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CHAPTER-1

Introduction



This is an elaborate discussion of main theme ideas and the condition in
“Fluid mechanics”, which help us to realized a clear concept of the background
and elements of various viscous Newtonian and non-Newtonian flow problems.
The basic equation viz, the equation of a visco-elastic fluid of oldroyds model,
the equation of continuity, the equation of motion and the equation for isotropic
incompressible fluid of Newtonian and non-Newtonian. Here we also have

shown the equation the velocity profile in the dimensionless form.

Fluid mechanics is one of the engineering science that fesm the basis for
all engineering like meteorology, oceanography and other subject of physical
sciences. The subject branches out into various specialties such as
aerodynamics, hydraulic engineering, marine engineering, gas dynamics and
rate processes. It deals with the statics, kinematics and dynamics of fluids,
since the motion of a fluid is caused by unbalanced forces exerted upon it.
Available methods of analysis stem from the application of the following
principles concepts and laws, Newton's laws of motion, the first and second
laws of thermodynamics, the principle of conservation of mass, equations of
state relating fluid properties. Newton's law of viscosity, mixing-lenth concepts

and restrictions caused by the presence of boundaries.

In fluid flow calculations, viscosity and density are the fluid properties
most generally encountered; they play the principal roles in open-and closed-
channel flow and in flow around immersed bodies. Surface tension effects are
of importance in the formation of droplets, in flow of small jets and in
situations where liquid-gas-solid or liquid-liquid-solid interfaces occurs, as
well as in the formation of capillary waves. The property of vapor pressure,
accounting for changes of phase from liquid to gas, becomes important when
reduced pressures are encountered. In this chapter fluid properties are

discussed, as well as units and dimensions and concepts of the continuum.



Fluids may be defined as materials which continue to deform in the,
presence of any shearing stress. When the space between two plates is filled
with a fluid the plates can be kept moving relative to each other by a force;
however small. Generally, the larger the force, the higher the rate of the relative
motion. As a contrast, a solid under shearing stresses can do not exceed a
certain limit. There are solids that will continue to deform like a fluid when the
stress exceeds a certain value. The solid is then said to be in a plastic state. The

study of plastic is out side the domain of fluid mechanics.

In fluid mechanics, fluids are considered to be continuous although they
like any substance; consist of discrete molecules. This approach is taken not
only for the resultant simplicity in analysis, but also because the behavior of the
individual molecules is not usually of primary interest in technology. The
average, properties of the molecules in a small parcel of fluid are used as the
properties of the continuous material. For example; the mass of all the
molecules per unit volume of the parcel is called the density of the fluid. For
this approach to be successful; the size of the slow system must be much larger
than the mean free path of the molecules, so that the properties, such as density,
of the fluid can be meaningfully computed. Ordinarily, this requirement
presents no difficulties. For example, there are about 2.7%10'® molecules in one
cubic millimeter of air under atmospheric conditions. However there are cases
where this requirement is not satisfied. For example; in the upper atmosphere
where air molecules may be, on the average, several fact apart, the term density

becomes meaningless of one considers the flow around a satellite of a foot in
size.

Fluids dynamics is the science treating the study of fluids in motion. By
the term fluid is meant a substance that flows: one which does not is termed a
solid. Fluids may be divided into two kinds (i) liquids which are
incompressible, i.e. their volumes do not change when the pressure changes

and (ii) gases which are compressible fluids suffering change in volume



whenever the pressure changes. There are no sharp distinctions between the
three states of matter, however, the term hydrodynamics is often applied to the

science of moving incompressible fluids.

When matter is subjected to examing - on the microscopic or
molecular scale, it is found to consist of molecules in random motion and
separated from one another by distances, which are at least comparable with
molecular size. In the case of gases, the separation distances are great: in the

case of liquids, they are less great and in the case of solids even less so.

For the purpose of macroscopic analysis, however, the molecular
structure of matter is, in general, of no interest. It is thus more convenient to
treat the fluid as having continuous structure so that at each point we can
prescribe a unique velocity, a unique pressure, a unique density, €tc. moreover,
for a continuous or ideal fluid. We can define a fluid particle as the fluid
contained within an infinitesimal volume whose size is so small that it may be

regarded as a geometrical point.

We conclude this introductory section by mentioning briefly the natures
of the different types of forces which are called into lay moving fluids. Suppose
two fluid particles, moving at different velocities, have a common boundary.
Then across the boundary there will be interchange of momentum. The normal
transport of molecules across the boundary will lead to a direct or normal force.
In the case of viscous fluids, there is friction between the particles: this will
manifest itself in the form of equal and opposite tangential or shearing forces
on each particle at the common boundary. In the case of in viscid fluids,
however, there is no friction and consequently there are no tangential or
shearing forces. All real fluids exhibit viscosity but in many cases. Such as

arise when the rates of variation of fluid velocity with distances are small,

viscous effects may be ignored.



Fluid mechanics and hydraulics represent that branch of applied
mechanics dealing with the behavior of fluids at rest and in motion. In the
development of the principles of fluids mechanics, some fluid properties play

principal roles others only minor roles or no roles at all.

In fluid static's, specific weight is the important property, where as in
fluid flow, density and viscosity are predominant properties. Where appreciable
compressibility occurs, principles of thermodynamics must be considered.
Vapor pressure becomes important when negative pressures are involved, and

surface tension affects static and flow conditions in small passages.

Fluids are substances which are capable of flowing and which conform
to the shape of containing vessels. When in equilibrium, fluids cannot sustain
tangential or shear forces. All fluids have some degree of compressibility and

offer little resistance to change of form.

1.1 Classification of fluids

The fluids can be classified as (i) Ideal fluid and (ii) Real fluid based on
its physical properties.
(i) The ideal fluid:

Since it would be difficult to construct equations involving
simultaneously all the factors, we have just enumerated and the solution of then

when constructed virtually impossible, the fluid is simplified in classical theory

as follows
1. The fluid retains the same density throughout.

2. The fluid is incompressible.

These conditions are not synonymous though they have the same effect.

In the molecular picture of the processes of locally heating or of mechanically



compressing a fluid the former is supposed to increases molecular kinitic
energy, the latter to bring the particles closer together. A "hotspot” defuses

outwards, a compression travels out as a sound wave
3. The fluid is inelastic
4. The fluid has no free surface

These restrictions leave the fluid with mass (or inertia) and viscosity, but
further simplification of the mathematics ensues if we suppose the fluid

frictionless-
(ii) Real fluid:

A portion of a real fluid is composed of a very large number of
molecules each of which has its own mass and velocity. At any instant the
several molecules within a given closed surface have a great variety of
velocities, since the velocities of the molecules vary both in magnitude and
direction from molecule to molecule. If the closed surface has a small but finite
volume v it is possible to consider the average mass per unit volume and the
average vector velocity within. The surface, these quantities might be regarded
as the density and velocity q of the fluid at some point within v though is must
be remembered that their values depend upon the size of the small volume
considered. In fact it the volume be too small it may contain only one or two
particles or even none at all and the quantities then evaluated could hardly be
regarded as the density and velocity of the fluid. On the other hand if the
volume chosed values and will not give a meaning to density or velocity at a
point in the fluid.

The truth of the matter is that the concepts of density and velocity at a
point in the fluid pertain only to the idealized notion of a continuous fluid and
are not strictly applicable to a real fluid. The mathematical difficulties indicated

above arise from the fact a real fluid is a discrete assemblage of a moleclues

and is not a continuous fluid.



1.1.1 Newtonian fluids:

All real fluids exhibit internal friction. At solid boundaries, there is
practically no relative velocity between the solid and the contacting fluid
particles. As a result of there propertied, mechanical energy is dissipated into
heat, and there is skin fraction on solid surfaces. Due to the presence of the
slow-moving fluid particles near solid surfaces there is a tendency for
separation of the flow from the boundary in zones of deceleration. Shere
phenomena occur in on frictionless fluid, internal friction must be considered
when dissipation, skin friction, separation, and other phenomena related to

internal friction are being studied.

It has been found experimentally that most common fluids, including air
and water, when tested as shown in the given equation offer shearing resistance
: . F U
proportional to the rate of deformation: T= & = M—J

where T is the shearing stress, and | is the absolute, or dynamic, viscosity of

the fluid. So Newtonian fluids is called those fluids which obey Newtonians

law of viscosity. Water, air and Mercury are the example of Newtonian fluids.

1.1.2 Non-Newtonian fluid:

Fluids which do not obey Newton's law of viscosity are Known as non-
Newtonian fluids. Thus for such fluids the shear stress is not proportional to the
velocity gradient. Non-Newtonian fluids are those in which the viscosity at a
given Pressure and temperature is a function of the velocity gradient. Such
fluids as colloidal suspensions emulsions and gels are included in this
classification. Non-Newtonian fluids may be further classified according to the
manner in which the viscosity varies with the rate of shear. Bingham plastics,
sometimes called ideal plastic; can withstand a certain amount of shearing
stress. When the shearing stress has reached a certain yield value the material

deforms. The ideal plastic has been deformed it viscosity is independent of the



velocity gradient and is a function only of the material. The relationship

between shearing stress and shearing strain is ©T— 14 = pddu
gcdy

Where 1, is the yield stress, sewage sludge is a common example of a

Bingham plastic. In most real plastic the viscosity does not be come Constant
untill fairly high rates of shear are attained. Suspension of clay in water behave
like real plastics and are used extensively as drilling mud in the petroleum
industry. Pseudoplastic materials ae those in which the viscosity decreases with
rate of shear but the material deform as soon as a shearing stress in applied.

The viscosity becomes, constant at high shear rates.

Non-Newtonian fluids may be thixotropic or non thixotropic. If the fluid
possesses some sort of structure which is broken down when it is subjected to
shear, then an removal of the shearing stress the viscosity, insteal of being the
same as at zero rate of shear will change with time as the fluid builds up the
Structure of had prior being deformed. It a thixtropic fluid is tested in as
apparatus in which the rate of shear can be increased the relation ship between
the shear stress and rate of shear will be found to be different when the stress is
increasing then when the stress is decreasing such Curves for thixotropic

pseudoplastic and dilatant materials are illustrated.

1.1.3 Visco-elastic fluid model:

These fluids possess certain degree of elasticity in addition to viscosity.
When a visco-elastic fluid is in motion, a certain amount of energy is stored up
in the material as strain energy while some energy is lost due to viscous
dissipation. In this class of fluids unlike inelastic viscous fluids, one can not
neglect the strain, however small it may be as it is responsible for the recovery
to the original state and for the possible reverse flow that follows the removal
of the stress. During the flow the natural state of the fluid changes constantly

and it tries to attain the instantaneous state or the deformed state, but it does



never succeed completely. This lag is a measure of the elasticity or the so
called "memory" of the fluid. But there are some fluids like soap solution,
polymer solution, which have some elastic properties besides having fluid

properties. Such fluids are the examples of visco-elastic fluids.

