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ABSTRACT

In this thesis, we have studied the solutions of the various types of third
order linear systems of ordinary differential equations. In chapter 1, we
have considered the third order linear homogeneous s-ystem with constant
coeflicients and developed Eulerian methods for all possible cases of the
characteristic roots of the variational matrix. In chapter 2, we have
considered the third order linear nonhomogeneous system with constant
coefficients. The method covers all the cases when the roots of the
characteristic equation of the corresponding homogeneous linear system
are real and distinct, real and equal and complex. In finding particular
solutions for the nonhomogeneous system of equations we have used the
method of variation of parameters. Finally, we have obtained solutions of
this system with the help of Crammer’s rule. In chapter 3, we have
considered the generalized form of third order linear nonhomogeneous
system with constant coefficients. We have extended the Eulerian method
and developed new techniques for obtaining solutions of this system. In
chapter 4, we have discussed the third order linear nonhomogeneous
system with variable coefficients. This problem is very difficult to solve,

so we have examined a special case of this problem. By using a suitable

Vi



transformation, we have reduced it to a third order linear
nonhomogeneous system with constant coefficients and have found

solutions by the method of Chapter 2. We have illustrated all the methods

by several suitable examples.
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INTRODUCTION

In natural phenomena, many mathematical relations are described by
differential equations. The differential equation may be ordinary or partial,
linear or nonlinear, homogeneous or nonhomogeneous and with constant
coefficients or with variable coefficients. It is noted that the system of linear
ordinary differential equations with constant coefficients may be solved by
various methods including the method of elimination, Eulerian method and
matrix method. But most of the nonlinear differential equations can not be
solved. Even the linear differential equations with variable coefficients, in
the general case, remain unsolved. Euler developed a method to solve the
second order system of linear differential equations with constant
coefficients. To the best of our knowledge we have not seen any paper or
book providing theorems and solutions of the third order linear
homogeneous systems with constant coefficients by the Eulerian method. In
this thesis we have extended the Eulerian method to solve the third order
system of linear differential equations with constant coefficients and a
d order system of linear differential equations with

special case of the thir

variable coefficients.



In solving the third order linear homogeneous system with constant
coefficients, we have discussed four types of solutions relating to four types
of characteristic roots. In solving the third order linear nonhomogeneous
system with constant coefficients, the process of finding the general solution
of homogeneous part is the same as the general solution of the third order
liner homogeneous equation with constant coefficients as in Chapter 1. For
this we have discussed only the process for finding the solution of
nonhomogeneous part. We have found the particular integral of the
nonhomogeneous part by the help of the method of variation of parameters.
Chapter 3 contains the generalized third order linear nonhomogeneous
system with constant coefficients, where the dependent variables x, y, z and

f{_y’ bz appear in all the equations of the system. This
r

. . . b
their derivatives Qc—, ”

di
system is an extension of the system given in Chapter 2. Chapter 4 deals
with the third order linear nonhomogeneous system with variable
coefficients. This is a very difficult problem and can not be solved easily.
However, a special case of such a second order system have been solved by
Cauchy and Euler separately. They have used a suitable transformation that
reduces the system with variable coefficients to a system with constant
coefficients. We have extended their method and solved a special case of the

third order linear nonhomogeneous system with variable coefficients.
2



Although most of the differential equations involving physical problems are
nonlinear, we can impose some restrictions to linearize the system and then
investigate the existence, uniqueness, stability and oscillatory nature of the
~ solutions [1, 2, 5, 6, 8, 11]. The Purpose of this thesis is to develop Eulerian
method for the solution of third order linear dilferential systems. This result
may be used in Mathematical Physics, Population Dynamics, Fluid

Mechanics and various branches of Engineering.



CHAPTER 1

Eulerian Method for Third Order Linear Homogeneous

Systems with Constant Coefficients

1.1 Introduction

System of linear homogeneous differential equations with constant
coefficients can be solved by the method of elimination, Eulerian method
and the matrix method. Second order linear homogeneous systems with
constant coefficients have been solved by the method of elimination in
Braun [3] and by the Eulerian method and the matrix method in Ross [9].
Third order linear homogeneous systems with constant coefficients have
been solved by the method of elimination in Spiegel [12] and by the matrix
method in Ross [9]. In this chapter we have considered a third order linear
homogeneous system with constant coe(Ticients and provided theorems for

distinct, complex and repeated eigen values of the variational matrix. The

method is supported by the solution of several examples.

1.2 The Method

We consider

3 ax+by+cz

at

& a,x + b,y +cz (1.1)
dt

—d-g- = d}x + b_LV + C_‘Z

da



where the coefficients a,, by, ¢;; a; ,by, ¢, and a3, bs, ¢; are real constants.

According to the Eulerian method, we assume a solution of the system (1.1)

of the form

x=q e
y=pe" (1.2)
z=yeM

where o, B, yand A are unknown constants.

Substituting (1.2) into (1.1), we obtain the algebraic system
(= A)a+b ptey=0
a; o +F(by—A)+cy=0 (1.3)
azo+b3BH(c;—A)y=0

We seek a nontrivial solution of the system (1.3). A necessary and sufficient

condition that system (1.3) have a nontrivial solution is that the determinant

ai— A by ci

a bz—'}\. Cy = O

a3 b3 Cg-l
or, AM3AK+H3Akytky=0 (1.4)
where

p = —(a, +b, +¢;)

e, = 3

I = a,b, +b,c; +¢39 —a,b, —b,c, —cay

2

3
k, = a,byc, — a,b,¢; —abc, +a,biey —aybie + 056,
' 5



Equation (1.4) is called the characleristic equation associated with the
system (1.1) and its roots, say t,v and 1y are called the characteristic roots. If
(1.2) is to be a solution of the system (1.1), then A in (1.2) must be one of
these roots. Suppose A = 1. Then substituting A =t into the algebraic
equation (1.3), we may obtain a nontrivial solution a,, B; and vy, of this

algebraic system. With these values o, f; and vy, we obtain the nontrivial

solution

x =0 e’

y ="’

z=1ye"".
Substituting A=y-+h in (1.4), we obtain

F3(hH )y 23 (02K bk )y +H( 3k h 3 kol Hs)=0. (1.5)
Choosing h+k,=0, the transformed equation s

y3+3 Hy+G=0 (1.6)
where G= 2!(,3—31<_|k2+l<3

H=ky—k,".

