[(M -OJ)�(M-OJ)2 -a 2 -Q 2 +(M-OJ) 2 +a 2 cosh- 1 

M-OJ - M�M 2 -a 2 -Q 2 

�0
2 + Q i 

-M
2 

- a 2 cosh-1 M
]�0 2 +Q 2 

By comparmg OJ with M we assume that
a 2 cosh- 1 M-OJ -a 2 cosh- 1 M 

�0
2 +Q 2 �0

2 +Q i

Therefore
1ml =-.1r[(M-OJ)�(M-w)2 -a 2 -Q 2 +(M-OJ)2 -M�M 2 -a 2 -Q 2 -M2 ] 
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The tunneling rate 
., / 2 ., ., 2 / ., ., ., 

[ - e-21m/ = e2:r[(M-a,)"+(M-a,)\f(M-a,) -a·-Q·-M -M\IM·-a·-Q·] = et!..'>811 

where !3.S8H 
is the difference of Bekenstein-Hawking entropy of the

blackhole before and after the particle emission from the blackhole. 

7.7 Hawking radiation as tunneling via Hamilton-Jacobi method from 

Kerr-Newman-NUT blackhole: The Kerr-Newman-NUT blackhole 
metric can be given by [ 19 5] 

d 
2 (6 -a2 sin 2 0) d 2 p

2 

d 
2 2d02s =-

, 
I +- r +p +

where 

p· 6 

sin 2 0[r 2 +(l +a) 2 ) 2 -t-.(asin 2 0+4/sin 2 !!._)2 

2 

2 d¢ 2 

p 

2[t-.(asin 2 0+4/sin 2 !!._)-asin 2 0 [r 2 +(l +a) 2 ]
+ 

2 
2 

dtd¢ 
p 

........................... (7.7.1) 

t-.=r 2 +a 2 +e 2 +g 2 
-/

2 -2Mr, p 2 =r 2 +(l+acos0) 2
• Here Mis the mass of 

the blackhole, e and g are the electric and magnetic charges respectively, a is 
the angular momentum per unit mass, l is the NUT parameter. The event 
horizon equations are given by 6. = O which gives 
, _ + I 2 

_ 
2 

_ 
2 

_ 
2 2 (7 7 2) 1

±
-M -yM a e g +! . . . . . . . . . . . . . . . . . . . . . . . . . 

The event horizon area of this blackhole is given by [ 196] 

A = 41r a , where Q
+ 

is the angular velocity at the horizon.
n+ 

A= 4n[r} +(a+ 1) 2 ] .••••...••••••••••••.•••••.••• (7.7.3)
and Bekenstein-Hawking entropy 

s,JH =A= 1r[r; +(a+l) 2 ] = 1r[2M 2 +2M�M 2 -a 2 -e 2 -g 2 +/ 2 -e 2 -g 2 +2/ 2 +2al] 
4 

............................. (7.7.4) 
7.7.1 Dragging coordinate Transformation of Kerr-Newman-NUT 

blackhole : 

The infinite red shift surface is given by g
00 

= O which gives 

r
± 

=M±�M 2 -a 2 cos2 0-e 2 -g 2 +/ 2 
.................................. (7.7.5)
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Obviously the infinite red shift surface does not coincide with the event 
horizon surface , which means that there is an energy layer exists between 
them. So the geometrical optical limit cannot be applied. Also there exist a 
frame dragging effect in the stationary rotating spacetime, the matter field in 
the ergosphere near the horizon must be dragged by the gravitational field 
also, so a reasonable physical picture should be depicted in the dragging 
coordinate system. This hints that we must transform the metric (7. 7 .1) into 
a dragging coordinate system. 

Let n = d¢ = - g03 .••..........•.••••••••• (7.7.6) 
dt goo 

where n is the angular velocity. 

For the metric (7.7.1) we have, 

-(!).-0
2 sin 2 B) 

p
2 

2 

sin 2 0[(r 2 + (l + a) 2
]

2 -!).(a sin 2 0 + 4/sin 2 
� 

g 00 
= 2 , gl I = -;:- , g 22 = p , g 33 = J 

p Ll p-
!).(asin 2 0 + 4/sin 2 0)-asin2 0[(r2 + (l +a) 2 ]

g -
2 

00 - J 

p-
!).(asin 2 0+4/sin 2 0)-asin 2 0[r2 +(l+a) 2 ]

n = d¢ = - ______ 2 ______ _From (7.7.6), 
dt sin 2 0[(r2 +(l +a) 2 ] 2 -!).(asin 2 0+4/sin 2 !!._) 2 

2 

.................. (7.7.7) 
At the horizon the angular velocity becomes, 
O = a ............................ (7.7.8) 