There various models for visco-elastic fluids. Examples are second order
(Rivlin-Erickson fluids) Oldroyd fluids, Walters B' fluid and so on. A part from
second- order visco-elastic fluid model, there are some class of visco-elastic

second grade or third grade fluids.

Coleman and Noll (1960), originally suggested a constitutive equation
for the incompressible visco-elastic second grade fluid, based on the postulate

of fading memory as

__ 2
T=-PI+ [.I.Al + alA2 + OtZA1

where T is the stress tensor, P is the pressure, Ll is the dynamic viscosity ¢ and
0, are the first and second normal stress coefficients. A; and A; are the

kinematic tensors, expressed as:

A =grad(V)+ (grad(V))T

and A, = %A + A (gradV) + (eradV)T A,

2 1

where V is the velocity and d—lS the material time derivative.
t

1.1.4 Power law fluid model:

The mathematical model for describing the mechanistic behaviour of a
variety of commonly used non-Newtonian fluids is the Power-law model which
is also know as Ostwald-de Waele model. According to Ostwald-de Waele

n-l du
— where m denotes the
dy

du
dy

model, the constitutive equation is  t=m



flow consistency index and in is the flow behaviour index. Viscosity is the ratio

of shear stress to the deformation rate. For power law fluid, model it is

-1
du n

a—)-/— ., known as apparent fluid viscosity. When n < 1, the model is vaild

for pseudoplastic fluids such as gelatine, blood, milk etc. In these types of
fluids the apparent fluid viscosity decreases with increasing deformation rate a
(n < 1) and are called shear thinning fludis. When n > 1, the model is valid for
dilatant fluids, such as sugar in water, aqueous suspension of rice stanch, sand

etc.

1.2 The continuum concept

In many cases problems involve systems in which the dimensions are
very large compared with molecular distances. One is interested in the
statistical average properties and the behavior of large numbers of molecules,
and not in that of individual molecules (that is, macroscopic, and not

microscopic, properties are of interest).

As induvidual molecules are not being considered, the fluid can be
regarded as a continuous substance. A continuum model of the fluid is adopted.
Physical quantities such as the mass and momentum of the matter contained in

a very small volume are regarded as being spread uniformly throughout that
volume.

With normal measuring instruments (transducers, hot-wire anemom-
eters), the continuous and smoothly varying properties of fluids are easily
demonstrated and support the continuum hypothesis.

The sensitive volume of the instrument is usually chosen so that the

property being measured does not change with the volume (the measure-ment

is “local”). If the sensitive volume is reduced so much that is contains only a

10



few molecules at the time of observation, then the measurement will vary
irregularly from time to time. This is due to the statistical fluctuations in the

number and kind of molecules in the sensitive volume.

Under normal conditions, a cubic millimeter of air contains 2.7x10'
molecules. One is usually involved with dimensions of 1 ¢cm or more and very
little variation in physical and dynamical properties of the fluid occurs over a
distance of 10” cm (except perhaps in a shock wave). Thus, an instrument with
a sensitive volume of 10”° cm® would still give a measure of a local property.
This volume still contains more than 10'® molecules of air, say at NTP, and a
property average over such a number is independent of the actual number (law
of large numbers). In dealing with the structure of shock fromnts, or with the
flow of rarefied gases, the continuum approach of classical fluid dynamics and
thermodynamics must be abandoned and replaced by the microscopic approach

of kinetic theory and statistical mechanics.

In continuum mechanics one assumes that the macroscopic fluid
properties, for example mean density, mean pressure and mean viscosity, vary
continuously with (a) the size of the lump of fluid considered, (b) the position
is the fluid system, and (c) the time. In (a), the variation becomes imperceptible
when the element, or lump, is very small but still large enough to satisfy the
continuum criterion. Such an element is called a fluid particle. The mean
properties of the fluid particle are assigned to a point in space, so that a field
representation may be used for continuum properties. Thus, fluid properties, for
example density, pressure -and velocity are expressed as continuous functions
of position and time only. On this basis, it is possible to establish equations
governing the motion of a fluid, which are independent, in their form, of the
nature of the particle structure. So gases and liquids may be treated together.
Consider, as an illustration, the definition of the density of a fluid at a given
point, A fluid mass Smin a small volume & v around the point p (x, y, z) in a

continuous fluid. The mean density of the fluid in this volume is defined as

11 Rajsbahi Univcrsity Li‘ﬁ"f?‘“"‘-‘-?
Documentation Secticn
Docvment N D - 29 41



dm/ & v. As the volume v is allowed to shrink about. It show how = dm/Sv
varies with §v. When &§v is shrunk below &v, the mean density starts to
fluctuate wildly due to the fluctuation of the small number of molecules in the

volume. So one cannot fix a definite value of ¢ when & v< & v. The density at

P is defined as

¢ =lim om
SV—8VY sy

The field representation for ¢ is written as
= L’(x, y,z,t)-

This, of course, is a scalar density field. There are also vector fields such as

velocity, and tensor fields such as stress.

1.3 The equation of continuity

From the continuity equation is derived from the continuum concept. A
part from heterogenous and noncontinuous fluids, the equation simply
expresses the law of conservation of mass. The quantity of fluid entering a
certain volume in space must be balanced by that quantity leaving, unless
compression occurs. Let V be an arbitrary volume fixed in space, bounded by a
surface s, and containing a fluid of density £. The volume element & V' is small

enough so that ¢ can be regarded as constant through it.

The time rate of increase of mass in v through part of its bounding
surface s and leaves through another part. For an element of surface dS, the

outward mass flux is (ﬁv)-nds, where n is the outward directed normal. The
total outward flux 1s

I (¢v)-nds. (1.1)

12



The sum of the net outward convection of mass plus the time rate of increase of

mass in volume must be zero:
[ d
s(ev) nds+ =], tdv=0. (1.2)
ot
Using Gauss’s theorem on the surface integral, one has

oI4
I, [§+V.(£v)}dv =0. (1.3)

Since this is true for arbitrary elementary volumes,

%+V.(£v)=0 (L4)

or %+VV.C’+£V.V =0.

ot
Therefore

E+£V.v=0. (1.5)

Dt
Where V.v is called the dilation of the fluid at a point in the field.

This is the general continuity equation for non-homogeneous of com-
pressible fluids.
In rectangular Cartesian coordinates, &q. (1.5) has the form

D/{ du dv ow
= 4 | =0. (1.6)
Dt+f(8x+ay BZJ

For steady motion, ¢/ dr =0 and the continuity relation [from &q. (1.6)]is
V.(tv)=0. (1.7)
In the case of homogeneous and incompressible fluids, the continuity equation

become simple

V.v=0. (1.8)

13



This covers the case of the ideal fluid, which is defined as being inviscid and
incompressible. All real gases are compressible and liquids are slightly so. It is
found, however, that as long as the Mach number does not exceed about 0.3,

the fluid can be regarded as incompressible to a first approximation.

1.4 Navier-Stokes’ equations

The equations of motion are derived from Newton’s second law of

motion which states that
Rate of change of linear momentum = Total force.

Let us consider a closed surface S, as earlier enclosing a volume V in the
region occupied by the moving fluid. The rate at which momentum entering the

element dS is vj (— pdSvin j)' Therefore, the rate at which the momentum

enters the controlled surface S is

— [vi(pvin;ds). (1.9)
S

Also the rate at which the momentum increases in the enclosed volume

Vis
0 ‘
— [pv;dV. (1.10)
ot y
Hence, from (1.9) and (1.10), the rate of change of linear momentum is
given by
—aa—IpVi dV + Jv(pvin; JdS. (1.11)
Ly S
In fluid motion it is necessary to consider the following two classes of
forces, (i) forces acting throughout the mass of the body of fluid, such as
gravitational forces, known as body forces and (ii) forces acting on the

14



boundary, the fluid stresses, and are known as surface stresses. If f; denotes the

body forces per unit mass and P; the forces on the boundary per unit area, the

equation of motion can be written as

0
> IpvidV + Jv;(pv;n; )ds.
v s
rate at which the momentum rate of outflow of momentum through
increases in the enclosed the controlled surface §
volume V
| pf;dV + | p;ds.
v $
body forces acting on the surface forces acting on the
enclosed yolume Vv controlled surface S (1.12)

Where the stress Vector P; is given by
Pi =Vijnj (1.13)
and Vij = —pSij + Tjj. (1.14)

Substituting (1.13) and (1.14) in equation (1.12) and changing the
surface integrals into volume integrals by Gauss’ theorem and noting that V' is

an arbitrary chosen volume, we get the equations of motion as

ot;;
dp j
fi-—S—+5 - 1.15
at pvl (-pvlV ) Pt axl aXJ ( )
. Using the equation of continuity,
QB-*'-a— Vi )
X
oy
By L O (g OBy (1.16)
{at iy |7 o axg

15



It should be dept in mind that equation (1.16) is valid for any continuous

fluid medium.

In order to use these equations to determine velocity distribution,
however, we must insert expressions for the viscous stresses in terms of
velocity gradients and fluid properties. For isotropic Newtonian fluid these

expression are given by the constitutive equation.

8 :
Tjj = 24 &jj _EH ekk dij, (1.17)
1{ dv; 9V
Where e =—| 43| 1.18
. 2(8)(]- 8xij (1.18)

Substituting (1.17), with (1.18), in equation (1.16), we finally get

avi 9| . 9p, d | [dvy Vi 2 dvg |
f: — — =05 — 1.19
pl:at plaxJ Ph axi+an e an+aXi Uaxk ( )

These are known as Navier-Stokes equations for the motion of a viscous

compressible fluid and are three in number.

In case of incompressible fluid flow the equation of continuity is

Mk _g (1.20)
Xk

And if p is also regarded as constant, the equation (1.19) can be further

v, OVii_ e 0P _8_21/1_ .

simplified to p {—a——ﬂfj&?}—pi ax axjaxj (1.21)
3 (ovi) o (advi|_

Keeping in view that 5;_(;(8)“ ] - [Bx =0 (1.22)

Equation (1.21) in vector notation can be written as

16



DV - 9=
th=pF—Vp+uV V. (1.23)

Where

= —s; +(Vv) (1.24)

9|

is known as the ‘material derivative’.

