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ABSTRACT

This thesis is organized as follows.

Chapter I contains a brief discussion of the production of various topological
defects in cosmological phase transitions in the early universe. The three kinds
of topological defects associated with spontaneous symmetry breaking:
domain wall, cosmic string and magnetic monopole. The existence and
stability of these defects is dictated by topological considerations. This
chapter also includes a discussion on the standard cosmology and

cosmological phase transitions.

In the chapter II we review some physical properties of the cosmic string. Pair
of cosmic strings intercommuting at two points can form closed loops. A
closed loop will oscillate, gradually loosing energy , until it disappear. Only
significant energy loss mechanism is gravitational radiation. Gravitational
radiation is indeed dominant. There is no local gravitational field due to the
cosmic string. The cosmic string acts as a gravitational lens for both light rays

and particles.

Chapter III addresses the topic of cosmic string evolution and structure

formation.



In the chapter IV we give a brief account of the Plebanski space-time. The
Plebanski space-time includes many interesting space-times which are not

black hole space-times but are important from the physical point of view.

In the chapter V we study the equilibrium configurations of a cosmic string
described by the Nambu-action in the NUT-Kerr-Newman space-time which
includes as special cases the Kerr-Newman black hole space-time as well as
NUT space-time which is considered as cosmological model. In this study it is
interesting to note that one can obtain parallel results for Kerr-Newman black

hole as well as for NUT space-time.

Finally, in the chapter VI we study the equilibrium configurations of a cosmic
string described by the Nambu-action in curved space-time such as the Kerr-
Newman-Kasuya space-time which is the Kerr-Newman space-time involved
with extra magnetic monopole charge. In this study it is interesting to note that
the physical results remain the same whether or not the magnetic monopole

exist in nature.
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INTRODUCTION

Recent attempts to incorporate the grand unified theories of particle physics
into the general relativistic models of the early evolution of the universe have
predicted the possible existence of enormously long objects called cosmic
strings. Cosmic strings have attracted a lot of interest. A brief review of the

cosmic strings has been made in the chapter I, II and III of this thesis.

Different people showed interest in cosmic strings in different ways. Frolov
et al[l1] studied the possible configuration of a cosmic string in the
gravitational field of a rotating charged Kerr-Newman black hole. The main
theme of this thesis is to extend the study of the equilibrium configuration of
a cosmic string in the gravitational field of a Kerr-Newman black hole [1] to
others space-times which are not black hole space-times but have common
feature with the black hole space-times that they have horizons. The
motivation of this extension came from the fact that the different results of
black hole physics (such as superradiance phenomenon, Hawking radiation,
etc.) can be extended to other space-times [2-16] which are not black hole

space-times but have common feature with the black hole that have horizons.

Keeping this objective of extension in different space-times having horizons
in mind we have shown how one can obtain a large number of space-times

having horizons as special class of a more general space-times. These space-
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times include the black hole spacetimes which are asymptotically flat as well
as asymptotically de sitter. Besides these black hole spacetimes, the special
classes include also other space-times like NUT-Kerr-Newman and Kerr-

Newman-Kasuya space-times.

In the chapter V we studied the equilibrium configuration of a cosmic string
in NUT-Kerr-Newman space-time [17]. The results obtained in this chapter
can be specialized for the Kerr-Newman black hole [1] as well as for the
NUT space-times. It will be interesting to note that the NUT space-time is

considered as homogeneous anisotropic model of the universe [18].

In chapter VI we studied the equilibrium configuration of a cosmic string in
the Kerr-Newman-Kasuya space-time [19] with an extra magnetic monopole
charge. The monopole hypothesis was given by Dirac relatively long ago.
Recently development of gauge theories have shed new light on monopole

hypothesis.

We have demonstrated in the chapters V and VI of this thesis how one can
extend the study of equilibrium configuration of a cosmic string in the
gravitational field of a rotating black hole space-time [1] to other space-times
like NUT-Kerr-Newman [chapter V] and Kerr-Newman-Kasuya [chapter
VI] space-times which are not black hole space-times but have common

feature with the black hole space-times that they have horizons.



We belive that the extension, as made in the space-times like NUT-Kerr-
Newman and Kerr-Newman-Kasuya space-times can be done also in other
special class of space-times having horizons (mentioned in the chapter IV). In

support of our this claim, we add a discussion at the end of this thesis.



CHAPTER - I

THE PRODUCTION OF TOPOLOGICAL DEFECTS

1.1 INTRODUCTION

At the beginning the universe was very hot and dense. It began to expand and
cool down through several phase transitions. These phase transitions in the early
universe can produce some macroscopic topological defects: domain walls,
cosmic strings and monopoles. Domain walls are one-dimensional defects,
Cosmic strings are two-dimensional defects. Point-like defects are called
magnetic monopoles. These defects are governed by the topology of the
manifold M which was first discussed by Kibble [20, 21]. Firstly, if the manifold
‘M has two or more disconnected pieces corresponding to spontaneous breaking
of discrete symmetry, then domain walls can exist [22]. If the manifold M
contains unshrinkable loops, cosmic strings can appear. Finally, if the manifold
M contains closed two-dimensional surfaces that cannot be shrunk to a point,

then monopoles can exist. Hybrid topological defects such as domain walls
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bounded by strings [23-25] and monopoles connected by strings [26, 27] can
also be produced by the model with a sequence of phase transitions. These
hybrid defects can arise in more complicated symmetry breaking patterns [28].
In this chapter we briefly describe the production of various topological defects
in cosmological phase transitions in the early universe. Before discussing the
production of these defects we will review the standard cosmology and

cosmological phase transitions.

1.2 STANDARD COSMOLOGY

The history of the universe broadly divides into three stages according to
current thinking. These stages are called the early universe, the adolescent
universe and the late universe. The early universe was dominated by the
radiation, and the adolescent universe was dominated by the matter. In the
absence of vacuum energy, the late universe will continue to be dominated by
the matter. The universe is assumed to be homogeneous and isotropic. The
kinematics of a universe is described by the famous Robertson-Walker space-

time metric which can be written in the form

dr?

+ 12d9” + r’sin”0d0%) e (1.1)
1 —kr?

ds? = dt* — R*(t){




Where R(t) be the radius of a spherical volume expanding with the general
expansion of the universe. The dynamics of the expanding universe only
appeared implicitly in the time dependence of the scale factor R(t). The 0-0

component of the Einstein equation,

1
R, - CICIEY i S - o TS (1.2)

gives the so-called Friedmann equation

R> k 8
F_FF:?EGP_”L ....................................................... (]3)

where p is the energy density and k and A are constants. Neglecting
cosmological constant A ,which is indeed experimental value to a good
approximation at least in the present phase of the umiverse [29 ]. The above

equation can be rewritten in the form of an energy conservation equation for a

particle on the surface of our sphere:



We observe that k > 0 corresponds to a bound orbit. This is the case for a closed
universe that will eventually reverse its expansion and contract to a new
singularity. Similarly, the unbound case k <0 corresponds to an open universe

that will continue to expand forever. At early times of the universe p increases as

R — 0 so that in this case k relatively unimportant. Therefore the equation (1.4)

becomes

Hence for k = 0, the universe is very nearly flat.

For a perfect fluid characterized by a time dependent energy density p(t) and

pressure p(t), the stress energy tensor can be written as

TV = QAP P DiD) wrrewsconerns cmsiessssssmmaamsssamsssasvasssi (1.6)

The p =0 component of the conservation of stress energy (T = 0) gives the

energy conservation law which can be written as

AEER®) = —PA(R®) covveeorereioeeesssesrsseseneenees e (1.7)



This is the first law of thermodynamics in the familiar form.

In the very early universe also assuming the temperature T much larger than
masses of bosons and fermions, here the matter may be treated as an ideal

relativistic gas undergoing adiabatic expansion. Then the density is given by

where N(T) = Nb(T)+%Nf(T), N,(T) and N, (T) are the numbers of distinct

.. ; . . 7
helicity states for bosons and fermions respectively. The relative factor ry

accounts for the difference in Fermi and Bose statistics.

During the expansion of the universe the entropy per comoving volume element

remains constant and we can write

AEER™Y S0 wwrurmmememsnmcos i o855 5558 3 RS S AR SRS (1.9)

where



1s the entropy density.

If the temperature T drops below the mass threshold, N(T) = constant and R(T)T=

constant.

The equation (1.5) and (1.7) give

1

RT) o€ T 00 2 oot (1.11)

In this chapter we use the planck mass m, =12x10”GeV and planck time
t, =53x10*sec in terms of which the time-temperature relation may be written

as

During the early radiation-dominated epoch, p = -‘;—. When the universe becomes

matter-dominated , p = 0 and we acquire
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The age of the universe can be measured by using the expansion rate of the

universe. The expansion rate of the universe is determined by the Hubble

parameter H = %, wWhere dot is the time derivative. The Hubble parameter is not

constant and in general varies as t". At the present epoch the value of H

denoted by Hj is called the Hubble constant.

The Friedmann equation can be written as

where Q is the ratio of the density p to the critical density p, .

The critical density 1s

2
T (1.15)

P. =

where h is the dimensionless parameter and is equal to
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H
100kmsec™ " Mpc™

....................................................... (1.16)

The universe is closed, open and flat according to Q>1,Q<1 and Q=1,
respectively. The inflationary cosmological model [30] predicts that O =1 with

very high accuracy. The present age of the universe can be found as

pres

t :%H“ =2 %107 h7S€C cuviviiiiriei e, (1.17)

The range of plausible values of h and Q are

In fact, nucleosynthesis provides the most precise determination of the baryon
density. Nucleosynthesis considerations demand that the baryons density, p,,
should be p, <0.1p, and then Q, <0.1. This leads to conclude that if Q —1,

the universe must be dominated by particles other than baryons.

As a first simple application, let us establish the cosmological red-shift formula
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R(t,.)

l+z=—"-"
R(t)

which is convenient to use for discussing the recent evolution of the universe.

