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Abstract

Abstract

There are many approaches for approximating solutions of nonlinear vibrating problems.
The most common methods for constructing approximate analytical solutions to the
nonlinear vibrating problems are the perturbation methods. These methods are developed to
find only periodic vibrations of the nonlinear differential systems. In order to investigate the
transients of nonlinear vibrations, Krylov and Bogoliubov introduced a perturbation method
to discuss the transients in the second order autonomous systems with small nonlinearities.
The method is well known as an "asymptotic averaging method" in the theory of nonlinear

vibrations. Then the method was amplified and justified by Bogoliubov and Mitropolskii.

These methods were applied to autonomous systems. Later, Arya and Bojadziev, Bojadziev

and Hung, and Shamsul extended the Krylov-Bogoliubov-Mitropolskii (KBM) method to
some time dependent nonlinear differential systems. In this dissertation, we extend the work

of KBM and investigate some other time dependent non-linear differential systems.

Firstly, a second order time dependent nonlinear differential system is considered.
Then a new perturbation technique is developed to find an asymptotic solution of nonlinear
vibrations in presence of a slowly decaying external force. We then find an asymptotic
solution of a time dependent nonlinear differential system with slowly varying coefficients
using the KBM method. Later, we find the perturbation solutions of damped forced
vibrations using the modified KBM method, in which the coefficients change slowly varying
with time. Further, this technique is used to obtain the second approximate solution of second

order forced vibrations. Finally, this technique is used to obtain the higher approximate



ARSUHall

solution of an n-th order damped forced vibrating problem in the resonance case, and the
stability of the stationary regime of vibrations has also been investigated. The methods are

illustrated by several examples.
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Introduction

Introduction

Vibrations are ubiquitous in all fields of fundamental and applied sciences. A number of
physical, mechanical, chemical, biological, biochemical and some economic laws and
relations appear mathematically in the form of differential equations which are ordinary or
partial, linear or nonlinear, autonomous or non-autonomous. The modeling of the involved
physical phenomena leads very often to ordinary differential equations that, in most of the
cases, are nonlinear. Solving nonlinear ordinary differential equations is thus of great
importance for gaining insights into the real world. Methods of solutions of linear differential
equations are comparatively easy and well established. On the contrary, the techniques of
solutions of nonlinear differential equations are less available and in general, linear
approximations are frequently used. The method of small oscillations is a well-known
example of the linearization of problems, which are essentially nonlinear. With the discovery
of numerous phenomena of self-excitation of circuits containing nonlinear conductors of
electricity, such as electron tubes, gaseous discharge, etc., and in many cases of nonlinear
mechanical vibrations of special types, the method of small oscillations becomes inadequate
for their analytical treatment. There exists an important difference between the phenomena
which oscillate in steady state and the phenomena governed by linear differential systems
with constant coefficients, e.g., oscillations of a pendulum with small amplitudes, in that the
amplitude of the ultimate stable oscillation seems to be entirely independent of the initial

conditions, whereas in oscillations governed by linear differential systems with constant

coefficients, it depends upon the initial conditions.



Introduction

Van der Pol first paid attention to the new (self-excitation) oscillation and found that
their existence is inherent in the nonlinearity of the differential systems characterizing the
process. This nonlinearity appears, thus, as the very essence of these phenomena and by
linearizing the differential systems in the sense of the method of small oscillations, one
simply eliminates the possibility of investigating such problems. Thus it is necessary to deal
with the nonlinear problems directly instead of evading them by dropping the nonlinear
terms. To solve nonlinear differential systems there exist some methods. Among the
methods, the method of perturbations, i. e., asymptotic expansions in terms of a small
parameter, are foremost. According to these techniques, the solutions are presented by the
ﬁrét two terms to avoid rapidly growing algebraic complexity. Although these perturbation
expansions may be divergent, they can be more useful for qualitative and quantitative

representations than the expansions that are uniformly convergent.

Perturbation methods are one of the fundamental tools used by all applied
mathematicians and theoretical physicists and widely used in science to obtain approximate
solutions based on known exact solutions to nearby problems. Such asymptotic techniques
can also be used to provide initial guesses for numerical approximations, and they can now
be generated through smart use of symbolic computation. An example of this occurs in
boundary layer problem where the regions of rapid change of quantities are fluid velocity,
temperature or concentration. This method is most effectively used to analyze problems in
solid and fluid mechanics, control theory, celestial mechanics, optics, shock waves, nonlinear

vibrations, nonlinear wave propagations, and reaction-diffusion systems arising in several

physical and biological contexts.



Introduction

In this dissertation, we shall discuss nonlinear vibrating problems that can be described
by the dynamical vibrations of second and nth order time dependent nonlinear differential
systems with small nonlinearities by use of the modified Krylov-Bogoliubov-Mitropolskii
(KBM) method. An important approach to study such nonlinear oscillatory problems is the
small parameter expansion. Two widely spread methods are mainly used; one is averaging,
particularly the KBM method and the other is the method of variation of parameters.
According to the KBM technique the solution starts with the solution of linear equation,
termed as generating solution, assuming that, in the nonlinear case, the amplitude and phase
of the solution of the linear differential equation are time-dependent functions rather than
constants. This method introduces an additional condition on the first derivative of the
generating solution for determining the solution of a second order equation. Originally, the
method was developed by Krylov-Bogoliubov to obtain the periodic solutions of second
order nonlinear differential systems. Now, the method is used to obtain oscillatory, damped
oscillatory and non-oscillatory solutions of second, third etc. order nonlinear differential
systems by imposing some restrictions to make the solutions uniformly valid.

Most of the authors, found the solutions of autonomous nonlinear differential systems.
Only a diminutive number of authors investigated damped forced nonlinear vibrating
problems. In this dissertation, some second order and an #-th order time dependent nonlinear

vibrating problems have been studied and their solutions are investigated.

The results may be useful to researchers working in the field of nonlinear mechanics,

mathematical physics, control theory, population dynamics, etc.
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Chapter 1

The Survey and the Proposal

1.1 The Survey

The study of nonlinear vibrating problems is of crucial importance not only in all
areas of physics but also in engineering and other disciplines, since most physical
phenomena in our real world are essentially nonlinear and are described by nonlinear
equations. In the mathematical formulations, many physical problems often result in
differential equations that are nonlinear. However, in many cases it is possible to replace
a nonlinear differential equation with a related linear differential equation that
approximates the actual equation closely enough to give useful results. Often such
linearization is not possible or feasible; when it is not, the original nonlinear equation

itself must be tackled.

During the last several decades a number of Russian scientists, like, Mandelstam and
Papalexi [47], Andronov [6], Krylov and Bogoliubov [37], Bogoliubov and Mitropolskii
[12] worked jointly and have investigated nonlinear problems. Among them, Krylov and

Bogoliubov are certainly to be found most active.

Krylov and Bogoliubov considered primarily equations of the form

2

%+0)2x=3f(t,x,%,e) (1.1)

where ¢ is a small positive quantity and f is a power series in &, whose coefficients are

polynomials in x, —f;i, sint, cost. In fact, generally f contains neither £ nor ¢. Similar
t
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equations are well known in astronomy and have been the object of systematic
investigations by Lindstedt [44,45], Gylden [33], Liapounoff [42] and, above all by
Poincare [77]. In general sense, it seems that, Krylov and Bogoliubov applied the same
methods. However, the applications in which they viewed are quite different, being
mainly in engineering, technology or physics, notably electrical circuit theory. The

method has also been used in plasma physics, theory of oscillations and control theory.

In the treatment of nonlinear oscillations, by perturbation methods, Lindstedt [44,45],
Gylden [33], Liapounoff [42], Poincare [77], discussed only periodic solutions, transients
were not considered. Krylov énd Bogoliubov (KB) first discussed transient response. The
method of KB starts with the solution of the linear equation, assuming that, in the
nonlinear case, the amplitude and phase in the solution of the linear equation are time
dependent functions rather than constants. This procedure introduces an additional

condition on the first derivative of the assumed solution for determining the solution.

Extensive uses have been made and some important works are done by Stoker [118],

McLachlan [48], Minorsky [51], Nayfeh [60,61], Bellman et al [11].

Most probably, Poisson initiated to find approximate solutions of nonlinear
differential equations around 1830 and the technique was formally introduced by
Liouville [46]. Duffing [29] investigated many significant results concerning the periodic

solutions of the equation

2
N x+2ké+x=—f:x3

1.2
di* dt (12)

Some different nonlinear phenomena occur when the amplitude of the dependent
variable of a dynamical system is less than or greater than unity, the damping is negative

when the amplitude is less than unity and the damping is positive when the amplitude of
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the dependent variable is greater than unity. The governing equation, having these

phenomena is given by

d*x

dx
0= —rx=0 (1.3)

This equation is known as Van der Pol [120] equation. This equation has a very

extensive field of application in connection with self-excited oscillations in electron-tube

circuits.

Since, in general, £ contains neither £ nor ¢, the equation (1.1) therefore takes the

form

d*x dx
ar’ +a)2x=g-f(x,g] (14)

The method of KB is very similar to that of Van der Pol and related to it. Van der Pol

applied the method of variation of constants to the basic solution x = azcoswt + bsinw¢ of

2

dt?

+@’x =0, on the other hand KB applied the same method to the basic solution

x = acos(ar +¢) of the same equation. Thus in the KB method the varied constants are
a and ¢, while in the Van der Pol’s method the constants are a and & . The method of

KB seems more interesting from the point of view of applications, since it deals directly

with the amplitude and phase of the quasi-harmonic oscillation.
If £ =0, then the equation (1.4) reduces to linear equation and its solution is
x=acos(at + @) (1.5)
where a and ¢ are arbitrary constants to be determined from given initial conditions.

If £ # 0, but is sufficiently small, then KB assumed that the solution is still given by

(1.5) with the derivative of the form
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dx _ :

7 = awsin(at + ) (1.6)
where a and ¢ are functions of ¢, rather than being constants. Thus the solution of the
equation (1.4) is of the form

x = a(t)cos(wt + (1)) (1.7)
and the derivative of the solution is chosen to be of the form

dx ’
o —a(t)wsin(wt + (1)) (1.8)

Differentiating the assumed solution (1.7) with respect to ¢, gives

o Cosy —a wsin —aggisin =t + 1.9)

oV e iy, ws P (1.
Therefore,

dx dop .

— cosy —a——siny =0 1.10

7 (O — d— s (1.10)

by using (1.6).
Again differentiating (1.8) with respect to ¢, gives

2
dx__da sinw—awzcosw—aw%COSW (1.11)

dr? dt

Substituting (1.11) into the equation (1.4) and using equations (1.7)-(1.8), gives

@msinw+aw%cosw:—af(acosy/,—aa)sinu/) (1.12)
t .

d do .
Solving (1.10) and (1.12) for 7‘; and 7? yields
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da_

7 =—¢ f(acosy,—awsin w)siny /w
» (1.13)

o —¢& f(acosy,— awsin w)cosy / am

Thus instead of the single differential equation (1.4) of the second order in the

unknown x, we obtain two differential equations of the first order in the unknowns a

: da d.
and ¢. Since = and —f are proportional to the small parameter £; @ and ¢ are

slowly varying functions of the time ¢ with the period T=27z/w and, as a first

approximation, they are constants.

Expanding f(acosy,—awsin w)siny and f(acosy,—awsiny)cosy in Fourier

series in the total phasey, the first approximate solution of (1.4), by averaging (1.13)

over one period is

da> B
— ) =—7— | f(acosy, —awsiny)sinydy
<dt 27w 6[
(1.14)

d 2r
<—¢> == Z;a)a 6l‘f(a cosy, —awsiny) cosydy

where a and ¢ are independent of time under the integrals.

KB called their method asymptotic in the sense that &€ — 0. An asymptotic series
itself is not convergent, but for a fixed number of terms the approximate solution tends to
the exact solution as & tends to zero. It is noted that the term asymptotic is frequently
used in the theory of oscillation, also in sense that & -—>o0. But in this case the

mathematical method is quite different.

Later, this technique has been amplified and justified mathematically by Bogoliubov
and Mitropolskii [12], and e_xtended to non-stationary vibrations by Mitropolskii [53].

They assumed the solution of the nonlinear differential equation (1.4) in the form
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¥=acosy teu(ay)+etu(ay)+...+e"u, (a,l,z/)+0(£"“) (1.15)

where u,, k=1,2,....n are periodic functions of y with a period 27, and the quantities

a and v are functions of time t, defined by

dn .

E=£Al(a)+a Az(a)+...+e"An(a)—f-O(s”“)

‘ (1.16)
_l/_/.—- 2 n +1

o =0+ eB(@)+2? By(@)+...+ 8" B,(a)+ O™

The functions #,, 4, and B, k=12,...,n are to be chosen in such a way that the
equation (1.15), after replacing @ and by the functions defined in equation (1.16), is a
solution of the equation (1.4). Since there are no restrictions in choosing the functions 4,
and B,, that generate the arbitrariness in the definitions of the functions u, [13]. To

remove this arbitrariness, the following additional conditions are imposed

2n

fuk (a,w) cosy dy =0,
0
2n

Iu,c (a,y) siny dy =0,

0

(1.17)

Differentiating (1.15) two times with respect to ¢, utilizing relations (1.16),

2

substituting (1.15) and the derivatives ,?zx, in the original equation (1.4), and

dt

equating the coefficients of &%, k=1,2,...,n results a recursive system

2
w[i ué‘ +ukj=f""‘>(a,w)+2w(a3k cosy + 4, siny), (1.18)
W

where

' (a,w)= flacosy, -woasiny),
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m
f N aw)=u,f,(acosy, —wasin W)
+(Al Cosy —aB, siny + w—ayi
Sy

x f;(acosy, —a)asim//)-f(ail;l2 -4 ﬁ)cowj (1.19)
da

dB 2 2
+(2AIBl—aAl—’]sinw—2w LS|
da dady oy’

It is obvious that f*' is a periodic function of the variable w with period 27,

which depends also on the amplitude a. Therefore, f*' as well as u, can be expanded

in a Fourier series as

I Paw) =g, @+ g, (a)cosny + b “ (@) sinny
n=1

u(a,y) = vo(H) (a)+ i v, “D(a)cosn w+w, " (a)sinny, e
o
where
5, %0 =2i T F“P(acosy, —wasiny)dy,
0
g, = ; I f%(acosy, -wasiny)cosny dy, (1.21)
0
B = 1 T f D (acosy, —wasing)sinnydy, n=l
0
Here vl(k_') = wl(""” =0 for all values of k, since both integrals of (1.17) vanish.
Substituting these values into the equation (1.18), it becomes
TR () B i o’ (1-n" )[vn(k'l) (a)cosny +w,* " (a)sinn z//]
=l
2.7 (@) + (5,4 (@) + 200B, Joosy + (1,*™ (@) + 208 )siny (1.22)
+ i [gn("'” (a)cosny + h,,(H) (@)sin m//]
n=2

10
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Now equating the coefficients of harmonics of the same order, we get

gl(k—l)(a) + 2a)aBk - 0’ h](k—l)(a) + zwAk = O,

(k-1) (k=1
(k-
Vo 5 l)(a) = -ngﬂ vn(k‘I) (a) — gn (a)

o*(1-n?)’

E

(1.23)

p D (a)

(k=1)
W, (@)=
@*(1-n%)

, n=21

These are the sufficient conditions to obtain the desired order of approximation. For

the first order approximation, we have

(¢9)
4 =_hl (a):__ 1

2
o Py Jf(a cosy, —wasiny)siny dy,

(1.24)

) 27
g (@) 1 .
B, =— =— -
\ . P 6[ flacosy, —wasiny)cosydy.

Therefore, the variational equations in (1.16) become

d 2

i:—ﬁ J‘f(a cosy, —wasiny) siny dy,

oy (1.25)
d—w—a)— 2 jff(acos —wasiny)cosy d
dt 2rwa g i v vav.

The equations of (1.25) are similar to the equations in (1.14). Thus the first order
solution obtained by Bogoliubov and Mitropolskii [12] is identical with the original
solution obtained by KB [37]. In the second case, higher order solution can be found

easily. The correction term %, is obtained from (1.23) as

: 2, (@) N Z"’: 2, @) cosny +h, " (a)cosny
a)z n=2

ul ml(l_HZ)

(1.26)

The solution (1.15) together with #, is known as the first order improved solution in
which a and y are the solutions of the equation (1.25). If the values of the functions 4,
and B, are substituted from (1.24) in the second relation of (1.19), the function f®, and

11 Rajshahi University Library
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in the similar way, the unknown functions 4,,B, and u, can be found. Thus the

determination of the hj gher order approximation is complete,

Volosov [121,122], Museenkov [58] and Zebreiko [124] also obtained higher order

approximations.

The KB method has been extended by Kruskal [36] to solve the fully nonlinear

differential equation

d*x dx
— = F(x 2
e (x, ot £) (1.27)

The solution of this fully nonlinear equation is based on recurrent relations and is

given in the form of power series of the small parameter € .

Cap [27] has investigated some nonlinear systems of the form

d*x
dr?

2 £(x) = 2
+0 ()= F(x,—) (1.28)

He solved this equation by using elliptical functions in the sense of Krylov and

Bogoliubov.

Struble [119] developed a technique for treating weakly nonlinear oscillatory systems

such as those governed by

2

d*x dx
% togx=of (x,—51) (1.29)

He expressed the asymptotic solution of this equation for small & in the form

x=acos(a)ot—é’)+ie"x,,(t)+0(s"”) (1.30)

n=1

where a and @ are slowly varying functions of time.

12
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Later, the method of Krylov-Bogoliubov-Mitropolskii (KBM) has been extended by

Popov [78] to damped nonlinear systems

d*x dx dx
—+2k=+®x= —
gt et 1 (131)

where — ZkFt Is the linear damping force and 0 < k < w. It is noteworthy that, because

of the importance of the method [78] in the physical systems, involving damping force,
Mendelson [49] and Bojadziev [23] rediscovered Popov’s results. In the case of damped

nonlinear systems the first equation of (1.16) has been replaced by

d
ﬁ =—ka+&4,(a)+&* 4,(a)+...+ 5" 4,(a) + Oc™) (1.16a)

Murty, Deekshatulu and Krishna [56] found a hyperbolic type asymptotic solution of
an over-damped system represented by the nonlinear differential equation (1.31) in the
sense of KBM method; /. e., in this case k> @. They used hyperbolic function, cosh @ or
sinhg instead of the harmonic function, cosg, which is used in [12,37,49,78]. In the
case of oscillatory or damped oscillatory process cos@ may be used arbitrarily for all
kinds of initial conditions. But in the case of non-oscillatory systems cosh¢g or sinhe
should be used depending on the given set of initial conditions [24,56,57]. Murty and
Deekshatulu [55] found another asymptotic solution of the over-damped system
represented by the equation (1.31), by the method of variation of parameters. Shamsul
[107] extended the KBM method to find solutions of over-damped nonlinear systems,
when one root becomes much smaller than the other root. Murty [57] has presented a
unified KBM method for solving the nonlinear systems represented by the equation

(1.31). Bojadziev and Edwards [24] investigated the solutions of oscillatory and non-

oscillatory systems represented by (1.31), when & and @ are slowly varying functions of

13
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time £ Arya and Bojadziev [7,8] examined damped oscillatory systems and time-
dependent oscillating systems with slowly varying parameters and delay. Shamsul, Alam
and Shanta [94] exténded the Krylov-Bogoliubov-Mitropolskii method to certain non-
oscillatory nonlinear systems with varying coefficients. Later, Shamsul [109] unified the
KBM method for solving an n-th order nonlinear differential equation with varying

coefficients. Sattar [83] has developed an asymptotic method to solve a critically damped

nonlinear system represented by (1.31). He has found the asymptotic solution of the

system (1.31) in the form

x=a(l+y)+eu(a,p)+...+ ", (a,p) + O(e™) (1.32)

where a is defined by the equation (1.16a) and y is defined by

d
7";’=1+ecl(a)+...+g"cn(a)+0(a"“) (1.16b)

Shamsul [91] has developed an asymptotic method for second-order over-damped
and critically damped nonlinear systems. Shamsul [102,110] has also extended the KBM
method for certain non-oscillatory nonlinear systems when the eigenvalues of the
unperturbed equation are real and non-positive. Shamsul [93] has presented a new
perturbation method based on the work of Krylov-Bogoliubov-Mitropolskii to find
approximate solutions of nonlinear systems with large damping. Later, he extended the
method to n-th order nonlinear differential systems [99]. Shamsul, Hossain and Shanta
[97] investigated perturbation solution of a se;:ond order time-dependent nonlinear system

based on the modified Krylov-Bogoliubov-Mitropolskii method.

Making use of the KBM method, Bojadziev [14] has investigated nonlinear damped
oscillatory systems with small time lag. Bojadziev [20,21], Bojadziev and Chan [22]

applied the KBM method to problems of population dynamics. Bojadziev [23] used the
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KBM method to investigate nonlinear biological and biochemical systems. Lin and Khan
[43] have also used the KBM method to some biological problems. Proskurjakov [79],
Bojadziev, Lardner and Arya [15] have investigated periodic solutions of nonlinear
systems by KBM and Poincare method, and compared the two solutions. Bojadziev and
Lardner [16,17] have investigated monofrequent oscillations in mechanical systems
including the case of internal resonance, governed by hyperbolic differential equation
with small nonlinearities. Bojadziev and Lardner [18] have also investigated hyperbolic
differential equations with large time delay. Freedman, Rao and Lakshami [30] used the
KBM method to study stability,l persistence and extinction in a prey-predator system with
discrete and continuous time delay. Freedman and Ruan [31] used the KBM method in

three-species food chain models with group defense.

Murty [57] has presented unifiecd KBM method for solving the differential
equation (1.31) by using their previous solution [55] as a general solution for the un-
damped, damped and over-damped cases, which is the basis of the unified theory. Murty

[57] assumed a solution of (1.31) according to the asymptotic method in the form

x(t,a)zge“’—ge'“’+ew (a, @) +... (1.33)
2 2 '

where a and y satisfy the first order differential equations

%:-ka+aAl(a)+82A2(a)+...

(1.34)

ii_wzml +&B,(a) +&*B,y(a)+...
f

with A, — 4, =2, and ®, is unknown function of a and y, where 4, and 4, are the

eigenvalues of the correspohding linear equation of (1.31). In his paper, Murty [57]

restricts himself to only the first approximation.
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When the eigenvalues of the corresponding linear equation are real, iy being a

real quantity and the first two terms on the right sides of equation (1.15) can be combined

as
x(t,€) = asinhy + €0, (a,y) +... (1.35)

which corresponds to over-damped solution of (1.33). When the eigenvalues of the
corresponding linear equation are complex conjugate (i.e. for un-damped and under-
damped cases) instead of real, putting a=-i

a, =iy, coshiy=cosy and

sinhiy = —isiny , the solution in equation (1.31) becomes
x(1,€) = asiny +gw,(a,y) +... (1.36)

which corresponds to the periodic and under-damped solution of (1.31). Murty’s [57]
technique is a generalization of the KBM method. Many authors extended this technique
in various oscillatory and non-oscillatory systems. Bojadziev and Edwards [24]
investigated nonlinear damped oscillatory and non-oscillatory systems with varying

coefficients following Murty’s [57] unified method.

Most probably, Osiniskii [63], first extended the KBM method to a third order

nonlinear differential equation

d’x d*x dx de d*x
?+klg}7+kzz+k3x=£f(x,}?,?) (137)

where ¢ is a small positive parameter and f is a nonlinear function. Osiniskii assumed
the asymptotic solution in the form

x=a+bcosy +eu (@a,bw)+...+&"u,(a,by)+0(e™), (1.38)
where u,, k=12,...,n are periodic function of ¢ with period 27z and, a,b and

are functions of time ¢, given by -
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4 = THAEA @+ 8" 4y (a) 4.+ 4, (@) + O(c™)

=~Hb+&B,(b)+&” B,(6)+...+&" B, (b) + Oc™) (1.39)

dt
dy _ 2
2 =OTECO)+E C(0) +..o4 87 C, (B) + O™

where —X, —p+iw arethe eigenvalues of the equation (1 37) when £ =0.

Shamsul and Sattar [87] extended Murty’s [57] unified technique for obtaining the
transient response of third order nonlinear systems. Recently, Shamsul [98] has presented
a unified formula to obtain a general solution of an n-th order differential equation with

constant coefficients, He considers a weakly nonlinear system as

d(n)x d(n-:)x dx
o +k17[m---+k,,x=@’(x,z,...) (1.40)

where over-dot denotes differentiation with respect to ¢, k j»J=12,...,n are constants.