1.5 Viscosity

Of all the fluid properties, viscosity requires the greatest consideration in
the study of fluid flow. The nature and characteristics of viscosity are discussed
in this section as well as dimensions and conversion factors for both absolute
and kinematic viscosity. Viscosity in that property of a fluid by virtue of which
it offers resistance to shear stress. Newton's law of viscosity states that for a
given rate of angular deformation of fluid the shear stress is directly
proportional to the viscosity. Molasses and tar are examples of highly viscous
liquids; water and air have very small viscosities. The viscosity of a gas
increases with temperature, but the viscosity of a liquid decreases with
temperature. The variation in temperature trends may be explained upon
examination of the causes of viscosity. The resistance of a fluid to shear
depends upon its cchesion and upon its rate of transfer of molecular
momentum. A liquid, with molecules much more closely spaced than a gas, has
cohesive forces much larger than a gas. Cohesion appears to be the
predominant cause of viscosity in a liquid and since cohesion decreases with
temperature, the viscosity does likewise. A gas, on the other hand, has very

small cohesive forces. Most of its resistance to shear stress is the result of the

transfer of momentum.

17



As a rough model of the way in which momentum transfer gives rise to
an apparent shear stress, consider two idealized railroad cars loaded with
sponges and on parallel tracks, Assume each car has a water tank and pump,
arranged so that the water is directed by nozzles at right angles to the track.
First, consider A stationary and B moving to the right, with the water from its
nozzles striking A and being absorbed by the sponges. Car A will be set in
motion owing to the component of the momentum of the jets which is parallel
to the tracks, giving rise to an apparent shear stress between A and B. Now if A
is pumping water back into B at the same rate, its action tends to slow down B,
and equal and opposite apparent shear forces result. When A and B are both
stationary or have the same velocity, the pumping does not exert an apparent

shear stress on either car.

Within fluid there is always a transfer of molecules back and forth
across any fictitious surface drawn in it. When one layer moves relative to an
adjacent layer, the molecular transfer of momentum brings momentum from
one side to the other so that an apparent shear stress is set up that resists the
relative motion and tends to equalize the velocities of adjacent layers in a

manner analogous to that of the measure of the motion of one layer relative to
an adjacent layer is du/dy.

Molecular activity gives rise to an apparent shear stress in gases which
in more important than the cohesive forces, and since molecular activity
increases with temperature, the viscosity of a gas also increases with
temperature.

For ordinary pressures viscosity is independent of pressure and depends
upon temperature only. For very great pressures gases and most liquids have
shown erratic variations of viscosity with pressure.

A fluid at rest, or in motion so that no layer moves relative to an

adjacent layer will not have apparent shear forces set up, regardless of the
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viscosjty, because du/dy is zero throughout the fluid. Hence, in the study of
fluid static, on shear forces can be considered because they do not occur in a
static fluid, and the only stresses remaining are normal stresses, or pressures.
This greatly simplifies the study of fluid statics, since any free body of fluid
can have only gravity forces and normal surface forces acting on it.

h=—
du/dy

1.6 Mammalian

"Tetrapods with young nourish by milk from mammary glands of
females; most viperous and covered with hair; only vertebrates with only one
bone in each side of lower jaw. The mammals monotremes (echidna and
duckbilled platypus), marsupials (e.g. opossum, kangaroo) and placental
mammals (e.g. human, whales rodents, dogs cattle, elephants, horses) that
means warm blooded animals whose young are nourished by milk from the

mammary glands of the female parent.

Pregnancy begins with the fertilization of the ovum and terminates with
the birth of the offspring. In mammals fetilization normally occours in the
ovarian end of the uterine or Fallopian tube. The fertilized ovum begins at once
to undergo cleavage to form a morula mass or soild cluster of cells called
blastomeres. While this early development is in progress, the ovum is carried
through the uterine tube into the uterus. Cleavage of the egg in marsupial and
placental mammals is holoblastic and nearly equal.

The morula of mammals differentiates into the blastocyst or
blastodermic vesicle which at the time of implantation consists of an outer
capsular layer and an inner central mass. The outer layer of blastomerse is

known as the trophoblast, and the inner central group in referred to as the inner
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cell mass. A median section through the blastocyst shows the inner cell mass
adhering to the trophoblast on the side and separated from the remainder of it
by a fluid-filled cavity known as the blalstocoel or primitive segmentation
cavity. The latter probably never exists in human development. The trophoblast
is destined to form a part of one of the fetal membrance, the chorion. The inner

cell mass gives rise to the various germ layers of the embryo.

From the unattached side of the inner cell mass, cells are delami- nated
to from the entodermal layer. They proliferate along the inner surface of the
trophoblast, line the blast cyst, and form a spherical sac, the yolk sac. The
remainder of the inner cell mass is now termed the ectodermic layer. Near the
region bordering the trophoblast, it hollows out to form the amniotic cavity.
The ectoderm of the floor of this cavity and the entoderm of the roof of the
yolk sac are now in apposition and form a cellular plate, called the embryonic
disc or blastoderm, which gives rise to the embryo proper. In the center of the
long axis of the disc appears an elongated thickening known as the primitive
streak. Primitive streak to form mesoderm. Extra-embryoinc mesoderm fills in
between the yolk sac and the trophoblast. It undergoes a splitting process into
two layers, and outer or somatic layer and an inner or splanchnic layer. In
primates the extra-embryonic mesoderm has a separate origin from the
mesderm of the embeded in the uterine mucosa (now called the decidua)
through the activity of the trophoblastic layer of calls which secrete a cytolytic
enzyme thet erodes neighboring uterine tissue. Since the developing mammal
depends on the mother for oxygen and nutritive substances and for the
elimination of carbon dixide and other wastes of fetal metabolism, the fetal
membranes (yolk sac, allantois, chorion and amnion) begin to develop at an

early date. Considerable diversity exists in the origin, size, and functions of

these membranes in various mammals.
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1.7 Arteries

Arteries are vessels which convey blood from the heart to the tissues of
the body. According to size, they are divisible into the large, the medium-sized,
and the small arteries. The large arteries include the aorta, the innominate, the
subclavians, the common carotids, the common iliacs, and the pulmonary
artery, Nearly all the remaining named arteries are medium-sized. Small
arteries are found in the tissues and organs where, for the most part, they are
unnamed. According to their structure, arteries are divisible into elastic and

muscular arteries.

The arterial wall consists of the coats: an inner coat (tunica intima, or
interna), a middle coat (tunica media), and an outer coat (tunica externa, or
adventitia). The architecture of a medium-sized artery is first described. The
tunica intima consists of three strata, the innermost being a layer of
endothelium, the outermost a layer of elastic tissue, the internal elastic
membrane, and between the two is a layer of fine collagenic connective tissue.
The tunica media, usually the thickest of the elastic tissue, and fibrous
connective tissue. The tunica adventitia consists largely of fibrous connective
tissue and contains small, nutrient blood vessels, the vasa vasorum. The large
artery differs from the medium-sized artery in that it contains an excess of
elastic tissue and proportionately les smooth muscle. In the small arteries there

is a relative incresase of smooth muscle and a relative decrease of elastic tissue.

The walls of the arterioles consist of three layers, intima, media, and
adventitia. Little elastic tissue is present, but smooth muscle is present in a
proportionately large amount and accounts for the fact that the arteriole

possesses a relatively thicker wall than any other vessel of the arterial system.

The smooth muscle in the arteriole has and excellent nerve supply, and hence

the central nervous system exercises an exquisite control over the caliber of its

lumen.
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The pulmonary artery carries venous blood from the right ventricle of
the heart to the lungs. It arises from the conus arteriosus and passes almost
directly dorsad, lying laterosinistrad of the ascending aorta. Upon reaching the
aortic arch, the pulmonary artery is brought into close relation with the
concavity of the arch by an arterial ligament, the ligamentum arteriosum the
remnant of a canal, the ductus Botalli, which formed, in the fetal life of the cat,

a connection between the pulmonary artery and the aorta.

The left branch of the pulmonary artery passes ventrad of the de-
secending aorta to the left lung. Since the left branch of the pulmonary artery
divides at a point craniad of all the lobes of the lung, this lung is regarded to be

hyparterial in reference to the pulmonary artery.

The right branch of the pulmonary artery turns dextrad at the conavaity
of the aortic arch to run dorsad of the ascending aorta and superior vena cava.
As the right branch of the pulmonary artery emerges from beneath the dorsal
surface of the superior vena cava, it divides to send a branch to the cranial lobe
of the right lung, and then continues caudolaterad toward the second proximal
lobe of the right lung. Since the cranial lobe of the right lung lies craniad of the
primary division of the rightbranch of the pulmonary artery, it is referred to as
being eparterial in reference to the pulmonary artery. The other lobes of the

right lung, lying caudad of the primary division of the right pulmonary branch,

are hyparterial.

1.8 Blood vessels

These are ting pipes through thick blood circulates, The blood vessels

supply the skin with fresh blood, which contains nutrients and oxigen, and

carry away waste products, The blood in its passage from the heart to the

tissues and back again passes through six principal types of vessels: the elastic

arteries, the muscular arteries, the arterioles, the capillaries, the venules, and
3
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the veins. This entire system of tubes is lined by a single layer of flattended
epithelial cells, the endothelium. Outside the endothelium, in all vessels except
the capillaries, several layers of tissue are present. The con struction of the

various vessels is related to the function they perform in the circulatory system.

Arteries are vessels which convey blood from the heart to the tissues of
the body. According to size, they are divisible into the large, the medium-sized,
and the small arteries. The large arteries include the aorta, the innominate, the
subclavians, the common carotids, the common iliacs, and the pulmonary
artery, Nearly all the remaining named arteries are medium-sized. Small
arteries are found in the tissues and organs where, for the most part, they are
unnamed. According to their structure, arteries are divisible into elastic and

muscular arteries.

The arterial wall consists of the coats: an inner coat (tunica intima, or
interna), a middle coat (tunica media), and an outer coat (lunica externa, or
adventitia). The architecture of a medium-sized artery is first described. The
tunica intima consists of three strata, the innermost being a layer of
endothelium, the outermost a layer of elastic tissue, the internal elastic
membrane, and between the two is a layer of fine collagenic connective tissue.
The tunica media, usually the thickest of the elastic tissue, and fibrous
connective tissue. The tunica adventitia consists largely of fibrous connective
tissue and contains small, nutrient blood veessels, the vasa vasorum. The large
artery differs from the medium-sized artery in that it contains an excess of
elastic tissue and proportionately less smooth muscle. In the small arteries there

is a relative incresase of smooth muscle and a relative decrease of elastic tissue.

The walls of the arterioles consist of three layers, intima, media, and

adventitia. Little elastic tissue is present, but smooth muscle is present in a

proportionately large amount and accounts for the fact that the arteriole

possesses a relatively thicker wall than any other vessel of the arterial system.
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The smooth muscle in the arteriole has and excellent nerve supply, and hence

the central nervous system exercises an exquisite control over the caliber of its

lumen.

