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ABSTRACT

In this thesis, we investigate the oscillations of third
ordéf nonlinear systems by the asymptotic method. The asymptotic
method of Krylov—Bogoliubov—Miﬁropolskii (KBM) is a popular
technique for obtaining analytic solution of a second order

nonlinear oscillatory system.

First a third order nonlinear differential system modeling
nonoscillatory process and characterized by critical damping is
considered‘and a new perturbation technique 1is developed, based
on the work of Krylov-Bogoliubov-Mitropolskii, to find the
solution of the system. Then a method is presented unifying both
third order damped and overdamped systems. This method 1is a
generalization of Bogoliubov’'s asymptotic method and covers all
the cases when the roots of the corresponding linear equation are
real, real and complex, and real and purely imaginary. Later a
third order forced nonlinear differential system modeling
oscillétory process 1is considered and a new perturbation
technique is developed to find the solution of the system. The

methods are illustrated by several examples.
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Introduction

Most physical and many biological laws and relations appear
mathematically in the form of differential equations, ordinary or
partial, linear or nonlinear, auntonomous or nonautonomous. It may
be noted that, the mathematical techniques available for the
treatment of linear equations are well developed. In contrast,
techniques for the analyses of the nonlinear systems are 1less
well known and difficult to apply. Exact solutions, that are
known, are relatively few, and a large part of the progress in
the knowledge of nonlinear systems comes from approximate and
graphical solutions. Although most of the differential equations
involving physical problems are nonlinear, wWe can impose some
restrictions and linearize the system and then solve them. In the
case of small amplitude of oscillations many useful systems are

linear, but they become nonlinear when amplitude is increased.

In this thesis, we shall discuss problems on oscillations
that can be described by a dynamical systems of third order
nonlinear ordinary differential equations. Dynamical systems
usually contain a certain number of parameters. Our works will
involve only one small positive parameter representing

perturbation in the dynamical system.



The purpose of this thesis 1is to study the effect of small
perturbation on a third order nonlinear oscillatory system by the
asymptotic method of Krylov-Bogoliubov-Mitripolskii, a widely
used technique for obtaining analytic solution of nonlinear
differential equation with small nonlinearities. These results
involving third order nonlinear oscillatory systems may be used
in physiecs and in various branches of engineering, especially

mechanical and electrical engineering.



Chapter 1

THE SURVEY AND THE PROPOSAL

In this chapter, we discuss the second and third order
nonlinear oscillatory systems. The important results- of these

works have been summarized in brief.

1.1 The Second Order Nonlinear Systems

In 1926 Van dar Pol [1] discussed a technigue to investigate

the periodic solutions of the nonlinear differential equation

d3x p —y2 dx
dtzﬂo" x=¢(1-x )—dE+ek2.cos).t (1.1)
of the form x=a, (t)cosAt+a,(t)sinit (1.2)

where a,(t) and a,(t) are slowly varying functions of time, such

that
2
%iho(e) and ‘i;i=0(e2), where i = 1, 2.

Later in 1947 Krylov-Bogoliubov [2] developed a technique,

similar to Van der Pol’s technique, obtaining also a periodic



solution of the weakly nonlinear second order differential

equation,

dzx 2 dx
+0 x=ef(x, = .
o oK (X, ) (1.3)
of the form X=acose (1.4)
where | p=m,t+d,
g—§=——°-sin(pf(acoscp,—am ging) (1.58)
dt @, ° ’
and
%ﬁt=— a:)ocosc:pf(acoscp, -aw, s8ing) (1.5b)
To improve the first approximate solution, they also

developed a technique to determine the solution of equation (1.2)

to any approximation.

In 1858 this method has been extended by Popov [3] for
nonlinear damped oscillatory systems and in 1861 it has been
amplified and justified by Bogoliubov and Mitropolskii [4]. It
was also extended to nonstationary vibrations by Mitropolskii [5]

in 1985. They developed an asymptotic expansion of the form



x=acos1|:+zﬁ_1 e7u,(a, §) +0 (eM) (1.6)

where each un 1is a periodic function of ¥ with a period of 2m,

and a and ¢ vary with time according to

da B -
-d—t=)::f_1 e%a,(a) +0O (e¥1) (1.7a)
and
R S MO R G (1.7b)

where the functions un, An and Yn are chosen such that (1.8)

through (1.7b) satisfy the differential equation (1.3).

In 1969, I. S. N. Murty, B. L. Deekshatulu and G. Krisna [B]
developed a method to obtain an approximate solution of a second

order overdamped nonlinear system governed by the differential

equation

d?x, ., dx =

g +k17d'E +ky X=p£(X) (1.8
where p is a small parameter with k;=(A;+4;), ki =A A,

They found an approximate solution of (1.8) in the form,

x{t) =alE) e t+b(t) e Mt+py, (a, b, t) tpiyyla, b, t) +ove (1.9)

They also used another technique to find the solution of

(1.8) in the form,



x(t) =a(t) +b(t) +puy (@) +pv, (b) +p2u, (@) +p2vy (D) +...  (1.3a)

and they concluded that the results of the two forms are close

together when p is small.

In 1871, I. S. N. Murty [7] developed a unified method for
solving second order nonlinear systems. The method is a
generalization of Bogoliubov's asymptotic method and covers all
three cases when the characteristic roots of the corresponding
linear equation are both real negative (unequal), complex
conjugate (with negative real parts), or purely imaginary. He
considered the differential equation

d2x+2k dx

2 1-&-+k11x=p.f(x) (1.18)

He assumed a solution according to the asymptotic method in

the form
x(t) =_§.e*+.§e‘*+pu1(a,¢) +|J,2u2 (a,¢)+... (1.11a)
or

x(€) =%e*-§e"+pu1 (a, ¥) +pluy(a, $) +. .. (1.11b)

where a and § are defined by



93,y (2) H2A; @)+ (1.12a)

and
-%‘E=k2+u51(a) +p2B, (a) +. . . (1.12b)
with 2k,=(A;-A;) and ui, uz,.. are functions of a and §.
If the roots of the characteristic equation of the

corresponding linear equation of (1.18) are real, then ¥ is real

and (1.11a) and (1.11b) become

x=acoshy+puy, (a,¥) +p?u, (2, §) +. .. (1.13a)

and

x=asinhy+puy, (@, ) +piuy(a, §) +. .. (1.13b)

But when the roots are complex conjugate, ¥ is purely
imaginary and then ¥ is replaced by i¢ in (1.12a) and (1.12b);

thus the corresponding equations of (1.13a) and (1.13b) are
x=acos¢+pi11 la, V) +pluy (a, ¥) +. . . (1.148a)
and
x=asing+py, (a,¥) +piy(a, ¥) +... (1.14b)

respectively.

In 1986, Sattar [8] has examined the critical damping of

7



second order nonlinear system

d?x dx
-C-i—t-5+2k1-a—£+k2x=af(x_) (1.15)

on the basis of KBM method, where & is a small positive parameter

and f(x) is a nonlinear funection.

He obtained a solution of (1.15) in the form

x(t,e)=a(l+}) +teula, ¥) +e2... (1.186)

where a and ¥ are function of t, defined by the differential

equations
%%=- _a+tea, (a) +e?+... (1.17a)
and
%%-muBl(a) ve?, ., (1.17b)

1.2 The Third Order Nonlinear Systems

In 1962, Osinski [9] studied damped oscillations modeled by
third order nonlinear ordinary and partial differential equations
under a special assumption; later Lardner and Bojadziev [18] have
investigated a third order partial differential equation removing
this restriction. Mulholand [11] also studied the third order

nonlinear oscillations.



In 1882, Bojadziev [12] studied the damped oscillations

modeled by a 3-dimensional weakly nonlinear autonomous

differential system

&=
T Ax+e £ (x) (1.18)

where & is a small positive parameter x=(x1,x2,x3) is a vector,

f(x)=(f&(x),f§(x),f is a real vector function in a domain G, and
f(B)=B. A is a real 3x3 constant matrix which has one real

nonpositive eigen value -£(E>0) and two complex eigenvalues

-{zi®w with a nonpositive real part -{({20). The strong linear

damping in the system is represented by the real parts of the

eigen values -§ and -(.

He obtained a solution of (1.18), in the form

x(t,e) =pa+b[dei¥+d*e 1¥] +eula, b, ¥) +e?. .. (1.19)

where the unknown vector functions u=(u,,U;,u;) is 2m period in ¥.

The scalar variables a, b and § are functions of t

satisfying the differential equations

—g—z =-Ea+eA(a, b) +e2...

_%%:-(b+ga(a,b)+zz... (1.29)

ﬂﬂ + 2
it oteC(a, b) +e2. ..



In 1993, Sattar [13] has studied third order overdamped
nonlinear systems. He considered the third order autonomous
nonlinear ordinary differential equation

Rk Rtk X+k,x=¢ £(x) (1.21)
where dots denote differentiation with respect to t, and f(x) is
the given nonlinear function. The constants k;, k, and k; are
specified by ky=A,+A,+A;, k,=A A, +A,A;+A,4; and ky=2,A,4, and he
found an asymptotic solution of (1.21) in the form

x(t,e) =a+b(e¥+e¥) +eula, b, ¥) +e?via, b, ¥) + - (1.22)
where u, v are functions of a, b and ¥, while a, b and ¥ are

functions of time t defined by the differential equations

a=-ka+eA(a,b) +e?M(a,b) + -
b=-k.b+eB(a,b) +e?N(a,b) + - (1.23)

¥ =-k,+eC(a,b) +e2D(a,b) +
with kg=3,, kS-%(Az-!-?«,) ’ kG--:-(lz-l,) .
The solutions are obtained as a power series in ¢&; the
series itself is not convergent, but for a fixed number of terms

the approximate solution tends to the exact solution as & tends

to zero.

