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ABSTRACT

Fixed point theory has fascinated hundreds of researchers since 1922 with the celebrated
Banach’s fixed point theorem. There exists a vast literature on the topic and this is a
very active field of research at present. Let X be a set and let 7 be a mapping from X
into.X . A fixed point of Tis an element x € X such that7(x) = x. In mathematics, a
fixed point theorem is a result saying that a function 7 will have at least one fixed point,
under some conditions on 7 that can be stated in general terms. In other words, a fixed
point theorem is a theorem that asserts that every function that satisfies some given
property must have a fixed point. Fixed point theorems give the conditions under which
maps (single or multivalued) have solutions. Fixed point theory is a beautiful mixture of
analysis, topology, and geometry. [f we have an equation whose explicit solution is not

so easy to find, in that case we rewrite the equation in the form 7'(x)=x to find its

solution by applying any suitable fixed point theorem. This method can be applied not
only to numerical equations but also to equations involving vectors or functions. In
particular, fixed point theorems are often used to prove the existence of solutions to
differential equations. Fixed point theorems also play a fundamental role in
demonstrating the existence of solutions to a wide variety of problems arising in social
sciences, biology, chemistry, economics, engineering, physics and mathematics. For
instance, the Banach [18, 40], Brouwer [18, 49] and Kakutani [18] fixed point theorems
have been among the most-used tools in economics and game theory. Over the last 50
years the theory of tixed points has been revealed as a very powerful and important tool

in the study of nonlinear phenomena.

There are many ways of developing the concept of fixed point theory as well as Metric

fixed point theory. This thesis investigates some effective and quantitative aspects of

Metric fixed point theory in the light of different fixed point iterative schemes and their

convergence.

The main purpose of this thesis is to present that part of Metric fixed point theory in
different fixed point iterative schemes analytically and numerically, which in recent
years has shown itself to be most useful for its applications. Though this thesis is

developed as branch of pure Mathematics it is presented in such a way that it has



Abstract

immediate application to any branch of applied Mathematics, which requires the basic
theory of fixed point as a foundation for its mathematical apparatus and it should be

found useable as a source of reference of the more advanced mathematician.

For convenience, this work is divided into five individual chapters. In our chapter-1, we
have presented several known definitions and some fundamental results of fixed point
theories, which are used as the tools of our work. Perhaps the most well known result in
the theory of fixed points is Banach’s contraction mapping principle. So, it will befit to

commence this thesis with a discussion of contraction mappings.

In our chapter-2, first we have identified some fixed point problems on contraction
mapping and non-expansive mapping and tried to solve these problems in our own
fashion. The problem 2.2.1 is an existence and uniqueness theorem for ordinary non-
linear differential equations. Although, in [18] the problem 2.2.1 and the problem 2.2.3
are known as Cauchy-Lipschitz theorem and Implicit function theorem respectively,
moreover here we treated these theorems as fixed point problems on contraction
mapping. In this chapter, secondly we have chosen some open problems on non-
expansive mapping and shrinking mapping (special type of non-expansive mapping) and
tried to solve these open problems. In the end of this chapter, we gave a vast discussion

on asymptotically non-expansive mappings.

In our chapter-3, we have defined different fixed point iterative schemes and gave some
convergence theorems on these iterative schemes. The main feature of this chapter is to
establish the convergence theorem of Kranoselskii’s iterative scheme and Noor iterative
scheme on arbitrary Banach space B whenever the operator T : B — B satisfies at least

one of the following three Zamfirescu conditions
() |-y <alx-5];

(z,) ”Tx —Tynsb[”x —Tx" +”y -Ty

1;
=

where, a, b& care real numbers satisfying 0<a<1,0<bh <1, c<1/2. Here, we have

(z3) |- Ty" < c[”x -D|+ [|y —Tx

also stated and proved some convergence theorems of Mann iterative scheme on
Banach space B whereas the operator T : B — B satisfies the contractive condition
ITG)-T () lI< kmax{el| x =y LUl x =T+l y =T LU x =TGN+l y =T (x) |1}
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for all x,ye S, where k,c20,0<k<1.

Recently, in a series of papers [9-17], B. E. Rhoades and S.M. Soltuz, proved that Mann
and Ishikawa iteration schemes are equivalent for several classes of mappings such as
Lipschitzian, strongly pscudocointractive, strongly hemicontractive, strongly accreti{re,
strongly successively pscudocontractive, strongly successively hemicontractive
mapping and Krishna Kumar in [28] proved that Mann and Ishikawa schemes are
equivalent for the class of uniformly pscudocontractive operators. In [51], the following
open question was given: “are Krasnoselskii’s iteration and Mann iteration equivalent
for enough large classes of mappings?” We gave a positive answer to this question: if
Krasnoselskii’s iteration converges, then Mann (and the corresponding Ishikawa
iteration) also converges and conversely, dealing with maps satisfying Zamfirescu
condition (Z). Note that B. E. Rhoades and S.M. Soltuz have already given a positive
answer in [16] for the class of pseudocontractive maps. In the fact of this above
discussion, in our chapter-4, we have shown that the equivalence of Mann iterative
scheme to the Ishikawa iterative scheme, Krasnoselskii’s iterative scheme to Mann
iterative scheme, Mann iterative scheme to Ishikawa iterative scheme to Noor iterative
scheme and Mann iterative scheme to Multi step iterative schemes for the class of
Zamfirescu operator, which is described over the Banach space. In the end of this
chapter, we have also shown that the equivalence of the T —stability of Mann iterative
scheme to the 7 —stability of Ishikawa iterative scheme and the T —stability of Mann
iterative scheme to T —stability of Ishikawa iterative scheme to T —stability of Noor

iterative scheme for the same situation.

Finally in our chapter-5, we have studied the rate of convergence of different fixed point
iterative schemes. Here, we have studied the rate of convergence of different fixed point
iterative schemes in two different contexts. First one is theoretical approchement of the
rate of convergence. In this case, we have compared the rate of convergence of different
fixed point iterative schemes theoretically. And the second onme is Empirical
approachment of the rate of convergence. In this case, we have compared the rate of
convergence of different fixed point iterative schemes numerically or practically. After
completing this type of study, we have suggested that the Krasnoselskii’s iterative
scheme converges to a fixed point faster than Mann, Ishikawa, Noor and Newton-

Raphson iterative schemes for a certain type of operator.

vii
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CHAPTER-1
MATHEMATICAL PRELIMINARIES AND
SOME FUNDAMENTAL RESULTS

1.1 Introduction

The main aim of this Chapter is to state some basic definitions with examples and some
fundamental results of fixed point theory to keep this thesis in sequence and for the
convenience of references. For the brevity, most of the theorems are stated without
proof. However, some results are given with short proof with adequate references.
“Although, all of these fixed point theorems are well established by different
mathematicians, moreover, we again describe these fixed point theorems for
convenience of readers and acquiring complete knowledge on the fixed point theory.
The notations and terminologies used in the dissertation are also fixed in this chapter. In
the study of Functional analysis and Topology, Metric spaces play a very important role,
and Metric spaces have gained considerable importance after the famous Banach’s fixed

point theorem (Contraction mapping principle).

1.2 Some basic definitions of Mathematical analysis

Definition 1.2.1, (see [56]). A vector space or linear space is a set X together with two

operations, addition and scalar multiplication such that for all x, ye X and all @ € R (set
of real numbers) both x+ y and ax are inX, and for all x,y,ze X and all @, S € R the
following properties are satisfied:

) x+y=y+x;

(i1) x+y)+z=x+(y+2);

(i) (a+pP)x=ax+fx;

(iv) akx+y)=ax+ay;

V)  a(fx)=(af)x;

(vi) there exists a 0e X such that forall x’ e X, 0+x’ =x';

(vii) there exists a —x e X such that forall xe X, x+(-x)=0;

(viii) there existsa 1eR suchthatforall xe X, l.x=x.
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Definition 1.2.2, (see [55]). Let X be a non empty set. The mapping d: X x X >R is
said to be a metric on X if it satisfies the following conditions:

(@) d(x,»)20, Vx,ye X;

() dx,»)=0iff x=y, Vx,yelX;

(€) dx,y)=d(y,%),V x,ye X;

(d) d(x,y)<d(x,2)+d(z,y),V x,y,ze X.

Here the set X together with the metric d i.e., the order pair (X,d)is called a metric
space.
Example. If X =R (Set of real numbers) and the metric define by
dx,y)=|x-y|,Vx,ye X.
Then (X,d) form a metric space.
Definition 1.2.3, (see [56]). Let X be a vector space. A function [[|: X — [0,0) is called
a norm if and only if for all x, y € X and all & € R, the following rules hold:
@ [y <[+ ¥ %y e x;
(b) |a | =|a|[x| if xe X and a eR;
() [x|=0=x=0.
The pair (X,||) is then called a rormed linear space. A normed linear space

(X, ) defines a metric space (X,d)withd defined by d(x, y) =|x—y].

Definition 1.2.4, (see [55]). For each positive integer &, let R* be the set of all ordered

y Rito] (S Y o, —— 1 OR.A——— ,X, are real numbers, called the

coordinates of x. The elements of R* are called points, or vector, especially when & > 1.

il LN TR - —— ,y,)and if & is a real number, put
X+y=(X + ¥ X3+ Vysernennannne sk “F Ve
and  ex=(EX @ Xpumscnnron ,ax,)

so thatx+ye R*and axe R*. This defines addition of vectors, as well as
multiplication of a vector by a real number. These two operations satisfy the
commutative, associative, and distributive laws and make R*into a vector space over

the real field. The zero element of R* is the point 0, all of whose coordinates are 0. We
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k
also define the so-called “inner product” of xandy by <x, y >= Zx,y, and the norm

1=]
' 12
- | _ yz _ 2 v k . . .
of x by ||=(<x.x>)2=|>x?| . The vector space R* with the above inner
=]

product and norm is called Euclidean k - space.
Definition 1.2.5, (see [56]). A vector space X is called an inner product space or
unitary space if to each ordered pair of vectors x and ye X there is associated a
number<x, y >, the so-called inner product or scalar product of x and y, such that
the following rules hold:

(a) < y, x >=<x,y > (The bar denotes complex conjugation.);

(b) <x+y,z>=<x,z>+<y,z> Vx,y,zeX;

(¢) <ax,y>=a<x,y>Vx,ye X and o is a scalar;

(d) <x,x>20 Vxe X;

(e) <x,x>=0 iff x=0.
Definition 1.2.6, (see, [S5]). A sequence {x,} in a metric space X is said to converge if
there is a point x € X' with the following property: For every & > 0there is an integer

N such that » > N implies thatd(x, ,x) <¢.

n?

In this case we also say that the sequence {x,} is converges tox e X, or that xe X is

the limit of {x,}, and we write x, — x, or limx, = x.

n—yw

[f the sequence {x,} does not converge, then it is said to diverge.
A sequence {x,} in a metric space X is said to be a Cauchy sequence if for every

£ >0 there is an integer N such that d(x,,x,) <& if n and m > N.

A metric space X is said to be a complete space if every Cauchy sequence in X is
convergent.

Definition 1.2.7, (see [S6]). Let (H,d)be a metric space. If this metric space is
complete, i.e., if every Cauchy sequence converges in H , where the metric d is defined
by the inner product of the space, then the space (H,d) is called a Hilbert Space.

Example. For any fixed n,the set C"of all n-tuples x=(x,,Xy,mceeee.. ,X,), where

. ,x, are complex numbers, is a Hilbert space if addition and scalar
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"
multiplication are defined componentwise, as usual, and if<x, y>=Zx,. v;, where

i=1
e 2 V,) -

Definition 1.2.8, (see [56]). A normed linear space B, which is complete as a metric
space and the metric is defined by its norm, is called a Banach Space.

Examples. Every Hilbert space, R* Euclidean space and the set of all complex numbers

c with the norm |x]| =|x| are Banach Spaces.

A Banach space Bis said to be uniformly convex if,

Ix" “ <1,

Iy” ” <1 and"x” +y, ” -2

as n— impiy’

%, = ¥,[ >0,V x,, 5, € B.

Definition 1.2.9, (see [44]). Let X be a non-empty set. A class © of subsets of X is a
topology on X iff 1 satisfies the following axioms:

(a) X & ¢ (null set) belongtot.

(b) The union of any number of sets in T belongs to t.

(c) The intersection of any two sets in T belongs to 7.
Here the set X together with 1 i.e., the pair (X ,7) is called a topological space.
Example. If X ={a,b,c,d,e}and t={X,4,{a},{c, d},{a,c,d},{b,c,d,}}, then T is a
topology on X and the pair (XX, 7) is a topological space.
A set in a topological space is called a relatively compact if its closure is complete.
Definition 1.2.10, (see [44]). A function H : X — Y between two topological spaces X
and Y is called a fomeomorphism if it has the following properties: (i) H is a
bijection, (ii) H is continuous and (iii) the inverse function H ™' is continuous. If such a
function exists we say X and Y are homeomorphic. The homeomorphisms form an
equivalence relation on the class of all topological spaces.

Example. Let X = (-1, I)and ¥ =R (set of real numbers). Then the function H: X — Y
defined by H(x)=tan(§) is one-one, onto and continuous i.e. His bijection and

continuous. Furthermore, the inverse function H™' is also continuous. Hence the set of

real numbers R and the open interval (-1, 1) are homeomorphic.

Definition 1.2.11, (see [18]). The Standard n-simplex S" is the closed convex hull of

v, v,y in R™ e, S" ={xe R™ :v'x=1}. For ieN let S” denote the face of S"
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opposite v', i.e.,S; ={xeS" : x, = 0}. The boundary of S" is 88" =U,., S/

xZ x3
A /Nz
=0 — x0 xI\J/
x5

Figure-1.1: Example of simplexes forn=1,2,&3.

n n-Simplex
0 Point

1 Line segment
p Triangle

3 - Tetrahedron

Definition 1.2.12, (see [18]). A friangulation G of n-Simplex S”is a finite collection
of closed n-Simplexes, together with all their closed faces, that form a partition of S”",
i.e. §"is their disjoint union. This is equivalent to the conditions:

(i) The closed »-Simplexes cover §";

and (ii)  If two closed »n-Simplexes meet; their intersection is a common face.

Let G be a triangulation of S” with each vertex of G labelled with an integer in N
such that no vertex in S is labeled i. Then G is said to have an admissible labeling.
Here the simplex in G whose vertices carry all the labels in N, is said to be a
completely labelled simplex.

Theorem 1.2.13 (Knaster-Kuratowski-Mazurkiewicz(K-K-M)lemma),(see [18])
Statement. LetC,, i€ N, be a family of closed subsets of simplexS" satisfying the

Jollowing conditions:

(i) S" = nC,.; and

ieNy

(ii)  If I c N, is non-empty and J = N, — 1, then nS" c UC,. ;

iel ieNg

Then (\C, is non-empty. =

iENo
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Theorem 1.2.14 (Sperner’s lemma), (see [18])

Statement. Le! G be a (riangulation of S" with an admissible labeling. Then there is a
completely labeled simplex inG . -
Note. Theorem 1.2.13 and Theorem 1.2.14 are used as the helping tools to realize the
Theorem 1.4.2 (Brouwer fixed point theorem).

Definition 1.2.15, (see [18]). An additive abelian group 4 together with a

homomorphismd : 4 — A is called a differential group if d*> =0 ie, A—2>4—< 5 4.
If (A, d) is a ditferential group ie,d?=0. Then it is clear thatIm(d) c Ker(d).
Hered is called the differential or boundary operator of 4. The elements of 4 are
called chains. The elements of Im(d)are called boundaries and the elements of
Ker(d) are called cycles.

The Homology group of the differential group (4, d) is defined to be the factor group

Ker(d)

of cycles modulo boundaries i.e.,
Im(d)

is called the homology group of the

Ker(d)

differential group (4, d) and is denoted by H(A4) ie. H(A) = m(d)
m

. The elements of

H(A)are the cosets z+Im(d) wherez e Ker(d). Then z+Im(d) € H(d)is called the
fiomology classes and we write c¢ls(z) = z + Im(d).
The nth homology group with integral coefficients of a complex & in a Euclidean space

is denoted by H, (). If S"is a n-sphere, then H,(S")=Z (group of integers).

1.3 Fundamental concept on fixed point
Definition 1.3.1, (see [18]). Consider a mapping 7 of a set M into itself (or into some
set containing M ). Then the solution of the equation 7T'(x)=x is called a fixed point

S —

(sometimes shortened to fixpoint, also known as an invariant poinf) of the mapping T

e —— g

in M for allxe M . Briefly, the point xe M is called a fixed point of the mapping

(=]

I':M — M iff T(x) = x. Geometrically, the intersecting point of the curve y = T(x) and
the straight line y = x1is a fixed point. We write F(T')for the set of fixed point of T,
where F(T)={x:T(x) = x}.

Example. Let the mapping 7 be defined on the real numbers by 7T(x)=x?-3x+4,

then x =2 is a fixed point of T, because T(2) = 2.Consider y = T'(x) and we obtain the
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following figure.

- ™

Figure-1.2: Fixed point of T'(x) = x> -3x+4.

Not all functions have fixed points: for example, if T is a function defined on the real

numbers as T'(x) = x +1, then it has no fixed points, since x is never equal to x+1 for
any real number. In graphical terms, a fixed point means the point (x, T(x)) is on the
line y = x, or in other words the graph of T has a point in common with that line. The
example T(x)=x+1,is a case where the graph and the line are a pair of parallel lines.
Points which come back to the same value after a finite number of iterations of the
function are known as periodic points; a fixed point is a periodic point with period equal

to one.

Application of fixed point. In many fields, equilibrium or stability are fundamental
concepts that can be described in terms of fixed points. For example, in economics,
Nash equilibrium of a game is a fixed point of the game’s best response correspondence.
In compilers, fixed point computations are used for whole program analysis, which are
often required to do code optimization. The vector of page rank values of all web pages
is the fixed point of a linear transformation derived from the World Wide Web’s link
structure. Logician Saul Kripke makes use of fixed points in his influential theory of
truth. He shows how one can generate a partially defined truth predicate (one which
remains undefined for problematic sentences like “This sentence is not true”), by
recursively defining “truth” starting from the segment of a language which contains no

occurrences of the word, and continuing until the process ceases to yield any newly
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well-defined sentences. (This will take a denumerable infinity of steps.) That is, for a
language L, let L-prime is the language generated by adding to L, for each sentence S in
L, the sentence “S is true.” A fixed point is reached when L-prime is L; at this point
sentences like “This sentence-is not true” remain undefined, so, according to Kripke, the

theory is suitable for a natural language which contains its own truth predicate.

Definition 1.3.2, (see [18]). An affractive fixed point of a function T is a fixed point x,
of T such that for any value of x in the domain that is close enough to x,, the iterated
function sequence x, T'(x), T(T(x)), T(T(T(x))),....., converges to x,. How close is

“close enough” is sometimes a subtle question. The natural cosine function (“natural”
means in radians, not degrees or other units) has exactly one fixed point, which is
attractive. In this case, "close enough" is not a stringent criterion at all to demonstrate
this, start with any real number and repeatedly press the coskey on a calculator. It
quickly converges to about 0.739085133, which is a fixed point. That is where the graph

of the cosine function intersects the line y =x.