Capillaries are extremely fine vessels with a minimal luminal diameter
in man of approximately eight microns. They form plexuses with one another
and connect the arterioles and the venules. The wall of the typical or true
capillary consists of plate like endothelial cells held together by an intercellular
cement substance. In certain organs of the body such as the liver, the vascular
channels which are comparable to the true capillaries in that their wall consists
only of endothelium but differ from them in that they have a very wide lumen,
are termed sinus oids. The capillaries have an inherent ability to contract and
dilate. Capillary caliber is, to a large extent, dependent on chemical stimuli
from blood and interstitial fluid; but it is also influenced by nervous stimuli and

by blood pressure alterations in the larger blood vessels.

The venous ends of the capillaries converge to from venules. The
typical venule consists of an endothelial tybe encased by an incomplete layer of
smooth muscle cells circularly arranged and by elastic and col- lagenic fibers
among which there are a few fibroblasts. The veins have thinner walls and
larger lumina than the arteries, but like them they possess three coats. Veins
contain less elastic and muscular tissue than the corresponding arteries. In most
veins, white fibrous tissue is more abundant than all the other tissues
combined; hence, the tunica adventitia is disproportionately thick. The valves
which are present in some of the larger veins are formed by reduplications of
the tunica intima. They are abundant in the veins of the extremities. They assist
venous return against the influence of gravity. The large veins are equipped

with vasa vasorum to supply oxygen and nourishment to their walls.
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1.9 Stenosis

Stenosis Any part's of blood vessels are narrowing for any reason or the
intravascular plaques aries in the vessels wall, then the blood flow are hamperd

for its Natural activities. This process is known as stenosis.

Stenosis refers to the narrowing of blood vessel due to the development
of arteriosclerotic plaques or another type of abnormal tissue development. The
deposit of cholesterol and proliferation of connective tissues in an arterial wall
forms plaques which grow inward into the lumen of the artery and restrict the
natural blood flow. The possibility that haemodynamic factors may participate
in the genesis and the proliferation of atherosclerosis has fostered increased
study during the past decade. Study of suspension flows in stenosed/constricted

vessels is of great medical, industrial and physiological significance.

1.10 Myocardial infarction

Although Herrick described acute coronary Thrombosis in 1912, more
than half centurg elapsed before there was consensus concerning the
pathogenesis of acute myocardial infarction. Only since the 1970s has plaque
fissuring with overlying thrombus formation been widely recognized as the
process underlying the majority of cases of myocardial infarctions, unstable
angina pectoris, and sudden cardiac deth. In 1980, Dewood and coworkers
demonstrated the high frequency of theromotic coronary occlusion in the early
hours of acute myocardial infarction; this led to the use of intra coronary
eventually superseded by intravenous Administration

streptokinase, which was

of thrombolytic agents to allow wider application and less delay in

administration. She use of percutaneous transluminal coronary angioplasty

(PTCA) after intracoronary administration of streptokinasein the setting of

acute myocardial interaction was reported.
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In 1982 by Meyer and coworkers. In 1983, Hartzler and coworkers first
described the use of angioplasty in acute myocardial infarction without prior
thrombolytic therapy.

After the major thrombolytic trials of the last decade, early reperfusion
in considered crucial for reduction of infarctsize and mortality in the
management of acute myocardial infraction. Contemporary thrombolytic
regimens have notable deficiencies, including failure of clot lysis and
incomplete reperfusion, OFarly hazardO, serious hemorrhagic complications,
and frequent presence of contraindications of their use, Mechanical reperfusion
strategies are in many respects complementary to the pharmacologic approach
and may have much to ofer in the broader context of reperfusion therapy for

acute myocardial infraction.

1.11 Cardiovascular diseases

The most common cardiovascular diseases are hypertension and heart
disease but the basis for most cardiovascular diseases is atherosclerosis, which
is almost universally present in U.S. adults and is manifest clinically as

coronary heart disease (CHD), are brovascular disease (stroke), or peripheral
arterial disease.

Heart disease and hypertension, respectively, are the third and fourth

most common chronic conditions causing limitation of activity. Almost 60

percent of those with hypertension are under 65 years of age, and about 50
percent of persons with heart disease are under that age. The prevalence and

mortality from the cardiovascular diseases increase with decreasing levels of

family income and education.

The trend in mortality from total cardiovascular disease has been

downward since about 1940, with long term declines for the three subgroups-
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rheumatic, cerebrovascular, and hypertensive diseases-and a decline for CHD
since the mid 19608.

Cardiovascular mortality declined just less than 1 percent per year in the
1650S and 1960S. The decline in cardiovascular mortality, including the steep
rise and fall in CHD mortality, indicates that the major cause of mortality is
controllable. Whether attributable more to beneficial changes in disease-
promoting lifestyle or to better medical care of those already affected, it is clear
that cardiovascular disease in most patients is not an inevitable burden of aging
or genetic makeup. Although the causes of the decline in cardio vascular
mortality are uncertain, the decline has been substantial, sustained and real. The
decline has coincided with increased efforts to achieve healthier living habits

and with improvements in the ambient burden of cardiovascular risk factors.

Observational studies in populations such as the Framingham study have
documented factors that increase the risk of cardiovascular diseases. There
include atherogenic attributes such as dyslipidemia, hypertension, glucose,
intolerance and clevated fibrinogen; living habits that promote them; indicators
of unstable lesions; and signs of compromised circulation e.g measures of
subclinecal arterial disease. Risk factors can be classified into the lipids,
metabolic factors, hemostatic factors, blood pressure and lifestyle factors.
Some are modifiable. They promote cardiovascular disease in both sexes at all
ages but with different strengths. Diabetes and high- density lipoprotein (HDL)

cholesterol operate with greater power in women. Cigarette smoking is

particularly influential in men, is noncumulative, and loses some of its adverse

impact shortly after quitting. Some risk factors, such as blood lipids, impaired

glucose tolerance, aric acid, and fibrinogen, have smaller risk ratios in

advanced age, but this lower

obesity or weight gain promotes or aggravate
indolence worsens Some of them and predisposes to

relative risk factors remain relevant in the elderly.

s all the atherogenic risk factors,

and physical

cardiovascular events at all ages.
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The major modifiable risk factors that contribute powerfully to
cardiovascular disease are highly prevalent in the population. Trends in their
prevalence and differences in their impact on the various atheroselerotic are
noteworthy. Despite 30 years of appreciable decline in the percentage of

persons who smoke cigarettes, one fourth of adults, 49 million, still smoke.

An estimated 10 million persons are at increased risk of cardiovascular
disease because they have diabetes. Another highly prevalence of over weight,
dyslipidemia, and hypertension and, thus, cardiovascular disease. There also
are persons under 18 years of age who have one or more modifiable risk

factors.

Very early symptomatic cardiovascular disease can be diagnosed by non
invasive testing, such as magnetic resonance imaging (MRI) and computed
tomographic (C.T) scanning wellestablished clinical indicators include left
ventricular hypertroply, audible vascular bruits, a positive exercise, electro
cardiogram (ECG), absent arterial. Poses in the limbs and neek, regional wall
motion abnormality on the. Echocardiogram, reduced ankle-arm blood.
Pressure ratio; sonographic involved of cardiotid wall thickness reduced left

venticular ejection fracton, and presence of coronary calcium.

No individual risk factor is essential or sufficient in the causation of
cardiovascular disease; causation is multifactorial. Indeed, the risk posed by

one factor is generally enhanced in the presence of another thus multivariate

risk factor assessment gives the most useful measure of the joint effect of the

risk factors. Multivariate analyses help provide a better understanding of he
pathogenesis of the disease and guideline for prevention. Based on the

absolute, relative and attributable risks imposed by the various risk factors, the

older concepts of normal have evolved to optimal values associated with long-

term freedom from disease.
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1.12 Stroke

Popular term for apoplexy resuling from a vascular accident in the brain,
usually resulting in hemiplegia. Heat stroke is hyperpyrexia due to inhibition of
heat regulation mechanism is conditions of high temperature or high humidity,

or because Sweating is interfered with.

Worldwide, stroke is the second leading cause of death and it is the
leading cause of permanent disability. Stroke is also among the most common

indications for diagnostic imaging of brain.

The term stroke is most accurately used to describe be a clinical event
that consists of the sudden onset of neurologic symptoms and use of the term
implies that symptoms are caused by cerebra vascular disease (ie a "
cerebravascular accident). Cerebral infraction, by contrast, is a term that
describes a lethal tissue level is chemicevent that may or may not cause
symptoms. Cerebral infraction accounts for approximately 85% of all strokes.

Primary cerebral hemorrhage (eg. subarachnoid hemorrhage and intra

parenchymal hemorrhage) account for most of the remainder.

A number of practical topics are related to clinical imaging of ischemic

stroke and physicians who interpret imaging studies of the brain should be
familiar with them.

Ischemic stroke is most often caused by obstruction of cerebral arteries
or cerebral veins, although stroke due to obstruction of cerebral arteries is subs

tactically more common than stroke duc to obstruction of cerebral veins. It is

useful to consider strokes that are caused by obstruction of large cerebral

arteries separately from those that are caused by obstruction of small cerebral

arteries because the locations and extents of brain tissue involved by these two

types of stroke are different.
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A number of medical conditions are associated with atherosclerotic
disease and stroke. Hypertention, smoking obesity, hyperlipidemia, diabetes,
mellitus, and homocystinemia are all examples of such conditions that are risk
factors for atheroselesoasis and stroke. A theroclerosis of the easotid artery is

one of the most important conditions that predisposes of stroke.

Knowledge of some of the pathos-physiologic change that occurs in
acute stroke can be helpful to understanding the imaging findings present in
patients with acute stroke. Likewise, some of the hestopathologic findings that
are seen in the first days and weeks after stroke are relevant to an

understanding of the imaging findings seen in these patients.

1.13 MRI

Since its introduction as a clinically practicable diagnostic modality in
the early 1980s. MRI has rapidly earned recognition as the optimal screening
technique for the detection of most intracranial neoplasms. Compared with CT
MRI using spin echo, gradient echo and combination spin and gradient echo
pulsing sequences before and after intravenous (IV) administration of
paramagnetic contrast agents provides inherently greater contrast resolution
between structural abnormalities and adjacent brain parenchyma and has
proved to be even more sensitive in the detection of focal lesions of the brain.

Early experience suggested that 3% to 30% more focal intracranial lesions

could be identified on MRI than on CT.