+ r}+(l+a) 2 

The line element (7. 7 .1) in the dragging coordinate system becomes, 
" 

ds 2 = g00 
dt 2 + g 11 dr 2 + g22

d02 
. . . . . . . . . . . . . . . . . . . (7.7.9) 

" 
g

2 

- !).p 2 sin 2 0 where g00 = g00 - _..Ql_ = ---------------
g33 sin 2 0[r 2 + (l + a) 2 ] 2 -!).(asin2 0 + 4/ sin 2 !!._ ) 2 

2 
The line element (7.7.9) represents a 3-dimensional hypersurface of 4-
dimensional spacetime. The infinite red-shift surface now coincide with the 
event horizon surface in the dragging coordinate system. So the geometrical 
optical limit can be applied now. 
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7.7.2Tunneling rate of massless particle via Hamilton-Jacobi Method 
from Kerr-Newman-NUT blackhole: 

The classical action I of the radiation particle satisfies the relativistic 
Hamilton-I acobi equation as [ 197] 

g )IV oJo.,I +u
2 

= 0 •• • • • ••,. • •• • •,. • •• • • • • • • • • •• • • • • •• • • • •• • .(7.7.10)

where u is the mass of the emitted particle and g )IV are the inverse metric 
tensor obtained from (7.7.9) as 

"00 sin 2 0{r 2 +(l+a) 2 }2 -ti(asin 2 0+4/sin 2 9
2
) 2 

' g 11 ti 22 g
=- tip 2sin 2 0 

=7,g
= p 2 

and other components are zero. 
From (7.7.10) we obtain , 

"00
(0!)2 11

(
0!

)
2 22 ( 0/

)
2 2 0g - +g - +g - +u = 

ot or 80 
1 01 2 01 2 01 2 2 

(7 7 11)--(-) +M(r,0)(-) +C(r,0)(-) +u = 0 . .. . ... .. .. .... ... ... . . 
P(r,0) ot or 80 

where 
{,-2 + (l + a) 2 }2 sin 2 0-ti(asin 2 0 + 4/ sin 2 6 ) 2 

P(r,0) = 2 

tip 2 sin 2 0 
I 

C(r,0) = -,

p-

ti M(r,0) = -
2p 

............................................. (7.7.12) 
Now , considering the axial symmetry of blackhole spacetime we carry out 
the separation variable to (7.7.11) as 
l=-CtJt+ W(r,0)+}¢ ............................................ (7.7.13)
where CtJ is the energy of the emitted particle, W(r,0) is the generalized 
momentum and J is the angular momentum with respect to the ¢ - axis. 
From (7.7.13) we obtain 
01 . 8¢ . o1 & 81 & 
ot =

-CtJ+ 1 &=-
CtJ+ 

;
D.

, or - or '80 = 80
.............. : ..... (7.7.14) 

Substituting these value into equation (7.7.11) we obtain, 
8W I . , 

{ 
bW 2 , } = I 

(CtJ- ;D.)- -P(r,0) C(r,0)(-) + u-
or -yP(r,0) M(r,0) 80 

................... (7.7.15) 

where D. = 
o¢.
01 

- 179 -



From equation (7.7.15) we observe that the imaginary part of the emitted
particles action is only produced from the pole at the event horizon[l 93].
According to the Ref. [ 185] for getting the correct result the proper spatial
distance should be introduced , which is defined by 

2 

da- 2 = Ldr
2 + p 2d0

2 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  (7.7.16)

!),_ 

We consider the emitted particle as an ellipsoid shell of energy m to tunnel
across the event horizon and should not have motion in 0-direction
( d0 = 0). So we have from equation (7. 7 .16) , 

Ida=-;===dr
JM(r,0) 

a= f 
JM�

r ,e) 
dr ............................. .............. (7.7.17)

By applying near-horizon approximation we have,
P(r,0) =

_
P'(1:+ , 0) (r - �J + . . . . . . . . . . . . . . . . . .  hig�er order term�of (r -

� )_ }M(r ,0)-M (r+ ,0)(r r+ )+ ................... h1gher o rder te1msof(r 1J 
........................................... (7.7.18)

h oP(r ,0) 
I

_ P'( 0) d oM(r ,0) 
I w ere --- - r+ , an ---
r
=,. = M (r+ ,0)or 

r=r. or 

From equation (7.7.17) we obtain
a= f , 1 dr

JM (r+ ,0)(r -r+ ) + ......... .

Or, a= 
J 

2 JCr-r+ )+  .......... ..... . . . ..... ....... (7.7.19)
M'(r+ ,0)

Again 
I da=-;===dr

JM(r ,0) 
I 

= -;========dr
JM'(r

+ 
,0) (r - r

+
) + ........ .. 