16



1.3 The proposal

We propose a perturbed system of a third order nonlinear
ordinary differential equation

d3x d?x dx _
e +k, e +k2?£ thyx=¢ £ (x) tE,COBW L (1.24)
where & is a small positive parameter, f(x) is a nonlinear

function and Eo is a constant. If Eo = @, the system is called

sutonomous.

In chapter 2, the critical damping of third order nonlinear
systems are investigated. Chapter 3 contains a unified method for
solving third order nonlinear damped and overdamped systems, and
in chapter 4, forced oscillation of a third order nonlinear

system is investigated.

11 Raphelt =0 o Sectie



Chapter 2

The Third Order Critically Damped Oscillations

2.1 Introduction:

In vibration, frictional and other damping forces act to
decrease the amplitude of the oscillation. An interesting case
occurs when damping is such that any decrease in it produces

oscillations. Such a motion is called eritically damped.

Critical damping for a third-order nonlinear differential
equation occurs when the discriminent of the characteristic
equation of the corresponding 1linear equation vanishes and
therefore, at least two of the characteristic roots are egual.
First, we derive an asymptotic solution of a third-order
nonlinear differential equation where all roots of the
characteristic equation of its corresponding linear equation are
equal and then we consider the case where two of the roots are

equal.

The KBM (Krylov-Bogoliubov-Mitroploskii) method [2,4] is one
of the widely used techniques for obtaining analytic sclutions of
the systems with small nonlinearites. The method which was
developed originally for finding periodic solutions of nonlinear

equation, has been extended by Popov [3] for second order

12



nonlinear damped oscillatory systems, and later by HMurty,
Deekshatulu and Krishna [B] for second order overdamped nonlinear
systems. Murty [7] has also presented a unified KBM method for
solving second order damped and overdamped nonlinear systems.
Bojadziev and Edwards [14], on the basis of the extended KBHM
method, have studied damped and overdamped second order systems
with slowly varying parameters. Sattar [8] has examined a second

order critically damped nonlinear system.

Damped nonlinear oscillations of a third order ordinary
differential equation have been investigated by Bojadziev [12]
and Mulholland [11]. Sattar [13] has studied a third order

overdamped nonlinear systemn.

In this chapter we develop a new asymptotic method to find
an approximate solution of a third order critically damped weakly
nonlinear autonomous ordinary differential equation. Two examples

are solved to illustrate the method.

2.2 The Method for Three Equal Roots of The

Charactrestic Equation of The Corresponding Linear
Equation
Consider a third order nonlinear autonomous ordinary

differential equation

13



d3x dix dx
+ Pt k) —
c *C gt

PTERACYTY +Cyx=ex3 (2.1)

where & is a small parameter which represent perturbation in the

system and f(x) is the given nonlinear function. The constants

c1, cz and ca are such that ¢;=3k, ¢;=3k? and ¢;=k* where -k,

-k and -k are the real negative repeated roots of the
characteristic equation of (2.1) for e=@. The critically damping
force in the system 1is represented by these real negative

repeated eigenvalues. For e£=@, the solution of (2.1) is

x{t) =(a+bt+ct?) e ¥¢ (2.2)

where a, b and ¢ arbitrary constants to be determined Ffrom the

initial conditions [X(0), X(0), x(0)].

When e#0, we propose an asymptotic solution of (2.1) in the

form

x(t,e)=et(1+0+p+0q) +teu(f, ¥, @) +e2v(§, 0, @) +... (2.3)

where u, v,.. are functions of £, n and ¢ while £, n and @

are functions of t defined by the differential equations

14



%‘:':=—k+ee'5A1(E) +e2e~ta, (E) +. ..

Z’;?; 1+eB, (§) +¢2B, (§) +. (2.4)

%‘E=1+3C‘1 (§) +e2C, (B) +. ..

where A1, Az,.., Bi, Bz,.. and Ci, C=2,.. are functions of £E.

Confining attention to the first few m terms in the series
expansion of egquations (2.3) and (2.4), we evaluate the functions
w, v,.., A1, Az,.., Bi, Bz,.. and C1, Cz,.. such that E(t), O(t)
and ¢@(t) appearing in (2.3) and (2.4) satisfy the given
differential equation (2.1) with an accuracy of egm+1l_ Tn order to
determine these functions, we impose an additional condition that

the functions u, v,.. do not contain the fundamental terms

involving ef, ef®, ef¢ and e'd¢, since these are already

included in the first four terms of the series in (2.3).

Differentiating (2.3) three times with respect to t, using
relations (2.4), substituting (2.3) and the values of derivatives

X, %, x in the original egquation (2.1), and comparing the
coefficient of &, we obtain

-1) +6] A+ (k22

-1)2-
[k’(— 1) 61<(Ci

_3k—— B, +C,
ot aE? ) ( 1)

3 at

15



- d?c d
+[k2(— 1)22,-3k(— —1)A1+kz—&-é-2-5]0+[k2(7‘f—1)2A1

dg dg
d2B
- a _ 2 T _
3k(d£ 1)A,+k _—d€2] k? (dﬁ 1)2A,0¢
a3, 9.
+ (- kaz 80 Je +k)3u=f(x) (2.5)

We assume that the right hand side of (2.5) can be expanded

in the Taylor series in powers of ¥ and @ with

£(x)=F(E, 8, 0) =Br.,[g,(E) 07 +h,, () 072+, (§) @T+k,,, (E) 7]
+E:,s’-ols. s (&) 'DSH"PE,H (2.8)

where r is an even integer and s, s’ are integers and go, ha, Jo,

ko, loo; E», he+1, Je, kr+1 and le=(r,s,s>1) are the coefficients
of the fundamental and higher argument terms in ¥ and ¢@.

Substituting (2.6) in (2.5) and equating the coefficient of

®, ¢ and higher argument terms of %, @, we obtain

dz
2 " 2 -3
[k (—£ -1)2- G(dE 1) +61 A, + (k*—— e E) (B, +Cy)
=g, () +7, (&) (2.7)
[k2( d_3)2-3x(L-1)]a +k2d L=h (§) (2.8)
3 d€ t dE?
[k’(-——l)* -3k{— d _3)]1a,+k? d231=k (E) (2.9)
dt dt t dgz  *

16



29 d _4y2 3 0,0 .8 va,Lme r
k (dE 1)24,0¢+( kaz"an"a(p*k) u=27.,[9,.(E)0

+hr+1 (g) o=+ +j,_- (£) ¢ +k,,q (E) 9] ""z:’ ﬂ’-ols, o (E) 05+1¢BI*1 (2.19)

Equations (2.7), (2.8) and (2.9) are three nonhomogeneous
linear partial differential equations with constant coefficients
and particular solutions of these three simultaneous equations
gives the functions Ai, Bi and Ci. Substitution of these values

of A1, Bi and Ci in (2.4) yields the first approximate solution

of (2.1).

Determination of the first order correction term u(f,n.e)

In order to obtain to the second approximation (or first
improved approximation), we now determine the first order
correction term ulf,n,¢). Equation (2.1@) is a third order
nonhomogeneous linear partial differential equation with coqstant

coefficients and we can easily obtain a particular solution of

this equation.

17



Example

Consider the third order differential equation

3
dX 6 d2X 15 dX Loy px?

dt?  dt? dt

For e=3, the roots of the characteristic

(2.11) are -2, -2 and -2, i.e., k=2. From (2.6) and

(2.11)

equation

£(x) =x3=e3% [1+3 (D+@) +3 (D2+3D@+9?) + (B3+902@+9 D@2 +¢?)

+3 (03(‘,_‘,302@24,0")3) +3 (ﬁa(pz.,_ﬁz‘ps) +93¢93) ]
we get  g,ti,=e, h =k,=3e*  and

Trea (g 07+h, 051+ @7k, ¢7] +I5 glugls, 0707

gle1

of

23 [3 (D2+30q+@2) + (03+902¢+90¢2+@?) +3 (D@ +30%9%+0¢?) (2.12)

+3 (03@2+02¢3) +ﬁ3¢3]

Use of (2.12) in (2.7)-(2.18) yields

a¢-4-1)2- 12(— -1) +6] A +et (4—— —e—dz)(31+c*)=e3'~‘ (2.13)

ag dg dg®

18



g _qy2- d _ zdzci= 4

[4(di 1) G(dF. 1)) A, +4e a 3e? (2.14)
d _qy2_¢ (9 _ £ d? 33t

[4(dE 1) G(dE 1)]A +4e o 3e? (2.15)

_ji_ 2 o _Q__ji _Q_ 3,43 2 2 3 2
Mdﬁ 1)2A, 09+ ( 26£+aﬂ+azp+2) u=e3* [3 (02+30¢p+¢?) +(D3+090%¢

+90¢?+9?) +3 (D29 +30292+1¢?) +3 (D3?+12¢?) +2%¢”] (2.18)

Substituting A,=le3%, B,=me?®* and C;=ne® in (2.13), (2.14)
and (2.15) and equating the coefficients of e3% on both sides of
these three equations, we get three linear algebraic -eguations

and solving these equations then obtain 1=% and m=n=£i

32°

Therefore A1=%e3! and Bl=C'1=—§é—e"" (2.17)

Substituting (2.17) in equations (2.4) and integrating, we

obtain

o -

| o

et -8t 2
[1+—1-é—(e 1)e]

5

0=0°+t+—6—4-ezz°(1—e"“’)e {(2.18)

= 5 2f -4t
P=Qott+r€ (1-e %) e

19



where efe=ef(0), 0,=0(0) and ¢, =¢(0).