Lesions and tissues with increased water content appear even more

conspicuous on To- weighted MRI images than on CT images obtained after IV

infusion of contrast agent. Delination by MRI of normal and abnormal soft

tissue anatomy in the posterior cranial fossa, near the base of the Skull; and in

other areas of the brain that lie adjacent to dense bone is considerably better

than with CT because MR1s Jack of the beam of lesion localization on MRI is
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enhanced by its direct multiplaner hardening artifacts secondary to absorption
of X-rays in bone seen on CT Accuracy capability, which permits acquisition
of images in the Cornal and sagittal planes in additions to the axial plane.
Conventionally used in CT MRI offers superior contrast resolution, including
greater sensitivity for the detection of sub acute and chronic hemorrhage is
association with tumors and other structural, lesions of the brain. The ability
with MRI to visualeize vessels supplying and draining structural lesions in the
brain adds yet another important dimension of information that can contribute

to the diagnostic assessment,

Even with currents state of The art equipment utilizing very high
magnetic fields and rapidly. Switching gradient coils, MR never the less suffers
two disadvantages in comparison with CT in the assessment of in intracranial
Structural abnormalities; (1) MRI requires Significantly longer image
acquisition times and (2) abnormalities involving cortical bone; intratumoral
calcification, and hyperacute hemorrhage are more clearly and accurately
assessed with CT Newer multi-slice helical or Spiral, CT seamners are capable
of providing highly collimated sub millimeter thickness sectional images in
extremely short acquisition times, and thus areas of hyper ostosis or bone
distraction, intratumoral calcifications, and early intratumoral or peritumoral
hemorrhage are more completely defined with greater certainty on CT Than on

MRI. The much faster acquisitions, capability of current CT units strongly

favour their use in patients who are critically all or medically ustable. Also and

other internal, paramagnetic metallic devices,, the risk of the MRI magnet

interacting with such devices may preclude the use of MRL
Given both higher cost and more restricted availability of MR

equipment to date as well as continuing improvements in CT equipment and

Scanning techniques that permit shorter
st resolution, it is not surprising that CT remains a major

examination times with improved

spatial and contra

imaging technique for the follow up of intracranial mass lesions. In current
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clinical practice, initial diagnosis know localization of brain lesions are most

after accomplished with MRI but the imaging modality of convenience, for
follow up studies is often CT.

1.14 Synopsis of the problems worked out in the thesis

In chapter-2 we consider the steady laminar flow of a Non-Newtonian
visco- inelastic fluid of Reiner-Rivlin type through an inclined channel. The
non-Newtonian parameter of this problem has been assumed to be small and
the coefficient of viscosity and cross-viscosity are scalar functions of the flow
invariants. The technique of successive approximations has been used to slove
the problem. The expressions for the velocity distributions have been obtained

and discussed are shown in tabulated form.

In Chapter-3 The oscillatory motion of a visco-elastic fluid of oldroyd
model between two co-axial cylinders having deferent amplitude of frequency
have been studied. It is seen that both the cylinders execute longitudinal

oscillation in their own planes. The nature of velocity of fluid have been shown

in tabulated form and the results are discussed.

In chapter-4 A mathematical model has been developed to study the
influence of externally applied magnetic field on the blood flow through a
mammalian blood vessel with slip velocity in the wall in the presence of a

stenosis. Using the momentum integral technique, analytical expressions for

the velocity profile, pressure gradient and skin-friction are obtained. The condi-

tion for an adverse pressurc gradient is also deduced. It is observed that the slip

velocity as well as the magnetic field bear the potential to influence the

velocity distribution of blood to considerable extent and to reduce remarkably

the pressure gradient as well as the skin friction.
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CHAPTER-2

Mathematical Analysis of Steady
flow of visco-inelastic fluid
though an inclined channel
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2.1 Introduction

Steady laminar flow of an incompressible visco-inelastic fluid between
two porous infinite parallel plates with uniform suction has been discussed by
Dutta [1]. Gupta [2] Presented the analysis of head loses for different types of
non-Newtonian fluids including Reiner-Rivlin through channels of different
cross-sections. Kapur and Gupta [3] carried out investigations about the
constitutive relations for such a fluid. A comprehensive review about the works

in non-Newtonian fluid can be found in [4] et al.

In the present note, it is proposed to study the steady Laminar flow of an
incompressible Visco-inelastic fluid of through an inclined channel. The non-
Newtonian parameter involved has been assumed to be small and the effect of
this parameter on the velocity has been shown in tabulated form. It is observed

that the non-Newtonian character of the fluid increases its velocity.

2.2 Rheological equations

The basic equations for an isotropic incompressible fluid of visco-

inclastic type are

Pij=p &;j + 41c Cikeul, (2.1)
1 )

e = (kitaj,i), 22)
0 ! o8 23
C5 o ;] = 5 Pii, « + o, (2.3)

2.4)

and [|= ®;,;= 0,

where P:: is the stress tensor, € is the strain rate tensor, p is an undetermined
1

isotropic pressure to be determined by the equations of motion, ®; is the

velocity vector, 8 is the kronecker delta, p is the density, Q is the gravitational
R |
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potential and the co-efficient L. are arbitrary scalar function of the flow

invariant. Also

|
L= e =5 [(e)” — eneic ], Is = det (k). (2.5)

2.3 Formation of the problem

Let us consider the flow of the non-Newtonian fluid under gravity
through an inclined channel of inclination f to the horizontal. The walls of the
channel are assumed to be of rectangular cross-sections and the distance
between the two sides is much smaller than the others. The x-axis is taken
along the lower plate and the y-axis is perpendicular to it. Let L be the distance

between the two plates.

Than the equations of motion can be written from (2.1), (2.3) and (2.5)

as
%
Vﬁ_m.:___l_%_}._l__g_(u@_jq.h SiﬂB (26)
dy pox poy\l o
Lo _ _lal';*ﬁﬁ_(u?l]_h - )
oy paoy poy\ 9
0 ’ )
® (2.8
where p* = p-LL, (——J
ay
and the co-efficient p is an arbitrary scalar function of the flow invariant.

The flow invariants in the problem are

2
1( ow 2.9
=01 =‘z[?a?] 5= 7
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From (2.9) it is clear that p is a function of a_m In the present problem,

we discuss about a particular type of fluid characterized by

h=boll- aay] (2.10)

where 1, and o are constants. Since the co-efficient of viscosity p is positive,

we have

L =0, 1- o 520 (2.11)

Now the equation of continuity is

0
e 0 i. e. v = constant= -v, (2.12)

oy

Then from equations (2.6) and (2.7), with the help of the equations (2.10) and
(2.12) we get

2
2
v ?ﬁz_lﬁflwaf’_a V(a—“’] +hsin B o @13)
oy pox Oy dy
O=——1——a£—h cos S (2.14)
p oy

*

op .
Ho 11 the equation (2.14) the term By is small. Hence the pressure
p

is given by its value
may be assumed to be constant along any normal and is g1 y

herefore neglect the pressure gradient in

where, v =

outside the boundary layer we can t

(2.13) also.

2.4 Solution of the problem

We now introduce the following non- dimensional quantitics
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Y @ voL )
¥y , o' = UO_’R = %—(Suctmn Reynold number)

,_aU, - hsinpBL?

(2.15)

where Uj is some typical velocity

Substituting the equation (2.15) in the equation (2.13) we get.

2(, .1 ' ' 2
_Rv 8 (“’,UO):V 00Uy | 0 {6(®U0)} , YHU,
L a(y L) 8(y'L)2 5(Y'L) 5(Y'L) 1%sin B

_RvU, 80’ _ VU, 8%’ oLVU; 8 [am'f e
12 oy 1 y? U, Ly y\y') L

sin B or

or —R

i 2 N2
8o’ _ o ,a(amjm

o' oy?  oy'\oy

On dropping the prime from both sides, we get

2 2
d”+Rd_“’—zaflﬂ.d”+H=o (2.16)

dyt  dy dy dy’

We also assume the no-slip conditions on the boundaries. 1. €.

c0=0.aty=0,1anda)=U aty=1 (2.17)

To solve the equation (2.16), we assume that the non-Newtonian

parameter o is very small and we expand @s as a Series expression in powers of

o 1. e.
(2.18)

................

Substituting the equation (2.18) in equation (2.16), we get
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d2(0)0+a0)1+a032+ ................ )—{-Ra (0‘)0+OL03]+(12(DZ+ ............ )
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dy
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"
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2
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Equating the co-efficient of like powers of o, on both sides we get

/] !
@, + Ro,+H=0
r n

0, +R o, —20,0, =0 (2.19)

@, +Ra, =2 (0,0, + w,0,)=0
and the boundary conditions (2.17) become

® =0 (i=0,1,2,) at y=0 } (2.20)

mi:U(iZO:Lz: ...... ) at y:]

Now solving the equation (2.19) by using the boundary conditions (2.20) as.

_Hje -1 (2.21)
“o= R|e™-1 y |
H> 2R HE-eh) HR-ef)  2H%eR
o=—"-1% - + -

REeR-12 RE*-1)° ReR-17 RER-1° RE®-1)°

He N oH% Re ™ 2.22)
Re k-1 (e°-1)
{@e ™ +R-1)-e 2R (R+1)}(2R+e"R~1)

H3 (eﬂRy — R )
-R R -
“27 R3(@ ™ -1) +(e—R-1){2R(e‘“+R—1)+(e ~1)(4R+e _1)}

. H? (1—e—Rv2 {ze*R+R— 1)_6_2R(R+1)}{(2R+1)e-m ___e—R}
R’ (e"R —1)
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2R ~D{(R+De™ =™} 4 (¢ _12 {(4R+1)e™ e

H’ N
+m{(2e‘ FR-1) - R+ D}{2Re™Y + (¢ ~1)e ™)
e 2R{Re™ 4 (e® - De?™ 4+ (e ™ -1)

e
R*(e® —1) | {4Re™ + (™ ~1)e™)

(2.23)

2.5 Numerical calculation and discussion

The difference values of @ obtain from equation (2.18) are shown for

different values of a and y by the following table (where U =1, R=.3 and H =3)

Y 0 0.2 0.4 0.6 0.8 1.0
(04
0 0 0 0 0 0 0
0.002 0 0.56 0.67 0.81 0.89 1
0.005 0 0.60 0.74 0.77 0.93 1
0.01 0 0.67 0.84 0.95 0.99 1

2.6 Conclusion

In order to discuss the behavior of velocity of the fluid numerically and

to show the effect of non-Newtonian parameter o on it, we are to take H=3, R
—03 and U = 1. The nature of velocity is represented in the above table. It
shows that the variations of velocity for different values of o and y. It is seen
that the velocity of the fluid increases with the increases of o and y. It is

observed that the non-Newtonian parameter increases the velocity of fluid near

the end of the channel.
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CHAPTER-3

A not eon the oscillatory motion
of Visco-elastic fluid between
two Co-axial circular Cylinder
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3.1 Introduction

Siddappa [1] investigated oscillatory motion of a flat plate in visco-
elastic fluid. Crane [2], Vieggaar [3] and Gupta and Gupta [4] also Studied the
motion of an incompressible viscus fluid bounded by two infinite plates, the
upper one fixed and the other performing a simple harmonic motion on its own
plane. Siddappa and Khapate [5] for a special class of non-Newtonian fluids
known as second-order fluids which are visco-elastic in nature. Seen [6]
Studied the oscillatory motion of Rivlin-Ericksen fluid between two-Co-axial
circular Cylinders. All the aspects of velocity field in the case of the flow of
incompressible, viscus and electrically conducting, or non-conducting,

Newtonian fluids were discussed in the above references.