1

pH

Figure-1.3: The fixed point iteration x,,, =cosx, with initial value x, =-1.

Not all fixed points are attractive: for example, x=0 is a fixed point of the

function7'(x) = 2x, but iteration of this function for any value other than zero rapidly
diverges. However, if the function Tis continuously differentiable in an open

neighbourhood of a fixed point x,, and IT’ (x, )| <1, attraction is guaranteed.

Attractive fixed points are a special case of a wider mathematical concept of attractors.

An attractive fixed point is said to be a stable fixed point if it is also Lyapunov stable.



Chapter-1 Mathematical Preliminaries and Some Fundamental Results

A fixed point is said to be a neutrally stable fixed point if it is Lyapunov stable but not
attracting. The center of a linear homogeneous differential equation of the second order

is an example of a neutrally stable fixed point.

Theorem 1.3.3, (see [18], Theorem 1.1.3). Let M be a metric space. Suppose that T'is a
continuous mapping of M into a compact subset of M and that, for each £ > 0, there
exists x(g) such that d(Tx(g), x(¢))<e¢. (D
Then T has a fixed point.

Definition 1.3.4, (see [18]). The points x(&) satisfying (1) of Theorem 1.3.3 is called

g -fixed points for T .

1.4 Theorems guaranteeing fixed points

There are numerous theorems in different parts of mathematics that guarantee that
functions, if they satisfy certain conditions, have at least one fixed point. These are
amongst the most basic qualitative results available: such fixed-point theorems that
apply in generality provide valuable insights. Here first we discuss about the
convergence of fixed point and then we give some fixed point theorems.

1.4.1 Convergence of fixed point, (see [18]). A formal definition of convergence can

be stated as follows. Suppose p,as ngoes from 0 to « is a sequence that converges

1Po — 2| A, then

top,withp, #0 V n.If positive constants 4 and « exist with lirn| |a =
Pn—P

n—m

p,as ngoes from 0 to oo converges to p of ordera, with asymptotic error constant A.
There is a nice checklist for checking the convergence of a fixed point p for a
functionT(x) =x.

1) First check that, T(p) = p

2) Check for linear convergence. Start by ﬁndingiT’ ( p), JIf

T/ ( p)| € (0, 1] then we have linear convergence

T'( p)| >1 series diverges

T'( p)| =0 then we have at least linear convergence and maybe
something better, we should check for quadratic
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3) If we find that we have something better than linear we should check for

quadratic convergence. Start by finding IT” ( p)’ JIf

IT” ( p)’ £0 | then we have quadratic convergence provided that

T"(p)is continuous

’T’ ( p)l =0 then we have something even better than quadratic
convergence

’T’ ( p)| does not exist then we have convergence that is better than linear but
still not quadratic

Theorem 1.4.2 (Brouwer fixed point theorem), (see [18, 49])

The Brouwer fixed point theorem is one of the early achievements of algebraic topology
and is the basic of the more general fixed point theorems that are important in
Functional analysis as well as numerical analysis. This theorem is named after Dutch
Mathematician L. E. J. Brouwer (1910).

Statement. A continuous mapping of a convex, closed set into itself necessarily has a

Jixed point.

Examples.
1. A continuous mapping that maps the set [0, 1] into itself has a fixed point.
2: A continuous mapping that maps a disk into itself has a fixed point.
3. A continuous mapping that maps a spherical ball into itself has a fixed

point.

Figure-1.4: Geometrical interpretation of Brouwer fixed point theorem.
Application. The Brouwer fixed point theorem forms the starting point of a number of
more general fixed point theorems, such as Kakutani’s fixed point theorem, Lefschetz
fixed point theorem. These two theorems we will describe later. We also see that

Sperner’s lemma = K-K-M lemma = Brouwer fixed point theorem.

Now, we describe the application of Brouwer fixed point theorem.

This theorem is used to

10
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Establish the different types of fixed point theorems and lemmas;

Find the solution of the differential equations;

Establish the Jordan Curve Theorem;

Establish the Existence of equilibrium points, which is very important in
theoretical Economics;

Establish the proof of the existence of a winner in the game of Hex;
Establish the Cake Cutting algorithm;

Establish the different theory of Numerical analysis. -

1.5 Contraction Mappings

Definition 1.5.1, (see [18, 55, 59]). Let M be a metric space. A mapping 7: M — M is

called a contraction mapping if 3 a positive real number 0 < A < 1such that

d(Tx, Ty)<Ad(x,y), ¥V x, yeM

where d(x, y)denotes the metric between xand y and Tx = T(x).

If M is a normed space, thenT is contraction if

|7 =7 < A - o]

If T is linear, this reduces to |Tx| < Ax| Vx e M. Thus, a linear operator T: M — M is

contraction if its norm satisfies

HTH = supﬂzzH = supHTx”.
x=0 ”x” Sl
| /
L
et
C "
E .
a X Y b

Figure-1.5: Contraction Mapping.

Example. Consider the cosine function on [0, 1]. Graphs of y=cosx & y=x show

there is one intersecting point in [0, 1], which means cosine function has a fixed point in

[0, 1]. We will show this point can be obtained through iteration.
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Since cosine is a decreasing function. Therefore, for 0<x<lwe
havecosl < cosx <1,with cosx ~.54 i.e., cos:[0,1]—[0,1]. For x, y €[0, 1] the Mean-
value theorem tells us

cosx —cos y = cos’ (F)(x — y) = (—sinf)(x — y).
for some between x and y . Thus [cos.x — cos 3| =|sinx - y|.

Since 0<r<land sine is increasing on this interval (it increases from 0 up

to% ~1.57 >1) we have [sinf| =sins < sinl~.84147.

Therefore, |cosx —cos y| <.84147|x - 3|

So, cosine is a contraction mapping on [0, 1], which is complete. Hence, there is a
unique a € [0, 1]such that cosa=a.

A Dbeautiful application of contraction mappings to the construction of fractals
(interpreted as fixed points in a metric space whose points are compact subsets of the

plane).

Thebrem 1.5.2 (Banach fixed point theorem), (see [18, 40])

Banach fixed point theorem is one of the pivotal results of analysis. It is widely |

considered as the source of metric fixed point theory. Also its significance lies in its vast

applicability in a number of branches of mathematics. This theorem was first stated by

Polish Mathematician Stefan Banach in 1922. He established this Theorem as a part of

his doctoral thesis. It is also known as Contraction mapping theorem. Here we state and

prove this celebrated theorem.

Statement. Let(X,d)be non-empty complete metric space and T:X > X be a

contraction mapping on X , i.e. there is a non negative real number 0 < q <1 such that
d(Tx,Ty)< qd(x,y), Vx,yelX

Then the mapping T admits one and only one (unique) fixed point inX. For any

x, € X the sequence of iterates x,, T(xy),T(T(xy))serereeenrens converges to the fixed point

of T.

Proof. Recalling the notation 7: X — X is a contraction mapping with contraction

constant g . We want to show that T has a unique fixed point, which can be obtained as a

limit through iteration of T .

12
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To show that Thas at most one fixed point inX, let aand a’be two different fixed
points of T, i.e. Ta=a and Ta’ =a’. Then

d(a,a’)y=d(Ta,Ta') < qd(a,a’). €))
If a+#a'thend(a,a’)>0, so we can divide (1) by d(a,a’)and we get 1< ¢, which is
false by our assumption. Thus a = a’. Hence the fixed point of a contraction mapping is
unique.

Next we want to show, for any x, € X, that the recursively defined iterates x, =Tx,_, for

n=1converge to a fixed point of 7. The key idea is that iterating the function several
times contracts distances by an increasing power of the contraction constant. This bring
points together through iteration at a geometric rate, and that will be enough to force

convergence of this iterates because X is complete.
Foranyn>1, d(x,, x,,,)=d(Tx,_,,Tx, )< qd(x,_,x,).
Therefore,
d(x,,%,,,) <qd(x,1,%,) < q*d (%, 2,%,1) @ AX,2:%,9) S everreeene £ " d (%X, X, ).
ie d(x,,x,)<q"d(xy, x;).
Using this expression on the right as an upper bound on d(x,, x,,,) shows the x,’s are
getting consecutively close at a geometric rate. This implies the x,’s are Cauchy. Now

for any m > n, by triangle inequality we have

(%, %, ) Edx,, X3 Y E8(X,00 s X ) Frosssivasvininie +d(x,_, x,)
< q"d(xy,x,)+q " A(X55 %)) F v +q" " d(x,%,)
=(g" + g™ e, +q" ) d(x,,x,)
< (q EF e N +q" T . Y (x,,%,)
Xy )i

This is true when m=ntoo. So for givene>0, pick N =1such that

(q" /(- g))d(x,,x,) <&.Thenforany m2nz N,

N

d(x x1)<lq qd(xo,xl)<£.

n’m

This proves {x,}is a Cauchy sequence. SinceXis complete, then the

sequence {x,} converge in X . Set x =limx,in X .

n—w

13
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Now the function T': X — X is continuous, because it is contraction by our assumption,

so from x, - xwe getTx, - Tx. But Tx, =x,,,,80 Tx, > xas n —> . Then Tx and

n+l?

xboth are limits of {x,},,,- From the uniqueness of limits, 7x = x. This concludes the

proof of our contraction mapping theorem or Banach fixed point theorem.
Application. A standard application of Banach fixed point theorem is the proof of the
Picard-Lindelof theorem about the existence and uniqueness of solution to certain
ordinary differential equations. The sought for solution of the differential equation is
expressed as a fixed point of suitable integral operator which transforms continuous
functions into continuous functions. The Banach fixed point theorem is then used to
show that this integral operator has a unique fixed point. This theorem is also used to
prove the implicit function theorem inverse function theorem. =
Theorem 1.5.3 (Krasnoselskii’s fixed point theorem), (see [18, 30])
Two main results of fixed point theory are Schauder’s fixed point theorem and the
contraction mapping principle (Banach's fixed point theorem). In 1932 Russian
Mathematician Mark Alexandrovich Krasnoselskii combined them and forms a new
theorem. This theorem is known as Krasnoselskii's fixed point theorem.
Statement. Let K be a closed convex non-empty subset of a Banach space B. Suppose
that T & S be maps of K into B and that

(i) Tx+SyekK, Vx,yeK;

(1i) S is compact and continuous;

(iii) T is contraction mapping.
Then there exists a y in K suchthat Ty+Sy=y.
Application. Krasnoselskii’s fixed point theorem is used to obtain existence results for

multiple positive solutions of various types of boundary value problems. It is also

applied to study the existence of periodic solutions of periodic systems of ordinary

differential equations. -
Theorem 1.5.4(Kannan's fixed point theorem), (see [18, 37])

Statement. Let T : X — X be a mapping where, (X,d) is a complete metric space and

T satisfies the condition
d(Tx, Ty) < pld(x, Tx) + d(y,Ty)]
where0 < 8 <1/2 and x, ye X . Then T has a unique fixed point in X . =

14
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1.6 Fixed point property

A mathematical object 4 has the fixed point property if every suitably well-behaved
mapping from 4 to itself has a fixed point. It is a special case of the fixed morphism
property. The term is most commonly used to describe topological spaces on which
every continuous mapping has a fixed point. But another use is in order theory, where a
partially ordered setP is said to have the fixed point property if every increasing
functions on P has a fixed point.

Definition 1.6.1, (see [18, 59]). Let 4 be an object in the concrete category C. Then A4

has the fixed point property if any morphism (i.e., every function) f: 4 — Ahas a fixed

point. The most common usage is when € = Topology is the category of topological
spaces. Then a topological space X has the fixed point property if every continuous
mapping of the space X into itself has a fixed point. Of course, if a topological space has
the fixed point property and any other topological space homeomorphic to the first will
also possess the fixed point property. In other words, the fixed point property is a
topological property.
Examples.

1. A closed interval [a, b] has the fixed point property.

2. A space with only one point has the fixed point property.

3. A retract of a space with fixed point property has the fixed point property.

4. The set of extended real numbers have the fixed point property, as they are

homeomorphic to the closed interval [0, 1].

5. The closed unit ball with the subspace topology has the fixed point property.

6. Every simply-connected plane continuum has the fixed point property.

7. The set of real numbers R does not have the fixed point property.

8. An open interval (a, b) does not have the fixed point property.
Definition 1.6.2, (see [18]). Let S is a set which is neither compact nor contractible.
Then the set 5 is called a set with the lack of fixed point property.
Example. If a subset of R*(Euclidean space) is not compact then we can usually
produce a fixed point free mapping by moving all points towards a missing limit point,
or towards infinity. Thus we see that sets such as an open interval or open ball, or half-

line lack of fixed point property.

15
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Note. The definition 1.6.2 is not always true, which we will realize by Theorem 1.8.3
and Theorem 1.8.4.

Theorem 1.6.3 (Schauder fixed point theorem), (see [18, 26, 39])

The Schauder fixed point theorem is an extension of the Brouwer fixed point theorem to
topological vector spaces, which may be of infinite dimension. It asserts that if X is a
compact, convex subset of a topological vector space ¥ and T is a continuous mapping
of K into itself, then 7 has a fixed point. It was conjectured and proved for special
cases, such as Banach spaces, by Juliusz Schauder in 1930. The full result was proved
by Robert Cauty in 2001[39].

Statement. Any compact convex non-empty subset Y of normed space X has a fixed
point property.

Application. Perhaps the most important principle of Analysis is the Schauder fixed
point theorem, a well known result expounded in the texts of Functional analysis with an
immense amount of applications. The Schauder fixed point theorem is especially useful
to establish the existence of solutions to differential and integral equations. -
Theorem 1.6.4(Schauder-Tychonoff fixed point theorem), (see [18, 23])

In 1935, the Soviet mathematician H. Tychonoff gave a generalization of the Schauder
theorem for locally convex vector spaces [32]. This result is usually termed the
Schauder-Tychonoff theorem. Now, we state this theorem:

Statement. Any compact convex non-empty subset of a locally convex space has a fixed
point property.

Application. The Schauder-Tychonoff theorem is an important tool in the investigation
of the solutions of ordinary differential equations (ODE) on the interval [0, o). -
Theorem 1.6.5 (Rothe’s fixed point theorem), (see [18])

This theorem is given by Mathematician Rothe’s in 1937. Now, we state this theorem
below:

Statement. Let B be normed space, D the closed unit ball in B and 0D (boundary of D)
the unit sphere in B. Let T be a continuous compact mapping of D into B such

thatT(8D) < D. Then T has a fixed point.

Application. This theorem is used to develop the concept of Schauder fixed theorem. gy

16
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1.7 Retraction Mappings

Definition 1.7.1, (see [18]). Let X and ¥ be two sets. We say that X is retract of Y if
X c Y and there exists a continuous mapping »of ¥ in X such that » = / onX . Here
r is called a refraction mapping. A retract X of a set ¥ with the fixed point property
also has the fixed point property. This is because if r:¥ —> Xis a retraction and
f:X — Xis any continuous function, then the composition io for:¥ — Y (where
i: X — Yis inclusion) has a fixed point. That is, there is x € X such that for(x)=x..
Since x € X we have that r(x) = x and therefore /'(x) = x.

Examples.

1. A closed convex non-empty subset of a Hilbert space is a retract of any larger

subset.

2. A closed convex non-empty subset of a Banach space is also a retract of any

larger subset.

3. For n21, $"" ((n-1)-sphere) is not a retract of B" (closed n-ball).
1.8 Contractible Spaces
Definition 1.8.1, (see [18]). A topological space X is called contractible to a point x,in
Xif 3 a continuous function f(x,Non X x[0,1]to.X such that f(x, 0) = x
and f(x, 1) = x,. If X is contractible, then the nth homology group H,(X) = {e} (trivial
group).
Examples.

1. The closed unit »-ball B”is contractible.
2. The Whitehead manifold is contractible.
3. Any star domain of an Euclidean space is contractible.
4. The unit sphere in Hilbert is contractible.
5. The house with two rooms is standard example of a space which is
contractible.
6. Spheres of any finite dimension are not contractible.
Theorem 1.8.2 (Lefschetz fixed point theorem), (see [18])
In mathematics, the Lefschetz fixed-point theorem is a formula that counts the number

of fixed points of a continuous mapping from a compact topological space X to itself by

17
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means of traces of the induced mappings on the homology groups of X. It is named after
Solomon Lefschetz, who first stated it in 1926. Now we state this theorem:

Statement. [f X is a compact locally contractible metric space, all of whose homology
groups are trivial. Then X has the fixed point property.

Application. The Lefschetz fixed point theorem is used to generalizes the Brouwer
fixed point theorem. -
1.8.3 (Kinoshita fixed point theorem), (see [18, 45])

According to Brouwer fixed point theorem every compact, closed and convex subset of
a Euclidean space has the FPP (fixed point property). Compactness alone does not imply
the FPP and convexity is not even a topological property so it makes sense to ask how to
topologically characterize the FPP. In 1932 Borsuk asked whether compactness together
with contractibility could be a necessary and sufficient condition for the FPP to hold.
The problem was open for 20 years until the conjecture was disproved by S. Kinoshita
who found an example of a compact contractible space without the FPP in [45]. Now we

state this theorem:
Statement. There exists a compact, contractible subset of R?* which lacks the fixed

point property.

e Y

. .+

D

Figure-1.6
Example. Consider a vertical cylinder of unit height based on the edge of a horizontal
closed disc and a vertical sheet of unit height with infinite length which spirals out from
the axis of the cylinder, approaching closer and closer to the cylinder. Then the set
formed by this situation has the lakes of fixed point property although this set is

compact and contractible,

18
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Application. This theorem is used to develop the concept of fixed point property. =
Theorem 1.8.4, (see [18])

This theorem is stated depending on the following figures:

Figure-1.7

~ -+  pP5 Pa P3 P2 P1

Figure-1.8

Figure-1.9

19
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Statement. The sets shown in Figures-1.7, 1.8, 1.9 have the fixed point property,
although the set in Figure-1.8 is not compact and the set in Figure-1.9 is neither
compact nor contractible.

This theorem is proved by D. R. Smart [18] in 1974.

Application. This theorem is used to develop the concept of fixed point property. -

1.9 Non-expansive Mappings
Definition 1.9.1, (see [18, 59]). Let M be a metric space. A mapping T : M — M is
called a non-expansive if

dTx,Ty)<d(x,y), VYV x, yeM
where d(x, y)denotes the metric between x and yand Tx=T(x).
If M is a normed space, then T is non-expansive if

7% - 73] <=~ 5.
If T is linear, this reduces to [Tx| <|jx| Vx € M . Thus, a linear
operator T': M — M is non-expansive if its norm satisfies [T <1.
The non-expansive mapping 7 : M — M is called strictly non-expansive if

dTx, Ty)=d(x, y)=>x=yVx,ye M .
If M is a normed space, then the condition for strictly non-expansive reduces to

' ”Tx—TyHS“x—y” iff x#y.