Shamsul [98] seeks a solution of (1.40) in the form

x(&,0) =Y a,(t)e™ +ow,(a,,ay,....0,,0) +... (1.41)
Jj=1

where 4 ;, j =1,2,... ,n are the eigenvalues of the corresponding linear equation

of (1.40) and each a, satisfies a first order differential equation

. -
_;}:ml(a,,az,...,a,,,f)Jr... (1.42)

In most treatment of the perturbation techniques an approximate solution is determined in
terms of amplitude and phase variables. But the solution (1.40) starts with some new

variables a,,d,,...,a, , such a choice of variables is important to tackle various nonlinear
¥ S

>0
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problems with an easijer approach. This technique greatly speeds up the KBM method to

determine the asymptotic solution.

Shamsul [109] extended his previous solution [98] to an n-th order differential
equation with slowly varying coefficients, Shamsul [112] presented a modified and
compact form of KBM unified method for obtaining the transient response of #-th order

differential equation with small nonlinearities.

Osiniskii [64] has also extended the KBM method to a third order nonlinear partial
differential equation with internal friction and relaxation. Mulholland [54] studied
nonlinear oscillations governed by a third order differential equation. Lardner and
Bojadziev [39] investigated nonlinear damped oscillations governed by a third order
partial differential equation. They introduced the concept of “couple amplitude” where

the unknown functions 4,, B, and C, depend on both the amplitudes a and b. Rauch

[80] has studied oscillations of a third order nonlinear autonomous system. Sattar [84] has
extended the KBM asympto.tic method for three-dimensional over-damped nonlinear
systems. Shamsul and Sattar [86] developed a method to solve third order critically
damped nonlinear systems. Shamsul [100] redeveloped the method presented in [86] to
find anproximate solutions of critically damped nonlinear systems in the presence of
different damping forces. Later, he unified the KBM method for solving critically damped
nonlinear systems [115]. Shamsul and Sattar [92] s;tudied time dependent third order
oscillating systems with damping based on an extension of the asymptotic method of
Krylov-Bogoliubov-Mitropolskii. Shamsul [103,107], Shamsul, Hossain and Ali Akbar
[114] has developed a simple method to obtain the time response of second order over-
damped nonlinear systems together with slowly varying coefficients under some special
conditions. Later, Shamsul [101], Shamsul and Hossain [108] has extended the method

[103,107] to obtain the time response of n-th order (n2>2), over-damped systems.
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Shamsul [104] also developed a method for obtaining non-oscillatory solution of third
order nonlinear systems. Shamsul and Sattar [87] presented a unified KBM method for
solving third order nonlinear Systems. Shamsul [98] has also presented a unified Krylov-
Bogoliubov-Mitropolskii method, which is not the formal form of the original KBM
method, for solving »-th order nonlinear systems. The solution contains some unusual
variables. Yet this solution is very important. Shamsul [112] has also presented a
modified and compact form of Krylov-Bogoliubov-Mitropolskii unified method for
solving an n-th order nonlinear differential equation. The formula presented in [112] is
compact, systematic and practical, and easier than that of [98]. Shamsul Alam, M. M.

Abul Kalam Azad and M.A. Hoque [117] presented a general Struble’s technique for

solving an #-th order weakly non-linear differential system with damping.

Raymond and Cabak [81] examined the effects of internal resonance on impulsive
forced nonlinear systems with two-degree-of-freedom. Lewis [41,42] investigated
stability for an autonomous second-order two-degree-of-freedom system and for a control
surface with structural nonlinearities in surface flow. Andrianov and Awrejcewicz [4],
Awrejcewicz and Andrianov _[9] presented some new trends of asymptotic techniques in
application to nonlinear dynamical systems in terms of summation and interpolation

methods. In this dissertation, we shall not discuss this technique.

Hung and wu [34] obtained an exact solution of a differential system in terms of
Bessel’s functions, where the coefficients varying with time in an exponential order. Roy
and Shamsul [82] found an asymptotic solution of a differential system in which the

coefficient changes in an exponential order of slowly varying time.

O'Malley [65] found an asymptotic solution of a semiconductor device problem
involving reverse bias. O'Malley [66,67,69,70] presented singular perturbation method for

ordinary differential equations with matching and used this singular perturbation method
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to stiff differential equations. He [68] also presented exponential asymptotic for boundary

layer resonance and dynamic meta-stability.

Bojadziev [19] found a mono frequent damped solution of an n-dimensional

n=2,3,---time dependent differential system with strong damping effects, small time

delay and slowly varying coefficients. Bojadziev illustrated his method [19] by a second
order equation, of the form
d*x dx

dx
- +2b;,;+2ﬁ;t-(t~£A)—cx=£(1~x2)%+SEsinw (1.43)

Arya and Bojadziev [8] studied a second order time dependent differential eqution

with damping, slowly varying coefficients and small time delay in which a non-periodic
external force & Ee™ sinwt acted. Bojadziev [25], and Bojadziev and Hung [26] used the

method of KBM to investigate a 3-dimensional time dependent differential system.

Bojadziev extended the result in (1.43) to a time dependent system of the type
dx
E=Ax+£F(9,x), @=vt (1.44)

where ¢ is a small positive parameter, v is the frequency of the external acting force,
x=(x,x®,x)is a vector, F(8,x)=(F"(8,x), F®@,x),F®®,x) is a real
vector function, 27 periodic in @, with sufficient number of derivatives with respect to
all the arguments in a domain and F(6,0)=0. Bojadziev assumed the asymptotic

solution in the form
x(1,€) = pa +b[ge’ + ¢ e 1+ cu(a,b,0,x)+£*... (1.45)
where u=(@®,u®,u®)" is an unknown 2z periodic function in 6 and

a=(p/q)f+y, p and « are integers. The scalar variables a,b and y are functions

of ¢ to be determined by the differential equations
20
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da
;t-=~§a+s./1(a,b,\u)+e:2

db
E=—Cb+sB(a,b,w)+sz..., (1.46)

dy ,
_C;'—(D—(p/CI)V“FSC(a,b,W)-i-E Tty

where —&, —&+jw are the eigenvalues of the equation (1.44), when £=0.

Shamsul, Hossain and Shanta [97] found an approximate solution of a time
dependent nonlinear system in which a strong linear damping force acts. Shamsul [113]
developed a general formula based on the extended Krylov-Bogoliubov-Mitropolskii
method, for obtaining asymptotic solution of an n-th order time dependent quasi-linear
differential equation with damping. Nguyen Van Dinh [62] investigated the stationary

oscillation from a variant of the asymptotic procedure in a special case of the type

2

x ' dx
dt2 +(02x = 8f(x:;17:¢)= Q= th (]47)

where x is an oscillatory variable of the form

x = acosy + eu, (a,0,w) + £*u,(a,0,y) +... (1.48)
with

T e A(a,0)+6 4,(a,0)+...

da
> (1.49)
% = £B,(a,6)+£ B, (a,8) +...

{//:(0-—9=a)t—9

Bojadziev |25], Bojadziev and Hung [26] used at least two trial solutions to
investigate the time dependent differential systems; one is for resonant case and the other
is for the non-resonant case. But Shamsul [113] used only one set of variational

equations, arbitrarily for both resonant and non-resonant cases.
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Shamsul [113] investigated an 7-th order time dependent differential equation

d(")x d(n-nx dx
n +k T...‘*‘k X = ' —
a” e ! Sf(v’x’dt"") (1.50)

where x ;= _ , . .
*¥, i=12,...,n-1,n represent the i-th derivative, & is a small parameter,

k;, J=12,...,n are constants, f is a nonlinear function and v is the frequency of the

external acting force. Shamsul [94] seeks an asymptotic solution of (1.49) in the form

z A
Xe1) =3 a,0e™ +au(a),a,,...a,)+...+e"u (a,ay,a ) (1.51)
J=l

where 4 ,, j =1,2,... ,n arethe eigenvalues of the unperturbed equation and each

a, satisfy a first order differential equation

2

dr

=4,a, +ed,(a,ay,....,a,,0)+...+&"p (a,a,,...,a,,1) (1.52)

2¥ne

For £=0, Eq. (1.51) with Eq. (1.52) gives the solution of the unperturbed

equation
x(t,0)=>a, e, (1.53)
J=1

where a,,, j=12,...,n are arbitrary constants. The proposed solution (1.51) is not

choser. in a formal form of KBM method, but it can be easily brought to the formal form

(1.50)-(1.53) by suitable variable transformations a,,_,(f)=1/2b()e™"” and
a, (1) =1/2b, (H)e™*, where b,(t) and @,(t), I=12,...,n/2 are amplitude and phase
variables. It can be readily shown that solution (1.51) takes the form

nl2
x(e,t) = 7 l/zbl(t)(emm +e70) +&u(b1,05550,2: 00,0553 0,12)
f= (1.54)
+o+e"u,(..)
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and b, () and @,(¢) satisfy the equations

db,
E_=‘“:b:+SAz(bpbz,---,b,,/z,(Ppt)+---+€"R,(bl,bza---,b,,,zscp.,t)
’ (1.55)
_;t—:cofbf +aBl(b]’b?.""’bNIZD(Pl,t)_{"---'*'8" Q"(bl,bz,...,b,,,z,(Ppt)
where Appo =—p tio, are the eigenvalues of the equation (1.50) when e£=0.

Pinakee Dey et al [71] found an asymptotic solution of a second order over-

damped nonlinear non-autonomous differential system in presence of a slowly decaying
external force. The authors [72] have developed an asymptotic method for time dependent
nonlinear differential systems with varying coefficients, in which the coefficients change
slowly and periodically with time. Further, the authors [74] have used the KBM method
to find perturbation solutions of damped forced vibrations, in which coefficients change
slowly with time. The authors [76] have found the second approximate solution of second
order forced vibrations. Finally, the authors [75] have found the higher approximate
solution of an »-th order damped forced vibrating problem in the resonance case, and

investigated the stability of the stationary regime of vibrations.
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2.2 The Proposal

We propose the perturbation systems governed by second and nth order nonlinear

non-autonomous differential equations

2

d*x dx d

—+2k—+ox = 25

22 7 0°x=¢ f(vt,x, dt) (1.56)
and

(n) (n-1)

d "x d x dx

—n—+k1—n_—...+k,,x=8f(vl,x,——,...), 1.57)

a” gt at (

where ¢ is a small positive parameter and fis a given nonlinear function.

In Chapter 2, a new asymptotic solution is introduced for second order time
dependent over-damped nonli'near- systems. An asymptotic method for second order time
dependent nonlinear differential systems with varying coefficients is developed in
Chapter 3. A perturbation solution of damped forced vibrations with slowly varying
coefficients is presented in Chapter 4. In Chapter 5, a second approximate solution of
second order time dependent weakly nonlinear systems has been studied. Finally, higher

approximate solution of »-th order weakly nonlinear non-autonomous differential systems

with damping has been examined in Chapter 6.
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Chapter 2

An Asymptotic Method for Second Order Time Dependent

Nonlinear Over Damped Systems

2.1 Introduction

For more than half a century there have been many analytical techniques developed
for solving oscillations of nonlinear systems. It has been a research subject of intensive
focus because many engineering oscillatory systems are very often governed by a system
of nonlinear differential equations. Generally, these equations can be linearized by
imposing certain restrictions and then they are solved in simple approaches. In vibrating
processes many problems are solved by linearizing such differential equations when the
amplitude of oscillations is small. The nonlinearity of the governing equations increases
with the increasing of amplitude. When the amplitudes are not small enough, the linear
solutions are not sufficient to describe the vibration. In such cases, the Krylov-
Bogoliubov- Mitropolskii (KBM) [37,12,53] perturbation method is one of the most
convenient and widely used technique to obtain asymptotic solutions of weakly nonlinear
systems. The method was originally developed by Krylov and Bogoliubov [37] for
obizaining periodic solution of a second order nonlinear differential equation. The method
was amplified and justified by Bogoliubov and Mitropolskii [12]. Popov [78] extended
the method to a damped oscillatory process in which a strong linear damping force acts.
Murty ef al [35] developed a method of variation of parameters to obtain the time
response of a second order nonlinear over-damped system with a small nonlinearity based

on the work of Krylov-Bogoliubov-Miwopolskii. Murty [37] has presented a unified
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KBM method for solving second order nonlinear systems. Bojadziev [19] found a mono-
frequent damped solution of an n-dimensional time dependent differential system with
strong damping and small time delay. Murty, Dekshatulu and Krisna [56] extended the
method to over-damped nonlinear Systems. Sattar [84] has studied a third order over-
damped nonlinear system. Shamsul and Sattar [86] developed a method to solve third
order critically damped nonlinear equations. Shamsul and Sattar [87] has presented a
unified KBM method for solving third order nonlinear systems. Shamsul [98,99] has

presented a unified KBM method for solving an nth order nonlinear differential equation.

Shamsul [91,101,117] investigated over-damped nonlinear systems and found
approximate solutions of Duffing’s equation when one root of the unperturbed equation
was respectively double or triple of the other. Moreover, Shamsul [96-110] investigated
some over damped system when the roots are approximately equal. Recently, Shamsul
[107] has presented an approximate solution when one root becomes much smaller than
the other. But Murty, Deksflamlu and Krisna [56] and Shamsul [91,101,117,98,115]
limited their investigations to autonomous systems. The aim of this paper is to further
extend the result in [107] to a similar nonlinear non-autonomous system in which a

slowly decaying external force acts.

2.2 The Method

Consider a second order nonlinear non-autonomous differential equation with a

slowly decaying external force, Ee™,

¥+ 2k %+ kyx = &f (x, %) + eEe”", 2.1)

where the over-dots denote differentiation with respect to ¢, k, and k, are positive

constants, £ is a small parameter, f is the given nonlinear function and E,v are
>
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constants, . .
»¥>0. When k, > \/k, the characteristic roots of the linear equation of (2.1)

are real and unequal say 4, 4, and A, <24 <0. So that (2.1) represents an over-damped

system. Therefore, the solution of the unperturbed equation of (2.1) becomes

x(t,0) = aye™ +bye™, 2.2)

where a, and b, are arbitrary constants. We investigate the above nonlinear system when

the linear damping force k,x, is large or very large, ie., k, >>k,. We choose an

approximate solution of (2.1) in the form of the asymptotic expansion
x(t,8) = a(t)e™ +b()e™ + eu,(a,b,t) + £%u,(a,b,1) + &° ..., (2.3)
where a and b satisfy the differential equations

a=ed(a,b,0)+e*4,(ab,t)+&° ...,

- 2.4
b=¢eB,(a,b,f)+£*B,(a,b,t)+¢° ..., i)

Here solution (2.3) together with (2.4) is not considered in a usual form of the
classical KBM method. But this solution was early introduced by Murty and Deekshatulu
[55] to investigate an over-damped case of equation (2.1). Now it is being used to

investigate various oscillatory and non-oscillatory problems (see [91,101,117,98,115] for

details).

Confining only to the first few terms, 1,2,...,m, in the series expansions of (2.3) and
(2.4), we evaluate the functions u,,u,,..., and A,,4,,...,B,,B,,..., such that a(s) and
b(t) appearing in (2.3) and (2.4) satisfy the given differential equation (2.1) with an

accuracy of €™*'. Theoretically, the solution can be obtained up to the accuracy of any

approximation. However, owing to the rapidly growing algebraic complexity for the

derivation of the formulae, the solution is, in general, confined to a lower order, usually

the first [115]. In order to determine these unknown functions it is assumed that the
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functions u,,4,,.... do not contain secular-type term te™(see [91,101,117,107] for

details).

Differentiating x(,&) twice with respect to #, substituting the derivatives, %,% and

x(t,€) in the original equation (2.1) and equating the coefficient of €, we obtain

wf O, 4 w0 _ 9 5
R TR R IR CIY (% N
= f9a,b,t)+ Ee™

where @ = f(x,,%,) and x, = a(t)e™ +b(1)e™.

In general @ can be expanded in Taylor series as

/= 3F,

1+72
r=0,r,=0

(a,b)ethini) (2.6)

It was early imposed by Krylov and Bogoliubov [37] that #, does not contain secular
terms (e.g., tcost and ¢sint) for obtaining the periodic solution of (2.1) in which &, =0.
Popov [78] extended this method to an under-damped case in which \/Tk: >k >0.
Murty, Deekshatulu and Krisna [56] extended the same method to the over-damped case.
ie., for k > \/E . But Murty, Deekshatulu and Krisna’s [56] solution gives incorrect

result when one root is multiple of the other (see [91,101,117] for details), or one root

becomes much smaller than the other [107]. In these situation Shamsul [91,101,117,107]
has determined some special type over-damped solutions, subject to the condition that #,
excluges the term e of f© where (n4, +r,4,)> k(1 +r,). This assumption

assures that u, does not contain secular type term fe” (see [91,101,117,107). Under this

assumption we are able to find the unknown function », and 4,,B, which complete the

determination of the first approximate solution of (2.1).
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2.3 Example

Let us consider a Duffing equation with a slowly decaying external force,
X+ 2kx + a)zx = -~-g;x;3 + gke™

, 2.7)

Here over dots denote differentiation with respect to ¢, k¥ and ® are positive

constants, E,v are constants and v>0. Here the damping force 2ix is large, i.e,

k>>1. When ¢=0, the characteristic equation of (2.1) has two roots 4, and A4,,

A+, =2k and A4, =w?. We obtain A <k<w® and 4, >k>w?, we may consider
that |4,|>> |4, 4, =-v.

The function /¢ for (2.7) becomes

FO =—g(ale®™ +3ala,e® ) 4 3a,aleM BN 4 ey L gEe™  (2.8)

According to the restriction imposed by Shamsul [91,101,117] (already denoted in
sec 2.2) u, excludes the terms e**,e®**%) and Ee™. We substitute 7 in (2.5) and

separazie it into two parts as

e‘-’[guq —isz, +e‘ﬂ’(§—4 +12JA2

(2.9)
= —gare’™ —e3ala,e? ) + gEe™
and
a a _ 2 (A+24) 3 34, (2 10)
— -4 a—/‘{? u, =—(3a,ae +a,e”™). .
ot
The particular solution of (2.10) is
u, = c,aale™ +cae™, @.11)
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where e =3 .

1= s Cy=—
2h(h+4,)" 24,34, - 4)
Now, we have to determine two functions 4, and 4, from a single equation (2.10).

In this paper, we have already considered that the damping force is large or very

large and one root becomes much smaller than the other, so that A, + 21, ~ A,. Therefore,

we can equate the coefficient of e* and e* from both sides of (2.9) (according to

Shamsul [107]) and obtain the following equations

[g +A4 -4 ]Al =—g)e™ 4 Eelv-A) 2.12)

[g ~ A+ %]Az =-3ajae™ 2.13)

The particular solutions of (2.12)-(2.13) are

3 241

A =nae”™ +En,,

and
4, =l ala,e™™ (2.14)

-1 1 =3

= = , L=
ZY R R R T N

where n
Therefore, the first approximate solution of (2.8) is
x(t,€) = a,()e™ +a,(t)e™ +eu, (2.15)

where @, and a, are solutions of

; 2 244
@ = g(nlafeu" +En,)), a, =édajae (2.16)

and u, is given by (2.11).
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2.4 Results and Discussions

An asymptotic solution of 2 second-order damped nonlinear non-autonomous system
is obtained based on the KBM method in which a slowly decaying external force acts. In
order to test the accuracy of the approximate solution obtained by a perturbation method,
we compare the approximate solution to the numerical solution. With regard to such a
comparison concerning the presented KBM method of this paper, we refer to the works of
Murty, Dekshatulu and Krishna [56] and Shamsul [91,101,117,107]. In this paper, we
have compared the perturbation solution (2.15) to those obtained by the Runge-Kutta
(Fourth order) method for A, =—.05, Ay =~4,a,=1,a,=0,£=0.1, E=3 with initial

conditions x(0) =1.0, x(0)=.000025 and all the results are presented in Table 2.1.

Table 2.1

d X X, E%

0.0 1.000000 1.000000 0.0000
0.5 0.999527 0.999795 0.0268
1.0 0.998187 0.998872 0.0685
1.5 0.996054 0.997138 0.1087
2.0 0.9932 0.994644 0.1451
2.5 0.989689 0.991456 0.1782
3.0 0.985581 0.987634 0.2078
4.0 0.975791 0.978322 0.2587
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5.0 0.96422 0.96712 0.2998
7.0 0.937006 0.940387 0.3595
10. 0.889547 0.893214 0.4105
20. 0.714881 0.718018 0.4368
30. 0.552333 0.554546 0.3990
40. 0.415312 0.416776 0.3512
50. 0.305002 0.305937 0.3056
60. 0.219255 0.219839 0.2656
70. 0.154635 0.154996 0.2329
80. 0.107261 0.107482 0.2056
90. 0.073350 0.073484 0.1823
100. 0.049561 0.049642 0.1631

From the Table 2.1, it is clear that percentage errors are much smaller than 1% and

thus (2.15) shows a good coincidence with the numerical solution. In general, the

equation (2.16) has no exact solution. Usually, a numerical procedure is used to solve it.

In this paper, we have used the Runge-Kutta (Fourth order) method. Numerically, it is

advantageous to solve the transformed equation (2.16) instead of the original equation

(2.7) because a large step size can be used in the integration (see [61] for details).
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2.5 Conclusion

An asymptotic solution has been obtained for the second order nonlinear non-

autonomous differentia] system characterized by non-oscillatory process. The method is a

generalization of KBM method [37,12] and can be used to obtain the desired solution for

certain non-periodic external forces. The solution shows a good coincidence with the

numerical solution.
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Chapter 3

An Asymptotic Method for Second Order Time Dependent
Nonlinear Systems with Varying Coefficients

3.1 Introduction

Most of the well-known perturbation methods (e.g., Poincare method [77], WKB method
[123,35,10], Multi time-scale method [32,60] or Krylov-Bogoliubov-Mitropolskii (KBM)
method [27,12,53]) were developed to find periodic solutions of nonlinear differential
systems with constant and slowly varying coefficients. Among the above methods the KBM
method is convenient and widely used. Krylov and Bogoliubov [37] originally developed a
perturbation method to obtain an approximate solution of a second order nonlinear

differential system described by
¥+ wix =—gf (x,%) (3.1)
where the over dots denote the differentiation with respect to ¢, @, is a positive constant and

¢ is a small parameter. Then the method was amplified and justified by Bogoliubov and
Mitropolskii [12]. Mitropolskii [53] has extended the method to nonlinear differential system

with slowly varying coefficients as
i+ ol (0).x = —¢ (x,%,7), T =&t (3.2)

Following the extended Krylov-Bogoliubov-Mitropolskii (KBM) method [37,12,53]),
Bojadziev and Edwards [24] studied some damped oscillatory and purely non-oscillatory

systems with slowly varying coefficients, modeled by
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J'L:+C(T).J'C+(I)Z(T).x = —gf(x,j;’f) (3.3)

where ¢(7) and w(7) are positive. Murty [57] has presented a unified KBM method for both
under-damped and over-damped systems with constant coefficients. Shamsul [108] has
presented a unified formula to obtain a general solution of an #-th order ordinary differential
equation with constant and slowly varying coefficients. Hung and Wu [34] obtained an exact
solution of a differential system in terms of Bessel’s functions where the coefficients varying
with time in an exponential order. Recently, Roy and Shamsul [82] found an asymptotic
solution of a differential system in which the coefficient changes in an exponential order of
slowly varying time. The aim of this article is to extend the work of Roy and Shamsul [82] to
similar nonlinear problems in which the coefficients change slowly and periodically with
time. Such problems arise in different branches of engineering, e.g., rotor with slowly and

periodically changing mass.
3.2 The Method
Let us consider the nonlinear differential system
%+ (k> +k,sin 7)x = —¢f (x,7), T=¢t (3.4)

where the over-dots denote differentiation with respect tof, & is a small parameter, £, &,
are constants, k, =0(¢), and f is a given nonlinear function. We assume that

w*(r) = (I} + k, sin7) , where o(r) is known as frequency.

For £ =0 and 7 = 7,= constant, we find that 4, (z,) =ia(z,), 4,(7,) =—ia(z,) are two

eigen values of the unperturbed equation of (3.4) and has the solution

x(t,0) = a, e + a, e (3.5)
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When € # 0, we seek a solution in accordance with the KBM method, of the form

x(t,s): a (6, )+ az(t,’t)+Sul(al,a2,1)+sz... (3.6)

where g, and a, satisfy the equations

a = (t)a; +e4,(a,,a,,7) + g2...

. 3.7
ay =Xy (v)a, +ed,(a;,a,,7) + g2...