Hence the first approximate solution of (2.11) is

x(t,e)=et(1+0+p+dq@)

where %, ® and ¢ are given by eguation (2.18).

The particular solution of (2.18) is

o 4434 11373 1311 , a2 124'7 103 5
u(t,0,¢) [ 7 T (D+e) +——— o (D2+9?) + Do+ (b

+302p+98 92 +¢?) +379 (D3p+302¢2+0g3) +% (0%92+0%9%) 5 49y

+03¢3]

Therefore the second approximate solution of (2.11) is

x(t,e)=ef(1+0+p+0g) +eu

where ef, ®, ¢ and u are given by eguations (2.18) and (2.18)
respectively.

2.3 The Method for Two Equal Roots of The -Charactrestic

Egquation of The Corresponding Linear Equation

Again we consider eguation (2.1) and the constants ci, c2 and
ca are chosen in such a way that

20



C;=6+2K, C;=k(20+k) and ¢C,=0oK? (2.20)

where -o, -k and -k are real negative roots of the characteristic
equation of (2.1) for e=B8. In this case damping force in the
system 1is represented by these real negative eigen values where

two of them are equal. For e=@, the solution of (2.1) is

x{t,0) =ae "+ (b+ct)e™* (2.21)
where a, b and c¢ are arbitrary constants to be determined from

the set of initial conditions [Z(0), x(0), x(0)].

When e#B, we propose an asymptotic solution of (2.1) in the

form

x(t,e)=ef+en (1+@)teu(, n, @) +ev(f,n, @) +... (2.22)

where u, v,.. are functions of £, f and ¢ while £, n and @ are

functions of t, defined by the differential equations

%%=—o+ze'5A1(E.ﬂ) +e2eta, (£, n)+...
%‘tl:=-t+ee""Bl(E,n)+zze"'Bz(E.11)+-v- (2.23)

%‘Eﬂnqw.n)ﬂzq(ﬁ,n)h ..

where A1, Az,.., Bi, Bz,.. and Ci, C=z,.. are functions of & and

7.
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Confining attention to the first few m terms in the series
expansion of equations (2.22) and (2.23), we evaluate the
functions u, v,.., A, Az,.., Bi, Bz,.. and Ci, C=z,.. such that
E(t), n(t) and @(t) appearing in (2.22) and (2.23) satisfy the
given differential equation (2.1) with an accuracy of em+1. In
order to determine these functions, we impose an additional
condition that the functions u, v,.. do not contain the
fundamental terms involving ef, e" and e%¢ since these are
already included in the first three terms of the series 1in
(2.22).

Differentiating (2.22) three times with respect to t, using

relations (2.23), substituting (2.22) and the derivatives
X, %, x in the original equation (2.1) and comparing the
coefficient of &, we obtain

(Q-k) 24, + [ (@-0) (Q-k) -3Q+(20+x) ] B, +o" [Q?+ (k-0) Q]c (Q-0) (Q-x)B @

+[( Q+_8¢p)3+c"( Q*—a¢) +c, ( Q+a‘p),+C‘3]U £(x) (2.24)
where Q=oé%+x€i.

We assume that the right hand side of (2.24) can expanded in

the Taylor series in powers of @ with

£(x) =83,5,(E,n) ¢ (2.25)
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where j is an integer and So, Si1i and Sj (722) are the

coefficients of the fundamental and higher argument terms in ¢.

Substituting (2.25) in (2.24) and equating the coefficients

of ¢°, ¢ and the higher argument terms of ¢, we obtain
(Q-x)24, +[(Q-0) (Q-x) -3Q+20+k] B, +e" [Q%+ (k-0) ] C;
=S, (€., n) (2.26)

(Q-0) (Q-x) B, =5, (E,n) (2.27)

d
[(-ﬂ+-§$)3+c1(—n+a—"jp)2+c2 (-m%) +eylu

=252, (E,1) ¢ (2.28)

With help of (2.27), (2.26) can be written as
(Q-x) 24, +e" [Q2+ (k-0) Q] ¢, =5,(§.n) -5, (§,n)

+[3Q-(20+k) ] B, (2.29)

Now equation (2.27) 1is a nonhomogeneous linear partial
differential equation with constant coefficients and its
particular solution gives the function Bi. If we substitute this

value of Ba in the right hand side of (2.29), it reduces to the

. form g(&,n)et+h{(E,n)e".

23



Thus equation (2.29) becomes

(Q-x) 24, +e" [Q%+ (k-0) Q) C;=g (£, n) et+h(§,n) e" (2.30)

Equating the coefficients of e' and e" on both sides of

equation (2.30), we obtain

(Q-x)24,=g(k,n) et (2.31)

and [Q2+ (k-0) Q] C;=h(E,7) (2.32)

FEquations (2.31) and (2.32) both are nonhomogeneous partial
differential equations with constant coefficients and their
particular solutions gives the functions A1 and Ci. Substituting’
these. values of Ai, Bi and Ci in (2.23) and then integrating
(numerically) the first order approximate solution of equation

(2.1) is obtained.

Determination of the first order correction term u(f,n,9)

Equation (2.28) is a third order nonhomogeneous linear
partial differential equation with constant coefficients and its
particular solution gives the first order correction term
u(é,n,¢) and thus the first improved approximation of the

original nonlinear equation (2.1) is determined.
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Example

Consider the third order nonlinear equation

__d3x +4 d2x+52

dt3  dt2 dt

+2x=ex? (2.33)

When e=0,the characteristic roots of equation (2.33) are -2,

-1 and -1; i.e., 0=2 and ¥=1, then we have

F=e3t+3028M+3082n403n43 (24208 2040%) @43 (ef*2N+e) p2+e3M9?,
S,=e3t+3g2tm4308 2040, 8,=3 (e®M+2et2n+g3M) (2.34)

and E;_ZSj (E,n) ‘Pj=3 (e!+z~n+ean) ¢2+e3n¢,3

Therefore equations (2.27) and (2.28) become

—2) (2_+_E’_—1)]3 =3 (e2tM+2ef+2M+g3) (2.35)

L5 5 38 "o
[(2 a+-i—1)3+4|(2—+-i—1)2 5(2_—+_i -1)y+2]u
9k Oon 9 on 9 on
=3 (et*+g?) @p?+eT@? (2.36)

Solving (2.35) we obtain,
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Bl=%ezt*n+ei+zn+%e3'ﬂ (2.37)

Substituting this wvalue of Bi1i and the values of So and Si

from (2.34) in the right hand side of (2.29), we obtain,

9 . 0,2 o 2_ 0 eal (a2t 21
(26€+6‘n)A+e [(zafan’ 263;' an](.’le(e +4@2")
+e"(%ez"-+4e‘"‘) (2.38)

where g=e+4e2n and h== ezEH.'l»e""'I

Therefore equations (2.31) and (2.32) become

2.2 a-l)%1 —e¥+ggtom (2.39)
31,5
and [(2635 a‘i’])z 2-Zig=Fettaen (2.48)

The particular solution of equations (2.39) and (2.40) are

_ 1 4 2 -3 g2kingan,
A:.'?geu"'ge n and G257

Now putting the values of A1, Bi and Ci in equations (2.23),

we obtain
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L osp(Lertsdgz
3t 2+e(259 +9e")
= - 1 3
ﬂdt Lrg (L eXrelnt=em) (2.41)

_qi=1+ i ZE 2n
ac (24e +2e21)

By using a Computer the above system has been integrated

numerically by means of a fourth-order Runge-Kutta procedure with

initial conditions £(0)=E,, n(0)=1, and ¢(0)=¢, for a small

value of e. If E(0)=-.5, {0)=-.1 and @(0)=0 for e=.1, the

approximate solution of this system is

i 3 n 9
3.0 -0 . 500000 -3.100000 @ .000000
7.1 -@.696524 -@.183129 @.115728
@.2 -@.8936108 -@.268446 @.228888
@.3 -1.881179 -@.358362 @.338879
@.4 -1.289156 -@3.448391 0.4438006
7.5 -1.487480 -3.542135 @ .556569
.6 -1.686092 -7.636266 #.662823
@.7 -1.884347 -@.731518 @.767983
#.8 -2 .084093 -@.827879 #.8722386
#.9 -2.283226 -3.924571 B.975736
1.9 -2.482588 -1.022055 1.078614
1.1 -2.682083 -1.120016 1.1808978
1.2 -2.881632 -1.2183864 1.282919
1.3 -3.8481278 -1.317024 1.384512
1.4 -3.280988 -1.415938 1.485818
1.5 -3.48@8750 -1.515053 1.586889
1.8 -3.680555 -1.614335 1.687767
1.7 -3.888395 -1.713752 1.788487
1.8 -4 .080264 -1.813277 1.889@76
1.9 -4.280157 -1.912891 1.989559

Table 1



& x (=ef+en(1+9)) x (e=@)

0.0 1.511368 1.511368
g.1 1.427338 1.427643
@.2 1.347811 1.349037
B.3 1.2721585 1.274816
B.4 1.199993 1.204429
B.5 1.131495 1.137470
@.8 1.865316 1.8673638
@a.7 1.882551 1.612711
3.8 B.942715 @.8954522
@.9 @.885732 ?#.898945
1.0 @.831526 @.845882
1.1 @.780018 8.7385252
1.2 0.731133 @¥.746986
1.3 ?¥.6847886 B.701023
1.4 @.6489895 @.657304
1.5 @.5993%74 @.615771
1.8 @.5686136 @.5763695
1.7 @.523096 @.539025
1.8 @.488165 @.563690
1.8 3.455258 @.470294

Table 2.