= 

I dr
JM'(r+ ,0)(r - r+ ) 

do- drHence we get = ---

a 2(r - r
+
)

From (7.7.15) we can obtain
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5W= 
2(r-r+) da-

J{ P'(r+,0)(r-r+)+ ........ }{ M'(r+,0)(r-r+)+ ........ } O' 

(m- jO.)' -P(r.,0){C(r.,0)(8Wr�,O)), +u' }

W
(
o-

) = 
,/P'(r., 0;M'(r., 0) J

d

: (a,- jO.)' -P(r, 0){ C(r, 0)( 8Wi�· 0))' + u' } 

............................................... (7.7.20) 
where n+ = 2 

a , is the angular velocity at the event horizon, and the
r+ +(a+l)· 

solution is singular at a- = o which corresponds to the event horizon. 
Finishing the integral and substituting the result into (7.7.13) we obtain the 
imaginary part of the action as 

lm/=lmW= 
2

7r {w- 2 ja , J ................ (7.7.21)
JP'(r+,B)M'(r+,0) r+ +(/+at 

Now the temperature over the surface of the black.hole is given by [193] 
JP'(r+,0)M'(r+,0) I r+ -M T=------=-----

47l' 2tr r} +(a+ 1)2 

I r} +(a+/) 2

Or,
JP'(r+,0)M'(r+,0) 

= 
2(r+ -M) 

........ ··· ...... ····· ............. (7·7·22) 

From (7.7.21) we have, d(lml) = 21r
{dw- adj } 

JP'(r+> 0)M'(r+> 0) r; +(a+l) 2

Or, lml= f1r{,-} +(a+/)2 }{ dw - adj
} ''+ -M r} +(a+/) 2

.................................. (7.7.23) 
If we fix the total ADM mass and angular momentum of the spacetime and 
allow these of the black.hole to vary, then when a particle with energy 
w and angular momentum J tunnels out , the mass and angular momentum 
should be modified . Replacing M by M -w and J by J - J we obtain the
imaginary part of the actual action as 

lml=7rMr
J

Y 
r�

2 +(a+l): {dw'- ,2 
adj' 2 } 

M J 
r+ -(M -w) r+ +(a+!) 
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M-wJ-; r; 2 +(a+ 1)2 { ' ad(J -j') 
} =-tr I f I I d(M-{J) )- , 2 2 ••••••••••••••••••• •••• (7.7.24) 

M .1 r+ -(M -{J) ) r+ +(a+!) 

where .J-j' = a(M-(1) 1), r+ = M +JM2 -a 2 -e 2 -g2 +/ 2 and

,< =(M-(J)')+J(M-(1)')2 -a 2 -e2 -g2 +!2 . 
J-; 

Now fd(.J-j') =[.!- j']�-1 = (.J-J)-J � J-J = O 

( J is so small that we assume (.J -J) - J) 
M-w 12 + ( +/) 2 

Hence Im I = -tr f r
� 

a 
, d(M -{1)

1

) 
M r+ -(M -{J) ) 

M-aJ 
=

-tr f 
2(M -{1)

1

)
2 + 2(M -{J) 1)J(M -{1)

1

)
2 -a2 -e2 -g2 + / 2 -e2 -g2 

+ 2/ 2 
+ 2al 

J(M-{J)')-a 2 -e2 -g2 
+/2 

d(M-(1) 1) 

Finishing the integral we get 

Im/= -1r[(M-{J))J�(M-- -{J) -)2 ___ a _2 -_-e _2 ___ g_2 _+_/_2 +(M-(1))2 -M2 -MJM2 -a2 -e2 -g2 +/2 

I , , _ 1 (M -{J)) I , , _ 1 M +-(a--1-+2al)cosh --;======--(a--/-+2a/)cosh ---;=====] 
2 Ja2 +e2 

+ g2 _12 2 Ja2 
+e

2 
+ g2 

(M-{J)) M [ cosh -i -;====== - cosh -i ] Ja2 
+e2 +g2 _12 Ja2 

+e2 +g2 _12 

Im I= -1r[(M - m)J(M - m) 2 
- a 2 

- e 2 
- g 2 + / 2 + (M - m)2 - M 2 

- M � M 2 
- a 2 

- e 2 
- g 2 + L 2 ]

The tunneling rate is therefore 

( 
l 2 

� 
" ., 2 l 22 

J 
, ., , 2 2

2 

[ _ e
-21m/ = 

e
21r (M-aJ) -M +(M-aJ)(M-w)·-o·-c -g +I -M M·-o·-c·-g +I ] 

.............................. (7.7.25) 
Using Bekenstein-Hawking entropy formula s,JH = 1r[r} +(a+ 1)2 ],

we have S,JH (M)= 1r[2M 2 +2MJM2 -a 2 -e2 -g2 +/ 2 -e2 -g2 
+2/2 +2al]