In technological fields, another important class of fluids called non-
Newtonian fluids, are also being Studied. The oscillatory motion in non-

Newtonian fluids has also been studied by a number of research workers.

3.2 Mathematical analysis

In the present paper the oscillatory motion of a visco-elastic fluid of
oldroyd model between two co-axial circular cylinders, both of which execute

simple harmonic motion but have different amplitude as frequency has been
discussed.

The constitutive equation of a visco-elastic fluid of oldroyds model are-

_ ¢ (3.1

. D o ' ? ' ‘6. 9.
Pikc +M 15 Fi P e ’“I(Pij © ik +ijeijj+"lpp &0
t ij

..€:.0 (3.2)

D 0.
= 2N [eik +X, BEeik — 2158;€5k T V2C;iCij Jk:l
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where

Eb 0 b +vb ,j

Dr % gk TV !,k,J+a)l_jbik +a)kjbﬁ (3.3)

e =2 (V 4V ) @ =

ik =5\ k, j ik ) a’lk*g("k‘f—"ik) (3.4)
the equation of continuity is-

Ci=0 (3.5)

where Jy is the kroneker delta. ey, the rate of strain tensor, P, the stress
thensor, A; the relaxation time, A, the retardation time, o, Ly, Lo, Vi and v, are

material constants and 1), the co-efficient of viscosity.

The equation of motion in absence of external force is given by

ov.
p{ atl + ¥V } P +PlJJ (3.6)

3.3 Formulation of the problem

Let (r,0,z) be the cylindrical polar Co- ordinates and (u,v,w) be the
components of velocity along the direction of r, © and z respectively. let the
common axis of the cylinders coincide with the Z-axis. It is assumed from the
nature of the problems that all entities depends on radial co-ordinate r and time

t only due to infinite lenth of the cylinders having radius a and b, (b > a).

The only equation of motion can be written in the form-

3 \ow 9w l?ﬂ} 3.7)
(l”‘ajaf (H%ar)[ar Trar

The boundary conditions are-
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Qr

w=ue™ atr=b

w=ulem at r=g
(3.8)

where (u;, ®) and (u,,Q) are respectively the amplitude and frequency of

two cylinders.

We assume the solution of the equation (3.7) as

w =, f(r) e + u, g(r)e'™ (3.9)

Which is evidently separable as periodic in t Now with the help of (3.9)
and (3.7) we get
” 1 V4 2
Fre=fmif =0 (3.10)
r

g”+lg'_n_2g=0 . (311)
7
(. i iQ(I+Aim
where m* = ___10)(l+7»1103) and n? =—— " 4 ].l )
V(L+ i) V(1+ i)

The transformed boundary Conditions are

fr)=1 at r=a } (3.12)
f(r)y=0 at r=>

and

g(r'):O at r=a } (313)
g(r)=1 at r=>b

The solution of (3.10) Subject to the boundary condition (3.12) is

I,(mr)K, (mb) — Ko(mr)IO(mb)
SO = 1 (ma)K , (mb) — Ky (ma)],(mb)

Again the solution of (3.11) subject to the boundary condition (3.13) is
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_ L, (nr)K, (na) - K, (nr)I,(na)

(
&(r) I, (nb)K, (na) — K, (nb)1, (na)

Thus the solution of the given problem is

w = {1 tlo(mn)Ko (mb) — Ko (mo)lp(mb)} i
[y(ma)Ky(mb)— K o(ma)ly(mb)

N up {Ig (nr)K oy (na) - Ko(na)lo(mb)}eiQt
Iy (nb)Ky(na)— K¢ (nb)I(na)

For small frequency:

o 1s small e.1 m is small Iy (mr) Ky (mb) = I; (mr)

[_ {In(%mb]+v}lo(mb)+%mzb2 e }

: 1 1 5.
Similarly Io(mb)KO(mr)=—{In(5mrj+v}lo (mb)IO(mr)Jer r’I, (mb)

Io (ITII') KO (Il’lb) — Io (Inb) KO ([I'll)

1, 2
=Io(mb)lo(mr)ln(éj+zm {bzlo(mr)—r I, (mb)} (3.14)
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From (3.14) We get

.1, (mr)K , (mb)—1I, (mb)K, (mr)
:{1+%m2(b2 +r2)}1n(%)+imz(bz —1?)

Similarly we have

- Ty (ma) K, (mb)-Iy (mb) Ko (ma)
. 1 2 (v 2 2
= {1 +%m2 (b% + az)}ln(%]+zm‘ (b*-a )

Now

e (3.15)

similarly we have
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g (3.16)

From the equation (3.15) we get,
{1+lm2 (6% +r° )}In(ij+lmz(b2 —r?)
4 b/ 4
1 o202 2 a), 1 500
{1+4m (b +a )}In(bj+4m (b a )
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={1+—m (rz—az)}l;EQ;ﬁmz(bz fz)rn(li) "};mQ(bz‘a)
b

. Again from (3.15) with the help of the equation (3.17)

I, (mr)K, (mb)-Kjq (mr)Ly (mb) R
I(ma)K o (mb)—Kg (ma)Io(mb)
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Similarly from (3.16) we have

G (n)

{1+1n 2 b )}In(%)

where G (n) = L
I,(n

For Large frequency

o is large, i.e. m is large

I,(z)= ) L A }
O oz | 8z 128z
1

, T A _ 1 0 B
KO(Z)=(Z) e Z{1—§;+12822 .................. }

mr 1 9

© X
s lmr ) K (mb): {1+———-+ = 2+......}

ol mmrys L B 128m

Bt

m(r—b) 1 1
1;(_#} ............. }
2m~/br gmir b
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€

-m(b-r) b
T
Zln\/a Rmbp .

m(b-r)
- 1o (mb)K o (mr) = & {1 LIb }

- R T e

s I (mr)K, (mb) — 1 (mb)K , (mr)

=|:e-—m(b—r){1+ b—r}_em(b_r,{H r—b} 1
8mbr 8mbr 2m\/§

Similarly, we have

I,(ma)K,(mb)—I,(mb)K (ma)

_| g-mb-a) 1 DAL om(b-a) 1+a_b} !
8ba Smba | |2m+/ba

I, (mr)K, (mb) —I,(mb)K , (mr)
"1, (ma)K , (mb) —I,(mb)K , (ma)

e—m(b—r) 1 g b-r m(b r) 1_ J}
8mbr Smbr
b—a
~m(b—r) om(b-2a)[ | J
l:e (1+ Smba] ( gmba } 2m+/ba
gib=nlq b‘r} 1—e‘2m“"”(1+ bt j(ur b'rﬂ
\/Z 8mbr gmbr |~ 8mbr
£ mb-nf|_ b—a [, -2m-a) 4 b—a)(1+ b—aﬂ
¢ 8mba 8mba 8mba
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:\/E e_m(r_a)(l———b_r] 1+ 273 ),
r 8mbr 8mba
2 ;
l_e—Zm(b~r)(1+ b-r 14e2mb-a)| 4 . b-a
8mbr 8mba
= /E e—m(r—a)(l_I_f“_a][l_e—zm(b—r) _ b-r e—Zm(b—r):l
r 8mar 4dmbr

14 e-2mb=a) b-a o-2m(b-a)
4mba

(Negating the higher powers of m)

- F(m) = \[E e~mr=a)| {4 r—a [l+e—2m(b—a) _ g 2m(b-r) _e—2m(2b—r—a)}iimt
r 8mar

F(m) — \/E e—m(r—a) [H_C—Zm(b—a) _e—?_m(b—r) _e—Zm(Zb—r—a)Li(o[
I

1 .
(Sine m is large... — is small)
m

Similarly we have
)= /b e—n(r—b)[l+e—2n(a—b) _ 200 __e—2n(2z1—r—b)}/imt
r

We have

2 io(l+ Ai®) (io)+ A 0 Xl— Ai)
T V(14 A,i0) vl +230°

(hy =N )co2 +i(1+ Klkzcoz )(D
vl +2 20

g )’ +i(1+?»1%2032)®

_ (=)
Vi 220?) m
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1
(}. -7\,) AL+ Ak 2 &
" {V(lj ?»%Cllﬂﬂ (\T(lixz‘éc:o"*)?}z S m=mj +im, (Say)

Similarly we have

1

2
} =1y +in, (Say)

(Ao =2)Q%  (A+A1,0)
" 202] " 2 2
vi+2302)  vii+a2o?)

1

Le{(k;2 Mo 44 MAr 07 )0

E .
V(l+7»22(02) V(1+7»22(02) :l =y g

g 5 2
v(1+7tzoa ) v(1+?»2co )

2
z_mgzﬂ‘z_—ﬁ_ﬂza ay) (3.18)

" v(1+7L%c02)
1+ —h0% o ‘1o
2mlm2=( v(11+)%2m2£__[3 (say) (3.19)

2 2 2 2_ 2. p2
" (mf‘+m%) =(m12——m2)+4mlm7_—a +B

2+mj =4’ 3.20
. m°+m; = a’ + (3.20)

From (3.18) and (3.19) we have

2 \/az +[32 +0

my = )

Somp = %(w)az +[32 +a]
7 o

|
and m2: —2—
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1
: 1 2
iemm, = [E{\/az +B% & aﬂ (Putting the value of o and 3)

1

oo MMy = H\/(Hklzwz Xl+x%(;2)-l_-(xl -kl)a)}w/z\z (1+x§m2 )]E

Similarly we have

=

any {\/(fogf)(H@m)

-
wli+130?)

9 —1)9}Q

For Small Frequency

We have
] 10 -1)0? (1+xlx2co2)w>
F(m)HHH4<v(1+)L%m?‘)+ v(1+k§m2)

b
(rz _az)m; 1<(K2 ')“l)(ﬁ+i(l+7‘l?‘2m2)(‘)>

;E_Z vii+220?) vii+130?)