Equation (2.38) is a third order linear nonhomogeneous

differential equation with constant coefficients and its

particular solution 1is

- g (11+14@+6¢3) + e’ (24-57(p-18<p2—2q)3)

36 8

u=

Now using Table 1, we may compute u and obviously we shall

get the first improved approximation of the form

x=ef+e" (1+¢) teu.
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Conclusions :

An asymptotic method is developed to find the solution of a
third order critically damped autonomous nonlinear differential
equation. The solution is obtained as a power series in a small
parameter e. The series itself is not convergent, but for a fixed
number of terms, the approximate solution tends +to the exact

solution as & approaches zero.
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Chapter 3

A Unified Krvlov—Bnqoliubuv—Mitrnpolskii Method

for Solving Third Order Nonlinear Systems

3.1 Introduction:

Damped nonlinear oscillations of third order ordinary
differential equations have been investigated by Bojadziev [12]

and Mulholand [11]. Sattar [13] has studied a third order

overdamped nonlinear system.

In this section, a method unifying both +the damped and
overdamped cases is presented. The method is a generalization of
Bogoliubov’'s asymptotic method and covers all three cases when
the roots of the corresponding linear egquation are real, real and
complex, and real and purely imaginary. Thus, the present method
is independent of whether the corresponding linear equation of
the system has three negative real roots, one negative real root

and other two complex roots with negative real parts or one

negative real root and two purely imaginary roots. Suitable

examples are considered to show that by proper substitution for

the roots in the general solution, the results lead to the

various individual cases.
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3.2 The Asymptotic Method

Consider a third order nonlinear ordinary differential

equation

d®x ., d®x ., dx -
'—d?a' +.k1-a-t—a +.k2-d—t- +k3x—e.f(.7C) (3.1)

where & is a small parameter which represents perturbation in the
system and f{(x) 1is the given nonlinear function. The constants
are such that

ki=A+2p, k;=2Ap+p?-0?, k,=A (u?-0?) (3.2)

where —-A, -p+@, —-p—a& are the roots of the characteristiec equation
of (3.1) for e=@. Therefore when =8, the solution of (3.1)

becomes
x(t,O)=Ae"“’+Be““"“‘)=+ce‘“\+")t (3.3)
where A, B and C are arbitrary constants to be determined from

the given initial conditions [%(0), X(0), x(0)] .

When e#d, wWe propose an asymptotic solution of the eguation

(3.1) in the form,

x(&,2) =et+e"coshg+eu(§, n, @) +e*v, n. @) +... (3.4)

where u, v,.. are functions of £, n and ¢ while E, n and ¢ are

functions of t defined by the differential equations,
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-g—i-*lne"Ai (§.,m) +e2, ..

d "
FemkteeT™B, (E,n) +er. .. (3.5)
d
99 —rec, (E.m) ve. .
where Ai, Az,.. Bi, Bz,.. and Ci, C2,.. are functions of £ and 1.

Confining attention to the first few m terms in the series
expansion of (3.4) and (3.5), we evaluate the functions u, v,..
A1, Az,.. Bi, Bz,.. and C1i, Cz,.. such that E(t), n(t) and @(t)
appearing in (3.4) and (3.5) satisfy the given differential
equation (3.1) with an accuracy of em+1. In order to determine

these functions, we impose an additional condition that the
functions u, V,.. do not contain the fundamental terms ef,

evcoshe¢, since these are already included in the first two

terms in the right hand side of eguation (3.4).
Differentiating (3.4) three times with respect to t, using
relations (3.5), substituting (3.4) and the derivatives X, X, x

in the original equation (3.1), and comparing the coefficient of

g, we obtain

[ (Q-p)2-@2] A, +coshe [ (@-2) (Q-p) +2@?] By+eecoshe [-30+2(A-p) 1o

31



+wsinhe [-3Q+2A+u] B, +e"aginhe [Q2- (A-p) Q+202) ¢+ (Qw?a— 2
L4

+k1(Q+m3%)2+kz(Q+w—a%)+k3] u=f(x) (3.6)

where Q=—(Agi+ug%).

We now assume that the right hand side of (3.6) can be

expanded in Tailor series in the from
£{x)=£(£.,n,9)=27.,9,.(§,n) coshe (3.7)

Wwith g.{&,n) =E;,k-1hjkej€+m'

where r, j and k are integers, and g»r and thus hix are the

coefficients of the fundamental and higher argument terms of

coshr¢.

Substituting (3.7) in (3.8) and comparing the constant term,
the coefficients of coshg, sinhg and the coefficients of coshrg

(r>1), we obtain

[(Q-p)2-02]A4,=g,(E.n) (3.8)
[ (Q-A) (Q-p) +202) B toen [-30Q+2 (A-p))Ci=g, (§.M) (3.9)

o [-3Q+2A+p] B te? [Q2- (A-p) @+202] C, =0 (3.19)
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g 3
[ <°+°’a-¢)3+fqm+«>-a-a)2+rg<o+oa_‘;’p) +K,] u
=B7.2 g.{E.n) coshre (3.11)

Equation (3.8) is a second order linear partial differential
equation with constant coefficients and equation (3.9) and (3.10)
are simultaneous partial differential equations. Obviously a

particular solution of (3.8) gives the function Ai. Substituting

- ; -3 k-
B=E} jmCp@®®™M  and G 27, k-1 dye Tt (3.12)

in (3.8) and (3.19) and equating the coefficient of gt

from both sides we get a system of algebraic equations, whose
solution. give the wvalues of ejx and diwk. Thus Bai and Cai are
obtained. Subsﬁituting these values of _A1 ,B1 and Ci1i in equation
(3.5) and integrating (numerically) the first order approximéte

solution of the given equation (3.1) is obtained.

Determination of the first order correction term u(§,n,9)

Equation (3.11) is a third order nonhomogeneous linear

partial differential equation with constant coefficients and its

particular solution gives the first order correction term

u(f,n,9) and thus the first jmproved approximation of the

original nonlinear equation (3.1) is determined.
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Remarks: . i 3
One can Proceed in a similar manner to determine

the second and higher order approximations. However, we shall

restrict ourselves here to the first approximation only.

For equation (3.1), it is also possible to assume a solution

of the form

x{t,e) =eE+e“sinh(p+eu(E,q,q>) +e2v(E,n, @) +... (3.13)

instead of the form (3.4) and determine the solution by a
procedure similar to the above. The choice of the solution is

dependent on the given initial conditions [X(0), x(d), x{0)] .

When the roots of the characteristic equation of the
corresponding 1linear equation of (3.1) are real, ¢ being a real
quantity, the second term on the right hand sides of equations
(3.4) and (3.13) can be expressed in exponential form to give,

respectively

x(t,g)=ef+%eﬂ(e'+e")+zu(E.ﬂ.¢)+82V(5:'l:‘P)+--- (3.14a)

and x{t,e) =e£+-%e"(s’—e") +eu(E,n, o) +e?v(E,n, @) +..(3.14b)

But when the two roots of the corresponding linear equation

are complex, one has to replace @ by i¢ in equations (3.4) and

(3.13). Thus, by using the identities coshg=cosig and

sinhig=ising, the solutions can be written in the forms
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x(t,e)=et+encosp+eu(t,n, @) +e2v(E,n, ) +. .. (3.15a)

and

x(x, t)=et+esing+eu(¥,n, @) +e2v(E,n, @) +. .. (3.15b)

respectively.

3.3 Examples

Case 1. Three real roots.
Consider a third order nonlinear system governed by
d*x d?x ax 3
= 2+g8—=+19 ——=+12x=8¢X 3.186
dt3  dt? dt ( .