The substitution y=u+v reduces lo
y3 - 3uvy — (u3+v3)=0. (1.7)
Comparing (1.6) and (1.7), we get

33
uv =-H, or wv=-11

3 ~
and u'+v'=-G.
0



3 3 . . .
Hence u” and v” are the roots of the quadratic equation

t*+Gt—H’=0. (1.8)
Suppose
1 -G+VG? +4H’
u'= (1.9
2

_G -G +4H’
v'= 5 = (1.10)

From the equation (1.9) and (1.10) we see that there are three values of u and
three values of v. Since we have considered y = u+v, the possible values of y
will be uptvy, uFva, utvs; uptvy, tatvy, Urtvy and uztvy, ugtvy, ustvs. But

uv =—H, so we are to take those values of u and v whose product is —H.

2 2
If the roots of u and v be u, uw, uw’ and v, vw, vw"; then the roots of

equation (1.6) will be utv, uw+vw? and uw +vw
where
w= %FH «/——_3}
W %{— | = \/3}
The expression G411 is called the discriminant of the cubic equation (1.6).

The nature of the roots of (1.6) is dependent on the sign of the expression

G +H4H.



Nature of the roots of the cubic equation

Case |

If G>+4H%< 0, then v’ and v’ are complex conjugates and so u and v are
complex conjugates. Thus the roots of the cubic equation (1.6) are real and
distinct.

Case 11

If GH4H*> 0, then u and v are real. So, one root of the cubic equation is real
and the other two roots are complex conjugate to each other.

Case 111

If G*+4H’= 0, then u=v. Therefore the three roots of the cubic equation are
real of which two are equal and the other is distinct.

Case 1V

If G=0, H=0; then the three roots of the cubic equation are real and equal.

Four cases must now be considered

Casel

The roots of the characteristic equation (1.4) are real and distinct when
G*+ 4H’< 0.

If the roots p, v and n of the characteristic equation (1.4) are real and

distinct, then we should expect three distinct linearly independent solutions



of the form (1.2), one corresponding to each of the three distinct roots. We

summarize this case in the f[ollowing theorem:

1.3 The Theorem 1

If the roots p, v and n of the characteristic equation (1.4) associated with the
system (1.1) are real and distinct, then the system (1.1) has three nontrivial

linearly independent solutions of the form

x = ouet!
y =Rie"
z=ye",
X = ape
y = Pae”
z="e"
and
X = G.genl
y — B:;e]]l
Z:Y.ze”t

where oy, B, Y15 o2, P2, Y2 and o, Pa. v; are definite constants. The general

solution of the system (1.1) may thus be written as
x = cyo e’ ey ome’t +ey oz
y=c B e" +cBre’t +ey Bs el
z=c e +eaye’ ey vae"

where c; ¢, and csare arbitrary constants.
9



The Example

dx

—=T7x—-y+6z

d’ X )}

Y 10x+4y-12 (1.11)
_—= = = zZ .
dr 2

E=—2.‘c+y—,z.

dr

According to the Eulerian method, we assume a solution of the system

(1.11) of the form (1.2); i.e.,

x=q e
y=pe" (1.12)
z=7ye"

Substituting (1.12) into (1.11), we obtain the algebraic system
(7-A) a—=B+6 vy =0
(1.13)
10 +{4-)P—-12y=0
—20+pB-(1+A)y=0

in the unknown A . For nontrivial solutions of the system (1.13), we must

have
7=\ -1 6
-10 4= 12 |70
—2 | —-1-2A
or A -10A*+31A-30=0. (1.14)

10



Comparing ([.14) with (1.4) we observe that

-10 31
k[: —3—, kz: '—3", k} = -30.

So, G=22 pg=21
27 9

Thus, G411} = _—34< 0.

Hence the characteristic equation (1.14) has three distinct real roots.
Solving (1.14), we find that the roots of this equation are A= 2, 3, 5.
Setting A = 2, 3, 5 into (1.13), we obtain simple nontrivial solutions
o=1,p=~1,y=~1I,
a=1,p=-2y=-1
and o=3,=-0,y=-2

respectively.

With these values of o, B3, y and A, we [ind the following three sets of

solutions :

x=ge%

y:-—ezl (1.15)
2

z=e",

x=e"

y==—263t (1.10)

_ 3

Z=-8" Rajshahi University Library
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and

x =3e™
y=—6e” (1.17)
z=-2e""

respectively.

Further, the Wronskian W(t) of the functions (1.15), (1.16) and (1.17) is

P13
wy=e" -1 -2 -6
1 -1 =2
:__elm
= 0.

Thus the solutions are linearly independent.
Hence the general solution of the system (1.11) is
x = ce? + cpe’ +3 cie’
y= —ce' - 2c,e’ — 6(:;6:51
7 =—ce’ — ce” — 2c5e™

where ¢, c; and c3 are arbitrary constants.

Case 11

Two roots of the characteristic equation (1.4) are complex and the other root

is real when

G+ 41’ > 0.

12



If two roots 1 and v of the characteristic equation (1.4) are the complex
numbers a + ib and a — ib, and the other root be A then we obtain three
distinct solutions.

* e((r'l-ih)l

X =0
y= BI* Glatiby
7= Yl* E:(m-ib)l ,
w= p” el
y =P, "™ (1.18)
o (a-ib)t
Z —'Yz e
and
A
X =oe
.
y = e
X
z=ye"

* * * i .
where oy [}, and y, are complex constants. The solutions (1.18) are
complex solutions. In order to obtain real solutions in this case we consider

the first of the two solutions (1.18) and proceed as follows:

* * *, . . o
We first express the complex constants o , 31 and y, in this solution in the
* . * . * ‘
forms ooy = oy +io, By =By +ipsandy; =y, + iy, where ay, By, v oz |
- ) i0 i
By, v2 are real. We then apply Euler's formula € = cos 8 + i sin O and

express the first solution (1.18) in the form

x = (o, + ioy) e (cos bt + i sin bt)

y=(B+ifB,) e (cos bt + i sin bt)



z=(y, +iyz ) e" (cos bt + i sin bt) .
Rewriting this we obtain’
x = ™ [(o; cos bt — oz sin bt) + i (05 cos bt + o sin bt)]
y =e" [(B coé bt — B, sin bt) +i (B, cos bt + B, sin bt)] (1.19)

z=e" [(y; cos bt —y, sin bt) + i (y2 cos bt + vy, sin bt)] .

It can be shown that a pair [{j(1) + if; (t), gi(t) + ig; (t), hi(t) + ihy (t)] of
complex functions is a solution of the system (1.1 ) if and only if both the
pair [fi(t), gi(t), hi(t)] consisting of their real parts and the pair [f(t), ga(t),

hy(t)] consisting of their imaginary parts are solutions of (1.1 ) separately .