S8H (M-{J))=tr[2(M-{J))2 +2(M-{J))J(M-{J))2 -a 2 -e 2 -g2 +1 2 -e2 -g2 +2/ 2 +2al]
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' J ' ' ' ' ' 2 J ' ' 2 2 / 2 ] =27r[(M-w)·+(M-w)(M-w)"-a·-e·-g·+f·-M -MM·-a·-e -g +

where M BH is the difference of entropies of the blackhole before and after

the emission. From equation (7.7.25) we have 
r -et\.'"'' ..................................... (7.7.26) 
7.7.3 Concluding remarks: 

In this section, we have presented the Hawking radiation as Hamilton­
Jacobi method from the event horizon of Kerr-Newman-NUT blackhole . 
We find that the emission rate at the event horizon is equal to the difference 
of Bekenstein-Hawking entropy before and after the emission of a particle. 

According to the reference [193] expression (7.7.26) indicates that the 
radiation is not pure thermal, which gives a correction to the Hawking 
radiation of the blackhole. Fallowing the reference [ 193] expanding equation 
(7.7.26) in terms of (w-w

0
)we get, 

(<<J-WQ) r:+(a+/)2 
2 2 2 2 2 M(a2+e2+g2-l2) ---[I 4 (M+�M -a -e -g +I - , , , 2 , (w-W

Q
)+ ............... ] 

r - e6.S1JH = e 
T r_ 2(M·-a·-e·-g +/·) 

.................................. (7.7.27) 
When neglecting the higher order terms involving (w-w0 ) the Hawking pure 

thermal spectrum can be obtained. We therefore come to the conclusion that 
the actual radiation spectrum of Kerr-Newman-NUT blackhole is not 
precisely thermal , which provides an interesting correction to Hawking pure 
thermal spectrum. 

In special case , if we put l = O and we assume the equivalent charge 
Q 2 

= e2 + g2 then the result is similar for the tunneling of uncharged particle 

from Kerr-Newman blackhole[l8]. If l = e = g = O then the result reduces to 

the Kerr blackhole[l8] .For l =a= g = Othen the result is fit for Reissner­

Nordstrom blackhole and supports the Parikh-Wilezek's result[l4]. Also if 
we assume a = l = e = g = O then the result is supports for the Schwarzschild 

blackhole obtained by the Parikh-Wilczek's result [14]. 
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The result we derived above shows that the blackhole radiation causes the 
spacetime background geometry to be varied. Because of the self-gravitation 
and energy conservation and angular momentum conservation, the event 
horizon of blackhole varies with blackhole radiation, namely when the 
particle outgoes the event horizon will contract and the two turning points 
pre-contraction and post-contraction are the two points of barrier. The 
tunneling rate of particle is relevant to the mass M, the angular momentum 

a, the electric charge e, the magnetic charge g, and the NUT parameters l 

of the blackhole and satisfies the underlying unitary theory. 
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Abstract Following Hamilton-Jacobi method, we have investigated the Hawking radiation 

of Kerr-Newman-NUT black hole. We have considered the spacetime background dynami­

cal and incorporate the self-gravitation effect of the emitted particles when energy conser­

vation and angular momentum conservation are taken into account. We have found that the 

emission rate at the event horizon is equal to the difference of Bekenstein-Hawking entropy 

before and after emission. 

Keywords Hawking radiation · Hamilton-Jacobi method · Kerr-Newman-NUT black hole 

I Introduction 

After Hawking's discovery that black holes radiate, there were several approaches to study 

this effect. The Hawking discovery was based on the general relativity and quantum me­

chanics. This is the key link in spacetime quantization. In the last few decades, there were 

many researches on the Hawking radiation and many methods to calculate Hawking radia­
tion were obtained. One of them is the Hamilton-Jacobi method. Our attempt to calculate 

the tunneling rate of massless particle from the event horizon of Kerr-Newman-NUT black 

hole by the Hamilton-Jacobi method. 

The classical "no hair" theorem states that all the information about the collapsing body 

is lost except three conserved quantity: the mass, the angular momentum and the electric 

charge. So the only solutions of Einstein-Maxwell equations in four dimensions is the sta­

tionary and rotating Kerr-Newman black hole solutions. In classical theory, the loss of infor­

mation is not a serious problem since it could be thought that the information is preserved 
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inside the black hole but just not very accessible. Even, once Hawking thought that the loss 
of information never recovered. But recently he changed his opinion about information loss 
paradox. However, taking quantum effect into consideration, the situation is changed due to 
Hawking discovery that black holes radiates thermally [ 1, 2). 