T

11—’ -(1+7‘17“2m2)m>
(b)Wzﬁﬁm 78

(b2 -a?) In%2 (Cos@t +1 Sin o)
)

Taking real part only, we get

(g - My J0° (I'Z—az)m—? (hp—r)o? (2 =2®) 1,
_ 1____2_—__1————————_"'_———-_ 2.2 4 b
F(m) = cosmt vt l%a)Z) 4 In-? m
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:
b
_ 2 (L2 In—
%Gﬁuizl();g)(b 4a2) na2 —Sinml[(lM]lzmz)‘”(bz—az)m%_
5 (Inhj v(1+k%(oz) 4 In%
a

(1+x]x2m2)w(b2—r2) 1 _(1+7&1l2c02)m(b2—a2) In%

ol+030?) 4 In% i+rfe?) 4 (In%)2

(y-%,)0° (rz—bz)ln%_(kz—ll)gz (az_rz) !
vi+a3e?) 4 mel vi+nke?) 4 i
b

G(n) = Cos 2t {1 +

,-2,)0° o -b?) 103 } e {1 2,070 (v

(1+Mz) 4 (m%)z +220%) 4 may/

(+22,0%)w (@ =1%) 1 +(1+Xlk292)£2(a2—b2) Ind/
o1+ Q) 4 In% ofl+2207) 4 (In%))z

- W=u, F(m)+u, G(n)

For Large frequency:
I

i -2 +‘m )(b—ﬂ) —-2(m +l.m )(b_ﬂ)
-~ F(m) = fi (,l—(m]+1m2)(r—a)|:1+e (m; +im, e t )
I

_C—Z(m] +imz)(2b—r—a):l

(Cost + 1 Sinwt)
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_|a& _-my(r-a) ;

= /r e {Cosml(r——a)—Smmz(r—a)}[l+e"2m1(b—a){C052m2(b—a)—
. -2 -

isin 2m,(b—a)}—e*™M2(® r){COSZmZ(b—r)—iSianz(b—r)}—

—2mq (2b-r—
. mj (2Zb—r a){Cos2m2(2b—r—a)—iSin2m2(2b—rma)}](cosmt+iSinmt)

3.4 Numerical calculation

For small frequency:

4v(1+Aaw*) In/ In/ (1’}1/)2

I b 2 _ I b
F (m) = Coswt l+lM (1"' 2) n/r & r)+(b2 )__n_/L_}

1+ o) : /In% In%

Put ot = —
Let%zCandizR -.éz—fa-:%:%
b
(+Kl o) )m 2 En_E/r__(bz-rz) (bz— 2) In%
REE=y v1+x22m (r )In% In% i ) (In%)z

C InC
1 @a? (1+A2,0°) R?- )I“A{ c*-R?) +(c*- 1)(I ?ﬂ 1SR<2
4 v (1+7€2c02j InC InC n

2
Put C=2, -(ga-l—zlandco:10

In% (4—R2) I"%

100 L -
+
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F(m) = _1(1+1000,) ;
4 ([(+22100) ™

where f (m) = — (R2 _1)In% _ (4_R2)_3In%
In2 In2 (In2)2

_ {—(RZ—1)1n%1n2—(+R2)In2-3InR/2}

(Ir12)2

whenR=1f(m)=0

R=1.2 f(m) =-.1793846193
R=14 f(m) = -.1819404329
R=1.6 f(m) = -.1819404329
R=1.8 f(m) = -.09807897429
R=2 f(m) =0
Table-1
R 1 12 1.4 1.6 1.8
4, =1 0.04548520823 | 0.02451974357 «
2 =1 0| 004484615483 | 0.05549778565 | O. . i
I
iy =1 - 55 | 0.001836867665 | 0.0009902015592 —
A =5 0 | 0.001811060231 | 0.0022412140 . .
2 o
]
Ay=1 4772866 | 0.004552614082 | 0.002454180914 «
A 10 o | 0.0004529008736 | 0.00555 ; F(m)
2 =
I
= “
A =5 o 02224546888 0.2752909961 | 0.2256246467 0.1216276389 o
A, =1
I—
(—
A, =10 ol 0.0444653562 0.00488651233 0005554772866 | 0.002454180914 Fom)
s = ‘
- S —
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Again

(1+m 92] (
172 2 2 a 2
G(n)=— . of - In/r_ I+ 4,0 )Qaz—rz 1
2
14220 ) T ny (o) 4 oy

e T
2 (In %)

:_.l(l-{-ll?\"lgz)gzbz (i_l]ln% az I'2 1 a2 . In%
¢ e | b m%‘(ﬁ'ﬂm%*(?—l}(my)z
‘ b

In% (- - IIn%}

=|-(R? 1)
InC
PutC =2, b —1and Q=10
AY
R
G(n)z_l(nmzmo) )I“/ (b-r?)_ I” }
4 v{1+23100 In2 Inz)
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gl (Rz _I)IH(R/Z)_I _ (4—R2)_ 3In(R/2)

In2 In2  (1n2)?

- ar - ®? ~Din2.10R/4 — (4-R*)n2-31n R/]

G()__il(l+k7»2100) (RZ_I\IHR/ (4 Rz) IH(R/)
4 v{1+22100) h2 W2 (m2)?

g(m =-[R? \IHR/ bor?) oy

" In2 In2  (In2)?

1 [_(Rz_l)Inz_InR/z_(4—R2)[n2—31n%]

(In2)?

WhenR =1 g(n) =0,

R=1.2; g(n) = —0.1793846193
R =14, g(n) =—0.22199114226
R =1.6, g(n) = —0.1819408329
R =18, g(n) = —0.09807847429

R=2 g(n)=0

57



Table-2

R | 1.2
1.4 1.6 1.8 o}
A=1
0 0.04484
2‘1 _1 615483 0.05549778565 0.04548520823 0.02451974357 | O -
G(n)
A, =1
Ay =5 0| 0.001811060231 | 0.002241214055 | 0.001836867665 | 0.0009902015592 | O N
, = G(n)
A, =1
0 | 0.0004529008736 | 0.005554772866 | 0.004552614082 | 0.002454180914 .
7\,2 =10 G(n)
A, =5
0 0.2224546888 0.2752909961 0.2256246467 0.1216276389 -
?\'2 — 1 G(n)
A, =10 -
2 1 0 0.0444653562 0.00488651233 | 0.005554772866 0.002454180914 G(n)
) =

3.5 Conclusion

It is seen that with the help of th

calculation for smal

moves with constan

t velocity in both cylinders.
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the same result. There is no cha
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CHAPTER-4

The impact of magnetic field
and slip velocity on conducting
flow for the artery with mild
stenosis
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4.1 Introduction

In medical science stenosis means the localisation of narrowing in a
blood vessel. In mammalian arteries many cardiovascular diseases are closely
related to the nature of blood position and behaviour of blood vessel. This type
of diseases may lead to morbidity and mortality. Although the correct theory of
stenosis in the lumen of artery is clearly unknown to us. Various Scholars [1,2]
emphasized that some of the major factors which developed the vascular
disease are due to the formation of intra-vascular plaques and the impingement
of ligaments and spurs on wall of the blood vessel. It has been mentioned that
the blood flow characteristics may be altered and many abnormalities arise in
the flow pattern. Some experimental investigations of arterial stenosis have
been carried out by Young and Tsai [3] and it was noted that the changed
characteristics of the blood flow may have a connection impact on the further
development of the vascular disease. Various investigators. [4-6] pointed out
that the study of different hydrodynamic factors such as skin-friction and
pressure under normal physiological conditions and in pathological states
provide useful information’s for better understanding of the pathogenesis and
proper treatment of various arterials diseases like myocardial infarction, stock

etc.

Different mathematical models studied by several researchers [7-12]
were investigated to consider blood flow through stenosed blood vessels.
Among the researchers Young’s [7] work may be considered as on‘e of the
earliest works of major importance. Lee and Fung [10] employed numerical

techniques to study the blood flow through a stenosed tube.

It also may be pointed out that although blood is non-Newtonian
suspension of cells in plasma Mcdonald [13] observed that for vessels at
radious greater than 0.25mm blood may be considered as a homogeneous

Newtonian fluid. At lower shear rates blood exhibits non-Newtonian behaviour
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[14], but in larger arteries where the shear rate is high, blood may be

considered as Newtonian [15].

It is worthwhile to mention that most of the aforementioned studies are
based on the usual assumption of the no-slip condition at the vessel wall. But
Benneth [16] on the basis of his in-vitro experiments to study the behaviour of
red cells during blood flow, suggested that there might exist the possibility of
the ted cells to have a slip-velocity at the wall under certain conditions.
Subsequently, several investigators [17-20] also indicated the possibility of

slip-velocity at the inner surface of the wall.

On the other hand, Barnothy[21] reported that biological systems, in
general, are affected by the application of an external magnetic field. In a
recent paper, Halder and Ghosh[22] investigated the effect of magnetic field on

blood flow through an indented tube in the presence of erythrocytes.

In the present investigation, a mathematical model has been developed
to study the effect of externally applied uniform magnetic field on the
characteristics of blood flow through stenosed vessels, by accounting for the
slip velocity at the endothelium of the blood vessel. the analytical expressions
are computed numerically in order to quantiate of the extent to which the slip
velocity and the magnetic field can influence the blood flow pattern of a given
stenosed blood vessel in a specific situation. Momentum integral techniques
has been employed to solve the problem. The effects of an external magnetic
field may have some consequences in these type of situations, for example,

during MRI scanning.

4.2 The stenosis model

Let us consider an axially symmetric steady, laminar flow of blood

through an artery in which a mild stenosis has been developed and the fluid is
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acted on by an externally applied uniform magnetic field B. The geometry of
the stenosis is described as [19].

R@ _

5 2,22 2
R l—ﬁ—exp(—mkz/Rl) 4.1)

1

In which R(z) is the radius of the artery in the stenosed portion; R,

denotes the radius of the artery outside the stenosis;  and m are the height and

slope of the stenosis where it intersets the vessel wall; k =B is the relative
1

length of the stenosed portion; z represents the axial distance and 2L, is the
length of the stenosed segment. Stenosis geometry described by equation (1)

can be written alternatively in the form.