Confining our attention to the first few terms 1, 2,...,m in the series expansions of (3.6)

and (3.7), we evaluate functions u,,...,4,, 4,...,such that @, and a, appearing in (3.6) and

(3.7) satisfy (3.4) with an accuracy of ", In order to determine these unknown functions it

was early assumed by Murty [57] and Shamsul [109] that the functions u,,...exclude all

fundamental terms, since these are included in the series expansion (3.6) at order g".

Now differentiating (3.6) twice with respect to f, substituting for the derivatives X and x

in (3.4), utilizing relation (3.7) and comparing the coefficient of £, we obtain

[ﬂqar +/'L2a;,_—~*/ll]A +da, + [’11“1 +’1'zaz_—ﬂ'1]‘4 +Aa,

(3.8)
ﬂ'lal +/?.2a2~——2,1 )ﬂal_"'ﬂqaz“_"’lz w, =—f(a,,a,,7)
0a, 0a,
where/y—% ! = f(°) f(xy,7) and x, =a, +a,.
It is assumed that f® can be expanded in Taylor’s series [57,109] as
70 = $F, (el 39)

r,=0
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We have assumed that  does not contain fundamental terms and for this reason the
solution will be free from secular terms, namely fcost, tsins and te™ (see Shamsul [109)).

To obtain this solution (4.4), it has been proposed in Shamsul [109] that u,,..., exclude the

n

i © ; 3. .
terms a'a;of f©, where r, —r, =%1. This restriction guarantees that the solution always
excludes secular-type terms or first harmonic terms and the KBM solution becomes

uniformly valid KBM solution [37,12,53]. Moreover, we assume that A4 and 4,
respectively contain terms a, and a,. We have already mentioned that equation (3.4) is not a
standard form of KBM method. We shall be able to transform (3.6) to the exact formal KBM
[37,12,53] solution by substituting a, =ae'”/2 and a, =ae™® /2. Herein a and ¢ are

respectively amplitude and phase variables (see [26,113]).
3.3 Example
3.3.1 A nonlinear problem in absence of an external force

We consider a second order nonlinear system with constant and slowly varying

coefficient
i+ (k2 +k, sint)x = —ex* (3.10)

Here over dots denote differentiation with respect to ¢, k,, k, are constants, k, =0(g),

x, = a, +a, and the function f” becomes
fO =_(a® +3ala, +3a,a; +a;) (3.11)
Following the assumption (discussed in Section 3.2) u, excludes the terms 3ala, and

2
3a,a;
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We substitute (3.11) in (3.8) and separate it into two parts as

G, d G 0
(ﬂqalglﬂ“ﬂqaz a’:—ﬂz]Al +A/a, +(ﬂ1a, -+ 44 —_A]Az i

oa, Oa, (3.12)
La, =—(3ata, +3a,al)
and
Oa, oa, : Oa, ? ba, l v
The particular solution of (3.13) is
3 3
u, = G % (3.14)

2MB4=4h) 24,0B4 -4)
Now we have to solve (3.12) for two functions 4, and 4,. According to the unified

KBM method 4, contains the term 3a’a, and 4, contains the term 3a,a; (Shamsul [109])

to obtain the following equations
a a i r 2 3 15
anlg‘*‘xfzaza—xfz A, + Aa, =-3a;a, (3.15)
1 2
and
0 o ' 2 3.16
2131_aa—+/’{'zazaa -4 |4, + Aha, =30,y (3.16)
1 2

The particular solutions of (3.15) and (3.16) are

A =- Aa, 3aia,
ind =4 24 (3.17)
A = Aa, _3a1 a;
tA-h 24
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Substituting the functional values of A, and A, from (3.17) into (3.7) and rearranging,

we obtain
i, = Ay, + [ Ko _3aa, ]
and ok 24 (3.18)
dz =/1202 +€( /12612 —3ala§J
A=Ay 24

Under the transformations, a, = aeiw /2 and a, = ae_i"’ /2 thethgr with ;{1 =iw, /Ll =—i®

and the use of Ae™ + 4,e' = 4, and —i(4e™ — A,e'") = aB, (where 4, and B, are usual

notations) equations (3.18) reduce to

a=c4 (a)+&...and g=w+eB (a)+£°... (3.19)

We shall obtain the variational equations of @ and ¢ in the real form (a and ¢ are
know as amplitude and phase) which transform (3.18) to

a=-29 (3.20)
20

and

£a
) 3.21
8w ( )

where @ =4k} +k,sinz

The variational equations (3.20) and (3.21) are a form of the KBM solution. The

p=w+

variational equations for amplitude and phase usually appear in a set of first order differential

equations and are solved by the numerical technique (see Shamsul [109]).

Therefore, the first approximate solution of the equation (3.10) is
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(3.22)

where a and ¢ are the solutions of the equations (3.20) and (3.21) respectively.

3.3.2 Let us consider another form of the nonlinear differential problem (3.10)

. 2 . .
X+kix=-k,sintx—ex’ =—¢ksintx—ex®,

where k, =gk and k} = »?. Here,

fO= —(a} +3cla, +3en0; +ay)—ksint(ey +a;) -

(3.23)

(3.24)

In our assumption, u, excludes the terms 3ele,,3e,a? and ksinz(e, +a,). The

equations of u,, 4, and A4, become (discussed in Section 3.2)

8 5 5 8 g
[’1'1“1a—%+ﬂ‘2a2£_ﬂ’l][ﬂ1ala—%+ﬂia2£_ﬁ2)ul =—(en +a3)

- and
| 0 0 ) .
| Ao, —+ 4,a, -4, |4, =-3a/a, —ka, sinz,
l oa, oa,
|
0 ) ) .
Aoy —+ L, - A |4, =3a,a; —ka, sint
oo, o,

Solutions of Egs. (3.25)-(3.26) are

3 3

NTTORGL A 20k —A)

3a’a, ko, sint

A =
‘ 24, A A,
and 5 .
r _ 3ayap ko, sint
27 27\,2 l’l —?\42

A e e S SR SR SRR TRNSE

40

(3.25)

(3.26)

(3.27)

(3.28)



Chapter 3

Substituting the functional values of A, and 4, from (3.28) into (3.7) and rearranging,

we obtain
dl = ﬂlal +€[_3;;12'a_2_ kal Sil’lTJ
and & 2 bk (3.29)
&, = Aa, +a{— 3o« N ke, smr]
2 A1,

Under the transformations o, =ae® /2 and a, =ae™™ /2, and substitutions 4, =iw
and A4, =—iw, we shall obtain the variational equations of & and ¢ in the real form («
and ¢ are know as amplitude and phase) which transform (3.28) to

a=0

and . 3ea?  gksint (3.30)
p=0+ + g
8w 2w

where @® =k;.
Therefore, the first approximate solution of the equation (3.23) is
x(t,e)=acosp+eu, (3.31)
where @ and ¢ are the solutions of the equation (3.30).
3.4 Non-linear System with an External Force

The method is used to similar nonlinear differential system with an external

force Esinwvt ,

i+ (k} +k,sint)x =—¢f (x,7) + €Esinvt, T=st (3.32)

where v is the frequency of the external force.
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3.4.1 Let us consider a second order nonlinear differential system with an external force
T 2 2

X+ (ki +k, sint)x = —ex® + eEsin v (3.33)

Here over dots denote differentiation with respect to ¢; k,, k, are constants, k, = O(¢),

x, = a, +a, and the function

[ =—(a +3a’a, +3a,a +a)+ %(ei" - e—'") (3.34)

Under the restriction (discussed in Section 3.2) u, excludes the terms 3ala,.and

3a,a’ . Moreover, in our assumption, u, excludes ¢ E(ei S )/(21'). We substitute (3.34)

in (3.8) and separate it into two parts as

0 0 , 0 0 p
(j'la! aﬁal'*"q‘zaz%"’lzJAl + Aq, +(11a1'é_+22a28—%—’11]‘42 +4a,

a,

(3.35)
=—(3ala, +3a,a2) + %Ef(e"” —e™)
i
and
0 0 0 0
oyt oty == | s o=y =@ +a) (336
a, Oa, Oa, Oa,
The particular solution of (3.35) is
3 3
= 4 % (3.37)

U =— =
Y2434 -4) 2404L-4)
Now we have to solve (3.34) for two functions 4, and 4,. According to the unified

KBM method A, contains the terms 3a/a, and Ee™ /(2i) and 4, contains the terms

3a,a; and Ee™ /(2i) (see [109]) and thus we obtain the following equations
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0 )
7\_ _— r E ivt
[ 14 aal +?\‘2a2 aaz "'?\‘2 JA[ +7L1a1 =—3a12a2 +2—€ (338)

and

0 0 E _.,
(ﬂ'lala_al'*‘ﬁrzazga—zﬂ-/l,)x‘lz +Aa, =-3q, a22 —Ee"' (3.39)

The particular solutions of (3.37) and (3.38) are

L =— Aa, _3012‘“2 _ Ee"
o A-4 24 20v+o) (5.40)
4 o fa  3aa;  Ee™

A=A 2, 2v+w)

Substituting the functional values of 4, and A4, from (3.39) into (3.7) and rearranging,

we obtain (See sub-section 3.3.1)

! 2 vt
& =ha +d - Ma,  3aja,  Ee
Ai=X, 2\ 2(v+o)
and 2 (3.41)
I —ivl
P TP AMa, 3aia;,  Ee .
A=A, 27, 2(v+o)

The variational equations of a and ¢ in the real form (a and ¢ are know as amplitude

and phase) transform (3.40) to

_aaw'  gEcos(p—w)

a=
and 2w vie (3.42)
) 3ea® eEsin(p—w)
p=w+ +
8w a(v+ o)

where @ = (k] +k,sinz

Equations (3.42) are similar to that obtained by the KBM method (see [26,113]).
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Therefore, the first approximate solution of the equation (3.33) is
x(f,8)=aCOS(p+£ul, (3.43)
where a and ¢ are the solutions of the equation (3.42).

3.5 Results and Discussions
An approximate solution of second-order time dependent nonlinear differential systems

with constant and varying coefficients has been obtained based on the KBM [37,12,53]

method. Theoretically, the solution can be obtained up to the accuracy of any order of

approximation. However, owing to the rapidly growing algebraic complexities for the

derivation of the function, the solution is, in general, confined to a lower order, usually the
first. In order to test the accuracy of an approximate solution obtained by a certain
perturbation method, one can easily compare the approximate solution to the numerical
solution (considered to be exact). Due to such a comparison concerning the presented KBM
method of this paper, we refer to the works of Murty [57], and Shamsul [109, 82,94] where
asymptotic solutions have been 'compared to the corresponding numerical solutions. In this
article we have also compared the perturbation solutions (3.22), (3.31) and (3.43) of
Duffing’s equation (3.10), (3.23) and (3.33) to the numerical solutions obtained by Runge-

Kutta (Fourth-order) procedure.

First of all, x(¢,&) has been computed by perturbation solution (3.22) with initial
conditions [x(0) =1, x(0) = 0] or a =1.00000, ¢ =-.001434 for & =.05. The corresponding
numerical solution has been also computed by the Fourth order Runge-Kutta method. All the

results are shown in Fig.3.1. From Fig.3.1 it is clear that the asymptotic solution (3.22) shows

a good agreement with the numerical solution of equation (3.10).

44



Chapter 3

We have found the approximate solution of the same problem utilizing the classical
KBM method [37,12] (see Sub-section 3.3.2) with initial conditions [x(0) =1, £(0) = 0] or

a=1l., ¢=0 and £=.05 and presented in Fig.3.2. From the graph it is clear that the

perturbation solution (3.31) does not agree with the numerical solution after a short time

interval. Thus the extended KBM method presented here is better than the classical KBM
method.

In Section 3.4.1, a perturbation solution (3.43) has been derived when an external force

acts and the solution has been presented in Fig.3.3 for £ =.05, v=1.1, E=.5 with initial

conditions[x(0) =1, %(0) = 0] or.a =1.00534, ¢ =.103118. This solution also shows a good

coincidence with the numerical solution.

3.6. Conclusion

A new asymptotic method for a second order nonlinear deferential system with slowly
varying coefficients has been found. This method is a generalization of the KBM method.
This improved method gives better results than the previous KBM method. The solution for
different initial conditions shows good coincidence with the corresponding numerical

solution.

45



Chapter 3

Fig 3.1

1.5 4

0.5 -

-0.5 -

Fig 3.1: Approximate solution (dotted line) with corresponding numerical solution
(solid line) are plotted when v =1.1 together with initial conditions a =1, ¢ =-.001434

[x(0) =1.00000, x(0) = 0.00000] and e =.05
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AAAN
TV

-1.5 -
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1

Fig.3.2: Approximate solution (dotted line) with corresponding numerical solution (solid
line) are plotted when v=1.1 together with initial conditions a=1,¢=.0

[%(0) =1.00000, %(0) =0.00000] and e =.05
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70

Fig.3.3: Approximate solution (dotted line) with corresponding numerical solution (solid

line) are plotted when v=1.1

¢=.103118 [ x(0) = 1.00000, (0) = 0.00000] and ¢ =.05 E =.5

together with initial conditions a =1.005340,
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Chapter 4

Perturbation Theory for Second Order Time Dependent Damped
Forced Vibrations with Slowly Varying Coefficients

4.1 Introduction

An important approach to -study nonlinear vibrating processes is the small parameter
expansion on which the perturbation theory is based. One widely spread method of this
theory, mainly used in literature, is the averaging asymptotic method of Krylov-Bogoliubov-
Mitropolskii (KBM) [37,12,53]. Krylov-Bogoliubov-Mitropolskii (KBM) [37,12,53])
developed an asymptotic method to find periodic solutions of nonlinear differential systems
with constant and slowly varying coefficients. Krylov and Bogoliubov [37] originally
developed a perturbation method to obtain an approximate solution of a second order
nonlinear differential system. Then the method was amplified and justified by Bogoliubov
and Mitropolskii [12]. Mitropolskii [53] has first used asymptotic method to investigate non-
stationary solution of the second order nonlinear differential system with slowly varying
coefficients. Following the extended Krylov-Bogoliubov-Mitropolskii (KBM) method,
Bojadziev and Edwards [24] studied some damped oscillatory and purely non-oscillatory
systems with slowly varying coefficients. Feshchenko, Shkil and Nikolenko [32] have used
an asymptotic method to linear differential equations with slowly varying coefficients. Arya
and Bojadziev [8] have studied a time-dependent nonlinear oscillatory system with damping,

slowly varying coefficients and delay. Arya and Bojadziev [7] have also studied a system of
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second order nonlinear hyperbolic differential equation with slowly varying coefficients.

Murty [57] has presented a unified KBM method for both under-damped and over-damped

systems Wwith constant coefficients. Hung and Wu [34] obtained an exact solution of a
differential system in terms of Bessel’s functions, where the coefficients varying with time in
an exponential order. Recently, Shamsul [109] has presented a unified formula to obtain a
general solution of an n-th order ordinary differential equation with constant and slowly
varying coefficients. But Murty [57] and Shamsul [109] limited their investigations to
autonomous systems. The aim of this article is to find the approximate solution of second

order time dependent non-linear vibrating problems with damping, external forces with

slowly varying coefficients.
4.2 The Method
Let us consider the nonlinear differential system
X+ 2k(0)i+ 0’ (t)x = —& f(x,%,7), T=¢t, @.1)

where the over-dots denote differentiation with respect to ¢, € is a small parameter, 7 =&f is
the slowly varying time, k(z)2>0, f is a given nonlinear function and @(z) is the
frequency. The coefficients in Eq. (4.1) are slowly varying in the sense that their time

derivatives are proportional tog [53].

Setting £ = 0 and 7 = r,=constant, in Eq.(4.1), we obtain the unperturbed solution of
the equatinn. Let Eq.(4.1) has two eigenvalues A,(z,), j =12, where 4,(z,) are constant,

but when £ # 0, 1,(z) slowly vary with time. The unperturbed solution of Eq. (5.1) becomes
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2
= (7o)
x(t,O) = JZ;aLoe Gl . (42)

When & # 0, we seek a solution, in accordance with the KBM method, of the form

2
x(t, 6‘) = zam (t,7)+eu (ay,a,,7) + euy(a,,a,,7) + ..., (4.3)
J=l

where a,,, J=1,2 satisfy the differential equations
a; = A;(Da, +3Aj(a1,a2,'c)+ez.,., (4.4)

Usually one retains only the first few terms, 1,2,...,m in the series expansions of (4.3)
and (4.4), we evaluate the functions u,,...,4,,4,...,such that @, and @, appearing in (4.3)

and (4.4) satisfy the given differential equation (4.1) with an accuracy ofe™' [98].
Theoretically, the solution can bé obtained up to the accuracy of any order of approximation.
However, owing to the rapidly growing algebraic complexities for the derivation of the
function, the solution is, in general, confined to a lower order, usually t.he first. In order to
determine these unknown functions, it was assumed that the functions u,,u,,... do not contain

the fundamental terms [57,98,109], which are included in the series expansion (4.3) of

orderg?’.

According to the KBM technique, solution equations (4.3) is differentiated two times
with respect to f, substituting for the derivatives ¥ and x in the original equation (4.1) and

equating the coefficient of &, we obtain

(Q_ﬂfz)Al +Aq +(Q—A1)A2 +Aa, +(Q_’11)(Q_ﬂ'2)”1 = —f(o)(al,az,z'), 4.5)

G, 9 di ,, _d4 -
h Q= — t+Aa,—, A =—, — = (X4, Xq,T
where Aa ” +A,a, o, A o A ir S = S (%, %0,7)
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and x, =@, +a,.

Followed by the Shamsul[98] assumption u; does not contain fundamental terms and for

this reason the solution will be free from secular terms, namely ¢cos#, ¢sint and fe™ .

In general, the function f can be expanded in a Taylor series as

fO= ¥ F(@ap) (4.6)

n=0,p=0 72
To obtain this solution (4.4), it has been proposed in [98,109] that u,,u,exclude the
terms ay'az2 of /', where r, —r, ==1. This restriction guarantees that the solution always
excludes secular-type terms or the first harmonics (see [109] for details). According to our

assumption, u, does not contain the fundamental terms, therefore equation (4.5) can be

separated into three individual equations for unknown functions u,, 4, and 4, (see [98] for

details). Substituting the functional values of f© and equating the coefficients of e,

Jj =12, we obtain

(Q-2)4, +Ala,= ZF (al,a? ), if r=r,+1 (4.7)
n=0,rp=0
(Q-24)4, + Aa, = ZF (ah,a?), ifr,=r+l (4.8)
n=0,n=0
and
(Q“/?"IXQ_A“Z) z pg(al ,a7 ) 4.9
._012-0

0,60 :
where ZFn. n(a' ;a7 ) exclude those terms for r,=r, £1.
n=0,rp=0
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Thus the particular solutions of (4.7)-(4.9) give three unknown functions A, 4, and u,.
[t is noted that equation (4.1) is ot a formal form of KBM method. We shall be able to

transform (4.3) to the exact form of the KBM [37,12,53] solution by substituting &, = ae" /2

and @, =ae™ /2. Herein, a and @ are respectively amplitude and phase variables (see
[26,113]). The particular solution of (4.7), (4.8) and (4.9) gives the unknown functions
u;, Ajand 4, . This completes the determination of the solution of a second order non-linear

problem (4.1). The method can be carried out to higher order in a similar way.

4.3 Example

4.3.1 We consider a second order nonlinear system with constant and slowly varying

- coefficients
¥+ 2k(0)% + 0% (7)x = —&x’ (4.10)
Here over dots denote differentiation with respect to ¢. In this case x, = a; + a, and the

function £ becomes

O =—(a’ +3ala, +3a,a} +a;) 4.11)
Following the assumption (discussed in Section 4.2) u, excludes the terms 3ala, and
3a,a;.
We substitute (4.11) in (4.5) and separate it into two parts as
(Q—21,)4, + Aa, +(Q—4)4, + A0, =— (Bala, +3a,a;) 4.12)

and

(Q-2) Q-2 ) =—(a] +a3) (4.13)
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The particular solution of (53.13)is

. (4.14)
24040 -4) 24,64 -4)

Now we have to solve (4.12) for two functions 4, and 4,. According with the unified
KBM method, 4, contains the term 3ala, and A, contains the term 3g a; (Shamsul
[98,109]) and thus we obtain the following equations

(Q-2,)4, + Ala, = -3, (4.15)
and
(Q-2)4, + Xa, =-3a,a> (4.16)

The particular solutions of (4.15) and (4.16) are

= il B, (4.17)
A=A, 24
and
A, = ;7'_";? - 3‘2’f (4.18)

Substituting the functional values of A4,,4, from (4.17) and (4.18) into (4.4) and

rearranging, we obtain

4, = Aa, + g[— ;“'_a‘ﬂ? - 3‘2’1:2 ) 4.19)
and

) Aa, 349 ai

az=ﬂqaz+8[ﬂ1_%— 2 J (4.20)
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Under the transformations, a,=ae”/2 and a,=ae™ /2 together with 4 = —k+io,

A =—k—iw and the replacement Ae™ + 4,0 =4, and —i(4e™ —4,e")= aB, (where

4, and B, are usual notations), equations (4.17-4.20) reduce to
a= SZ, (a)+¢&2...

aryd (4.21)
¢=w+eB (a)+&...

We shall obtain the variational equations of @ and ¢ in the real form (a and @ are
know as amplitude and phase respectively) which transform (4.21) to

o' 3sa’k
+
20 8(k* +w?)

a=—ka-

(4.22)

and

ek’ 3ea’ o

P = —— b ——
P e 3k o)

(4.23)

The variational equations (4.22) and (4.23) are in the form of the KBM solution. The
variational equations for amplitude and phase are usually appeared in a set of first order

differential equations and solved by the numerical technique (see Shamsul [98,109]).

Thus the first approximate solution of the equation (4.10) is
x(t,6) =acosg+ £y, (4.24)

where ¢ and ¢ are the solutions of the equations (4.22) and (4.23) respectively.
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4.3.2. Let us consider a second order nonlinear differential system with an external force

X+ 2k(0)5 + 0® (7)x = —ax’ +egEcosvt, T=gt (4.25)
where over dots denote differentiation with respect to ¢, v is the frequency of the external
force, x;, = a, + a, and the function

f(O) ____(alz +3alzaz +3ala§ +a23)+§(em +e—m). (4.26)

Under the restrictions (discussed in Section 4.2) u, excludes the terms 3a,a,, 3a,a, and
ek (eiw +e v )/ 2 .We substitute (4.26) in (4.5) and separate it into two parts as
(Q-2,)4, + Ya, +(Q-2)4, + Aa, =— Bala, +3a,a>) +—§(e‘" +e™) (4.27)
and
Q-2 XQ =y ), =~(ai +a3) (4.28)
The particular solution of (4.28) is
@ a

= _ (4.29)
2HBL—4) 24,034 -4)

Now we have to solve (4.27) for two functions 4, and 4,. According with the unified
KBM method, 4, contains the terms 3ala,, Ee" /2 and 4, contains the terms

3a,a> , Ee™ /2 (see[98,109]) which lead to the following equations

E iv
(Q-4,)4, + Ma, =-3aa, + 2¢ ‘ (4.30)

and
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(Q—)"])Az +?\.'2£12 =—3a1 022 +£e‘f"t (431)
2

The particular solutions of (4.30) and (4.31) are

4, =._ﬂ__3afaz 4 Ee™ (4.32)
=24, 24 2Aiv-4)

and

A —iut
A, =t2%  3aa  Ee (4.33)
A=A 24, —~2iv+d)

Substituting the functional values of 4, and A, into (4.5) and rearranging, we obtain (see

Section 4.2)

& =dod + g[_ Moy 3aja, = Ee™ J (4.34)
b=, 24 2iv-1)

and

: Aa, 3aq al _ Ee™
a, =Aa, + 8(/11 Y 2(iv+/11)]' (4.35)

The variational equations of a and ¢ in the real form (@ and ¢ are known as amplitude

and phase respectively), transform (4.34) and (4.35) to

caw' 3ea’k . & E{k cos(p —vt) — (v + @)sin(p — 1)}

. gad
? 20 8K + o) K+ (v +0)

(4.36)

and

ek’ 3ed’o  eE{(v+w)cos(p—w)+ ksin(p —wr)}
-t 2 2y 2 2
20 8(k"+o7) alk” +(v+w)*}

b= (4.37)
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The variational equations (4.34) and (4.35) are in the form of the KBM solution. The
variational equations for amplitude and phase are usually appeared in a set of first order

differential equations and solved by a numerical technique (see Shamsul [98,109]).