When e=@, the characteristic roots of (3.18) are -4, -3 and

Let us take A=4, u=2 and e=1; then we have

F=e3k+ 3 o2t 43 (ezﬁﬂ+%e3ﬂ) cosh<p+% e“‘z“cosb2¢+% e3"cosh3e,

3
go=eal+%et+2n and 9'1=3ezc+"+76'3“-

Therefore equations (3.8), (3.9) and (3.1@) become

35



D28 p)2;
[(agg+255-2)7-1]4,=6% 2 otomn (3.17)

8,2 .9
[z +25-4) (455 +2-2) 421 By ven [-3 (46% +23‘%) +ale,

=3 e2£m+é e3ﬂ
4

(3.18)
_ a 3
-3 (4-5g +2—Bﬁ) +10] B, +e" [ (4-a%+2-§1-)2
242 +2-8)421¢,-0 (3.19)
&k oM '

Equation (3.17) 1is a second order nonhomogeneous linear

partial differential -equation with constant coefficients. A

particular solution of this equation is

=._]_'_ 3£+_§_e£+21\
A 99e 70

Equations (3.18) and (3.18) are gecond order simultaneous
partial differential equations with constant coefficients. Now

putting

Bl__.’nlezlﬂ'l+1nze3'l and Cl=n1925+n2921‘l

in equations (3.18) and (3.18) and then equating the coefficients
of the exponents, we get the algebraic equations

mni+4ni = %

nﬂ:m]_-'-ﬂl:ﬂ

1
+

-3mz +4nz =

4dmz + 3nz2 =
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Solving these equations, we have

m1 é1/14, m2 = 5/24, n1=1/35 and nz = 1/6

and therefore

f&=€%325ﬂ+§%e3n
and 1=§%925+392n
6 -

Putting the values of A1, Bi and Ci in (3.5) , we obtain

ié:—4+g (_1_625.[._3_92!')

dt 95 ° 70
9 oprp( L ogtts S gmy
ac - 2re (et g™ (3.28)

ﬂ=1+ _1_. 2§ é. 2n
» qr -Ltelggetrge™

By wusing a Computer the above system has been integrated

numerically by means of a fourth-order Runge-Kutta procedure with

initisl conditions E(@)=Eo, n(B)Mo and ¢(B)=¢o for a small value

of e. If E(B)=-.5, n(B)=—.1 and 9(@#)=0 for £=.1 the approximate

solution of this system is

t 3 ' 1 )
0.0 _@ . 500000 _G. 180000 0 . 000000
g.1 _.899685 _3.298411 @.101199
G.2 _1.299479 ~@.497383 @.201988
3.3 ~1.699343 _g.896711 @.382511
3.4 _2 . 399252 _@.896283 G.402859
@.5 _2.499193 _1.895975 @.503091
.6 - -2.899153 -1.295782 @.603246
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t 3 .

9
g.; -3.299128 ~-1.4958650 @.703349
g-g -3.699148 -1.695563 @.833419

s -4 .0939096 -1.8955@5 @.903465
1.0 -4.4990688 -2.0954886 1.0633498
1.1 -4.899083 ~2.295400 1.163517
1.2 -5.299079 -2.495422 1.203531
1.3 -5.899077 -2.895410 1.303540
1.4 -8.099675 -2.895402 1.4@3546
1.5 -6.499074 -3.095397 1.5@03551
1.6 -8.8989074 -3.295393 1.8@3553
1.7 -7.2990673 -3.495391 1.7@3555
1.8 -7.6990673 -3.895390 1.8335586
1.9 -8.099072 -3.895388 1.963557

Table 3.

Thus the first approximate solution (numerical) of (3.16)

with initial conditions §(@)=-.9, n(B)=-.1 and ¢(B)=0 is

t x (=ef+encoshe) x (£=06)
7.0 1.511368 1.511368
@g.1 1.1524897 1.153408
@.2 7 .893241 ¥ .895991
#.3 @.7039386 @.708696
@.4 7.564203 @.570802
@.5 ?.459551 @.467287
@.6 @ .380080 @.388690
@.7 @.318773 @.327918
@.8 @.276718 @.280088
#.9 @.232434 @.241787
1.0 @.201445 #.2105986
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t | E .

9
B.7 -3.29981286 -1.485850@ @.703349
@.8 -3.6991028 -1.895583 7.803419
@.9 -4 .499996 -1.8955@5 @ .903465
1.0 -4.4990388 -2 . 395486 1.0634986
1.1 -4.899983 -2.295400 1.183517
1.2 -5.299(79 -2.495422 1.2@3531
1.3 -5.899@77 -2.695410 1.303540
1.4 -8.899075 -2.895402 1.4@3546
1.5 -6.499074 -3.895397 1.503551
1.6 -8.899074 -3.295393 1.8@3553
1.7 -7.2990973 -3.495391 1.7@3555
1.8 -7.699673 -3.895390 1.8@3556
1.9 -8.099072 -5.895388 1.903557

Table 3.

Thus the first approximate solution (numerical) of (3.16)

with initial conditions E(8)=-.9, n(@)=-.1 and @(B)=0 is

7 x (=ef+evcos¢) x (for e=0)
@g.a 1.5113868 1.511368
@.1 1.152497 1.1534068
0.2 #.893241 @.8395991
2.3 ¢ .763996 @ .788696
@.4 @.564203 @.570802
@.5 @.459551 @.487267
7.6 7 .380080 @ .388690
@.7 @.318773 @.327918
B.8 @.278718 7 .280088
7.9 @.232434 #.24178%7
1.9 @.201445 @.210596
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t X (=ef+encosg) x (for £=0)

1.1 B.1759786 @.184794
1.2 0.1547486 @.163142
1.3 @.136821 #.144739
1.4 B.121514 @.128924
1.5 7.168311 ?.115283
1.8 ?.0968286 @.193205
1.7 @.088764 @.092644
1.8 @.87783886 B .083298
1.9 p.086449 @.074991
Table 4.
In this case eguation (3.11) reduces to
d a 0 3 a 2 a _ +-2
— 2 8 2—+ ) +19 (-4 == —)+12]u
[(-4 5 27n a —=)3+8(-4 E B 3 an "ae
_g_ei+2ncosh2¢p+ 1e3ﬂcosh3<p (3.21)

This is a third order linear nonhomogeneous partial

differential equation with constant coefficients, and its

solution is

(34cosh2¢+2951nb2¢)+

N using Table 1, we may compute u and obviously we shall
oW ]

get the second approximation of the form

x=gf+ecoshetet
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Case 2. One real and two complex roots.

Consider the third order nonlinear differential equation

d3+d‘~' +g dX

+10x=ex3
de? 2 dt Ox=¢x (3.22)
When e=0B, the characteristic roots are -2, -1+i2 and -1-i2.

Hence the corresponding equations of (3.17), (3.18), (3.18) and
(3.28) in Case 1, are

a _Q-— 2 = k13 3 E+2
[(265+611 1)%+4] A, =e +29 1 (3.23)
9.,9. o n[-3 (22 2]c
[(2aE n 2)(za€+a“ 1) -8]1B,-2e"[-3 ( ai aﬂ)+] 4
=3935”'+%e3" (3.24)
22 +.8 )451B +en[(2-5 228 -8 _g1¢,=0 (3.25)
20-3 (2 + ) *S1B* = 611 & o
3 d_ 3,582, 9 _8 .58 410
[(_2_6%—611 2——)3+4( 2.8 - vagg) e (2 gy rgg) volu
=_3_eE‘3ﬂc052(p+—i-eMCOS3¢ (3.26)
2

Fquation (3.23) 1is a second order nonhomogeneous linear
qu .

partial differential equation with constant cofficients. A

particular solution of (3.23) is
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A =Legdki 3 gl
1 ase +ZGe n

Now putting

Bl=mlezﬂ"'\+mze3n
and C,=n,e%+n,e™ in the equations

(3.24) and (3.25) and then equating the cofficients of the
exponents, we get the algebraic equations

n1+5n1 =%
Smi-ni1 = @
-3mzt+4nz =%
4dm2+3nz2 = @

Solving these equations we have
n1i=3/104, n=2=-9/280, ni=15/164 and n=2=3/50.
and -therefore

=3 p2lm__3 g3
B, 104 = 200

and

=15 o284 3 o2n
Cl 1o¢e 50

Again putting the values of A1, Bi and Ci1 in (3.5) we obtain

dé __ 1 28 3 g2n
e Ll )

G o1re (2 e%-20™) (3.27)
t

15 o284 3 g™
%%=2+°(?EI9 oo

41



Numerical

integration of

th

e

above

system for e=.1 with

initial conditions E(@)=-.5, 1(8)=-.1 and ¢(B)=0 yields

t

SIS I S RS N
B W N R

I R S NI I
WP © o~ o W,

Ll S ol
© oo~ oo

Thus the

for e#=.1 with initial conditions £(@)=

=

[ ]
O O I G T S o

o =

t

£

-0 . 5006000 -0
-7 .699039 -0
-4 .898269 -0
-1.897648 -@
-1.297147 -0
-1.496742 -@
-1.896413 -@
-1.896146 -@
-2.095929 -@
-2.2957353 -1
-2.4956069 -1
-2.695481 -1
-2.885395 -1
-3.895317 -1
-3.295253 -1
-3.495200 -1
-3.695158 -1
-3.895123 -1
-4 .095094 -1
-4 .295870 -2

Table 5.

first approximat

x (:eE+eﬂcosQ)

.511368
.299182
.@88853
.885766
.694496

S R

=

N

. 196060
. 2002486
. 300461
.400645
.o0p8A1

.6BB333
701044
.8011386
.801213
.831277

.161336
.281373
.301403
.4(31438
.501462

.601482
.701498
.881512
.961523
.@81532

e solution
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L

.pevooo
.2¢0883
.401541
.B02036
.802413

.pB2701
.202924
.423P38
.B@3235
.803342

.003428
.203436
.493550
.B6@3594
.8@3630

.p@3659
. 203682
.403701
.B8@3716
.883729

(numerical) of (3.22)

-.5, n(B)=-.1 and ¢(@)=0 is

x (for £=0)

1.511368
1.299698
1.088633
@.885165
@.693348



t -
x (=ef+encose) x (for £=8)
@.5 @.518858 @.517063
7.8 7.381741 : @.359262
@.7 U.225060 B.221929
@.8 ¥.1097886 @.196887
7.9 @.018614 @.611871
1.0 - .6456928 -B.961371
1.1 -@.118353 -8.114937
1.2 -@.146655 ) -@.15@8635
1.3 -@.1881387 -@.170632
1.4 -@.173142 -3.177311
1.5 -@.169340 -@.173148
1.8 -@.157215 -0.160540
1.7 -@.139871 -@.141968
1.8 -3.117822 -3.1194208
1.9 -@.@92937 -0 .494837
Table 6.

