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SUMMARY 

This thesis studies the nature of standard n-ideals of a 

lattice. The idea of n-ideals in a lattice was first 

introduced by Cornish and Noor. For a fixed element n of 

a lattice L, a convex sublattice containing n is called an n

ideal. If L has a 'O', then replacing n by 0, an n-ideal 

becomes an ideal. Moreover if L has 1, an n-ideal becomes 

a filter by replacing n by 1. Thus, the idea of n-ideals is a 

kind of generalization of both ideals and filters of 

lattices. So any result involving n-ideals will give a 

generalization of the results on ideals and filters with 0 

and 1 respectively in a lattice. In this thesis we give a 

series of results on n-ideals of a lattice which certainly 

extend and generalize many works in lattice theory. 

Chapter-1, discusses n-ideals, finitely generated n-ideals 

and other results on n-ideals of a lattice which are basic 

to this thesis. We have shown that, a lattice L is modular 

(distributive) if and only if In (L), the lattice of n-ideals is 

modular (distributive). 



In chapter-2, we have discussed lattices and elements 

with special properties. Here we have proved the 

coincidence of standard and neutral elements in a wide 

class of lattices including modular lattices, weakly 

modular lattices as well as relatively complemented 

lattices. In modular lattices and relatively complemented 

lattices the proves of the results are trivial but in weakly 

modular lattices this prove is not so simple. In this 

chapter, we have proved the following results: 

(i) In a weakly modular lattices L, an

distributive if and only if it 

element d is 

is neutral. 

(ii) Let a,b,c be neutral elements of a lattice L, an a<b<c

if d is relative complement of b in the interval [a,c], then 

it is also neutral and uniquely determined. 

(iii) The lattice of all n-ideals of a weakly modular lattice

is not necessarily weakly modular. 

(iv) Given the n-ideal I of the lattice L and a covering

system I of I and the lattice polynomials fa, ga (aeA). If 



every element of I is of the type fa =ga (aEA), then I as an 

element of In (L) is of the type fa =ga (aEA). 

In chapter-3, we have given some definitions of standard 

elements and standard n-ideals. We have proved the 

fundamental characterization theorems of standard 

elements and standard n-ideals. Also we have deduced 

some important properties of standard elements and 

standard n-ideals. Then we have given some notions and 

notations of standard n-ideals which is more general than 

that of neutral n-ideals. We have given some basic 

concept of congruence relation of lattices. Here we have 

given The First General Isomorphism Theorem and The 

Second General Isom o rp hi s.m Theorem. 

In chapter-4, we discuss on standard n-ideal of a lattice. 

Standard elements and ideals have been studied by many 

authors including Gratzer. From an open problem given by 

him, Fried and Schmidt have extended the idea to 

standard (convex) sublattices. In the light of their work 

we have developed the notion of standard n-ideals and 



showed that an n-ideal is standard if and only if it is a 

standard sublattice. We have also given a characterization 

of a standard n-ideal S interms of the congruence 0(S). 

Then we have proved the following results:-

(i) For a neutral element n, the principal n-ideal <a> n of

a lattice L is a standard n-ideal if and only if avn is 

standard and a/\n is dual standard. 

(ii) Let I be an arbitrary n-ideal and S be a standard n

ideal of a lattice L, where n is neutral. If IVS and Ins are 

principal n-ideals, then I itself is a principal n-ideal. 

(iii) Let n be neutral element of a lattice L. Let S and T be

two standard n-ideals of L. Then 

(i) 0(SnT) = 0(S) n 0(T)

(ii) 0(SVT) = 0(S) V 0(T)
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CHAPTER-1 

"Basic concept of n-idea1s of a lattice" 

I n tr o d u ct i o n : T h e i d e a o f n -i d e a l s i n a l a t t i c e w a s 

first introduced by Cornish and Noor in several 

papers [3],[14],[15]. Let L be a lattice and nEL is a 

fixed element, a convex sublattice containing n is 

called an n-ideal. If L has a "O", then replacing n by 

"O" an n-ideal becomes an ideal. Moreover if L has 1, 

an n-ideal becomes a filter by replacing n by 1. 

Thus, the idea of n-ideals is a kind of generalization 

of both ideals and filters of lattices. So any result 

involving n-ideals will give a generalization of the 

results on ideals and filters with O and 1 

respectively in a lattice. 

The set of all n-ideals of L is denoted by I n (L) 

which is an algebraic lattice under set-inclusion. 

Moreover, {n} and L are respectively the smallest 

and largest elements of In (L) while the set-theoretic 

intersection is the infimum. 
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For any two n-ideals I and J of L, we have, 

1/\J= {x: x =m( i, n, j )  for some iEI, jEJ }, 

where m(x,y,z) = (x /\y)v(y/\z)V(z/\x) 

and IVJ = {x : ii /\ji� x< i2Vj2, 

for some ii,izEI and ji,jzEJ }. 

The n-ideal generated by a1, az, a3 ... ... ... am is 

denoted by < a1, az, a3 ... ...... a m>n. 

The n-ideal generated by a finite number of 

elements is called a finitely generated n-ideal. The 

set of all finitely generated n-ideals is denoted by 

Fn(L). Of course Fn(L) is a lattice. The n-ideal 

generated by a single element is called a principal 

n-ideal. The set of all principal n-ideals of L is

denoted by Pn(L). We have 

<a>n {xE L: a/\n<x<avn} 

The median operation 
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m(x,y,z) = (xAy)v(yAz)V(zAx) is very well 

known in lattice theory. This has been used by 

several authors including Birkhoff and Kiss [1] for 

bounded distributive lattices, Jakubik and Kalibiar 

[12] for distributive lattices and Sholander [18] for

median algebra. 

An n-ideal P of a lattice L is called prime if 

m(x,n,y)E P; x,yEL implies either xEP or yEP. 

Standard and neutral elements in a lattice were 

studied extensively in [11] and [9, chapter-3]. An 

element s of a lattice L is called standard if for 

all 

x,yEL ,x/\(yvs) =(xAy)v(xAs). An element nEL 

is called neutral if it is standard and for all x,yEL, 

n/\(xvy)=(n/\x)V(nAy). Of course O and 1 of a lattice 

are always neutral. An element nEL is called central 

if it is neutral and complemented in each interval 

containing n. A lattice L with O is called sectionally 

complemented for all xEL. A distributive lattice with 
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0, which is sectionally complemented is called a 

generalized boolean lattice. For the background 

material we refer the reader to the texts of G. 

Gratzer [8], Birkhoff [02] and Rutherford [17]. 

In section 1, we have given some fundamental 

results on finitely generated n-ideals. We have 

shown that for a neutral element n of a lattice L, 

P n (L) is a lattice if and only if n is central. We have 

also shown that for a neutral element n, a lattice L 

is modular (distributive) if and only if In (L) is 

modular (distributive). We proved that, in a 

distributive lattice L, if both supremum and infimum 

of two n-ideals are principal, then each of them is 

principal. 

In section 2, we have studied the prime n-ideals of a 

lattice. Here we have generalized the separation 

property for distributive lattices given by M. H. 

Stone [8, Th. 15, p-74] in terms of prime n-ideals. 

Then we showed that in a distributive lattice, every 
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n-ideal is the intersection of prime n-ideals

containing it. 

1. Finitely generated n-ideals.

1.1.1 We start this section with the following 

proposition which gives some descriptions of Fn(L). 

1.1.2 Proposition: Let L be a lattice and nEL. For 

... J\am An<y<a1Va2V ..... . Vam Vn} . 

... J\ am J\ n < y = (y A a 1) V (y J\ a 2) V ... ... V (y J\ am ) V (y J\ n), 

when L is distributive. 

(iv) For any aEL,

<a> n = {y EL: a An< y = (y A a) v (y An)} 

/ 
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={yEL: y=(y/\a)V(y/\n)V(a/\n)} 

whenever n is standard. 

(v)Each finitely generated n-ideal is two

generated. 

Indeed <a1, a2, a3 ... ... ... am>n 

a1V ... ... VamVn>n. 

(vi) F n (L) is a lattice and its members are

simply the intervals [a,b] such that a<n<b and for 

each intervals 

[a,b]v[a1,bi]=[a/\a1,bVb1] 

and [ a, b] /\ [ a 1, bi] = [av a 1, b /\bi]. 

Proof: (i) Right hand side is clearly an n-ideal

containing a1, a2, a3 ..... . ... am. 

(ii) This clearly follows from (i) and by

the convexity of n-ideals. 

(iii) When L is distributive, then by (ii)

y<a1Va2V ...... VamVn implice that 
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y=y/\[ a1Va2V ... ... VamVn] =(y/\a1)V(y/\a2)V ... 

... V(yAam)V(yAn), and (iii) follows. 

(iv) By (ii) <a>n ={yE L: a/\n<y<avn}.

Then y=y/\(avn)=(y/\a)V(y/\n), when n is 

standard. This proves (iv) 

(v) This clearly follows from (ii)

(vi) First part is readily verifiable. For the

second part, consider the intervals [a,b] and [a1,bi] 

where a<n<b, and a1<n<b1. 

Then using (ii)we have,[a,b]v[a1,b1]=<a,a1,b,b1>n 

= [a/\a1/\b/\b1/\n,ava1 VbVb1 vn] 

= [a/\a1, bvb1], while 

[a,b]A[a1,b1] =[ava1,bAbi] is trivial. 

In general, the set of principal n-ideals P n(L) is not 

necessarily a lattice. The case is different when n is 

a central element. The following theorem also gives 

a characterization of central element of a lattice L. 
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1.1.3 Theorem: Let n be a neutral element of a 

lattice L. Then Pn(L) is a lattice if and only if n is 

central. 

Proof: Suppose n is central. Let <a>n,<b>nEPn(L). 

Then using neutrality of n and proposition-1.l.2(vi), 

[aAn,avn] A [bAn, bvn] 

= [(avb)An,(aAb)vn] 

And <a>nV<b>n= [aAbAn,avbvn].

Since n is central, there exist c and d such that 

cAn=(aVb)An, cVn=(aAb)Vn 

and dAn=aAbAn, dVn=aVbVn. 

Which implices that <a>nA<b>n=<c>n

<a>nV<b>n =<d>n and so Pn(L) is a lattice.

and 

Conversely, suppose that Pn(L) is a lattice and 

a<n<b. Then [a,b]= <a>nV<b>n .Since Pn(L) is a 

lattice, <a>nV<b>n =<c>n for some cEL. 
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This implies that c is the relative complement of n 

in [a,b]. Therefore n is central.■

Now, we like to discuss Fn (L) when it is sectionally 

complemented. 

1.1.4 Theorem: Let L be a lattice. Then Fn (L) is 

sectionally complemented if and only if for each 

a,bEL, with a<n<b, the intervals [a,n] and [n,b] are 

complemented. 

Proof: Suppose Fn(L) is sectionally complemented. 

Consider a<c<n and n<d<b. Then <n>c[c,d]c[a,b]. 

Since Fn(L) is sectionally complemented, so there 

exists [c ',d '] such that [c,d]/\[c ', d '] =<n> and 

[c,d]v[c ', d ']=[a,b].This implies eve, =n, c/\c, = a 

and d/\d, = n, dvd, = b. That is c, is the relative 

complement of c in [a,n] and d, is the relative 

complement of d in [n,b]. Hence [a,n] and [n, b] are 

complemented for all a,bEL with a<n<b. 