The cosmological red-shift is really an expansion effect rather than a velocity

effect.
For Q=1,
g =
t=§H_l(l+z)2 ................................................. (1.21)
This implies that
-2
(14 2Z) 0013 ooieieeeee ettt (1.22)

Since the photon and neutrino species are decoupled, their entropies are

separately conserved; hence the present energy density and entropy density are

g, =B08% TE¥ U™ cammermemmsmmemmrsmmenmmmsnssnsssssais (1.23)

assuming that the present temperature of the photon gas is T =2.75"k.
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The total density of radiation including photon and N, species of massless

neutrons is

2Ry § RV o T ————— (1.25)

Att>t,, % decreases as (1+z). It then follows that the red-shift of equal matter

and radiation energy densities is given by

142, =2x10°Th* L, (1.26)
The density of the universe at t,, is
SR B (R ¢ ) I P ——— en(1.27)

The most important epoch in cosmic history of the universe is the decoupling of
matter and radiation when protons and electrons combine to form hydrogen

atoms. In this case
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RECR B e ¢ [ (1.29)

The standard cosmology is completely an achievement which is comparable to

the standard model of low-energy particle physics, the SU3). ® SU(2), ® U(1),

gauge theory of the strong, weak, and electromagnetic interactions.

On very large scales, the universe is very smooth and there is no physical
explanation for this in the standard cosmology. This is the first untidy fact about
the standard cosmology and is frequently referred to as the horizon problem. In
the context of unified gauge theories there are relics which are grossly
overproduced early in the history of the universe and contribute to the present
energy density. There is no mechanism in the standard cosmology to get rid the

universe of these relics.

Inflation is an attractive candidate for solving the problems mentioned above. It
had an epoch when vacuum energy was the dominant component of the energy
density of the universe. Inflation is cosmologically attractive because it proposes
the possibility of performing the present state of the universe. Topological
defects which produced before inflation are inflated away and should be
interested only in the defects produced after or near the end of inflation. The
phase transition was never completed and most of the universe continued to

inflate forever [31, 32].
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1.3 COSMOLOGICAL PHASE TRANSITION

The mtroduction of the grand unified theories into the hot big bang models
predicts cosmological phase transitions at the separation energies. The phase
transition is a thermal process and should study the formation of defects using
statistical field theory. Cosmological phase transitions are very similar to phase
transitions in more familiar solids and liquids, like vapor turning into water and
then ice. When water is freezed then it produces a crystal of ice with some
defects such as dislocation or vacancies. Similarly, cosmological phase
transitions can produce some topological defects. A symmetry-breaking phase
transition can be first or second order, in general. In a simple model, the phase
transition from the symmetric phase to the broken phase is second order. Let us
consider a field theory with a symmetry group G and Highs field ® with a
potential of self-intersection V(®).

To illustrate some of the features of finite temperature effects we consider

and
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V(@) = %x(qrcp O™ oo (131)

where @ is a complex scalar field and A is the Higgs coupling constant. The
symmetry of phase transformation ® — e*® is a symmetry group U(l). The
minimum values of the potential are at non zero values of @, therefore the
symmetry is spontaneous broken and @ tends to eams a non zero vacuum

expectation value

This implies that

This equation only gives the magnitude of (@) and does not fix its direction. The
situation is similar to that of a completely isotropic ferromagnetic cooled through
its curie point. It must eam non zero magnetization of an arbitrary direction. This
magnetization is determined in practice by any small external field or, in the

absence of such fields by the random fluctuations. We have in fact, a degenerate
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set of vacuum states. In the general case, the set of vacua forms a quotient space
M. Let us assume that the original group is G and its unbroken subgroup is H, in
the symbolic notation G — H. All elements of G, which make the VEV(®D)

unaltered, belong to H. The manifold of the equivalent vacuum states M, then,

become the quotient space % :

By adding temperature-dependent terms, we can write the effective potential for

@ at finite temperatures in the form

V(@) = B TPO D+ V(D) oo (1.34)

where B > 0 is a dimensionless constant which is a combination of the Higgs-

coupling constant A and other coupling of the field .

From equations (1.31) and (1.34) we get the effective mass of the field O at

temperature T is

m*{T) = BT? = Ao? saunwwamsmssmenimenm s (1.35)

Then, for T =T,, we have
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where

is the critical temperature of the phase transition from the symmetric phase to the
broken-symmetry phase. When A<<l, we have T,~ c. While for T>T,
m’(T) is positive. The minimum value of m*(T) is positive. At @ = 0 the value

of V(®) is minimum and then (®) =0 and we are in the symmetric phase.

There is no barrier at the critical temperature for a second-order phase transition
and the phase transition occurs smoothly. More complicated models can guide
to first-order phase transitions, where the symmetric phase remains metastable at
T < T, and the phase transition proceeds through the nucleation of bubbles. For a
first-order transition there is a potential barrier separating the minima. In
a cosmological phase transition @ evolves from the symmetric minimum
® = 0 (high temperature) to the symmetry-breaking minimum ® = ¢ (low

temperature ).

Since a uniform Higgs field is energetically preferred, much of the initial random

variation of (®) will rapidly disappear in the course of further evolution. For
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energetic reasons (®) will tend towards spatial uniformity unless prevented from

so doing by trapped defects of some kind.

1.4 DOMAIN WALLS

If a discrete symmetry is broken, domain walls can appear. For a real scalar field,

the Lagrangian which undergoes spontaneous symmetry breaking is given by

where ¢ is a real scalar field. The reflection symmetry ¢ — — ¢ present in the
Lagrangian is broken by the vacuum expectation values (¢) =+ c. Let us assume
that all of space is in the same ground state and that space is divided into two
regions. The vacuum expectation value of ¢ is.( ¢) = + o in one region of space
and  (0) = — o in the other region of space. When we go from a region with (¢)
=+ o to aregion with () = — ¢ then we should inevitably pass through (¢) =0
and this implies that there must be a region where ¢ = 0, that is a region of false
vacuum. This region between the two vacua is called a domain wall. Hill,
Schramn and Fry [33] remark that a very-low-energy phase transition produced

very light domain walls which might be the seed fluctuation of a large-scale
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structure. Domain walls are two-dimensional topological defects which might

also be able to account for the large-scale streaming motion [34].

The wall is given by the solution of the equation of motion for ¢

The solution of the equation of motion with boundary conditions, at z = - o, ¢ =

—candatz=+c,¢=+0CIs

b(2) = Gtanh(i) P — (1.40)

where

is the thickness of the wall. The thickness of the wall which is finite, but non-zero
is easy to understand. We can calculate the stress-energy tensor, to estimate the

surface energy density of the wall 1 for a scalar field.

T = f(Z)diag(L,1,1,0) ooy (1.42)
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where

The surface energy density associated with the wall is given by

22,1
1= J'T(?dz o Ao’
This is identical to the integrated, transverse components of the stress, and is
accurately equal to the surface tensor in the wall. Since ¢(z) is a scalar field

independent of x, y, t and having the same invariance, the stress-energy tensor

T is invariant with respect to Lorentz boosts in the xy-plane. This suggests only

about transverse motion of the wall; motion in tangential direction is
unobservable. Of course this applies only to plane walls, but macroscopic walls

with curvature radii R >>A can locally be considered as flat.

The domain walls are inherently relativistic and their gravitational effects are
inherently non-Newtonian. An infinite domain wall repulse the test particles.
Two infinite domain walls repulse one another [35, 36]. An infinite domain wall
will be formed during a domain wall forming phase transition. The infinite
domain wall will move under its own tension and try to straighten out. After the

phase transition, the motion of the wall is damped by friction but as the plasma
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gets diluted by Hubble expansion, the drag decreases and eventually the motion
of the domain wall is effectively undamped by friction. The single domain wall
in the universe cannot disappear since it is protected by topology and would be

present in the universe if it were ever produced.

1.5 COSMIC STRINGS

The abelian Higgs model illustrates the cosmic strings which are much more
palatable to a cosmologist than domain walls. If the model contains a U(1)

gauge field A, , and a complex Higgs field @ and carries U(1) charge e, then the

Lagrangian of this model is given by

2
L =D, &D'®* —%FWF*“ - MDD - %)2 .......................... (1.45)
where

E, =9,A, —,A,

D,® = 0,0 —ieA,d
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and e is the gauge coupling.
First of all, Nielson and Olesen [37] discussed the string solution to the equations

of motion for the Lagrangian in this model. The Higgs field at large distances

from an infinite string in cylindrical coordinates (r, 9, z) has the form

1S

Since at large distances from the string F,, =0 and D,® =0, so that the energy

density vanishes outside the string core.

There is no general solution to the coupled equations of motion for @ and A, .

Using the stokes theorem we find
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where B=VxA is the magnetic field associated with the U(1) gauge field.

Therefore the total magnetic flux within the string is 2m
€

Consider the complex field © = %(dwid),). If the vacuum expectation value

(VEV) is chosen to lie in the real direction, then the potential can be written in

the form
}\‘ 2 272
V() = Z 07 =0 (1.49)
where
qa = %) .............................................................. (1.50)

where § varies on the position. Since (¢) is a single valued , the charge of 3
around any closed path in space must be an integer multiple of 2n  Viz.
AS = 27, n is an integer. Consider a closed path A8 =2n and the closed path is

shrink to a point. Here A cannot change continuously from A8 =2z to A$ =0.
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As a result, we must encounter at least one point within the closed path where the
phase 3 is undefined. There is at least one tube of false vacuum inside any closed
path which has AS = 0. Such tubes of false vacuum can have no ends and must
either be closed or infinite in length. These tubes of false vacuum contain a
characteristic transverse dimension very much smaller than their length, so they

can be behaved as one-dimensional material thing and are called cosmic strings.

The energy-momentum tensor associated with a long thin, straight cosmic string

lying along the z-axis has the form

T = pd(x)8(y)diag(L,0,0,1) cooevevrerieiricieic (1.52)

where 1 is the mass of the string per unit length. This shows that the string

tension is equal to the mass per unit length.

Cosmic strings discussed above are called gauge cosmic strings. There are also
cosmic strings associated with the spontaneous symmetry breaking of a global
U(1) symmetry. Such cosmic string are called global cosmic strings. The
cosmological properties of global cosmic strings are very similar to gauge cosmic
strings but the physical properties of gauge and global cosmic strings are

somewhat different. Global cosmic strings are
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strongly coupled to massless scalar Goldstone bosons. The loops of these
cosmic strings lose all their energy after about 20 oscillations [38, 39]. There are

no unwanted particles like these in the case of gauge cosmic strings.

The Lagrangian of the model which contains a U(1) global field is given by

equation (1.45) with set A equal to zero:
L=09,08% "®- x(qfq) - %] ........................................ (1.53)

The phase of @ alters by 2r around the string, the radius of the core is

1
A =+2)"2c"" and outside the phase @ is given by
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where R is the cut-off radius.