Equation (3.28) is a third order linear nonhomogeneous

partial differential equation with constant coefficients and its

solution is

u=

E+2n e - ;
e ; + (43c083¢-3651in3¢)
i (631n2¢+176‘082@) 50320

Usiﬁg Table 5, u may be computed and thus the second
3

approximation is of the form

x=gt+acos@telu
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Case 3. One real and two imaginary roots

Consider the third order nonlinear differential equation

Ix, d?x ., dx
T —_— = 3
de?  dez ta-TErax=ex

when &=B the characteristic roots are -1,+i2,-i2.

Here

(3.28)

the

corresponding equations of (3.23), (3.24), (3.25) and (3.28) in

Case 2 are

(__6_2__ +4)A1=e3€+_'-2ie£+zn

o&?

-8) B,-2e" (- 3_.a_+2)c=3ezt+n+3eaq

982 aE 3F

d

-2(-3—= F

0 -
+2) B, -e" ( 38 o -8) ¢, =0

[("EE & )3+(_7+2_)2+4(_3?+2'—) +a]u

=% el*ncog2¢+ % e3cog3¢

Solving (3.29), (3.3@) and (3.31) we obtain

1 g3ty 3 ot

A 13 10
—-—_9__ 2!""\-—__3_ e3n
B="%0 e 40

=_§— 25—_._3—92'll
C1=55° B0
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e
Futting these values of A1, Bi and Ci in (3.5), we obtain

dg

Beip (L2t 3 2
dat (13e +10e n)

ﬂ:-— 9 2¥ 3
ar 3(3-69 +-Z—0—ezn) (3.33)

Efe.::z-{-e _6_ 26_ 3 2n
(zse e?n)

dt 80

Numerical integration of the above system for #=.1 with

initial conditions E(@#)=-.5, n(B)=-.1 and 9(B)=0 yields

t E n 3
6.0 -@.500000 -G . 100000 G . 000000
8.1 -@.587298 -0.1812195 @ .2084396
3.2 -@.694631 -@.102322 @.400850
@.3 -@.792014 -@.163340 ?.601889
7.4 -(@.889433 -B.184285 p.801231
@.5 - .986882 -0.185170 1.8601285
2.6 -1.084356 -0 .106004 1.201285
@.7 -1.1818581 -@.1867387 1.401241
@.8 -1.279364 -@.107557 1.801143
2.9 -1.376883 - .1068287 1.801619
1.0 -1.474434 -@.108995 2.000847
1.1 -1.571987 -@.199684 2.208660
1.2 -1.6688549 -@.118356 2.400453
1.3 _1.787120 ~@.111615 2.600230
1.4 -1.8648699 -p.111663 2.799894
1 -1.962284 -@.112302 2.999746

~2.(59875 -3.112933 3.199490

45



n ?

1.7 -

b 2.157472 -0.113557 3.3992286

1.9 2.255@74 -0.1141786 3.598857
) -2.352680 -@.114791 3.798682

Table 7.

Thus the first approximate solution of (3.28) with initial
conditions E(@)=-.5, q(@)=-.1 and @(B)=0 is

t x (=et+encosy) x (for £=8)
0.0 1.511368 1.511368
?.1 1.435936 1.435896
3.2 1.330437 1.330141
3.3 1.196681 1.195753
@.4 1.9378@3 1.835768
?.5 @.858120 ?.854483
3.6 @.662946 @.657187
@.7 @.458362 0.450024
2.8 @ .250968 @.239736
?.9 @.047595 @.033280
1.0 -@.144958 -@.1623883
1.1 -@.328212 -@.3408622
1.2 -3.472289 -@.495357
1.3 -@.596133 -0.621368
1.4 _%.687728 -0.714489
1.5 -g.744261 -@.7717786
1.8 ~@.764244 -0.791647
o g 747575 ~@.773941
1.8 -@.695544 -@.719937
1.9 ~7.618794 "B 5205

Table 8.
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Solving (3.32), we obtain

3

= i 2 ]
u==52 ¢ "(8cos2¢-11sin2¢) +

Z73¢ € " (co939-651in3g)

Using Table 7, u may be computed and thus we may obtain the

second approximation of the form

x=et+eNcosg+eu

Conclusion:

A unified theory for the ZKrylov-Bogoliubov method 1is
presented for obtaining the transient response of a third order
weak nonlinear system. When the characteristic roots of the
corresponding linear equation are three negative real or one real
negative and two complex with negative real part or one negative
real and two purely imaginary. Thus, there is no longer any need

to treat the three cases separately.

47



Chapter 4

Forced Vibratio
_ n of
Third Order Nonlinear Systems

4.1 Introduction

In this chapter, a method is presented to obtain a solution

of a third order nonlinear nonautonomous differential equation

with small nonlinearties and a periodic forcing term.

The motion of the system

d’x ., d’x_ , dx
E;sﬂcl-gt—z +k2§E+k3x=ef(x) +Focoswt (4.1)

becomes periodic after some transient motions have died out,
where & is a small parameter which represents perturbation in the
system and f(x) 1is the given nonlinear function. The period of
the resulting oscillations is found to have a fundamental

frequency of /2w and may therefore be represented by a Fourier

series in multiple of ©.

The amplitude of the steady state may be calculated by the

method of iteration, which is essentially a process of successive

approximation. An assumed solution is substituted in to the

differential equation, which is integrated to obtain a solution

of improved accuracy. The procedure may be repeated any number of

. ) . cy -
times to achieve the desired accuracy
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4.2 For i i
ced Vibrations for the Symmetric Restoring Force

] : .
When the restoring force is symmetric, we may take f(x)=x3

in (4.1) and as a first approximation let us assume

X, = '
1=8coswt+bsinet (4.2)

where a and b are to be determined. If we substitute this
expression for x in equation (4.1) and make use of the

trigonometric identities

cosiw t-%cosaoa t+%cosm t

sin%t--i—sincot—%sin%:t ' (4.3)

cos2w tsine t-% (gin3wt-ginw t)

cos2w tcosa t-% (cosw ttcos3wt)

we obtain the eguation

[ (k,~0lk,)ate (k,-w?) 1cosotta (wi-k,) a+ (ky-w?k,) bl sinet

=g [3 (a2+ab?) cosw t+-i— {(atbtb?) 8inw t+%— (a?-3ab?) cos3wt
4

+1 (3a2b-b?) sin3e t] +F coswt (4.4)
4

If the fundamental vibration is to satisfy (3.4), we must

have
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(k;-02k,) a+e (k. ~@2) b 3
3 1 ( 2~ ® )b-z(a3+ab2)g+F; (4.5a)

and

0 (0-ky) a+ (ky=0%ky) b= 2 (a2prpd) ¢ (4.5b)

Equations (4.5a) and (4.5b) are two algebraic equations and

using Newton-Raphson's method we may compute a and b.

The Higher Approximation

To get a better results we may substitute
x,=acogwt+bginw t+a,cos3wt+b sin3ut (4.6)
in (4.1). Neglecting the higher order of a1 and bai and the

product terms of @ with aa and b1 and equating the coefficients

of cos3wt and sin3et from both sides, we get

(k,¥9m2k1) a,+30 (k2~9w2)b1=% (a*-3ab?) (4.7a)

and

. 2h-ph3 ]
3@ (Qw’—lcz)al+(k3—9klm’)b1——4—(33 b-b?) (4V7b)

two linear algebraic egquations.

Equation(4.7a) and (4.7b) are

; b1.
and solving them we easily get a1 and b1
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Transient Behavior

For the corresponding autonomous equation of (4.1), i.e
$ ] .e.,

when Fo=8, we have studied the transient behavior. We have Found

an asymptotic solution of (4.1), when Fo=#, in the for
=@, o

xp=etrencospreu(l,n, ¢) +e2v(E,n, ) +... (4.8)

where u, v,.. are functions of t defined by the differential

equations

d
& o-nveeta (E.m) rete s, Em)+e
_g%=—p+se‘“B1(E,ﬂ)+829"‘Bz(£:ﬂ)+--- (49)

%%‘%*801(5:11) +e2C(§. )+

When Fo#), we propose 2ain asymptotic solution of (4.1), in
the form,

x=x tx ey (t) te2z(t) +. .. (4.10)

where xeo is a steady state solution which has been defined by

(4.2),

x==ef+e“coscp+eu(5.ﬂ,¢) +edv(E, M, @) .o (4.11)

and y, z,.. are functions of t.