Conversely, suppose that [a,n] and [n, b] are 

complemented for all a,bEL with a<n<b. Consider 
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<n>c[c,d]c[a,b]. Then a<c<n<d<b. since [a,n] and

[n, b] are complemented so there exist c' and d' 

such that cvc'=n, cAc'=a and dAd'=n, dvd'=b. Thus 

[c,d]A[c',d']=[cvc',dAd']=[n,n]=<n> and 

[c,d]v[c',d']=[cAc',dvd']=[a,b], which implies that 

[c,d] has a relative complement [c', d']. Hence Fn(L) 

is sectionally complemented. ■

We have the following corollaries: 

1.1.5 Corollary: For a distributive lattice L, Fn(L) is 

generalized boolean if only if [a,n] and [n,b] are 

complemented for each a,bEL with a<n<b. 

1.1.6 Corollary: For a distributive lattice L, Fn(L) is 

generalized boolean if only if both (n] d and [n) are 

generalized boolean where (n] d denotes the dual of 

the lattice (n] 

In lattice theory, it is well known that a lattice L is 

modular (distributive) if and only if the lattice of 

ideals I(L) is modular (distributive). Our following 

theorems are nice generalizations of this results in 
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terms of n-ideals when n is a neutral element. The 

following Lemma is needed for the next theorem, 

which is due to Gratzer [10]. 

1.1.7 Lemma: An element n of a lattice L is neutral if 

and only if m(x,n,y)=(xAy)V(xAn)v(yAn) 

= (xvy) A (xv n) A (yvn). 

1.1.8 Theorem: Let L be a lattice with neutral 

element n. Then L is modular if and only if In(L) is 

modular. 

Proof: First assume that L is modular. Let I,J,KEln(L) 

with KcI. Obviously, 

(IAJ) VKC IA (JVK). 

To prove the reverse inequality, let xEIA(JVk). Then 

xEI and XEjVk. Then jiAk 1 <x<j2Vk2 for some ji,j2EJ, 

k 1 ,k2EK. Since I=>K so xAk 1 EI and xvk2EI. 

Then by Lemma 1.1.7 
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=[(xAk1)Vn]A(nVj1)A[(xAk1)V(k1Aj1)], 

as Lis modular. 

On the other hand 

m (xVk 2, n,j 2) Vk2 = 

{[(xVk2)An]v(nAj2)V[(xVk2)Aj2]}Vk2, 

=[(xVk 2)An]V(nAj 2)V[(xVk 2)A (k 2Vj 2)], 

as Lis modular. 

>x as j 2 Vk 2 >x

So w e  have 

m(xAk1,n,ji)Ak1 <x<m(xVk 2 ,n,j 2)Vk 2

Hence XE(IAJ)Vk. 

Therefore 

IA(JVK)=(IAJ)VK with kCI and so In (L) is modular. 

Conversely, suppose that I n (L) is modular. 
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Then for any a,b,c EL with c < a, consider the 

n-ideals <aVn>n, <bVn>n and <cVn>n- Then of course

<CVn>n C <aVn>n. Si nee In ( L) is modular, So 

<aVn>n A [ <bVn>n V<cVn>n ] 

=[<aVn>n A <bVn>n ] V <CVn>n. 

Then by proposition 1.1.2 (vi) and by neutrality of 

n, it is easy to show that 

[aA(bvc)]vn = [(aAb)vc]vn (A) 

Again, consider the n-ideals <aAn>n, <bAn>n and 

<CAn>n, c<a implies <aAn>n C <CAn>n. Then 

using modularity of In(L) , we have 

<a/\n>n V ( <bAn>n A <C/\n>n) 

=(<a/\n>n V <bAn>n) A <C/\n>n. 

Then using proposition 1.1.2 (vi) again and the 

neutrality of n, it is easy to see that 

[aA(bvc)]An [(aAb)vc]An ...... (B) 
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From (A) & (B) we have a/\(bvc)=(aAb) V c, with 

c < a, as n is neutral. Therefore L is modular. ■

From the proof of above theorem, it can be easily 

seen that the following corollary holds which is an 

improvement of the theorem. 

1.1.9 Corollary: For a neutral element n of a lattice 

L, the following conditions are equivalent:-

(i) L is modular,

(ii) In (L) is modular ,

(iii) F n (L) is modular.

We have the following theorem; 

1.1.10 Theorem: Let L be a lattice with neutral 

element n. Then L is distributive if and only if I n (L) 

is distributive. 

Proof: First assume that L is distributive. Let I, J, K 

E I n (L). Then obviously, 
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(1/\J)V(I/\K)cI/\(JVK). To prove the reverse 

inequality, let x E 1/\(JVK) which implies x E I and 

xEJVK. Then ji/\k1 <x<j2Vk2 for some ji,j2 E J, k1,k2 

EK. Since L is distributive, 

m(x,n,ji)/\ m(x,n,k1)= [(x/\n)v(x/\ji)V(n/\ji)] /\ 

[ (x/\n) v (x/\k1) v (n/\k1)] 

= (x/\n)V(n/\ji/\k1)V(x/\ji/\k1) 

Also, m(x,n,j2)V m(x,n,k2) - [(x/\n)V(x/\j2)V(n/\j2)] V

[ (x/\n) v(x/\k2) v(n/\k2)] 

Then we have 

= (n/\(xVj2Vk2)) V (x/\(j2Vk2)), 

=[n/\(j2Vk2)] V X > x 

m(x,n,ji) /\ m(x,n,k1) < x < m(x,n,j2) V m(x,n,k2) 

and so x E (1/\J) V (1/\K). 

Therefore 1/\(JVK) = (1/\J) V (1/\K), and so In(L) is 

distributive. 



, 
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The converse follows form the proof of above 

theorem. ■

Following corollary immediately follows from the 

above proof which is also an improvement of the 

above theorem. 

1.1.11 Corollary: Let L be a lattice with a neutral 

element n. Then the following conditions are 

equivalent: 

(i) L is distributive,

(ii) In(L) is distributive,

(iii) Fn(L) is distributive.

We conclude this section with a nice generalization 

of [8: Lemma-5, P-71]. To prove this we need the 

following lemma: 

1.1.12 Lemma: Let L be a distributive lattice. Then, 

any finitely generated n-ideal which is contained in 

a principal n-ideal is principal. 
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Proof: Let [b,c] be a finitely generated n-ideal such 

that b<n<c. Let <a>n be a principal n-ideal such 

that [b,c]C<a>n = [a/\n, avn]. 

Then a/\n<b<n<c<avn. Suppose t (a/\c)vb. 

Then 

t/\n [(a/\c)vb] /\ n =(n/\a/\c) v (n/\b), 

as L is distributive. 

=b/\n=b 

and tvn =[(a/\c) v b] v n= (a/\c)Vn 

=(aVn)/\(cVn), as L is distributive. 

=cVn=c 

Hence [b,c] =[t/\n, tVn]=<t>n. 

Therefore, [b,c] is a principal n-ideal. ■

1.1.13 Theorem: Let I and J be n-ideals of a 

distributive lattice L. If I v J and I /\ J are principal 

n-ideals, then I and J are also principal.
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Proof: Let ,b IVJ =<a> n and 1/\J =<b>n . Then for all 

iEC jEL Cj < avn and Cj > a/\n. 

So there exis t ii, iz E I and ji, jz E J su ch that 

a/\n =ii/\ji and avn = i2Vj2. 

Consider the n-ideal [b /\ ii/\ n, b viz v n]. Since 

[b /\ i1 /\ n, b Viz V n] c I c <a>n , 

[b /\ii/\ n, b Viz V n ]  = <t>n , by lemma 1.1.12 for 

some t EL. Then 

<a>n =]VI => J V [b /\ ii /\ n, b V iz V n] 

=> [ji /\ n, jz V n] V [b /\ ii /\ n, b V iz V n] 

[ji /\ n /\ b /\ ii, jz V n V b Viz] 

=> [a/\n, avn] <a> n. 

This implie s that 

IV J =JV [b /\ii/\ n, b Viz V n] =JV <t>n 

Further , 

<b>n = JAi => J/\ [b/\ ii/\ n, b Viz V n] 
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:::) JA [bAn, bvn] =<b>n 

Which implies that 

JAl=JA[bAi1An, bVi2Vn] 

=J<t>n. 

Since L is distributive, In(L) is also distributive by 

lemma 1.1.12 and using this distributivity we obtain 

that I= <t>n. Similarly we can show that J is also 

principal.■ 

2. Prime n-ideals.

1.2.1 Recall that an n-ideal P of a L is prime if 

m(x,n,y)eP, x,yeL implies either xeP or yeP. The set 

of all prime n-ideals of L is denoted by P(L). In 

M.H. Stone [8, Th.15, p-74L we have the following

separation property. 

1.2.2 Theorem: Let L be a distributive lattice, let I 

be an ideal, let D be a dual ideal of L, and let 
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InD=<I>. Then there exists a prime ideal P of L such 

that P=>I and PnD=<I>. 

From the proof of above theorem given in [8], it can 

easily seen that the following result also holds 

which is certainly an improvement of above. 

1.2.3 Theorem: Let L be a distributive lattice, let I 

be an ideal, let D be a convex sublattice of L, and let 

InD=<I>. Then there exists a prime ideal P of L such 

that P=>I and PnD=<I>. 

Our next result gives a separation property for 

distributive lattices interms of prime n-ideals which 

is of course an extension of the above results. 

1.2.4 Theorem: In a distributive lattice L, suppose I 

is an n-ideal and D is a convex sublattice of L with 

InD=<I>. Then there exists a prime n-ideal P of L 

such that P=>I and PnD=<I>. 
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Proof: Let x be the set of all n-ideals of L that 

contains I and that are disjoint from D. Since IEx, x 

is non-empty. Let C be a chain in x and let 

T=U{xlxEC}. If a,bET, then aEX, bEY for some X,YEC. 

Since C is a chain, either xcy or vex. Suppose xcY . 

Then a,bEY and so aAb, aVbEYcT, as Y is an n-ideal. 

Thus, T is a sublattice. 

If a,bET and a < r< b, rEL, then a,bEY for some YEC, 

and so rEYcT as Y is convex. Moreover nET. 

Therefore T is an n-ideal. Obviously T=>I and 

TnD=<I>, which verifies that T is the maximum 

element of C. Hence by Zorn's lemma, x has a 

maximal element, say P. We claim that P is a prime 

n-ideal.

Indeed, if P is not prime, then there exist a, bEL 

such that a,bEP but m(a,n,b) EP. Then by the 

maximality of P, (PV<a>n)nD:;t::<I>. Then there exist 

x,yED such that p1AaAn<x<p2VaVn and 

p3/\b/\n<y<p4VbVn for some p1,p2,p3,p4EP. Since 
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infimum 

Choosing r=((p1Ap3AaAn)V(p1Ap3AbAn), we have 

r<xvy with rEP. Since x<rvx<xvy, y<rvy<xvy and D 

is a convex sublattice, so rvx,rVyED. Therefore 

(rvx)A(rvy)ED. 

Again, rvx<p2VaVn<p2Vp4VaVn and 

rVy<p4VbVn<p2Vp4VbVn implies 

(rvx) A (rvy) < (p 2 Vp4 Va Vn) A (p 2 Vp4 vb vn) = s (say). 

Since m(a,n,b)=(avn)A(bvn)A(avb)EP, taking 

supremum with p2Vp4Vn, we have sEP. Also, 

r<(rvx)A(rvy)<s. Thus, again by convexity of P, 

(rvx)A(rvy)EP. This implies PnD:;c<I>, which leads to 

a contradiction. Therefore, P is a prime n-ideal. ■

We conclude this section with the following 

corollaries. ■
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1.2.5 Corollary: Let I be an n-ideal of a distributive 

lattice L and let a!;lC aEL. Then there exists a prime 

n-ideal P of L such that P=>I and a!;lP.