Due to the emission of thermal radiation black hole could loss energy, shrink and even­
tually evaporate away completely. Since the radiation with a precisely thennal spectrum 
carries no information, so the information carried by a physical system falling toward black 
hole singularity has no away to be recovered after a black hole has disappeared completely. 
This is known as so called "information loss paradox" (3, 4) which means that pure quantum 
states can evolve into mixed states. This type of evolution violates the fundamental principle 
of quantum theory, as these prescribe a unitary time evolution of basis states (5). 

The information loss paradox can perhaps be attributed to the semi-classical nature of the 
investigations of Hawking radiation. However, researches in string theory indeed support the 
idea that Hawking radiation can be described within a manifestly unitary theory, but it still 
remains a mystery how information is recovered. Although a complete resolution of the 
information loss paradox might be within a unitary theory of quantum gravity or string / 
M-theory. it is argued that the information could come out if the outgoing radiation were not
exactly thermal but had subtle corrections (3, 4).

There is some degree of mystery remains in the mechanism of black hole radiation. In the 
original derivation of black hole evaporations, Hawking described the thermal radiation as a 
quantum tunnding process created by vacuum nuctuaLion near the event horizon [6]. In this 
process. the radiation is like electron-positron pair creation in a constant electric field. Tht: 
energy of a particle can change its sign after crossing the event horizon. So a pair created by 
vacuum nuctuations just inside or outside the horizon can materialize with zero total energy. 
after one member of the pair has tunneled to the opposite side. But Hawking did not proceed 
in this way. He considered the creation of a black hole in the context of a collapse geometry, 
calculating the Bogoliubov transformations between Lhe initial and final states of incoming 
and outgoing radiation. However, there were two difficulties to overcome this problem. The 
first was to find a well-behaved coordinate system at the event horizon. The second was 
where is the barrier. Recently. a method to describe Hawking radiation as tunneling process 
was developed by Krause and Wilezek (7) and elaborated by Parikh and Wilezek [8-12). 
This method involves calculating the imaginary part of the action for the process of s-wave 
emission across the horizon, which in turns is related to the Boltzmann factor for emission 
at the Hawking temperature. Using the WKB approximation the tunneling probability of the 
s-wave coming from inside to outside the horizon is given by 

r ex: exp[-2 Im/), (I) 

where / is the classical action of the trajectory. Expanding the action in terms of the particle 
energy, the Hawking temperature is recovered at linear order. In other words for 2/ = f3 E +

O ( £2 ) this gives 

r ""exp(-2/);:;; exp(-/3 £], 
i;- (3 

(2) 

which is the regular Boltzmann factor for a particle of energy�ancJ,Js the inverse temperature 
of the horizon. 

Besides treating the Hawking radiation as a tunneling process Krause-Parikh-Wilezek 
also took the tunneling particles back reaction into account. They obtained the correspond­
ing modified spectrum. The most interesting result was that they found this modified spec­
trum was implicitly consistent with the unitary theory and could support the conservation of 
information [7-10). Following this tunneling method, there have been many generalizations, 
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such as its application to other spacetimes. The Hawking radiation as tunneling from various 
spherically symmetric blackholes were found in [ 13-28). Also, there are some attempts to 
extend this method to the case of stationary axisymmetric black holes [29-37). Recently, 
some people investigated the massive charged particles tunneling from the static spheri­
cally symmetric as well as stationary axisymmetric black holes (38-45). They all found a 
satisfying result. However, Parikh and Wilezek's tunneling method is dependent on coordi­
nates, which means that it should find a Painleve-like coordinates. Recently, Angheben et al. 
found an invariant tunneling method which was independent of coordinates and called the 
Hamilton-Jacobi tunneling method to calculate the Hawking temperature [29). This variant 
tunneling method could also be considered as an extension of the method used by Padman­
abhan et al. (46-50). 

The Hamilton-Jacobi method to describe Hawking radiation was developed (51, 52). In 
this paper we follow the reference (51, 52] to obtain the tunneling rate of the massless 
particles at the event horizon of a Kerr-Newman-NUT black hole. The article is arranged 
as follows. In Sect. 2 we give the metric of Kerr-Newman-NUT black hole. The horizon 
area and Bekenstein-Hawking entropy formula are also given in this section. In Sect. 3 we 
introduce the dragging coordinate system in order 10 infinite red shirt surface coincide with 
the event horizon surface. so that the geometrical optical limit can be applied. In Sect. 4 we 
discuss the Hamilton-Jacobi process to obtain the tunneling rate. A concluding remarks is 
given in Sect. 5. 