Their energy per unit length is logarithimically divergent. Two parallel strings
with opposite sense of A8 are attracted to one another with a force per unit

length

Here the role of the cut-off radius is played by the distance between the strings.
The concept of this forces is interchangeable to the interaction of strings with a
long-range Goldstone field 8. Of course, the lagrangian (1.53) with a complex

field @ describes both the Goldstone field and the cosmic string. The force per

unit length due to tension in curved strings is
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This force is greater than the interaction force (1.56) by a large factor

This remarks that the dynamics of global cosmic strings is dominated by tension.

Wittin [40] has shown that some spontaneously broken gauge theories will
generate cosmic strings which are superconductors. The charge carries on such
cosmic strings can be either fermions or bosons and the critical currents can be as
large as 10*°A . The mass per unit length associated with the electromagnetic field
for the expected large currents can be of the same order as p, where p 1s the mass
per unit length of the string. Superconducting cosmic strings [40] can have very

dramatic cosmological signatures.
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1.6 MONOPOLES

Monopoles are zero-dimensional point-like topological defects which arise in

gauge theory that undergoes spontaneously symmetry breaking. For this theory,

the Lagrangian is given by
1 a a 1 a Tapv 1 afa 232
I;= EDHQD D*® —ZFWF . —gk(d) 1 PR, S CR— (1.59)

a a a bac
E, =0,A}-0,A, —e &, AA|

D @ =50 -e €, A D"

n

Monopoles exists if the vacuum manifold associated with the symmetry breaking

pattern G — H, contains unshrinkable surface, that is

where I1,(M) is the homotopy group classifying unshrinkable surface in M and I

is the trivial group.
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To analyze the topological defects the following theorem from the homotopy
group is very useful. Let us assume that the group G is broken to a subgroup H:G
— H.

Theorem: If I (G)=1II_,(G) =1, then

TL (M) =TT (H) oo esseeenenes (1.61)

where the equality sign " =" indicate isomorphism..

Let us assume that the group G is such that I1,(G) = I1,(G) = L, then, applying the

above theorem for n =2 we get

TL (M) = T, (H) covvvveroeoosseeesessssesesssseeseeenencenoeneens (1.62)

From (1.61) and (1.62) we get the condition for the formation of monopoles:

For example, monopoles will be formed at a phase transition
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TR 0 070 N (1.64)

The important thing abut this result is that monopoles must appear if H contains
at least one U(1) factor. We know that a U(1) factor must first appear at some
stage in the sequence of symmetry breaking from G down to SU(3), ® U(1)p, . So

that formation of monopoles in the early universe can not be avoided.
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CHAPTER - II

PHYSICAL PROPERTIES OF COSMIC STRINGS

2.1 INTRODUCTION

In the previous chapter we have discussed the production of cosmic strings. In
this chapter we shall describe their physical properties. The key bit of physics
crucial to the evolution of a string network is intercommutation. Through this
process, long string cut up into smaller segments and /or loops, thereby
regulating the energy of the string network. Another prediction of the cosmic
string scenario is a stochastic gravitational wave background. This is
produced by oscillating loops that lived and decayed at various epochs
through the emission of gravitational radiation. The gravitational field around
an infinitely extending straight cosmic string has a special property. An
idealized static cosmic string, which has an infinitesimal thickness, cannot
create a Newtonian gravitational potential around it [21, 41]. There are non-
Newtonian gravitational effects associated with the cosmic strings. The

discussions of these properties of cosmic strings are given below.
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2.2 INTERCOMMUTATION

The process that plays a crucial role in the evolution of a string network is
intercommutation. When two strings intersect, they reconnect, or
intercommute [42, 43]. Pair of strings intercommuting at two points can form
closed loops. Loops can also be formed by self-intersection of individual
strings. A closed loop of string oscillating under the action of its tension, may
intersect itself and break into two smaller loops whose lifetime would be
shorter. The fragments may further break, but this process is finite. After
several rounds of fragmentation, a family of non-intersecting daughter loops is
leftbehind. This process is important, since loops eventually radiate awéy their
energy and save the universe from string domination. Based upon numerical
experiments it appears that the probability for intercommutation to occur is
nearly unity [42- 44]. Recently Shellard has done analysis regarding the

intercommutation [42] for the case of global strings of the model

L = 3,0°0"® - %(CD"CD = %) e, (2.1)

He considered two strings at right angles moving towards one another with
relative velocity up to 0.5¢. Here, ¢ is the speed of light. Consider, in all cases
the result is that the strings can intercommute. It may be that intercommutation
is angle and model-dependent. These results suggest that intersecting strings
intercommute with high probability. Through the process of intercommutation,

long string can be cut up into smaller segments and / or loops. The
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intercommutation of intersecting strings leads to the continual chopping up
long strings into smaller loops. The loop formation and their fragmentation
into smaller loops are of much interest to the string scenario for galaxy
formation. A description of the energy distribution of loops has been given
within the framework of the statistical mechanics of string in ref. [45- 48]. If a
loop self-intersects, it breaks into two loops. These loops are called daughter
loops. We assume that the daughter loops have roughly equal masses. These
loops extend from nearly horizon size downward. The loops decay into
elementary particles when their size becomes comparable to the string

thickness A~ ™.

If a loop self-intersects, it breaks into two daughter loops. In this case most
of the loop-energy goes into kinetic energy of daughter loops. After n rounds
of fragmentation of a loop of mass M, we have 2" loops. The energy of these

loops 1s

8 e —————————————— 23
En g (2.2)
and rest mass
Mo~ (1-F) Ep oot (2.3)

Where F is the fraction of loop energy that goes into kinetic energy of

daughter loops.
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When My ~ o, The loops decay and the number of steps required is

When the fraction of loop energy is not too small, then the smallest loop and

the resulting elementary particles become very relativistic:

But in the frame of the initial loop the period of oscillation is

M
o 2.7)

Therefore the time scale of the whole decay process is
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b St e (2.8)
n=0 p‘

Clearly non-intersecting oscillation loops can disappear only by emitting some

short of massless radiation.

2.3 GRAVITATIONAL RADIATION

Oscillating loops of cosmic strings that lived and decayed at various epochs
produce a stochastic gravitational waves. We can look forward to the regular
observation of gravitational waves before the end of this century. The
millisecond pulsar is the best way to look for such stochastic gravitational
waves. This is a very accurate clock which sends pulses to the Earth at
acutely timed intervals. If there are gravitational waves, they will make any
sound into the timing of the pulses. The gravitational radiation is the dominant
energy loss mechanism for non-intersecting oscillating loops. The emission of
gravitational radiation from oscillating loops provides a mechanism for energy
loss. This energy loss mechanism proves to be important for the viability of
the string hypothesis. The discovery of gravitational radiation is one of the
outstanding goals of modemn experimental physics and observational
astronomy. Closed loops can be formed by self-intersection of a cosmic

string. This process of the production of loops and their subsequent decay
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may be effective enough to prevent the strings from dominating the universe

[49- 52].

The equation of motion for a thin string (thickness much less than radius of

curvature) are derived form

1

s ox* ox?) |2
[ _ujd 1[— det(gaﬂﬁab-]:l ................................... (2.9)

where p is the mass of the string per unit length g, (x,B,=1,2,3,4) 1is an

external gravitational field and 1* denotes the world-sheet co-ordinates (a, b =
0, 1;1° =1, I' = 5).The integral in equation (2.9) is just the surface area of the
world-sheet described by the string.

The trajectory of the string is described by a vector function x(o,t). Here, tis
clock time, o is proportional to position along the string from a fixed point.
Hence the equation of motion for the trajectory of the string takes the form of

a wave equation

with
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Y N2 S

ox ox ox 0x

Z 2 = — e — =0 i, .
[at] +[50J 1 and 5 7o (2.10b)

Of course the general solution of equation (2.10a) is

;(G,t)=%[é(o—t)+6(c+t)] ........................................ (2.11)

and equation (2.10b) give the following constraints for the otherwise arbitrary

functions aandb :

The motion of a closed loop of invariant length L is described by a solution of

the form (2.11), (2.12) where a(c)andb(c) are periodic functions with period

L=M and M is the mass of the loop:

T

a(G+L) = a(G);b(6 +L) = B(6) crorrreevrerereereeerir (2.13)

From equation (2.11), it is clear that the motion of the loop must also be

periodic in time with the same period. We have seen in the preceding section,
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self-intersecting loops can intercommute and break into smaller pieces. If all
loop trajectories intersect themselves at some point during the period, then the
loop will rapidly decay into a cascade of smaller and small loops. When the
size of the loop is much smaller than the horizon, effects of expansion can be
neglected and we have regular oscillating loop. The motion of a small closed
loop is specially simple. As a result, a closed loop of characteristic radius R
oscillates relativistically under the action of its tension. As it oscillates, it also
produces gravitational radiation and radiates away all its energy on a time-

scale

Where the coefficient I is a numerical factor of order 10% for certain family
of string loops. This numerical factor has been determined by a computer

calculation [53].

So that a loop of cosmic string will under go about 107(gu)™ oscillations

before it die outs.

The intercommutation of intersecting of pair of strings at two points can form
closed loops. Closed loops may thus be formed by self-intersection of
individual strings. These processes are important, since loops eventually
radiate away their energy and save the universe from string domination. The
string network consists of both infinite strings and closed loops of string.
Many authors [54, 55] have studied the evolution of cosmological string
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networks by numerical simulation. Numerical simulations show that after the
string network is produced, it rapidly approaches a so-called "scaling

solution”.

A scaling solution obtained in a radiation-dominated universe with string

energy density

Therefore p, c R™* and the ratio of string energy density to radiation density

remains constant:

N X (2.16)
P: 3

The number density of loops at time t with energy E to E+dE is

3
N ut)2 dE
nl(E,t)dE = 03(—E') E; ............................................ (217)
So that the total energy density in loops 1s
Tz 3
o = [ERdE = 0613 2Eyd, oo (2.18)

Hence we may conclude that
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3
A

1
and thatp, diverges as E 2.

min

Before giving radiation, a loop undergoes oscillations of order (IGp)™
Therefore at time t, the smallest loop has a characteristic size

Ruin ~T'Gut and energy Epm~ I'Gu’t.