1.2.6 Corollary: Every n-ideal I of a distributive 

lattice L is the intersection of all prime n-ideals 

containing it. 

Proof: Let Ii=n{P: P=>I, P is a prime n-ideal of L}. If 

I:;t:l1, then there is an aEli-1. Then by above 

corollary, there is a prime n-ideal P with P=>I, a!;lP. 

But a!;l P=>Ii gives a contradiction. ■



Page I 24 

CHAPTER-2 

Lattices and elements with special properties: 

Let, L denote the non-modular lattice of five 

elements, generated by the elements p,q,r that is 

p>q, pVrVn=qVrVn=L, p/\r/\n=n. Where v will 

denote the modular, non-distributive lattice of five 

elements with the generators p,q,r that is 

pvq =qVrVn = rVpVn= L, pAq = qAr/\n = rApAn = n. 

An element d of the lattice L is called 

distributive if dv(xAy)=(dvx)A(dvy) for all x,y EL 

also we have that d is distributive if and only if x = 

y(0<d>n) implies xvy =[(xAy)vdvn]A(xvy).An 

element n of L is said to be neutral if the sublattice 

{n,x,y} is distributive , where x and y are arbitraty 

elements of L. we have the following theorem: 

Theorem 2.1 The elements x,y,z E L generate a 

distributive sublattice of L if and only if for all 
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permutations a,b,c of x,y,z the following equalities 

hold: 

(6) av(bAc) (avb)J\(avc) 

(7) aA(bvc) = (aAb)V(aAc)

(8) ... ... (aAb)v(bAc)v(cAa) = (avb)A(bvc)A(cva).

Theorem 2.2 An element n of L is neutral if and only 

if 

( i) ... nv(xJ\y) - (nvx)J\(nvy) for all x,y E L 

(i') nA(xvy) = (nAx)V(nAy) for all x,y E L 

(ii) ... ... nAx=nAy and nVx=nVy ( x,yEL) 

Imply x=y i. e. the relative complements of n are 

unique. 

Theorem 2.3 An element n of a modular lattice L is 

neutral if and only if condition (i) (or equivalently, 

condition i') is satisfied. 
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An ideal I of L is called distributive element of 

I(L). I is neutral if it is a neutral element of I(L). 

The lattice L is weakly modular (see GRATZER and 

SCCHMIDT [11]) if from a,b ➔ c,d (a,b,c,dEL;c:t=d) it 

follows the existence of satisfying 

We have the following lemma: 

LEMMA 2.4 (GRATZER and SCCHMIDT [11]) Let the 

lattice L be 

A) modular, or

B) relatively complemented,

Then Lis weakly modular. ■

A lattice L with n is called section complemented if 

all of its intervals of type [n,a] and [a,n] are 

complemented as lattices. In general, the lattice L is 

section complemented if any element of L is 
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contained in a suitable principal dual n-ideal which 

is section complemented as a lattice. 

The following assertion is trivial: 

LEMMA 2.5 Any relatively complemented lattice is 

section complemented. Finally, we mention the 

V-distributive law:

x/\Vya = V(x/\ya). 

A complete lattice L is called V-distributive if this 

law unrestrictedly holds in L. 

In this chapter, our aim is to prove the coincidence 

of distributive and standard and neutral elements in 

weakly modular lattices. This result is the same in 

modular lattice. There the proof was trivial, in 

consequence of the application of Theorem 2.4. But 

in weakly modular lattices the proof is not so 

simple. 

Theorem 2.6 In a weakly modular lattice L, an 

element d is distributive if and only if it is neutral. 
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Proof: It follows easily from the fact that d is 

distributive if and only if x y(0<d> n ) is 

equivalent to [(xAy)vdvn]A(xvy)= xvy. It follows 

that the kernel of the homomorphism induced by the 

congruence relation 0<d> n is <d> n . Further, if x,y 

> d and x=y(0<d>n ) then x=y, because xvy =

[(xAy)v(dvn)]A(xvy)=xAy. From these facts we will 

use only the following: 

(*) If a <b < d < c < e and d is a distributive element 

then a,b➔c,e implies c=e. 

Indeed, under the stated conditions a,b➔c,e implies 

c=e(0<d> n ) and so c=e. 

Now let d be a distributive element of the weakly 

m o d u 1 a r 1 a t t i c e L . F i r s t w e p r o v e t h a t d i s s t a n d a r d , 

that is we prove for any x,yEL, 

xA(dvnvy)=(xAdAn)v(xAy) ... ... (A) 

Suppose (A) does not hold. 
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Then xA(dvnvy)>(xAdAn)v(xAy). Let xA(dvnvy)=a 

and (xAd/\n)v(xAy)=b, then we have a>b. 

We prove that 

( B) ... d,d/\n/\x➔a,b 

namely, d,d/\n/\x➔(dvnvx)A(dvnvy),b➔a,b. 

Indeed, because of d/\n/\x < b we have to prove for 

the validity of d,d/\n/\x➔(dvnvx)A(dvnvy),b only 

d vnvb = ( d Vn vx) A( d Vn Vy). 

But dvnvb = (dvn)v(xAdAn)v(xAy) 

=(dvn)v(xAy)=(dvnvx)A(dvnvy), 

for d is distributive. Now using the inequalities 

a < (dvnvx)A(dvnvy) and a>b, we see that b=b/\a 

and a=(dvnvx)A(dvnvy)Aa are trivial. Thus 

(dvnvx)A(dvnvy),b➔c,b and (B) is proved. 

Next we verify that 

(C) ... .. . . d,dVnVy➔a,b, 
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namely d,dvnvy ➔ d/\n/\x,a ➔ a,b. 

To prove the first part of this statement, we have to 

show only a/\d/\n=d/\n/\x, but 

a/\d/\n=(d/\n/\x)A(dvnvy)=d/\n/\x. The second part 

of the assertion is clear. 

Let us use the condition a>b and the weak 

modularity of L from these it follows the existence 

of elements u,r for which 

(D) a,b➔u,r, d < r<u < dvnvy.

From (B) and (D) it follows d,d/\n/\x ➔ u,r, in 

contradiction to (*). Thus we have got a 

contradiction from a>b, so a=b, 

i.e d is standard. Now we have to prove that d is

standard, then it is neutral. 

If this statement is not true, then we conclude the 

existence of elements x,y of L such that 

( di\ n) /\ (xvy) > ( di\ n/\x) v ( d/\n/\y), 
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i.e the condition (i') of Theorem 2.2 does not hold.

Putting s1=(dAn)A(xvy) and s2=(dAnAx)v(dAnAy) 

let us suppose s1>s2. First we prove that s1Vx>s2Vx 

and s1Vy>s2Vy. 

Suppose that one of these does not hold, for 

instance, s1Vx>s2Vx; then from s1>s2 we have 

s1Vx>s2Vx. We will see that it follows dAx,x➔s1,s2, 

namely dA n/\x,x➔ s 2 v ( dAnAx), s 2Vx➔ s 1,s 2. 

To prove this it is enough to show that 

and Indeed, 

and s1A(s2Vx)=s1A(s1Vx)=s1 (we have used s1Vx= 

s2Vx in this step). Again from s1>s2 and from the 

weak modularity it follows the existence of 

elements u,v with dAnJ\x < u<r < x and s1,s2 ➔u,r. 

But s1,s2 < ct and so s1=s2 (0d),consequently 

u=v(0d), Therefore we have v=uUd1 with a suitable 

d1 < d. Then v=uVd1 < uv(dAnAx)=u, for we get from 

v=uVd1 that d1 < v < x and hence d1 < ct/\n/\x. The 
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inequality we have just proved is in contradiction to 

the hypOthesis r>u. Thus we have proved that s1Vx> 

s2Vx, and in a similar way one can prove s1Vy > 

S2Vy. 

Now, using s1Vx> s2Vx and s1Vy = s2Vy, we prove 

that 

namely, (dAn)A(s2Vx), 

S 2 V X -4 d /\ X, X ➔ S 2 Vy, S 2 V ( xvy) ➔ ( S 2 Vy)/\ S 1, S 1.

From these (dAn)A(s2Vx), s2Vx➔d/\n/\x,x is clear. To 

verify dAn/\x,x➔s2Vy,s2V(xvy) we use the inequality 

dAnAx < (dAnAx)v(dAnAy) = s1 < s2Vy. nd so 

(dAnAx)v(s2Vy)=s2Vy, further xv(s2Vy) = s2V(xvy). 

To prove s2Vy,s2V(xvy)➔(s2Vy)As1,s1 we have only 

to observe the inequality 

s1 = (dAn)A(xvy) < s2V(xvy) = xvy, and then 

[s2V(xvy)]As1 = s1. 
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Before applying weak modularity we have to show 

that s1:;c:s1A(s2Vy). Indeed, in case s1=s1A(s2Vy) it 

follows s1 < s2Vy, and then s1Vy= s2Vy, which is a 

contradiction to s1Vy > s2Vy. From this we see that 

(dAn)A(s2Vx)=s2VX is 

(dAn)A(s2Vx), S2Vx 

also impossible, 

s1A(s2Vy),s1, and 

for 

so 

(dAn)A(s2Vx)= s2Vx implies s1A(s2vy)=s1. Now, 

using the weak modularity and (dAn)A(s2Vx), 

s2Vx ➔ s1A(s2Vy),s1, it follows the existence of u,v 

such that (dAn)A(szvx) < u<v < s2Vx and s1A(s2Vy),s1 

➔u,v. It follows now u=v(0ct) in a similar way as in

the first step of the proof, thus v=uvd' (d' < d).But 

from v < s2Vx we have d' < (dAn)A(s2Vx) for 

Consequently, v=uvd' <uv[(dvn)A(s2Vx)] =u, 

a contradiction to v>u. 

Thus we have verified the validity of the conditions 

of Theorem 2.2, thus d is neutral. ■
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We have the following corollaries: 

Corollary 2.7 In a weakly modular lattice every 

standard element is neutral. 

Corollary 2.8 If In(L) is weakly modular, then any 

standard n- ideal of L is neutral. 

Corollary 2.9 In a relatively complemented lattice L 

any standard element is neutral. 

Corollary 2.10 In a modular lattice any standard 

element and n-ideal is neutral. 

Corollary 2.9 and 2.10 are immediate consequences 

of Lemma 2.3. 

Unfortunately, we cannot establish Theorem 2.6 for 

distributive n-ideals, not even the more important 

Corollary 2.7 for standard n-ideals. A detailed 

discussion of the proof shows that the idea of the 

proof essentially uses the distributive n-ideals. But 

we cannot get the results for n-ideals by a simple 

application of Theorem 2.6 to In(L). 
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We shall now deal separately with (standard, i.e.) 

neutral elements of a special class of weakly 

modular lattices. We intend to show that in 

relatively complemented lattices the set of all 

neutral elements is again a relatively complemented 

lattice. We have the following result. 

LEMMA 2.11 Let a,b,c be neutral elements of a 

lattice L and a<b<c. If a relative complement d of b 

in the interval [a,c] exists , then it is also neutral 

and uniquely determined. 

Proof: We know that L=<b>nx<b>n under the 

correspondence x ➔ (x/\b/\n,xvbvn). Under this 

d ➔ (a,c)therefore d is neutral (for both component 

of d are neutral) in L and consequently it is neutral 

in L. The uniqueness assertion is trivial. 

We have the following corollaries: 

Corollary 2.12 Any complement of a neutral element 

is neutral. 
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Corollary 2.13 The neutral elements (if any) of a 

relatively complemented lattice form a relatively 

complemented distributive sublattice. 