Thus the first approximate solution of the equation (4.25) is
x(t,€) = qe ™™ cosp+ceu, Se

where a and ¢ are the solutions of the equations (4.34) and (4.35) respectively.

Equation (4.38) is similar to that obtained by the KBM method (see [98,109]).

4.4 Results and Discussions

An analytical method has been developed to obtain an approximate solution of a second-
order time dependent nonlinear differential system with damping, external forced and slowly
varying coefficients based on the unified KBM [37,12,53] method. In order to test the
accuracy of an approximate solution obtained by a certain perturbation method, we
sometimes compare the approximate solution to the numerical solution (considered to be
exact). With regard to such a comparison concerning the presented KBM method of this
article, we refer to the works of Murty [57], and Shamsul [98,109,113,114]. In this article, we
may compare the approximate solutions (4.24) and (4.38) of Duffing’s equations (4.10) and

(4.25) to the numerical solutions obtained by Runge-Kutta (fourth-order) procedure.
First of all, x is calculated by (4.10) with initial conditions [x(0)=1, x(0)=0] or
a=1.001621, ¢ =—.056901 for e=.1, 0= ®yvcosT, k =.01cost. Then the corresponding

numerical solution is also computed by Runge-Kutta method. For € =1 and strong damping

force k =.lcost, x is calculated by (4.10) with initial conditions [x(0) =1, %(0)=0] or
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a=1.000021, ¢ = —.058901. All the results are shown respectively in Fig. 4.1 and Fig.4.2.

From Fig.4.1, it is clear that the perturbation results all most coincide to the numerical

results. In Fig. 4.2, the perturbation results slightly deviate from the numerical results.

In Sub section 4.3.2, a perturbation solution (4.38) has been derived and the solution bas
been presented in Fig4.3 for £=.1,v=1.1, £ = Sy = wo@, k =.0lcost with initial
conditions[x(0) =1, #(0)=0], or, a=1.0, p=0.0. This solution also shows a good
agreement with the numerical solution. Further x(/,£) is calculated by (4.38) with initial
conditions  [x(0)=1, %(0)=0] or a=l,¢=.0 whene=.1, v=1, E=l,

@ =a, \/E, k =.1cost and all the results are shown in Fig. 4.4. In Fig. 4.4, results

show a steady-state solution.

4.5. Conclusion

A perturbation solution of a second order time dependent nonlinear deferential system
with slowly varying coefficients is investigated by the modified KBM perturbation
technique. The solution for different initial conditions shows good coincidence with the

corresponding numerical solution.
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Fig 4.1

1.5 7

0.5 1

Fig 4.1: Perturbation solution (dotted line) with corresponding numerical solution (solid

line) are plotted  with initial  conditions a=1.001621, ¢ = —.056901

[x(0) =1.0, £(0) = 0.0] for e=.1, @, =1, h=.05.
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Fig4.2
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Fig 4.2: Perturbation solution (dotted line) with corresponding numerical solution (solid
line) are plotted with initial  conditions a =1.000021, ¢ = -.058901

[x(0) = 1.00000, £(0) = 0.00000] for e =1., @, =1., 7 =.05.
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40

50

Fig.4.3: Perturbation solution (dotted line) with corresponding numerical solution (solid

line)

arc

plotted

with

initial

conditions

a =1.00000, ¢ = 0.00000

[x(0) = 1.00000, (0) = 0.00000] for e=.1, v=11, E=.5, &, =1., h=.05.
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Fig4.4

0.3

0.2 -

0.1 1

-0.3 -

Fig.4.4: Perturbation solution (dotted line) with corresponding numerical solution (solid
line) are  plotted with  initial  conditions a =1.00000, ¢ = 0.00000

[(0) = 1.00000, %(0) = 0.00000] for e=.1, v=1., E=1.,, o, =1., h=05.
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Chapter 5

Second Approximate Solution of Second Order Time

Dependent Weakly Nonlinear Systems

5.1. Introduction

Many of the problems facing today by physicists, engineers and applied
mathematicians involve difficulties, such as nonlinear governing equations, variable
coefficients, and nonlinear boundary condition at complex known or unknown
boundaries, which preclude théir solutions exactly. Mathematical modal of such processes
commonly result in differential equations. Nonlinear oscillating processes in nature are of
great importance. In the last several decades there has been an increased interest in
oscillating processes. Great achievements in science have to be attributed to the theory of
periodic oscillations. In this connection among many branches of science, astronomy has
played a significant role. Consequently, solutions are approximated using numerical
techniques, analytic techniques and combinations of both. Among the approximation
methods used to study nonlinear systems with a small nonlinearity, Krylov-Bogoliubov-
Mitropolskii (KBM) [37,12,53] method is particularly convenient and is the widely used
technique to obtain the approximate solutions. Originally the method, developed for
systems with periodic solutions, was later extended by Popov [78] and Meldelson [49] for
damped nonlinear oscillations. Followed by Popov’s [78] technique, Murty et al. [56]
extended the method to over-damped non-linear systems. They investigated second and
fourth order differential equations when all the eigenvalues of the respective linear
equation become real and unequal. Murty [57] has developed a unified KBM method for

solving second order nonlinear systems which cover the undamped, damped and over-
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damped cases. Sattar [84] has studied third order over-damped nonlinear systems.
Bojadziev [19] found a mono-frequent damped solution of an n-dimensional, 7 =2, 3,
time-dependent differentia] system with strong damping effects, small time-delay and
slowly varying coefficients. Arya and Bojadziev [8] studied a second order time
dependent differential equation with damping, slowly varying coefficients and small time
delay in which a non-periodic external force acted. Shamsul and Sattar [87] have
presented a unified KBM method for solving third order nonlinear systems. Shamsul [98]
has presented a unified method for solving an n-th order differential equation
(autonomous) characterized by oscillatory, damped oscillatory and non-oscillatory
processes. But the above authors (Murty [57], Sattar [86,87] and Shamsul [94,
98,109,116] ) found first approximate solutions of autonomous systems. The aim of the
present article is to find second approximate solution of second order time dependent

weakly nonlinear vibrating problems with an external force.

5.2 Method
Let us consider the second order time dependent weakly nonlinear differential
systems

i+o*x=¢ f(x,x,vD), 6.1

where the over-dots denote differentiation with respect to ¢, @ is a positive constant, &
is a small parameter, f is the given nonlinear function and v is the frequency of the
external forces. When & =0, let us consider that the characteristic roots of the linear
equation of (5.1) are real and unequal say 4, 4,.

Therefore, the solution of the unperturbed equation of (5.1) become

x(1,0) = a,e*" +a,e™’, (5.2)

where g, and a, are arbitrary constants. We have investigated the above nonlinear

system when the natural frequency of the system and the frequency of the external forces
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are almost i
05t same. We have chosen an approximate solution (see also [98]) of (5.1) in the

form of the asymptotic expansion

*(t.€) = ay()e*' +a,(H)e™ +eu, (a,,a,,) + £ uy(a, @y, ) + &y (5:3)
where a,and a, satisfy the differential equations

&y =& A,(a,,a,,0) + £ By(a,,a,,1) + £°... (5:%)

and
a, =€ 4,(a,,a,,0) + "B, (a,,a,,t) +€°.... (55)

Confining only to the first few terms, 1, 2,...,m in the series expansions of (5.3) and
(5.4), we evaluate the functions u,u,,.., and 4, 4,,...,B,,B,,..., such that a,(f) and
a,(?) appearing in (5.3) and (5.4) satisfy the given differential equation (5.1) with an
accuracy of &', In order to determine these unknown functions it is assumed that the

functions #,,u,,... do not contain secular-type term fe” (see [98,113,115,116] for

details).

Differentiating x(z,£) twice with respect to ¢, substituting the derivatives x,¥ and

x(t,&) in the original equation (5.1) yields

e’“’{%+1] —Z.ZJ(EAl +&°B, +---)+e"*’[§;+ﬂz —&](aAz +&%B, +..)
(5.6)

+[§?—ﬂl](%—12](aul+gzuz+...)=a f()
and equating the coefficient of &, g%, we obtain
2 d i 4
e‘(a—t-+ﬂl—ﬂ7](&41)+e (Ew—ﬂ(mg
+[§;—A][di’;—ﬂ1](eu.)=sf‘°’(al,az,vt)

and
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il _Ci+,1 2 i d
aiTh |8 (d—tuz—a](s?Bz)

‘ ) (5.7)
+[d~th )(E_;"Z)(£2u2) =e fay, a,, v)
where f@ = f(x,,%,vt) and
f(l) =—3(a,e’1” +a2el")2ul _[A]i+A2 i](/l,e"' _,_Azeiu)
Ga, " ba, (5.8)

0 o 0 0 0 o
| =4 | 4—+4,— —A_A_._(——,l
(5" 1][ ' a, 26%}”‘ (]6a1+ .G &
X, =a,(Ne*' +a,(t)e™".

The related function to solution equation (5.3) where determine utilizing formulae
equation (5.6) under the restrictions that u,,u,,..exclude terms aiaze"™*** of f where
r,—r, ==1. This restriction guarantees that the solution always excludes secular-type
terms or the first harmonics terms, otherwise a sizeable error would occur (see [98,115]
for details). Herein it is noted that equation (5.3) is not chosen in a formal form of the
KBM method. To get the formal solution, a simple variable transformation, namely,
a =ae’/2 and q, = ae™™ /2 (a and @ are respectively amplitude and phase variable),

is used. It is interesting to note that under the said variable transformation equation (5.8)
can be transformed to a formal form ie., in terms of amplitude and phase (Shamsul

[98,115,116]). Under this assumption, we shall able to find the unknown functions u,u,
and 4,,4,,B,,B, which complete the determination of the second approximate solution

of a second order non-linear vibrating problem (5.1).
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5.3 Example
Let us consider the Duffing equation with external forces
¥+wix=—¢ex*+cEcosvt, (5.9)
where v is the frequency of the external forces. When ¢ =0, equation (5.9) has two
eigenvalues A4, =iw and 1, =-iw.

Thus for equation (5.9), we obtain

fO= —{afe”" +3aja, e 1+ 3q glethr2A) aie’’!
E .. ) (5.10)
*-—2—(e'w +e '”)+38(ale'z" +a2e2”) Ut

Therefore, equation (5.6) becomes
Lt 0 2 At 0 2
e a-}-ﬂ]—ﬂ? (e, +&°B, +--")+e a'_ll'*'ﬂ'l (e4, +&°B, ++-+)

0 0 5
+(5—ﬂ1)(5—/12}(w1+8 Uy ++++) (5.11)
=-g {afe“" +3a’ a, e?h+) +3a,a; eHP2R 4 g3 3Ht

E_; -iv
—E(e’” +e ') +3 f:(al et +aze”2’)zul+---}.

Following the assumption (discussed in Section 5.2) u, excludes the terms

3eaia, e?H ) 3gq aleth AN gnd aE(e’” ~—e""’)/(2). Thus, for equation (5.11), we

obtain
e L1 2 14 =3 a2a e®rrm , poive g 5.12
af 1 1%2 .
e"'[ga‘% —%]Az ==3a, a;e """ + B! /2 (5.13)
t

(i—k]J(i_szul =—(a13e3;‘" +a;e3;‘2') (5.14)
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and
d o 0 0
Ml =4 A=A, |B+e* | ——A +4, |B,+| ——1 | =-21
e (at A 2}1 [at 4 AZJ 2 [6[ AJ(@: 2}‘2
=-3(ale™™ +2a,a,e**™ + o2 e --[A 2 4 iJ(A et + 4 e”“') (5.15)
== 1 12 21 1 la 2 az 1 2
1
— —a——/ll Ali%-flzi u — Ali+/42i ?——/12 u,
ot Oa, Oa, Oa, Oa, \ Ot
Solving equations (5.12)-(5.14), we obtain
— 3424 At (v=h) 1
4= 3aja,e s Ee (5.16)
22 20v—4)
s 2 A+ —(ived,) o
4 = da,a; e N Ee (5.17)
24, 2(iv+4)
and
3 341 3 341
ae a,e (5.18)

u = —
2,34 -4,) 24,(4,-4)

Substituting the values of 4,, 4, and u, in the right hand side of (5.15), we obtain

YR ohi| O _ 9 4,012 -
(6[4—}1 ’12}31‘*' [6t 11+22]Bz+[at 21)[5[ /12]”2

{ 3a’e’ 3aje™™ 3ajale®ht?RN 3gtg eUAth)

...*..
24Bh =4)  24,Gh,~h)  24Gh-4)  AGA-4,)

3aiaje® R 3q alehHRY 9glgleBhiin) 9alaje A

20,08 —4) | G —4) 272 YR

9al3a§e(3,1,+211)r 9a]2a;e(u'+3’1“)' SEaIaze(wM,u,)r 3Eazze(w+21,)r

47,7 272 A v—ry) | kv —1y)

3Eale™ ") 3Eq e 9gtq, (34, + A, )ethrh)

v+ A) | 2V A) 422 (30~ 2y)

N 3Eaf (iv+A4)e" M 9aiaje™ R 3Eal (—iv 424, — 4, )etith

42,(v-1,)0B84-4) 4,064 -4) 42,(v+4,)(34, - 4)
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9&’:(126(“'”"” 3Ea’e!'v*A) _ 9a,alethrR) 3Eatelv+h } (5.1

B ARG 2h0h &) 2iveA)Gh A
Since u, dose not contain the first harmonic terms, so the Eq.(5.19) can be separated

for B,, B, in the following way:

a,:[£+ll _/,LZJ ={3a13022 e BAr24) 9a az (BA+22)t 9030‘226(3’1’”’17)’
24,34 - 4,) 272 442,

(5.20)
N 3Ea,a,e!"htA) ~ 3Eqlelv+
24,(iv-4,) 44,(Gv+A)
i_;{ /12 3a12a; QA +34, 0 9a2 3 @ 2h+3a) 9a2 3 o BAt3A)
al 22,32, — ) 24; A o
~ 3Ealaze(—iv+,1l+;tz)r s 3Ea22€(!v+221)l *
22,(iv+4) 44,(iv-A4,)
or ' \or 2%0& 4)228% 1) AGAE-4)
N 3“1 a;e(ﬂlﬂﬂz)l ~ 9“1 02(3/11 +12)e(4/'(1+42)! . 3Ea1 (lv_f_/ll)e(iwz;t,)t
4,034, -4) 4 (34 —4y) A4(v—-2,)34 - 4,) (522)
_ 9g,aje A ~ 3Eal(—iv +22, - A,)e v+ _ 9af g,e!*4 %) '
B4 -4) 42,(v+A4)34, - 4) 45
3Ea12 Giv+24) 9a a4e(ﬂ.+4lg)1 3Ea2 (iv+24, 1t
4/1.1(zv i) 21 B4, -4) 2(zv+ﬂq)(3/12 A)
Solving equations (5.20) and (5.21), we obtain
3a3 z PRICEEST 9a3azez(;.1+za)r 9a a282(1,+11):
e 24,34, - /"L DG +A,) 22GA+4) 4A4L,GH +4,)
3Ea,a,e""** 3Eale ) (5.23)
22,1(11/ Aq)(zv-t-ﬂ.l) A2,(Ev+A)(iv+24, - 4,)
3alale’ R _9q lajet MR 9glgle i)
2= 24,34, = A4, +34 ) 225(4, +34,) 4).1/1 (4 +34,)
3Eaa (v 3Ea2 (iv+A )t (524)
2/?7(1v+/11)(—lv+/1 ) 4/1 (Gv=2A)iv—-24, +24,)
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_ 305 Sht : 3asesxzf
"2 T RGN )M 1) | BIE(R, — AN, “a)
3a; a,e MY 3a,a5eM+h2)
+
TN —A)Bh +15)  AR2Gh, — A A, +30y)
9a; a, (3, + A )e(‘”“l”‘?)’ 3Eal (iv + A, eV M)
167»3 (BA; —A5)(BA; +15) 47» 1V =2)Bh; =XV +A)GEv + 20, —Xy) (5.25)
9a,ayeM 2 3Ea2(—iv + 21, — &, )22
(37\.2 AR +3%,) 47\.2 V+ADGA, =AD(=iv+20, = A (=iv+2A,)
9a a, e(4kl+k2)t 3Ea2 (iv+2)1 )t 9a al e(MMM)r
T163 (30 +4y) v A)EV+AEY+20 —Rg)  8XE(3h, — A )BA, +1)
3Ea§e(lv+2k2)l
26V +A)BA, = AV + 20 — AV +Ay)
Putting the values of 4, 4,, B,, B, in equations (5.4) and (5.5), we obtain
—3eala, eth*R) gppliv-a)t
a = 2 LW
24, 2(iv-24,)
382a3a2e2(11+12)r 98203a262(,1,+12)z 982613022 204 +2,)t
(5.26)
2/11(3/71 WG +A)  2BRGL+A)  WhA,Gh+A)
3&. Ea a, e(lV+/11)l 3£zEa2e(-—w+Al)r
2/1 (fv—-2,)iv+4) fluil(zlz+/?1)(—11/+2/11 A)
_“Bemaleh gt
? 24, 2(iv+A4)
3sq]ale ) 962a3aze2(’1'+"“)' 9£2a;a§e2“‘”2)’ (5.27)
211(3/11 BYBh+A)  2EGL+A)  AMAGh+A)
3€2Ea a2 ( iv+A4 )t 382Eaze(w+az):

2/12(zv+/11)( v+ 4,) 4Z, ((v=A4,)0v-24 +24,)

Now, using the variables a, =ae’”/2, a,=ae™/2 and the eigenvalues
A4 =iw, A, =—iw and simplifying, we obtain the variational equations for g and ¢ in
the real form (a and ¢ are known as amplitude and phase). Therefore, the equations

(5.26) and (5.27) transform to
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a = ¢ Ep, sin(wt —vt + 9) + £* Ep,a’ sin(wt — vt + )

‘Epa’si (5.28)
+ & Ep,a’ sin(wt — vt + )
and
#=54," + & Ep, cos(@! ~vi+ )/ a+ £ Eq,a’ (5.29)
+&* Ep,acos(at — vt +¢) - * Ep,acos(wt — vt + ).
where

p =~ o +v), p, =3/40(w +v)*
P3 =330 +20v —v?)/80(o +v)? (3w —v)?
q, =3/8w), q, =-30/5120°
The form of the variational equations (5.28) and (5.29) are same as the form of the

KBM solution. The variational equations for the amplitude and phase are usually

appeared in a set of first order differential equations and solved by a numerical technique.

Thus the second approximate solution of the equation (5.9) is

x(t, €)= a cos(wt + @)+ & u, +&°u, +---, (5.30)
where a, ¢ are the solutions of the equations (5.28) and (5.29) and #,, u, are given by

(5.18) and (5.25).
5.4 Results and Discussions

An asymptotic method, based on the theory of extended KBM method, has been
developed to obtain second approximate solution of a second order non-autonomous
nonlinear vibrating problem with small non-linearity. It is laborious task to find second
approximate solution of nonlinear vibrating problems by the classical method, but it can
be easily solved by this technique.

It is usually compare the perturbation solution to the numerical solution to test the

accuracy of an approximate solution. Theoretically, the solution can be obtained up to the

72



Chapter 5

accuracy of any order of approximation. However, owing to the rapidly growing algebraic
complexities for the derivation of the formulae, the solution in general confined to a low
order, usually the first [98]. In this article the solution has been derived to second
approximation. With regard to such a comparison concerning the presented the KBM
method of this article, we refer to the works of Murty et al [57], and Shamsul [98,115]. In
this article, we have also compared the approximate solutions of Duffing’s equation (5.9)
to those obtained by Range-Kutta (fourth-order) procedure.

First, x has been calculated by (5.30) with first approximation together with initial
conditions [x(0)=1, %(0)=0] or a=1.00000, @=0.0000 ore=.25 E=1v=1,
® =1. Then corresponding numerical solutions is computed by Runge-Kutta method. All
the results are shown in Fig.1. From Fig.1 the asymptotic solutions (5.30) vary with the
numerical solution of equation (5.9).

We have again computed x by perturbation method with second approximation
together with initial condition [x(0) =1.007812, %(0) = 0] or a =1.00000, ¢ = 0.0000 for

e€=.25E=1, v=1Lw=1. The corresponding numerical solution has been computed in

this case and all the result are plotted in Fig. 2, we find that the approximate solution

show a good agreement with the numerical solution.

5.4 Conclusion.

In this present paper a technique is presented by the extended KBM method for
obtaining the second approximate solution of a second order non-autonomous nonlinear
vibrating problem with small nonlinearities. In this case perturbation method facilitates
the numerical method. The results obtained by this method agree with those obtained by

the numerical method.

73



Fig.5.1

Chapter 5

1.5 7

0.5 -

-1

-1.5 -

5

7.5

10

12.5

15

7.5

20

22.5

Fig. 5.1: First approximate solution (dotted line) with corresponding numerical solution
(solid line) are plotted when @=v =1 together with initial conditions a=1.,0=0

[x(0) =1.0000, x(0)=0.00000]and € =0.25, E =1.
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Fig. 5.2
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Fig. 52: Second a i i i i
2.2 pproximate solution (dotted line) with corresponding numeri
cond ical
b:)l_u‘;lon (solid line) are plotted when ®=v=1 together with initiaig conditio:s
=L, 9=0 [x(0)=1.007812, x(0)=0.00000] and & =0.25, E=1.
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Chapter 6

Higher Approximate Solution of n-th Order Weakly Nonlinear

Non-autonomous Differential Systems with Damping

6.1. Introduction

Many analytical approaches have been developed for approximating periodic
solutions of the nonlinear systems. The most common and widely studied approximate
methods for nonlinear differential systems are the perturbation methods, whereby the
solution is analytically expanded in power series of a small parameter. The Struble’s
method [119], Krylov-Bogoliubov-Mitropolskii (KBM) method [37,12,53], multiple
time-scales method [61] were originally formulated to find periodic solution of a second

order weakly non-linear differential system
i+alx=—¢f(x,%), e<l (6.1)
Several authors extended these methods to investigate similar non-linear problems
with a strong linear damping effect, — 2k%, k = O(l), modeled by the following equation
¥++2kk + 0’x = —& f(x,%) (6.2)
Popov [78] was familiar among them. He extended the Krylov-Bogoliubov-
Mitropolskii (KBM) method and investigated the under-damped case of Eq.(6.2). Then
Mendelson [49] rediscovered Popov’s [78] results. Followed by Popov’s [78] technique,
Murty et al. [56] extended the method to over-damped non-linear systems. They
investigated second and fourth order differential equations when all the eigenvalues of the
respective linear equation were real and unequal. Murty [57] has developed a unified
KBM method for solving second order nonlinear systems, which cover the undamped,

damped, and over-damped cases. Bojadziev [19] found a mono-frequent damped solution
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of an n-dimensional, n=2, 3,--- time-dependent differential system with strong damping

effects, small time-delay and slowly varying coefficients. However, Bojadziev illustrated

his method [19] by a second order equation, namely,
X+2b%+2B%(t—eA)+cx=e(l-x2)xi+¢g Esinvt (6.3)
Arya and Bojadziev [8] studied a second order time dependent differential equation
with damping, slowly varying coefficients and small time delay in which a non-periodic
external force acted. Mulholland [54], Osiniski [64], Bojadziev [25], Bojadziev and Hung
[26], Sattar [16], Shamsul and Sattar [17] investigated some third order quasi-linear
differential systems. Shamsul [98] has generalized Murty’s [57] technique for solving an
n-th, n=2,3..., order autonomous non-linear differential equation. Shamsul [109] has
extended the unified method [98] to similar differential systems with slowly varying
coefficients. Recently, Shamsul [113] has examined an n-th, n=2,3.., order time

dependent quasi-linear differential system. But none of the above authors investigated
higher approximate solution with external forces. The aim of this article is to find the

higher approximate solution of n-th, n=2,3.., order non-autonomous non-linear
deferential systems with damping.

6.2 The Method

Consider an n-th order time dependent weakly nonlinear differential system
x4k x"D ok x =g f(x, %%, V) (6.4)
where x'2, j>3 represents a j-th derivative of x with respect to ¢, over-dot is used for
first, second,... derivatives, € is a small parameter, k ;»J=12,---, nare constants, f isa

nonlinear function and v is the frequency of the external acting forces.
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When €=0, Eq. (6.4) has n eigenvalues, say A, j=12,,n. If all the

eigenvalues are distinct, the unperturbed solution becomes
x(2,0) = Zame;‘f’ , (6.5)
Jj=1
where a,y, J=1,2,:-,n are arbitrary constants.