2 Kerr-Newman-NUT Black Hole 

The Kerr-Newman-NUT blackhole metric can be given by [50] 

ds2 = -
(,1 - a2

,5

in2 
0) d,2 + p

2 
dr2 + p2d02

p- ,1 
sin2 0[r2 + (l +a)2]2 - ,1(asin2 0 +4lsin2 0/2)2

d ,
+ ------------- ¢-

p2 

2(,1 (asin2 
(I+ 4/sin2 

0 /2) - asin2 0(r2 + (a2 + L2)) 
+ , drd¢. (3) 

p-

where 

,1 = r2 + a2 + e2 + g2 - /2 - 2M r,

p2 
= r2 + (I +acos&)2 .

(4) 

Here M is the mass of the black hole. e and I? are the electric and magnetic charges respec­
tively, a is the angular momentum per unit mass,/ is the NUT parameter. The event horizon 
equations are given by ,1 = 0 which gives 

r± = M ± /(M2 -a2 _ e2 _ g2 + 12). (5) 

The event horizon area of this black hole is given by (53] A = 
4�" where Q is the angular 

velocity at the horizon. 

A= 4n[r! +(a+ 1) 2), (6) 

and Bekenstein-Hawking entropy 
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= rr[2M2 + 2M j(M2 -a2 -e2 -g2 + t2) - e2 - g2 + 2/2 + 2a/]. (7)

3 Dragging Coordinate Transformation 

The infinile red shift surface is given by g00 = 0 which gives 

r ± = M ± J ( M2 - a2cos2 0 -e2 -g2 + 12). (8) 

Obviously the infinite red shift surface does not coincide with the event horizon surface, 
which means that there is an energy layer exists between them. So the geometrical optical 
limit cannot be applied. Also there exists a frame dragging effect in the stationary rotat­
ing spacctime, the malla field in the crgosphcre near the horizon must be dragged by the 
gravitational field also, so a reasonable physical picture should be depicted in the dragging 
coordinate system. This hints that we must transform the metric (3) into a dragging coordi­
nate system. Let 

Q = 
d</) 

= 
_ go3 

dr 800' 
where Q is the angular velocity. For the metric (3) we have, 

From (8), 

(Ll -a2sin2 0) 
goo = - /l2 

p2 
E11 = -L\, 

sin2 0[r 2 + (l + a)2 ]2 
- Ll(asin2 0 + 4/sin2 0 /2)2 

g33 =
p2

Ll(asin2 0 + 4/sin2 0 /2) - asin2 0(r2 + (a2 + /2)) 
g03 = 

(9) 

( I 0) 

d<f> .d(a sin2 (-J + 4/sin2 0/2) - asin2 (-J(r2 
+ (a2 + /2 )) Q - - - ---------------- (11) - dr - sin2 0[r 2 +(I+ a)2]2 - Ll(asin2 0 + 4/sin2 0 /2)2 · 

At the horizon the angular velocity becomes, 

fl+ = , r:+-+(l+a)2 

The metric (3) in the dragging coordinate system becomes, 

ds 2 = g00dr 2+g11dr2 
+ g22d02 , 

where 

(12) 

(13) 

gJ3 Llp2sin2 0 
goo = goo -- = -------------,,----. (14) 

g33 sin2 0[r 2 +(I+ a)2 ]2 -Ll(asin2 0 + 4/sin2 0 /2)2 

The line element ( 13) represents a 3-dimensional hypersurface of 4-dimensional spacetime. 
The infinite red-shift surface now coincides with the evelll ho1iwn surface in the <lragging 
coordinate system. So the geometrical optical limit can be applied here. 
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4 The Hamilton-Jacobi Method 

Th.: classical action of the radiation particle satisfks the relativistic Hamilton-Jacobi equa­
tion 

(15)

where u is the mass of the emitted particle and g 1"' are the inverse metric tensor obtained
from (13) as 

L\p 2sin2 & g°O 
= 

sin2 0[r2 + (l + a)2]2 - L\ (asin2 0 + 4lsin2 0 /2)2 ' 
11 L\ g =2·

p 

and other components are zero. From ( 15) we obtain,

where

(
0 ,)

2 

(
0 ')

2 

( 0 '
)

2 

g oo _ + g 11 _ + g22 _ + u2 
= 

o, 

81 8r 80 

--- - +M(r,0) - +C(r.0) - +u 2=0,
I 

(
8/ )

2 

(81 )
2 

(81 )
2 

P(r. 0) 81 8r 80 

L\1isin2 fJ 
P(r,&)= 2 2 , ,sin !9[r2 + (/ + a)2]2 - ,Masin 8 + 4/sin· 8 /2)2 

L\ I 
M(r.fJ)=----;- C(r,fJ)=----;.

p- p-

22 1 
g =----;,

p-

(16)

( 17)

(18)

( 19)