If T'is linear, this reduces to |Tx| < x| Vnon zero xe M.
Examples. Contraction mapping, isometrics and orthogonal projections all are non-
expansive mappings. A fixed point of a non-expansive mapping need not be unique.
Definition 1.9.2, (see [24, 46]). A mapping T on a complete metric space (X, d) is
said to be diametrically contractive if &(TA)<8(A4)for all closed subsets A4
with0 < §(4) < ©. (Here 6(4) =sup{d(x, y):x,y € A}is the diameter of 4 c X .)

x+1 if x<3

,then Tisa
4 ifx>3

Example. If M =[0,5] and T: M — R defined by Tx ={

diametrically contractive mapping.

In [46] S. Dhompongsa and H. Yingtaweesittikul established the following result for

diametrically contractive mapping.

20
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Theorem 1.9.3, (see [ ], Theorem 2.2). Let (X ) be the collection of nonempty closed
subsets of a Banach space X and let F(T)denote the set of fixed points of T. Recall

that TA=U,,Ta. Let M be a weakly compact subset of X andlet T:M — F(X),

Tx\M=¢ for allxe M andSTAU A)<5(4) for all closed sets A with 5(4)>0.
Then T has a unique fixed point. ™
In [24] H. K. Xu established the following result for diametrically contractive mapping.
Theorem 1.9.4, (see [24], Theorem 2.3). Let M be a weakly compact subset of a
Banach space X and let T : M — M be diametrically contractive, then T has a fixed
point. -
Definition 1.9.5, (see [10]). Let 7: B — B be a mapping from a Banach space Binto
itself and Lbe a pre assigned constant. Then the mapping T is called a Lipschitzian
mapping if it satisfies the following contractive condition:

fre- 1| < L}y

, Vx,yeB.

If L <1 then this Lipschitzian mapping is called a contraction mapping.

Example. Let B =[0, 2] be a Banach space and T : B —» B be defined by
2
T(x)=——V xeB.
x+1

Then, T is a Lipschitzian mapping with Lipschitz constant L <1.

1.10 Set-valued or Multi-valued functions

Definition 1.10.1, (see [18, 44]). A set-valued (multi-valued) function$ from the set

X to the set Y is some rule that associates one or more points in ¥ with each point in X .

Formally it can be seen just as an ordihary function from X to the power set of ¥,
written as ¢: X — 2". A Set-valued function ¢: X — 2" is said to have a closed graph
if the set {<x, y>|yed(x)} is closed subset of XxY in the product topology. The
point a € X is a fixed point of ¢ if a € ¢(a).

Examples.
1. The complex logarithm function is a set valued function.

2. Inverse trigonometric functions are set valued function.

21
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Theorem 1.10.2 (Kakutani’s fixed point theorem), (see [18])

In Mathematical analysis, the Kakutani’s fixed point theorem is a fixed point theorem
for set-valued functions. This theorem is generalization of Brouwer fixed point theorem.
This theorem was developed by Shizuo Kakutani in 1941. Now, we state this theorem:
Statement. Let S be a non-empty, compact and convex subset of some Euclidian space
R*. Let¢:S — 2°be a set-valued function on S with a closed graph and the property
that $(x) is non-empty and convex for allx € S. Then ¢ has a fixed point.

Example. Let ¢(x)be a set-valued function defined on the closed interval [0, 1]that
maps a pointxto the closed interval [l—%, l—ﬂ. Then ¢(x) satisfies all the

assumptions of Kakutani’s fixed point theorem and must have a fixed point.

Fixecd Pont

1} =
Y /
0.8 / y =3
0.b
0.4 | —* $=,7
0.zt
i | X
. 0.2 0.4 0.6 0.3
)

Figure-1.10: Fixed point of ¢(x) {1 %, 1-ﬂ.

Application. This theorem is used to
(i) Develop the game theory (Mathematician John Nash used the Kakutani’s
fixed point theorem to prove the major results in game theory. This work
would later earn him a Nobel prize in Economics),

(i)  Establish the Equilibrium theory in Economics. -
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1.11 7 -Stability

Definition 1.11.1, (see [1, 32]). Let Bbe a Banach space,T’ be a self map of B, and
assume that x,., = f(T, x,) defines some iteration schemes involving 7. For example,
ST, x,)=T(x,). Suppose that F(T), the fixed point set of T, is nonempty and that the
sequence {x,  converges to a fixed point pof T Let { ¥,+ be an arbitrary sequence in B

and define &, =|y,,, = (T, y,)| for n=0,1,2,.... If lime, = 0implies that lim y,=p,

then the iteration process x,,, = f(7, x,) is said to be T - stable.
Examples. Picard’s iteration scheme, Mann iterative scheme and Ishikawa iterative
scheme all are 7 - stable.
Theorem 1.11.2, (see [60], Theorem 1). Let (X, d) be a nonmempty complete metric
space and T be a self-map of X with F(T) # ¢ . If there exist numbers L >0, 0 < h < 1,
such that

d(Tx,q) < Ld(x, Tx) + hd(x,q) ()
Joreachxe X, ge F(T), and, in addition,

limd(y,, Ty, )=0 (2)

Then, Pl;;/d s iteration scheme is T-stable. -
Corollary 1.11.3, (see [60], Cofollary 1). Let (X, d)be a nonempty complete metric
space and T be a self-map of X satisfying the following: there exists 0 < h < 1, such that,
foreachx, ye X,
d(Tx, Ty) < hmax{d(x, y),d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.
Then, Picard'’s iteration scheme is T-stable. -
Corollary 1.11.4, (see [60], Corollary 2). Let (X, d)be a nonempty complete metric
space and T a self-map of X satisfying
d(Tx, Ty) < Ld(x, Tx) + ad(x, y)
Jorall x, ye X, where L>0, 0 <a < 1. Suppose that T has a Jixed point p. Then, T is

Picard T-stable. |

1.12 Common fixed points
Definition 1.12.1, (see [18]). Let 4 be a family of mappings T of some set into itself. If

Tx=xfor all Tin 4, then we say that x is a common fixed point for A or for the
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mapping 7 in 4. The set of common fixed points of a family A4 is given by ﬂF(T),

Ted

- where F(7') is the set of fixed point of 7.

- Theorem 1.12.2 (Downward induction fixed point theorem), (see [18])

Statement. Suppose that

(1) there is a non-empty compact(convex) set M,, invariant under a

- family of operators F ;

(i) if M is any compact (convex) set invariant under F and if M, has

' more than one point then M | contains a strictly smaller compact (convex) invariant set.

| Then there is a common fixed point for F . m

1.13 Continuation fixed point theorem

- Let M be aregion in a normed space & and U, (0 <t <1)be a family of mappings from

M into W such that U, has no fixed points on the boundary 8. This means that as
t changes, fixed point cannot escape from A through 8 M. Thus if U, satisfies suitable
conditions (which ensure a fixed point for U,) we expect that U, must have a fixed
point.
Definition 1.13.1, (see [18]). Let U,and U, be mappings of a set .£ into . We say that
U,is fp-homotopic to U,on £ if there exists a family of mappings U (0<t<]) of £
into N such that

(1) U,(x) =U(x, t)is continuous on £ x [0, 1],

(ii) U (L x[0,1])is contained in a compact subset of £,

(i) U,(x)=x forall xed L.
Theorem 1.13.3 (Continuation fixed point theorem), (see [18])
Statement. If (a) a condition on M, (b) a condition on U, and (c) U, is fp-homotopic
to Uyon 0 M, then U, has a fixed point.
Application. Continuation fixed point theorem is applicable for solving non-linear

problems. n

Definition 1.13.4, (see [18]). LetFbe a simplified mapping (or, a differentiable

mapping) of M into R" (n-Euclidian space). The degree of F with respect to M at a
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point xin R"-F(8 M) is the algebraic number of times that (almost all) points are
i covered, in the region U, containingx. This integer is written deg (7, M, x), or deg
i (F, M, U,). The main properties of degree are given below:
J 1. deg (F, M,x) is an integer, defined if x ¢ F(6 M).
2. If F=1I,thendeg (F,M,x)=1 ifxeMand
: deg (F,M,x)=0 if x ¢ closure of M.

3. deg (£, UM, x)= > deg(F, M, x) if the M; are disjoint

regions and both sides of the equation are defined.

4. If deg (F, M,x)# Othen x e F (M).
Theorem 1.13.5 (Leray-Schauder fixed point theorem), (see [18])
Statement. [f'deg (1 -T,, #x)# 0 and T,is Jp-homotopic toT, (that is, homolopic under

a compact homotopy with no fixed point on 8 M), then T, has a fixed point in M -
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CHAPTER-2
FIXED POINT PROBLEMS FOR CONTRACTION AND
NON-EXPANSIVE MAPPINGS

2.1 Introduction

The study of non-expansive mappings has been one of the main features in recent
developments of fixed point theory: see for instance [18, 22, 24, and 38]. Non-
expansive mappings are a special case of contraction mappings. So, the study of
contraction mappings also plays an important role in the developments of fixed point
theory. In this chapter, first we identify some fixed point problems which are related
with contraction and non-expansive mappings and then we try to solve these problems.
Although, most of these problems we solved our own fashion, moreover some problems
are available in literature. But it is true that, we are the first who identifies these
problems as fixed point problems related with contraction mappings or non-expansive
mappings. Some problems were to be open since many years. We try to solve these
problems.

Here, first we give some fixed point problems which are related with the contraction
mappings and then we described some fixed point problems which are related with the

non-expansive mappings.

2.2 Problems related with Contraction mappings

Contraction mapping is a very essential topic of fixed point theory after invention
Banach’s fixed point theorem 1.5.2. We have already defined contraction mapping with
example in our first chapter. From this point of view, here we will study the fixed point
theory of contraction mappings which we have identified as fixed point problems
related with contraction mapping and try to solve these problems.

Problem 2.2.1. Let T be a continuous function and satisfies a Lipschitz with condition

respect toy: |T(t,y)-T(t,2)| < K|y—z| in some neighbourhood N, of a point (a,b).

Then the differential equation with initial condition

%ﬂa,y), T(a)=b, D)
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has a unique solution in some neighbourhood of a.
Solution. We observe that the differential equation (1) is equivalent to the integral

equation

w6y =b+ [T(x, ya)de @)
We consider a set F of functions and a mapping U in F . The image Uy of a function
y with values y(x)will be given by

@) =b+ [T(x, y(x))ds ®

Now, we find a set of functions which is mapped into itself by U . For this first we

choose a compact neighbourhood N, of (a,b), inside N,; then T'is bounded on N,,

say |T(x,y)<L V (x,y)e N,.If yis a function with graph in N, , then we have

Uy () - 3| =‘ _[ T, y() dt‘ <Lt-aq
This means that if yis a continuous function defined for|t—a] <d, for which
] y(t)—b[ < Ld,then Uy satisfies the same conditions. We must choose d small enough

for the rectangular figure-2.1 R = N(a,d)x N(b,Ld) to be in N,. We then define F to
be set of continuous functions with graphs in R, and our arguments shows that Fis

mapped into itself by U . |
A a

-
(_ N
a1d +
b+ld N -
{(a. b) N2
b P =, [ ]
bld T | | J
\
} } } >
a-d a atd
Figure-2.1

To ensure that U is a contraction mapping we should also arrange, in choosing d, that

dK <1. Then we have, for all yand zin F
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090~ Ue0) = | [ () -T2
<dsup|T(x, y(x)) = T (x, z(x))|
‘ <dsup Iy(x) - z(x),.
Thus
|Uy — Uz = sup, [Uy(t) - Uz(2)|
<dK sup|y(x) - z(x)| = dK]y - z

and since dK <1, therefore U is a contraction mapping. Thus by Banach’s fixed point

Theorem 1.5.2, we can say that U has a unique fixed point in ' . This means that there
is a unique function in F which is a solution of the differential equation (1). Since any
solution of the differential equation (1) is in F (ford is sufficiently small), there is a

unique solution of the differential equation (1). This completes our problem. -

Lemma 2.2.2, (see [18]). I [of /oy| < %af all points between (x, y) and (x, z) then

1
|/ (x )= f(x, 2)] SELV—ZI ]
Problem 2.2.3. Let N be a neighbourhood of a point (a, b)in R*. Suppose that T is a

; ; : oT o . .
continuous function of x and y in N and that — exists in Nand is continuous

in(a,b). Now, if
. oT
@) 5("’ b)#0,
(i) T(a, b)=0.
Then, there exists a unique continuous function y, on some neighbourhood of a, such
that T(x, y,(x))=0.
Solution. We use the notation D, for 8T (a, b)/ 8y . Now, we will look for a fixed point of

a mapping defined

Sz(x) = z(x) — D;'T(x,z(x)).
(This mapping is suggested by the idea of finding y,(x) by Newton’s method.) It is
clear that if yis a fixed point we must have T'(x, y(x))=0. We will find a set of
functions M such that $maps M intoM and that Sis a contraction mapping in M .

Within N we choose a closed rectangle R = ﬁ(a, £)x N(b, 6) small enough to give
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!D 9 (v, )1
Ay

<é, VY (x, y)eR,

D, T(x, b)| < -;- 5, Vyse

Now, we write C=C (_]V(a, £)) and put
M={yeClya)=b, |y-p|< 6}

where /3 the function is identically equal tob . Clearly S maps M intoC. We have
s~ Bl=|o, "7, ) < %5.

For (x, y)in R we have
‘%(y -D,”T(x, y))’ - ’(1 ~D 2T ) <5

Thus by lemma 2.2.2, if y and z are in M then
|Sy(x) = Sz(x)| < %| y(x)-z(x), ¥ xe N(a, &),

so that ||Sy - Sz

1 ; . .
= 5“ y —z|. Thus Sis a contraction mapping.

Also
ISy - Bl <|sy - sp] +|}s5 - |
1
s1ly-Al+ls-4l
sl§+15
Z 2
=4
so that Smaps M into M. Since M is complete. Therefore, by Banach fixed point
theorem we can say, S has a unique fixed point in A . Thus our problem has a unique

solution which can be calculated by successive approximations, using the operator S

and starting from any member of M . -
Problem 2.2.4. Extend Banach fixed point Theorem 1.5.2 to the case where T*is a
coniraction mapping for some integerk > 1. i.e., If T be a mapping of a complete metric
space M into M such that T*is a contraction mapping for some integerk > 1, then
T has a unique fixed point in M . Moreover, the fixed point of T can be obtained by

iteration of T starting from any x, € M .
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Solution. Since T* is a contraction mapping. Therefore, by Banach fixed point
Theorem 1.5.2, we can say that T* has a unique fixed point in M .
Let x be the unique fixed point of 7%, i.e.,

T (x) =x. )
Now, we have

T*(T(x))=T(T*(x))=T(x) [By the equation, (1)]
This implies that, T'(x)is a fixed point of T*. But, the fixed point of T*is unique and
which is x. So T'(x) will be a fixed point of T* if and only if T(x) = x. Therefore, x is
a fixed point of T.
We now show that x is a unique fixed point of 7.
Suppose that zis another fixed point of 7T... T(z)=z.Since T* is contraction
mapping, therefore T is so. i.e., for some 0 < A <1 we have d(T(x), T(z)) < Ad(x, z).
Now d(x, z) =d(T(x), T(z)) < Ad(x, z).
This implies that d(x, z) =0, i.e., x = z. Which proves the uniqueness of the fixed point
xof T.
Now, its remain to show that for any x, e M the points 7”"(x,)converge to x as
n— oo, Consider the iterates T"(x,) as mruns through a fixed congruence class
modulo k. That s, fix 0 <7 < k—1and look at the points T*"*" (x,) as m —» c . Since
T (%) =T (T" (%0)) = (T*)" (T" (%)),

these points can be viewed (for fixed r) as iterates of T* starting at the point
¥, =T"(x,). Since T*is a contraction, these iterates of T* (from any initial point, such

as y,) must tend to x by the Banach fixed point Theorem 2.5.2. This is independent of

the value of r in the range {l, 2, .......... ,k—1},50 all k sequences {T*™"(x,)},., tend

tox as m — . This shows T"(x,) & x as n—> . This completes our problem. g
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2.2.5 Example for the problem 2.2.4.

-

o
(W
g
[¥)
o
~
oo
O——

I LB | I 1 LI T 1 1

Figure-2.2

From the figure 2.2 it is clear that the graphs of y =e¢™and y = x intersect at a unique
real value of x, i.e., the function defined by 7'(x) = ¢~ has a unique fixed point.
However, the function defined by T(x)=e"is not a contraction mapping. For

instance, [T'(-2) - T'(0)| ~ 6.38 >|-2—0| =2, so the contraction mapping Theorem 1.5.2

does not justify for finding the fixed point of T by iteration. But the second iteration
S(x)=T*(x)=e¢™* is a contraction mapping. This will be proved by the following

justification.

By Mean-value theorem we have,

S(x)=S(z)=S8'(t)(x - z)

for some tbetween xand z, where [S’(t)l =le" .e". =g @) <!

(since t+e™ =20 for all real ¢).

Therefore, |S(x) = S(2)|=|S'(t)Xx - 2)[< e7'|x - 2

Hence T?*(x)=S(x)= e is a contraction mapping with  contraction
-1 _ 1

constante —A<I.

So, by our Problem 2.2.4 the solution of the equation e* = x can be found by iteration of

T'(x) = e™* starting with any real number. -
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Problem 2.2.6. If T'is a contraction mapping of a Banach space B into itself, then
show that the equation Tf - f = g has a unique solution f for each gin B. Also show
that T — I and (T — 1) are uniformly continuous.
Solution. The given equation can be written as
if=fag (1
Now, we have to show that the equation (1) has a unique solution f for each gin B. It
is clear from the equation (1) that f must be a solution of this equation, because
f = f + g defines a map from Binto B for each gin B.
If possible let this f* has two different values £, & f, . Then
h=rfite )
and Tf,=f,+g 3)
Since, T is a contraction mapping from B into itself.
Therefore,
d(If,, If,) < kd(f,, f,) for some O <k <1.
= d(fi+g, ,+8)<kd(£,/,) [By(1)and (2)]
= d(fi, )<k, 1)

= d(fi £S5

This implies that f, = £, , i.e. f; & f, are not different. This contradicts our assumption.
So, we can say that the given equation has a unique solution f for each ginB.
Since, T is contraction mapping then, 7 — I is so.
e, d(T-Dx,(T-1)y) <kd(x, y) forsome 0<k <1.
Hence, by the definition of uniformly continuous mappings it is clearing that 7 -7
uniformly continuous.
Now, for all x,ye Band 0 <k <1 we have,
d((T = D)x, (T =Dy) =|(T - Dx =T = Dy|=|Tx~Ty) - (x- )
=|(x— )~ (@x - Ty)
2]x—y|—|Tx—Ty|
=d(x, y)—-d(Tx, Ty)
2d(x,y)-kd(x, y)=(1-k)d(x, y)
ie.,d(T-Dx,(T-Dy)=(-k)d(x, y).
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This implies that (7 — I)™'is uniformly continuous.