When £ # 0, we seck a solution of the nonlinear differential equation (6.4) of the

form [98]

n
At
X(t,g) = Zaj,ﬂ e”’ +8u1(a1,a2,---,an,t)+gz uz(al,az,---,an,t)+€3..., (66)
J=1

where a;,, j=1,2--+,n are satisfy the differential equations
a;(t)=¢Ad,(a,a,,,a,,t)+&*B,(a,a,,,a,,t)+ €., (6.7)

Confining only to the first few terms, 1,2,...,m in the series expansions of (6.6) and
(6.7), we evaluate the functions u,,u,,...and A,B;, j=1,2,...,n, such that a,(t)

appearing in (6.6) and (6.7) satisfy the given differential equation (6.4) with an accuracy
of €™, Theoretically, the solution can be obtained up to the accuracy of any order of
approximation. However, owing to the rapidly growing algebraic complexities for the
derivation of the function, the solution is in general confined to a lower order, usually the
first. In order to determine these unknown functions it is assumed that the functions
U),U,,... do not contain fundamental terms, which are included in the series expansion
(6.6) of order &° (see [37,12,53,57,98,109]).

One can readily rewrite the Eq. (6.4) as

I1 (%—lka=sf(x,x,---,vt). (6.8)

Substituting the value of x from Eq. (6.6) into the left side of Eq. (6.8), it leads to
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ﬁ (%—7» )[Za e +5u, +%u, + J_gf( D, (6.9)

or,

2 7 g (6.10)
+e* [ | —-4 =
k=1 (dt kj 7
On the other hand, Eq. (6.7) can be written as
i_?\' (a eljl)—SA At 2B Al 3 (6 ]1)
a ; =gd;e” +e"B,e™ +g’ ..
With help of Eq. (6.11), Eq. (6.10) can be rewritten as
2| I1 [i-%](% e +&°B e 1)
G\l kg \ O (6.12)

+8H( ,cJui+82H(——xk)u2 =gf ().

Here all the functions A;, B, u;, j=1,2,--- depend on a,,a,,-++,a, and t. To

determine the derivatives of these functions, the following notations can be used:

d 0 ¢ 6 2
—=—+ A ——+a =D+e®+g"---, (6.13
dt ot ; da, ’ ; (6-13)
where D=2, @<= Replacing the notation % of Eq(6.12) b
=—7, Z“ 15, Replecing the notation — q.(6. y

J
D+e®+¢”--- and then equating the coefficients of ¢, £? from both sides, the following

formulae are found:

(102 +3 ( f[(D—M)J(A,e“’) =190,

J=1 k=1, k=j

1@+ [ [1o-, J Fy= £90),

(6.14)

where
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Faal f(E;;,ajelj', ZLI?\,]aJelj’,--'), n>2,
O =u f (@™ +ae’, hae + Ap@,e™) + (A€M + A,e™ + Du,)
x f,(ae™ +a,e™, rae™ + A,a,e™ ) —[D(D + ¢,)+ DDu,
- D(4,e™ + 4,eM), n=2,
SO =uf (e, T A a4 (20 4 e+ Du) (6.15)
x fo(Zlaae” @™ ) b o [O(D™ 1, D™ o, D )
+DO(D"? +¢,D"* ++) + D*D(D" +...) +-Ju,
- [D(D™ + e D™ +cP D™ +..) + DO(D"* +cPD" 4.
Pt DPO(D™ 4.y 4.
X[(D=2y)(€™ Ay ) + (D = gy Y™ )], n>2,

and ¢”, ¢3”,+++, ¢, are the coefficients of the algebraic equation

nl2 ’

[T -rda-2,) =0, (6.16)
=10 21

or

((ﬁz(K—lzf_l)(l—?»z,)]x(7»~7»,,)=0 6.17)

s WL

respectively for » is even or odd. The formula Eq. (6.14) is an essential part of KBM method
in which the unknown functions Uiy, A;,B;, j=1,2,--- are determined. Clearly, the
structures of the two members of Eq. (6.14) are same. So the second equation of Eq. (6.14) is
solved in a way similar to that of the first [98,109,113,114,]. In general, D and @ are not
commutative. We can show that D and @ are commutative when the real parts of the

eigenvalues, A ;» J=L2,---,n vanish (see Section 4). In this case, Eq. (6.15) takes the
simplest form and £ can be evaluated quickly. However, the unknown functions u,u,,
A,,Bj, J=L2,-+ can be determined from Eq. (6.14) in terms of a,,a,,"+,a,, t, by
imposing the restriction that u,, u, exclude the first harmonic terms (see [98,109] for

details). But Eq. (6.14) will be transformed to amplitude and phase according to [109], in
which the second approximation (in a usual form) can be found directly. For an even or an

odd value of n, Eq. (6.14) can be written respectively as
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X

[ ﬁ (D - ;\'k )[(D - A'2[)(/421’—13;@{_") + (-D - A'21_[ )(Ayelzﬂ)]]

=1 k=1, k#2i-1,21

n

+] L (D=A ) = O,

J=1

6.18)
;f, [H ,LI” , (D =A)(D =2y (B, ¥ ) + (D =1,y )(B, e )]J (
+Ij(D = u, = ),
or,
(ngz(m Hl (D=2l =y )(Ayos™) (D =y ) Ay ™ )]}
+ﬁ(D—?~j)(A,,e“"‘) +ﬁ (D-A ) = f(a,a,,,a,,1),
= ji
(6.19)

(n-1)/2 n
Z[ 1, ‘MKD-M)(Bz/-ne*""’)+(D—xz,-lez,e“")]]

=1 k=1, k=21-1,21

n=1

+]] (D-x,)B,e™)+] ] (D-X)u, = fO(a,,ay,0+,a,,1).
J=l J=1

For the straightforward solution w,u,,...do not contain secular terms, when
damping force is large. Yet it was restricted (by Popov [78]) that u,,u,,...would be free

from the first harmonics, otherwise a sizeable error would occur. We notice that the

equation (6.6) is not in the form of the KBM method. But by a simple variable
transformation namely a,, =, e /2 and a, =a,e™ /2, I =1,2,-,n/2 or(n—-1)/2
(o, and ¢, are respectively amplitude and phase variables), all these equations and

functions can be transformed into the KBM form (see [98,109,113,114]). Under this

assumption, we shall be able to find the unknown functions U,U,,... and

4,,4,,...,B,B,,..., which complete the determination of the second approximate

soluticn of the n-th order non-linear problem (6.4).
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6.3 Example
6.3.1. Second-order equation
Let us consider the Duffing equation with external forces
¥+2kx+wlx=-ex*+gEcosvt (6.20)
where k is the linear damping coefficient and v is the frequency of the external forces.
When £=0, equation (6.20) has two eigenvalues A=-k+iw, A, =-k—-iw, and
o’ =w; —k*, where k<a,.

Thus for equation (6.20), we obtain

o =—{ et +3alq, e®hrh) +3a; ajeh W 4 gleh!

—g( el +e"'”)+35‘(a et +aze"2') Uteh (&21)
Therefore, equation (6.12) becomes
9 _ At 2p 0 Wi 2p
(E /71)(&413 +&°Be +---)+[E—AJ(aAze- +&°B,e™ +--4)
+(%—/HJ[§—AZ](@1 +&%u, +++7)  (622)

s{af Al 430} a, e 4 3g, 4 2el AR gl g3t

—g( ey 43 e(ale"’+a2 "") U+ }

Following the assumption (discussed in section 6.2) u, excludes the terms
3cala,e® ™ and 3ga ale™?*'. Moreover, u, also excludes the term

£ E(e’ e )/(2) . Thus, for equation (6.22), we obtain

[5‘9; » }(A1 e?') =3 g’a, e@h i) +7Ee“" (6.23)
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0 ‘ .
[E—A)(Az e*') = -3a, aleA*24) +§e""' (6.24)

0 0
(5;—11}[5—?»2}:, =—(a13e3’“’ +a§e“2’) (6.25)

and

o Ape 0 My, [ @ 0
[E ),ZJ(BIe )+(8t ).l](Bze 2 )-{at llj(a—?\.z}zz

=-3(ale™ +2a,a,e™M**2) 4 ay e, —(A] ai + 4, a_a_](Ale“’ + Aze"z’) (6.26)
a

1 a,
0 0 o 0 0 | o
=AM A—+4,— - | 4 —+ 4, — | Z_
[az ‘)( 'oa, " aa Jul [ ' B, ? Ba, J[at kz]”‘
Solving the equations (4.23)-(4.25), we obtain

. -3ala, et peliv-Ad
=

+ 6.27
24 2(iv-4,) (6.27)

- 2 (At —(ivedy)
e 3a,a, e n Ee (6.28)

24, 2(iv+4)

and

3 34 _ 3 34t

u=—l  ThE (6.29)
24064 -4) 2464, -4)

Substituting the value of 4,, 4, and u, in the right hand side of (6.26), we obtain

(%"‘%J(Bl eﬂ")+(£—ﬂ1](32e‘“')+(£*&]{%‘%}”f

5 SAy 5 5ipt 3 2 (3A+2hp)
+3( ale aze aa,e

.+.
20, 3h, —A,)  24,(3h, —A,) 2%, (3A, —A,)

i ala,ehHi g2 g3 pChesiay a,age"“*“”’]
7\'1(37\'1_7\'2) 29\'2(3;\2_7“1) ?"2(37“2_%)
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32 (A+2Ag) 2 3 (2A143Ag)
+[_9a, a’e _9ayae™h g3 g2 Gy g 2 3e(2h‘+3m'J

222 AN .
1 1v2 AN, 222

3Ea1aze(f\’+?~l+12)l . 3Eaz7-e(i\'+2lz)l _ 3Eal7-e(—iv+211)r 3Ealaze(=iv+x|+kz)r
M @v=Ry) Ay Giv-d,) A Gvea) 20, (v +,)

N 9a:az (3?\’1 +7\.2)e(47“+7‘2}' N 3Ea12 (IV + ?\’l)e(i\wzl])l
40 (3h, —A,) 4, (iv—24,)(3%, - 1,)
- 9ala;e(ll+4lz)f B 3Ea§ (__l-v + 27\'2 _ xl)e(—iv-l—le)l
Ay (3hy —1y) A%, (v +1,)(3A, —2,)
9a4a e(4l[+12)! 3Eaze(iv+211)l
- 2 ¥ -
4] 4r,(iv=2,)

9a,ale®+ 3Eqletv+ 2 (6.30)
+| - =
20,(3h, = X)) 23iv+A,)(3A, *7&)]

Since u, dose not contain the first harmonic terms, so the Eq.(6.20) can be separated

for B,, B, in the following way:

[E—?\. J(B eM') N 3al3a;e(311+2xz)l _ 9a13a§e(311+212)r _ 9aga;e(3xl+nz);
: =
ot 20,31, —2,) 202 YW o
3Ealaze(iv+ll+l2)l 3Ea126(—iv+2ll}t .
+ -
20, (v =12,) 4N, (iv+A))

_6_ _ /1'1 (B ejqz) _ 3a12a238(22|+34q)f B 9al2age(2&+3ie)l ~ 9al2age(2,1,+312)1
ot 2 24,(34, - 4;) 272 4, o
3Ea1a2e(_“’+’11+"2)’ 3Eazze(“'+”1)’ :

2 (v i) kv —1y)

5 Syt 5 5Apt 4 (dA+Ag)t
[i_kxj[i‘h-zjuz __ 3aje N 3aze . 3a) a,e

Ay(3hy =) 423 (30 = Ay) 4r, (v —=A)(BA —Xy) 633)
9ala§em +4A2 )t 3Ea22 (=iv+2h, — A, )e(-iv+2x2)l 9a14a2e('”‘1 +A)t

Aa(Bhy — 1)) 4h,(iv+A)BA, =) 4),:;
3Ealze(iv+2m: 9aia§e”‘1 +4ho)t 3Ea226(iv+2k2)r

D(iv—1y) 20,08y —Ay)  2Gv+24,)BAg —Ay)
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Solving Eq. (6.31) and (6.32), we obtain

3a3a232(ﬂ1+2:)f 9a azez(mm: 9a3azez(4+m:
L= 24 (B4 -4)B4 +4,) 212(3,11+/1) 42,2,32, +4,) (6.34)
3Ea a, e(“""ﬂz)’ SEa2e(—iv+£,)l )
2/1 (iv-4 )(1v+ﬂ) A4,V +A)(=iv+24, - A 2)
3alale XA 9a?ale ) 9a’ e
T 2 (34, = 4,)(4, +34,) 2/?.2(/1,4-3/1) 44,4, (4 +34,) 6.35
3Eaa,e! " A N 3Eae rth) (6.33)
2/1 v+ A)—iv+4,)  44,3Gv-4,)3v- A +24,)
e 3a5 St 3a§es7\.zt
27 g2 1A, —A,)(5M, lz) 812 23%y =)A= 1))
3at a,e o) 3a,a} e+ 2)
+
ANGR =A2)Bh +25)  4N5 (3N, —A)(h, +3A,)
_9aiay(3h + A, )e MR 3Eaf (iv + A, ) 2M)
1622 (31, —A)(BA; +A;) AR GV =A5)(BA —Ay)(EV+ A (v + 2, —A,) (6.36)
9a,ayetrrir2) 3Ea) (—iv+2A, — A, )e V2 ‘
47»22(3?»2 AR +34,) 4}\,2(1V+}\.])(3?\.2 =ADEIVA 20, =M (—iv+Ay)
9a a, e(411+12)t 3Ea2 (iv+2A) )t B gala;e(xl.;.%z);
16?3 (3%, +7,) 47\. 1AV =)V +A))Ev+2X, = Ly) 823 (31, —A)GA, +4))
3Ea26(rv+212)t
2(zv+?t YOy =AY+ 2K, — A )EV+A,)
Putting the values of 4,, 4,, B,, B, in Eq.(6.7), we obtain
—3ala, et Eeliv-A)!
4, =¢ — +
24 20v-4,)
z( 3afa2e2“’+’t“)' 9c113az2 A +a ) 9a3 2 o2 ] 637)
24,04 -4)B4 +4,) 2434 +4,) 411%(3/11 +4,)
. 3Ea,a,e" 3Ealev+A }
+&
2/1,(11/ A)iv+A) 4],1(.‘rv+/1.l)(—zv+22,l A)
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 (=3a,ad e R petriy
a,=¢& +

24, 23iv+4,)
e 2( 3a, azez("”’m' 9a3 g Autha) 9a3a2e2“’”’)' (6.38)
24Bh - 434 +4,) 2/11(3/11 +4,) 4/11/72(3/71 +4,)

.,.52[ 3Ea,a,et AN 3Eaje! 4
2/17(1V+/11)(—zv+/12) 44, (v -2)(iv- A +2/1,)J

Now, using the variables a, =ae"/2, a,=ae™ /2 and the eigenvalues

A =—k+iw, A, =—k—io and simplifying, we obtain the variational equations for a

and ¢ in the real form (a and ¢ are known as amplitude and phase). Therefore, the

equations (6.37) and (3.38) transform to

a=ec,a’e”™ +eEc,e" cos(ot — vt + )+ Ec,e sin(of — vi + ?)

+e’Ec,a’e™ +e’ Besa’e™ cos(ot — vt +¢) +&2 Ee,a’e™ sin(of - vi + ®)  (6.39)

+g’Ec,a’e™ cos(w!f — vt + ¢) + &2 Ecga’e™ sin(wr — vi + o)

and

¢=eda’e™ +gEc,e” cos(wt — vt +9)/ a—g Ec,e" sin(ot —vt + ¢)/ a

+e’Ed,a'e™ + ¢ Ec,ae™ cos(of — vt + @) — g2 Ec,ae™ sin(wt — vi + ) (6.40)
— g’ Ecyae™ cos(ot — vt + @) + > Ec,ae™ sin(of — vt + @),

where

¢, =3k/8(k* +?), ¢, =k/{K* + (@ +V)*}, & =~(@ +V)/{k* +(@+v)*},
¢, ==3k(16k* 36k’ w* —650*)/128(k* + 0?)* (4k? + 0?)(k* + 40?),

cs =3k/A4k” + ®){k* + (@ +v)*}, ¢ =30/4(k* + 0* )k + (0 +v)*},

¢, =3k(k® +v? —Tw* —20v)/8(k* + 0*){k* + (0 +v)*}{k* + Bw —Vv)?},

g =30@w® +20v - 5k* —v?)/8(k* + 0*){k* + (@ +v)*} {k* + Bw —v)?}
d, =30/8(k> + %),

d, = -3w(26k° +124k’w* —100*)/128(k* + *)* (4k* + @*)(k* + 40?).
The form of the variational equations (6.39) and (6.40) are same as the form of the
KBM solution. The variational equations for amplitude and phase are usually appeared in

a set of first order differential equations and solved by a numerical technique.
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Therefore, the second approximate solution of the equation (6.20) is

x(t,€)=a e ' cos(wr +¢) +z +eluy ., (6.41)

where a and @ are the solutions of the equations (6.39) and (6.40) and u,, u, are given

by (6.29) and (6.36).

For the damped forced vibration, the stationary oscillation has a great importance.
Therefore, to investigate the stationary regime of vibration or to examine the stability of

the stationary regime of oscillations, we have to eliminate the time from amplitude and
phase. To do this, we have substituted b = ge ™ and Y =wf—-vi+¢. This leads the
equations (6.39) and (6.40) to

b=-kb+zeh’ +eEc,cosy +sEc, sing +&’Ec,b’ +£*Ec,b? cosy (6.42)
+&”Eceb® siny + £ Ec,b” cosy + £2E c,b siny '

and

Y=(@-v)+edh’ +eb " Ec,cosy~eb ' Ec,siny —e’Ed,b* (643)
+&’Ecsbcosy —e*Ecsbsiny —e*Ecgbcosy + s*Ec.bsiny. .

For steady state solution, setting 5=y =0, and neglecting the terms ¢, and ¢,
equations (6.42) and (6.43) become

kb-ecb® —g%c,b® =E(ec, +&’c,b*)cosy + E(s ¢, + £2¢c, b?)siny (6.44)
and
~(@-v)b-gd\b’ -£*d,b* = E(gc, + £%csb*)cosy — E(ec, + ¢, b )siny  (6.45)

In the case of the stationary regime, eliminating y from equations (6.44) and (6.45)
gives the equation for the resonance curve (see [19]). Therefore, we obtain

&' (c} +d})+26°b%(c,c, + dyd,) + £70% (et — 2ke, +d? +2(w—v)d,}
+b'{2eck+2ed,(w-v)- E*6*c + E*6*c?) + b2 {k? + (0 —v)? (6.46)

—2E*&%c,c;-2E 'y c} - E*e* (2 +¢2) =0
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which relates the amplitude of the response p » to the frequency v, of the forcing term

and the natural frequency of the system.

6.3.2 Third-order equation

Let us consider a third order nonlinear differentia] System with an external force

X+k X+kX+kx=—ex’ +eEcosvy, (6.47)
where k,,k,, k; are constants and v is the frequency of the external forces. Wheng = 0,
equation (6.47) has three eigenvalues A, =-g, A, =k +iw, A =—k-io and
h=¢+2k ky =2kE+ k7 + 0, k =E(k® +0?).
Tiws for equation (6.47), we obtain

3 2 24
O =—{af’e M 13ala, e?hR 43 aleth RN 4 g3 g3k
+ 3a,2a3 e(zﬂ, +2)1 +3a22a3 e(za,lug): +3a1a32 e(11+z,z,)/

+3aza: o2 +24)1 +a§'e”’-" +6a, a, ase(,yuqug): (6.48)

E_ . 2
_E(e”” te ”")+3g(aleﬁ" +a,e™’ +a3e)"') o+

Therefore, equation (6.8) becomes

(D-4,) (D- A Xete™" + 2B et +-.2)

+(D-2,)(D - 4,)(ed,e™" +£2B,e™" +--)
+(D-2)(D- 4, )(e4,e® +£7B,e™’ +-+)
#(0-2)(D~ 2, )(D - )(eu, + 8%, +-- (6.49)

=—{afe“" +3ala, e®h*R 1+ 3g aleh PR | gleth!

3
+3afa, e®HRN 1302, @@t 13 g2 oA 3 g2 IR 4 glgth

: E " 2
+6a, a, a,e Mt (1 e "”)+3€(ale’" +a,e™’ +a3e’1”) U+
2

Following the assumption (discussed in Section 6.2) u, excludes the

2 A 2 24
terms aie’™ 62 a,a,a, e ) 302 g,ePhr ) 3gg2q, ePRTAN 302 g oPAR 4y

3ea, e Moreover u, also
excludes the term ¢ E (e“” +e™ )/(2) .Thus, for equation (6.47), we obtain
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(D-4,) (D=4 )4, e*') = —g2e* ~6a,a,a, e+t (6.50)

(D=2)(D=2)(4; ') ==3a? a,e®h+a _3 42, pansi +Zemt (651)

(D—/ll)(D—./lz)(A;*e"’)=-3af @B 3 o g2 +7Ee_m (6.52)

(D-4)(D-2)(D-2)u,

2 (4 +2 2 6.53
=—{3a,a;e"" M'+3alaaem‘%)'+301032€“‘+““”+a§e3’12‘+a33€“"} (€9

and

(D_kz) (D_?\‘Z!)(Bl el“)"'(D_kl)(D“}"z)(Bz ele)

+(D_?‘1)(D_?‘2)(Bz 313')+(D_7"1)(D_}“z) (D"Ka)uz

=-3(aeM +a,e™ +a,e"')u —0{D-1,) 4 M +(D=1,)(4, €M) (6.54)
+(D A, X4, e’~3')}—(1)—x3)q>,4I e —(D-4, )0 4, " — (D -1, )4, ™
~{p*+C,p+CHO+(D+C)OD+ DD

To obtain the first approximate solution it can be considered that a,, a,and a, are

constants (see also [56,57] for details) in the right hand sides of equations (6.50)-(6.52).

Thus the particular solutions of equations (6.50)-(6.52) respectively become

3 241
a'e _ baa,aq,

CGBA-A)BA—A) b+ A +A)

e(ﬂzﬂg)f

4, =lale*™ +1a,a,a,e™™" (6.55)
3ala, e ! 3alg, oMatEH . E gl
W+ A)CRA A, —A) 22,24, -4 +4) 2(v—-A)@v-4,)
4, =mala,e’™ +m,a;a,e™™ + Eme" ™™ (6.56)
3a’a, e 3a, a’ e E g tv+h)!