We note that from Corollary 2.12 we do not get 

Lemma 2.11, only that d is neutral in [a,c]. 

Lemma 2.11 is not true for standard elements. As 

an example take the lattice L where n,p,L are 

standard, while (the unique) relative complement of 

p in [n,L] is r which is not standard. 

THEOREM 2.14: The lattice of all n-jdeals of a 

weakly modular lattjce js not necessarjly weakly 

modular. 

Proof: We have to construct a weakly modular 

lattice K such that In(K) is not weakly modular. 

Consider the chain of non-negative integers and 

take the direct product of this chain by the chain of 

two elements. The elements of this lattice are of the 

form (m,O) and (m,1),where O and 1 are the zero 

and unit elements of the two elements and n is an 
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arbitrary non-negative integer. Further, we define 

the elements Xm (m=l,2,3, ... ... .... ) satisfying the 

following relations: 

Xm V (m-1,l)=Xm V (m,0)=(m,1), 

Xm A (m-1,l)=xm A (m,0)=(m-1,0). 

Thus we have got a lattice L. Finally, we define 

three further elements x,y,1 subject to 

xVy=xVz=yVz=l, 

xAy=xAz=yAz=(0,0) (z:;c0,zEL). 

Denote the partially ordered set of all these 

elements by K. The elements of K are denoted by 

this symbol in this given figure. 

It is easy to see that K is a lattice. Also, we have 

K is weakly modular. All but two n-ideals of K are 

principal n-ideals, these exceptional ones are 

denoted by 0 in the diagram, thus the diagram of K, 

completed by these two elements, gives the diagram 

of In(K). Now, it is easy to see that K is not weakly 
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modular. Indeed, under the congruence relation 

generated by the congruence of the two new 

elements, no two different elements of K are 

congruent. While from the congruence of any two 

different elements of K it follows the congruence of 

the two new elements, we have considered K to be 

imbedded in In(K). The existence of the lattice K 

proves the Theorem. 

So far we could assure the weak modularity only of 

the lattice of all n-ideals of a modular lattice. 

Naturally, the same is true for every weakly 

modular lattice in which the ascending chain 

condition holds, because in this case the lattice of 

all n-ideals is identical with (more precisely 

isomorphic to) the original lattice. The following 

question arises is it possible that the lattice of all 

n-ideals of a relatively complemented lattice is

weakly modular if in the lattice the ascending chain 

condition does not hold? Is it possible 
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FIGER 6 

that the n-ideal lattice of the same is relatively 

complemented? The interest of this latter question 

is that in modular lattices the answer is always 

negative. Despite this, the following assertion is 

true: 

There exists a relatively complemented lattice L/ 

not satisfying the ascending chain condition/ such 

that In{L) is relatively complemented . This lattice 

may be chosen to be semi-modular. 

To construct L, consider an infinite set H. We say 

that the partition p of H, which divides the set H 
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into the disjoint subsets Ha , is finite, if all but a 

finite number of the Ha consist of one element, and 

every H a consists of a finite number of elements. We 

denote by FP{H) the set of all finite and by P(H) the 

set of all partitions of H. 

It is clear that the join and meet of any two finite 

partitions are finite again, and if a partition is 

smaller than a finite partition, then it is also finite. 

It follows that FP(H) is an n-ideal of the lattice 

P(H). Now, it is easy to prove that just the finite 

partitions are the elements of the lattice P(H) which 

are inaccessible from below. Indeed, if p is a finite 

partition, then the interval [w,p] of the lattice P(H) 

is finite, therefore p is inaccessible from below. 

Now suppose p is not finite, and let {H a } be the 

corresponding partition of H (the Ha are pairwise 

disjoint). Either infinitely many H a are containing 

more than one element, or at least one Ha contains 

an infinity of elements. In the first case, assume 
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that H1,H2, ... ... contain more one element. We define 

the partition p, to be the same as p on the set H\ VHi 

(j=i+l, ...... infinity) while on the 

VHi (j=i+l, ... ... infinity) let all the classes of p, 

consist of one element. 

Obviously, p1<p2< ... p, so p is 

accessible from below. It is also clear that every 

partition is the complete join of finite partitions 

and finally, it is well known that P(H) is meet 

continuous. It follows that P(H) is isomorphic to the 

lattice of all n-ideals of FP(H). 

Now we will prove that FP(H) satisfies the 

requirements. We have to prove yet that in FP(H) 

the ascending chain condition does not hold, that 

FP(H) and P(H) are relatively complemented , and 

finally that FP(H) is semi-modular. The first of 

these assertions is trivial, since H is infinite. The 

second and the third assertions have been proved 

for P(H), but these properties are preserved under 
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taking an n-ideal of the lattice, therefore these hold 

in FP(H). 

We could assure the weak modularity of the n

ideal lattice of a modular lattice, for the modularity 

of a lattice may be defined by an equality. We now 

show that if the weak modularity of a lattice is a 

consequence of the fulfillment of a system of 

equalities, then the n-ideal lattice is also weakly 

modular. First we prove a general theorem which 

will serve for other purposes as well. 

To formulate the theorem we need two notions. 

We call a subset I of the n-ideal I a covering system 

of I if l={x;3yE I, x<y}. Thus, for instance, l=I is 

always a covering system and if l=<a> n then <a> n

is a covering system. If I is generated by 

the set {xa}, then the finite join of the X a form a 

covering system. 

Let fa (y,x1,X2, ... ... . Xn) and ga (y, X1,X2, ... ... . Xn ) 

be lattice polynomials, where n depends a and a1

runs over an arbitrary set of indices A.(It is not a 
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restriction that fa (y,x1,x2, ... ... . Xn) and ga (y, x1,X2, ... 

Xn) depend on the same number of variables. 

Indeed, if ga = ga (y, X1,X2, ... ... . X r ), r<n,then define 

ga (y, X1,X2, ... Xn )= ga (y, X1,X2, ... 

Xr)V(xu\xz/\ ... ... /\X r/\ ... ... /\Xn/\y).Independently of the 

values of the x1,x2,... Xn , the equality ga (y, 

X1,X2,... X n)= g' a (y, X1,X2, ... ... . Xn) always holds.) 

We say that the element s is of the type fa = ga(aEA), 

if for all a1,a2, ... ... ,an EL and a EA we have fa(s, 

a1,a2, ... ... ,an) = ga(s, a1,a2, ... ... ,an). It is clear that 

the standard elements are of the type fa = ga with 

the polynomials f1(y,x1,x2)=x1/\(yvx2)and 

g1(y,x1,x2)=(x1/\y)v(x1/\x2) and A={l}. Similarly, the 

neutral elements are also of the type fa =ga; we get 

a system of five polynomials from the Corollary of 

Theorem 2.1. 

We conclude this section with the following result. 

Theorem 2.15 Gjven the n-jdeal I of the latNce Land 

a coverjng system I of I and the Jattjce polynomjafs 
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faJ ga {aEA). If every element off is of the type fa 

=ga {aEA)J then I as an element of ln {L) is of the 

type fa =ga {aEA). 

Proof: It is enough to prove the theorem for one 

pair of polynomials fa =ga. For if the theorem failed 

to be true, then there would be a pair of 

polynomials f =g such that I does not satisfy the 

corresponding equality. 

Consider the polynomials f and g, and construct 

the following satisfy sets of L: 

F={t/t <f(aJJ1J ... ... Jjn)J aE(j1E/1J ... ... J jnE/n}J 

G={t/t <g(aJJ1J ... ... JJn)J aE(j1E/1J ... ... JjnE/n} 

where ji, ... ... ,jn are fixed n-ideals of L. We prove 

that F is an n-ideal. It is enough to prove that t1, 

t2EF implies t1Vt2EF. Indeed, if t1,t2EF, then there 

exist aiEI and J1,iE/1J ... ... JJn,iE]n (i=l,2) with 

ti <f(a1J /1,i .. , ... JJn,i). 

Now choose an element a of I for which a1Va2 < a.

Then f{aJ/1,1 VJ1,2J ... ... JJn ,1 Vjn,2) is an element of F, 
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and since the lattice polynomials are isotone 

functions of their variables, t1Vt2 < f{a1 J1,1VJ1,21 ••• 

... Jn ,1V}n,2) is clear, and so t1Vt2EF. Similarly, we can 

prove that G is also an ideal. tEF, then 

t <f(a, }1, ... ... ,Jn),but f{a, }11 ••• ••• ,Jn)= g{a, }11 ••• 

... ,Jn),for a is an element of the type f=g, and so 

t <g(a, }11 ••• ••• ,Jn), that is , tEG. 

We get FCG and similarly GcF, that is, F=G. Owing 

to L e m m a I , F = f { /, j 1, . . . . .. , j n) i s c 1 e a r . G = g { I, j 1, ... 

... Jn), holds as well. Summing up, we got that f{J, 

j 11 • • • • • • 1 j n) 
= g { /, j 1, · · · · ··, j n) , ■

Now we turn our attention to corollaries of this 

th e o r e m . W e s a y th at th e 1 a t ti c e L i s o f th e t y p e fa

=ga if every element of L is of the same type, i.e. if 

th e e q u a 1 i t i e s fa = g a { a EA) i d e n ti c a 11 y h o 1 d . We h ave 

a corollary. 

COROLLARY 2.16 Let fa,ga {aEA) be lattice 

p o 1 y n o m i a 1 s a n d s u p p o s e L i s o f th e t y p e fa = g a
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{aEA).Then this system of equalities holds in I n (L) 

too. Also it follows immediately from Theorem 2.15 

taking l=I for all n-ideals IEl n (L).■
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CHAPTER-3 

STANDARD ELEMENT AND n-IDEALS. 

3.1. Some notions and notations 

The partial ordering relation will be denoted by <, 

in case of set lattice (that is lattices the elements of 

which are certain subsets of a given set) by c. In 

lattices the meet and the join will be designated by 

n and u. And the complete meet and complete join 

by A and V. The least and greatest element of a 

partially ordered set (or of a lattice) we denote by 0 

and 1. If a covers b (i.e. a>b, but a>x>b for no x), 

then we write a>b. 

If a(x) is a property defined on the set H, then we 

define {x; a(x)} as the set of all xEH for which a(x) 

is true. Hence in partially ordered sets <a>n = {x: 

xAa<x<xva} is the principal n-ideal generated by a, 

while {x;a<x<b} is the interval [a,b] provided that 

a<b. If b covers a, then the interval [a,b] is a prime 
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interval. The dual principal n-ideal is denoted by 

d 
<a>n

If any two elements a,b of L, satisfying a<b, may be 

connected by a finite maximal chains of the lattice L 

are finite and bounded, then L is called of finite 

length. If all intervals of the lattice L are of finite 

length, then L is of locally finite length. If L has a 

"n' and is of locally finite length, furthermore for 

all aEL, in [n,a] any two maximal chains are of the 

same length, then we say that in L' the Jordan

Dedekind chain condition is satisfied. In this case 

the length of any maximal chain of the interval [n,a] 

will be denoted by L(a), and d(x) is called the 

dimension function. 

Let P and Q be partially ordered sets. The ordinal 

sum of P and Q is defined as the partially ordered 

set, which is the set union of P and Q, and the 

partial ordering remains unaltered in P and Q, while 

x<y holds for all xEP and yEQ; this partially 
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ordered set will be denoted by PEBQ. The set of all 

n-ideals of a lattice L, partially ordered under set

inclusion, form a lattice, which will be denoted by 

In(L). 

LEMMA 3.2 In(L) is a conditionally complete lattice. 