(4.18) and (4.11) three times with

Differentiating equations
(4.9) and substituting (4.18),

respect to t, using the relations
51
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(4.11) and the values of derivatives ¥, %, 3 in (4.1) bt
v X, .1), we obtain

dx,
dt? 5z gz Ztkyx e [ ( (Q-p)2+03) 2, +cose ((Q-2) (Q-p) -202) B,

~@,e"cose (-3Q+2 (1-p)) ¢, -w, sing (-3Q +2A+4) B;~e"8ing (0%~ (A-p) O

~243) C1+((ﬂ+o>—)3+k (Q+oa——)2+kz(n+w—-—)+k ) u+ Y+1c _X+k2ﬂ
dt® “tder tdt

+k3YJ -i-eZ - =FOCOS¢ +& {x3+3xg (e€+eﬂcosq’) +3xg(eg+enCOS(P) 2

+{et+elcos@)3] +e2, ., (4.12)
where QH—AT%_“E%' Since Xa satisfy the differential equation
3 2 ‘
a X, +k ax Z+k, dx, Z +kyx =F cosqr+ex, (4.13)
dt? dt? dt

Wwe may omit these terms from (4.12) and then comparing the

coefficient of & on both sides, we obtain,

((Q-p) 2+02] A +tcosg [ (Q-1) (Q-1) -202] B,-w,e"co8¢ [-3Q+2(A-p)]1 G

o » _ - 2
“‘%Sinfp(—3Q+2A+u)B1—e“sintP(QZ—(A—F)ﬂ—e“smcp [Q2-(A-p) Q-20,]

]u+ kg_-—z"ka—dz‘*kay

+ + 9 2 02
g ) 241 (Q+0———-)+k3 3
[(Q+w—==)3+k, (Q+@ 3 ) 4+k, ;
+3x2(el+e & +eh 2
4 3}455,(»:9E e"cos9) 3.>‘r£,(eE efcosy)

=F cosf+e [xs
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+{et+ecosy)?] (4.14)

Substituting Xp=acosy+bsiny  in (4.14) and then sompEELE

the aeetTimients °f cos¢, sing, cosr¢ and sinre (r22) (not

product with cosy and 8inv¥) , we obtain
[{Q-p) 2+l ]A1=e3‘+ge‘*z"+ (a%+b3?) et (4.15)
[(Q-3) (Q-p) -207] B-0,e" [-30+2 (A-p) ] ¢, =304

+20342 (324p2) g7 (4.16)

~0,[~3Q+2A+p] B,-e" [Q2- (A-p) Q203 ;=0 (4.17)

[ (I.)+c.>-‘:.-;"}$)3+.l<1 (ﬂ+m-§%) 2+k, (Q+o>-5%) +k,] u-%e‘*zﬂcoszq:

+%e3"c053¢p (4.18)

and

Ly Y +k, dz 4V 4k, ok ,y=3 (e"“+ e?) (acosw+bsinllr)+e’-[ 3 (a2-b?)
de? ldez 2dt

s 3 2n
cos2y+3absin2y] +6et* (acos ¢+bsing) +5 e (acos2ecosy

‘b cos gcos 2y +abcos psin2¢) (4.18)

+bcosz2@siny) +3e" (2

order nonhomogeneous partial

Equation (4.15) is & second

. 3 t'
differential equation with constant coefficients and equations
en a
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(4.16) and (4.17) are simultaneous partial differentisl egustions

with constant coefficients. Obviously, a particular solution of

(4.15) gives the function A1.

Substituting 31=C'1625”‘+C'ze3“+cae‘l and  C,=d,e¥+d,e™+d,

in (4.16) and (4.17) and equating the coefficients
of €2, @2 gng ef e get a system of algebraic equations,
whose solution gives the values of ci, c2, c3, di, dz and da.
Thus Bi and Ci are obtained. Substituting these values of Ai, Bi
and Ci in (4.8) and integrating (numerically) E, n and @ and then

Xt are obtained.

Determination of u(f,n,¢)

Equation (4.18) is a third order nonhomogeneous linear partial

differential equation with constant coefficients and its

particular solution gives the first order correction term

u(f,n,¢) which determines the transient behavior of (4.1).

Determination of ¥

E tion ¢(4.19) is a third order ordinary nonhomogeneous
qua .

; itut
differential equation. If we substitute

54



y=e2(1,cos i
1 ¢+1291n¢)+92“Lhcos¢+l4sin¢)+e1(158in2¢+1 cos2y)
)

+ +m,c iny+ i + + n,cos8¢
Y+m,cospginy msin@cosy+msingsing) +e2n (
1

cos2y+ 1 {
¥ +1,C0898in2y+n,8ingsin2y+n,sing sin2y) (4.28)
in (4.18)
and then equate the coefficients of e2fcosy
e?giny, .., e2ngji |
singsiny, we get a set of algebraic equations
_and solving them 1li, l2,..,na are obtained
Example

Cpnsider the equation

d3x d3x o dx
= " +4 +9 —+ =,1x3+
= 5 £ 10x=.1x*+2co8t (4.21)

In this case, the corresponding equations of (4.5a) and

(4.5b) are

=_3 (a3+ab?
6a+8b = (a3+ab?) +2

and
—8a+6b=-3- (a2b+b3)
40
roximate solution of this system is

and b=06.160857627.

and the app
a:ﬂ.119983177
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Therefore, the approximate value of Xg; is
8.

X1
0.0 ?.119983
@.1 ?.135383
2.2 ?.149390
2.3 ?.161925
% ?.172841
@.5 @.182031
?.8 ?.189402
B.7 ?.194880
6.8 3.198411
2.3 @.199960
1.9 @.199511
1.1 ?.197268
1.2 @.192657
1.3 @.186320
1.4 @.178122
1.5 @.168144
1.6 @.156486
1.7 @.143264
1.8 @.128611
1.9 @.112673

Table 9.

Putting the values of a and b, and the values of ki, k=, ks
nd solving them, we obtain

and @ in equations (4.7a) and (4.7b) a
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2,=7.205%10%  and  b,=-2,703x10

Equations (4.15), (4.18) and (4.17) then becone

0
[ (2_E+3n_ -1)=+4]A1-e3'-'+%ef+2ﬂ+o .06002161e" (4.21)

(2 +-2) @2 +-21)-815 200322+ L) 21

EAET Ean Ean

=3e25*ﬂ+%e3ﬂ+o.060021519'1 (4.22)

and

21-3 (2——@—+—i)+5]31 e"[(za 0 ——)2-2 9 —-—@--8] C,=0 (4.23)

o on £ 29 o
Solving (4.21), (4.22) and (4.23), we obtain,

1 e3¢+ 3 et*2n40,0120043226F
Ay 299 26

__ 3 2te-_2 3n-0.006002161e"
B 1oae 200

and

28, 3 o2n-0.00300108
G= 104“‘" 50

Thus eguations (4.9) become
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By

using

a§

————

an__
dc

de
dt

a Computer

+.1(—2_ g2t _9

—

104

=2+,1 (12 g2ty

104

the

20

3

above system

0

S a2n_
SOe 0.00300108)

has

=-2+,1 (-1 g28, 3
- 1(29e Lhigemnﬂ.01zoo4322)

e®-0,006002161)

(4.24)

been integrated

numerically by means of a fourth-order Runge-Kutta procedure with

initial conditions E(@)=fo, nN(@)Mo and ¢(B)=9o. If E(B)=-.5,

N(@)=-.1 and @(B)=0, the approximate solution of this system ié

t

8 =

Q
.

=

=

[N}

8

8 =
W o ~N o b

el

W NN R

=

s W o -

3

. 580000
.638919
.898028
.B8387288
.298668

.496143
.695684
. 895307
.094978
.294674

.494410
.894172
.893957
.¢93758
.293574

, 493402

n

. 100000
. 200306
. 300581
.400825
.501041

.661233
.701404
.801556
.991693
.2@1816

101929
202032
.302128
42218
502302

.8@2382

8 89

=2

i S S S G T

NN NN

¢

.BP0000
.208853
.401481
.601847
.802293

.882551
.202744
.402888
.602894
.803872

.p@3128
.2031866
.403199
.B@3204
.803208

.003208



n [
1.6 -3.893
. 883;:: -1.782458 3.203201
_4-@92938 -1.802531 3.403190
_4-292793 -1.802803 3.6@03175
. -2.0828672 3.803158
Table 16.

Thus, h =
when  E(B)=-.5, n(@)=-.1 and ¢(B)=@, the First

approximate value of X, is

2.9 1.511368
g.1 1.299148
@.2 1.088887
3.3 @.885821
2.4 @.694578
3.5 $.518974
3.6 @.361892
@.7 B.225247
@.8 ?.110008
7.9 @.018265
1.0 -@.@56655
11 -@.118063
1.8 -@.145764
13 -3.165912
. i -@.172872
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Using Table 1

solution of (4.21)

°(3)=0,

2 e 8

=
6

| 9

T R R =

& &

T

2 -2
6 -0
7 g
8 -0
8 -0

Table 11.

and Table 3, we obtsain

with initial conditions

.9 1
1 1
.2 1
3 1
4
5 o
5 7
7 o
8 2
.8 5
5 )
] .
3

o
3

@
4

-0
.5

60

.168@93
.156998
.138889
.118878
.692832

the first approximate

E(B)=-.5, n(B)=-.1 and

X

.631351
.434511
.238277
.B477486
.887418

.701085
.551284
420127
.308419
.218225

.142856
.B87205
.p46893
.320408
.p85250

.pBO948



-0.0608512
B.004375
0.011733
.218841

Table 12.