Thus both the real part
x = e™ (o, cosbt — a5 sinbt)

y = e (B cosbt — B sinbt)) (1.20)

z=¢" (y cosbt — y, sinbt)

and the imaginary part
x = e™ (o, cosbt + o sinbt)
y = e™ (B cosbt + B, sinbt) (1.21)
7 = e (v, cosbt + y, sinbt)

of the solution (1.19) are also solutions of (1.1). The Wronskian for these

solutions is
14



e™ (cr) cosbt — oz sinbl) €™ (otp cosbt + o) sinbt) oe™
W(t)= | e” (B) cosbl— By sinbt) & (33 cosbt + [3; sinbt) pe”
e” (y; cosbt =y, sinbt) €™ (y3 cosbt + ¥, sinbt) y e
o cosbt — o sinbt o cosbt + o sinbt o
—e (2 a2t .
31 cosbt — 3, sinbt [32 cosbt + [3; sinbt B
¥1 cosbt — vz sinbt ¥2 cosbt + v, sinbt Y

= e M [or (Brya = Bavt) — B (atva — oayi) +y (a2 — o)) -

* * * §
Now the constants o, , B, and v, are assumed to be non real multiples of

each other. If we suppose that
a(Biy2 — Bavi) + B(yica —ya0u) + (o Pz — 0P} = 0,

then it Tollows that o, Bi" and y,” are real multiples of each other, which

contradicts our assumption.

Thus

o Brya = Bayr) + B (1102 = y20u) + ¥ (a2 — aufi) # 0

and so the Wronskian W(t) is unequal to zero. Thus the solutions (1.20) and

(1.21) are linearly independent. Hence a linear combination of these three



real solutions provides the general solution of the system (1.1). We

summarize the above result in the following theorem:

1.4 The Theorem 2

If the two roots p and v of the characteristic equation (1.4) associated with
the system (1.1) are complex numbers a +ib and the other root be A, then the

system (1.1) has three real linearly independent solutions of the forms
x =e™ (o cosbt — oy sinbt)
y = e" (B cosbt — B3 sinbt)

z = e” (yicosbt — y;sinbt),

x = e (a1 cosbl + ot sinbt)
y = €™ (B2 cosbt + By sinbt)

z=¢e" (y; cosbt +y; sinbt)

and
A
X = Qe
T
y = Pe
A
Z = ye

where o By ; o1, Br, y1 and o, B, 2 are definite real constants. Hence the
general solution of the system (1.1) may be written as

x =e™ [c, (ot; cosbt — oy sinbt) + co(at, cosbt + a sinbt] + c;oe™

y = e [c; (B cosbt — B, sinbt) + c5(B, cosbt + By sinbt] + c;pe™

7z =e" [c; (y; cosbt — 2 sinbt) + cy(v2 cosbt + y; sinbt)] + cyye
16



where ¢, ¢, and c; are arbitrary constants.

The Example

dx
= x + y
dt (1.22)
d
4 = x - 2z
dt
2 )+
= g
dt :

According to the Eulerian method, we assume a solution of the system

(1.22) of the form (1.2); i.e.,

X = (xe“
y =Be™ (1.23)
z= ye"

Substituting (1.23) into (1.22), we obtain the algebaric system

(I-A) a+p=0
o—Ap—2y=0 (1.24)
B+(I-A)y=0

in the unknown A. For nontrivial solution of the system (1.24) we must have

1-A | 0
I o =2 |70
0 1 1-2

17



or, M —-2A2+20—1=0.

Comparing (1.25) with (1.4) we observe that

=" 2
ki= —=,ky==,ks=~1I.
1= 57 K= 1, K3

So, G=_L H=2.
27 9

Thus, G413 = %> 0.

(1.25)

Hence the characteristic equation (1.25) has a real and two complex

conjugates roots.

Solving (1.25) we find that the roots of this equation are A = 1, (1 +V3)2,

(1 —1iv3)2.

Setting A = (1 — iV3)/2 into (1.24), we obtain a simple nontrivial solution

a=y=2,p=-1-3i.

Using these values in (1.23), we obtain complex solutions. Since both the

real and imaginary parts of this solution are themselves solutions of (1.22),

we thus obtain the following two real solutions:

, A3

x = 2e'"? cos

_2 NE) _J_§
y=-e " (cos ——2—l+ 3 sin S 1)

{

(1.26)



112 \/3

z=2¢€e " cos—t
2

and
x=2e" sin 3,
2
y =e"™ (V3cos —\/zi/ +sinl£-3——t) (1.27)
w3

z=72e ‘sih—1.
2

Setting A=1, in (1.24) a simple nontrivial solution of this system is
a=2,p=0,y=1

and putting these in (1.23) a solution of (1.22) is

x = 2¢'
y=0 (1.28)
z=¢

Further, the Wronskian W (t) of the functions (1.26), (1.27) and (1.28) is

2cos—3/ 2sin—3t 2
2 2

3 3—/—31) NE) 3 3 0

2 3 : :
=o' |- (cos 21 +/3 cos—1 + sin—1
W(t)=e~ |-(cos 5 { ++/3sin 5 08~ 5

2005—3—1 2sin-—ll |
2 2

= —2./3 = 2sin 3t

2 .
19



Thus the solutions are linearly independent.

Hence the general solution of the system (1.22) is

!
— 3 3 .
x=2cje ? (cycos —\g—_wl-kcz sin -\/5_?-’—{)-% 2¢,e’

w2, 3

y=-cie "~ (cos 5+ 3sin%l)ﬂ*ge’”(\/gcos%zwsin%t)

N

— t2 . 3
z=172ce cos —1 +2c,e”’ sin—1 + ¢ e’
2 . 2 '
where ¢y, ¢, and c; are arbitrary constants.

Case 111
Two of the three real roots of the characteristic equation are equal and the

other is distinct when

G +4H = 0.

If the two roots of the characteristic equation (1.4) are equal, it would appear

that we could find only one solution of the form (1.2) corresponding to the

two equal roots. Now if

x = o™
y = et (1.29)
z = ye™ '

be a solution for one of the equal roots, then a second solution for the

corresponding equal root has the form
20



x=(at+a) eM
y=(Bt+p)e™ | (1.30)
2=yt e,

where o, 3y, vy, are constants and not all zero.