The meet of a set of n-ideals (if it exists) is the set

theoretical meet. The join of the n-ideals Ia (aEA) is 

the set of all x such that 

ia 1 /\ ... /\ian < x< ia 1 v ... Vian (iajEl aj ) for some 

elements ai of A. ■

If A is a general algebra and 0 is a congruence 

relation of A, then the congruence classes of A 

modulo 0 form a general algebra A(0). This is a 

homomorphic image of A. According to [20], we have 

the following two general isomorphism theorems. 
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3.3 THE FIRST GENERAL ISOMORPHISM THEOREM 

Let A be a general algebra and A' a subalgebra of A, 

further let 0 be an equivalence relation of A such 

that every equivalence class of A may be 

represented by an element of A' . Let 0' denote the 

equivalence relation of A' induced by 0. If 0 is a 

congruence relation, then so is 0' and 

A(0)~A'(0'). 

The natural isomorphism makes a congruence class 

of A correspond to the contained congruence class 

of A'. 

3.4 THE SECOND GENERAL ISOMORPHISM THEOREM 

Let A' be a homomorphic image of the general 

algebra A, let 0 be an equivalence relation of A, and 

denote 0' the equivalence relation of A' under which 

the equivalence classes are the homomorphic images 

of those of A modulo 0, and suppose that no two 



Page j 51

different equivalence classes of A modulo 0 have 

the same homomorphic image. Then 0 is a 

congruence relation if and only if 0' is one and in 

this case 

A(0):::A'(0'). 

The natural isomorphism makes an equivalence 

class of A correspond to its homomorphic image. 

3.5 Congruence relations in lattices 

Let 0 be a congruence relation of the lattice L and 

denote by L/0 be homomorphic image of L induced 

by the congruence relation 0 that is the lattice of 

all congruence classes. If L/0 has a [n], then the 

complete inverse image of the [n] is an n-ideal of L, 

called the kernel of the homomorphism L ➔ L/0. 

A simple criterion for a binary relation rJ to be a 

congruence relation is formulated in the following 

Lemma. 
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LEMMA 3.6 (GRATZER and SCHMIDT [21]) Let rJ be a 

binary relation defined on the lattice L. rJ is a 

congruence relation if and only if the following 

conditions hold for all x,y,zEL: 

(a) x=x(r,);

(b) xvy=xAy(r,) if and only if x=y(rJ);

(c) x > y > z, x=y(r,), Y-Z(rJ) imply x=z(r,);

(d) x > y and X-Y(rJ), then xvz=yvz(r,) and

xAz=yAz(rJ). 

The congruence relations of L will be denoted by 

0,<P, ... . The set of all congruence relations of L, 

partially ordered by e < q:, if and only if X-Y(0) 

implies x=y(<P) , will be denoted by C(L). 

LEMMA 3.7 (BIRKHOFF [22] and KRISGNAN [23]) 

C(L) is a complete lattice X-Y(A0a)(aEA) if and only 

if x=y(0a ) for all aEA; x=y(V0a)(aEA) if and only if 

there exists a sequence of elements in L,L 

xVy = zo > z1 > ... > zn = xAy such that 
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Zi=Zi-1(0a i)(i=l,2, ... ... ,n) for suitable a1, ... ... ,a n EA. ■

3.8 The least and greatest elements of the lattice 

C(L) will be denoted by w and L respectively. 

Let H be a subset of L, 0[H] denote the least 

congruence relation under which any pair of 

elements of H is congruent. This we call the 

congruence relation induced by H. If H has just two 

elements, H={a,b}, then 0[H] will be written as 0a b, 

The congruence relation 0a b is called minimal. First 

we describe the following minimal congruence 

relation 0a b, To do this, we have to make some 

preparations. Given two pairs of elements a,b and 

c,d of L, suppose that either c/\ct>a/\b 

And (c/\d)v(avb)=cVd, or cvd < avb and 

(cvd)/\(a/\b) =c/\d. 
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cvd avb 

avb 

c/\d a/\b cvd 

a/\b c/\d 

Fig.1 

Then we say that a,b is weakly projective in one 

step to c,d and write a,b ➔ c,d. The situation is given 

in Fig.1. In other words a,b ➔ c,d if and only if the 

intervals [(avb)Ac/\d,avb],[c/\d,cvd] or 

[aAb,(aAb)vcvd],[c/\d,cvd] are transposes. If there 

exist two finite sequences of elements 

a= xo,x1, ...... ,xn
= C and b= yo, ... ... ,yn

= d in L such that 

(1) ... ... ... ...... ... a,b= xo,yo ➔ X1,y1 ➔ ... ... ... ➔ Xn,Yn= C,d. then 

we say that a,b is weakly projective to c,d, in 

notation: a,b ➔ c,d, or if we are also interested in the 

number n, then we write a,b ➔ c,d. 

If a,b ➔ c,d and c,d ➔ a,b, then a,b and c,d are 

transposes, and we write a,b ➔ c,d . If the sequence 
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(1) may be chosen in such a way that the

neighbouring members are transpose, then a,b and 

c,d are called projective and we write a,b➔ c,d. 

The importance of this notion is shown by the fact 

that a,b ➔ c,d and a=b(0) imply c=d(0) (applying 

this to 0=w, we get that a=b implies c=d, a fact 

which will be used several times). 

Now we are able to describe 0a b: 

According to [ 2 4], we have the following 

describtion: Let a,b,c,d be elements of the lattice L. 

c=d(0a b) holds if and only if there exist YiEL with 

(2) ... ... ... ... ... ... cVd=yo > y1 > ... >yk=c/\d and a,b➔ yi-1,Yi

(i=l,2, ... ... ,k).It is easy to describe 0[H], using 

Lemma 3.7 and above. We have the following trivial 

identity: 

(3) ... ... ... ... 0[H]= V0a b(a,bEH). The symbol 0[H] will

be used mostly in case H is an n-ideal. Then one can 

prove the following important identity. 



Page 156 

(4)... ... ... ... ... 0[VIa ]=V0[I a ] (la El(L)). 

The following definition is more importance in this 

chapter. Let L be a lattice and I an ideal of L. By the 

factor lattice L/1 of the lattice L modulo the ideal I 

is meant the homomorphic image of L induced by 

0(1), I.e. L/I:::L(0[1]). 

Finally, we mention the definition of permutability: 

the congruence relations 0 and ct> are called 

permutable if a=x(0) and x-b(<t>) imply the 

existence of a, y such that a=y(<t>) and y=b(0). 

We recall the definition of standard elements: 

The element s of the lattice L is standard if the 

equality 

(A) ...

x,yEL. 

x/\(svy) =(xAs)v(xJ\y) holds for all 

First of all, let us see some examples for standard 

elements, in the lattice L. p is a standard element. 

At the same time it is clear that p is not neutral. 
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(Furthermore, in the same lattice <r> n is a 

homomorphism kernel but r is not standard.) 

Obviously, any element of a distributive lattice is 

standard. Furthermore, in any lattice the elements n 

and L (if exist) are standard element. The simplest 

from for defining standard elements is the equality 

(A) however; it is not the most important property

of a standard element. Some important

characterizations of standard elements are given in

the following theorem.

We conclude this chapter with the following results. 

Theorem3.9: (The fundamental characterization 

theorem of standard elements) the following 

conditions upon an element s of the lattice L are 

equivalent: 

(a) s is a standard element;

the equality u=(u/\s)v(u/\t) holds 

whenever u < svt (u,tEL); 
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(y) the relation 0 s ,defined by " x=y(0 s ) if

and only if (xAy)Vs1=xVy for some s1�s is a 

congruence relation ; 

(8) for all x,yEL

(i) sv(xAy) = (svx)A(svy)

(ii) sJ\x =sAy and svx = svy imply x=y.

Proof: We have proved the equivalence of the four 

conditions cyclically 

(a) implies (�). Indeed if (a) holds and u < svt, 

then u= uA(svt) Owing to (A) we get 

u=(uAs)v(uAt), which was to be proved. 

(�) implies (y). Using condition (�) and Lemma 3.6 

we will prove that 0 s is a congruence relation. 

(a) X-X(0 s). Indeed for any xEL, the equality

(xAx)v(xAs)=x trivially holds, so if we put s1 =xAs, 

we get the assertion. 
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xvy (0 s ), This is trivial from the 

definition of 0 s. 

(c) x > y > z, x=y (0 s ) and y =z(0 s ), By hypothesis

x=yVs1 and y=zVsz for suitable elements s1,s2 < s 

Consequently x=yVs1 =(zvs2)Vs1 = zv(s1Vs2) for 

s1Vs2 < s, that means x=z(0 s ). 

(d) In case x > y and x=y (0 s ) holds, xvz=yvz (0 s )

and xAz=yAz (0 s ) . In fact, by assumption x=yVs1 

(s1 < s), and hence we get xvz =(yvz)Vs1 , that is 

xvz_yvz (0 s ) . To prove the second assertion we 

start from the relations x=yVs1 and x/\z < yvs1 < yvs. 

Applying condition (�) to u=x/\z, t=y and using 

x/\y=y, we get 

x/\z=(xAzAs)v(xAzAy)=(yAz)Vs2, where s2 

=x/\z/\s < s, which means xAz=yAz (0 s ) 

(y) implies (8). First we prove that (y) implies (i).

According to the definition of 0 s , the congruences 

x=svx (0 s ) and y-svy (0 s ) hold for arbitrary x,yEL. 

We get xAy = (svx)A(svy) (0 s ).By monotonicity. 
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xAy < (svx)A(svy), hence again by the definition of 

0 s . it follows that (svx)A(sVy) = (xAy)Vs1 with 

suitable s1 < s. Joining with s and keeping the 

inequalities s1 < s and s < (svx)A(svy) in view, we 

d e r i v e s v ( x A y) = ( s v x) A ( s v y) , w h i c h i s n o th i n g e 1 s e 

than (i). 

Secondly, we prove that (y) implies (ii). Let 

the elements x and y be chosen as in (ii). We know 

that svy=y (0 s ), so meeting with x and using 

xvs = yvs we get x=(xvs)A = (yvs)Ax = y/\x (0 s ), 

consequently, using (y), (xAy)Vs1 = x with suitable 

From the last equality accordingly 

s1 <s/\x = s/\y<y (in the meantime we have used the 

sup-position s/\x=s/\y of (ii)), thus x=(xAy)Vs1 < 

(xAy)vy =y. We may conclude similarly that y < x, 

and thus x=y, which was to be proved. 

(cS) implies (a). Let x and y be arbitrary elements of 

L and define a=x/\(svy) and b=(x/\s)v(xAy). By (ii), 

it suffices to prove that s/\a = s/\b and sva = svb. 
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To prove the equality we start from sAa: 

sAa = sA[xA(svy)] = xA[sA(svy)] = xAs. 

It follows from the monotonicity that xAs <b 

(xAs)v(xAy) < [xA(svy)]v[xA(svy)] = a. Meeting 

with s, we get sAx < sAb < sAa. But we have already 

proved that sAx = sAa, and so sAa=sAb. To prove 

sVa=sVb we start from sva and use (i) several 

times: 

sva=sv[xA(svy)] = (svx)A[sv(svy)] = 

(svx)A(svy) = sv(xAy) = sv(xAs)v(xAy)=sVb, 

and so Theorem 3.9 is completely proved.■

We have the following lemma: 

LEMMA 3.10 An element s of L is standard if and 

only if the following two conditions are satisfied: 

(i*) the correspondence x ➔ xvs is an 

endomorphism of L ; 

(ii*) if x > y, svx = svy and sAx sAy, then x=y. 
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It is easy to see that (i) is equivalent to (i*). 