Now equations (4.18) and (4.19) for example (4.21) beconme

— a_i 3, 2 za—i -—a-)+10]u
[(2—&- = ) 4(235 a“ )+9( 3% 23
.%et*znc032¢+%e3"cos3q> (25)

and

Ay 4 9%Y g AV 1103y =3 (e2+L e2) (acosy+bsiny) +e’5[ (a2-b2)
de? ~ dt?  dt 2

3gm 2¢ cos
cos2y+3absin2y] +6et*n (acosy+bsiny) + € (acosz2e ¥

b cosgcos2y+abcos@sin2y) (4.26)

+bcos2¢@siny) +3en (2

.26 re
The particular solutions of (4.25) and (4.26) a

and
) +e2" (-0. 060003597 cos ¢

278iny
y=0(p.119983177 cos¢+0.16 00576
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=0.0300198118iny) +ef(-g, 003674928 cos2y+0.00628285 sin2y)
+e%*1(0.038528021 Co8@Ccosy-0.027051323 cos ¢siny
—0.000573131singcos P+0.026118949 Singsiny)
+e21(0.000136265cos 20cosyY+0.000534775coa 2¢8iny
—0.0005731318in2¢ cos§-0.000074981 sin2¢siny)
+e"(-0.000499375¢c08 pcos 2¢+0.00240847cos g ain2y

—0.0023925848in@cos2§-0.000903434sinpsin2¢) (4.28)

4.3 Forced Vibrations for the Antisymmetric Restoring Force

When the restoring force is antisynmmetric, we may

use f(x)=x2 in (4.1) and assume

X,=8,%acose t+bsinwt (4.29)

as the first approximate solution, where ao, a and b are to be

i i i th
determined. If we substitute this expression for x 1n e

equation (4.1) and make use of the trigonometric identities,
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cos?ot=Z (1+cos2wt),

2coswtsinet=sin2wt, o G

and

sin?e t=3 (1-cos2wt)
We obtain the equation,
[ {ky-w2k;) ate (k;-0?) bl cosw t+[@ (w?-k,) a+ (k,-w?k,) b] 8ine t+kya,=
] [a{;"+% (a?+b?) +2a;lacoswt+bsinwt) +2(a%-b?) cos2wt+absin2wet]

+F, coswt g (4.31)

If the constant term and the fundamental vibrations is to

satisfy (4.31), we must have

kya,=[a?+ (a%+b?)]e (4.32)
(k,~0?2k,) a+e (k;-0?) b=2a,ae +F, (4.33)

and
(4.34)

w (w?-k,) a+ (k;-0?k;) b=2 a,be

(4.32), (4.33) and (4.34) are three nonlinear

phson method we may compute

Equations

algebraic equations and by Newton-Ra

the approximate values of ao; a‘and b.

The Higher Approximation

.we may substitute

To get a better result,
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X;=2,tacoswt+bging t+a,cos2wt+b sin2w t (4.35)

in (4.1). Neglecting the higher order of ai and bi and the terms

® wWith .
= 21, ba and equating the coefficients of cos®t

and sinwt from_both sides we get,

(ky,-402k,) a,+26 (k2-4m2)b1=-:2¥ (a%-b?)e (4.38a)

and

26 (dw?-k,) a,+ (k,~4w2k,) b, =abe (4.36b)

Equations (4.36a) and (4.36b) are two linear algebraic

equations and solving them we get ai and bi.

Transient behavior

In this case, we also propose 2l asymptotic solution of the

form (1) and the corresponding equations of (4.15), (4.16),

are

(4.17), (4.18) and (4.19) in case 1,

[(Q-p) +07) &, = 6%+ €M14238° (4.37)

[(Q-1) (Q-p) —2047) B,-w,e" [-30+2 (A-p)]1C=2e%*1+2a,e" (4.38)

o, [-30+(22+p) ) B,€" [Q2- (A-p) R-26,71 G =0 (4.39)
0
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[(Q+m—§43+ 0+ 9 )2 9 )4k
39”10 gg) Hha (@rogly vl u=1emconze (4.40)

and

Py Ay, dy
dt3+ki;E3+kng+k5=Zef(acos¢+bsin¢)

+2 (acos ¢ cosy+bcospsing) (4.41)

In a similar way, discussed in case 1, we can solve the

equations (4.37)-(4.41).

Example

Consider the equation

A%, 0 A% g AX 1 0x=0.1x242C08 L (4.42)
dt? dt?

In this case, the corresponding equations of (4.32), (4.33)

and (4.34) are

@l 24g2+b?
10a 20 (2a,°+a )
6&+8b=%aoa+2

and

_Ba.'.sbl:-é-aob
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The approximate solution of this syst
_ stem is

a,=0. =
c=0.0002, a—0.119999776, b=0.160000764

Therefore the approximate values of x_. are
8

t X
8

7.0 @.1202060
@.1 B.135574
G 2 @.148595
@.3 ?.162124
7 4 @.173034
o K 0.182218
@.8 @.189583
@.7 @.195@56
@.8 $.198582
5o @.2001286
. @.199672
L @.197225
1.2 ?.192810
2 @.186470
-3 @.178269
e @.168288
1.8 @.156628
8 @.143408

_ @.128752
1.8 g.112814
1.9

Table 13.
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a;=-0.00011647, b;=-0.000125883.

Equations (4.37), (4.38) and (4.39) become

[(za—%+£1—-1)+4]A1-e2=+-21-e2n+o.0004e¥ (4.43)

9,0 3
(255 +372) gt -1)-81B-2en (3 (22 +- L) 2l

o 0 on
=2e%M+0,0004 &" (4.44)
and
21 3(2—E+?ﬁ)+5]3+e‘\[(2 2 %)Lz%-%—s]q-om.%)
Solving equations (4.43), (4.44) and (4.45), we obtain
A== L+ Lo+, 00008et
Bl=-_‘=‘ge’-’+ﬂ-o.00004eﬂ
2
and

4 _ 2
C:L='£§ 0.0000

. come
Thus in this case equations (4.9) be
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dt 240 N
e A (L : e
dt 1{e +Le-t2.0 00008)

an
s 1+0.1(-§%e5—0.00004) (4.46)

ala

=2+0.1 (L ef-0.00002)

Numerical integration of the above system for e=.1 with

initial conditions £(@)=-.5, n(B8)=-.1 and ¢(B)=6 yields

t 3 . ;
6.0 -8 . 500000 -0 . 100000 0 . 600000
@.1 ~@.698228 -0 . 200660 G 26@88d
@.2 —.896537 ~3.301201 0 .401602
3.3 ~1.494911 3 .401645 0.602194
@.4 ~1.293340 -0.502008 0.802679
@.5 -1.491813 -3 .862307 1.003677
?.6 ~1.696324 ~3.702551 1.203403
3.7 ~1.888866 -@.882751 1.403671
3.8 -2 .$87433 -0.902916 1.603890
2.9 -2.286022 -1.003050 1.804@70
1.0 ~9.484628 -1.163161 2 B@4217
1.1 _2.683249 _1.203251 2.204338
1-2 _2.881883 _1.303325 2.404437

' ' _1.4@3385 2 804518
1.3 -3.@8@527 1.4

' ' ?3435 2.804585
1.4 -3.279180 -1.5

3.004639
1.5 _3 477841 -1.803475

) _1.703509 3.204680

.8 _3.676509 | ag3530 o 4Gd75T
1.7 _3.875182 -1.
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n ]
1.8 -4.3738
) B
e _4.272542 ~1.903558 3.604750
-2.003578 3.804774
Table 14.

Thus wh =
en Kk(@)=-.5, n(@)=-.1 and (@)= the first

approximate value of x, is

t X

t
B.0 1.511388
@1 1.289204
g2 1.689038
@ 3 ?.888069
g 4 A.894914
35 ?.519386
7.8 @.362371
3.7 @.225783
g8 @.116592
_ @./18889
1.9 -@.256001
. -6.108388
. B -@.145@73
L3 -3.165227
1o -@.172187
-p.168438

—
(93]
|
=

.156370
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X
S T
18 -@.138296
1. -60.116324
-@.092322

Table 15.

Usi .
sing Table 5 and Table 7, we obtain the first approximate

solution of (4.21) with initial conditions ¥(®)=-.5, §(8)=-.1 and
o (8)=0,

t X
@.8 1.631568
.1 1.434778
g.2 1.238633
@.3 1.248193
7.4 ?.867948
3.5 @.701604
3.6 @.551954
a.7 @.420838
7.8 @.309174
@.9 @.217015
1.0 @.143671
11 B.BB???Z

(/

1.5 z.wﬁsm72

1.4 e
-@.000150
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-0 .083259
.685110
0.012428
B.0280492

L e =
O o N>

Table 185.

Now equations (4.408) and (4.41) for example (4.42) become

d_¢@ d 3 _d 0 _
[(-2 g —5—t25=)3+4 (-2 ——==+ )2+9( 25z +2—-—)+10]u
3 on o) P Fr
=2e?Mcos2¢ (4.48)
and
d?y ., d%y .o 4y £
Y4 +9 Y y10y=et(2acosy+2bsiny)
de? 4d2 ac " ( o ¥
+e" (2acos@cosy+2bcosesiny) (4.47)
The particular solutions of these two equations are
2 — 2 - i ‘ .4
u=—-e 1 (8cos2¢=-118in2¢) (4.48)
and

=gf{-0.04000035co8Y+0 .447999918iny) +e1(0.00179556 cospcos¥

~0.000124439 cos@siny-0.000568894 singcosy

+0.001315556 8ingainy) (4.49)
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Conclusions

A method is developed to find the forced vibrations for the
lsymmetric and antisymmetric restoring forces which are modeled by
a third order nonlinear nonautonomous differential equation with
a small nonlinearities and a periodic forcing term. The amplitude
of the steady state is calculated by the method of iteration and
the period of the resulting oscillations in this case is found to

have a fundamental frequency of 9

2n
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