This completes our problem. -

2.3 Problems related with Non-expansive mappings

In the previous section we saw that the fixed point theory for contraction mapping is
extremely nice, even from a computational point of view. There exist a large number of
results which in some sense extend the contraction mapping principle, and in this
section as well as the next ones we will consider some relevant topics. One of the most
natural ways to try to extend the contraction mapping principle is to consider the
limiting case when the Lipschitz constant is allowed to be 1, in which case we end up
with the nonexpansive mappings from definition 1.8.1.

The fixed point theory of non-expansive mappings is very different from that of
contraction mappings, and the study of these mappings has been one of the main
research areas of nonlinear functional analysis since the 1950s.The most famous result
in the theory of nonexpansive mappings is probably the following theorem, which was
proved independently by F.E. Browder [21] and W.A. Kirk [57].

Nonexpansive self mappings of nonempty complete metric spaces do not in general
have fixed points, as for example consider T:R— R, with T(x)=x+1 and one
consequently considers various geometric conditions on the space in order to ensure the
existence of a fixed point. And when fixed points exist, they are in general not unique,
since, the identity mapping is nonexpansive. Here we will study the fixed point theory
of nonexpansive mappings which we have identified as fixed point problems related
with Non-expansive mapping.

2.3.1 Browder fixed point Theorem, (see, [18, 19]). If M be a bounded closed convex
subset of a Hilbert space H, then any non-expansive mapping T of M into M has a
fixed point. =
By the Browder fixed point theorem 2.3.1, it is clear that, if M is bounded closed
convex subset of a Hilbert space H and 7 is a non-expansive mapping, then T has a
fixed point. This result remains true for the case of uniformly convex Banach space; see
[20], [22] and [57]. In connection with these results D. R. Smart raised the some
questions (see [18], p. 36). We described these questions by problems 2.3.3, 2.3.5 and

2.3.7 and tried to solve them.
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Definition 2.3.2, (see [18, 56]). A Banach space is called reflexive if it coincides with
the dual of its dual space in topological and algebraic senses. Reflexive Banach spaces

are often characterized by their geometric properties. Let Bbe a Banach space and

B" =(B") denotes the second dual space of B. The canonical map x> # defined by
X(f)=f(x), fe B gives an isometric linear isomorphism (embedding) from

Binto B . The space B s called reflexive if this map is surjective. For example, finite-
dimensional Bénach spaces and Hilbert spaces are reflexive.

If a Banach space D is isomorphic to a reflexive Banach space B, then D is reflexive.
The promised geometric property of reflexive Banach spaces is the following: if C is a
closed non-empty convex subset of the reflexive space B, then for every x e Bthere

exists a ¢ e C such that |[x - ¢| minimizes the distance between x and points of C. Let

B be a Banach space. The following are equivalent.
1. The space B is reflexive.
2. The dual of B is reflexive.
3. The closed unit ball of B is compact in the weak topology.
4. Every bounded sequence in B has a weakly convergent subsequence.
5. Every continuous linear functional on B attains its maximum on the closed
unit ball in B. (James' theorem)
Problem 2.3.3. Let T be a non-expansive mapping of a nonempty bounded closed and

convex subset Kof a reflexive Banach space B into itself. Now, if

supy —7y| < 8(F)/2 for every nonempty bounded closed convex subset Fof K,
yeF

containing more than one element and mapped into itself by 7', then T has a unique
fixed point in X.
Solution. We have Bis a reflexive Banach space if and only if every decreasing

sequence of nonempty bounded closed convex subsets of B has a nonempty

intersection.

Let K be the family of all closed convex bounded subsets of K, mapped into itself by
T . Obviously J is nonempty. Applying Zorn's lemma, we get a minimal element S in
H, Sbeing minimal with respect to being nonempty, bounded closed and convex and
invariant under 7T . If S contains only one element, then that element is a fixed point of

T . If not, let S contain more than one element.
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Now forx, y € S, we have

=] ~ T
”Tx ~ Ty“ < ”—x—z—x” + ﬂyz—y“ < sup”y = Ty” :
yes§

Hence, 7'(S)is contained in the closed sphere C with Tx as centre and

sup|y—7)| as radius. Also S C'is invariant underT . Therefore, by the minimality of

yes

S it follows that S C ie.,|Tx- )| <sup|y—-7y|, for every yeS. Hence, for any

yeS

arbitrary but fixed x € §, we have
sup"Tx - y” < supHy -~ Ty“ ’ (D
yes§ yes

LetS' ={zeS:sup|z-y| < sup|ly — Ty[} . Obviously S’is closed, convex and nonempty

yes yes

(TxeS'). Again if zeS’, then ze Sand hence Tze S’ by (1). Hence S'is invariant
under 7. Also

8(S") <sup|y - 73] < 6(S) . [By hypothesis]
yes

- Hence S'is a proper subset of S, which contradicts the minimality of §.

Hence S has only one element which is a fixed point of 7. The unicity of the fixed point

- follows from the fact that if x = 7x, y =Ty then

-] b1 _

- = - B2

Qie.,x="yp.

| This completes our problem. =

Definition 2.3.4 (see, [18, 56]). A strictly convex space is a normed topological vector
~ space (V, | ) for which the unit ball is a strictly convex set. Put another way, a strictly
convex space is one for which, given any two points x and y in the boundary 8B of
the unit ball B of V', the affine line L(x, y)passing through x and y meets 8 B only at
x and y. A strictly convex Banach space is a Banach space which has the following
properties:

1. A Banach space (¥,

) is strictly convex if and only if the modulus of

convexity ¢ for (V,

| |) satisfies §(2) =1.
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2. A Banach space (V,

) is strictly convex if and only if x=# yand
| = |¥] = 1 together implies that|x + ¥ <2.

3. A Banach space (V,

| |) is strictly convex if and only if x#y and
| =[] = 1 together implies that e + (1~ a)y| <1 ¥ 0 < & <1.

4. A Banach space (V,

| ”) is strictly convex if and only if x#0andy =0

and |x + y| =||x| + || together implies that x = cy for some constant ¢ > 0.

A M A

-

Figure-2.3(a) Figure-2.3(b) Figure-2.3(c)

| The unit ball in the figure-2.3(b) is strictly convex, while the other two balls in the

N
v

.~ figures 2.3(a) and 2.3(c) are not because, they contain a line segment as part of their

- boundary.

- Problem 2.3.5. If M be a bounded closed convex subset of a strictly convex Banach space B,
| then any non-expansive mapping T of M into M has a fixed point.

- Solution. From Zorn's lemma, minimal element M exists in the collection of all nonempty

- convex and closed subsets of M , each of them is mapped

into itself by T. We show that M, consists of a single point. We assume that

diamM; >0.
: Since, every convex and bounded set in strictly convex Banach space B has normal

- structure, and then M, has normal structure.
i.e., 3xe M,, such that sup{|x—)|:y € M,} = q < diam M,.
We denote convex closed hull of set T(M,)with col'(M,)= M,. Since
T(M,) c M,then '
M, =col(M,) c coM, = M,
and T(M,)cT(M,)ccol(M,)=M,.

The minimality of M, implies M, = M.
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We define a set
C=Wyur, Dv; )N M,.

That is nonempty since x € C, that is convex (every balls are convex sets) and closed set
' as intersection of convex and closed sets. ‘

~ We define a set
| Cr = yerony PUs 9N M.
- Since T(M,) c M, then C, > C.If z e C then
T(M,) < D(z; g) & My, = M, = coT(M,)  D(z; q)
- (Because D(z; q)is closed and convex set) therefore C © C, . It follows that C=C,.
We choose ze Candy e T(M,). Then there exists x € M, such that y = T(x).
- Therefore,
[ -A=lr@ -1 < |- <q.
| ie., T(z) e C,. Since C = C,then T(z) e C or T(C) c C. The minimality of M,
- implies C = M, . But diamC < q < diamM, .
From obtained a contradiction and we conclude that diamM, =0 & M, ={x"}.
- Therefore, T(x")=x". This completes our problem. =
- Definition 2.3.6, (see [56]). LetX be a bounded subset of a Banach space B. A point
X, €M is said to be non-diametral point of X if
sup{|x —x,: x € K} < 6(K) , where 8(K)=sup{|x—)|:x,y e K},
is the diameter of XK.
A bounded closed convex subset M of a Banach spaceBis said to have normal
- structure if for each closed convex subset H of M which contains more than one point
there exists an x € H , which is non-diametral point of /.
Evidently, a bounded closed convex subset M of a Banach space Bhas normal

~ structure if and only if for each closed convex subset Hof M which contains more

than one point there exists an xe Hand a(H),0<a(H)<1, such that
sup{”x —y“ :yeH}=r.(H)<a(H)5(H).

Problem 2.3.7. Let M be a non empty weakly compact convex subset of the Banach
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space B and M has normal structure. Let T, and T, be mappings of M into itself
satisfying:
(a)  for each closed convex subset F of M invariant under T, and T, there

exists some a,(F), 0 <o, (F) <1, such that
1 1

=T < msct e = Tl Iy ool e =Tyl by -7,
1
3= A+ e =T+ ly - Lol (), @80

Jorall x, ye F;
(b) I,C c Cifand only if T,C < C for each closed convex subset C of M ;

(c)  for each closed convex subset Dof M invariant under T, and T, there
1
exists some o, (D), N < a,(D) <1, such that either

sup“z - leH < max{r(D),a,6(D)}, wherer(D) = inf{r (D) :x e D};
zeD

or,sup|z —Tzz” < max{r(D),a,86(D)}, wherer(D) =inf{r_(D): x e D}.
el
Then there exists a common fixed point of T, and 7.
Solution. Let ¢ denote the family of all nonempty closed convex subsets of M , each of
which is mapped into itself by 7, and T,. Ordering G by set inclusion, by weak
compactness of M and Zorn’s lemma, we obtain a minimal element F of M. By the
definition of normal structure, there exists x, € F such that
S”p{on _y” yely=r (F)sa;6(F)
for some a;, 0 <, <I.

Without loss of generality assume that

sup|z — T, z|| < max {r(F), 2, 6(F)}
zel”

for some «,, — <, <1.1If

N | =

1
|7\x — T, y] < max {E (e = Tox| + |y - T2y D,

1
3=+l -Tia

%(Hx ~ M+ =Tl + [y = T, 7 ()

forall x, ye F.
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Let f=max{x,, o;}and F; ={xe F: r(F)< B
Otherwise, by hypothesis (a) there exists a,(F),0 < o, (F) <1,such that
|Tx =T,y < @, 6(F) for some x, yeF.
Let g =max{a,, ,, &, } and Fs={xeF:r (F)< BS(F)}.
AS X, € Fy, then F; is nonempty. Evidently, Fyis convex. Since x— 7 (F)is

continuous, then Fyis closed. Let x € £, . Then

1
[1x-Tox) < max(l (e~ T+ [y -7

)3 =Tl + =T

|
S A+ e -Tal + Iy -1,
SPO(F) for yeF.

); 7 (F), @, 6(F)}

This gives that 7,(F)is contained in a spherical ball U centered at T,x and of radius
BS(F), e, T,(F)cU, whence T,(FNU)cFNUand by hypothesis  (b)
T(FNU)c FNU. By the minimality of F, we obtain F c U .

Hencer, (F)) £ f5(F),and this implies7)x € F; .

Therefore, 7, (F;) c F; and by hypothesis (ii) 7, (F ) € Fs

Hence, F; € G. But &§(F;) < BS(F) < 8(F), which contradicts the minimality of F.
Hence £ contains a unique point x, such that7 x, = x, =T,x,. This completes our
problem. =
Problem 2.3.8. If H be a Hilbert space and T be a non-expansive mapping of H into
itself, then the set of fixed point of T is either empty or closed and conver.

Solution. We know that a non-expansive mapping of a complete space into itself need
not have a fixed point and it is also clear that every Hilbert space is a complete space.
So, we can say that the non-expansive mapping 7 : H — H need not have a fixed point.
Hence in this case the set of fixed point of 7 may be empty set.

Now, we show that if the set of fixed points of 7 is non-empty, then it must be closed
and convex. If there is only one fixed point, then there is nothing to show.

Consequently, let x and y be two fixed points of T and put
z=ox+(l-a)y M

where 0 <a <1.
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Consider the inequalities
|7z - x| = |z — 7x

s”z-x

, [Since x is a fixed pointof T]
. [Since Tis a nonexpansive mapping]
=(~a)x~y|, [By (V)] ()
“Tz - y” = ”Tz—Ty”, [Since y is a fixed pointof T]
< ||z - y”, [Since Tis a nonexpansive mapping]
|, [By(V)] 3)

=afx-y

Adding (2) and (3), we get

|7z = x|+ |7z = 5] <[~ 5, ©)
But, by triangle inequality we have

|72 = x|+ |7z ¥ 2 [ - 5 )

Now, combining (4) and (5), we have

|7z = %[+ 72 — ¥ =[x - 5] ©6)
This means that

[Tz x| = | — x| = - ) - 5} (7)

and [Tz -y = |z = y]| = ax - 5] - ®)

Applying the parallelogram law,
o =" +la-+ 8l = 2 + 2Jp
With a=Tz~x and b=z-x we get,
|7z~ 2| +|Tz ~x+ 2= = 2Tz = +2z— .
Therefore,
72— =24tz o + 2z o~z = x4 2~
=z—o + 2z —[Tz-Tx+z—’
=dlz— " -T2 ~Tx) + (z—x)|°
<Az = - (2= 75+ | - o’

)2, [Since T is a non expansive mapping |

<z =" -z -] +]z-x

= dfe - 4ol =0.
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This implies that |7z-z|=0and consequently 7z=z, ie.,zis a fixed point of T.
Hence, by the definition of a convex set we can say that, the set of fixed point of T'is a
convex set.
It remains to show that, the set of fixed points of T is closed. Let {z,}be a sequence of
fixed points, and let z be its limit. Now, we will show that z is also a fixed pointof T.
We have

le, - =Irz, -1 <, -2

, [Since T is a nonexpansive mapping].

' Taking limit on both sides as n — o0 and we get,

lim|z, —Tz" =0,
n—o

- and consequently z, converges to 7z. Hence Tz = z,which shows that z is also a fixed
. pointof 7.

- So, by the definition of a closed set we can say that, the set of fixed points of Tis a
- closed set. This completes our proof. =
~ 2.3.9 Geometrical interpretation of the problem 2.3.8. A geometrical interpretation

- of the problem is given in following figure-2.4:

' The sets Aand B are defined by

4

A={x: ”Tz —x“ < —a')"x —y||},
B={x: “Tz —y" < a”x—y“}.

4 B

Figure-2.4
The image of zby T must lie in the intersection of 4and B, which reduces to the

pointz .Thus Tz must be equal to z.
Note that it is strict convexity of the balls 4 and B that implies 7z = z.
Definition 2.3.10, (see [18]). Let M be a closed ball of radius »in a normed space ¥.

Then the radical retraction r onto M is defined by
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® if xeM
rx =
mel] i xe M

such that (a) ris a continuous retraction of ¥ into M,
(b) if rx € M° (interior of M ) then rx =x,
(¢) if x ¢ M then rx e 6M (boundary of M ).
Definition 2.3.11, (see [18]). Let M be a closed convex subset of a normed space N
such that0 e M°. Then the Minkowski functional
g(x) =inf{c: x e cM}
is a continuous real function on N such that
() glex)=cg(x) for c20;
(i) glx+y)<gx)+g();
(i) 0<g(x)<lifxe M°;
(v) g(x)>1if xe M;
v) g(x)=1if xedM.
The radical retraction of N into M is defined by
rx=x/max(, g(x))
such that r has the properties (a), (b) and (¢) of the definition 2.3.10.
Lemma 2.3.12, (see [18], Lemma 4.2.2). Let 7:M — Nbe compact and let
r: N — Pbe continuous, then rT is compact. m
Problem 2.3.13. If M is a closed convex subset of a Hilbert space H, then prove the
Sollowing statements.
(i) The radial retraction of H onto M is not non-expansive.
(ii)  The metric retraction of H onto M is non-expansive.
(ii))  If T is a contraction mapping of M into H such that T(M) c M , then T
has a fixed point.
(iv)  In (iii) we can replace ‘contraction’ by non-expansive if M is a closed
ball.
Solution. (i) Let »be the radial retraction of H ontod/. Then by definition 2.3.11, we
haver x = x/max(l, g(x)).
Sory=y/max(l, g(»)).
Since, g(x) & g(y)are Minkowski functional then, we getting
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d(rx, ry) = ’rx = ry’

= |x/max(l, g(x)) - y/max, g =|x-y| = d(x,y)
ie.d(rx, ry) =d(x, y).

But, we have a mapping r: H — M is non-expansive if
dirx, ) <d(x, y) Vx,ye H .
- Hence we can say that, the radial retraction of H onto M is not non-expansive.
(ii) By the definition of metric retraction, this is defined in our definition 1.7.1 we have

d(rx, ry) = er —ry’ < ‘x - yJ =d(x, y)
Le,d(rx, ry)<d(x, y) Vx,ye H.

This shows that r: H — M is non-expansive.
Hence we can say that, the metric retraction of & onto M is non-expansive.

(iii) By our assumption Tis a contraction mapping of M into H. Hence 7'is also

continuous.

Now, let »:H — M be a compact retraction mapping. Then by Lemma 2.3.12 »T'is
compact and by Schauder fixed point theorem 1.6.3 7 has a fixed point p (say). i.e.,
rTp = p.

[fpedM, thenTpe M. [Byour assumption]|

Therefore, p =rTp =Tp. This implies that 7p = -

Hence pis a fixed point of 7.

(iv) In our question (iii) if we consider that A is a closed ball then, it is clear that the
non-expansive mapping? : M — H will convert to a contraction mapping. This proves

(iv). Hence our problem is complete. =

24 Shrinking mapping or Contractive mapping

Definition 2.4.1, (see [18]). Let (M,d) be a metric space and 7 be a mapping of M into
itself. Then the mapping T is called a shrinking mapping or contractive mapping if

| d(Tx, Ty)<d(x, y) forall x,ye Mand x=y.

| Thus a shrinking mapping is a non-expansive mapping, but need not be a contraction

mapping. It is also clear that a shrinking mapping can have at most one fixed point.
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Example.

P
b

—
N
[
ad
[T
a4
' .
oo
O

Figure: 2.5

Let M =1, o), which is a complete metric space. Set T: M — M by T(x)=x+ —1-
x

So whenx # y in [1, ), then we have

<pr-y

T@-70) - -2
XY

ie., [T(x) — T(y)l < |x - y[.

Hence T: M — M is a shrinking mapping.