Indeed, for any fixed s, the correspondence x ➔ xvs 

is a j oi n-endo morphism. That it is meet-

endomorphism as well is guaranted just by (i). In 

the proof of Theorem 3.9, at the step "(8) implies 

(a) " we have used (ii) only for x=a and y=b, and in

this case y < x holds. Consequently, in the proof we 

have only used (ii*), and so one can replace (ii) by 

(ii*). From condition (y) of Theorem 3.9 we derive 

easily the following lemma: 

LEMMA 3.11 Let s be a standard element of the 

lattice L. Then <s>n is a homomorphism kernel, 

namely 0[<s>n] = 0s. Conversely, if x=y 0[<s>n] 

hold when and only when (x/\y)Vs1 = xvy with a 

suitable s1 < s, then s is a standard element. 

Proof: The congruence relation 0s obviously 

satisfies 0 ➔ 0[<s>n]. Consequently <s>n is in the 

kernel of the homomorphism induced by 0s, We have 
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to prove that <s> n is just the kernel. Otherwise 

there exists an x>s with X-S (0s). By definition, it 

follows x=sVs1 (s1 < s) which is obviously a 

contradiction. Conversely, if 0[<s>n]= 0s, then 0s 

is a congruence relation, since 0[<s>n] is one and 

then from condition (y) of Theorem 3.9 it follows 

that s is a standard element. 

We have formulated Lemma 3.11 separately 

despite the fact that it is an almost trivial variant of 

condition (y) of Theorem 3.9 because it points out 

that property of the standard elements which we 

think to be the most important one. It may be 

refor mulated as follows: if (s] is a principal ideal of 

L, then x=y 0[<s>n] if and only if there exist a 

sequence of elements xvy = zo > z1 > z2 > ... > 
... =Zm 

=xAy of L, an s1 < s, and a sequence of integers n1, 

nz, ...... nm such that s1, s � Zi-1, Zi (i=l,2,3 ... ... ,m). 

Now the definition of standardness is as follows: 
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s is standard if and only if ni=l may be chosen for 

all i. It follows then we may suppose m=l as well. ■
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CHAPTER - 4 

Standard n-ideals 

Introduction: Standard elements and ideals in a 

lattice were introduced by Gratzer and Schmidt 

[11]. Some additional work has done by Janowitz 

[13] while Fried and Schmidt [07] have extended the

idea of standard ideals to convex sublatttices. 

According to Gratzer and Schmidt [11], if a is an 

element of a lattice L, then 

(i) a is called distributive if a v ( x /\ y)

= (a v x) /\ (a v y), for all x, y E L. 

(ii) a is called standard if x /\ (a V y)

= (x /\ a) v (x /\ y) for all x, y E L. 

(iii) a is called neutral if for all x, y E L,

x /\(av y)= (x /\ a) v (x /\ y), 

and (b) a /\ (x V y) 

i.e. a is standard

(a/\ x) v (a/\ y). 
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Gr�itzer [10] has shown that an element n in a 

lattice L is neutral if and only if 

(n Ax) V (n A y) V (x A y) 

= (n V x) A (n Vy) A (x Vy), 

for all x, y E L. 

An ideal S of lattice L is called standard if it is a 

standard element of the lattice of ideals I(L). 

Fried and Schmidt [7] have extended the idea of 

standard ideals to convex sublattices. Moreover, 

Nieminen(convex) sublattices. On the other hand, in 

a more recent paper Dixit and paliwal [5], [6] have 

established some results on standard, neutral and 

distributive (convex) sublattices. But their 

technique is quite different from those of the above 

authors. We denote the set of all convex sublattices 

of L by Csub (L). According to [7] and [9], we define 
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two operations A and v (these notations have been 

used by Nieminen in [9] on Csub (L)) by 

A AB < { a A b : a E A, b E B} > 

And Av B < { a v b : a E A, b E B} > 

For all A, B E Csub(L) where <H> denotes the 

convex sublattice generated by a subset H of L. 

If A and B are both ideals then A v B and A A B are 

exactly the join and meet of A and B in the ideal 

Lattice. 

However, in general case neither A c A v B and A A 

B c A are valid. For example if A = {a} and B = {b}, 

then both inequalities imply A =B. 

According to [11], a convex sublattics of a lattice L 

is called a standard convex sublattice (or simply a 

"standard sublattice") if 

I A <S, K> = <IA S, I AK> 
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And I v <S, K> = <I V S, I V K> hold for any 

pair {I, K} of Csub (L) whenever either S n K nor 

I n <S, K> are empty, where n denotes the set 

theoretical intersection. 

We call an n-ideal of a lattice L, a standard n-ideal 

if it is a standard element of the lattice of n-ideals 

In(L). 

In this chapter, we have given a characterization of 

standard n-ideals using the concept of standard 

sublattice when n is a neutral element. For a neutral 

element n of a lattice L, we prove the following: 

(i) an n-ideal is standard if and only if it is a

standard sublattice. 

(ii) the intersection of a standard n-ideal and

n-ideal I of a lattice L is a standard n-ideal in I.

(iii) the principal n-ideal <a>n of a lattice L is

a standard n-ideal if and only if a v n is standard 

and a A. n is dual standard. 



Page I 69 

(iv) For an arbitrary n-ideal I and a standard n-

ideal S of a lattice L ,  if I v S and I /\ S are principal 

n-ideals , then I itself is a principal n-ideal.

"Standard n-ideals" 

According to Fried and Schmidt [7, Th.-1], we have a 

fundamental characterization theorem for standard 

convex sublattices: 

4.1 Theorem: The following conditions are 

equivalent for each convex sublattice Sof a lattice 

L: 

(a) Sis a standard sublattice,

(�) Let K be any convex sublattice of L such that 

Kn S=F<P. Then to each x E <S, K>, there exist 

S1, S2ES, a1, a2 E K such that 

x = (x I\ s1) v(x I\ a1) = (x A s2) v(x I\ a2) 
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(�') For any convex sublattice K of Land for each 

s2, s1'E S, there are elements s1, s2'E S, a1, a2 E K 

such that 

x = (x /\ s1) V(x /\ (a1V s2)) 

(x /\s2') /\ (x /\ (a2 /\s1')), 

(y) The relation 0(S] on L defined by

x= y (0 (SJ) if and only if 

X /\ y = ((x /\ y )  Vt) /\(x V y) 

and x v  y = ((x v y) As) v(x /\ y) with suitable t, s E 

S is a congruence relation. 

Following result which is due to (7] shows that the 

concept of standard sublattices and standard ideals 

coincides in case of ideals. 

4.2 Proposition: (7, Pro.2] An ideal S of a  lattice Lis 

Standard if and only if it is a standard sublattice. 

Recall that an n-ideal I of a lattice L is called a 
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standard n-ideal if it is a standard element of In(L), 

the lattice of n-ideals. 

The following theorem gives an extension of 

proposition 4.2 above. 

4.3 Theorem: For a neutral element n of a lattice L, 

an n-ideal is standard if and only if it is a standard 

sublattice. 

Proof: First assume that an n-ideal S of a lattice L is 

a standard sublattice. That is, for all convex 

sublattice I & K of L with 

Sn K-:;:. <I> and In <S, K> -:t-<1>, 

We have I A <S, K> = <IA S, I AK> and 

I\/ <S, K> = <I\/ S, I\/ K>. 

We are to show that S is a standard n-ideal in In(L). 

That is for all n-ideal I, KE In(L), 

I n (S V K) = (In S) V (In K). 

Clearly, (In S) V (In K) CI n (S V K). 
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So let x E I n (S v K). Then x E I and x ES v K so by 

theorem 4.1 we have 

x = (x A s1) V (x A a1) =(xv s2) A (x V a2), 

for some s1, s2 E S anda1, a2 E K. 

Now x = (x A s1) V (x A a1) 

< [(x As1) v (x A n) v (s1 A n] v 

[(x Aa1) V (x A n) V (a1An)] 

= m(x, n, s1) V m(x, n, a1), 

that is x < m(x, n,s1) v m(x, n,a1) 

again x = (x v s2) A (x v a2) 

> [(x Vs2) A (xv n) A (s2V n)] A

[(xv a2) A (xv n) A (a2Vn)] 

m(x, n, s2) A m(x, n, a2) as n is neutral. 
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Hence m(x, n, s2) /\ m (x, n, a2) 

< x < m(x, n, s1) V m(x, n, a1) 

Which implies X E  (In S) V (In K). 

Thus, I n (S V K) (I n S) V (I n K) and so S is a 

standard n-ideal. 

Conversely, Suppose that n-ideal S of a Lattice L is 

standard. Consider any convex sublattice K of L such 

that SnK:;t:<t>. Since S is an n-ideal, clearly 

<S, K> = <S, <K> n >. Let x E <x> n n (S, <K>n) 

= (<x> n n S) v (<x> n n <K>n), as S is a standard 

n-ideal. This implies

<x> n = (<x> n n S) V (<x>n n <K>n ) ... ... ... (1) 

Since x V n is the largest element of <x> n , 

So we have xv n = m(x v n, n, s1) v m(x v n, n, t) 

for some s ES. t E <K>n. 

((x V n) /\s1) V ((xv n) /\ t) V n 
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= (x /\s1) v ((x A t) V n), as n is neutral. 

Now, t E <K>n implies t < t1 V n for some t1 EK. 

Then x V n < (x /\s1) v (x /\ (t1V n)) v n 

(x A s1) v (x A t1) v n 

< (x A (s1V n)) V (x A t1) v n < xv n 

which implies that 

Then 

xv n = (x A (s1V n)) v(x A t1) v n 

X = X I\  (x V n) 

x A [(x /\ (s1V n)) v (x /\t1) v n] 

[x A {(x A (s1V n)) v (x /\t1)}] v (x A n), 

as n is neutral. 

=(xA(s1Vn))v(x/\t1)V(xAn) 

=(xA(s1Vn))v(x/\t1), 

where s1VnES, t1 EK. 

Since x/\n is the smallest element of <x>n, using the 

relation (1) a dual proof of above shows that 
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x=(xv(s2An))A(xvt2) for some s2ES, t2EK. Hence 

from Th.4.1.(�) we obtain that S is a standard 

sublattice. 

Now, we give characterizations for standard n

ideals when n is a neutral element. We prefer to call 

it the "Fundamental characterization Theorem" for 

standard n-ideals. 

4.4 Theorem: If n is a neutral element of a lattice L. 

Then the following conditions are equivalent: 

and 

(a) S is a standard n-ideal;

(b) For any n-ideal K,

SVK = {x:x=(xAs1)v(xAk1) 

=(xAs1' )v(xAk1' )v(xAn) 

x=(xvs2)A(xvk2) 

(xVs2')A(xVk2')A(xvn) 

For some s1 ,sz ,s1 S 2' E S k1 ,k2,k1' ,kz' E K}. 
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(c) The relation 0(S) on L defined by x=y

0(S) if and only if xJ\y=((xJ\y)Vt)J\(xvy) and 

xVy= ( (xvy) As) v (x/\y), 

congruence relation. 

for some t,sES, is a

Proof: (a) ➔ (b). Suppose S is a standard n-ideal

and K be any n-ideal. Let xESVK. Since K is also a 

convex sublattice of L, we have from the proof of 

theorem 4.1.3, x=(x/\(s1Vn))v(x/\t1) 

=(xv(s2/\n))A(xVt2) for some s1,S2ES; t1,t2EK. Since 

n is neutral, from above we also have 

x=(xJ\s1)V(xJ\t1)V(xJ\n) 

= (xv s2) /\ (xVt2) /\ (xvn). 