The third solution for the unequal root has the form

X= (Xzevl
y =PBae"’ (1.31)
Z__,Yzevl

We now summarize the result in the following theorem:

1.5 The Theorem 3

If the roots p=v=A of the characteristic equation (1.4) associated with (1.1)
are real and equal and 0 is distinct, then the system (1.1) has three linearly

independent solutions of the form

At
X=qQoe
_ At
y=Be
}\.l
z=ye,

x = (ot + o) eM
y=(pt+ By

z=(yt+y) eM
21



and

X=0,e"
— nt
y=p,e"
Z=,Yzel](

where oo 3.y ; o, Bi, Y15 a2, Ba, ¥2 and o, Bs, 13 are definite real constants

and oy, By, v, are not all zero.

The general solution may thus be written as
x=cia e+ (at+oy)e+teyone
- A LT Al il

y=c Pe” to(ftt+P)e” tesfre

l

z=ciye™ +o(yt+y) e Foyyp et

where ¢y, ¢; and c; are arbitrary constants.

The Example

i'£=7x+4y+4z

di

dy

—~ =—6x-4y-Tz

” 4 (1.32)
dz

—=-2x—-y+2z

dr yres

According to the Eulerian method, we assume a solution of the system

(1.32) of the form (1.2); i.e,,

x=o e
y:Be“ (1.33)
z=ve".

22



Substituting (1.33) into (1.32), we obtain the algebraic system
(7-A) o+ 4B +4y=0
—60+(4-MB-7y=0 (1.34)
-20-PB+2-L1)y =0

in the unknown A. For a nontrivial solution of the system (1.34), we must

have
7-A 4 4
-6 —4-L1 -7 =0
=3  =[ B=%
or, A =51 31+9=0. (1.35)

Comparing (1.35) with (1.4) we observe that
-3
1(|: —5—, k;z: ], k3 =0.

So, G= 1_2_8, H= LE
27 9

Thus, G*+4H’ = 0.

Hence the characteristic equation (1.35) has two equal and a distinct real
roots.

Solving (1.35) we find that the roots of this equation are A =—1, 3, 3.

Setting A = 3 into (1.34), we obtain a simple nontrivial solution

a:OwB:l'fy:—I -
23



Thus a solution of (1.32) has the form

x=0

|
y=e'' (1.36)
z=—¢"'

Since the two roots of the characteristic equation are equal to 3, we must

seek a second solution of (1.32) of the form
x = (ot + o) e
y=(Bit+ By) & (1.37)

z=(yit+v2) e,

Substituting (1.37) into (1.32), we obtain
0 =0,p =17 =-1
and or=1,B=-1, y»=0.

Thus a second solution of (1.32) has the form

R

X=c
y=(t—1)e" (1.38)
z=—te"

Setting A =—1 into (1.34), we find

a=1,p=-2, y=0.
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Thus a third solution of (1.32) has the form

X=e
y=-2¢ (139)
z=0.

Further, the Wronskian W (t) of the functions (1.36), (1.38) and (1.39) is

0 1
W) =e'|1 -1 =2
-1 -1 0

5t
=¢

#= 0.

Thus the solutions are linearly independent.
Hence the general solution of (1.32) is
x=cre' +cye
y=c el te(t—1)e" 2c e,
z=—c e —cyte

where ¢, ¢, and c; are arbitrary constants.

Case 1V

Three roots of the characteristic equation (1 4) are real and equal when

G=0,H=0.
If the three roots of the characteristic equation are real and equal it would

appear that we could find only one solution of the form (1.2). In this case if

15



A

X=ae
— [ M
y=Be (1.40)
z=ye

is a solution of (1.1), then a second solution for one of the equal roots has of

the form
x=(ot+o)e™
| y=(Bt+oe™) (1.41)
z=(yt+az)e™
and a third solution for the other equal root has the form
x = (ol + Pyt +7,) e
y = (B + Pat +y2) € (1.42)

7=yt + Byt +y3) ™.
This result is summed up in the following theorem:

1.6 The Theorem 4

If the three roots of the characteristic equation (1.4), associated with the

system (1.1) are real and equal, then the system (1.1), has three linearly

independent solutions of the form

At
X=0ae€
_ At
y=Pe
A
z=ye ,
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x = (ot + o) e
y = (Bt+oy) ™
z=(yt+ o) e

and
x = (at® +Bit +y) e
y = (Bt +Bat +75) ™

7= (Y0 +Bat +73) e

where o, B, v o, B, Y1 5 &2, B2, ¥2 and a3, B3, v; are definite constants and

o, 3, v are not all zero.

The general solution (1.1) may thus be wrilten as
x = ¢ oe™ + ¢y (at + oy )e™ + ey (ot + Byt +7y,) M
— 1M o A 2 M
y=c Be™ + (Bt + ap)e” +e3 (Bt Pt +yr)c
z= ¢yl + ¢y (yt + o)’ + oy (1 + Bt +y3) €

where ¢, ¢, and ¢y are arbitrary constants.

The Example

—d£=8x+12y—22

dt
Y _ 3x-dy+z | (1.43)
dt
dt
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According to the Eulerian method, we assume a solution of the system

(1.43) of the form (1.2); i.e.,

X = o e
—n X
y=fe" (1.44)
z=y&t

Substituting (1.44) into (1.43), we obtain the algebraic system
B-AMa+12p-2y=0
Sa—-(4+AM)PF+y=0 (1.45)
—-0—-2B+(2-A)y=0

in the unknown A . For a nontrivial solution of the system (1.45) we must

have
g-A 12 =2
3 —4-n 1 |7
1 —2  2-)
or, A —6A+124—8=0. (1.46)

Comparing (1.46) with (1.4) we observe that
kr_— —2, k2: 4, k3 = -8.

So, G=0,H=0.
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Hence the characteristic equation (1.46) has three real and equal roots.
Solving (1.46), we find that the roots of this equation are A=2, 2, 2.
Setting A=2 into (1.45) we obtain a simple non trivial solution

o= 2, p=-1,y=0.

Using these values we obtain the solution

x=2¢"
y=—e” (1.47)
z=0.

Since the roots of the characleristic equation are equal to 2, we must seek
second and third solutions of the form (1.41) and (1.42) respectively. Thus
we must determine o, B, ¥ ; &1, B1Yi; O, B2, Y2 and oz, Bs, y3 such that

x = (ot + o) e”

y = (Bt + o) €” (1.48)

z = (yt+ o) €”

and
x = (o’ +Bit +71) e
y = (B +Pat +72) € (1.49)
z =y Bt + 1) €™

respectively.
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Substituting (1.48) and (1.49) into (1.43), we obtain the following simple

nontrivial solutions

gi=g, f==l,y=0
a;=0,0,=0, 03 =1

and a=2,p=-1, y=0
Bi=0,B=0,p;=-2
V1=2,¥2=0,y3=0
respectively.