2.4 COSMIC STRING GRAVITY

In this section, we shall discuss the gravitational field of cosmic strings. The
gravitational field of cosmic strings is very different from that of Newtonian
strings. There are non-Newtonian gravitational effects associated with the
cosmic strings. A Newtonian string would produce a gravitational field that is
inversely proportional to the distance from it. On the other hand, a cosmic
string produces no local gravitational field but, instead, eats up space from
around itself. The ratio of the circumference of a circle around the cosmic
string to its radius is less than 27 by an amount proportional to its mass per
unit length. This gives the most uncommon result that a test particle moving in
the "gravitational field" of a cosmic string never follows a closed trajectory

and always ends up at infinity.

When the energy-momentum tensor has the form T! = diag(p,—p,,~p,,—P),the

correct Newtonian limit of Poisson's equation is
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V2D = 4RGP + Py + Py Ps) covererremeenrereieriiene eeenrenes (2.19)

where @ is the gravitational potential, G is the Newtonian gravitational
constant, p is the energy density and p, are three eigenvalues of pressure. For

non-relativistic matter p, <<p then (2.19) becomes

But, in the case of an infinite straight cosmic strings in the z direction, p, = —p

and p, = p, = 0. Then Poisson’s equation becomes

This equation is called Laplace equation. The Laplace equation suggests that
infinite straight cosmic strings produce no gravitational force on surrounding

matter.

Vilenkin has solved Einstein's equations for the metric outside an infinite
straight cosmic string assuming that the parameter Gu is small [41]. J. R. Gott
discussed large values of Gp and the internal metric of the cosmic string

[56]. Outside the cosmic string core the metric in terms of the cylindrical co-

ordinates (r, ¢, z) is
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ds? =dt? —dz® —dr? — (1 - 4GU)*1%dd? ceovereeerererrcrenns (2.22)

where L is the mass per unit length of the string which extends along the z
axis from -e< to ec. This metric is just the flat space metric, except for the
factor (1-4Gp)*. The extra factor can be absorbed by defining a new angular

variable as

XN (B T Ty T OO (2.23)

Then the metric (2.20) becomes the flat space Minkowski metric, but then
the range of the flat space angular variable ¢’ is only 0 < ¢’ <2m(1-4Gp). In
this case, it can be said that the space has a conical singularity at the location
of the idealized cosmic string. The equation (2.20) describes a conical space
which becomes a flat space with wedge of angular width A = 8nGu removed.
The identified gravitational effects of the cosmic string depend upon the
dimensionless quantity Gl The quantity Gy is a very important parameter
characterising all cosmological effects of cosmic strings. The Newton's

gravitational constant G = m;? where m, ~ 10" GeV is the Planck mass and

using |1 ~G* we can write
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As long as the symmetry breaking scale o << m,, G is a small number. For

grand unification strings with & ~ 10'°GeV , then Gu ~ 10° and the angular
width A 1s a few arc seconds. In the co-ordinates (t, z, 1, ¢") the geodesics are
just straight lines. Here we see that a particle iitially at rest relative to the

string will remains at rest and will not experience any gravitational attraction.

Although the metric (2.22) is locally flat, its global properties are different
from that of Minkowski space. The conical nature of space around a straight
co-smic string can give rise to some interesting properties. Let us consider a
light source, say, quasar Q. Light rays from the quasar to an observer O are in
Fig.1. It is clear shown from the figure that rays from the quasar Q intersect

behind the string and the observer looks two images of the same quasar.

Fig, 1. Observer sees a double image of Quasar Q.

Cosmic strings can act as gravitational lenses, producing double images of

distant galaxies and clusters. if the distances of the string from the quasar and
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the observer are | and d respectively then the angular separation between the

two images is determined by

o) -l 2),1)

or oo = AS(L)
d+1

or do = SRGU[L)
d+1

Here the third equation is a small-angle approximation. Gravitational Lensing
by a string is similar to Aharonov-Bohm effect [57]. Space-time curvature is
limited to the string core, but its effect is "felt" by the photons propagating in

flat space-time region around it.
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CHAPTER - 111

COSMIC STRING EVOLUTION AND STRUCTURE
FORMATION

3.1 INTRODUCTION

In this chapter we would like to review cosmic string evolution and structure
formation . The evolution of the network of cosmic strings is governed by string
tension, Hubble expansion, intercommuting and gravitational radiation. The
evolution of cosmic string networks has been studied by numerical simulation
[54, 55]. A network of cosmic strings moving at a relativistic speed may generate
a characteristic pattern of anisotropy i the temperature of the radiation. The
upper limit of anisotropy places constraints on Gu. After the universe becomes
matter dominated, matter can begin to clump, and structure starts to form.
Cosmic strings also should clump and participate in the formation of structure.
Cosmic strings may provide the seeds for structure formation if Gu ~10° or so.
A cosmic string dominated early universe will then be able to describe the
pre:sent observed large scale structure of galaxies. Form time to time closed loop

may intersect itself and break into two smaller loops. Oscillating closed loops can
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serve as point-like seeds for structure formation. The sheets that from in the

wakes of long straight cosmic strings play an important role in structure

formation.

3.2 COSMIC STRING EVOLUTION

Cosmological phase transition in the early universe can produce cosmic strings.
These cosmic strings form a stochastic network permeating the entire universe.
The initial network consists of both infinite cosmic strings (about 80% by length)
and closed loops (about 20% by length). The loops will collapse, radiate energy
and die out but the infinite strings will survive as they are protected by topology.
The intercommutation of intersecting string segments leads to the continual
chopping up of long strings into smaller loops. These loops oscillate and
eventually decay into gravitational waves. The gradual loss of energy from
strings into forms of radiation plays an important role in the evolution of the
string network.. This is a very complicated system. Numerical simulation are the
only reliable way to study it. As follows from numerical simulations, cosmic

strings are belived to be formed with the shape of Brownian curves.
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Cosmic stings have the shape of random walks of step ~ & with a typical distance

between the nelghbonng string segments. Here, & is the correlation length of

(®). The simulation have the Abelian Higgs model (1.45), a spontaneously
broken U(1) gauge theory. After the phase transition develops a

oe' .
VEV(®D) = 5 where ¥ varies on the scale of the correlation length & . There
are few long strings extending across the lattice and there is a large number of

small closed loops. A picture of a lattice is similar to the cubic volume. At the

vertices of a cubic lattice the phase ¥ is randomly assigned. For simplicity the

phase at the vertices is allowed to take only three values 9 =0 2?“ 4? The size

of the cubic lattice is identified with €. When a string passes through the face of
cubic lattice, then ¥ changes by 2n around the face. It can be verified that all

strings are either closed or end at the boundaries of the lattice.

To analyze the cosmological evolution of cosmic strings, it is important to know
the frictional force experienced by moving strings due to their interaction with

particles. The frictional force per unit length of a moving cosmic string with

velocity v [58] is

O 3.1)

F =~ 2

where N, is the number of light particles interacting with the fields of the cosmic

string, T is the temperature of the universe and A is the thickness of the string. At
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very early times the motion of cosmic strings is heavily damped by the frictional
force (3.1). For roughly estimate omitting numerical and logarithmic factors in

equation (3.1), we get the frictional force

S N (3.2)
Tension in convoluted strings give a force per unit length
o et e e ee e (3.3)

where 1L be the linear mass density and R be the local curvature radius of the
cosmic string. As a result, the velocity of the cosmic string is obtamned by the

balance between tension and friction f~F;:
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If we substitute this in equation (3.4 ) and use T~ D~ Elt? then we write

R(t) ~ (Gu)% (tift ............................................... (3.6)

P

where t, = 10™ sec. is the plank time.

The frictional force is more important than the Hubble expansion as the matter
density. However, with time, the matter density gets redshifted and the Hubble

expansion dominates the frictional force. The Hubble expansion drag become

comparable to that due to friction at the time t. ~ (Gp) ™t

When t > t,, then the characteristic scale of the string is R(t) ~ t. Therefore the

force of tension 1s

and the frictional force 1s
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So that for t>>t. the frictional force can be ignored [59]. For grand unification

strings with & ~ 10 GeV we get Gu~10° and t, ~ 10" sec.

In the course of expansion of the universe the strings becomes less and straight
on scales smaller than the horizon and they are being conformally stretched on
scales greater than the horizon. The effects of expansion on large Brownian loops

in a radiation-dominated universe are unimportant.

Cosmic strings move under their own tension and try to straighten out. This
motion is damped due to the frictional force of the ambient matter [58,60] and is
also slowed due to the Hubble expansion. Consider the string segment has an
effective cross section &, per unit length, it will acquire a retarding force of order
&, pv, where v is the velocity of the cosmic string segment through a medium of
relativistic particles or radiation and p is the energy density. As a result, we

observe that for the cosmic string velocity the typical dissipation time is [20]

where N is the total number of distinct helicity states of low-mass particles and h

" is the Higgs coupling constant.
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If initially this string cross section with a local curvature radius R is at rest then

its initial acceleration ~ - = 1|
LR R

When the medium is compact ty << R, then the string will eam a limiting

ty

velocity ~ " In this case the loop of string will straightened out in a time of

R2
order —.
td

Not too long after the phase transition, the system of strings includes a scale
invariant regime of evolution. The statistical properties of the string network in
the regime do not alter with time. The only a fact that alters 1s the overall scale,
which is set by the horizon scale t. The simulations indicate that the long strings
have a significant small-scale structure on scales much smaller than t. The typical
scale L of this structure is comparable to the size of the smallest loops. But the
resolution of the simulations and their limited dynamical range do not accept a

reliable determination of L. It is expected that the scale L is to satisfy the

nequality

L 55 TGUE coovveereeoermmressrenssmsmmssrasssssnsessssasssssisnass (3.10)

where the coefficient I’ is numerically found to be order 100 for certain family

of string loops [53].



53

Let us consider that initially a random tangle of strings exists. We may estimate

the length scale L by spatial variations in (®) so that the correlation length £ at

the Ginzburg temperature to be initially of order

where T, is the critical temperature.

The long strings are not smooth but have a lot of irregularities. The scale of the
irregularities is guessed to be the same as the size of the loops ~ I'Gut at any
time t. These irregularities are called kinks. The tension of the string will act on
small kinks to straighten out. Sometimes this process will lead to a collision of a
string with another string. These strings intersect and exchange partners, thus

yielding new sharp kinks which straighten out in turn. Suddenly, small loops may

shrink to a point and die out.