R(z)

N =1-yexp (—rnzlemgz) 4.2)
1
where Y = —E— 3 B =—i— , My = —]iL and 2L is the length of the artery.
1

In biological systems and particularly in case of problems of blood flow
through artery, the condition of steady flow in general may not be valid. But
the consideration of a steady laminar flow is meaningful in certain situations as

discussed below:

Blood flow in large arteries is pulsatile in nature, the frequency
parameter B being given by B=R, J2Af/v , where R is the radius of the artery,
f is the frequency of the pulsation and v is the coefficient of kinematic viscosity
of blood. The flow may be treated as quasi-steady for B > 0 in smaller arteries.
McDonald [13] pointed out that for several blood vessels, e.g. the human
femoral artery for which 2.5 < B < 3.5, the quasi-steady condition remains valid
and it is also likely to be valid in arteries much smaller than the human femoral
artery. It may also be possible that such a quasi-steady flow exists in some larger

arteries due to an acquired constriction in a major artery [8,23]. Thus, the
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assumption of steady laminar flow is justified in that part of the arterial tree

where the flow is nearly steady.

Moreover, when a stenosis develops in an artery, an immediate effect is
hardening of the walls due to complex physiological changes. For this reason,

the stenosed portion of the arterial wall may also be treated as rigid.

4.3 Governing equations

Let us take the artery to be a long cylindrical tube with the axis
coinciding with z-axis and the motion is axially symmetric. Assuming quasi-
steady condition and the azimuthal dependence because of the rotatinoal
symmetry of the stenosis, the basic equations of motion in the cylindrical co-

ordinate system (r, 8,z ) aré given by.

du du op 2u oA du 9%u, oB’
—tv—=——()tV —t—)—— U (4.3)
“az”ar p(az) ( or? r81 0z p

2 2
AL N RV LA v Jm ey Ty 4.4)

9z or p or o2 ror 078 r

.a_u.+l.,aa_(vr)=0 (45)

In the above equations, U and v represent the axial and radial velocity
components respectively; P is the density, p is the pressure; v is the kinematic
viscosity coefficient of blood, © is the conductivity of the fluid and B is the
applied external uniform transverse magnetic field.

Due to the presence of the nonlinear terms representing convective

acceleration, an analytical solution of the above system of equations seems (o

be difficult and hence an attempt has been made to consider an approximate
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solution of the problem, by preserving the principal considerations regarding

the stenosis geometry.

For a mild stenosis /L, is considerably small compared to unity and the

2 2

normal stress gradien

if /1., is sufficiently small compared to unity, the radial variation of pressure,

ie. %B may be neglected. Thus the differential equation determining the flow
r

past a mild stenosis may be approximated as

2
Jou, ou_ 1, Vo Ty (4.6)

and —=0 4.7)

Now integrating equation (4.6) over the cross-section of the vessel and
using the continuity equation (4.5), we obtain the momemtum integral equation

as

2
2 f e VR(——) e fru dr. (4.8)
p 2
where we have used the boundary conditions u = W (the velocity slip
condition) and v=0atr= R.

Integrating the continuity equation (4.5), the volume flux Q is obtained as
Q=nR* U=n fm dr (4.9)
where U is the mean velocity at any given cross-section with radius R.

In the present analysis, we take the velocity constraints as

u=U atr=0 (4.10a)
u=W atr=R (4.10b)
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§=0 atr=0 (4.10c)
°’u _ 2U
ar2 = —? atr=0 (410(1)
dp p 9, du
d ===—0—)— 82 =
an % 1o (r ar) cB’u atr=R (4.10¢e)

In the above, the first condition defines the centre line velocity, the
second is the condition of slip velocity on the artery wall, the third is the
regularity condition and is deduced by considering the forces on a cylindrical
fluid element in the following way: If the pressure and the inetial forces are to

be infinite as the radius of the element tends to zero, the viscous force that is

proportional to %—u- must tend to zero. Assuming the velocity profile to be
r

nearly parabolic at the axis, as represented by the Poiseull’s profile

%— =1~ (%)2, the second radial derivative of u at r = 0 may be approximate by

the fourth condition. Finally, the fifth condition represents the validity of

equation (6) atr =R.

4.4 Solutions

We choose the velocity profile in the dimensionless form as

i :% = AL+ Am + A + Am® + A’ (4.11a)
where 1 = R}: , (4.11b)

U being the centre line velocity and Ay, Az, As, As, As are constants to
be determined from the velocity constraints. Using equations (4.11a) and

(4.11b) the volume flux given in (4.9) may be re-written as

Q=2nR*U [(1-widn (4.11c)
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The velocity constraints in terms of 1 are given by

a=1 atm = 1 (4.12a)
LW

i=— atm =0 (4.12b)

U

%o atn =1 (4.12c)
on '

2

90 o atm = 1 (4.12d)
dn

dp puU 0% di 2 7a '
dp__ Y rq-m=—-—]-cB*Ul atm=0 4.12
e G R (4.12¢)

Applying the conditions (4.12a) to (4.12¢), the velocity profile @ is

evaluated in the form.

u= A1+—}]-(—7u+10—12A1)n ; 471-(3x+5-6A1)n2+ %(-37\,—12+20A1)n3

2 %(?\,+4-9A1)n4 (4.13)
2 5 W

in whichA = — [9£+0B'W], A= — (4.14)
pU dz U

From (4.13), it is clear that when A, is known, the velocity profile

becomes a function of a single parameter A which is a function of the pressure
; d . e
gradient EE and the magnetic field strength B.
Z

Substituting (4.13) into the equation (4.11c) and then integrating we

obtain.

2 2
p-20Q 2R dp 2Ry 102 v (4.15)
97 7RE 97 p dz 97 n 97

The parameter A can be determined from the integral equation (4.8) as
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JR* LW 14 9
—(6A ~5)+-——oB?
5B T 50l (VR > [a-mian )]
14R? .
; oB2- £(1—n)11dn (4.16)

Sp

The subsequent part of the analysis will be carried out by neglecting
higher than two in the velocity profile and retaining only the poiseuille profile

[19].

u=2ﬁn4§f1 4.17)
2
where 'ﬁz_(f‘_) dp
8u  dz

dp
is the average velocity at any given cross — section and = » P 0.

Now substituting the value of u obtained from equation (4.17) into the

momentum integral equation (4.8) we have

4 2Ry =- 1R%dp ¥ L (WU-10U+12A,0)

dz 3 p 2 dz
2R2
_oBR® AL 97U 17A U, @.18)
P 210 420 70
In this equation if we substitute U = % and combine the resulting
L

equation with (4.15), the pressure gradient is obtained in the form.

2
dp _776 , pQ* \dR SﬂQ+624WH 22 ew-27Q g2 419

dz 225 m°R° mR* 75 R® 75 75 nR*

The first term on the right hand side of equation (4.19) is due to the
inertia of blood, the second term is due to the viscous shearing stress, the third
term is due to the slip velocity, the fourth and fifth terms represent the

influence of magnetic field on the pressure gradient.
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In non-dimensional form, the equation (4.19) is reduced to

dp 776 R, sdR 16 R, 1248 I

1 1 AN
(p D) s dz 225(R) dz R(R) 75 R(R)U)
W22 oB? 97 oB?
( )(—)(—')——( )( L) (—I =) (4.20)
where R, —2PR Uy is the Reynolds number upstream from the stenosis,

U, being the average velocity at a cross-section of the artery.

The condition for an average pressure gradient to develop
(when dp >0) is
dz

R,.dR W . R, .. oB® W
R (=L >4.64—4.82 2y (292-0.09 — (—
( ) (UO)(R) > (Uo)

R, R, s oB® R, , R,
=LY~ RA0.38 — (=) (=1)R, 4.21
(UO)(R) ; (R) (Un) (4.21)

Using equations (4.15) and (4.18), the velocity distribution u is obtained

from (4.13) as a function of r and z in the form

u R, 3dR

T = R(RY — 2 (3 1) (2n-n )+—g(n)
0
R w
-(ﬁ)ZMzﬁ—wmwMchm) (4.22)
0
where
f(m) = 0.2n+0.76m%-0.81°+0.24n" (4.23a)
g(n) = 1-4.16n+2.081n>+0.81°-0.6n* (4.23b)
(M) = 0.151-0.57+0.6n>-0.2n" (4.23¢)
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and M = B|R; \/E = Hartmann number.
n

The skin — friction T, is given by

_du
= ( > )iek (4.24)

which in non-dimensional form is obtained with the help of (4.22) as

T, _ _4dR 8 R, 832R_E
DUZ () = U 4 ()()

e

03R e V03 R,
( T, R(R) (4.25)

At the separation and reattachment points, the skin friction must vanish,

so that we have

-2
R(R—)dR 20—20.8(&) (W} 075(—) SRV
R)\U U,

0

+o.75(%-)-2M2 (4.26)

In the case of incipient separation for which the Reynolds number is just

enough to cause separation, the separation location in the diverging section of

the stenosis is given by the condition that —é—(j—%) is maximum which demands
z

that

4By _ MRy, 4.27
R(dzz) (dz) (4.27)

For the stenosis geometry defined by equation (4.1), the location (f) of
1

the initial point of separation is given by the relation.
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2,212
™M (1-2m*2*LY) =

(4.28)

_5_ 2m?z?
1

L

yelding
LICYNN. / By a2l
(Ll) —l (9+4R1) (1+2R1)]. (4.29)

4.5 Results and discussions

The analytical expressions derived in the previous section have been
computed numerically for different Reynolds and Hartmann numbers. The aim
of the computational work is to quantify the influence of the magnetic field and
the slip velocity at the wall on the velocity distribution. The computation has
been carried out at the location defined by z = 0.06 for three different values of
Reynolds number R, = 100, 300, 500 and Hartmann number M given by M’ =
0,9,18. The slip velocity has been taken to be equal to 10% of the average
velocity of blood in a normal artery [19]. The length of the stenosis has been
taken to be 20 mm while the maximum depth of the stenosis is assumed to be
0.2 mm. Figures 2,3 and 4 illustrate the variation of the non-dimensional axial
velocity of blood flow in the stenosed arterial segment for different Hartmann
number. It may be observed that the magnetic field increases the blood velocity
near the wall but decreases it near the central axis of the artery. Figures 5,6 and 7
predict the same behaviour of blood without slip velocity. The variation of blood
flow with and without slip velocity has been shown in figure 8 for R, = 500 and
M? =9. It is noted that the slip velocity increases the flow very near to the wall but
decreases it as we pass on to the centre. In figure 9, the effect of Reynolds number
on the blood velocity has been shown and the influence is to reduce the velocity

with increasing Reynolds number near the wall and then to increase.
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4.6 Conclusions

Although the present investigation of the mathematical model of blood
flow through a stenosed segment of the artery is based on some
approximations, it bears the potential to reveal some characteristics of the
problem. The model firmly establishes the fact that the velocity slip at the wall

of the arterial segment as well as the magnetic field enhance the axial velocity

of the blood.
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