Setting these values, we obtain

x =2te”
y==g e
z=—¢%
and
X = (?_t2 +2) e
P
z=(2t+6)¢”
respectively.

(1.50)

(1.51)

Further, the Wronskian W (t) of the functions (1.47), (1.50) and (1.51) is

2 2 2 +2

W(t)=e("—1 =] —i"
0 -1 —-2{+6
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= 2¢"

# 0.

Thus the solutions are linearly independent.
Hence the general solution of the system (1.43) is
x=2¢c e +2c,te’ + oy (P + 1) e
y=—c e —cyte? —1/2¢c; % e”

z=-cye" —c; (t—3) &”

where c, ¢, and ¢, are arbitrary constants.
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CHAPTER-2
Eulerian Method for Third Order Linear Nonhomogeneous Systems

with Constant Coefficients

2.1 Introduction

In this chapter a third order linear nonhomogeneous system with constant
coefficients has been considered. The method of variation of parameters is
used to find the particular integral of the nonhomogeneous part. We have
developed Eulerian method for the systems and provided a theorem for this

case. The method is illustrated by an example.

2.2 The Method

We consider
dx =ax+hy+cz+(l)
dr
d—y=a2x+!72y+czz+c_”2(1) (2.1)
dt
dz
Z =ax+byy+cz+ ()
da

where the coefficients ay, by, ¢1; a2, b2 €2 and a3, b3, ¢y are real constants.

The corresponding homogeneous part of (2.1)is

dx _
—=ax+bytez

di

Q:azx+b2y+czz (2.2)
dt

dz =qa,x+by+cz.

d
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According to the Eulerian method, we assume a solution of this system (2.2)

of the form
x= oe™

y=pe" (2.3)

z
z=ve"

where o, f3, y and A are unknown constants. Substituting (2.3) into (2.2), we

obtain the algebraic system
(ai-A)a+ b +cy=0
a,o + (bz—?\,)B ‘|'C2'Y =0 (24)
azou + by HeyA)y = 0.

We seek a nontrivial solution of the system (2.4). A necessary and sufficient

condition that the system (2.4) has a nontrivial solution is that the

determinant
a -4 b c
a, b, -4 ¢ =().
i b, c,— A

This gives

A+302k+3Aky ks =0 (2.5)
where
—(a, +b, +¢;)
&y = (q, 3_ 3
I a,b, +hycqy 634 —a,b, —bye, —¢ a4y
(2 - 72 ] e ———_——

3
ks = aibsca - a,baC3- azbicat a>bic;3- azbyc) + azbacy.
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The equation (2.5), called the characteristic equation associated with the

system (2.2), has three characteristic roots.
Let
x = (t)
y=vi(L)
z=1,(1),
X= (1)
y=va(t) (2.4
z=ny(t)
and
x= p3(t)
y= V(1)

z=Ns(t)
be the three sets of linearly independent solutions of (2.2) for the three

corresponding characteristic roots of (2.5).

Then the general solution of (2.2) i.e. the complementary function of (2.1), 1s

given by
x= cy b (t)Featta(t)tespis(t)
y= cvi(t)teava(t)tesva(l)

7= cyM(t)+Feana(t)+esns(t)

where c;, ¢, and ¢ are arbitrary constants.
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Now the method of variation of parameters can be used to find the particular

integral of (2.1). Thus we assume a particular integral of (2.1) of the form

Xp= WO (D)) (Dpis(t)
¥p= WOV (D) va(t) s vs(t) 2.7)
2= WO OO0

where the arbitrary constants ¢, ¢, and ¢z in the complementary function
have been replaced by the unknown functions (t), Wa(t) and y;(t) to

be determined.

Since (2.6) satisfies (2.2), we obtain
(1) = a (1) + byvy (1) + o)
Vi) = ayp, (1) +byv(t) + ¢, i)

) = ay g, (1) +byv (1) + ¢yt s

pa(t) = apyft) + byvy(1) + ¢\ 1(1)
V(1) = a, ji, (1) + byvy (1) + ¢y 115(1)

(1) = aypty(1) + byvy(1) + 4 15(1)

and () = a,i,(1) + b, vy(l) + ¢\ i(1)
vi(t) = a, f(1) + b, v,(1) + NG

(1) = ay (1) + byva(l) + ¢ia(l) -



Again (2.7) satisfies (2.1)

S POR O+ 15 OR (0 + W5 OR;(0 + W (O] (1) + P, (Ol (1) + W, (O, () =

yi(t)  {anu®rbyvi(tytem (b)) +
{a; ()b va(t)yFems(t))+E),

Wa(t)

L@ +Hby vt +eima(t) )+

W (v, (0 + PH OV, (0 + P00+ (010 + P, (V30 + () v =

yi(t)  {aapu(t)+byvi (e (D +
{a(t)yHbyva(t)Heams() -+ &

and

Wa(t)

{@ala(t)Fbava(t)reoma(t) )+

P HONAOR: U (Om, (0 + PO, (O +Y, OMHOER AOLHOES VL) =

wi(t)  {aspu(t)tbzvi(+ea (B + Wa(t)  {aspa(t)+bsva(t)tesma(t)}+

{asp3(0)+bava(t)reama()}+ &,

or, Wi (0) (e Wi pa(yr Wi ps() = &)

W (8) vt V(0 vaty+ W3 (0 va()=Ealt)

i (0) mi)+ o (O na0)F W5 (D) na(t) = Es()-

Solution of (2.8) by Crammer’s rule yields

Y0 =

o) =

Lll; (t) -

>

A

>

5

g

A,

A
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where

HIOREORNING (D) 1,0 1Y)
A={v (t) v,(1) vy (0] A =1, () vz(l) vz(t)
MO MO 00 £ (0 1,0)]
() &0 py(0 (O my () & ()
A, =lvi() &) vy(l), Ay =vi () vy(t) &,(L).
) &M ) M) M0 &,(0)

Thus we obtain the functions \;(t), \(t) and w;(t), defined by

Y _él It
yi(=] A(
A
ya(t)= ‘”A_zdt (2.9)
A
\a(t)= __A'B'dt-

Therefore, a particular integral of (2.1) is obtained from (2.7) by using (2.9).