From (3.9) and (3.11) we observe that initially t¢ << L. This validates the

assumption made earlier. It is reasonable that the time scale for growth of L is
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At the beginning, L grows like t2 increasing the ratio o rapidly. Covering a
td

. 3
long time, from (3.9) we see that t, = whence (3.12) yields L o t2. Thus,
eventually will catch up with L. When both ty and L are of the same order as the

age of the universe t; then it is not hard to verify that this will happen ; in fact

when [20]

For strings which were present at the grand unification transition, we get
t=10% sec, therefore this stage is reached long before the Weinberg-Salam
transition. However, t depends sensitively on . When 6 ~ 10" GeV then we
get t=10"sec. The Weinberg-Salam transition itself presumably does not
produce cosmic strings, but if there were an intermediate transition not too far

above it. This intermediate transition produce cosmic strings. The late stage may

be relevant to theories of galaxy formation.
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The scale size L of the tangle of strings grows until it is of the same order of
magnitude as the distance t to the causal horizon. Then L, cannot grow faster than

t, but t continues to grow, therefore strings move with relativistic speeds.

J. H. Jeans discussed the basic mechanism of gravitational condensation. He
showed that there is a minimum length scale demanded for a density

fluctuations to grow [61] in any gravitational system. This length is called Jeans
length and 1s defined as

where ¢, is the sound velocity. During the radiation-dominated era and before

. 1 ; :
electron-proton recombination ¢, = 5 Hence cit is a proper fraction of the

radius of the universe. Accordingly only very large-scale perturbations could start
to grow in amplitude. Perturbations do not grow while they are outside the causal
horizon but they can grow essentially linearly before coming inside the causal

horizon. Until the Jeans scale becomes too large, perturbation-generatmg process

continues for only a short time.
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After the recombination era, quite occasionally c; falls to the value

typical of hot hydrogen gas.

During the plasma era, photon scattering maintains isothermal conditions. The
adiabatic perturbation on a galactic scale or less swiftly disappear, but any
isothermal density fluctuation-will remain. There is no effective damping
mechanism, and so the small-scale density fluctuations are not erased. The
density fluctuations may have triggered the formation of galaxies. The string

scenario of galaxy formation is discussed in the next section.

3.3 STRUCTURE FORMATION

A long-standing cosmological mystery is the origin of structure in the universe.
When the universe become matter-dominated then the formation of structure
began. The knowledge of the present distribution of matter in the universe is

crucial to understanding the origin of structure in the universe. In recent years, it

has developed to testing the detailed scenarios of structure formation. The

formation of structure is often simply referred to as galaxy formation. On small
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scales the density inside a galaxy is about 10° times the average density of the

universe, and that inside a cluster of galaxies is about 102 to 10° times the
average density of the universe. Of course on very large scales (greater than 100
Mpe), the universe is smooth, as evidenced by the isotropy of the CMBR, the
isotropy of the X-ray background, and number counts of radio sources. Lappernt,
Geller and Huchra [62] prove that galaxies are distributed on sheets and filaments
with a typical scale ~ 25h™"'Mpc. In general, this structure has evolved from small

density fluctuations in the early universe, but the nature of the seeds fluctuations
is unknown. There is strong observational evidence that the bulk of the material
in the universe today should be non-baryonic. We have a very lbng list of

candidate relics whose present energy density can produce closure density. A
natural candidate for role of dark matter would be neutrino (say y, ) with a small
mass ~ 30 eV. Neutrino dark matter is called hot dark matter because it remains
relativistic until a very later epoch. In a hot dark matter model the formation of
galaxies is necessarily a rather complicated process, involving the hydrodynamics
and thermodynamics of shocked material. Cold dark matter is non-relativistic
when all cosmological intersecting scales enter the horizon. It is very successful
scenario for structure formation. It is motivated and 1s able to reproduce most of

the feature of the observed universe. Several groups [63, 64] have numencal

simulated structure formation in 2 neutrino-dominated universe. The neutrinos

being so weakly interacting do not collide with one another or the baryons.

Fluctuations in the neutrino density are washed out as neutrinos simply stream

out of overdensed regions. The neutrinos cannot waste their gravitational energy,

and therefore cannot collapse into lightly bound objects. Of course some slowly
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moving neutrinos may subsequently be captured by the baryon-dominated

galaxies. At later times if the neutrino velocities are significant red-shifted by

Hubble expansion, then these fluctuations begin to grow. As a result, galaxies

can form only very late at z ~ 1, by fragmentation of super-cluster-size objects.

Cosmic strings can act as seeds for structure formation in several ways.

(i) Wakes formed behind rapidly moving long strings can help to explain the

structure formation.

(i) Slowly moving wiggly strings accrete filamentary structure by their

gravitational potentials ® ~ —-G3pInr

where O is the extra mass per unit length due to the wiggles [65,66].

(iii) Closed loops would tend to oscillate and collapse rapidly. The rapid motions

of oscillating and collapsing loops may have triggered the formation of galaxies.

The first two mechanism naturally lead to galaxy distribution along sheets and
filaments. Since the size of the loops are very small, hence the last mechanism is

probably unimportant. The difference between sheets and filaments is in string

velocity v. Sheets are produced by the first-moving strings and filaments are

o : -6
produce by the slow moving strings. Cosmic string characterized by G ~ 10

or so provides a potentially viable means of seeding structure formation in the

universe. Cosmic string may play an important role in structure formation. This

possibility has spurred a very active area of research in recent years [67,68].
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Cosmic strings produce density fluctuations which are not in the form of waves

with random phases. This can explain the observed deviations from the Gaussian
behaviour. Effect of cosmic strings which arise from the conical structure of the
space-time around a string are string wakes. The wake formed behind a straight
cosmic string has the shape of a wedge with an opening angle ~8nGp. Cosmic
string loops or flattened structures formed in the wakes of cosmic strings can
possibly serve as seeds to irntiéte structure formation in the universe. Consider a
cosmic string wake moving through the universe with velocity v . This wake
formed by a string segment of length L at time t; . Hence the initial dimensions of

the wake are

The typical distance to nearest wakes formed at the same time is~t;. As the

universe expands, the length and width of the wake grow like the scale factor

R(t)~ té , while the total mass of the wake grows by gravitational instability like

M « R(t). Therefore the widths of the wake at the present time are

B2 X VLZ, worssrresmrssssssms s s

511
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where z is the redsheft at t;. In a universe which dominated by light neutrinos

wake perturbations are damped by neutrino free streaming on co-moving scales

smaller than A, (t) ~ v,(t)t where vv(t)sch(tﬂ)3 is the rms velocity of
t

peutrinos and v, ~ 02. The time of matter-radiation equality is the initial epoch

for structure formation. Wakes formed well before the time of matter-radiation
equality are completely washed out. After the time of matter-radiation wakes
formed eventually collapse. The nonlinear structure formation is delayed until the
time when the transverse dimension of the overlapping streams of matter in the

wake becomes greater than A, (t). Here, A,(t) plays the role of the neutrino

Jeans length.

The characteristic scale of the large scale structure in this scenario is
T L) . (3.17)

With h=05 itis comparable t0 the scale-suggested by observations [62]

(~25h™ Mpc). The surface density of the neutrino wakes produce subsequently

1

decrease but decrease is only o ti's_ The large scale wake could be prominent

simply because it rearranges the small scale structure into sheets and filaments.
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In a universe dominated by neutrinos, baryonic wakes start collapsing after

paryons decouple from radiation, t > t, . However, the growth of these wakes is

strongly suppressed, since baryons constitute only a small fraction of the total
density. Baryonic wakes could explain the existence of quasars of large

redshefts. The scale of baryonic wakes is

tyZge ~ SONTIMPC. oo (3.18)

It is comparable to the largest-scale structure observed in the universe.

A novel outcome of the cosmic string which predicts the generation of primordial
magnetic fields is vorticity [65, 69, 70]. After decoupling of matter and radiation,
the relativistic motion of strings persuades vorticity in the baryonic fluid. Then

the vorticity leads to the generation of primordial magnetic fields. The existence

of vorticity in the baryonic fluid flow indicates protons and electrons are in

vortical motion. But we also have ambient photons and neutral particles which

interact with the protons and electrons. There is an electric current. The resulting

electric current produce a magnetic field. This seed field can be further amplified

by turbulence in the wake and by a galactic dynamo.
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The density fluctuations due to strings are balanced by the corresponding
variations in matter and radiation density on scales greater than the horizon. On
such scales the cosmic string scenarjo of structure formation assumes that the
universe is mitially homogeneous and isotropic. Such initial conditions can be

explained if we assume that there was period inflation before the string

formation.
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CHAPTER - IV

A GENERAL CLASS OF SPACETIMES HAVING HORIZON

Plebanski [71] studied a class of solutions of Einstein-Maxwell equations. In

Boyer co-ordinates (p, G, q, T ) these solutions are given by

2 2 2 2

ds'):p +q dp2+ 2x 2(d’t+q2dc)2+p +q dqﬁ_ 2y 2(d't_p2d0)2 ......
X p +q y p"+q
..... (4.1a)
where
A
X= x(p):b —g2 +2np— € p2 “[g) p4 ............................... (41b)
—b+e:-2Mgq+€q’ - &J RS 4.1¢c)
y=y(q)=b+e 9 3
with electric potential
€q -3 T Uy S 4.2)
B dt—p dc) ......
Audx p2 +4 (



Besides the cosmological constant A, the metric (4.1) includes six parameters b

e, g M, n, & Under the proper co-ordinate transformation along with the
suitable adjustment of the kinetical parameters b and €, the metric (4.1) gives
many physically interesting solutions of Einstein or Einstein-Maxwell equations.

The surfaces y = O at which the metric exhibits apparent singularity have been

interpreted as horizon.
4.1 PROPERTIES OF THE PLEBANSKI SPACE-TIME

The electromagnetic field associated with the metric is given by

The components of the Weyl tensor C® are

ch =c@=c® =C® =0

@_L_x+y _,—‘_{ﬂ_zﬂ‘_"l} ....................... 4.4)

6o 4q P +q|atip (@tip)

The components of Ricci tensor R,p are
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R =— + ( X— - -
34 PX=qy)—-(x-y)
202+ 42 p2+q2{

The scalar curvature R is

where here and above dots denote differentiation with respect to the argument.