1 1 |
%=y +——=| == p)-—)
x )y Xy

Since T'(x) > x V' x € M. Therefore, it is clear from the figure-2 there are no fixed points
of Tin [1, ©). . °
Now, we state and prove a theorem which shows that under what condition a shrinking

mapping have a unique fixed point.

Theorem 2.4.2. Let Mbe compact metric space. If T:M — M such that
d(Ix, Ty)<d(x, y) forall x,yeMand x#y ie, T:M — M is a shrinking mapping
in M, then T has a unique fixed point in M and the fixed point can be found as the
limit of T"(x,) as n > o forany x, e M .

Proof. To show T has a unique fixed point inM, suppose T has two fixed points
x, # x,.Then d(x,, x,) = d(Tx,,Tx,) < d(x,, x,) . This is impossible, sox, = x, .

Next we prove T has a fixed point in M. Let F: M —[0,00)by F(x)=d(x, Tx). This
measures the distance between a point and its 7 —value. A fixed point of T is where

F takes the value 0.
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Since F'is continuous and A is compact, Ftakes on its minimum value: there is an

m € M such that F(m)< F(x) V xe M . This point mis a fixed point forT . Indeed, if
Tm # mthen

F(Tm) =d(Tm, T(Tm)) < d(m, Tm) = F(m),
which contradicts the minimality of F(m). Hence Tm = m and F(m)=0.
Finally, we show for any x, € M that the sequence x, =T"(x,) converges to m as
n—>co. We will show d(x,, m)—>0as n— . We don’t have the uniform control

coming from a contraction constant. Instead we will exploit compactness.

If for any k>0we have x, =mthen x,,=7T(x,)=Tm=m,and more generally
x,=m Vn2zk,so x, —>min the sense that the sequence eventually equals m for all
large #. Now, we may assume instead that x, #m V n. Then

0<d(x,,,m)=d(T(x,), Tm)<d(x,,m),
so the sequence of real numbers d(x,,m)is decreasing and positive. Thus it has a limit

I'=limd(x,, m) > 0. We want to show that / = 0. By compactness of M , the sequence

{x, } has a convergent subsequence X,,s8ay x, >yeX.

Then, by continuity of T, T(x,)— T(p), which says X,,, >y asi—>o. Since
d(x,,m)—>1asn— o, d(x,,m)—> 1 and d(x,,,, m) - . By continuity of the metric,
d(x,,m)—>d(y,m) and d(x,,,m)=dT (x, ), m) > d(T(y), m). Having  already
shown these limits are 7. Therefore, we have d(y, m)=1=d(T(y), m).
€]

Since d(T(y), m) =d(T(y),T(m)), if y # athen d(T(y), m) < d(y,m),but then by (1) we
get /<], which is impossible. So y=m,this means/=d(y, m)=0. That shows
d(x,, m) > 0 as n — . This completes our theorem. =

It is clear from the Theorem 2.4.2 that if M is compact and T : M — M is a shrinking
mapping, then T has a unique fixed point. By the Browder fixed point theorem 2.3.1,
the same conclusion holds provided M is closed unit ball of a Hilbert space and T'is
shrinking mapping. In connection with these results D. R. Smart raised the following
question [see, [18] p. 39]: “Dose every shrinking mapping of the closed unit ball in a

Banach space has a fixed point?” The aim of the Problem 2.4.3 is to give negative
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- answer to this problem. Furthermore, our mapping has an additional property that it is

affine.

- Problem 2.4.3. If B be a Banach space and T be an affine shrinking mapping of the

' closed unit ball B of Binto itself then T does not have any fixed point.

'~ Solution. Let B=C, be a Banach space of all real sequences such that

% ={X)3 X 5000 Xy 5eee } li_{gx" =0i.e, x converging to 0, and whose norm is defined by

[ = macffe,
Now, we define our map T as follows: Let {a,,a,,...} be any sequence of positive real

numbers such that (i) each a,is less than 1, and (ii) the sequence of partial products,

P =Ha j»is bounded away from zero. (One such sequence is defined by
Jj=1

a, = Q2" +D)/2" +2).)

Now, if x={x,x,, ..., %,,..} € Cy, we let T(x)={l,a,x,,a,%,,a,x;,...}. Then it is clear
that x| <1,and|T(x)| <1. (In fact, |T(x)]|=1, if |x| <1.) Thus T takes the unit ball in C,
to itself.

Since, T(tx+(1-1)y)=tT(x)+(1-0T(»), Vx, ye Cy and 0<t<1.

Therefore, T is affine.

We have,

[7G) =T = max{la, (x, — v, =a,|x, = y,|, for some j, andif x = y.

<li' —yjISmax{x,, ~ vy =lx-
T(x)-T)| <|x— ¥ if x = ».

Hence, T is a shrinking mapping.

(&5 |

Finally, suppose x ={x,,x,, ....,X,,...} is a fixed point of 7. Then

x =1, X, =ax =a,

Xy = UyXy = aydy, X, = ayX; = a,a,4a,, elc.
and these numbers are bounded away from zero by the way that the sequence

{a,,a,,....} was chosen. Thus, x is not in C,. This is a contradiction. This completes

our problem. |
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2.4.4 In [4] B. Fischer made the following conjecture:
Suppose Sand T are mapping of the complete metric space to itself, with either S or
T continuous, satisfying the inequality

d(Sx, TSy) < ¢ diam{x, Sx, Sy, TSy} 1)
for all x,ye X,where 0<c <1. Then S and T have a unique common fixed point.

This conjecture has been open even for compact.X . Now, in our Theorem 2.4.5 we
shall show that the above conjecture is irue for ¢ <1/2 but ialse for ¢ > 1/ 2.

Problem 2.4.5. If X is complete, and S: X — X, T : X — X are two mappings with the

property (1), where ¢ <1/2, then Sand T have a unique common fixed point. On the
other hand, neither the mapping S: X — X nor the mapping T: X — X have any fixed
point such that

d(Sx, TSy) 21/2 diam {x,Sx, Sy, TSy} .
Thus, if ¢ <1/2 we do not need any continuity assumption, and for ¢ >1/2 even the
simultaneous continuity of S and T and the compactness of X do not help.

Solution. To prove the first part of our problem, we let x, € X be arbitrary and let

n

TS)"*x,, if nis even
STSH" D2 x,, if nis odd.
Now, by inequality (1) we have
d(Xpp15%0y) = A(STSXy, 5, TS%y, ) < cdiam{Sx,, ,,TS%,, ,,S5T5x,, ,}
=C. dlam {x2n-l 5%X2n> x2n+l } <c (d(x2n s X5 ) + d(x2n+1 > Xap ))
e, d(xy,,1,%,,) <(c/1-c)d(x,,, X,,1) Vn2l. (2)
Similarly,
d(x2n+2 s X2p41 ) = d(SXZn H TSx2n ) < cdiam {x2n > x2rr+l 2 x2n+2}

S e(d(Xppars X22)+ A(X0055 X1 ))
ie, d(Xyp,%,) <(c/(1-c)d(x,,,, x,,) Vnzl. 3)

Since ¢ <1/2, we have c/(1-c) <1,and so (2) and (3) imply that the sequence {x,}is a
Cauchy sequence and thus, by completeness, x, -z, as n > oVze X.

Using again (1) we get,
d(Sz, x2n+2) <c diam{z, Sz, X+l x2n+2} <e(d(Sz, z) + d(Z, X2n41 )+ d(x2n+l > X2ne2 )

Letting here n — o we obtain
d(Sz, z) < cd(Sz, z) ie.,d(Sz,z)=0.
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This implies that Sz = z. But
d(z, Tz)d(Sz,TSz) < ¢ diam{z, Sz, TSz} = cd(z,Tz) ie.,d(z, Tz) = 0.
This implies that 7z = z. Hence zis a common fixed point of Sand7'. The uniqueness
~of the common fixed point follows easily from the inequality (1).
After this let us prove that the conjecture is false for ¢ =1/2 and hence also ¢ 21/2.
:Now, let X ={4, B,C, D}with  d(4, D)=d(B, C)=d(B, D)=d(4, C)=1and
- d(A4,B)=d(C, D)=2, (see the figure-2.6) and let § and T be the two mapping

. indicated below:

Figure-2.6
Nenher S nor T have any fixed point. However, Sxe{D, C}, TSy € {4, B}and so

d(Sx TSy) =1 for every x, y € X; furthermore
| (@) d(x,Sx)=2, if x=C or x=D;
(b) d(Sx, Sy)=2, if x+A4 and ye{B, Dyor x=Band ye{4d, C};
() d(x, TS) =2, if x=A and y€{4,C} or x=Band yec{B, Dy;
‘le in any case diam{x, Sx, Sy, TSy} =2and so (1) holds foe every x, ye X with

' ¢=1/2. This completes our theorem. -

2 S Asymptotically non-expansive mappings

Let K be a nonempty closed convex bounded subset of a Banach space B. In 1955,
K1 asnoselskii [31] proved first that a sum 7 + S of two mappings 7 and S has a fixed
pomt in K, when T:K — Bis a contraction and S:K — B is compact (that is, a
contmuous mapping which maps bounded sets into relatively compact sets) and satisfies

the condition that 7x+Sye K, V x,ye K. In [31] M.A. Nashed and J.S.W, Wong

genelalued Krasnoselskii’s theorem to sum T +.5 of a nonlinear contraction mapping
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T:K— B and a compact mappingS:K — B. Subsequently, J. Reinermann [27]
exiended Krasnoselskii’s theorem to a sum 7 + S of a non-expansive mapping 7 and a
strongly continuous mapping S when the underlying spaces Bis uniformly convex
Banach space. The study of asymptotically non-expansive mappings concerning the
existence of fixed points have become attractive to the authors working in nonlinear
analysis, since the asymptotically non-expansive mappings include non-expansive as
well as contraction mappings. W.A. Kirk [59] introduced the concept of asymptotically
non-expansive mappings in Banach spaces and proved a theorem on the existence of
fixed points for such mappings in uniformly convex Banach spaces.

Let Bdenote a Hausdorff locally convex linear topological space with a family
(d,) e, OF seminorms which defines the topology on B, where J is any index set.
Definition 2.5.1, (see [18, 36]). Let X be a nonempty subset of B. If 7 maps K

into B, then T is called an asymptotically non-expansive if for all x,ye K

d,I"x=T"y)<kd,(x~y), Vx,yeK,

for each @ eJ and for n=1,2,..., where {k,}is a sequence of real numbers such

thatlimk, =1.

H—=>m

Itis assumed that k, >1 and &, > k.. for n=1,2, ... We gives the following definition:
Definition 2.5.2, (see [18, 36]). If T and S map K intoB, then T is called a
uniformly asymptotically regular with respect to S if, for each o e J and 7> 0, there
exists N = N(a, ) such that

d,(T"x~T""+8x)<n forall n= N and forall xe X .
Example. Let B=R and K =[0, 1]. We define amap 7': K — B byTx=1+x for all
xe K. Then T’x=T(I+x)=2+x.By induction, we prove that T"x = 5 + x.
Again, we define amap §: K — Bby Sx=-1 forallxe X .
Therefore, IT”x -T"'x+ Sx! =0. Hence Tis uniformly asymptotically regular with
respect to S'.

In [36] P. Vijayarju eastablished the following fixed point theorems for a sum of
nonexpansive and continuous mappings in locally convex spaces.

Theorem 2.5.3, (see [36], THEOREM 2.1). LetX be a nonempty compact convex
subset of B. Let 7 be an asymptotically non-expansive self-mapping of K. Lets be a
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continuous mapping of KintoB. Suppose that Tis uniformly asymptotically regular
self-mapping of Kwith respect to the mappingSand thatT"x+Sye K for
allx, ye Kandn=1,2,... ThenT + S has a fixed point inK . -

"Theorem 2.5.4, (see [36], THEOREM 2.2). Let X be a nonempty compact convex

subset of B. Let 7' be a non-expansive mapping of K into B and Sbe a continuous

mapping of K into B such that 7x+Sye K for allx, ye K. Then T+S has a fixed

. point inK . -

Theorem 2.5.5, (see [36], THEOREM 2.5). Let K be a nonempty complete bounded
convex subset of B. Let T be an asymptotically non-expansive self-mapping of X .
Suppose that S is a continuous mapping of X into B such that S(X)is contained in
some compact subset M of K. Assume further that T'is a uniformly asymptotically
regular with respect to Sand that 7"B+Sy in K for all x, ye K andn=1,2,... If
(I -T -S8)(K) is closed, then T + S has a fixed point in K . -
Theorem 2.5.6(see [36], THEOREM 2.6). Let K be a nonempty complete bounded

convex subset of B. Let T be a non-expansive mapping of K into B. Suppose that S is

a continuous mapping of K into Bsuch that S(X) is contained in a compact subset
Mof K and TX +Sye K for allx, ye K. If (I -T-S)(K) is closed, then T +Shas a

fixed point in X . |
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continuous mapping of KintoB. Suppose that Tis uniformly asymptotically regular
self-mapping of Kwith respect to the mapping Sand thatT"x + Sy € K for
allx, ye Kandn=12,... ThenT + S has a fixed point in X . -
"Theorem 2.5.4, (see [36], THEOREM 2.2). Let X be a nonempty compact convex
subset of B. Let T be a non-expansive mapping of X into B and Sbe a continuous
mapping of K into B such that Tx+Sy e K for allx, ye K. Then T+S has a fixed
' point in K. -
Theorem 2.5.5, (see [36], THEOREM 2.5). Let K be a nonempty complete bounded

convex subset of B. Let T be an asymptotically non-expansive self-mapping of X .

Suppose that S is a continuous mapping of K into B such that S(K)is contained in
some compact subset M of K. Assume further that 7'is a uniformly asymptotically
regular with respect to Sand that 7"B+Sy in K for all x, ye K andn=1,2,... If
(I =T -S)K) is closed, then T + S has a fixed point inX . -
Theorem 2.5.6(see [36], THEOREM 2.6). Let K be a nonempty complete bounded

convex subset of B. Let T be a non-expansive mapping of K into B . Suppose that S is

a continuous mapping of K into Bsuch that S(X) is contained in a compact subset
MofK and TX +Sye K for allx, ye K. If (I-T—S)K) is closed, then T+ Shas a

fixed point in X . -
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CHAPTER-3

SOME FIXED POINT ITERATIVE SCHEMES

3.1 Introduction

The importance of metrical fixed point theory consists mainly in the fact that for most
nonlinear functional equations y = f(x) we can equivalently transform them in a fixed
point problem Tx=x and then apply an appropriate fixed point theorem to get
information on the existence or existence and uniqueness of the fixed point, that is, of
the solution of the original equation. Most of the fixed point theorems also provide a
method for constructing such a solution. These methods are usually iterative methods.
The Brouwer fixed point theorem was one of the early major achievements of algebraic
topology. This celebrated theorem has been generalized in several ways. Nowadays, the
Brouwer and Kakutani fixed point theorems have become the most often used tools in
economics, game theory and Numerical analysis.

A fundamental principle in mathematical sciences is iteration. As the name suggests, a
process is repeated until an answer is achieved. [teration scheme is used to find roots of
equation, solution of linear and nonlinear system of equations and solution of
differential equations. All the numerical iteration process are formulated to compare
with the fixed point iteration process and to establish the fixed point iteration process,
different types of fixed point theorems are used as very important tools. So, we can say
that numerical iterative scheme is a great achievement of fixed point theorems.

In the previous Chapter we have discussed the different fixed point problems relating
with contraction and non-expansive mappings. In the present Chapter first we give the

definition of different fixed point iterative schemes and finally we state and prove their

convergence theorems for some fixed operators. These convergence theorems shows

that all fixed point iterative schemes strongly converges to the fixed point.

3.2 Fixed point iterative scheme

. . i ed
In numerical analysis, fixed point iterative scheme 15 a method of computing fix

points of iterated functions.
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Definition 3.2.1, (see [18, 43, 59]). Let Tbe a mapping from a non-empty set X into
itselfi.e., T : X — X . Then the iterative scheme {x,},, defined by
xn = T(xn—]) ] (i)

for x, € X and n=1,2,3,....., is called ﬁxed point iterative scheme.

Theorem 3.2.2, (see [59]). Assume that T(x) is a continuous Junction and that {x,}*  is
a sequence generated by fixed point iteration (i). If limx, = p then p is a fixed point of

T(x). m
Theorem 3.2.3, (see, [S9]). Assume that T e c[a, b), i.e.,T(x) is continuous on[a, b].
Then we have the following conclusions:
(i) If the range of the mappingY =T(x)satisfies Y ela,b]V x<]a, bj
thenT has a fixed point in[a, b].
(ii)  Furthermore, suppose that T'(x) is defined over(a, b) and that a positive

constant k <1 exists with |T ’ (x)‘ <k Vxe(a,b), thanT has a unique

Jixed point p in [a, b]. -

Theorem 3.2.4, (see [59]). Assume that the following hypotheses hold.

(a) p is a fixed point of a functionT ;

(b T,T' ecla,b];

(c) k is a positive constant;

(d) p, €(a, b); and

(e) T(x) €[a, b]V x €[a, b].
Then we have the following conclusions:

(i) IﬂT’ (x)l <k <1Vxela, b, then the iterationx, = T(x,.,) will converge to the

unique fixed point p € (a, b). In this case, p is said to be an attractive fixed point.

(1) If ‘T I(x)l >1Vx €[a, b, then the iterationx, =T (x,_,) will not converge top. In

this case, pis said to be a repelling fixed point and the iteration exhibits local

: |
divergence.

Remarks on the Theorem 3.2.3. 1. It is assumed that x, # pin statement (ii).

g g T issible to use the
2. Because Tis continuous on an interval containingp, it 18 permissib
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simpler criterion ’T’ (x)l <k<1Vxela,bland ’T’ (x)! >1Vx €[a, b]in statement (i) and
(ii), respectively. ]

3.2.5 Algorithl_n of fixed point iteration. To find a solution of the equation x = T(x) by
starting with x = x, and iterating by the formulaex, = T(x,_,)until \;ve get our desirable
solution.

Example. Find the solution to x = @ by using the starting approximationx, =0.1.
Solution. Here the fixed points of the given equation are x=0é&x=2 , li.e.

x=0or x=2, must be a solution of the given equation.

Now, we solve the given equation by using the iteration formulae x,./2x,, with the
starting value x,=0.land after fifteenth iteration we get our desired

results x;; = 2.0000. -

3.3 Picard iterative Scheme
Actually, another form of fixed point iterative scheme is Picard iterative scheme.
Moreover, for the convenience of our discussion again we describe below this iterative

scheme.
Definition 3.3.1, (see [51]). Let T:X — X be a given operator and X be a Metric

space or Normed linear space or Banach space. Then the sequence {p,}o,defined by
Pun =Tp, (ii)

for n=0,1,2,...and p, e X is called Picard iterative Scheme.