Hence the general solution of (2.1) is given by
x= {ctyn(t)} ()t {cotyna(t) fra(t)t {extys(t) }rs(t)
y= {crhyn (O} viert {catua(D}va(OF {cahys(D)}va(t)

z= {ciHyn(t)Ini(+ {carya(D) N2t {eatya(D)na(t)

where ¢, ¢, and c; are arbitrary constants and the functions y(t), yo(t) and

ys(t) are obtained from (2.9).
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Summarizing the results, we have the following:
2.3 The Theorem 5

T'he general solution of the third order linear nonhomogeneous system with

constant coefficients of the form

dx |
—o=axtbyrez )

dy
— =a,x+b,y+c,z+E,(1)

dz
= a,x+byy+c,z +&E(1)

is given by

x= {chy (0 O+ {eatya(t)fra(t+ {eatys(t))s(t)
y= {c (D)} vi( {catyn(t)}va(t)t {catys(D}va(t)

z= {c () i)+ {cotya(t) i na(t)+ {eytyps (D) n3(t)

where (D), (0, 1m®; vi(), va®, va(®) and mi(®), Mat), M(0) are the

solutions of the corresponding homogeneous part and (1), wa(t) and ys(t)

are the variations of the parameters ¢y, C; and c; of the above system.

2.4 The Example

—'dx 6z—-5t—0
dt Tx —y + 6z

%—X=—lox+4y—l2zr4t+23 (2.10)
t

Z
= Ix+y-—zt2
a2
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The corresponding homogeneous part of (2.10) is

dx

cltﬁF/X_y+6Z

QZ_ 10x + 4

dt x+4y—12z (2.11)
£z 2x +

at X+y-—z

According to the Eulerian method, we assume a solution of the system

(2.11) of the form

)\
x= o.e™

y=p "

7=y eM

(2.12)

where a, B, y and A are unknown real constants.
Substituting (2.12) into (2.11), we obtain the algebraic system
(7-Mo.—p+6y=0

—100.+ (4P —12y=0 (2.13)

20+ P +H(—1-A)y = 0.

For nontrivial solution of the system (2.13), we must have

7ok -l 6
10 4-x -12 |=0,
) 1 -1-A

which simplifies to
A3-10A2+314 —30=0. (2.19)
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Solving (2.14) we find that the roots of this equation are A =2. 3. 5

Setting A = 2, 3, 5 into (2.13), we obtain simple nontrivial solutions
a=1, p=-ly=-1;
a=1,p=-2,y=1

and o=3,B=-6,y=-6

respectively.

With these values of a, B, y and A; we find the following three sets of

solutions:
_ .2
X=e
y=-¢" (2.15)
7= -¢”
x=e"
y=-2¢" (2.16)
7=-¢"
and
x=3e”
y=-6e™ (2.17)
7=-2¢"".

Further, the Wronskian W (t) of the functions (2.15), (2.16) and (2.17) is

P13
w=e"f1 -2 -6
B
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10¢
=—€e

%= 0.

Thus the solutions are linearly independent.
Therefore the complementary function of (2.10) is

X=cret+ cpe’ + 3cqe”
_ 3
Y=o~ 208" - oyt (2.18)

_ 3t 5
7= -Cie - e - 2¢3€°

where c;, ¢, and ¢ are arbitrary constants.

Now by using the niethod of variation of parameters, we assume a particular

integral of (2.10) of the form

=y (e’ + wa(De™ + 3ya(t)e”
y,= -Wi(t)e” - 2ua(t)e™ - Gs(t)e” (2.19)

2= i (t)e” - wa(De™ - 2y3(t)e”

where the arbitrary functions y(t), Wa(t) and y;(t) are such that

i+ (e + 3yfs(t)e™= -5t - 6

(D - 2yi(t)e’ - 6yiy(t)e’= -4t + 23 (2.20)

_\|,'|(t)32‘ . \|1/2(t)e3l - 2\|I3(t)65 b5,

Solving (2.2.0) by Crammer’s rule, we obtain

W) = (72)7,

-3

yro(t) =—(8tt+1)e

ya(= (1) €%
M



Thus a particular integral ol (2.10) is
Xp= 28
Vi~ d
zp= —t+1.

Hence the general solution of (2.10) is

x=cet + cpe’ + 3cqe + 2t
y=—ce’'— 2c,e™ — 6cze” + 3L -2

- 2t 3 S5t
7z=-2cie” —ce” —2¢cie” —t+ |

where ¢, c; and ¢ are arbitrary constants.
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CHAPTER-3
Eulerian Method for General Third Order Linear Nonhomogeneous

Systems with Constant Coefficients

3.1 Introduction

In this chapter, we have considered the general system of equations, each

equation contains the terms of x, y, z & dx d—y,%. The number of

dt’ dt’ dt

independent arbitrary constants appearing in the general solution of this
system is equal to the degree in A of the determinant of the coefficient
matrix, provided that the determinant does not vanish identically. 1f the
determinant is equal to zero, then the system is dependent, such systems

will not be considered here.

3.2 T]le Method

We consider the most general third order linear nonhomogeneous system

with constant coefficients

d
a|E{i{+b|g¥+0,j+d|x+ely+le:Pl(t)
dt dt dt
azilj—(+b2-(—jl/+cz'(—1_z—l_d2x_1-e2y4_ [‘22‘: PZ(I') (3-1)
dt dt  “dt
m%+b3£j_¥+c}£izl+d1x-i—egy+f"JZ=P3(t)
T dt dt dt -

3 - I
where ay, by, ¢i, dis €1 fi; a2, b2, €2, dy, €2, f and as, by, c3, d3, €3, f3 are
1 b ? L) -~

e the dependent variables x, ¥, z and their derivatives

real constants. Her
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dx dy dz appear in all the i
s Hea all the three equations of (3.1). Thus the System

(2.1) is a special case of the system (3.1).

The corresponding homogeneous partof (3.1) is

adx”) dy4cdzH .
—+b,—+c¢c, —+d x+ =
Yde o tde g O Gy +lz=0
adx bdybc dz'] } f,z=0
— —4c,—+d x+e,y+f.z=
Ydt Cdt ar ¥ YThE (3.2)
dx d dz
s y

a—+b;—=+c;,—+d,x+e,y+f,z=0
Yar P g 3Y T3
According to the Eulerian method, we assume a solution of the system

(3.2) of the form

X:aekl
y:B e).l (3_3)

At
z=ye

where o, [, Y and A are unknown constants. Substituting (3.3) into (3.2),

we obtain the algebraic system

04 (Cl[?\,"‘dl).‘}‘ B (b|7\,+e|) 'F"Y(C]?\,"'ﬂ) =0
o (aA+dy) + B (baAtes) +y(cahth) = 0
o (@A t+dy) + B (bshtes) Hy(eshtlz) = 0.