Now we turn to the equation (4.4). This equation can be simplifted further for

C® . Using equations (4.1b) and (4.1c) we obtain from (4.4)

PP
(q +p' q+1p

)=

Consequently if any of the constants M., n, e, g is not zero, the metric (4.1) is of

Petroy type D. In the case C® = 0, the metric is conformally flat. In addition to
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) — () - - T _
C® = 0 ; if also Ry = 0, then the metric becomes flat. The metric is

asymptotically de Sitter when A # 0 byt asymptotically flat when A =0 .

A large number of solutions can be obtained by contracting the metric (4.1) by

appropriate limiting procedures.

4.2 CONTRACTIONS OF THE P LEBANSKI SPACE-TIME

(a) If we perform a simple co-ordinate transformation from x* = (p, 6, q, T) to

XM= (p’,0’.q’,7 ) by defining

where p, is an arbitrary constant and e, depotes the contraction parameter, the
(o]

metric (4.1) becomes

42 Ao+, PP +a7} dp”*

e? x(p,+ €, p’)
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&, x(p,+ €, p)
+{(p0+ g, p) +q,z}{€° dt’ +(p? +q’2)dc'}2 ,

1
+
[P+, P +97 Y 'y (@)

dq’?

—{(p0 +e,p)’ + q'z}_l y(q'){d‘c' - (2p,p’+€, p’z)d_o”}2 ................... (4.9a)

where

€’ X(Pot+ € P

=g’ {b —g* +2n(p,+€, p)-€(p,+¢€, p')? - (%)(po+ €, p')4} ............ (4.9b)

{(Po+e0 )+ q’z}_l y(q")

={(p.+€, p)’> +q’ " (b+e?—2Mq'+eq” —&q"‘) .......... (4.9¢)
ot € P 3

Simplifying we can write equation (4.9) in the form

g = {pot € Y 407 Y e, dv'+(p2 +q")do’}
: X, P + {(p°+60 pl)_ +qI2}{
+£ii’i e iy {d't, _ (2pop’+ €, p'z)d(j’}_ .................................. (410'&)

Y
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where

X, =€, X(p,+ €, p)=0at, +2B,p’ - v,p” —%kpo €, p” —Z:;- el p™* e (4.10b)

¥ ={Pet € P +a} ¥(q)

= {(po+ € ) + Q’z}(ao €, —2B,P, €, —VoPo + 8 +Ap,

+e?-2Mq'+eq”? —%q”)

o, =€; (b— g’ +2np,—€p, —%pﬁ) ..........
_ 2A

B, =€’ (n—epo -Tpg) ............................

Yo TEH2AP] e

with o, ,B, andy, being constants independent on &, .

Now if e, — 0,then we have from (4.10)
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2
ds?=(p? +¢2) 9P 2], dq” , 5
(po q )( % +xdc” |+ 1 —y,(dt’ - 2p,p’dc’)? ...... (4.11a)
where
Xp =00 +2BD =V P ceereeereeeeeieeeee e (4.11b)
=( 24 q2) o2 = 2 4, 2 ’
Y, ={P, +4 )g YoDs +Ap, +€ —-2Mq+eq’2——q'4) ........... 4.11¢)

’ d ’ d
ds2=(p§ +q 2)(_1‘_)__.*. deG 2]4- q -y, (d’t’ ~—2pop'dO")2 ....... (4123)

where

X, =0 F 2B P = YoP crrerereremrmninsrenississ s (4.12b)
y,=Y ——(q'2+5p2)—2Re(M+i"°J+' c+ig | (4.12¢)

1 [+] (] ’+ip° Iq,+ip0‘ ............. -
n, =YPo ——ﬁpi ...................................................... (4.12d)

The contracted solution given by equation (4.12) in the co-ordinates

x¥ =(p’,6",q",1") is the generalised NUT solution.
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(b) If we use the co-ordinate transformation from  x =(p,0,q,T) tO

=(p’,0",q’,7") defined by
, o ’ ’ co’
p=p ,0=;—,q =q,+€, q,1T=1T R 4.13)

where q, is arbitrary constant and €, is the contraction parameter.

Under the co-ordinate transformation (4.13) the metric (4.1) reduce to the form

2 1 -
2 2]™ ’
{P' +(qu“Eo q’) } <)
+[p + (0 a) } X (.0 €0 4o’}

{p’2+(qo+€ q)'}

e y(a,+ €, q)

d12

&yt e ) fe, av'- L L T ————— (4.14a)
[p? +(a,+e, )|

where



71

{p” +(2.€, q) }_I x(p’)

-1
:{p’z +(q,+¢€, q')z} (b— g’ +2np’—ep’? —%p"’) ........................ (4.14b)

e’ y(dot €, q")

=g {b+e2 - 2M(q0+ €, ‘]')+E(q0+e0 q’)2 —%(qo+€0 q’)a} .............. (4.14¢)

Simplifying we can write equation (4.14) in the form

ds’* = dp”” + xz{d't’ + (2q°q’+ €, q’z)dc’}2
X2

- p’2 + (q0+ Eo q’)2 dqlz
Y2

- Y2 = {eo dt’ - (q';’; +p”? )dcr’}2 .......................................... (4.15a)
P+ (90t & Q)

where

yZ:E;Z y(qo+ € q,)
(4.15b)

.........................................

’ ’2 4 ’ ll
=0c,+2[3,q +v,q —gxqoq & _g q

%, ={p"? +(go+ €, q’)z}'l x(p")
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-1
:{p’2 +(a.te, Q’)2} {o € -28,9, €, 41,42 +Xq5}

o, =€g° (b+ez—2Mq0+eq§—%7»qg) ................................. (4.15d)
i 2, 3
B, =€, (GqO_M—SMOJ ................................................ (4.15¢)
Y, =E—2h0 % sesmnaemsmss e n s (4.15%)
with o,,B, andy, being constants independent on €, .
Now if e,— 0, then from (4.15) we have
2 dp’2 7 ’ N2
ds” = +x,(d’ +2q,9'do”)
X
2
+(q¢2> + pfz)(ﬁ‘_q__ — yodc'z] ..................................... (4.16a)
Y2
................................. (4.16b)

y, =0, +2B,Q VA s
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X, :(P'2 + qé)"{yoqi +Aq; —e* — g’ +2np'+ € p? -~ %kp"‘} ......... (4.16¢)

The metric (4.16) can ultimately be put into the form

2

, dp

ds” = + xz(d’c' +2qoq’do’)2
X,
r2
+a2 + p’z)[di -y, dc’z) .................................................. (4.172)
Y2
where
Y, =0 + 2P0 HYIQ7 s (4.17b)
+1in | e+ig |2
(o2 +5q2 metin ) L etig | . (4.17¢)
=3 +5q°)+2Re[qn+ip’] 4o +ip’
T X (4.17d)

F[‘his Contracted Solution g‘iven by (4.17) 1S the genera].ised antl"NUT solution.
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4.3 CANONICAL FORMS OF THE CONTRACTED SOLUTIONS

(a) Let us consider the generalized NUT solution given by (4.12) and restrict
the parameter vy, associated with it to the discrete values
Yo=10,—1

Casel: y,=1

If we put o,=1,8,=0 and consider co-ordinate transformation from

x* =(p’,6’,q", 7" )tox”" =(0,¢,q’,t")defined b
p q y
' =eosB =8, =T A=t snommmreassemmom (4.18)

then the metric given by (4.12) takes the form

’2

ds’ =(p§ + q’z)(df}2 +sin’ ﬁd¢2)+ - y,(dt’ —2p, cos Bdo )2 ....... (4.19a)

¥
where
L2
A2 e2)_ M+ in, +| e+ig | (4.19b)
Y1=1—_§(q +5p°) 2Re{q'+ip0) |q’+ip0|
4
N, =Py CZAP e, (4.19¢)
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Case II: y=0

If weset a,=1, B, =0 and introduce new co-ordinates

p'=0cos,6’=9sing, t'=t"+p,p‘c’

then the metric given by (4.12) reduces to the form

ds>=(p2 +q" J(d0® +0do? )+ da” _ y,(@t" +pg®2dp ) oo (4.21a)

¥

where

2
Ao, M+ing) |erig| 421b
y]=—§( 2+5p3)_2Re(q’+iP0]+lq,+ipo| : ;

CaseIl: y,=-1

If we set o, =—1,3,=0 and introduce new co-ordinates
1] H

p’=cosh 9,0’ =, T’ o AP UR R (4.22)
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then we have (4.12) as

r2

ds* =(p; +q'*(d8? + sinh’ 9d9?) + dq -y,(dtf—zp0 cosh 8d¢ )’....(4.232)

where
M +i i lz
y1=—1——k(q’2+5pg)—2R( : ,‘“0) sk (4.23b)
q'+ip,/  |q’ +ip,|
4, 3
Do == Po =T APy wrscisivisssssssnsnnsmsvnssnersrasanss (4.23c)

The equations (4.19), (4.21) and (4.23) are the canonical representations of

the generalized NUT solutions.

Now we would like.to provide some comments concemning the

interpretation of the generalized NUT solution described in canonical

forms.

If p, =0, then we have from (4.19)

12
dst = q'2(d8? +sin? 9dp? )+ T _y g0z .. (4.24a)

1



7

7\‘ 2 2
yy=1-Zgqz M e+g? o (4.24b)

If g = 0 we recognize (4.24) as the Reissner-Nordstrom solution with the
cosmological constant A . The co-ordinate q’ plays the role of the radial
variable. The constant M and e are interpreted as mass and charge
associated with this solution. If g is different from zero, then (4.24)
represents a slight generalization of the cosmological Reisner-Nordstrom
solution : g is interpreted as magnetic charge. For e = g = 0 the solution
given by (4.24) becomes the Schwarzschild solution generalized by the
cosmological constants. Further with e = g = A =0, we obtained from

(4.24), the basic Schwarzschild solution.

If p,# 0 but e = g =0, then the solution given by (4.19) reduces to the

form

ds? =(p§ +q’2)(d82 + i qu)z).;. dq”* _ Y, (dt’ —2p,cos3d )2 ....... (4.25a)

Vi

where
’ 5 M +1n, 4.25b
y1=1—-—(q 2 +5p0)—2Re(q’+lp0] ........................ ( 5 )
4 20’ (4.25¢)
no——po——-lpo ............................................... §
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The solution Given by (4.25) is the NUT solution generalized by the
presence of the cosmological constant. The parameter n, coincides with p,

when A=0. This parameter is the NUT parameter or magnetic mass

parameter.