3

T A2 Ayt h) 20 (A2 —A)  2Gv A )Y A

A, =nalae™ +n,a,ale™™ + Ene " (6.57)
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and
_,3a1 a:e(/hzﬂz)f _3ala32 PIEE>ENT
u = +— s
" 2R A +22,-A4)  20,(h + A) (4 22 — 1)
N _age:”‘z’ . _asesﬂ,:
S
212(32'2 —’11)(3’?“2 —4;) 2’13(3/13 "/11)(3/?,3 -4)
or,
u, =c a a;-e(ll+21\.2)’ +c, ala32 e(?»1+27~3)f +c3a;58312l +c4a33€313! (658)
where
_ 1 , 6
l (3/11 —/12)(3/?'[ —/13), ’ (/11 +ﬂ'_¢)(/11 +/12)
_ 3 3
m, == s My =— ’
(’11 +2’z)(2’1x +2’2 _’1‘3) 2’7“2 (2/12 —/11 +2’3)
1 3
my = " » B == >
2(”/_/11)(”’_”13) (/11 +’?’3)(2ﬁ1_’?’z +4;)
3 1
nz = - 5 n3 = -
24, (A, +24,-4) 2@v+A)3v+4,)
. -3 . -3
D20, +A) (A +24,-4) T 22,4+ A) (A, +24, - 4,)
-1 ~1

ST BL 4Gk 1) T 20k —2)Gh )

Substituting the values of A, 4,,4, and u, in the right hand side of (6.54), we

obtain

(D=2,) (D=, XB, &MY+ (D=2, )(D -1, )(B, ")
+(D"'A'1)(D*7"2)(Bz e;”3’)+(D—?\.l)(D—?\.2)(D—-M)uz =

- 3.2 2A1+32; 2 3 (2A1+3A3)1
3{C,ala2e(”"+2"2)’+czal3a§e(”‘”2"3)’+cgafa§e‘ R 4 ¢ ataze M)

4 _(A1+4A Al+2A2+2A3 ) 5 5\ 2 3 (2A2+43A2)
teaa;e®t D o g p2gle MY Lo g3 4 g a2gle® N
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2.3 (M+27~2+213)f 4 (A]+dAz)r

3 2
+C|a1aza3 +02a gy +caaza3e(3lz+2k3)r +c,a; Se(h)

3 (2M+3?~2) 2 ,(2M+Ap+223)1 4 (Apadn
26,7 43¢ +2c,a(a,a5e +2¢;a,a,e M1 +2¢,a,a,a3e M2
A+3hg+Az )
+201ala;a3e( 1+342+43) +2c2ala2a§e(u+lz+sk3)t +26_3a;a3€(412+13)1 +2c4a2 4,00v403)0
2,2, (2 +2Ay+h3 ) 2 3 (2A1+343)1
26’1“1 az”Be +2€2a1 a3e +203a1a;a3e(11+312+;\'3)' +264a a4e(ll+47‘-3)’}+
54
_3a153 i 6a1a a, e BM+Az2+A3) 661 a, RN
Gl —A2)BM =23)® Ghy —A,)3h, —A,)h, 44 2) B3h —A)BA, —A)(h, +hy)
6a4a e(411+7\.3)’ lgala a e(37s]+l2+7«.3)l

(3}\b =A)BA —A5)(2A, -2, +K) A +25)GR, = A5)(A, +As3)

_36“1022(132 (11+2?~2+27L3)r 360161 a e(21]+212+13), 36611 a2a2 (2A1+Ap+2A3)f
(i t22) P +25) Ry +2) (i +2y) (g +2,)(h, +2,)(2R, +AsAy)
18al a,a,e ePMrrarrg) 9a a, oMo

(X+k)(2k+l 3\.) (K+X)(2X+2k -X;)

(2A1+22 +A3)r (2A1+A2+2A3 )

18aa’ase 9ala,ale
(k +A))(2A A, =A)(2N, + A, —A,) N 3 (A +A)CRA, +4, —4,)

18a1a2a2€(?\.1+2&2+23\.3)’ 9a] aza e(27\.]+212+l3)l 9a3aze(3;\,2+213),
_ 2
D +Aa)20 Ay —A)  2hy (A )h F Ay —R)  Ay(2h, + R ALY
9(12 (212+3A.3)l 3Ea1a e(!v+7«.1+l3)! BEaz (iv+2A)¢

_4M(2x ) (e + M) A )V —Py) | 20 AV AV —Ay)

3Ea2a o VA2 A3 3Ea32 (ive2A3)1 3Ea, aze(—iv+kl+l3)l
2R, + Ay — AV - A D@Ev =24 ) 4h,(iv—A )GV —A )} {(?Ll + X))@V + AV +A,)
3Ea2e ) 3Eqle )
220, + A, — AV 4R, Y@V +A, ) 20v + X))V +A,)(2A, + A, —A,)
4 3Eaza3e( iv+Ag +A3)1 18a1 a2a3e(3xl+12+x3)r 9“1 ase(4?~12+7~3)f

Ds v +A)EV+R,) (b +2)A + 2002 A —Ay) 20k, +A3)2N, + A, — A, )2

9“1 aza e(2k1+212+?~3)t 18a1 a,a’ 2 (211+12+213)t
(7& FA2A, =Ry +A)(2A, FAs —A)  2h, (A, +A)2A, — A, +A,)
9(10' 2 (11+212+2A3)1 9a;a2e(312+213)r 9a a3 (2h2+343)¢

A (A, +k)(2x A +A,) Y 3(2h; + Ry =R )2, = A, +4s) 278(2x -, +4,)
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9alzaza§e(2?~t+7£2+2?«3)l } N 3a15 (5h, ~ 13)e(5M)’
p— __\\__—
205 (2h5 + Ay =R ))(2A =X, +1,) GA =2,)2 (34, —4,)?

36611302613 (3},l + xz)e(311+7«.2+}\3)f B 36(1](7225132 (?“l + 2}\‘2 e ;\‘3 )e(ll+27~2+213)"
(AJ +A'2)(3?L’ _?\‘2)(3;\'1 _}\'3)0\‘1 +Z’3) (kl +7\.2)2(A’[ +?\43)2

1861,361203 (34, +l2)e(3ll+12+13)f _ 18a13a2a3 (37Ll +K2)e(37"“‘2”3)’
T A1) (2, +A, ~A)R +25) (A +4,)(20, ~ Ay +3)0 + )
18a,a2a; (A, +2), +A3)(A, + A, )ePHriariax
22 (O +A)(2R, + A —A)(, 4 Ay)

3Eaay (v + A, +h, — A, )e " hisax i 3Ea,a,e M) }
2(A; +A,)(A, A3V =~ A))(v-1,) 23V +0,)(@v + A, (A, + ) +As)
—6aja,(3A, + A, )e HMirrax
+{(27‘-| +X, _}"3)(3}"1 ‘7"2)(37\'1 — A, +2,)

36a;aza; (A, + 2, + 2, )e BTtk 9aa, BA; +2,)eHra)
(24, +A, _;"3)(7\'1 +9“2)2(A‘l +A;) (21,[ +}"2“7"3)20"1 +A'2)2 (6.59)
-9alala,(\, + 2N, 421, )ePH1+iha+ia) .
Ay Ay + A, = A5, +A,)(2h, =4, +1,)

9ayaya; (M + 20, + 4, JePHr2rasta
0@y + 2y = A3)(Ry +1,)(20, — A, +4,)
_ 93,85 (3, + 1y 1, g2 9a,a3 (21, + 1y + 4, )PP
Ay (20, ~ 4, +2,)° 2hg (20 =X +A3)(2R, = Ay +A5)(A, +A;)

9a,a3 (3N, + 2, — A, JePr2+2ax 3Eale™™ (v 4 1,)

+

4 A3 (20, — A, +A2)(2h, = Ay +2y)  2(iv -2, YAV =R3)2A; =&y +4,)(A, +1,)
P G vy W Y s 3Ea,a;,e ™ ™ Gy 43, 44, —1)

4, (24, + A, AV L )EV+R,) 20, (20, +A, =A@V =4,V -A,)
N { —6ala, (4h, + 1, — 2, )e i)

(27\'1 “‘7“2 +7”3 )(37"1 "?\'2)(3}‘-1 - 7\'3 )0"1 +7"3)

_ 36a12a2a32 (2N, + 2, ) Pirhas2ha) 9a;a, (3, + A, )ehira)

(24, =Ay +4,)(A, +h )y +25)° (24, = A, +h3) (A, +1,)2
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9ala,a; (2N, + 24, )e P2+ 2y

- 2A, (2, +h, —A3)(A, +2, A, =y +22,) -
9ala,ai (2N, + 24, )ePH+P2+ 23y

" 2h(2h +Ag = A)(Ay +A5)(A, -0, +21,) -

9ala,a; (21, + 21, e 1+r2+2ha)
Ry @ — g +A3)(0 +A)(A, A, +2x)
) 9aza; (A, +3A, e P23 9a3al (3N, + 1, )e a2
4y hs Ry = A +A5)(A, — A, +2?\,3) Tt 2y = +21,)°

3Eaje™™ ™M) (—iv + 2, —1,)
Ty )iV +2A,)(2A =X, +A,)(A, +1,)
N 3Eale"™ ™™ (iv + 2A, — 1) L 3Eayae RN iy 1y }
My (a + 20 =MV =R )V =Ky) 205245 + 2y —A,)(EV + A, )GV + 1, )

]az {(3?‘ +27\, )2 Z}\' (3;\’ +2}\' )+Z?\’ }\‘ } (A +24,01
20, Bhy =)A= A3)(Ay +A,)(A, +24, —As)
3a;az {3k, +22,)% = DA, (3h, +24,) + T4, A, Jehehoy
203 (Bhy = Ap)(3hy = A3)(Ay +A5)(hy + 24, —A,)
18aaja, {0, +3%, +1,)2 =3 A, (A, +3), +1,) + 3 A A, el
20, (0 +25) (A +A)(A, + 245 —1,)
1Baa,ai {0 4, +30,)7 =3 4, (A +hy +30,)+ T A 1, Je B
2h, (%, +}"3)2(7"1 +7\'2)(7\»1 + 224 -X,)
3a7a}{(3h, +20,)7 ~ 3 A, (3h, +24,) + T A, 4, JeChre2tan
20, (A +2,)2 QA+, —A,)(A, +21, —A,)
9a/a;{(20, +31,)% = 3 A, QA +3R,)+ 3 A, R, JeChree
2h; (A +2,)(BA, =A3)(2A, +A, —A,)(3A, — 7»1)
[8a,aya; {(h; +3h, +15)7 = 3 A (A +3h, +4;) + 3 A, 4, Jeridhather
AN+ )AL + 2%, = ) (2R, — Ay —Ay)
9aja, {(4h, +1;)7 = DA, (4h, +R;) + 3 A, A, Je et
40520y = Ay +25)Bh; ~A3)(3A; = Ay)
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315‘571‘72{(”""7L +A,)? —27\, (v+A, +2 )+Z}" 7\, TR
o +22)Gv =1 )Gy - A,)(h, + 20, —x)
3Ea2 {("’+7~7L )? _Z?“ (iv + 2, )+Zy\_ A }e("“’“z)’
4h,(BA, =X )GV = A v =2 3G, =1,)
_ 18qja; M +205)2 -3, B, + 20 )+ Y AR, Je@hrthax
20y (M +23)7 (2R =Xy +A,)(A, + 2, — %z)
_3a;’-a§{(2x 300" = D A (2% +30,) + 3 A4, Je st
203 (g +A5)(20 = Ay +0,)(3N; —1,)(3R, — 4,)
_18a@,a{( + g +305)7 = S0 (A, +0, + 31 D+ S0, Je iy

405 (A +R3)(A, + 20, —4,,)?
B 9a,a; {(7“1 +47\-3)2 — Z?Ll(ll +4)‘3)+le7\-2}8(7‘2+”‘3”
AN (M +A5)(M + 24 —A,)(3h, —A,)(3A, — 1)
. 6Ea,a, {(—1!’v+?»1 +A,)° —Z:?&l(—iv+kI +7"3)+Z7L]K2 }e(—iv-bkﬁlj)r
Ay (A +R3)EV A6V + A, +240, —A,)
LB+ 20) = 3 (v 4 20) + T, R Je
Ah3 Bhy =)@V + A,V +A5)(3hy — 1,
102 {(37& +20,)(A, +2A )+Z7\, (A + 2 )} (3h,+20,)
2Ry (hy +Ro)(A, +2)4, —=A3)(3R, ~A,)(3A, —A;)
3aya; {(3h + 205 )(hy +20,) + 3T h, (b, + 20 ) Je Phre
205 (M +A3)(Ay + 2K — Ay )(3R, —A,)(3R, — As)
18a7a3 {(Bhy +20,)(h, +20,) + DA, (A + 20, PRy
22y (hy +2,)2 (A, +Ay = Ag)(Ay +24, — 1))
_18a,ala,{(h, +3%, +A;)(0, +20,) + 3T, (b Ay ) JePredtash
28, (A + 4,02 (g + 2K, =A)(2A, + A, —A)
_18Eaa, {Gv + 0y +0y)(h; +20,) + 3 A, (A, &y ) Je it
A0y My + 250, + 20, — A3 )V = A (v =A3)
3ala3 {20, +30,)3h, + T4, 31, Je ey
22, (A + A, )N, + Ay —A3)(3A, — 7”)(3;»2 %)
_ 9aa, {(47\,2 +A,)3%, +Z7\'13A‘2 }e(uzn,):
435 (20, = A, +4,)BA, —A,)(BA, —A5)
- 3Ea; {(iv+2,)3A, + 34,30, fe v
A0y (iv =, )@V = A3)(3Ay — A )(3R, —Ay)
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1801 a, {(37\. +20)(A, +20 )+Z;\, (A + 20, JeChe2na
2hs(y +35)* Oy + 245 =2, )2, -1, +4,)
_1Baa,ai{(h, +4, +20,)4, + 20 D+ T A (b + 20, e tremssn
403 (A +A3)(A, +20, —1,)°
6Eaa{(—iv+a, +4,)(Q, F20)+ 30 (A, + 20, ) Jel vy
sy +R3)(Ay +24 =D )V + 4, )GV + Ay )
B 3ala; {(S?L J(2A, +3A )+Zx 3;\' o (2130, )
2ha( +43) (@0 +25 =1, )31, - xl)(:axs—xz)
~ 9a,a; {(32.3)(}\2 +4h;)+ 3 A, 31, JePareh
AL, +2A, —X,)(3A, ~A)BA, —4,)
_ 3Ea{(3hs)(iv+20,) + 32, 30, Jet e
213(1'V+?» )@V +24,)(3hy =4, )(3A, —4,)
102(?\4 +20 )26(3}"*2"2)’
" 20,0 +A0)(hy 20, —A,)Bh - A 2)Bh; — 1)
1a3 (A, +22 )2 (30,4283 )1
20,00 + A, +2X3 =X, )R, —A,)(3A, —A;)
1801a2a3(?\, + 0 )2 (A +3A5+23 )
20,0 +A)(Ay + 20, — A ), +4, )2
1801 a? (7\' +2 )ze(3xl+27x2):
20 (hy +05)7 Oy +2hy —A5)2A, + A, )
9a12a§(31 )2 (20 4+,
20, (M +A)2A, + A, — A5)(3R, —A)GA, — 1)
18a,a5a, (A, +2A,)% ePi*haths)
AN (A +A)(A, + 20, —A5)(2h, — A, +4,)
9azag(37\, )2 (4ha+hq )t
A% (<A, 20, +03)(3h, AR, —Ay)
3Ea2 a;(3), )2 g (v+2ha)
T, (v = A )iV - Ay)Gh, A DBh, —Ay)
. 6Ea,a, (), +2X,) M)
Ay (Ay + A0 )iV = A3 )V = A )My 424, — Ay)
18a1 a’ (?"1 +2K2)Ze(311+212)l
2R, (2h, = Ay +A5)(3h, —A)BA, —A;)
1a3 (37» )26(21,1\313):
2Aq (A, + A )(2h, =Ry + 1), —A)GA, — )
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18a,a 203 (}\, + 22 )2 (A +Ag+3h, )1
CDER A, 2,0, 44 D0 +21, —1,)
9‘7203 (3k )2 (Ay+424)
a0, +2h; = M)A —1,)(3R, —4,)
6Ea a3(7\, +3) )2 (=iveh 411
A3 (v + 1)V +A,)(, +20, —1,)
3Ea; (3),)2 e 2k
4N, (v + l,)(iv+?u2)(313 ~A )34, -A,)

Since u, dose not contain the first harmonic terms, so the Eq.(6.59) can be separated for

B, and B, in the following way:

- Ay _ 2,2 _(Aj+2A3+22
(D-2,) (D=2 (B €M) = —3{czala2a3e( ) 4 ¢ g azzaze“’*z’“*”‘3)}+
3a585}qt (GAp+Ag+A3 ) (BA+A2+A3 )
{_ ; 6a,a,a,e 184} a,a,e

Bh =A)Bh =23)F  Bh, —A)G3A, — Ay )(h +1,) (A +A)(3N, = A3)(A, +1;)

2.2 (kl+2K2+2A3)!
36a,a5aje 18a1 a,a,e 18a azzaze“‘”zh*”"”’

U0 t0) (0 +h) (M +A,)°(2h, 44, ~Ay) 2N (A +1,)(2A, + 4, — 1))

18a1 a,a, gPMHa Rl 9a, azzaze(xl+2x2+2a3)z

00t A2 Ay —Ay) Ay (hy A )(2A; = A, +4,)

(GA+A2+A3 )

(6.60)

3Ea a e ey 3Eaa et MY
Ay +4,)0v =4, )Gv =2 )+(x +A,)EV +A)EV+A, )}
{_ 3, (Sh, = A )e®  36a%a,a, (3N, + 1, )eCHrR)
Ghi=2)" Ghy =25)% (g +2,)3h, = A)3h, = Ay )(hy +45)
_36aaai (M + 21, +4,)eMH BN 18535 g (31, + 4, et
(A +25)2 (0, +24,)° O A A A, — M) +Ay)
__18@a,a, (3h, +4,)eCM M 184 4202 (A, +2M, + A, )(R, + A, )P A2
(i +2)(2, ~ 1, +3)(A; +45)? ) 2hyhs (M +22)(2Ay + Ay — A )R, +1y) }

9a§a32 (3Ap+2A3)¢
Ay (0, +A; ~A,)>

32 (3hp+2A3) (3hg+2A3)t
9a2a3e 2a3 (37\. +X,)e

3@y +h, =A)2h, A, +A;)  203(A, —A, +21,)2

(D"}\,l)(D—_ks)(Bz eh') - -—3c3a;a§ (3A+21r3) _

-—

96



Chapter 6

9aia; (3h, +2h; — A De®rarzray 2
- 2 21+ +
’4;"2}\‘3(27\' 7\'1 + ?“2)(2}\42 A’l ?\’3) + 66'1al azase( 1+2X2+43) (661)

7 2 (2A1+2Ap+A3 )
36a, a,a;€ 1861'I a a, e PM+2A2+a3 )

- (;\,l+7\.2)2(7\'1+7“3) (k +A,)2A, + A, —A 2R, +2, -1)

2A+2A+A3 )
9al a2a3 gPH*2ha+h3) 9ala a, e (PM+2ha+a3)

27» (A, +2,)(2h; + A, ?») (A +A5)Q2%, - A, +A 3)(2h, + A, =14,)

360120503@1 + 22, +x3)e(2A1+2xz+As)! 27a1 azaa(?\, +2h, +A5)e (241 +2h +A3)r
@hy +2 = 2)M +25) Ay +hg) 20, (20, + Ay ~ A3 )(h, + 2 )(Zhy =M L)

9a12a22a3 (A, +2X, +7\'3)e(211+2x2+x3)1 6a a, e+
2, (20 + g = A3)(A +25)(2R, -2, +7»3) T (3h —2,)Bh, -2 DA, +24,)

9a; a,e! M1 6a;a,(3, + 1, )e M2y
(AP (A +20, —Ay)  (2A +A, —A,)(3R, —A DB =Ag)(A, +4,)

) 9a14a2 (31'1 + 7\’2 )e(4l]+12)l 3Ea2 (iv+200 )1
@Ay +2y = M) (A +25) | [ 200 +4,)GV =, )Gv —Ay)
N 3Eal2e(iv+211)f (lv + 7\'[) N 3Ea2 (=iv+2Aq )t
2(iv =1 )(v = A,)(2A, — Ay A +A,) 220, +A; =AUV +A DGV +A,)

3Eaye™ " (i + 24, —A,) 3Ea,a,e" 2t
+
Ay Qhy + R =ADEVHADEV+A,) | (Rh, + Ay =AY =4,V —As)

4+ 3Baya:e N Gy ) 4 — ?L;.)
20, (2%, + 1y ~ M)V =4, )(iv —A;)

(D —A )(D A )(B ek3')= =3¢ a2a3 (2h94343) _ 9a22a3e(2h2+3}\.3)1
48293€ 4h Ay (A, + A5 —A))
9a22a3e(212+313); 2a3 (37& +X,)e (2hp+3%3)1

25020+ A, —A,)  4A g (hy — A, +28,)(2R, — A, +1,)

903033 ()\12 + 3?\'3 )e(212+3}\3)l
2520, — A, +2,)?

P 22 2h4Ag+213)
}+{ 6c,a; a,a5¢e(
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2 (27q+7»2+213)l

36a, a,a;, 9a a azeumxzmﬂ,
—— TG Gae T
(x +h )M FA3)2A —A, +4,) 24 s (2A, +A, — A DA +4,) (6.62)

2 (27\.]+12+213)r
901 a2a3 9a1 a a e(27\.§+212+?\.3)l

k(l +A;)(2A, — A, +7L) 20520, + 0 2 =AM, + 4, ~A,)

j 36a’a,a; (2h, + 21, )e P2+ 2 9ala,al, (2, + 21, )e@H1a+2re)
(2~ Ay + A0 05000 +4)7 2052, + 4, — 2 )R 40 D@y +A, =)

27a’a,a} (2h, + 21, )e P2 izia) 6’ g e M
Dy Py + s =2y +A5) @A, — A, +Ag) | BN -3, A DA, +A; —A,)

9al4ase(4h1+13)f 6a1 a3(4l +?\4 }\' )e(4l]+?\.3)l

T0aFA)@A =k +13)7 (2, =X, +4,)(M, — A, )G, —Ay)(A, +Ay)

9al4 a,(4h, —A, +A;)e s 3Ea12 gLy
(2h, = Ay +A35) (A, +45)° 2020, + A =A@+ )V +A,)

N 3Eale™ ™ (iv + 24, - 1,) 3Eae e
= +
20V + M)V +R5) (2N, + X5 ARy +A5) [ | 4Gy -GV —14,)

sy + 205 =RV = AV =Ry) | | 20y + Ay )GV + Ay)
3Ea,a,e"" M (v 4),)
s (20 + 0y —A )GV + A )GV AR,

3Ea3ze(“'v+2“)’ (iv+ 2}\‘3 _ ?\'2) } .\ { 3Ea, age—(:‘v+hz+l3)r

(D_A'l)(D_A' ) (D—M)u,_ =

9al3a2e(3kl+212)1 903023(37\.14-23\.3)/
1
20, (A +2,)(A + 214, —Ay) N S F A +2h, —Ay)
3012a3e(21.1 +3A, ) 3a;2a3e(311+21 2)
+
24, (3%, = A)(3A, —As) N J(3A; —A,)(3%, —A,)
90 a4 (A +4X,) 30; 5A,
+
2R, (A + X)) (A, + 20, —A,) 2k ,(3A, —A)(BA, —4y)
9a a4 (A +47y) 3(135 5,

20y (A + Ay )R, + 20, — oy 22, (3A; — A )(3Ay —A,)
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2 3 _(20,+3A
6a’ajePir3ra) 6a,a’ et

o

27\. (A + A0, +2X0, - 3) 2A 2(Bh, =0 DGBA, -24,)
6a |2, 3 o (hitha 43031 186110 a, eM+3ha+ag)

oA Gy A )BA, ~2) | 2y (hy A ) +2h, 1))
184 \a,a 3 (M*MHM)' 661 a, e(412+13)t

2?» (A +A )(7» +2Ah, =M ) 20,(3x, -2 DBA, —1,)
6a,a, et h) 18ala; a e®+3h)

27L 3(BA; — A )(3A, 13)+27» Ay +23), +20, -4 59

(A +3hy+25)

6a,a;a,e 6a,ale®+ih)

"2 23, =X))(BA, =25) i) 3Ry =A)(3A, - 1,)
3aja; {Gr, +20,)7 - 30,32, +20,) + 34, 4, Je it
28, (3% = 2A3)3hy = A3)(Ay +A,)(A, + 20, —1,)
3aia; {(3h +21,)° = T A (B, +20,) + 34,1, Je @z
2h3Bhy =2y)Bhy = Ag)(Ay +A5)(A, + 2K, —1,)
_ 18a,a;a, {(7L1 +3X%, +1,)° _Zkl(x] +3%, +k3)+lek2}e(x.+nz+k3)f

28, (A +R5)  (hy +A5)(A, + 2R, — 1)
_18a,3,a3 {00 + 3y +303)2 =0, (A, + 4y +305) + A A, e
285 (A +23)2 (A +25)(A, + 22, -A,)
3a13a22 {(37\.l +27y2)2 —Z}\l(:’,kl +27\'2)+Z?‘1l2 }e(3k.+2hz)r
_ 20, (A +25)7 (20, + 4, —A)(A, +24, —1,)
Fa {20 +30,)7 =300 (20, +30,) + A1, Je @
28y (M +25)(3hg =A3)(2A, +hy —=A3)(3R, —A,)
_ 1861161f§'a3 {(7\.[ +3%, +4,)? —Z?"l()“l +30, +K3)+Z?u,7\.2}e(?"+3ll+l’)'

A0S Ay + A0 + 2R, —A3)(2A, — A, —A)
_9a3a {4k, +25)7 = A, (4R, +R,) + DA A, Je Ry

405 (20, — Ay +A3)(3h, —A3)(3A, —A,)

L 3Eaa (v +2,)" = A (VR +R,) + DA, e
Ahy (A + 2500V =2 )V = A3 ) (A, +2h, —A,y)

3B v +20,)2 = 3, (v +20,) 4 DA A, Je 2

ANy By =R )(EV =XV = Ay)(BA, —Ay)
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186113032 {(37\.1 +27\,3)2 _Z}\,l(37\,1 +22,) +Z?‘17”2 }e(”"*z’“)’
B 20y (M +25)’ (20 = A, +A5)(A, +20, —4,,)
_3a{agi(2h +305)7 = 3 A (2K, +30,) + 3T, Je @b
20y (M + 23 )(2hy = Ay +43)(3R, — A, )3R, — A,
_18q,a,a3 O+, 4307 =0 (, +4, 430 )+ SR, Jelurhasiex