Now, considering the axial symmetry of black hole spacetime we carry out the separation
variable to (13) as 

l = -w1 + W(r,0) + j</>. (20)

where w is the energy of the emitted particle, W(r, 0) is the generalized momentum and j
is the angular momentum with respect to the ¢-axis. From (15) we obtain 

81 8</> 
-=-w+j- =-w+jQ.
ot ot 

Substituting these value into ( 18) we obtain,

81 8W
= 

81· T,:· 

81 oW 
-=-

80 80 

8W 
lit - P(r.fJ)M(r.&) 

(w - jQ)2 - P(r.o){ C(r, o)( 
8
0
;)

2 

+ 11 2 }-

where
8</> 

Q=-.
81 

(21) 

(22)

(23)

From ( 17) we observe that the imaginary part of the emitted particles action is only produced
from the pole at the event horizon. According to the [51] for getting the correct result the
propcr spatial distanc.: should bc introduccd. which is ddincd by 

p2 
dcr 2 

= -dr 2 
+ p

2d02 . 
L\

(24)

We consider the emitted particle as an ellipsoid shell of energy to tunnel across the event
horizon and should not have motion in 0-direction (dO = 0). So we have from (24), 
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I 
da=---dr, 

JM(r, 0) 

a= J �dr. 

By applying near-horizon approximation we have, 

P(r. Ii) = P' (r -r. IJ)(r -r +) + ···higher order terms of (r -r +), 

M(r. n) = M'(r ..... ())(r -r +)+·,·higher orderterms of (r -r +), 

where 
SP(r, 0 )

1r = P (r+ , 0). 
or r=r+ 

and SM(r, &) 
I , r = M (r+ , 0).

or r=r+ 

From (26) we obtain 

implies 

Again 

Hence we get 

/ 
1 

a= --;::=======dr 
JM(r+ ,O)(r-r+)+··· ' 

2 
a= -;:;:==:::;:J(r -r-r) + · · ·.

JM'(r+ , 0) 

1 
da=---dr 

J M(r. fl) 
I 

= --;:::=======cir 
JM(r-r , 0)(r -r+) + · · ·

= --;:::::;:;:=::;:;::::==::;:dr. 
JM(r +, 0)(r -r +) 

da dr 
=---

c, 2(r - r
+

) 

From (22) we can obtain 

c5W=-
2(r-r+) da 

J(P'(r .... ())(r -r+ ) + · · -}{M'(r+ Jl)(r -r+) + · · ·) a 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

x jcw-jQ) 2 -P(r. fl){C(r. H )C
s
:r +u 2 }. (33) 

I 
W(a) = -----:::===== 

JP'(r+ . 0)M'(r+ , 0) 

J 
da { 

(sw) 2 } 
x � (w-JQ)2 -P(r.0) C(r. 0 ) W +u2 , (34) 

where Q-r = 1 t ni is the angular velocity al the event horizon, and the solution is singular
r

T
+ a+ 

at a = 0 which corresponds to the event horizon. Finishing the integral and substituting the 
result into ( 15) we obtain the imaginary part of the action as 
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Im I = Im W = 
2rr (w _ j a 

) 
. 

J P'(r +· 0)M'(r +· 0) r; +(a+ 1)2 

Now the temperature over the surface of the black hole is given by (48) 

which gives 

From (23) we have, 

JP'(r"T",fJ)M'(r+,1:1) I r+-M T=-------=- , 4rr 2rr r:;. + (a + /)2 

1 r! +(a+ 1)2
---;:;;;:;::;:=:;:;:::�;::==;:;: = -----J P'(r .... fJ)M'(r __ fJ) 2(r .._ -M) 

d(Im I) = ---;:;;;::;:;::=;;::;:::;::;:;:;:::=;;:; dw - ----2rr 
( 

adj 
) J P'(r+. O)M'(r+, 0) rl +(a+ L)2 

(35) 

(36) 

(37) 

(38) 

If we fix thc total ADM mass and angular momentum of the spacetime and allow these of 
the black hole to vary, then when a particle with energy w and angular momentum j tunnels 
our, the mass and angular momentum should be modified. Replacing M by M -wand J by 
J - j we obtain the imaginary part of the actual action as 

Im! =JT T dw - �----j
·M-w

;
·J-1 ,.,2 +(a+ 1)2 

{ 
, adj' 

} 
M . 1 < - (M - w) r; +(a+ /)2 
1M-.,, 

1
J-j r'; +(a+ 1)2 

{ 
, ad(] -j') 

} = -rr ---- d(M-w )- -=----

M 1 r� - (M -w) r'.; +(a+ l)2 ' 
(39) 

where J - j' = a(M - w'). r_ = M + J M2 - a2 - e2 -/? 2 + /2 and r� = (M -w') +
j(M - w')2 _ 02 _ e2 _ g2 + /2. 