It is clear that the generalized family of NUT solutions described in the
canonical form by (4.19) and obtained by a contraction from Plebanski
space-time (4.1) represents the combined NUT-Reissner-Nordstrom
solution with the cosmological constant, additionally generalied by the
possible presence of magnetic monopole. The parameters e and g have
interpretation of the electric and magnetic charges; M and n, have

interpretation of the mass and the NUT parameter.

If we put p, =0 in (4.21) then we have

d 12
ds? =q’2(d32 +92d¢2)+—q——y1dt’2 .................... (4.26a)
1
where
2 2
PR N S —— (4.26b)
3 q q

Equation (4.26) is the Kasner-type space-time, an anisotropic universe.

Setting A = e = g = 0, equation (4.26) can be transformed to Kasner form.

Now if we put p, =0 in (4.23) then we get



where
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2
ds’* = q’z(d‘f}2 + sinh? 8d¢3) e y,dt’?

¥

2 2
ylz_l_&ql2_2_'M_+e +g

.............

...................... (4.27b)

The solution (4.27) presents Levi-Civita's type of generalization of the

cosmological Reissner-Noedstrom solution with charges of both types.

The Levi-civita's metric is sometimes interpreted as the metric of a heavy

tachyon.

(b) Now we consider "generalized anti-NUT solutions" given by (1.17)

and restrict the parameter 7, to the discrete values

Po=1, 0, =]

Case I:

If we set o, =1,,=0 and consider the transformation x'* =(p’,¢’,q’,7") to

xulJ = (p/,¢,9’,tl) deﬁned by

p'= p’,c’=¢,q’:sinh9,r’=r' ..........
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then (4.17) reduce to the form

d? == 3 X,(dv’ +2q, sinh 8d¢)’ +(q2 +p'?)(d8? - cosh8d¢”)......(4.29a)

where
Al m, +in e+ig |2
x,=—1-2(p” +5q) +2Re| ——— || 28 (4.29b)
3 qo +1p Qo +1p
My =g+ = Ay ceeereeresrrresressereessseeesesseseesersoseerenns (4.29¢)
Case II: ¥,=0
If we now take o, =1, B, =0 and introduce new coordinates
X" =(pl,y,X,T’) forx'* -_—(p’,O",q’,T’)
defined by
p'=p',0"=yq =X, T = T e (430)
then (4.17) reduces to the form
' 2 2 2 2
4t = 9P ? #x, (de’ +2q,xdy)? + (g5 +P )dx? = dy®) e (4.31a)

Xy
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where
o ; :
xz=—§(p'“+SQ3)+2Re(m°+.mJ- i 8 L (4.31b)
4o +1p'/) |q, +ip’
4.,
m0=§kq0 ............................................. (4.31¢)
Case I1I;

In this case if we set A,=-1, B,=-1 and consider the transformation

defined by
p'=p',0'=¢,q'=sinh 8,1' =1’

then we have (4.17) as

r2

ds® = dp + X, (d'c’ +2q, sinh dep)2
X,

_(qfJ + p’z)(de2 — cosh? de)Z) ................................ (4.33a)

where

e+ig
qo +ip’

m, + in) _ 2 e, (4.33b)

q, +1p’

X,=1- %(p’z +5q;)+ ZRC[
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Equations (4.29) , (4.31) and (4.33) are the canonical representations of the
anti-NUT solution.

If we set e=g=q, =A =0, then (4.33) becomes to the form

72

ds? = 4 X, dt'> — p'?(d9? —cosh? 8dd? ) vueerrereerererenens (4.34a)

where

S ... (4.34b)

which is a solution of Einstein's equation in vacuum.

4.4 THE COMBIND NUT-KERR-NEWMAN-KASUYA
SPACE-TIME

If we take
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- then the metric (4.1) reduces to the form

2_P ¢ 2 X 24q?
ds® = dp® + (dt+q2do)2 + 29 g2 Y o 22
< pr g q°do) _— p2+q2(d17 prde) .
...... (4.36a)
where
X = 8% = (M= P) et seee e esee e e eeane e (4.36b)
y= ql - 2Mq+ a?-n*+e? +g2 ............................... (4.360)

and the parameter ‘a’ gives the interpretation of angular momentum per unit

mass. The above equation represents the combined NUT-Kerr-Newman-

Kasuya space-time in Boyer co-ordinates. If we set n =e = g =0 then the

equation (4.36) reduce to the kerr space-time [71].

The metric (4.36) takes the form

.2 ,
ds? = Td9? + = dr? + _S‘_“Eﬁ (adt — pdd)® — % (dt— AdD)® oo (4.37a)

y

where

¥ =r? + (n+acos9)’
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y=r2—2Mr+a2_n2+ez +g2

...................... (4.37b)
p=r’+a’+n?
A =asin’ ® - 2ncosd
by the co-ordinate transformation
p=n+acost
q=r
T (4.38)
a
_ (n®> +a?)

Equation (4.37) represents the NUT-Kerr-Newman-Kasuya (NUTKNK)
space-time in Boyer-Lindquist co-ordinates. The NUTKNK space-time gives

the following spacetimes.

() Kerr-Newman-Kasuya space-time [72] forn =0
(i) NUT-Ker-Newman space-time when g =0
(iii) NUT-Kerr space-time [73] ife=g=0

(iv) Kerr-Newman space-time [74] withn =g = 0
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(v) Kerr space-time [75] forn = g=e=0(

(vi) Reissner-Nordstrom space-time [76,77] provided n = g = a =0
(vi) Schwarzchild space-time [78]ifn=g=a=¢ =0

(viti) Charged NUT space-time [79] fora =g =0

(ix) NUT space-time [80] whena=e=g=0

So we observe that the NUTKNK space-time includes all the black hole
space-time (iv) - (vii), which are asymptotically flat. In particular the

NUTKNK space-time contains the NUT space-time which has peculiar

properties.

4.5 THE COMBINED NUT-KERR-NEWMAN-KASUY A-DE SITTER
SPACE-TIME

If we use

e:]—%(a2+6n2)

bsaZ_n2+g2—§7\.n2(a2+n2) ........................ (4.39)

and replace n by
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n-+— +
P p

A(3a’n* 2n 3 . )
+20° —6n°p—a’n+2np° | ceverrerennn, (4.40)

We find that the metric (4.1) reduces to the form

. P +q° X IV SR P y
ds® = dp? + dt +q2d P T 447 - —h2da)?
" p p2+q2(T q°do)” + y q p2+q2(dT pido)?....
......... (4.41a)
where
2 5 A 5
x=[a’ - (n—p)’][1+~§(n—p)‘] ........................ (4.41b)

y=(q® +a’ +n2)[1—2§—(q2 +5n%)]-2(Mq+n*)+e’ +g*........ (4.41c)

Equation (4.41) represents the combined NUT-Kerr-Newman-Kasuya-de

sitter space-time in Boyer co-ordinates.
A co-ordinate transfomation

p=n+acosd
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q=r
y (ag‘ + nz)
t=3"t- - 0 3 PO 4.42)
where
J=1+—=a’
brings the metric (4.41) to the form
-2 .2 -2
PR AP C D NI BT 1Lk FAPEPY O S ZA’ (dt — Ado)? ..(4.43a)
b ] r
where

T=r’+(n+acosd)?

A, =1+%a2 cos® 8
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A =(r*+a’+ nz)[l—%(r2 +5n%)] - 2(Mr +n?) +e? + g%......... (4.43b)

p=r’+a’+n?
A=asin?®-2ncos?®

The equation (4.43) represents the combined NUT-Kerr-Newman-Kasuya-de
sitter space-time in Boyer-Lindquist co-ordinates. We call the metric (4.43)
as hot NUT-Kerr-Newman-Kasuya (HNUTKNK) space-time since the de
sitter space-time has been interpreted as being hot [81]. The HNUTKNK

space-time includes:

(i) NUTKNK space-time when A =0

(i) hot kerr-newman-Kasuya (HKNK) withn=0

(iii) hot NUT-Kerr-Newman (HNUTKN) if g=0

(iv) hot Kerr-Newman space-time [82, 83] forn=g=0

(v) hot Kerr space-time [83] whenn=g=¢=0

(vi) hot Reissner-Nordstrom space-time ifn=g=a=0

(vii) hot Schwarzschild space-time [83] withn=g=a=e=0

(viii) hot NUT space-time [84] for a=e=g=0

So we observe that the HNUTKNK space-time includes the NUTKNK,
HKNK, HNUTKN, hot NUT space-times as well as all the black hole
spacetimes (iv) - (vii) which are asymptotically de Sitter. Further if we put A

=0 in the cases (ii) - (vii) we get the Kerr-Newman -Kasuya, NUT-Kerr-
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Newman space-times and all the black hole space-times which are
asymptotically flat. In the limit A = O the case (viii) reduces to the NUT

space-time which is considered as homogeneous anisotropic cosmological
model [18].

Thus the Plebanski space-time (4.1) contains a large number of solutions of
Einstein-Maxwell equations with or without cosmological constant which are
important from the physical point of view. The metric (4.1) contains some
space-times with cosmological parameter which may be found interesting

from the point of view of its inflationary scenario of the early universe [85].
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CHAPTER -V

COSMIC STRING IN NUT-KERR-NEWMAN
SPACE-TIME

5.1 INTRODUCTION

Recently Frolov et al. [1] studied the possible equilibrium configurations of a
cosmic string in the curved space-time such as Kerr-Newman black hole
space-time. In this chapter we would like to study the equilibrium
configurations of a cosmic string in the NUT-Kerr-Newman space-time which
includes as special cases Kerr-Newman black hole space-time [1] as well as

NUT space-time. The NUT space-time has very interesting properties.

5.2 MOTION OF A STRING

In the approximation that the gravitational field of the string is neglected, the
motion of the string is described by the Nambu-action [21,37,86,87]
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_ X% Ox°
I——dezlJ—det(gag al—aal—bj .................................. (51)

where p 1s the mass of the string per unit length and g, (o, =12,3,4) is an

external gravitational field and 1 is for the world-sheet coodinates (a,b = 0,1;

’=1,1'=0).

We consider the string to be open and infinite. In this case we also suppose
that force is applied to the string at infinity so that the string will not fall to

the source responsible for creating the space-time concerned.