Thus (b) holds. (b) ➔ (c). Let (b) holds. Let 0(S) be 

defined as x=y 0(S) if and only if 

xJ\y=((xJ\y)vt)J\(xvy) and xVy=((xvy)J\s)v(xJ\y). 

For x > y, 

y=(yvt)J\x and x=(x/\s)vy, for some t,sES, with s >t. 
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Obviously, 0(S) is reflexive and symmetric. 

Moreover x=y 0(S) if and only if xAy=xvy 0(S) Now 

suppose x > y > z with X-Y 0(S) and y=z 0(S). 

Then x=(xAs1)Vy, y=(yVt1)Ax and 

y=(yAs2)Vz, z=(zVt2)Ay for some s1,s2,t1,t2 E S. 

Then x=(xAs1)Vy = (xAs1)V(yAs2)Vz 

< (xAs1)V(xAs2)Vz 

< (xA(s1Vs2))vz < x, 

Which implies x=(xA(s1Vs2))vz. 

Similarly, we can show that z=(zv(t1At2))Ax. 

This shows that x = z 0(S). 

For the substitution property, suppose x > y and x=y 

0(S). Then x=(xAs)vy and y=(yvt)Ax, for some 

s,tES. From these relations it is easy to find s,tES 

with t < s satisfying the relations. Then for every 

ZEL, yAz < xAz 

and yAz < tv(yAz). 
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Therefore y/\z < (tv(yAz))A(x/\z) 

< (tvy)A(x/\z) 

= ((tvy)Ax)/\z 

- yl\z.

This implies y/\z = (tV(y/\z))A(xAz). 

Let K be the n-ideal <tAy/\z,y> n . 

Since s,t/\y/\zESVK, so by the convexity of 

SVK, t/\y/\z < t/\y < t/\x < s/\x < s as t < s. 

This implies that s/\x E SVK 

Hence X = (s/\x)Vy E SVK. 

Also, by the convexity of SVK, t/\y/\z < y/\z < x/\z < x 

implies y/\z, x/\z E SVK. Then by (b) 

we have 

(XI\ Z I\ S 1) V ( X /\ Z /\ ( y V n)) V ( X /\ Z /\ n), 
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as yvn is the largest element of K. 

=(x/\z/\s1)V(y/\z)V(x/\z/\n), as n is neutral. 

= ((x/\z)/\(s1Vn))v(y/\z), 

where s1Vn E S. Therefore x/\z = y/\z 0(S) dually we 

can prove xvz = yvz0(S). Therefore using [15, 

Lemma 8.p-74], 0(S) is a congruence relation. 

Hence (c) holds. 

Finally, we shall show that (c) ➔ (a). 

Let (c) holds. For any n-ideals l,K of L, obviously 

(InS)v(InK) c In(SVK). To prove the reverse 

Inequality, suppose xEln(SvK). 

Then xEI and xESVK. Since XESVK, it is easy to find 

the elements s1, s2 E S, k1, k2 E K  with s1 < n < s2 and 

k1 < n < k2 such that s1/\k1 < x <s2Vk2. 

Now, s1=s2 0(s) implies s2Vk2 = s1Vk2=k2 0(S). 

Since x < s2Vk2, 



we have x=x/\(s2Vk2) 

- x/\k2 0(S). Then by (c)

x =(x/\s)v(xAk2) for some s E S. 

< m(x,n,s)Vm(x,n,k2). 

Also s 1 = s2 0(S) implies s 1 /\k 1

Applying (c) again we have 

x=(xvt)A(xvk 1) for some tES. 

>m ct(x,n,t)/\ m ct(x,n,k 1 ) 

=m(x,n,t) /\ m(x,n,k 1 ), as n is neutral. 

Hence xE(InS)v(InK). 

This implies In(SVK)= (InS)v(InK). 

Therefore (a) holds. 
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4.5 Corollary: Suppose n is a neutral element of a 

lattice L. Then for a standard n-ideal S of L, 0(S) is 
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the smallest congruence relation of L containing S 

as a class. 

Proof: Clearly any two elements of S are related by 

0 (S). 

Now suppose x _ y 0(S) with x > y. 

Then by theorem 4.4, we have y=(yvt)Ax and 

x= (xAs)Vy for some s,tE. Suppose yES. 

Then y < x = (xAs)vy < yvs. Then, by the convexity 

0 f s, 

xES. On the other hand, if xES, then 

x > y=(yvt)Ax > tAx implies yES.

Hence 0(S) contains S as a class. 

Let <I> be a congruence relation containing S as a 

class. We have x - y 0(S) with x > y, 

x=(xAs)Vy and y=(yvt)Ax for some s,tES. 

Now, x = (xAs)vy = (xAn)vy<t> 
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(xvy)A(nvy), as n is neutral. 

= xA(nvy) - xA(yvt)<P = y<P. 

This implies 0(S)c¢. Hence 0(S) is the smallest 

congruence containing S as a class. 

4.6 Corollary: If n is a neutral element and S and T 

are two standard n-ideals of a lattice L, then SnT is 

a standard n-ideal. 

Proof: Clearly SnT is an n-ideal. Suppose 

x = y (0(S) n 0(T)) with x > y. Since x=y 0(S), so 

we have x = (x/\s1)Vy and y = (yVs2)Ax, for some 

s1, s2 E S. Here we can consider s2 < n < s1. 

Now x = y 0(T) implies x/\s1 _ yAs1 0(T), and so 

there exists t1 E T, t1 > n such that 

x/\s1 = ((x/\s1)/\t1)V(y/\s1). 

Then x = (x/\s1)Vy = [((x/\s1)/\t1)V(y/\s1)]vy 

(x/\s1At1)Vy = (xA(s1/\t1))vy. 
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Again x = y 0(T) implies xVs2 = yvs2 0(T). Then we 

can find tz E T with tz < n such that 

yVsz = ((yvs2)Vt2)/\(xvs2). Then 

y = (yVsz)/\ x = [((yVs2)Vt2)/\(xVs2)]/\x 

(yVs2Vt2)/\(xVs2)/\x 

= (yv(s2Vt2))/\x. 

Now, n < s1/\t1 < s1 and n < s1/\t1 < t 1 implies 

s 1/\t 1 E SnT. Also s2 < s2Vt2 < n and tz < s2Vt2 

< n implies s2Vt2 E SnT. Hence x = y 0(SnT). 

Therefore 

0(SnT) = (0(S) n 0(T)). 

Hence by Theorem 4.4 SnT is also a standard n

ideal. 

4.7 Corollary: Let n be a neutral element of a lattice 

L and S be a standard n-ideal. Then x = y 0(S) if 

and only if 

<x>n VS= <y>n VS.



Page 184 

Proof: Let x y 0(S) . Then for x > y, we have 

x = (xAs1)Vy and y = (yVs2)Ax for some s1 , s2 ES. 

This implies xVs1 = yVs1, xAs2 = yAs2 

Now, y < x < xVs1 = yVs1, which implies x E <y> n V 

S. On the other hand, xAs2 = yAs2 < y < x implies

y E <x>n VS 

Hence <x> n VS= <y> n VS. Conversely 

suppose that <x>n VS= <y>n VS. 

As XE <y>n Vs <y> n Vs, so 

By Theorem 4.4, x (xAy1)V(xAs), 

for some y1 e <y>n, s e S. 

(xA(yvn))v(xAs) 

(xAy)v(xvn))v(xAs) 

= yv [xA(nvs), as n is neutral. 

Also, y E <y> n VS= <x> n VS. Then applying Th. 4.4 

again we have y = (yVx1)A(yvs'), 
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For some x E <x>n s ES. 

Then y (yv(xAn))A(yvs') 

(yvx)A(yvn))A(yvs') 

= xA[yv(nAs')], as n is neutral. 

Since nvs, n/\s'E S, so we have 

x = y 0(S). 

We know from [18] that the intersection of a 

standard ideal with an arbitrary ideal 

lattice L is standard in I. 

I of a 

Following lemma is a generalization of this result. 

4.8 Lemma : The intersection of a standard n-ideal 

and an n-ideal I of a lattice L is a standard n-ideal 

in I , where n is a neutral element. 

Proof: Let S be a standard n-ideal of L. We are to 

show that Snl is a standard n-ideal in I. Consider 

an n-ideal K of I, which is also an n-ideal of L. Now, 
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let x E (Snl)VK c SvK. Since S is standard, so we 

have by theorem 4.4, x = (xAs)v(xAk), for some s E 

S, k E K. By the monotionity, we can choose both s > 

n, k > n. 

put s' (xvn)As. Then s' < s 

and n = (xvn)An < (xvn)As =s' <xvn. 

Since xvn E I, so by convexity of S and I, 

s'E Snl. Also x/\s'= x/\s. Thus 

x = (x/\s')V(xAk), for some s'E Snl, kEK. 

Also, by duality we get x = (xvs")A(xvk') 

for some s" E Sn I, k' E K. 

Hence by theorem 4.4, 

We have Sn I is standard in I. ■

4.9 Lemma: Let n be a neutral element of a lattice L 

and ct> is a homomorphism of L onto a lattice L' such 

<t>(n)=n', n' EL'. Then for any standard n-ideal I for 

L, <t>(I) is a standard n'-ideal of L'. 
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Proof: Clearly ct>(I) is a sublattice of L'. Let p < t < q, 

where p, q E ct>(I), t E L'. Then p = ct>(x) and 

q = ct>(y) for some x,y El. Since ct> is onto, t = ct>(r) 

Then ct>(r) = ct>(r) A ct>(y) 

And ct>(r) = ct>(r) v ct>(x) 

ct> (x) v ct> (r Ay) 

= ct>(x v(r A y)) 

for some r E L. 

ct>(rAy) 

Now, x < xv(rAy) < xvy and so by convexity we have 

X V(r A y) EI. Thus t = ct>(x v(r A y)) E <P(I). 

Hence <P(I) is a convex sublattice of L'. 

Moreover ct>(n)=n' implies ct>(I) is an n'-ideal of L'. 

For standardness, we shall prove (b) of theorem 4.4 

for ct>(I). Let k' be any n'-ideal of L'. 

Then k' = ct>(k) for some n-ideal K of L. 

Let y E ct>(I) V ct>(K) c ct>(I V K). 
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Then y = <l>(x) for some x E IVK. Since I is a standard 

n-ideal of L, using (b) of Theorem 4.4

we have x = (xAii)V(x/\k1)V(x/\n), 

for some ii Et k1 E K 

- (xVi2)A(xVk2)A(xvn),

For some i2 E I, k2 E K. 

Then y = <l>(x) 

- <l>(xAii) V <l>(x/\k1) V <l>(xAn)

- [<l>(x) /\ <l>(ii)] v (<l>(x) /\ <l>(k1)] v [<l>(x) /\ <l>(n)]

= [y /\ <l>(ii)] V [y /\ <l>(k1)] V [y /\ n']. 

Also, y = <l>(x) 

= [y V <l>(iz)] /\ [y V <l>(k2)] /\ [y V n']. 

Then using (b) of theorem 4.4 again, <l>(I) is a 

standard n'-ideal of L'. 

From Gratzer and Schmidt (18], we know that ideal 

(s] is standard if and only if s is standard in L. One 
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may ask the question heather this is true for 

principal n-ideal when n is a neutral element. In 

fact this not even true when L is a complemented 

lattice. Figure 4.1 and Figure 4.2 Exhibits the 

complemented lattice L, where n is neutral. There 

<a> n is standard in I n (L) but a is not standard in L. 

Moreover b is standard in L but <b> n is not 

standard. 

4.10 Lemma: For a neutral element n, the principal 

n-ideal <a> n of a lattice L is a standard n-ideal if

and only if avn is standard and a/\n is dual 

standard. 