SN + A, +24, — 1, )2
9a,a; {(?\.I +43,)° —Zk](kl +47"3)+Z7\~,7\.2}e“2+4;")'
A, +hy)(Ay +2h5 —4,)(3hy =4, )(3R, — 1)
+ 6Ea,a, {(_iv + A +25) _Z?H(—iv'*'h] +7\-3)+Z7\.17L2 }e(—iv+;"+}")'
Ahs My +R3)EV + 1)V +Ay)(A, +20, -2,)
. 3Ea} {(—-iv +24,)% - Zk] (=iv+2X1,)+ le A, }e(—iv+27\.3)l
A3 (Bhs =)V + M)V +A3)(BA, — A,)
3aa; {30, +20,)(h, +20,) + 3T h, (b + 2,) e O
20 (hy +25)(Ay + 22, = A3)(3A, = A,)(3X, — ;)
3ajal{(3h, +2A,)(A, +2A 3 A (A + 20) e B 2hex
Zhy (A + Xy )My +2h; = 1,)(3R, ~ 2y )R - Ay)
185’1 a, {(3}‘1 +28,)(A +24,) +Z7\-1(?\,1+27L2)}e(3;"+211)’
2h, (A, +2,)* (24, +A, =AM +20, -1,)
18aaza; {(Ay +3%, +;)(A; +20,) + 3 A (A, + A, JePridtesta
) 20, (A +25)2 (A, +2h, —A5)(2A, +4, — 1)
C18Eaa, {(iv + Ay +A,)(h, +20,) + 3 A, (A + Ay ) Jerrthe
40y Ay +A)(A +2R, —A3)(iV = A )iV —A;)
3aia; {(2h, +3K,)3h, + D A 3, Jehiia)
20, (hy +A)(2A, + A,y — A )30, x DBA, =)
_9aja {(4h, +A;)3h, + 3 A 3R, Jethahe
4%, (20, = A, +A3)(3N, — ?»1)(3?»2 As)
_ BEal{(iv+24,)3h, + DA, 30, Je
AN, (v = AV = A3 )(3Ay = A, )(3R, —A,)
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8a, a, {(3?» +20,)(A, + 20 )+Z7\, A+ 22 )} (A 4241
2%, (A, +25)° (A +20, -2 )M, — ~Ay +1y)
_ ]86110261; {(K, +A, + 20, +2A'3)+27"1(7“1“*‘27\:3)}6“'”2*”‘3)‘

405 (A + 1) (A, +2X; = 4,)
_ 6Ea,a, {(_iv +A A, + 2A5)+ Z}LI O\ + 213)}8(—iv+x,+x,):
A (o +23)(Ay +2h5 = R,)(v + A )GV +4,)
3a;a; {(37L J(2A, +3A )+Z)\, 3 } (204430 )1
2% (A +A5)(2R + 25 =2,)(Bhy —A,)BA, — A )
94,85 {(BA3)(hy +4h3) + D, 31, Jelrtitay
M3y +2A3 = A,)(3h; —A)(3R, -A,)
3B} {BA)(iv +20,) + 34, 3, Je e
27L3(iv+h )(iv+7L )JBhy =4 )(BA, —A,)
(l + 22 )2 (3 +22,)
2 2 (A +7L )('A. + 22, = A3)3A = A,)(3A, —As)
_ laS (k +20 )2 (3% 422, )1
205 (A + XAy +2R5 —4,)(3A, —A,)(3A, —A)
_ 18a1a2a3(K + % )2 (A 430544, )
2hy (hy +A3)(Ay + 2K, = Ag)(A, +A,)°
18a1 al (7» +2 )26(3A1+2A2)t
20, (0 +2)2 (0, + 24, — A )(2M, + 4, —Ay)
9012613(31 )2 (2M)+A, )1
20, (0 +A,)(2h, Ay -2 DBA, —4,)BA, —4,)
18a azaa(h +2) )2 (A 430,425t
CA (0 A0 + 26, —A)(2h, — A +A)
9a2a3(37\_ )28(412+13)1
T4 (<A, + 20, +45)G3A, MG, — )
3Ea2 a, (37\‘2)2 —(Iv+ 221
4%, (v = A)EV = Ay)(Bhy —A)(BAy —As)
6Ea1a2 (?"1 +27\,2)28(N+M+A2)'
A0y Ay +1,)(V =AYV =AMy +2A, —Ay)
180, a’ (7\‘ +20 )2 (3A+2A )
20,24, ~ Ay +A3)(3A, =4, )(3h, —A,)
1‘73 (3}“ )2 (20,3231
2,00 +A DA = Ay +4,)GA, — 43R, —A,)
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Chapter 6

18a,@,a3 (A, +24,)2eMi+tat3h3)
MM+ g +205)00 +A)(A, 420, — 1)
9a,ai (3h,)2 ePr+et)
405 (y +2h; =1, )(BAy —4,)(31, —4,)
+ 6Ea,a, (A, + 37\,3)2e(""+7‘1+13 Y
423 (V+A)EV + R, + 20, - A,)
N 3EaZ(3),) el )
AN (v +A)EV + 53R, - A)(G3A; —2,)

B =aje™" (=382 =y = 25) Y{(Sh = 2,)(54, - 2)(34 - 1,) 3 - 4,)°)
+a]a,a,ePTIES6(h, +0,)(20, + 4y —4y)(20, A, +23) = 18(A, +A,)(A, +2,)
(M =R Ay 4Ry =R3)(2hy =Ry +23) = 18N, +25)(3X, =2y )BAy — A3 )N, + A, —1y)
(2h; —A, +A5)

=180 +A2)(3Ry =Az)(3h; = A3 )2y +Ay —hy) =36(A, +2,)(3, + A2)(2h, +Ag —As)
(20 =y +25) = 18(3%; +24,)(3R; =A3)(Bhy —A3)(2 — A, +43) —18(3A, +1,)
(GAr=2A2)BA —A3)(2A; + 14, _}“3)}/{(7\-1 +A2)(A +A3)(3A; = Ay)(3A, — 1)

(2 + 2y =R3)(2h =Ry +A3)BA; +1,)(3A, +45))

+aajuie BN e +22)7 (A +A3)(A, +24, —A3)(2h; — Ay +25)

=93 (g +A0)(hy +23)% (2R3 + Ay = 1y)(2hy =&y +23) = T2hh5 (Ay +1;)

(b +28; =A3)(2hy + Ay =1 )Ry — Ay +23) — 1805 (A, +Ay)(A; +A5)>

(A +205 =R3)(203 + 2y =1) = 18Ky (Ay + A5 (A +R3) (R + 24y —A5)
(g =2 +23) = T20A5 (Ay + 225 = RA3)(2A5 +hy =, )(2Ay — A, +15)
“I8A (M +05) (A +Rg)Ay +20, +R3)(2A5 + Ay — A2, + A, —A5)
“I8 + A +A5)(My + 2R, +A3)(2h, + Ay —A3)( 24 — Ay +A5))
Hhdy(hy +25)% (g +25)2 0y + 20 = A3)(2Ag +25 — A, )2Ay =4, +45)
(@h; +0; + )20, + 4, —A3))

HEaase™ 3 (4, + ) iv = M)AV = BV + A + A — A)iv + A))

tEaaye ™R3 (A, + 2) v+ AV + X1V 4y = A+ AN (=iv + A))

(6.64)
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B, = ayae® 6N A (20, + Ay — A )(2A, — A, +15)% = 361,14,

(A + AR +2hy —A3)(2h; + A, =) =182 (A, + 24, —A,)(2A, — A, +A4)°
—18h5 (Ay +A5) (A +2h; =) + A, = X)) =9, (A, + A, )My + 24, —Ay)
(3hy +20; —A)(2A, = A, +x3)}/{4wz7u3(x1 + 0,00 + 2R, —=A,)(2h, +A, — 1))
(A, = A + ?\'3)2(37\'2 = A +2A5)(3A, + ?"3)}

+atagae® R IRL (0 + Ay (A +A5)(2h, = Ay +A5)(2A, A, +A5)
=720y R (A + 28, = A3)2A — Ay +A3) = T20,A5 (A, +1,) (A, +4,)

(?‘-1 +27\'2 _?”3)(27"1 _?"2 +7\'3) “97"3 (7"1 +?"2)(7‘f: +?\'3)0"1 +27"2 _?“3)

(A, =Ry + X)) =180, A, (A, +4,)2 (A, +2h, —A;)

=720 + 2K, = A3)(20, + A, +A5)(20, = Ay +A5) —18h, (A, +A,) (A, +A5)

(A +2h, =A3)(2h, + A +A5) = 9(A; + X)) (A +A5)A, +2K, —A,)(2A, + A, +A5)
=9y (A +25)7 (A + 20, = ADH 2R, A5 (A +2,)7 (A +A5)(Ay + 20, —A4)

Ay =y +R3)(20, = A +A,)(2R, + A, +24,)(20, +21,)}

+ayae™ {920, + Ay —Ay)BA; —Ay)(3A, —Ay) = 6(h, +A,)(2A, +A, —A3)
(37“1 + 7\'2) "9(37"1 +?"2)(3?"1 - ?"2)(37\'1 - A’B)}/{(?"l + 7‘*2)2()’1 + 7"3 )(27"1 + A'z - 7"3)2
(3R = )Ry = A3)(3h; +A,) (4N, + 4y —A3))

+ Eafe™ NI @y 43R, + 4y = As) 2020, + Ay —Ay)(@v + A, )@V + 24, —A,)
(M + ;)@ =4 ) (v = 1y))

+Eaye ™ 342, = 4y —iv)Had, (iv+ 4 (v + 2,) 22, + 4, — A,)
(=iv+24, =4 )=iv+24, - 4,)}

+Eayae " (24 4y - A +iv+ )} {2A, (v—-A)iv-2,)Q + A, - 4)
(V=24 +2, + 4,)(iv+4,)}

By = a;a;e® ) (6} 2. (20, +4, =A)* (2R, =Xy +R3) = 9%, (3R, —A,)(3A, — A,)
(s + 2 =A0)" =181, (3R =A,)(3Rs = A,)(2A; + Ay = A)(2R, — A, +1,)

_'9?"3 (3;\'3 - 7‘1)(3?"3 - )-2)(27“3 +7L2 - ?"1)_ 187‘*2(37"3 "}"1)(37‘3 - 7“2)(37% + 7\'2)

(2?\'2 _}"1 +7\'3)}/{4(3}‘-3 - 7\‘2).}\'27‘23 (37\'3 "7"1 )(37”3 _?"2)(37\'3 +7"2)(37"3 +2}~2 "'7"1)
(2)'3 +A, - 7“1)2(27"2 —A + ?”3)}
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+ala,ale® PG 40, (20, + Ay — Ay )(2A, — A, +A;)(2R; + A, —Ay)
—720;)2A, Ay =A3)(2A, = Ay +A)(2A, + Ay —=A,) = 9(h, + A3 )(2R, — Ay +A)
(2hy = Ay +A,)2A; + 4, —A,) =18, +4,)(2N, +A, =A3)(2h; =, +A))

(2}"3 + ?”2 - 7"1)

=9 + ) (A + A)2 A + Ay = 43) 225 — Ay + 4) = 144) (24, + 4y — 4)(24, = 25 + A1)
(22 + Ay = A4) — 182, (hy + 4,)° 24 — Ay + 2)(245 = Ay + 2) — 182, (hy + 2, ) (A + 43)
@A+ Ay = B2 = A + ) = 36040 + A )y + A )2 + Ay = A)(235 = Ay + )}/
{205 (0 #2500 + 03020 +hy =R )2A Ay +25)(2h; =X, +14)

(20 + Ay =2 )2A; + Ay + A, )24 +24,)}

+afae™ {-903N, =13y =Ry )(Ay +Ag) = 6(h, +A;)2h — Ay +A5)

(@A =%y +R3) = 9(4h, = Ay +23)Bhg = A )(BAs = AR, —A)(BR; —1,y)

(b +2)2 (20, = Ay +43)2 (B, +A3)(4N, +A5 —1,)}

+ Eale ™ MO0, 40, ) +3(=iv + 24, = A,) 20V + A,V +4,)

(A, + Ay = A=V + A (=iv + 24, = A,)(A, +A,)}

+ Bage " B2 + 2y = ) +3(iv + 20, = WA (iv = )iy = 2)(24 + Ay = )
(v +24 = 4)(iv +24; - 1)}

+ Eaya,e ™" 322 + Ay = A)+3(=iv + A2 A (v + 4GV + 4) (2 + A, — Ay)
(=iv=A + 2, + 2,)(-iv + 4)}

(6.66)

9a; a2 (BA+22,)1

244 Hz)(ﬂq +24, = )24 +22,)(34 + )34 +24, - 4y)

9a3 z o CA+2As)

2/%(11 + 404 +24, - 12)(211 +24)34 +24, — )34 + 4)

3a a3 (QA4+324)t

2/?7(312 B = B ) +34) (24 +24,)2% +34, = 1)

3alalehiA)

2% G = A)BA = )4 +34,)(24 +34, — 4,)(24 +24,)

(4+44)

U, =

9a, a e
2%(/11 + AN 22, = ) (44,4 +34,) (A +44, - 4,)
3aye™”

2/?1(321 )G = ) (=4 +54,)(44,)(54 - 4y)

(4+44;)

9aae

233(/71 A0 + 225 = A)(A4)(Ay + 42, - 2,)(4, +34,)

3a3e™

2%(341 £G4 =)A= 4) (54— 4,)(44,)
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6alzaae(2;.]+3xz):

+
20, (A, +1,)(A, +2A, — A5 )M, +3R,)(2A, +20,)(2A, + 34, —A;)

(A. +4A 1

6a, a
+
20, (Bh, —A)BA, =R )(AX,)( +34,) (A, +4A, —A,)

3 (k,+}.2+37\.3)f

6a,a,a;
+
2053 (3%; —A))(BAs — A )R, +305)(A, +34;)(A, + A, +24A5)

(M +3Rg+Ag )1

N 18a,aja,e
20, (A + 2, ) 0y + 20, — Ay )R, +25)(h + 4, + A3 )(h, +24,)

1861 (12 3 (l|+12+3?\.3)l
27\. s F A + 205 =AMy + 30,0, + 30X, + A, +2A,)
6a2a e(4;\.2+l3)t
o, Bk, —A)BM, = M )@k, + 0, — A )R, + A )(@h,)
6(1 a (7&2+413)I
TN, Bh, — A )Bha —2a)(h, + 40, — A )EAs )N, 430y
N 18(11 a3a3 (2?t.l+3KJ)I
20y My +Ag)(Ay + 20, —A)(A, +38,)(20, +3A; —A,)(2A, +21;)
6a1a;ase(ll+3kz+x3)l

+
27"2 (3l2 _7"1)(3?"2 _7"3 )(3}\'2 +A’3)(7"1 +27"2 +7"3)(7\'1 + 27\'2)

6a1a34e(x,+47..3)r

+
2h3 Ay —A)(Bhs = A,)(4N;) (A, + 4Ry — AR, +A, +44,)

3a}az {3k, +21,)7 = A, (30, +28,) + S A A, Je Gty
" 24,(34, — M. )(3x =h3)(Ay +R5)(hy +2h; = A3)(2h, +24,)(3A, +A,)(3A, + 2K, — ;)
3aja; {3k, +22,)7 = DA, (Bhy +20,) + A A, Je O
205 (3h, —A2)B3M = A5)(Ay +A5)(h, + 20, — A 2 )N, +2 )(3x +2h; —A;)(3A, +A5)
1883300, 430, + 1,07 = FA (A, 430, +2,)+ T A, Je et
20 (O +25) (g + 030y + 28 = 2y)3A, +A3)(A, + 24, +43)(A, +30,)
183,00 3, +305)7 - SR 44, +34,) + TR, JeBriarthn
20 (g +23)* (g +25)(hy + 245 = ) (A +3R5)(hy +305)(A, +4, + 24 ;)
3aia; {(3h, +20,)" =3 A, (34, +21,) + T4, A, Je G2t
C2h,(M +4,)2 (2N, 44, A )y 28, = A5)(20, +21,)(3A, +x 2)GA, +24, - 1,)
9aiay{(2h, +34,)° =3 A, (2, +30,) + T4, 1, Je@hetax
20,00, 44 2)Bhy =R3) (2 42 = A3)(3h; =4, )R, +34,)(2A, + 24,)(2A, +3%, = 1,)
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(A +3hp+A3 )1

18aa3a,{(hy +3h, +15)" = 2 A (A +3%, +4;)+ D A A, Je

TAR (A 2K, —Ag)(2h, — Ay —A5)(Bh, + AR, + 24, +A5)(A, +3A,)

9aya; {(4h, +15)7 = D A (4h, +A3) + D A A, JeW2th)

T AN (2h, — Ay +A5)3h, —A)(Bh, — A (@R, + A, — A, )(3h, +4,)(4R,)
3Ea1a2{(zv+k 0,07 =D MV HA F )+ Y A, Je R

N L +A)EV =)V = Ay )y +2h, — A3 )V + A, )V + A, )(1v+K +Ay —Ay)

3Eay{(iv+21,)" = D A (v +2R,) + D A A, Je R
o 2 Bhy = AV = AV = A5)(Bh, = A)EV + 2, — )0V + A, )@V + 24, —A5)

18a}a7 {(3M) +24;)% = D A (Bh, +20,) + 3 A &, JeCh
T2 (M +1)2(2h — Ay +A5)(Ay + 2R —A,)(2A, +24,)(BA, — Ay +24,)(3A, +As)
3ala; {20, +305)7 = D A (24, +3h,) + D AL, Je PR
A (b #1020, — Ay + 4B — A )Bh, — Ay (A, +3R5)(ZA, — A, + 3R5) (g + Ay )
18¢,a,a3 {0y + My +3R5)7 = D A (A, + Xy +3K;)+ DA A, Jerthesdta
A )Ry + 20 —A)2(hy 430 )(hy + 3h5)(A, + A, +20,)
9a,a; {(h) +4K;)* = D A Ay +405) + 3 A, A, Je Pt ehs)
AR (A, 5000 + 28 — A)Bhs — Ay )Bhs — Ag)(h, + 4, — A )(AR, )R, +30,)
N BEa,a, {(=iv+ 2, +13)2 = D Ay (miv A, +A,)+ 3 A, Je RN
A3 Ay + A5 )EV+HA)EV +R,) (A + 2K — Ry )(—iv + Ay )(—iv — A 2t A A=V +EA))
3Baz {(=iv+24,)" = D Ay (—iv +2R,) + 3 A, &, Je
T a0, 0n, -1 )(zv+x YAV +A3)3R; = Ay )(=iv = Ay + 205 )(=iv — &y + 20, )(—iv + &)
3a0a3 {30 + 20D, +20,) + 3 A, (A, + 20, e ezt
T2, (A +A )(x +2h; = A3 )(A = Ay)(3hy =A3)(2A, +21,)(3A, +A, )3, + 24, —A,)
3a}az {3h, +20,) (A, +20,) + 3 A, (A, + 21,) Je 2
20, (0 +A)(hy +2h, )00, — A 2)Bh =R;)(2A +24,)(3), =&, +24,)(3A, +1,)
18aja; {(3h +21,)(h, +20,) + 3 A, (A, + 20, ) fehr2ra
2,0 AP @M A, A + 2Ky = A3)(2A, +20,)(3h, + A, )(3h, +24, —A,)
18a,aya{(A) +3h; +A3)(hy +20,) + 3 A (A + Ap) Jersarion
2h (0 +A5) (A, + 20, = )2 + A, = R3)Bh, +25)(Ay +24, +4,)(, +31,)
18Eaya, {(iv + 0y +4,)(h, +20,) + 3, (A, + 4, Je @ sty
A, 0 ), 20y = Ra)(V =R )@V = M)@V + A )V + A )GV + A, + A, —Ay)
3ataz {20, +30,)30, + 34, 31, Je @it
a0, +1,)2 20, T2y =R3)3h; = A)Bhy =A5)(A, +34,)(20, +31, —4,)
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9aya, {(4h, +1y)3h, + 3 A 3k, Je )
B 4}"22 (27"2 - 7"1 + 7"3)(37\-2 - l] )(37\'2 - )"3)(47"2 + }”3 - A‘x )(3}‘2 + 7\'3)(4?"2)
3EaZ{(iv +2A;)3%, + 2 A 3, Je VY

By (v = AV = 13 )(3hy = A )Bhy = AV + 24, — A )EV + 1, )(iv + 2, — As)

18’ a2 {(Bh, +205)(Ay +205) + 3 Ay (A + 2R ) Je Ot
T4 (A +A5)° (hy + 20, = A,)(2R, — Ay +A5) (A + 245 —A,)(3A, +Ay)
18aya, @ {(hy + Ay + 205 )(Ay +203) + D A (A 20 ) Je Pt
TA (A + )y 20 —A0)P (R +3R,)(A, +30,)(A, +A, +2R,)
6Ea,a {(=iv+ A, + 100, +205) + D A (A +24,) Je R
AN, (A hg) g + 205 =RV = A2)GV H Ry )=V + Ay )=V — Ay + Ay + 1)
3ala; {(3h;)(2, +3h;) + D A, 3h, JePhre)
20, ()R, + Ay = A,)3h, —A)(BA, — )R, +37L3)(2;\1 — Ay +3%,)(2A, +22;5)
. 9a,a3 {(3h;)(A, +4R;) + D A, 3R, Je Pt
AL + 205 = A)3R; = A B, = Ay )(Ay + 4R, — A )(4R,)(A, +305)
B 3Ea; {Bh, ) (—iv +210;) + D A 3R, TV
205 v+ M)AV + A, )3y = A )Bhy =Ry M=V + 24, = A )=V — Ay + 24, )(—=iv + A3)
1a2 (?\. +22 )2 (30,422,
T, )T + 20, A 3)BA = A)(GBA, = A5)(3A, +A,)(3A, + 24, —A,)
1a3 (7\. +22 )2 (3h,+22,)1
CAh, (0 0) 2 (A, +2h3 =Ry )3 = A,)(3R, —A3)(3A, — A, +24,)(3A, +4,)
18a,a5a, (A, +2A,)% ePi+3hatha)t
2,0, A 20, =A3)(Ay +4,)7 20, = A)(3A, —A,)(BA, —A,)
18a1a2a3(h 39 )2 (A +Rg+305 )0
20 (h, A 3) (Mg + 285 = R,)(A +A,)(hy +305)(A, +30,)(A, +4, +24,)
18a,a; (A, +2A,)2eCh+2ho)
40, (A, A 2)’ (Mg +2h; = A5)(2A, + 4, —A;)(3, +A,)(3A, + 20, —2;)
96112‘13(37b )z (22 +Ag)t
A, (M, + A 2 (2R, + Ay = A3)(BR, —A)(BA, —A3)(A, +3%,)(2A, +3%, —A,)
18a azas(k 25 )2 (A +3h, 4241
412(x AR + 28, = A3) (2K, = Ay +A5)(2A, + Ry )N, +2X, +A3)(A, + 3 ))

(6.67)
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9a,_a3 (37\' )2 (4Ay+Ag )
T (<A + 2, +A5)(BAg —A)BAg — A3 )(dAy + Ay — A )(BA, + A )(4R,)
3Eala;(3h,) e e
@V = M) = A3)Bhy — A)(Bhg — Ay )(IY = 2, — Ay )=V + 2y )iV + 2h, = As)
6Ea,a, (A, +21,) e i)
T, (g #3050V = Ag )V = A)(Ay + 2 — Ay )V + Mg )iV + A )iV + A +Ay = Ay)
18a’al (A, +2A, )2 Mt
T 20,20, = Ay +A3)B, —A)BA, —Ag)(2A, +24;)(3A, + 2, — A, )3, +2A;)
9‘11 a’ (37\, )2e(zx,+3x,);
T2 (0 Ag)(@Ay — Ay +A5)Bhs = AR —A,)(A, +3R5)(2N, +3A; — Ay X2A, +245)
18a,a,a; (A, +2M, )% ePrtha3h)
AL (A, + Ay +205) Ay FA)(hy 20 — M)y +30)(Ay +3R5)(A, + A, +3R,)
9a2a; (3?\.3)2e(7‘2+4}"}'
T160(hy +2K; =1, )BAs =4, )3, —A,)(A, +44, =4, )(A, +31,)
6Ea,a, (A, +3h,)2 eVt
VAV A, Yy +2hg — A, )=V + A )iV — Ay + A, + Ay )1V +A,)
3Ea3 (A, )z (=iv+223 )t
T v, YAV +RA)(BRg = A)Bhy — Ay =3V + 24, — A =iV = A, + 24, )(—iv+ A,)