(3.4)

i 5 o3 - sufficient
We seek a nontrivial solution of this system. A necessary =i

condition that system (3.4) have a nontrivial solution is that the

determinant



ai+d, bh+e, CA+T,
A= [tA+d, bd+e, Y
ah+dy bhte, ch+f,

or, kiAo AHHkshtk, = 0 (3.5)

where,
ki= al(bzcz“b3‘32)+b|(0302-02C3)+C|(azbrasbz)
ky=' a|(cyer-coeytbafi-byf)+d(bycs-byey)+ bi(cods-cadytasfr-anly) +
e1(a3c-axcy)te(bydy-bydstases-ase;) + fi(azby-asb,)
ka= ai(exfz-e3H)+ di(ciey-coes + byfy-bsfy) +bi(dsf-daf3) +ey(cyd;-
cydytazf-asf) e (daes-die, )1 (bydy-bydstases-ase,)

ko= d(exfz-e36)+ ei(dsfr-dafy)+11(dres-dser).
The equation (3.5) is called the characteristic equation associated with the
system (3.2).

If the roots of the equation (3.5) be A;, Ay, A3 then the system (3.2) has

three nontrivial linearly independent solutions of the form

x=qe"

y = Blel,l

z:y,e’“"

X = 0,6

y = Bzexzt (3.6)
z=y,eM
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and

A

R =ae
_ At
y=pBye”
A
B

where o, Bi, vi5 o, B, 12 and oy, B3, 12 are definite constants. The
general solution of the system (3.2), i.e. the complimentary function of

(3.1) may thus be written as

= it — Xa —
X, =Coe™ +¢,a,e™ + ¢ a,e™

iR a, = e — Ayt
Ye =CBie +C,B,e™ +c,Bet (3.7)

e il o= Y e Al
z, =cye’ +c,y,e” +cyy,e

c
where ¢, ¢, and ¢, are arbitrary constants.

Now the method of variation of parameters can be used to find the

particular integral of (3.1). Thus we assume a particular integral of (3.1)

of the form

X, =W, (O e™ -+, (e’ -+ (e
y, =W (OB +F (1B 1 (0Be™ (3.8)

] At
Zpy = W (ty,e™ + W, (t)y,e™ + P (Ore

where the arbitrary constants ¢, ¢, and ¢, in the complementary function

(3.7) have been replaced by the unknown functions (1), Wa(t) and ys(t)

to be determined.
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Since (3.8) satisfies (3.1), we obtain

a system of equations in
WO, PO and Wi, I

we appl ammer’s '
apply - Crammer’s rule, we obtain

V(0,95 (0and W (1) Finally, by integrating, we obtain v (1), Wra(t) and ().

Therefore, a particular integral of (3.1) is obt

yn(t), ya(t) and y;(t).

ained from (3.8) by using

Hence the general solution is given by

Ml .
x= {city (O, €™ + {crtyn(t)a, e Hestys(t) o e
At At Aql
y={crhyi(H)}p, e + {catyn(t)} B, €7 Heatys(t)} By e”

Wt A,l Asl
z= tertynOiv €7+ {eatya(0)y, €7 Heghys(t) s €™
Summaring this discussion, we have the following theorem:

3.3 The Theorem 6

The general solution of the third order linear nonhomogeneous system

with constant coefficients of the form

o it Yoo hdxrey+Fz=R()
dt dt dt

a ﬁ.yb _d._)_/-}.c,,EE—F(lEX+€2)’+FEZ:P2(t)

2dt - dt Cdt

dx dy dz f.z=P(t)
— 4c.— +d X+€.}’+ 12 =173
G g T TS

is given by
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et MO Ay

x={crhp(Dla, € *{C24‘!’2([)}0tze”l+{C3+\I’3(t)}0¢3 e

Y= {er OB €™+ (erp0)y € oy, o
: . 3

B _ X
z= {ertyn(Din €™ + {erhyy(t))y, ™ Hertya(0)ly; e

where ¢, ¢; and c; are arbitrary constants and W1, W2 and w3 are variation

of parameters.

3.4 The Example

dx 2dy dz 23 .
m dt dt x—y—37=3e'-] 2¢’
dx dy dz P
dt i d +x—y—7z= 2e'+5e" 3¢ (3.9)
dx dy dz
e ’) . + __ — + 21 3[
3 | m x+2y—2z = —3e'+3e” —Se

The corresponding homogeneous part of (3.9) is

dx dy dz
—2—+— +2x—vy-3z=0
dat Cdt e T
I _dy _dz 0 (3.10)
dt dt_ dt
dx dz
—x+2v—2z=0.
adr Ca

According to the Eulerian method, we assume a solution of the system

(3.10) of the form

A
x=ae (3.11)
At ;
y=B¢
A
z=vy €

where o, 3, v and A are real constants.
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Substituting (3.11) into (3.10), we obtain the algebraic system

(A+2) a— (2A+1) B + (A-3)y=0
A1) o= (A+1) B—(Atl)y=0

(3.12)
(A=1) ot (A+2) B+ (20-2) y = 0.
For a nontrivial solution of the system (3.12), we must have
A+2 —22-1 A-3
2441 —A-1  —A-l_¢
A-1 A+2 24-2
which simplifies to
6A° — A2 — 6A+1 =0. (3.13)

Solving (3.13), we find the roots of the characteristic equation A = 1, -1, é

Setting A =1, -1, % into (3.12), we obtain simple nontrivial solutions

=32, 50, =3,
a=0, f=4, y=1
and o=7,p3=5,y=3

respectively.

With these values of o, B, ¥ and A; we find the following three sets of

solutions
X = 2e'
§=0 (3.14)
ol
7z =3¢ p

49



y =4e™
7z =gl (3.15)
and
|
R = 7e"l
L
y = 5ef
! ' (3.16)
Z = 3ef.

12 0 7
W(t) = e® 0 4 5
3 l 3

|

= —70e®

=

Thus the solutions are linearly independent.
Hence the general solution of the system (3.1 0)is

!
—1

x.= 2¢,e' +7c;€°
L
y, = dcye™+5¢ €° (3.17)
L
7, = 3c e tce +3c; €°

where ¢,, ¢, and c; are arbitrary constants.
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Now by the method of variation of parameters, we assume a particular

integral of (3.9) of the form

|
-1
xp=2y1(t) €' +7y3(t) ef

|
¥p = 4y(t) €' 4+5yr5(t) e"I

(3.18)
1
-1
7, = 3\ € yae 3y e
where (L), ya(t) and y3(t) are such that
5P (te' -7V, (e ' = 3e'-12¢™
It
Wi(e' - 5Wh (e + 6, (De’ = 2e+5e*-3e™ (3.19)

: 1
8W(De' + 6V, (t)e™ + 18V (et = -3e'+3e’-Se™.
Solving (3.19) by Crammet’s rule, we obtain
I
‘ l 3 2 k| ol
= ——(=e" +e" -¢€")
ya(t) - (2

5 11 I7l

R ooy
Ws(t) = —gg(e(’ ~1le® -3e®).