Theorem 3.3.2, (see [43], Theorem 2.1). Let p=¢ be a root of the equation

f(p)=0and let I be an interval containing the point p = &. Let T(p)and T "(p) be

continuous in I where T(p)is defined by the equation p=T(p) which is equivalent to

f(p)=0. Let p=¢be afixed point of T. Then if ]T’ ( p)| <1 for all pinl, the sequence

of approximation {p,}"., defined by the Picard iterative scheme (ii) converges to the

root p =& (fixed point of T ), provided that the initial approximation P, is chosen in 1. [

Theorem 3.3.3, (see [47]). Let X be a Banach space and T:X = X be a map for

which there exist the real numbers a, b and ¢ satisfying0<a< 1, 0 <b,c <1/2 such that

for each pairx,y in X at least one of the following is true:

53



ter-3 L i
Chap Some Fixed Point Iterative Schemes

(z) |x-Ty|<dlx-y

.
2

() [Pe-D<blfx -1+ |y -1

;
(z2)  |Tx-Ty| <cllx -]+ |y - 7.

Then T have a unique fixed point p and the Picard iteration (ii), {Pn }°°

n=0

defined by p,., =Ip,, n=0.1.2,.. converge top for any p, € X. m

3.4 Kranoselskii’s iterative Scheme

Definition 3.4.1, (see [16, 30]). Let T: X — X be a given operator and X be a Metric

space or Normed linear space or Banach space. Then the sequence {u,}>, defined by
u,, =1-Ax, +ATx, (iii)

for n=0,1,2,... , u, € X and A €(0, 1) is called Kranoselskii’s iterative Scheme.

Theorem 3.4.2. Let E be an arbitrary Banach space, X a closed convex subset of E,
and T : X — X an operator satisfying the Zamfirescu condition Z, i.e., there exist the

real numbers a,b& c satisfying 0<a<1,0<b<],¢c<1/2 such that for each pair

X, ¥in X, at least one of the following is true:

(z;) |x-D|<ax-y

>

15

(z4) HTx - Ty" < c[”x - Ty" + ”y - Tx”].

(z,) |Te-Ty|<bllx-Tx|+|y -y

Let {u,}>, be defined by (iii) and u,€X with Ae(0,1). Then {u,},,, converges
strongly to the fixed point of T .

Proof. By theorem 3.3.3, we know that 7' has a unique fixed point inX , say u.

Considerx,y € X . Since T is a Zamfirescu operator, therefore, at least one of the
conditions (z,), (z,) and (z,) is satisfied by T .
If (z,) holds, then

[ ~7y] < b = T+ |y T3]
< bl =T+ ]y = 2]+ = ] + [~ T
= (1-b)|Ix—Ty| < bl - ¥| + 2b||x — Tx|

b b )
_yf+2 -T.
5 ==A+2075 7]

= ||Tx - Ty" <
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If (z,) holds, then similarly we obtain

e -1yl

” _yH 2 ||x Tx” (2)

Let us denote

5=max{a —b— <
"(1-b)"(1-¢) )

Then we have, 0< 6 <1 and in view of(z,), (1) and (2) we get the following inequality

|7 -Ty|< 8]k — | +26)x 1> holds vV x, ye X (4)

Now let {,}” be the Kranoselskii’s iteration Scheme defined by (iii) and u, e X
rarbitrary Then
Wy — | = |[(1 = Au,, + ATu, — (1= A+ Ay

=[1- D, —u)+ A(Tu, —u)|

<(1- /’l)”un — u” + lHTun - u” &)
Take, x =uand y =u, in (4) we obtain

|74, =] < Sl ~ 4] ©)
where & is given by (3).
Now, combining (5) and (6), we get
—u| <A A)u, —u| + A8]u, —4]
=(1-A+ ,w)||u,, —u

n+1

u” <(1-Q- 5),1)||u ~uf, n=012,.... 7
Inductively we obtain,

ie.,

n+1

7=01,2,.... 8)

[t =2 < T T A= A= 8)2) [0
k=0
As § <1 and A€(0,1) it results that
' 1imﬁ (A== |u, — 1 =
n—rw %=0

This by (8) implies that,

limlu,,, —u|=0. ie., {u,}>, is converges strongly to u.

n—rw

This completes our theorem.
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3.5 Newton-Raphson iterative Scheme

Definition 3.5.1, (see [35, 43]). Let T: X - Xbe a given operator and X be a Metric
space or Normed linear space or Banach space. Then the sequence {w,}, , defined by

Tw,

W =w — .
g T /wn (iv)

n

for n=0,1,2,.., wy € X is called Newton-Raphson iterative Scheme. Here T' denote

the first derivative of T.

Theorem 3.5.2, (see [35], Theorem 2.5.1). Let w=a be a root of the equation

T(w)=0 in the interval [a— A, a+ A)containing the pointw=a, where A be some
positive integer. Let T" (w) be continuous on [a - A, a + A]. Let w=«a be a fixed point
of T. Then the sequence of approximation {w,}., defined by the Newton-Raphson

iterative scheme (iv) converges to the root w=a (fixed point of T ), provided that

T’ (w) # 0 and the initial approximation w, is sufficiently close to «. -

3.6 Mann iterative Scheme
Definition 3.6.1, (see [52, 54]). Let T: X — X be a given operator and X be a Metric

space or Normed linear space or Banach space. Then the sequence {x, }, defined by
x,,, =(1-a,)x, +a,lx, v)
for n=0,1,2, .. and x, € X is called Mann iterative Scheme. Here {a,} is a sequence

of non-negative numbers satisfying (a)a, =1, (b) 0<a, <1 and (c) ), =, ie.{a,} is

n=l

divergent.

Definition 3.6.2, (see [6]). Let S be a non-empty bounded closed convex subset of a

Banach space B. Let T be a mapping from S into S i.e., T':S—>S. The contractive

definition is defined as follows:
1 T(x)-T(y)|I< kmax{c| x -y LIl x- T+l y=TW ()
I x=TO) I+ y=T) 1}

forall x,ye S, where k,c20,0<k<1.
d closed convex subset of a Banach space

Theorem 3.6.3. Let S be a non-empty bounde
. ontractive definition (3.6.2). Let {x,}

B and T be a map from S into S satisfying the ¢
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be a sequence in S defined by (v) (Mann iterative scheme). Now, if {x }Canverges then

it converges to a fixed point of T .
Proof. Suppose that, ,11% X, =r, where r is any finite number. Now, we are to show that
ris 'the fixed point of T ie., F(r)=r.
By (v) we have, x,,, =(1-a,)x, + a,T(x,)
%, —x, = a,[T(x,)~x,]

Since, limx, =7 and therefore,
n

,1’1_1)2 a,[T(x,)—x,]=0, i.e.,li_r)g[T(x,,) -x,]=0.
This gives|| x, =7'(x,)[|[>0 as n— .
By definition 3.6.2 we have,
I T(x,)=T() ||< kmax{c || x, —r |l x, —TCx,) | +|
|7 =T LU x, T+ r =T, 11}
But, | r =Tl 7 —x, |+l %, ~TCH I+ TCe,) =T ()|
I %, =Tl x, =TGN+ 11 TC,) =Tl
lr =TIl r=x, |+ x, =T(x) -
Therefore,

I T(x,) =T () I kmaxie || x, —r [L[2 | x, =T(x,) IF+
7=, | + 11 T, ) =T L2 x, =T 1 +

7 =x, ||+ 1 TCx,) =T |1}

= kmax{c| x, -7 IL[21| x, = TG |+l 7 =2, | +1TCe) =T 113

Now, since x, — 7 and| x, - T(x,) |0 as n—>>.
sim || T(x,) =T () ||=0
Also we have, || r — F(r) | 7 = x, || +]| %, = FE) |+ FGx) = F O

So, lim || 7 = T'(r) ||= 0. This implies that, r~T(r)=0. . T(r)=r-

) |
This completes our proof.

Theorem 3.6.4. Let S be a non-empty closed convex subset of a uniformly convex
Banach space B. Let T : S — S satisfying the contractive definition (3.6.2) and such that

. ; 1 2 hen Mann
T(S) is relatively compact. If F(T) the fixed point set of T is non-emply, then
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iterative process (V) with {an} satisfying (a), (b) & (c) converges to a Jixed point of T

Proof. Suppose, r € F(T) then,
I76a) =r 191 TG =T IS kmaxie %, ~r 115, ~T(x,) |+ r 7y
[ %, =T |+ 11~ T(x,) |
<kmax{elx, ~r |LIx, = | +]l 7 =T(x,) |+ r~T()
Wz, = [+ r =T+ =T, ) T

=kmaxic|| x, —r L[l x, =7+ | r = Tx,) |1, i X, =1l +|lr-T(x,) |1}

[+ T(r)=r]
Therefore, it follows that
17Ce,) =7 = T(x, ) =T I< k|| x, ) )
Now, [|x,., =7 =l A-a,)x, +a,T(x,)—r||
=l A-a,)x, =) +a,(T(x,)-r)
<(-a,)|x,~rl+a, | T(x,) 7| 3)
Now, combining (2) & (3) we get,
1% =7 <l A=a,) |l x, =7 || +ka, || T(x,) -7 ||
=l(-a, +ka,)| x, —r|l
ie,| x,,—7|<|x,—r| [Since 0<k<1 and0<a, <1] (4)

Therefore, {§ x, -~ ||} is a monotone decreasing positive sequence, and hence converges

to a real numbera. Suppose, a>0.
Since, || x, =T (x,) <l x, =7 |+ T(x,) =7 1<l x, =7 [ +k ) x, =7 [ = A+ E) || x, =7 |
ie.|| x, —T(x,)|I<A+k) | x,-r| [Using (2)] ()

Sof| x, ~T(x,) I} -is a bounded sequence.
Now, ||r-x,, = r—(~a,)x, -a,TC) I

=| 1-a,)-x,)+a,r—a,T(x)]

= (1-a,)(r—x,)+ (1 —a,)Xr-T(x,) +(a, -Dr-TE)I

<(-a,)| (r=x,)+r=T(x,) | +2a, =D r=T(x)l

<(1-a,)|| (r = %)+ =TC) | +2a, =Dl r ==, I [Using (2)]
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<U-a)|r-x | JC=2)+-T,)]

r=x,||

+Qa,-D|r-x,| ()

_xn &M_V—T(xn)

Now, we define L = =7 W)
Ir—=x, | lr—x, ||

Then, || L+ M ||= L& = %)+ (r=T(x, ) |

lr=x,|
||r—r”!| ] W
”b"_“r - Le, [lojsi
r=TCx,) | 1T, - "H <kl =, —f'”
Mle . .
ol ™ oo, =T S a1 i 1M1 Using @)
and || L— M [}= 7 =x, —r+T(x,)| _ITC)=x, |
| r=x, | | r=x, |
So, from (6) we get
Ir =% ll<=a)|lr—x,|[.I L+ M| +Qa, -1 r-x,| (7
So, we get

(r—xn)+(r_T(xn)) “

Il r=x,

lim || Z + M [}= lim ]
n—rwo h—n

<tlim 7 =X L+ L7 =T Ce) | [By triangle inequality]
n—> “ r—x, ”

tm =5 L i 7 =Tl

= [im——*— r—x I

P T

lr=, 0, o [T =r |

—n—mur—x,, ” noo ”x"—r”

<timT=E i B =T yging @)
oo |lr-x, | e flx, -1

<2

ie, lim|L+M|<2 ie, |L+M[>2 as n—>

Therefore, from (7) we get ®)

7=, Il 7=, |

: i iti uence.
Hence, we can also say that {|»—x, |} is a monotone decreasing positive seq

: et
Since, B is uniformly convex and| L [|< L[| M [<1& | Z+M |—2. Then, we g
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IL=M|>0.ie, lim|L-M|=0= limw: 0.
n—w n->wo ” r—x, ”
But, 11_{2 | r=x, |l#0. Because, if ’l’i_r’g” r=x,|=0 then, x, - r and which contradicts

the definition of a. Hence, lim [ x, - T(x,)||= 0

Since, T(S) is‘relatively compact, there exists a subsequence {T(xn‘ )} of {F(x,,)}such

that lim[T'(x, )] =d < B, (say)

But, || x, —d <l %, ~T(x,) [+ T(x,)~d |0 as i > .
Now, [|[7(d) -d I T(d) - T(x, ) || + ]| T(x, )~ d |

Skmax{c|d-x, |l x, —T(x,) |+ d-T@)|],

U, =T@ N +Ild=TC, ) B+ T(x, )~ d ||
<kmax{c||d~x, LI x, ~T(x,) | +[|d~T(d) ],
x, =+l d=T@) |+ d-T(x,) 13+ T(x, )~ d ||

So, |T(d)-d |< kmax{||d ~T(d) || d-T(@) |} as i—>o.
Hence, |T(d)-d <k | d-T(d)]|.
This is a contradiction, because 0<% <1 and T(d) = d.
Hence d is a fixed point of F ie., d € F(T).
Now, replacing » by d in (4), it follows that {| x, —d |} is monotone decreasing
sequence in 7.Since, lim[x, ]= d. Then this implies that lizn[x,,] =d.

Hence, we can say that {xn} converges to a fixed point of T'.

|
This completes our proof.

The following results was obtained by B.E. Rhoades ([3], Th.eorem 4) and Vasile
Berinde ([53], Theorem 2.1) about the convergence of Mann iterative scheme. .
Theorem 3.6.4, (see [3], Theorem 4). Let E be a uniformly convex-BanaCh spat.:et, "
a closed convex subset of E and T : K — K a Zamfirescu operator, L.e., there exis

ch pair
real numbers a,b& ¢ satisfying 0<a<1,0< b<l,c<1/2 such that for each p

X, YinK , at least one of the following is true:

() |re-D<dx-y;

(z) |7 —Ty| <olfx - T + |y - DY;
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() [Pe =Ty <cllpr - T3]+ |y - 1.

Let {x,},., be defined by (v) and X, € K, with {a,}satisfying
@ ay =L (b)0<a, <1 for n21; () Ya,(l-a,)=c.
n=1

Then {x,},., converges strongly to the Jixed point of T. -
Theorem 3.6.5, (see [53], Theorem 2.1). Let E be an arbitrary Banach space, K a
closed convex subset of E, and T : K —> K an operator satisfying condition Z, . e., there
exist the real numbers a,b& c satisfying 0<a<1,0<b<1, ¢ <1/2 such that Jor each
pair X, Yin X, at least one of the following is true:

@) [Px-]<afx-;

@) =Dl <ol -1+ -

@) =Dl sdle-1+ [y -

Let {x,},_, be defined by (v) and x, € K, with {a,} c [0, 1] satisfying» a, =w

n=l

Then {x,},., converges strongly to the fixed point of T =

3.7 Ishikawa iterative scheme
Definition 3.7.1, (see [41]). Let 7 : X — X be a given operator and X be a Metric space

or Normed linear space or Banach space. Then the sequence {x,,}x=o defined by

Xp1 = (1 —-a, )xn + anTyn} (Vi)
Yo =(01-5,)x, +a,Tx,

for n=0,1,2,... and x,e X is called Ishikawa iterative Scheme. Here {a,}and {b,}

do<p, <1,
are sequences of non-negative numbers such that (a) 0<a, <lan

(b) limsup(b,) <1.
n—»cn ) . ‘ h' h are
Now, we state some convergence theorems of Ishikawa iterative scheme, w lcb -
’ i i d 8.C. Debna
given by B.E. Rhoades [3], Vasile Berinde [50], Kalishankar, Tiwary an

129 h space, K
Theorem 3.7.2, (see [3], Theorem 8). Let E bea uniformly convex Banach sp
ol ekuy 9

] } mji eSCu
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condition  Z, lLe, there exist the yeq numbers &b& ¢ satighing

0a<l0<b<le<l/2 such that Jor each pair Yy Yin K, at least one of the

following is true:
() |-y <dfx-y);
(z2) e =Ty < bl - 7 4 |y - 3
(z) =T < clle - 73] + | - 7.

Let {x,},., be defined by (vi) and Xy € K, with {a }and {b,} are sequences of numbers
in [0,1] satisfying > a,(1-a,)=w.
n=]

Then {x,}, , converges strongly to the fixed point of T. =

Theorem 3.7.3, (see [50], Theorem 2). Let E be an arbitrary Banach space, K a closed
convex subset of E, and T:K — K an operator satisfying Zamfirescu condition Z, i.e.,

there exist the real numbers a,b& c satisfying 0<a<1,0<b<1, ¢ <1/2 such that
Jor each pair X, Y inK, at least one of the following is true:

(@) |Px-Ty|<alx-5;

(z2) | =T <ol - 7] + |y - 1o

@) 1= <elfx 1o+ -7

Let {x,}v, be the Ishikawa iterative scheme defined by (vi) and x, € K, with {a,}and

{b,} are sequences of positive numbers satisfying ¥ a, = .

n=1
Then {x,} converges strongly to the fixed point of T . -
Theorém 3.7.4, (see [29], Theorem 1). Let S be a non-empty bounded closed convex
subset of a Banach space B and T be a map from S into S satisfying the contractive
definition
1
1 i~ ~T() 13-

I7(x)~T() lI< max{|| x - y 512 =71+ y=TO) . 3l x=TG) 1 +1»

Let {xn} be a sequence in S defined by (vi) (Ishikawa iterative scheme). Now, if

j =
{x,. }COnvergeS, then it converges to a fixed point of T.
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1
I 7(x) =T (») lI< max{|| x - y H,E[Il x=T(x) ” Hy=Tmin, %[H =T+l y-T¢x) |3

and such that T(S) is relatively compact. If F(T) the fixed point set of T s non-empty

then Ishikawa iterative process (vi), {x,, } converges to a fixed point of T -

3.8 Noor iterative scheme

Definition 3.8.1, (see [33, 34]). Let T: X - Xbe a given operator and X be a Metric
space or Normed linear space or Banach space. Then the sequence {x, =0 defined by
Xpyp = (I —-a, )xn + anTyn
Yo =(1-b,)x,+b,Tz, (vii)
z,=(-¢,)x, +c,Tx,,

for n=0,1,2,.... and X, € X1is called Noor iterative scheme, Where the sequences

@17, b, }o, and {c, J20 <[0, 1] are convergent, such that

n=0?

©
lima, =0, limd, =0, limc, =0and Y a, = (vii.a)
n—ywm H—px n—w n=l

Theorem 3.8.2. Let X be an arbitrary Banach space, Bbe a nonempty closed convex
subset of X andT : B — Bbe an operator satisfying the Zamfirescu condition Z, i.e.,

there exist the real numbers a, b& c satisfying 0<a<1,0<b <1, ¢ <1/2 such that for

each pair X, ¥ inB, at least one of the Jfollowing is true:

(@) [P <afx-5];

(z,) ”Tx—Ty”Sb[”x —Tx”+ ”y - y|l;

(z3) “Tx - Ty” < c[“x - Ty” + ”y - Tx”].
Let p € F(T) be a fixed point of T, where F(T) denotes the set of fixed points of T. Let
{xn }:;0 be the Noor iteration defined by (vii) and (vii.a) and x,€ B, where
la, b {6, }and {c,} are sequences of positive numbers in [0, 1] with {a,} satisfying (vii.a).