Putting the values of 4, 4,,4,,B,, B, B, in Eq.(6.7), we obtain

= eaje*™ /{(321 =)A= X)) - eaa,a,e B (4 + ) (A + 4y)
e as 38R =k —A5) HOA, = 2)(5h; = A5)BA, = 2y)2 (3h, —Ay)?)
+elaiaya eI 600, +4,) (2N, + Ay —A)(2h — A, +A5)
~18(Ay +A,)(Ay +23)(3R, = A,)(2A, +Ay —A3)(2R, —Ay +A3) ~18(A, +4,)
(37"1 _?"2)(37"1 —K3)(2?\.l +}"2 "7\'3)(2}"1 _}“2 +7"3)
~I8(A; +25)3R = A)BA, = A)2A, + 4y —hy) = 36(A, +4,)(3A, +4,)(2A, +A, —2,)
(2 =y +23) — 183N, +2,)(3, = A,)(BA, =Ly )(2h, =4, +1,) —18(3A, +2,)
(A —A,)(3A, = A3) (2N, +2, —}“3)}/{(7\'1 +A,)(4, +7"3)(37"1 = A3, - As)
(A +2; =2A3)(2% =&y + 1), +4,)(3, +4,))
+eaayale™ PIIN _ ), (0 +,)2 (N, +A)(h, + 20, —~A3)(2h, = A, +4,)
=g (50 +23)  (2hg + 5 = R)(@hy = Ay +43) = T20h, (A, +4,)

(hy + 2% =R )2h + g =R )20, = Ay +2,) = 18K, (4, +14,)(A, +1,)?
(A 21, =A)(2R, +24, —2,)

(6.68)
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180, (A + A, +A5)7 (A, +2h, = A )20, = A, +A5) = T2R, A5 (A, +24, —As)
(2h; + Ay =A)2A, = A, +A3) = 18h; (A, + A, )Ry +Ag)(Ay + 22, +2A,)(2A;5 + 2, —Ay)
(2h, + Ay =Ay) = 18(A, +A,)(A, +A5)(A, +24, +A)(2A, + 4, = A3)(2h, — A, + 1Y
A (A + 2502 (A + 2507 (g + 2R, = A)(2A + A, =R )R, =2y +R5)(2A; + 2, +2y)
(2h, + A, =23}
+ 2 Ea,a, e 314 + A )iv - )iV — )GV + A + A = A)(iv+ A}
+ 82 Ea,a,e ™" 314, + 1)V + AV + A (v + Ay = Ay + A,)(=iv + 4]
b, = e(-3)alae®™ [{(A + )24 + A — )} + 6(=3)ate Y [{(22,)(24, — Ay + 4}
+ B [{2(iv = A)(iv -2}
+e2alale® TGN, N, (20, + Ay = A))(2hy = Ay +A3)2 =360,0, (A, +24,)
(hg + 20y =0, A, +A, —A) = 1805 (A, +24, = A,)(2A, — A, +4;)’
—18%; (A + A,y + 24, = A3)(2h; + Ay =A) =90, (&, +A,)(A, +2h, —A,)
(Bhy + 205 = A,)(2h — Ay A HRIA (A +A,)(A, +20, — A )(2Ay +2, Ay
2Ry =My +243)2(3X; = A, +245)(3M, +4,)}
+e2alala,eMERIGL (A + A, (A, +A5)2A, — A, +A,)(2A, — A, +As)
=720 A5 (A + 2R, = A3)(2A, = Ay +A3) = T20,A, (A + A, )2 (A, + A3 )(A, +2h, —As)
(2R =X, '*'7“3)_97\'3(7"1 +7"2)(?"1 +}"3)0\'1 +27"2 _7"3)(27“1 _?“2 +7"3)
— 180,05 (A, +4,)2 (A, +2A, —A;)
=720k + 2%y = A3 )Ny +A; +A3)(2h, — A, +A5) =184, (A +4,)(A, +4;)
(A 428, =R3)(2R; + Ay +23) = 9(Ay +4,)(A +A5)(A, + 2K, —A3)(2A, + A, +As)
=9 (g +22)" (0 + 28 = As)} (2R 05 (g +2)7 (A +A3)(A +22, —45)
(2% =Ry +23)(2h, =&y +A3)(2R, + A, +2,)(20, +214,))
+elajae™ (=920, + 4, = A;)(3%, = ,)(3A, —A;) =6, +4,)
(22 + 2y =A3)BA; +2y) =93, +4,)(3A, =Ry )(3A, —Ag) A, +4,)? (6.69)
(b 23020+ =A5)7 B0y =R )3h = A)(3N, +4,)(4A, +A, — 1))

+&*Eale™ MM iy 4 30, + 4y =4 ) /220, + Ay — A3V +1,)

(v + 27"1 - 7\'3 )(}‘41 + ?“2)("" - )'1 (v - 7\'3 )}

+&’Eaje™" 3(44, — 4, —iv){44, v+ )0V + )24, + A, - 4)
(=iv+2, = A)(=iv + 24, — 4)}

e Bayane P 2ty = At v+ I RA (v = A iy = 4)(2A, + Ay — )
(v =2+ &+ A) (v + 4)}
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i, =e(=3)alae®™ /{0, +1;)(2A, =X, + 1)} +E(-3)aTe 2/

(@A) (20 =My + Ry} EECT 12(v + 1, )@V + 13}

+e2a2ale® PV 6 As (20g + Ry —A) (2hy — Ay + ) — 9y (Bhy —A)(BRs —A2)
20y + Ay —A)% =180, (3A; = A )(3A; — A )(2h; +Ay =4, )2, — A, +13)

— 9k, (BA; - ADBA; - }"2 J(2h; + Ay — A )—18%, (313 - A’l)(37\’3 - 7\'2)(37"3 + 7"2)

(20, =&y A ) H B, = A)A,08 (BRy =R )(BA; —A,)(BA; + Ay )(BAy + 24, —Ay)
2%y +A, —A)2 (2R, — A, +2,)}

+e2ala,ale® BN, +A,)(2N, + Ay = Ay 2A, — Ay +A5)(2h; + A, —A))
—T205)2h + Ay = Ag)2As = Ay +A)(2A; +A, —A) = 9(A, +A5)(2A, — Ay + 1)
(2R3 =Ry + A 2hs + Ay =) = 18(A, +2,)(2A, +A, —A;)(2R; = A, +4,)

(A3 +hy =)

=4 + )4+ L)RA + A, - 4)(2A - A, + 4) 14024 + A, — )24 - A, +4)
QA + A = A) =184, (A + A,)" (24, = A, + 4,)(24; = A + 2) =182, (A + 4,) (4 + 45)
QA+ Ay = 2) 24 = 2y + 20) = 36(A + A, )y + A) 24 + Ay — A)(24, — Ay + 4}/
2ha (0 +2) Ay +A3)2A + Ay —A3)(2A =&y +A5)(20; — Ay +A,)

(2h; +Ay = A2, + Ry +A)(2h, +24,)}

+e%ala e {9034 - 4B — ) (A + A) = 6(A + 1) 24 — Ay + A,)(4A — A, + Ay)
=9(4A = 2y + 1)(32 = 4)BA = W34 = 4)BAs = A)(A + 4)* (22 — Ay + A3)?
(B +4,) (424 + 25 = 2)}

+&’ Bale ™" NI B(A + Ay) +3(=iv + 24 = )RV + A) v+ 4,) (24 + A, — A,)
(=iv+ A1V + 2 = 2) (A + 43))

+&?Eaze ™™ 324 + Ay =) +3(v + 24, —A,) {4, (v — 4, )GV —1,)

(2R3 + Xy =RV +24; =AYV +24, —1,)}

+& Eayase ™ B(2h + 4y — M) +3(=iv + A Y 2A, (v + A, )iV + 1)

(2h; + Ay =)=V =&y + Ay +45)(=iv +1,))

(6.70)

Now, substituting the variables @, =a, a, =be'” /2, a, =be™? /2 and the eigenvalues
by 4 =~¢, A, =—k+iw, A, =—k-iw and simplifying, we obtain the variational equations
for b and ¢ in the real form (b and ¢ are known as amplitude and phase respectively),

which transform the equations (6.69) and (6.70) to

a=cRa’e™ +ePyab’e™ |4+ ePa’e™ + ePa’ble e 14+ ePsab’e™

6.71
+ &’ Eabe™ {K, cos(wt —w+go)+K2sin(cot—vt+qo)}/2 ©71)
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b=ela*be™ [2+¢el,be™ | 4 +2eEe {L; cos(wt —vi + @)

+ M, sin(wt —vt + go)}+gza4bL4e-4s‘l + gzazbsLse—zae-zln /44 gzbsLﬁe"“" /16
+£22Ea’e " {L, cos(wt —vt + @) + M, sin(wt — vt + @)}

+£2Eb%e ™ {L, cos(wt —vi + @) — Mysin(@t — vt + )}/ 2

+&2Eb%e ™ {L, cos(wt —vi + @) + Msin(at — vt + @)}/ 2

(6.72)

o =sM,a’e™ 12+ ¢eL,b%e™™ [ 4+ 2eEe" {L, cos(ot — vt + @)

+ M,sin(@t —vi + @)} + £2a’dbM 6™ + &2 a’b* Me ™ e ™ 14+ &b M e /16
+&22Ea’e ¥ e" (M, cos(wt — vt + @) — L, sin(ot —vt + 9)}/ b (6.73)
+£2Ebe™ {My cos(@t — vt + @) + Lgsin(ot —vi + )}/ 2

+£2Ebe™ {M, cos(at — vt + ) — Lysin(wt — vt + gf))}/ 2

where

L =EE+R) -0, M, =éo+a(&+k),
L, =-303k> + k& — 0?) 12k + 0*){(3k + &)* + 0},
M, = =3(4ko + 0&) 1 2(k* + 0> ){(3k + £)? + 0},
Ly =—(k& +v? +vw) 1 2(E> +v){E* + (0 +v)*},
M, = (kv —&v— &) 12(E2 + vk + (@ +v)?),
Ly = —6{(8k> +4Kk%E + 8k —kv? + 2k2E + KE? + 602

C —20vE)BEE + TR ov + 3k + k2 - 2kovE + kv 2E — Sko’E — o’y
~0’v? —ovE? - 0%E?) + (16k%0 — 8KV +16kot — 6kv2E +30E2 — vE? — 240°
—140%v +90v? = v?)(3k>v — 2k2VE - Tk 0f — kvE? — 2koE? — Skav
~20*vE + 0’8 - 4kov? — ov?E)}/ 4k> + Bo —v)2}H{(2k +£)? +Q2wo-v)?}
(K% +0)(E> +v){(k* + (v +0)* )3k +8)* +w?)}

My = ~6{(16k*© ~ 8KV +16k0k — 6kvE +30E2 — vE2 — 240>
~140?v +90v? = v )(BKE + Tk v + 3k2v2 + £ 2E> — 2koVE + kv2E
= 5k0’E — 0’V - 0*v? ~ ovE? — 02E2) — (8K + 4k2E + 8keo® — kv?
+2k%E + KE? + 60°E — 200vE)(3k Y — 2k2vE — Tk 0t ~ kvE? — 2keE? -
Skmzv—2m2v§+m3e;—4kmv2 ~oVZEN 4K + (30— v)2}{(2k +£)?
+ (20— V) }(k? + 0?)E? +v2) (k2 +(v+ @) HBk+5)? + 02)
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L = 18{(K°E +3k>v2 —k2ov + K2E? + kv2E + 4kovE + 5ko”E
—0?v? - V) (8K +4k%E — 4kv? + dhve + 2K
+RE? + 20VE + 4k +20°E) — B3 - 2k°VE — 3kt + 4k oV
+4kaov? + 3ka?v — 0 )3k + 4k o + 6kVE
+ 4koE +VE? + 02 +30v? +20%v +v*)}
1264k +E)* + 0>} + (v + 0)2 {2k +E) + v} (K + 0?)(E? + V)
M =18{(K°E +3k>v? — K*0v + k28> + kv?E + 4kovE + Sko’E
—0%v? — 0’ Vv2)(4k?v + k20 + GAVE -+ 4kok + vE?
+0E? +30v? +20%v +v*) - BKE - 2k2VE - 3k 0E + 4k oV + dkov?
+3ko?v — 0 E)BK> + 4k%E — 4kv? + 4kve + 2K
+KE? 4 200VE + 4h0? +20%6)}/ 2Bk +E)? + 0 K + (v + 0)1 )2 {(2k +E)* + v}
(k% +0?)(E? +v?)
L, =—9{(27k" +16K°E +3Kk°£* — 16k’ 0” - 8ka*E — @*&?)
(T0k? +14k2E +10kE 4 2kE* = 27kw* = 30>E) — (48K 0 + 28k & +160E?)
(19K @ + 20kaé + wE* — )}/ 8(k? + @) (4k* + 0*){(Bk + &) + »*}?
{(5k+ &)Y + 0} +330k° +16k*E - 237k 0 + 63k 0’ E + 2k % — 4k *&E?
+570'k+80*E — 4k’ 0*E - 3K 0 E?) 18(k? + w?)(4k* + @?)
{Bh+E)+* Y {(5k+&)* +w*)
Mg =-9{Q27k* +16k>& +3k*E* — 16k 0" — 8k’ £ — w2&?)
(796w + 20k¢ + 0&E? — 0°) + (48k° 0 + 28k wé +16wE?)
(70k* +14K>E + 105 + 2kE? - 2Tka® = 30°E)}/ 8(k* + w?)?
(45 + 0" ){Bk + &) + 0 {5k + &)? + 0} +3(141k* 0 + 30k & —
600° +34k°wf + 6k wE? — 41ko E - 117K 0° - 30’ k2E + 60°
+h2 & —20°E%)18(k + @” )4k + @?){(k + &) + 02} {(5k + &)? + ?)
L, =—18{(72k* +16K°E +3K°E% —32k%0? ~16kw*E — 8w 2E?)
(90K +14K>& +10kE +2kE? - 2Tke” — 300%8) - (48K°w + 28k & +16w&?)
(79K @ +20k¢ + & — 0°)}/ 8(k? + %) (4K +0*) {3k +&)? + 0}
{Bk+&)* + 0} +3(30k° +16k*E - 237 0” + 63k 0 *E +2k°E? — 4k £?
+570°k +8w*E -4k’ & -3k 0% E%) /16(k? + 0*)(4k® + w*)
{Bk+E)+ 0’ Y {5k +£)* + 0%}
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M, = —18{(T2k* +16k°¢ +3k2£? -32k* 0 —16ka*¢ —80°L")
(90K + 20kaf + wE? — @) + (48K w + 28k @& +160¢?)

(0K + 14Kk +10kE +2kE? = 2Tka” = 30°E)}/16(k° + @)’

4k + V) {Bk+E&)* + 0 Y {(5k+&)* + 0’} +3(141k* 0 + 30k w¢ —
600° + 34k +6k° 0E? — 41k’ — 117K 0° -30°k*E +60°

+E20E? —20°E?) /8K + 0* )4k + 0?3k +&) + @7 Y {(Sk+ &) + @’}
Ly = -3k + Tk v +3k*v? + K°E? - 2kove +kv?E - 5kt — v
—02v? —ovE? — @PE2) 8K +4k2E +8ko? — kv? +2K°E + KE” + 607
—20vE) + 3k — 2k2VE — Th0E — kvE? — 2kt ? — Sko?v — 20°VE + 7%
— 4kov? — ov2E)(16k20 - 8KV + 16k0E — 6kvE + 3052 — vE? — 240’
“1402v +90v? = v}/ 4{k? + Bo - v)2HRk +£)? + Qo - v)?}(k* +©7)
&2 +VA){Bk +8)* + 07}k + (v +©)"}

My = -3{(3k*E + Tk ov +3k*v2 + k7E? - 2kovE + kv2E — Sko’E — o’V
—0°v? —ovE? — 0%E1)(16k%0 — 8k 2V + 16k0E — 6kv2E + 3087 — vE? - 240°
—140%v +9av? —v?) - Bk - 2k*vE - Tk 0k — kvE? — 2knt? -

Sko?v —20°VE + 0’ — 4kov? — ov2E)BE® + 4k%E + 8k — kv?

+2K%E +KE2 + 60%E — 20vE) Y HE? + Bo - V)2 H(2k +£)* + Qo —Vv)?}

(K +o*)EE +v{BE+E)? + 02} k2 +(v+©)?)

Lo =3{(3K°E+3k*v? —k?0v + k282 + kv2E + 4kovE + Sko*E
—0’v? —0’v? +ovE? +02E)(8k +4k2E — dkv? + dkveo +2k2E
+kE? +20VE +4k0” +207E) - (3kE -2k VE - 3k 20 + 4k 2oV
+4kov? +3ko’v -0’8 +oEv? — kvE )10k 2y + 4k 0 + 6kvE
+4kok +VE? + 0E? +30v? +202v+v?)) |

126> +(v+0) {2k +8)? +v2 (K2 + 02 )E2 +v2) {3k +E)2 + 0%}

My =3{GRE+3k7V" - B2 ov + k%82 + kv2E + 4kovE + Sko2E

~ 0™V —0’v? + aVE? + 022 )10k + 4k%0 + 6AVE + 4kok +vE?
+0&% +30v? +20%V +v) - (358 = 262VE — 352 0L + 4k 2wV + dhov?
+3k0?v — 0’8 + 0Ev? ~ AvE2)(8K® +4k2E — 4kv? + dkver + 2k%E

+RE? +20VE + 4ka® +2078)}/ 2k + (v + 0)}2{(2k + £)>2 +v?}

(F* +0?)(E? + v ){(B3k+8)? + 0%}
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The variational equations (6.71), (6.72) and (6.73) are in the form of the KBM solution.
The variational equations for amplitude and phase are usually appeared in a set of first order

differential equations and solved by the numerical technique

Therefore, the third second approximate solution of the equation (6.47) is
x(t, &) =a e +be™ cos(wt + @) +& u, +&%uy - (6.74)
where a, b and ¢ are the solutions of the equations (6.71), (6.72)ana (6.73) respectively.

For the damped forced vibration, i.e., to investigate the stationary regime of vibration or

examine the stability of the stationary regime of oscillations, we have to substitute

c=be ™ and y=of-vt+¢,which leads to

¢ =—ke+sL,c® 14+ 26E{L, cosy + M,siny }+ 2 EL,c® /16 + £* Ec*{L, cosy

6.75
+ Mgsiny}/ 2+ 2 Ec*{L, cosy — M,siny}/2 (679

and

W =(0=Vv)+eM,c’ /4 +2eE{M, cosy — Lsiny}/c +&*EL.c* /16

. 6.76
+8” Ec{My cosy — Lysiny}/ 2 +&? Ec{M, cos y + L,siny}/2 o7

For steady state solution, setting ¢ =y =0, and neglecting the non-oscillatory part of

the solution, i.e, the terms L, and M,, equations (6.72) and (6.73) become

ke—ec’L,/4~€*Ec’L; /16 = E(2¢L, +€°c*L, /2)cosy
+ E(2eM, +&%c*M, /2)siny i

—(@=v)o—eM,c*/4~e’ EMc® /16 = E(2eM, +€*Mc* / 2)cos y
—E(2eL, +&*Lyc® /2)siny 1,
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In the case of the stationary regime, eliminating i/ from equations (6.77) and (6.78)

gives the equation of the resonance curve (see [57]) as

etV B2 (L2 + M2)/256 +26°c E(L, L + M, M) /32 +¢*c*{L; - 2kEL,

+EXM2 +2(0— V)M 316+ c* {~26L,k + 26 EM, (0 —v) - E*¢" Lg 6.79)
+E% M)/ 4+ 2k +(0-v)? —2E%€’ L, L,

2B M M}~ 4E%* (L2 +M})=0

which relates the amplitude of the response ¢, to the frequency v, of the forcing term.

6.5 Results and Discussion
A technique has been derived to solve an nth order, n=2,3,..., weakly non-linear

differential systems based of the KBM perturbation method. In this paper the solution is
determine in complex form, since the determination of real form is a laborious task. The
variational equations do not form a simple nonlinear algebraic equation of amplitude; since
the elimination of phase is not possible. The numerical integration show that it has a steady-
state solution. The advantage is that it changes slowly with time, t; so it requires a few steps
of calculations to find the steady-state. On the contrary, it requires many step of calculation
to find steady-state when one solves directly solve the second and third order problems
congaing harmonic terms, cosar using a numerical technique.

In order to test the accuracy of an approximate solution obtained by a certain
perturbation method, one can easily compare the approximate solution to the numerical
solution (considered to be exact). Due to such a comparison concerning the presented method
of this paper, we refer to the works of Murty et al [57], and Shamsul [98,109]. In this paper,

we have also compared the perturbation solution of Duffing’s equation (6.20) and (6.47) to

those obtained by Runge-Kutta (Fourth-order) procedure.
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First of all, x(,¢) has been computed by perturbation solution (6.20) with first
approximation together with initial conditions [x(0) = 0.918484, x(0) =.633118] or
a=1.11555, ¢ =—.603514 for £=.25, E=13. The corresponding numerical solution has

also been computed by fourth order Runge-Kutta method. All the results are shown in Fig.
6.1. From Fig. 6.1 we observe that the perturbation solution is differing from the numerical

solution. For this reason we have computed x(z,&) by perturbation method with second
approximation together with initial conditions [x(0)=0..855399, x(0) =.639636] or
a=1.05161, ¢ =—-.6312 fore =-.25, E =1.3. The corresponding numerical solution has also

been computed in this case and all the results are plotted in Fig. 6.2. From Fig. 6.2 we see
that the perturbation solution shows a good coincidence with the numerical solution. We

sketched the resonance curve for the conditions € =.1, £k =.1, E=1 in Fig.6.3 and for the

condition € =.05,k=.0,E =1 in Fig.6.4.

We have again computed x(¢,€) by perturbation solution (6.47) with first approximation
together with initial conditions [x(0) =-0.892002, x =.223129,%(0) =.895417] or
a=0.0000, b =.919571,¢ = -2.894207 for €=.1, k=.1,v=1, E =1.3. The corresponding

numerical solution has also been computed by fourth order Runge-Kutta method. . All the
results are shown in Fig. 6.5. From Fig. 6.5 we find that the perturbation solutions are varies
from the numerical solution. For this reason we have agéin computed x(z,&) by perturbation
method ~ with  second  approximation  together  with initial condition
[x(0) =~.825913, x(0) = .212056, %(0) = -829565,] or a=0.,5=.8525,¢ =-2.888851 for
€=.1,v=1, £=13. The corresponding numerical solution has also been computed in this

case and all the results are plotted in Fig. 6.6. From Fig. 6.6 we see that the perturbation

116



Chapter 6

solution shows a good coincidence with the numerical solution. We sketched the resonance

curve for the conditions e=.1, k=.1, =2, k=.1, E=1 in Fig.6.7.

6.6 Conclusion

Higher approximate solution of an n-th order time dependent nonlinear deferential
system has been found and resonance curve is sketched. In general, the variational equations
for the amplitude and the phase are solved numerically. In this case, the perturbation method
facilitates the numerical method. The variational equations of amplitude and phase are

important to investigate the stability of a differential system.
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Fig 6.1
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Fig 6.1: First approximate solution (dotted line) with corresponding numerical solution
.(S(.)l.id line) are plotted when the damping coefficient is £=0.1, v=1 together with
initial conditions a=1.11555, ¢ =—.603514 [x(0)=0.918484, x(0)=.633118] for

=025, E=1.3.
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Fig 6.2
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Fig 6.2: Second approximate solution (dotted line) with corresponding numerical solution
(solid line) are plotted when the damping coefficient is £ =0.1, v=1 together with
initial conditions a=1.05161, ¢ = -.6312 [x(0)=0.855399, x(0)= .639636] and
£=0.25 E=123.
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Fig 6.3
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Fig 6.3: Resonance curve for e=.Lk=.1, E=1.
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Fig 6.4
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Fig 6.4: Resonance curve for g = 05, k=.01, E=1.
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Fig 6.5: First approximate solution

with  initial conditions
x(0) = 223129, %(0) =.895417]and ¢ = 0.1, E=13
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Fig 6.6
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Fig 6.6: Second approximate solution (dotted line) with corresponding numerical solution
(solid line) are plotted when the damping coefficient is &=.2, k =.1, v=1together

with initial conditions @ =0.0, 5=.8525, ¢ =-2.888851 or [x(0)=-.825913,
x(0)=.212056, %(0)=.829565]and £=0.1, E =1.3
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Fig 6.7: Resonance curve for £ =2, k=.1,¢ =1, E=1 v=1.
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