Proof: First suppose that avn is standard and a/\n is 

dual standard. We are to show that <a>n is a 

standard n-ideal. Let us define a relation 

0(<a> n) on L by X- y 0(<a> n) if and only if 

x/\y = ( (x/\y) Vt) I\ (xvy) 
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and xvy =((xvy)As)v(xAy) for some t, s E

<a>n. For x > y, we have

x=(xAs)vy and y=(yvt)Ax. Clearly 0(<a>n) 

is reflexive and symmetric. 

Also x = y0(<a>n) if and only if xAy = xvy 

0(<a>n). Now, let x > y > z and x=y 0(<a>n) and 

y=z 0(<a>n). Then 

X=(xAs)vy, y = (yvt)Ax and y = (yAp)Vz, 

z - (zvq)Ay, for some s, t, p, q E<a>n. 

Now x - (xAs)Vy 

=(xAs) V (yAp) V z 

< (xAs) V (xAp) V z 

< [xA(sVp)] V z <x, 

which implies x = (xA(svp))vz. 

Also, z = (zvq)Ay 

= (zVq)/\(yVt)/\x 



> (zvq)A(zvt)J\x

> (zv(q/\t))Ax > z,

which implies z = (zv(q/\t))J\x. 

Hence x -z 0(<a> n). 

To prove the substitution property, 

1 et x = y 0 (<-a> n ), x > y and r EL. Then x 

and y = (yvt)J\x for some s, t E <a> n . 
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(x/\s)vy 

Since s, t E <a>n, a/\n < s, t < avn. Set s =aVn, 

t = a/\n. 

Then we have 

x = (x/\s)Vy = yv[xA(avn)] 

= x/\(yvavn), as avn is standard. 

Therefore, x/\r = x/\r/\(yvavn) 

- (xJ\rJ\y)v[(xAr)A(avn)]

[(x/\r)J\(avn)]v(y/\r). 



On the other hand, y = (yVt)/\x 

and so 

= (yv(a/\n))Ax 

y/\r = [(yv(aAn))Ax]/\r 

= (yv(a/\n))A(x/\r) 

> [(yAr)v(aAn)]A(xAr)

> y/\r.

Thus, y/\r = [(yAr)v(aAn)]A(xAr). 

Therefore, x/\r = yAr 0(<a> n). 

Again, y = (yVt)Ax = xA(yv(a/\n)) 
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= yv(xA(aAn)), as aAn is dual standard. 

Therefore, yvr = yvrv(xA(aAn)) 

- (yvrvx)A((yvr)v(aAn)),

= (xvr)A[(yvr)v(a/\n)]. 

On the other hand x = (xAs)vy 

= (xA(avn))vy 
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and so, xvr = (xA(avn))vyvr 

< [(xvr)A(avn)]v(yvr) 

< xvr. 

Thus xvr = [(xvr)A(avn)]v(yvr) 

Therefore xvr = yvr 0(<a> n). Hence 0(<a> n ) is a 

congruence relation. Thus by theorem 4.4, <a> n is 

a standard n-ideal. 

Conversely, suppose that <a> n is a standard n

ideal. We shall show that avn is standard and aAn is 

dual standard. Since <a> n is standard so for any 

principal n-ideals <x> n , <y> n we have <x> n n 

(<a>n V <y> n )=( <x> n n <a> n ) V (<X> n n <y> n ).

Then by some routine calculations , we get 

[(xAn)v{(aAn)A(yAn)} ,(xvn)A{(avn)v(yvn)}] 

= [ { (x An) v ( aA n)} A { (xA n) v (y An)}, { (xv n) A ( a V n)} v { (x 

vn)A(yvn)}] ... ... (1) 

This implies, (xvn)A{(avn)v(yvn)} 



= { (XV n) /\ ( a V n)} V { (XV n) /\ (y V n)}. 

Since n is neutral, so 

L.H.S = (xvn)/\{(avn)v(yvn)}

- (xvn)/\(avnvy)

- [x/\(avnvy)]vn,

and 

R.H.S = [(xvn)/\(avn)]/\[(xvn)A(yvn)] 

= nv(x/\(avn))v(x/\y)vn, 

= (x/\y)v(x/\(avn))vn. 

Let A = x/\(yv(avn)) 

and B = (x/\y)v(x/\(avn)). 

Now, A/\n =x/\(yv(avn))/\n = x/\n 

and B/\n =[ (x/\y)v(x/\(avn))]/\n = x/\n. 

So by neutrality of n, A=B. That is, 

x/\(yv(avn)) = (x/\y)v(x/\(avn)). 
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This implies avn is standard. 

Also, from (1) we get 

(xAn)v{(aAn)A(yAn)} 

{(xAn)v(aAn)}A{(xAn)v(yAn)}. 

Then, from (1) we get 

(xAn)v{(aAn)A(yAn)} = 

{(xAn)V(aAn)}A{(xAn)v(yAn)}. 
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Then applying the similar technique we can show 

that 

xv((aAn)Ay) - (xv(aAn))A(xvy). 

This implies aAn is dual standard. 

In a distributive lattice, it is well known that if the 

infimum and supremum of two ideals are principal, 

the infimum and supremum of two ideals are 

principal, then both of them are principal. In [18, 

lemma 8.], Gri:itzer and Schmidt have generalized 
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that result for standard ideals. They showed that in 

an arbitrary lattice L, if I is an arbitrary ideal and S 

is standard ideal of L, and if IVS and IAS are 

principal, then I itself is a principal ideal. The 

following theorem is a generalization of their 

result. To prove this we need the following Lemma: 

4.11 Lemma: Let n be a neutral element of a lattice 

L. Then any finitely generated n-ideal which is

contained in a principal n-ideal is principal. 

Proof: Let [b,c] be a finitely generated n-ideal such 

that b < n < c. Let <a>n be a principal n-ideals which 

contains [b,c].Then Suppose 

t=(avb)Ac. Since n is neutral, we have 

nAt = nA[(avb)Ac] = nA(avb) 

=(nAa)V(nAb) = nAb = b, 

and nvt nv[(avb)Ac] 

(nvavb)A(nvc) 
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= (nva)Ac c. 

Hence [b,c] = [nAt, nvt] = <t> 0 • 

Therefore [b,c] is a principal n-ideal. 

4.12 Theorem: Let I be an arbitrary n-ideal and S be 

a standard n-ideal of a lattice L, where n is neutral. 

If IVS and Ins are principal n-ideals, then I itself is 

a principal n-ideal. 

Proof: Let IVS= <a>n = [aAn, avn ] and InS = <b> n

= [bAn, bvn] . Since S is a standard n-ideal, then by 

theorem 4.4, 

avn = [(avn)As]v((avn)Ax) for some SES, xEI 

svx. 

Again, aAn E SVI So by theorem 4.4, again there exist 

s1ES and x1 EI such that 

Now, consider the n-ideal 

Obviously,[bAx1An, bvxvn] c I c <a> n . So by above 
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lemma, [bAx1An, bvxvn] is a principal n-ideal say 

<t> n for some tEL. 

Then <a> n IVS ::::, S V [bAx1/\n, bvxvn] 

= [a/\n, avn] = <a> n . 

This implies SvI = S v [bAx1An, bvxvn] 

= SV<t> n ... ... ... (A) 

Further, <b> n Snl::::, Sn[bAx1An, bvxvn] 

::::, Sn[bAn, bvn] = <b> n , as 

bAx1An < bAn < bvn < bvxvn. This implies 

Snl = Sn[bAx1An, bvxvn] = Sn <t> n ... . . . .  (B) 

Since S is standard so we have from (A) & (B), 

I= <t> n . Therefore I is a principal n-ideal. 

In this section we shall deduce some important 

properties of standard elements and n-ideals from 
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the fundamental characterization theorem. If S is a 

standard n-ideal, then we call the congruence 

relation 0(S), generated by S, a standard n

congruence relation. If S= <s> n , then 0(S) 

0(<s> n) and so 0(<s>n) is a standard n-congruence 

relation which we call principal standard n

congruence . Firstly, we prove some results on the 

connection between standard n-ideals and standard 

n-congruence relations.

4.13 Theorem: Let n be neutral element of a lattice 

L. Let S and T be two standard n-ideals of L. Then

(i) 0(SnT) = 0(S) n 0(T)

(ii) 0(SVT) = 0(S) V 0(T).

Proof: (i) This has already been proved in

corollary 4.6, 

(ii) Clearly, 0(S) V 0(T) c 0(SVT). To

prove the reverse inequality, 

let x=y 0(SVT) with x > y. 



Then y = (yvp)/\x and x = (x/\q)Vy, 

for some p , q E SVT. 

Then by theorem 4.4, 

P = (p/\s 1)V(p/\t1) and p = (pVs 2)/\(pVt 2), 

q = (q/\s3)V(q/\h) and q = (qVs 4)/\(qVt4) 
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for some s1, s2 , S3 , S4 E S and t 1 , t 2 , t 3 , t4 E T. 

Now, P = (p/\s1)V(p/\t 1 ) 

_ (p/\n)V(p/\t1) 0(S) 

(p/\n)v(p/\n) 0(T) 

= p/\n. 

Thus, p = p/\n (0(S) V 0(T)) 

Again, p = (pVs 2 )/\(pVt2) 

- (pVn)/\(pVt2) 0(S)

_ (pvn)/\(pvn) 0(T) 

= pVn. 

Thus, p _ pvn (0(S) v 0(T)). This implies 



pAn = pVn (0(S) V 0(T)) 

and so p = n (0(S) V 0(T)). 

Similarly, we have q = n (0(S) v 0(T)). 

Now, y = (yvp)Ax 

- (yvn)Ax (0(S) V 0(T))

= (yAx)V(nAx) , as n is neutral. 

= yv(xAn) 

= yv(xAq) (0(S) V 0(T)) 

= X. 

This implies x = y (0(S) v 0(T)). 

Therefore, 0(SvT) = (0(S) V 0(T)), 

which proves (ii). 
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4.14 Lemma: Let s be a standard element of alattice 

L and 'a' be an arbitrary element of L. Then m(a,n,s) 

is standard in <a>n, where n is neutral in L. 



Proof: Let p,q E <a>n. Then a/\n < p,q < avn. 

Also p = pA(avn) = (pAa)v (pAn), and 
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q = qA(avn) = (qAa)V(qAn), as n is neurtal. 

Let r = m(a,n,s). 

Now, p/\(qVr) = 

p /\ [ { ( q /\a) V ( q /\ n)} V { (a/\ n) V (a/\ s) V ( n /\ s)}] 

=pA[{(q/\a)V(qAn)}v{(a/\s)V(n/\s)}], as q/\a > a/\n. 

- pA[{qA(avn)}V{s/\(avn)}]

- pA(avn)A(qVs),

as s is standard. 

- pA(qvs), as p < avn,

- (pAq)V(p/\s),

as s is standard. 

- (pAq)v(pAs)v(a/\n) ...... (A) 

Also, p/\r = pl\ m (a,n,s) 

= pA[(a/\n)v(a/\s)v(n/\s)] 



Page 1103 

- [p/\{(a/\n)V(a/\s)}]V(p/\n/\s),

as n/\s is standard. 

- [p/\{a/\(nvs)}]v (p/\n/\s),

as s is standard. 

- (p/\a/\n)V(p/\a/\s)V(p/\n/\s)

- (p/\a/\n)v((p/\s)/\(avn)],

as n is neutral. 

= (a/\n)V(p/\s). 

Hence from (A), p/\(qvr) = (p/\q)v(p/\r) and 

Sor = m(a,n,s) is standard in <a>n. ■
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