Then The Noor iterative scheme strongly converges to the fixed point p € F(T).

63



R

.3 . _
Chapler Some Fixed Poiny Iterative Schemes

Proof. By theorem 3.3.3, we know that 7 has g unique fixed point inB, say p.
Considerx,y € B. Since T is 3 Zamfirescy Operator, therefore, at Jeast one of the
conditions(z,), (z,) and (z3) is satisfied by T.
If (z,) holds, then
[ ~73] < bl ~ 7 |y~ 13
N L
= (1=B)|Tx =Ty < bllx - y| + 2b|x - 13|

b b

==l < byl +2 L 0
If (z;) holds, then similarly we obtain

i _CC) - rl+2g _cc) =7 @
Let us denote

b c
= 2. E 3)
! max{“’ (l—b)’a—c)} (

Then we have, 0< 4 <1 and in view of (2,), (1) and (2) we get the following inequality
”Tx -7 y” < l”x - y” + ZZHx - Tx” holds V x, ye B 4)

Now, let {x, }" , be the Noor iteration defined by (vii) and (vii.a) and X, € B arbitrary.
Then
[0 = £l =1~ a,)x, + 2,79, ~(1~a, +a,)p]
=|1-a,)x, - p)+a,(Ty, - p)|

<(l-a,)|x, - p|+a,|Ty, - 1| (%)
With x=p and y=y, from (4) we obtain
(6)
7, - pl|< 4]y, - Al
Where 4 is given by (3).
Further we have
v - pl=la-2,)x, +8,72,~1-8, +b,)p "
<(1-8,)|x, - |+ 8,7z, - P|
Again by (4), this time with x = p and y = z, we find that o

72, - Pl < 2z, - £l
Combining (6), (7) and (8) we obtain,
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7 = Pl< 210 -8,))x, ~ |+ 28, z, -7l

o ©®)
”Zn _p“ = ”(1 =C,)x, +¢,Tz, (1 ~¢, +c, )p”
<(=c,)lx, - p|+c, |, - 7| (10)
From, (9) and (10) we get,

7, = Pl ALa~2,)}x, ~ pl+ 48, {1 ~c, . =2+ e, 7, - 1)

. (9]
Again by (4), with x = p and v = x., we find that
[7, - £l < 2], - p| 12)
Now, combining (5), (11) and (12) we obtain,
v = Pl < A =a ), ~ pl+ a, L1 -, ), ~ pll+25, [ =€, = pl+ Ae, x, - P11
=[1-A-)(A+2b, + 2b,c,)a, x, - 7| 13)
Since, [1- (1= A)(1 + b, + 2b,¢,)a,1<[1~ (1 - Da, ]
So, from (13) we get,
*a = P|S0-A-Aa,lx, -p|, n=012,.. (14)
By (14) we inductively obtain
bers = Pl < T T1-Q=Aa, ke - p| n=0,1,2,.. 15)
n=0
Using the fact that 0< 1 <1, a,,b,,c, €[0, 1] and Y. a, =, we obtain that,
n=0
Lim[[1-(1-A)a,]=0 (16)
n—w b
Now, from (15) and (16), we obtain
limjlx, .| —-p”= 0
ie., {x, }*, converges strongly to the fixed point p .
This completes our proof. . -
Definition 3.8.3, (see [1, 5, 32]). Let F(I)={pe X :T(p)=p}, peF(I). Consider
7.
77;: = xn+1 _(1 —an)xn _anTx" ” (1 a)
” A-a ), —a,Ty “ (17.5)
=X —\ TG,y T %t
1un n+l (170)

é:n = "xn+l _(1 —a, )xn —anTyn

i i v), (vi) and (vii)
If limp, =0, limp, =0 and 'lji_zg_}fn =0, then the iterative schemes (v), (Vi)

n—w

Tespectively are said to be T-stable.
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pectively Ishikawa and Mann)
=0 (respectively lim 1, =0 andlim 4, =0),

H—w

iterative scheme converges, then lim £
n—>wn

Proof of Lemma 3.8.4. Let lim X, = x. . Then from (17.0) Wé have

0 "'<_ §h‘ = ”xI‘H'l - (1 - an )xn - anTxn”
= ]xﬁ_ﬂ =X, +ta,(x, -Tx, )H

o x|+ e, -7,

<l =, o,

X, — x'” + a“x‘ ~Tx, ”
>0 asn—w,.

i, '1]1_1)24" ~=0. -

Now, we state and prove a Stablity theorem for Noor iterative scheme.

Theorem 3.8.5. Let X be an arbitrary Banach space, Bbe a nonempty closed convex

subset of X andT : B — B be an operator satisfying the condition Z, which is defined in

42.2 ie, T:B—> B be a Zamfirescu operator. Let p € F(T) be a Jixed point of T,

where F(T) denotes the set of fixed points of T. Let {X, Yi=o be the Noor iteration
defined by (vii) and (vii.a) and x, € B, where {a, 16, }and{c,} are sequences of
positive numbers in |0, l] with {a,,} satisfying (vii.a). Then the Noor iterative scheme is

T-stable.
Proof. From the definition 3.8.3, we can say that the Noor iteration defined by (vii) and

(vii.a) will be T-stable if lim¢&, = 0, where &, =x,,, — (- a,)x, - a,Tx,
Now, from the lemma 3.8.4, we observed that if the Noor iteration defined by (vii) and

(vii.a) converges to a fixed point of 7" then '111_133 ¢ =0. But in our theorem 3.1 we have

already proved that the Noor iteration defined by (vii) and (vii.a) is strongly convergent

to a fixed point of T'. | .
So, by combining our theorem 3.8.2 and lemma 3.8.4 we obtain '1’1_1)134’,, =(and this

Prove that the Noor iterative scheme is T-stable.

This completes our theorem.
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0.54-

Figure-3.1
Example 3.8.6. Let X =R (set of all real numbers), B=[0,1] and T:B— B be a

Zamfirescu operator defined by Tx=cos(x). Then it is clear from figure-3.1 that
p=739eB is a fixed point of T. Now, let us choose the

sequences {a, }” . {b. I, &le, ¥2 ,such that a, =—1—,b s e o
n+l " w42 " 43

respectively and x, =0.2 € B (arbitrary). Then, all conditions of our theorem 3.8.2 are

satisfied. A few steps of Noor iteration scheme calculating by MATLAB programming

are given below:

ﬁteration Approximated value Iteration Approximated value
Number(n) obtained by Noor Number(») obtained by Noor

iteration Scheme (x,) iteration Scheme (x,)
n=1] 0.55216333579582 n=9 0.72455871969895
=2 0.63964429783674 n=10 0.72664614741441
n=3 0.67586208709879 | seviesirsenrene | rerererieiiiniie,
n=4 0.69472497853525 n=100 0.73876771961646
n=3 0.70593959759843 | scccessssnennsnninee [ eeeeeesieniininiiinen.
n=6 0.71321174442310 n=150 0.73892290777246
n=7 0.71822682756174 | cevvvrvverisnne [ comeriiiie

n=3 0.72184831852270 n=282 0.739
Table-3.1

Under the same condition, if we choose, X, ~09¢ B, then we obtain the following

results:

o~
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[ Tteration Approximated value Wm
Number(7) obtained by Noor Number(») obtained by Noor
iteration Scheme (x,) iteration Scheme (x )
o 0.78933005771077 n=9 0.74283687263002
n=2 0.76527527920347 n=10 0.74229610349214
n=3 0.I5560007767153 | i | oo
n=4 0.75062298329500 n=100 0.73916548378602
n=>5 0.74768373276426 | s |
n=6 0.74578572342660 n=150 0.73912687797785
n=7 0.74448048233644 | ....cooeeees | o
n=2_§ 0.74353983009123 n=282 0.739
Table-3.2

3.9 The multi-step iterative scheme

Definition 3.9.1, (see [15]). Let 7: X — X be a given operator and X be a Metric space
or Normed linear space or Banach space. Then the sequence {x,} ., defined by

v =Q=b1")x, + b1 Tx,,
y:, = (1 — b’; )x" + b;Ty:’H s i= 1,2, ........ .q4— 2, r (Viii)

Knal = (1 —-a, )xn + anTyrll

where, {a,} < (0, 1), {6/} [0, 1), 1<i<g-1 for n=0,12, .. and x, € X is called multi

Step iterative scheme.

3.10 Halpern iterative scheme

Z be a Metric
Definition 3.10.1, (see [52]). Let T: X — X be a given operator and X'be a
, defined by

(ix)

a0
sequence {7, },-o
Space or Normed linear space or Banach space. Then the seq ' obn

Y = (1 -a, )u G anTr"

X X and {a,}o, c[0,1]is called Halpern iterative scheme.
s 1 0 € ,UE nJ n=
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4.1 Introduction

The first theorem on fixed point was established by Polish Mathematician Stefan
Banach [40] in 1922. This theorem is known as Banach fixed point theorem or
Contraction mapping theorem. Banach fixed point theorem has been applied to many
different areas. About this theorem we have already discussed in our Chapter-1 in the
art 1.5.2.

The Mann iterative scheme, known as one-step iterative scheme is invented in 1953, by
W.R. Mann [54] was used to prove the convergence of the sequence to a fixed point of
many valued mapping for which the Banach fixed point theorem 1.5.2 failed. Later, in
1974 Ishikawa [41] devised a new iteration scheme known as two-step iterative scheme
to establish the convergence of Lipschitzian pscudocontractive map when Mann
iteration scheme failed to converge. M.A. Noor [33, 34] introduced and analyzed three-

step iterative scheme to study the approximate solutions of variational inclusions
(inequalities) in Hilbert spaces by using the techniques of updating the solution and the
auxiliary principle. B. Xu and M.A. Noor [8] studied the convergence of Noor iterative

scheme to fixed pbint of an asymptotically non-expensive self map defined in a closed,

bounded and convex subset of a uniformly convex Banach space. A bulk of literature

now exist around the theme of establishing the convergence of the Mann iteration for

certain classes of mapping and then showing that the Ishikawa and Noor iterations also
converges. In fact, proving the convergence of Ishikawa and Noor iterations the
convergence of the corresponding Mann iteration can be obtained. Indeed, in many
Cases, if Mann iterativé sequence for mapping T converges then, Ishikawa and Nof)r
iterative sequences also converge for that mapping. But this cannot be proved in
general. In the light of this fact, recently, in a series of papers [9-17], B. E. RTloades afnd
S.M. Soltuz, proved that Mann and Ishikawa iteration schemes are ec?ulvalent ;)r
Several classes of mapping such as Lipschitzian, strongly pscudocontract.we, szongly
hemicontractive, strongly accretive, strongly successively pscudocontractive, strongly

. i in 28] proved that Mann
Successively hemicontractive mapping and Krishna Kumar in [ 1p
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and Ishikawa schemes are €quivalent for the class of unj
operators. In [51], the following OpPen question was given: «
and Mann iteration equivalent for enough large classes of mappings?”

-We shall give a positive answ i - -, .
N g P er to this question: if Krasnoselskii’s iteration converges,

then Mann (and the corresponding Ishikawg iteration) also converges and conversely,
dealing with maps satisfying Zamfirescu’s condition (Z). Note that B. E. Rhoades and
8M. Soltuz have already given a positive arswer in [16] for the class of
pseudocontractive maps.

In the present chapter, we will show that the equivalencies of Mann iterative scheme to
the Ishikawa iterative scheme, Krasnoselskii’s iterative scheme to Mann iterative
scheme, Mann iterative scheme to Ishikawa iterative scheme to Noor iterative scheme
and Mann iterative scheme to Multi step iterative schemes for the class of Zamfirescu
operator, which is described over the Banach space. In end of this chapter, we will show
that the equivalencies of the 7 —stability of Mann iterative scheme to the T —stability of
Ishikawa iterative scheme and the 7 —stability of Mann iterative scheme to T — stability

of Ishikawa iterative scheme to 7T —stability of Noor iterative scheme for the same

situation.

4.2 Zamfirescu operator

In 1972, T. Zamfirescu [47] obtained a very interesting fixed point theorem which is stated as

follows:
Theorem 4.2.1(Z), (see [47]). Let X be a Banach space and T : X = X be a map for which

there exist the real numbers a, b and ¢ satisfying0<a<1, 0<b,c<1/2 such that for each

pairx,y in X at least one of the following is true:

>

@) -l <a -
() -yl sl T+l

@) |rx-1y|<clx -]+ |y - T}
Then T have q unique fixed point p and the Picard iteration (i), {p. 1., defined by

|
pn+l = Tpn’ = 0, 1, 2,"' converge top for any pO € X.
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Definition 4.2.2, (see [47]). Let X be a Banach space. Then the operator 7: X — ¥
: is

called Zamfirescu operator if it satisfies one of the conditions (2)), (z,)and (z ) Th
1/ 2 3 e

class of Zamfirescu operator T is one of the most studied class of quasi-contractive type

operators, for which all important fixed point iteration schemes, i.e., Picard [51]
[54] and Ishikawa [ ’

| Mann
41] iterations, are known to converge to the unique fixed point of T .

Zamfirescu showed in [47] that an operator satisfying condition Z has a unique fixed
point that can be approximated using the Picard iteration. Later, B.E. Rhoades |3]
proved that the Mann and Ishikawa iterations can also be used to approximate fixed
points of Zamfirescu operator. The class of operators satisfying condition Z is
independent, see B.E. Rhoades [3], of the class of strictly (strongly) pseudocontractive
operators, extensively studied by several authors in the last years. The set of fixed points

of the operator T is denoted by F(T)={pe X :Tp=p}.

4.3 Equivalence of Mann and Ishikawa iterative schemes

Theorem 4.3.1. Let X be an arbitrary Banach space, B be a nonempty closed convex
subset of X and T : B — B be an operator satisfying condition Z i.e., T:B— Bbe a
Zamfirescu operator. Let p € F(T) be a fixed point of T where F(T') denotes the set of

Jfixed points of T. Let {“n };‘;0 be the Mann iteration defined by (v) and {x, };'f:obe the

Ishikawa iteration defined by (vi). Then the following assertions are equivalent:
(i)  The Mann iterative scheme converges o p,

(i) The Ishikawa iterative scheme convergestop.

Proof. First we show that (ii) = (i).

Suppose that the Ishikawa iteration scheme converges to p. Then it is clear that this pis

a fixed point of T i.e., Tp=p.

By setting, 5 =0 V neN (set of all natural numbers), in (vi) we obtain the

convergence of Mann iterative scheme (V).
Conversely, we shall show that (i) = (il)

scheme to the fixed point p implies the converg

j.e., the convergence of Mann iterative

ence of Ishikawa iterative scheme to the

fixed point p.
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Now, by Theorem 4.2.1(Z) we know thatT has 5 unique fixed point in 3,

say p.
Considerx, y € B. Since T is a Zamfirescy Operator, therefore, at least one of the
conditions(z,), (z,) and (z,) is satisfied by T.
If (z,) holds, then '
[~ 7] < bl - 7] + |~ 7
Sb[”"-TxN+[||y"Jfll+llx—Txl|+l|7"x-1"yll o)
. b '
Tx —-Ty|| < —
Dl 2 bl -1
If (z,) holds, then similarly we obtain
oDl g b=l - @
Let us denote A = max{a, —b—, L} 3)
(A-0) (-0

Then we have, 0< A <1and in view of(z,), (1) and (2) we get the following inequality
|7 - 1| < Allx — y|+ 24p — x| holds V x, y € B. 4)
Since {xn }::0 be the Ishikawa iterative scheme defined by (vi) and {u,, }:=0 be the Mann

iterative scheme defined by (v). Therefore, we get

~ | =[A-a,)x, +a,Ty, ~(1~a,)u, +a,Tu,|
=\ -a, ), —u,) +a,Ty, -

s -

Now, according to the supposition Mann iterative scheme {u,}, converge to the fixed

”x n+l

©)

point p, ie., limu, = p. This implies that

h—m

lim[Tu —u,,]=Tp—p=0‘. [Since, pis a fixed point of T']

(6)
= limTu, =limu, = p
@)
= limTu, =p
Again, by Mann iterative scheme we have
u,, =1-a,u, +a, Tu, (8)

:>un+l —u,= an[Tun ~un]

From, (6) and (8) we can write,
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lltl_lgl[uﬂﬂ - ll,,] =0= Ilrnunﬂ =p

H—om

&)
Now, combining (5), (6) and (7) we obtain,
ot =t < A=a,)l, - pll+a, ], - (10)
By setting, x=p & y = Y, in (4) we get,
|75, - Pl < A}y, - p| (11)

where, 4 is given by (3).
We have,
v, =Pl =] ~5,)x, +5 Ix, —(1~b, -5,)p|
=[~06,)x, - py+5, (Ix, - p)| (12)
< —b”)”x” - p” +b, ”Tx" - p”
Again, by setting x = p & y = x,1n (4) we get,

”Tx” - p” <A

., = 2 (13)
From (12) and (13) we obtain,
by, = Pl <=8, - ol +8,4), - | (14)

Now, combining (10), (11) and (14) we obtain,

!x” - p” +Aa,[(1-0b, )”x,, - p”+ Ab, Hx" - p“]
x, = p| (15)

|

—U,,|<d-a,
=[1-(~-A)a,(1-4b,)]
< [1 - (1 - /1)2 a, ]”xn - p“

[Since,[1-(1-)a,(1-Ab)]<[1-(1-2)a,]]

n+l n+l

By (15), we inductively obtain,

s =20, < T 11~ 0~ 2, % - 7], where, n=0,1,2,... (16)
k=0
Using the fact that 0 < 1 <1, a, €[0,1] &Y a, = we obtain,
n=0
(17)

lim[T{1-(1-4)a,]=0
k=0

1—w

Comparing, (16) and (17) we get, -
lim| |=0= limx,,, =limu,, = ’llggx,,+| = p. [By equation (9)]

N—rm

xn+| - ”n+l
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From, which we can say that, {x,, }:’:0 converges to the fixed point p. i.e., the Ishikawa

iterative scheme converges to D.

This completes our proof,

Now, we give an example, which proves our theorem 4.3.1 numerically.

Example 4.3.2. Let X =R (set of al real numbers), B = [0,2]and T:B— Bbe a

x+1

7Zamfirescu operator defined by Ty = . T has a fixed p ointp=1e B. Now, let us
2 B e 0. W, e 3

choose the sequences {a,}” and {5, }7,such that 4 Sl dp =t

n

n+l n+2

respectively, andu, =x, =0.1€ B. Then, all conditions of our theorem 4.3.1 are

satisfied.