Since j is very small, therefore. we have J;-j d(J -j') = [J -j']�-j = (J - j)-J � 0.
Hence 1M-1,, 11-j ,,2 +(a+ [)2

Iml=-JT 
+ d(M-w').

M 1 r� -(M -w) 
(40) 

Using Eq. (39) we have 

2(M -w')2 + 2(M -w')j(M -w')2 -a2 -e2 -g2 +12

Im I = -rr -----;====::;:::===;==::;:::===;==::=----- d ( M -w'). 
1M-u,[ -e2 -g2 + 2/2 + 2a[

] M j(M _ w')2 _ a2 _ e2 _ g2 + [2 

(41) 

Finishing the integral we get 

Im I= -JT [<M - w)J(M - cv)2 - a2 -e2 -g2 + /2 + (M -w)2 -M2 

J , , I ( , 2 ) _1 (M - w)
-M M2 -a--e--g2 + /2 + - a--I + 2al cosh 

2 J a2 + e2 + 82 _ [2

-�(a2-/2+2al)cosh-1 M ], (42) 
2 Ja2+ei+g2-12 

which gives 
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Im I= -JT[(M -w)J(M -w) 2 -a 2 - e 2 - g2 + /2 + (M -w) 2 - M2 

-M JM2 _ 02 _ e2 _ g2 + 12]. (43) 

Therefore the tunneling rate is 

I'� e-21mS = e2rrf(M-wl2 -M2-(M-w),j(M-w)2 -a2 -e2 -g2-'-/2 -MjM2 -a 2 -,2-g2+t2J_ (44)

Using Bekenstein-Hawking entropy formula S8H = JT(r:. +(a+ /) 2), we have 

and 

S8H(M) = JT[2M 2 + 2M JM 2 - a2 - e 2 - g2 + /2 - e 2 - g 2 + 2l2 + 2al], (45) 

SBH (M -w') = JT[2(M -w) 2 + 2(M -w)j(M -w) 2 - a2 - e 2 - g 2 + / 2 

- e 2 - g 2 + 2/ 2 + 2at]. (46) 

Therefore 

IJ.SBH = SBH(M -w) - SBH(M) 
= 2JT[(M -w) 2 + 2(M -w)J(M -w)2 -a 2 - e 2 - g2 + l2 

_ M2 _ M j M2 _ 02 _ e2 _ g2 + 12], (47) 

where IJ.S8H is the difference of entropies of the black hole before and after the emission. 
From (44) we have 

(48) 

S Concluding Remarks 

Ln this paper, we have used the Hamilton-Jacobi method to presented the Hawking radiation 
from the event horizon of Kerr-Newman- UT black hole. We find that the emission rate at 
the event horizon is equal to the difference of Bekenstein-Hawking entropy before and after 
the emission of a particle. 

According to the reference [51] expression (28) indicates that the radiation is not pure 
thermal, which gives a correction to the Hawking radiation of Lhe black hole. Following the 
reference [51] expanding equation (28) in terms of (w - evo) we get, 

r �e 11S1w 

- �r I- •;.+ <;T/)2 ( M +,JM2-a2-,2-s2-,2- M(a2+,2+,:2 ... ,2 ) ltu-wo)- ••)]
= 

e '+ 2(ML"2-,Lg2+/2) 
(49) 

When neglecting the higher order terms involving (w - w0) the Hawking pure thermal 
spectrum can be obtained. We therefore come to the conclusion that the actual radiation 
spectrum of Kerr-Newman-NUT black hole is not precisely thermal, which provides an 
interesting correction to Hawking pure thermal spectrum. 

ln special case, if we put/= 0 and we assume the equivalent charge Q2 
= e 2 + g 2 then the 

result is similar for the tunneling of uncharged particle from Kerr-Newman blackhole [47]. If 
I= e = g = 0 then the result reduces to the Kerr black hole [54). For/= a= g = 0 then the 
result is fit for Rcissm.:r-Nordstrom black hole and �upports the Parikh-Wilezck's result [8]. 
Also if we assume a= I= e = g = 0 then the result supports for the Schwarzschild black 
hole obtained by the Parikh-Wilezek's result [8]. 
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The result we derived above shows that the black hole radiation causes the spacetime 

background geometry to be varied. Because of the self-gravitation and energy conservation 

and angular momentum conservation, the event horizon of black hole varies with black 

hole radiation, namely when the particle outgoes the event horizon will contract and the 

two turning points pre-contraction and post-contraction are the two points of barrier. The 

tunneling rate of particle is relevant to the mass, the angular momentum, the electric charge, 

the magnetic charge. and the NUT parameters of the black hole and satisfies the underlying 

unitary theory. 
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