In general a stationary space-time is given by

ds® = —R(dt +L.dx')’ +%1deidxi .................................. (5.2)

where 9 R=9,L,=81,=0 and ij=2,3,4. For time-independent string

thij
configurations where T = t and the space like coorinates x' depend on o, the

Nambu-action can be written as

dx' dx’
I=—n|d 1fl--—w———At .......................................... 53
HI i do do (52}
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since the equilibrium configurations corresponds to minimal energy, the
problem is reduced to the investigation of the geodesics in a three-

dimensional space with the metric

A5 B T o somsisomemrsisismiinamsasn sismssmsssninisiimnsiidins (5.4)

5.3 EQUILIBRIUM CONFIGURATION

For the NUT-Kerr-Newman geometry we have

_ 2 o 2
R=_B78 S0 S e (5.5)
r+(n—-acos3)
Ty =8 Ty, ssmussomapsns o smswomennres cosmmmsons s messmsrsens (5.6)
where

n’ X

asin® 8(2Mr —e® +n*) + A(— - 2ncos9)
L, = R T (5.7)

2 A-a’sin’$
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and

A=r*-2Mr+a’+e*—n?

Here M, a, e and n are the mass, angular momentum per unit mass, charge
and NUT (magnetic mass) parameters respectively. The three-dimensional

metric 1; is given by

STV ol ) R —— (5.82)

A—a’sin’ 8§

lrr
A

lgg =A—2a"5in 9 oo (5.8¢c)
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For our study of the geodesics of the three-dimensional space metric l;, we

will use the Hamilton-Jacobi method [88]. We can write the Hamilton-Jacobi

equation of the metric 1, as

OB 1O 0 e (5.9)
oo 2 Ox' ox’

where o is an affine parameter along the geodesic.

If we write

S=—%q20+k¢+P(r)+Q(S) ....................... (5.10)

then we can have from (5.8), (5.9) and (5.10)

dP}z a’k? 2

bl T 1 GRS 511a

A(dr A d " ( )
2 2

(g%) +Sh‘:29 O Tt RN (5.11b)
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5 - : :
where m® 1s the separation constant. The integral of motions k corresponds to

% s 0 .
the killing vector n, =a—¢ and m is related to the existence of the killing

tensor m;:

M> = MDD, o (5.12)
where
oS
P; = 5}(—] ..................................................... (513)
and
! = diag(a® sin” 9,A,A+a’sin® 8) ... (5.14)

On integration from (5.11) we have

P(r) = jerﬁ .............................................. (5.152)

&) Y O — (5.15b)

where
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T T A P (5.16)

and
2
0=m?- 1; —q*a’sin® 8 oo (5.17)
sin
Therefore the equation (5.10) can be written as
r 8
S=—%q20+k¢+IJﬁdr+I«/5dS ................. (5.18)

By differentiating (5.18) with respect to q>, m and k and setting each of

the derivatives equal to zero, we obtain the equations
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r , ¢ dr
[Jsm Lo {Azm} ...................

Equations (5.19) -- (5.21) describe the equilibrium configuration of a string
passing through the point (r,8,,6,) where the value of the affine parameter ¢
is o,. The string lies on a rotational surface given by equation (5.20). The

equation (5.21) provides a unique curve on this surface. Since q is an
inessential parameter, it can be changed by redefinition of the affine

parameter . From now on we set q = 1.

Equations (5.19) -- (5.21) can be put in the following form:

dr)’ 5.22

pr_ IHI; = H o e S AR R SRS R ( )
2

pg—(” j‘D 20 e oo oo (5.23)



98

To analyze the form of the rotational surface we rewrite (5.23) as

2
% 2 -2 )
Ps =m" —— —a‘sin“ 9= - V(8
$ sin® m ®)

where

2

+a’sin® 8

V(8) =

sin

If m? = V(8) is the minimal value of the function V(8) at 8 =8, the solution
of (5.23) is 8=39,.In this paﬂicﬁlar case the surface on which the string lies

1s cone like.

1
When k<a, weget 9,= arcsin(| k |5] and V(8,)=2alk|. Inthe case k
a

>a wegetsoz—z—and V(9,)=k?+a*. For k?>a’ and m? =k? +a’, the

string lies in the equatorial plane of the source responsible for the NUT- Kerr-

Newman space-time.
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5.4 DISCUSSION

The results obtained in this chapter go for the NUT space-time fora=e =0

and for the Kerr-Newman for n = 0.

This study not only encompasses the known results of Frolov et al. [1] in the
context of Kerr-Newman black hole but also provides a similar results for
the NUT space-time which is considered as homogeneous anisotropic

cosmological model [18].
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CHAPTER - VI

COSMIC STRING IN KERR-NEWMAN-KASUYA
SPACE-TIME

6.1 INTRODUCTION

In this chapter we would like to extend the results of Frolov et al. [1] in the
Kerr-Newman-Kasuya space-time. The Kerr-Newman-Kasuya space-time 1s
the Kerr-Newman space-time involved with extra magnetic monopole
charge. This study will be interesting in that reasons to belive magnetic
monopole exist have been on the grounds of the symmetry that they would
introduce in the field equation of electromagnetism. This monopole
hypothesis was propounded by Dirac relatively long ago.The ingenious
suggestion by Dirac that the magnetic monopole exist was neglected due to
the failure to detect such a particle. However in recent years the development

of gauge theories have shed new light on this.



101

6.2 EQUILIBRIUM CONFIGURATION

In general a stationary space-time is given by (5.2)

For the Kerr-Newman-Kasuya space-time we have

A-a’sin® 8

R e
r> +a’cos’ 9
R, SO
where
<2 2 2
_asin” §(ZMr —e -g%)
¥ A—a’sin’ 9
and

A=r2—2Mr+a*+e’ +g°

here M, a, ¢ and g are the mass, angular momentum per unit mass, electric

and magnetic monopole charge  parameters respectively. The three-

dimensional metricl; become
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J. = T (6.5b)
lgg =A—a%sin® 9 i (6.5¢)
PN (6.5d)

For our study of the geodesics of the three-dimensional space 1; we will use

the Hamilton-Jacobi method [88]. We can write the Hamilton-Jacobi equation

of the metric 1; as

08 1108 08 e, (6.6)
o 2 ox' ox’

where o is an affine parameter along the geodesic.

If we write
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1 2
S=-— Qo+ +PE)+ Q) v 6.7)

then we have from (6.5) - (6.7)

dP\* a’k’
() 2 |
I VL (6.8)
(ﬂjz S S S (6.8b)
e U S LR G — |

where m? is the separation constant. The integral of motions k corresponds to

the killing vector n, =;% and m is related to the existence of the killing

tensor m; -
1”52 FTPD s v 8 SRR S (6.9)
where
oS
P = é;‘ ..................................................... (610)
and
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On integration from (6.8) we have

P()= [drH o S (6.12a)
8
QEY= B0/ memmmssnses cmeommssrs o cmaseroe o (6.12b)
where
a2k2 m2
H= Az —'T-i—qz ................................................. (6 13)
and
2 k2 2.2 .2
B=m? ————@q%a"sin® Y. (6.14)
sin

Therefore equation (6.7) can be written as

r 9
S:—%qzs+k¢+J.J’}_Idr+IJ§dS ......................... (6.15)
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By differentiating (6.15) with respect to q*, m and k and setting each of the

derivatives equal to zero, we obtain the equations

oo _j dr  ,¢sin’ 8
0 ro_“/ﬁ_aé[o N A9 e (6.16)
todr 7d8
rj.,AJﬁ_s{,«@ ................................................ 6.17)
Tt d8 £ dr
R Y G . SR ) P T [ —— 6.18
® =0 usinzsﬁ a,{Al\/H} (6.18)

Equation (6.16) - (6.18) describes the equilibrium configuration of a string
passing through the point (r,8,,¢,) where the value of the affine parameter
is o,. The string lies on a rotational surface given by equation (6.17).
Equation (6.18) provides a unique curve on this surface. Since q is an
inessential parameter, it can be changed by redefination of the affine

parameter . From now on we setq=1.
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Equations (6.16) - (6.18) can be put in the following form:

—(l drjz_
I S — (6.19)
dg)’
pg—(l‘“&_) =9 ........................................... (620)
) dp)* _ 2
plb— lw—d'g k .............................................. (621)

To analyze the form of the rotational surface we rewrite (6.20) as

2
p:=m’- _kz —a’sin? 3=m’ - V(8)
sin
where
2
V(§)= —a%sin* 8
) sin® 8
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If m* = V(8) is the minimal value of the function V(8) at § =§,, the solution

of (6.20) is 8 =8, .In this particular case the surface on which the string lies

is conelike.

1
When k<a,weget §,= arcsin(| k |E) and V(9,)=2ak|. In the case , k> a
a

we get 9, =% and V(8,)=k> +a’. For k? >a’ and m’ =k’ +a*, the string

lies in the equatorial plane of the source responsible for the Kerr-Newman-

Kasuya space-time.

6.3 DISCUSSION

In the case g = 0, the result obtained in this chapter will be reduced to the

result obtained by Frolov et al. [1].

This study not only encompasses the result obtained by Frolov et al. but also
provides similar result if the Kerr-Newman space-time is involved with
magnetic monopole. So it is interesting to note that the physical results remain

the same whether or not the magnetic monopole does exist in nature.
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DISCUSSION

In this thesis, we observe that the mathematical approach to study the equilibrium
configuration of a cosmic string is the same in all cases such as Kerr-Newman
black hole [1], NUT-Kerr-Newman space-time [chapter V] and Kerr-Newman-
Kasuya space-time [chapter VI]. Under this observation we like to claim that the
mathematical treatment for studying the equlibrium configuration of a cosmic
string for the space-times having horizons are the same. In support of this claim,
we would like to mention different works of Ahmed [4-12], Ahmed and Mondal
[13,14] and Ahmed and Hossain [15,16]. Ahmed extensively studied the different
problems such as superradiance phenomena, Hawking radiation in the space-
times which are not black hole space-times but the space-times having horizons.
Ahmed observed in his different works that the physical results such
superradiance phenomena and Hawking radiance are not only true for the black
hole space-times but also true for the space-times having horizons. The
mathematical treatment followed by Ahmed in all of these cases are analogous to

those used for the study of radiation for the black hole space-time.
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