Thus a particular integral of (3.9) is
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[Hence the general solution ol (3.9) is

1
= l
x = 2¢c,e' +7c,ef —ge‘ +ed ¥t

1
1
y=4c,e”’ +5c,e® —e' +e¥ 4o

t 3
- 2
z=13ce' +c,e’ +3c,e ——¢' o



CHAPTER-4

Eulerian Method for Third Order Linear Nonhomogeneous Syst
ems

with Variable Coefficients

4 .1 Introduction

In the preceding chapters we have shown how to obtain the general solution
of the third order linear systems with constant coefficients. We have seen
that in such cases the complementary function and the particular integral
may readily be determined. In this chapter a third order linear
nonhomogeneous system with variable coefficients is considered. This is a
hard problem and very difficult to solve. However, only in certain special
cases the complementary function can be obtained explicitly in closed form.
One special case of considerable importance was solved by Cauchy and
Euler  [9]. They solved such a second order system. We have extended
their technique to the third order system. In this special case, we use a
transformation which reduces the system with variable coefficients to the
system with constant coefficients. Then the procedure of Chapter 2 is

applied to solve this problem. The method is supported by an example.

4.2 The Method
Consider
dx +1,(1)
5,(t)a =ax+by+cz+1n,

4.1
ﬁz(t)d—l)—/zazx +bzy+czz+nz(t) 4.1)
dt

éw(l)dTZ =%+ b3y+c_‘z+‘|]3(t)
W



where the coefficients a, by, ci; a, by ¢; and a3, b, ¢; are real constants, A
) - 1S, AS

the general case (4.1) is difficult o solve, we choose & (=E,(1)=E,(r)=t and
| ) 3 =t an

consider a special case of (4.1) of the form

dx ,
fc—lt =ax+by+cz+n,(t)
d

1
t%}f =a,X+b,y+c,z+n,(t)

(4.2)

dz
ta =a,X+b,y+c,z+n,(t).

This is also a third order nonhomogeneous system with variable coefficients.

In solving (4.2) we use the transformation
t=e", i.e, u=Int (4.3)

where t > 0, and obtain

(dx_dx
dt du’
Gy _dy
dt du
d

and t—E:EE
dt du
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The transformation (4.3) reduces the system (4.2) to the form

_d_x_ =a,X+by+c

du 1Y+ ¢,z 4+, (u)

d

__}.,. =a,X+ bzy + ng'*‘qz(u)

du .

dz
— =a,x+b,y+c,z+G(u).
du ' ' :

This is a third order linear nonhomogeneous system with constant
coefficients. The system (4.4) can be solved by the Eulerian method

discussed in Chapter 2. Thus we have the following theorem:

4.3 The Theorem 7

The transformation t = e" reduces the third order linear system with variable

coelficients

t% —ax-+by+cz+n(t)
dt

tsjll = g% + b2y+czz+nz(t)
t

t%% —a,x+byy+cz+m(0)
-

to a third order linear system with constant coeflictents

95 =X + b|y+C‘Z+C|(U)

du

gy_ =a,X+ b-,y 'l'sz"' CZ(U)
du ~ i

92_ by oz lu)
du '



4.4 The Example

tg)—‘I =7X—y+06z—5t-6

dy

t—=-10x+4y—12z-41+23

dt (4.5)
tgg:—2x+y—z+2

dt

Let t =e". Then (4.5) becomes

dx =T7x—y+6z-5e" -6

du

dy u

T =—10x +4y—12z—-4¢" +23 (4.6)
u

~dE:—2x+y—z+2_
du

By the same process of Example (2.10), the complementary solution of (4.6)

is given by

5
= ce2+ coe™ + 3cee™
(4.7)

1

2 Ju St
yo=—ce”—2ce" — 0C3e

3 Su
Z~ —C|€2u — Cy€ 4 2036

where ¢, ¢, and c; are arbitrary constants.
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Using the method of variation of parameters. we assume
b] [40vh

= W0 €W (1) € 4 3y (1) o
yp= —Wi(1) €= 2Wy(1) € - 6Wy(1) &

Z= —Wl(t) ezu_ \ljz(t) e]u _ 2\{,3(0 65”.

Following Example (2.10), we obtain

W (u)=14e™ - l—zl—e"z”

W, (u)=—12e™ + %e"’"
-5u

5
Vo (u) = Ze"d“ +§e

So the particular integral of (4.6) is

23 . 43

K e ——
P4 30
5.1
1T T30
9 . 07

z =——€ +—,

PT 27 30

Thus the general solution of (4.0) is

2u Ju S04 23 = i:i
s ~ + + —€e
x=cje’'+ e’ + 30T e Ty
79
_ 2u Ju _ Su +_5_ w_ 17
9 67
2 3 5u oy o
7= —cie™'—coe —20€T —o € TRy
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Hence the general solution of (4.5) is

2 3 s, 23 43
x=cit -+ ot -+ 3031 -*-Tluﬁ

2 3 5,5 79
=—Ct"—2Ct" —6c 7+ (=22
ym 2 Y T30

2 3 s 9 67
=——Ct"—Col” —2¢Cal” —-Z(4+L1
TR TR T T30

where ¢, ¢, and c; are arbitrary constants.
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CONCLUSION

We have considered systems of third order linear homogeneous and
nonhomogeneous differential equations with constant and variable
coeflicients and developed the techniques of finding solutions by extending
the Eulerian method. The method has been illustrated by giving various
examples. Firstly, an extended Eulerian method is developed to find the
solution of the homogeneous part of a third order linear system. Here we
have discussed various cases. Secondly, the method is used to find the
solution of the third order nonhomogeneous system with constant
coefficients. Further, we develop the procedure of solving the general third
order nonhomogeneous system with constant coefTicients. Although this
system is similar to the system mentioned in Chapter 2, the procedure of
finding the solution is different. Finally, we have considered the third order
nonhomogeneous system with variable coelficients. Since the general case is
very dilferent to solve, we have examined a special case. A suitable
transformation reduces this system with variable coefficients to a system
with constant coefficients which is analogous to the system mentioned in

Chapter 2. These systems of equations have extensive applications 1n

Population Dynamics, Fluid Dynamics, Mathematical Physics etc. We hope

that the method discussed in the thesis will help the researchers working in

the field of dilferential equations and their applications.
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