4.4 Equivalence of Krasnoselskii’s and Mann iterative schemes

Lemma 4.4.1, (see [66]). Let{a,} be a nonnegative sequence which satisfies the

Jollowing inequality a,,, <(1-1)a, +0o,, (1)
where 4, € (0,1), Vn2n,, Z/l,, =, and ¢, =0(4,). Then }Jiﬂ“n =0. [
n=l1

Theorem 4.4.2. Let X be an arbitrary Banach space, Bbe a nonempty closed convex
subset of X and T :B —> B be an operator satisfying condition Z i.e, T:B— Bbe a
Zamfirescu operator. Let p € F(T) be a fixed point of T where F(T) denotes the set of

fixed points of T. Let {u,, }:;0 be the Krasnoselskii’s iteration defined by (iii) and {xn }Ll
be the Mann iteration defined by (v). If x, =1y € B, then the following assertions are

equivalent:

(a)  The Krasnoselskii’s iterative scheme convergestop;

(b) The Mann iterative scheme converges o p .

Proof. First we will prove (@) = (&) That is, if Krasnoselskii’s iteration converges

to p, then Mann iteration does converge to p .
Suppose that the Krasnoselskii’s iterative scheme converges to p. Use the equation (4)

of the theorem 4.3.1 and x = x,and y =, t0 obtain
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”un+] —-X

n+l

=M, —X, —d.u
” ” " L H a”x” + anun - /1“" + /?,Tx,, _ClnTu-,, +a Tu — a Tx ”
nt Yy ntX,

= ”(1 —a,)u, -x,)+(a, - A, - (a, - Au,Tu, + a,(Tu, -Tx,)|
<(-a,)u, - x,|+|a, - s, =T, |+a,|Tu, -1 I ”
<(l-a, )”u,, — % ” + Ja,, - ll”un ~Tu, " +a,6|u, - x,|+2a,5 e, =T, [
=(l-a,(- (5))“1!,, —%, " + (fa” - ll + 2“,,5)””;: —Tu, ” .

DenOte a” = ”u” - x" “’ ﬂ'” = an (1 - 6) - (0, 1) arld O',, = dan - ;bl + 20’75)"21” B Tun ”

e ,l,i_lg”u” =7 =0, Tsatisfies - condition (4) and peF(T), therefore from the

equation (4) of the theorem 4.3.1 we have,
0< |H" - TM” ”

i

IM" - 1)” + ”p - TM” “

<@+, —p| >0 as n—>w,

Hence lim

u, —Tu”” =0, thatis o,=0(4,) . Lemma 4.4.1 leads to lim u, —x,||=0.
Thus ”p -X, ”S "u” —X, ” + “u” - p” —>0as n—o .
This shows that the Mann iterative scheme converges to -
Now, we will prove (b) == (a). That is, if Mann iteration converges to p then

Krasnoselskii’s iteration does converge to p.
Suppose that the Mann iterative scheme converges to p .

Use the equation (4) of the theorem 4.3.1 and x =x,and y =y, to obtain

X —-Uu X

I

n+l1 n-l n+l n+l

= ”'L!,, -x,—Au, +Ax, —Ax, +a,x, + ATu, — ATx, + ATx, —a,T x”H
< (1 - ;")||xrz —-u, " * Ian - ﬂ'”lxn - Tx" ” ¥ ZHTx" - Tu” “

<=, —u,|+|a, - 2x, - Tx, |+ AS|x, —u, |+245]x, - Tx, |
=(1-A1-8)|x, —u,|+(a, - A|+246)

xn - Txn “ :

i =iA1-6)c(0,)and o, = (a, — A +248)|x, =T, |-

? ]

DenOte an = ”xn _un

: a3 efore from the
Since lim|x, — p| = 0, T satisfies condition (2) and peF(T), therefo

€quation (4) of the theorem 4.3.1 we have,
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0<

<l = pl+|p -1,

X, = Tx,|

<+, - Pl=0as n o,

I-Ience]l,i_g;"x,, -Tx,|=0; that is o,=0(4,) . Lemma 4.4.1 leads to fin

X, —u, ” =0.Use

n—w

0<]p—u,| <[, - P+ [, ~x,|| to deduce limy, = p,

n—=wm

This shows that the Krasnoselskii’s iterative scheme converges to p |

This completes our theorem. -

Theorems 4.3.1 and 4.4.2 lead to the following corollary.

Corollary 4.4.3. Let X be agn arbitrary Banach space, B be a nonempty closed convex
subset of X and T : B — B be an operator satisfying condition Z ie., T:B— Bbe
Zamfirescu operator. Let p € F(T) be a fixed point of T where F(T) denotes the set of

fixed points of T. Let {u" }:’:0 be the Krasnoselskii’s iteration defined by (iii), {x” }:’:O be
the Mann iteration defined by (v) and i, }:’=0 be the Ishikawa iteration defined by (vi). If
Xy =u, € B, then the following assertions are equivalent:

(@) the Mann iteration (v) converges to p € F(T);

(b)  the Ishikawa iteration (vi) converges to p € F(T);

(c) the Krasnoselskii’s iteration (iii) converges to p € F(T). -

4.5 Equivalence of Mann, Ishikawa and Noor iterative schemes

Theorem 4.5.1. Let X be an arbitrary Banach space, B be a nonempty closed convex
subset of X and T : B — B be an operator satisfying condition Z i.e., T:B— B be a
Zamfirescy operator. Let p € F(T)be a fixed point of T where F(T') denotes the set of

Jixed points of T. Let {u,}" be the Mann iteration defined by ™), {x,}0 be the
Ishikawa iteration defined by (vi) and {p, }:’;U be the Noor iteration defined by (vii).

Then the Jollowing assertions are equivalent.
(a) The Mann iterative scheme convergestop € F (1),

(b) The Ishikawa iterative scheme converges o p € F(T),

(c) The Noor iterative scheme converges fo p F(T).

76



Chapter-4 .
Equivalence of Iterative Schemes in Banach Spaces

Proof. We prove our theorem in the following three Steps: step-1: (a) < (b), step-2:

() < (¢) and step-3: (¢) (a).

Step-1: In this step we first prove that (p) = (a).

Suppose that the Ishikawa iteration scheme converges to p . Then it is clear that this pis

afixed pointof T'. i.e., Tp = p.

By setting, b, =0V neN (set of all natural numbers), in (vi) we obtain the convergence
of Mann iterative scheme (v).
Conversely, we prove that (a) = (b) i.e. the convergence of Mann iterative scheme to
the fixed point p implies the convergence of Ishikawa iterative scheme to the fixed
pointp. ‘
Now, by Theorem 4.2.1(Z) we know that 7 has a unique fixed point inB, sayp.
Considerx, y € B.
Since T is a Zamfirescu operator, therefore, at least one of the conditions (z), (z,) and
(z;) is satisfied by T'.
If (z,) holds, then
75~ 73] < il -7+ |y - )
<blllx—TxH+[Hy-xH+Hx—TXH+HTx—TyH (1)

2 -7

Sfe-nls 2o o

If (z,) holds, then similarly we obtain

c 2c @)
Ix-Ty|< -y + x—-Tx
e s e g e
b c ' 3)
Let _ P
e .uS denote A max{a, a-5) (1_6)}
Then we have, 0 < A4 <1and in view of (z,), (1) and (2) we get the following inequality
(4)

72 Ty < A — |+ 24|x — Tx| holds ¥ x, y € B.
Since {xn }io be the Ishikawa iterative scheme defined by (vi) and {u, }:=o be the Mann

iterative scheme defined by (v) , therefore, we get
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”xn+1 T Una " = ”(1 —-a, )xn + anTyn {1~ a, )un * a,,Tun “
=100, ) 4 a1y, 1, )

(5)
s(-a,)|x, - u,|+a, I, - Tu,|

Now, according to the supposition Mann iterative scheme {u_ }“’_0 converge to the fixed

point p. ie., ,1113;2 u, = p .This implies that

Iim[Tu, —u,]1=1Tp - p=0.[Since. pis a fixed point of T']

n—@

= li_mTu,, = limu,, =p (6)
= lim7u, = p (7

Again, by Mann iterative scheme we have

Uy =(1-a)u, + a,Tu,

=,y —, =a,[Tu, —u,] ®)
From, (6) and (8) we can write,
limfu,, —,]=0= limu,,, = p )
Now, combining (5), (6) and (7) we obtain,
o =240 < =@z, = 2|+ 4, |, 2] (10)
By setting, x = p & y = y, in (4) we get,
1y, - p|| < Aly, - p|, where, 4 is given by (3). (11)
We have,
¥, - o] =|@-b,)x, +b,Tx, —(1=b, = 5,)p]
=|a-5,)(x, - p)+8,(Tx, = D) (12)
<(1-b,)x, — p|+ba |7, — 7
Again, by setting x = p & y = x,in (4) we get,
[7x, - p| < A, - 5| (13)
From (12) and (13) we obtain, .

v, - pl|< (-6, — P+ 6.2

Now, combining (10), (11) and (14) we obtain,
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”xn+1 - u"+1 ” < (l - a" )”x" - p“ + /?‘an [(1 - bn )“xn - p" + Mn
=U=0=Da, (-2, )], - |

x, =l

2 (15)
<[-(-2)a,x, - P
[Since, [1~ (1 A)a, (i~ 15, )< 1 - (1-4)a,]]

By (15), we inductively obtain,

b =l <] I1-0-2F gl ] where, n-0,1,5,.. =
Using the fact that 0< 4 <1, a, [0, 1] &ian = Wwe obtain,

n=0
lim] Ti1-(1-4)*a,1=0 0
k=0

Comparing, (16) and (17) we get,

mnxm ~u,,|=0= limx,,, = limu,, = limx,,, = p. [By equation (9)]

From, which we can say that, {x, }:‘;0 converges to the fixed point p , i.e., the Ishikawa
iterative scheme converges to p .

This completes the step-1 of our proof.

Step-2: In this step we first prove that(c) = (b).

Suppose that the Noor iteration scheme converges to p. Then it is clear that this pis a
fixed point of 7', i.e., Tp = p. By setting, ¢, =0V neN (set of all natural numbers), in
(viii) we obtain the convergence of Ishikawa iterative scheme (vi).

Conversely, we prove that (b) = (¢) i.e. the convergence of Ishikawa iterative scheme
to the fixed point pimplies the convergence of Noor iterative scheme to the fixed
point p .

~ Since {x, }:;0 be the Ishikawa iterative scheme defined by (vi) and {p. }r_ be the Noor
Iterative scheme defined by (viii), therefore, we get

|=|(-a,)p, +a,Ta, — (1= a)%, —a,7y,|
= |a-a,)p, - %)+ T, = )|

pn+1 _xn+l

<(1-a,)p, =%l + a7 =Tl
g, =l
[Since T is a Zamfirescu operator]

S(l—an)"pn =X, il
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Now, according to the Supposition, Ishikawsa iterative scheme {

Equivalence of Iterative Schemes in Banach Spaces

=(1-a,)

Pr =X, +a,a(l-b,)p +6,Tr, ~(1~8,)x, ~ b, Tx,

S (1 —an)”pn —xn ”+ana(l_bn)“pn _xn|‘+aanbn

Ir, =%, ”
= {(1 ‘dn_) + a"a(l &= b")}”pn —%,

|+ aa,b,

Tr, ~Tx,| - (18)

x, }o  converge to the

fixed point p, i.e., limx, = p.

li_r)n[Tx,, -x,]=Tp-p=0

= limTx, =limx, = p (19)

H—>

= 1limTx, = p. (20)

Again, by Ishikawa iterative scheme we have,

Xpu =1 ~a,)x, +a,T[(1 =b,)x, +b,Tx,]

= xn+1 = (1 - an)xn + anT[xn —bn (xn _Txn )]

=X, —X

=-a,x,+a,I[x, -b,(x,—Tx )]

n

= lim(x,,, —x ) =0
n—wx

= limx,,, =limx, = p. 1)

n—rw

Combining, (18), (19) and (20) we get,

”pn-l-l —Xp = {(1 —-a, ) + aa, (1 - bn)}“pn - p” + aanbn Trn - .p” (22)
Now, by setting x = p & y =r,in (4) we get,
[T, - p| < 2], - p| [Where, Ais given by (3)] (23)
We have,
I, = Pl =l =c.)p, +¢,Tp, —(=c, +e.)p|
=la-e,)p, - p)+cxTpa =P (24)
<(-¢,)|p, - Al + e[, - 7l
By, setting x = p&y " D in (4) we obtain,
|72, - p|| < A|p, - p| [Where, Ais given by 3)] (25)
From, (24) and (25) we get,
(26)

I, - pl< -, ~ 2]+ .l — Pl

Combining, (22), (23) and (26) we get,

1,0 ~,.0] < {0 =, + aa, (1~ B )p, — 2+ Aaanb,A=clpn =~ P+

P, —D|

aa,b,c,
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=[I-{l-a+{-2)ab, + Aab ¢ %a,l|p, - p
=[={l-a+-Dab, 1+ 2¢,))a 7. - ]
=[1-0-a, ~(-2aap, 0+ 4e,)p, -

<(1-(-a)a,]|p, - p|

(27)
By (27) we inductively obtain,
—_— < < -

[Pos = %ol < T T0-( - @2, 1oy - pf, where, n=0,1,2,... (27.2)

Now, using the fact that 0 < g < 1, a, €0, 1] &ian =00 We obtain,

n=0
LEEH[I—.(lua)ak]zo (28)
k=0 )

Comparing, (27.a) and (28) we get,

Hm”an - xn+1

n—w

= 02 ’lil_glpnﬂ =,171;n:xn+1 =hmxn =p:>’111_1;2pn+1 =p

[By equation (21)]
From, which we can say that, {p,, };":0 converges to the fixed point p. i.e., the Noor
iterative scheme converges to p .
This completes the step-2 of our proof.
Step-3: In this step we first prove that(c) = (a) .
| Suppose that the Noor iteration scheme converges to p . Then it is clear that this pisa
fixed point of 7. ie., Tp=p.
By setting, b, =0 & ¢, =0 VrneN (set of all natural numbers), in (vii) we obtain the
convergence of Mann iterative scheme (V) .
Conversely, we prove that (a) = (c). i.e., the convergence of Mann iterative scheme to

the fixed point p implies the convergence of Noor iterative scheme to the fixed point p .

Since {u, }* be the Mann iterative scheme defined by (v), we get

-a,Tu, '

Dot ]| = [~ ,)P, + 8,70y — (L= 3 29
< (=a)|p, = tall+%|Tqn =Tt
Now, combining (6), (7) and (29) we obtain, "

o, = |+ alla, =il

Ilpn+1 Upa ” -t (1 - aﬂ)

By setting, x = p & y = ¢, in (4) we get,
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I7q, - 2| < g, - 7| [Where, A is given by (3)
) ] (31)
e have,
0= A=k0-00, 48,17, -1 b, 25,
=|1-5,)p, - DP)+b,(Tr, — D)
<(=b)p, - pl+b, |17, - p| >
Again, by setting x=p & y =r, in (4) we get,
|7, = pl| < Ay, - o] (33)
We have,
Ir. - Pl =l -c)p, +¢,2p, - (~c, ~c,)p]
=|a-e,Xp, - p)+e, (Ip, - p)| (34)
s(-c)p, - pl|+e.|Tp, - 2|

Again, by setting x=p & y = p, in (4) we get,

77, - Pl < 4|, - | (35)
From (34) and (35) we obtain,

I, = pl= @ =e)lp, = Pl +c,2p, - (36)
From (33) and (36) we get,

|7, - p| < Al ~c,) 37)

.= 1l

P, —p”+c,,/1

From (32) and (37) we get,

4, - p| < 1-b,)|p, - |+ b, AA-c,)|p, — P+, AP, — 2] (38)

From (31) and (38) we get,
174, - p| < Al -3,)
Combining, (30) and (39) we get,
Pty < (1= a,)|p, — 2| + @ [AA=B,)|P. = 7]
+b A[(1-c,)|p. - 2]+ e AP = PN
- (-a,)|p, - B+ @, A0=)P. ~ 7
vab 2A-c)p, - p|+ @bt lp =7l
[—a, (1~ A)-a,b,A01~A) = ab,c, A" (1= e, -7l
—[1—a, (- A)+b,A+b,c, )P, =Pl

P, - PNl (39)

Pn —p”+c"l

p, — p|+5,Al0-c,)

<[t-a,d-Ap. 7l (40)

By (40), we inductively obtain,
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“pml —Upy

|5g[l—(l—1)ak]|lpo ~p|

» Where, n=0,1,2,... 41)

Using the fact that 0< 4 <1, g, €[, 1] &ian = o We obtain
n=0 . ?
lim| {[1-(1-24)a,]=0
v g ) k ] (42)
Comparing, (41) and (42) we get,
li_r)g”pml —Upn " =0= }}j{_} Puu = }}_{2 Upy = l[fn Ppa =D [By equation (9)]
From, which we can say that, {pn };":0 converges to the fixed point p. i.e., the Noor

iterative scheme converges to p . This completes the step-3 of our proof. -

Now, we give an example, which proves numerically our theorem 4.4.1.

Example 4.5.2. Let X =R (set of all real numbers),B=[0,2]and T:B—> B be a

Zamfirescu operator defined byTx = xT+1 Thas a fixed point p=1e B Now, let us

1
n+2

and

choice the sequences {a,}-,,{b,}",and{c,}7 such that g, =ﬁ, b, =

Cp = respectively and x, =0.1e B. Then, all conditions of our theorem 4.4.1 are

n

n+3

satisfied.

4.6 Equivalence of Mann and Multi step iterative schemes
We will generalize the above Theorem 4.3.1, (see also [19]), by proving that the Mann

iterative scheme and Multi step iterative scheme are equivalent.

Theorem 4.6.1. Let X be an arbitrary Banach space, B be a nonempty closed convex

Subset of X and T : B —> B be an operator satisfying condition Z i.e, T:B— Bbe a

Zamfirescu operator. Let p € F(T)be a fixed point of T whereF (T) denotes the set of

fixed points of T. Let {u }°o ,be the Mann iteration defined by (v) and b, }"=° be L

. tions are
Multi step iteration de fined by (Vii). If x, =4, €B, then the following assertion
€quivalent-

(a) The Mann iterative scheme COnverges topeF(I);
(b) The Multi step iterative scheme (viii) converges top € F(T).
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Proof. We shall use the equation (4) of the theorem 4.3.1:
7 - Ty| < Sl ~ ¥+ 268]x - T, Vx,yVB.

First we will prove the iITlI?>1i(3aﬁ°f1(a)=>(b). Suppose thatlimu,= p. Using

lim]x, - 4| =0.and 0<lp-=,]<u, -

— p .
Using now the definition of Mann and Multi-step iterative schemes and the equation (4)

of the theorem 4.3.1 with x = 4, and y = 3 we have
n

il Xnal

i <[a-a,), -x,)+a,@u,-1)

<(-a,)u, -x,|+a,|Tu,-13) (1)
u, =y u, —Tu,
Using (1) with x =u, and y = y!, we have
7 <]|(1—b‘)(u —x )+b1(u -
Tx,
u, —Tun =TI 2
i, —Tu, N, —Tu,
Tu,|(1+26).
Relations (1) and (2) lead to
[ = %] < (1~ @)t x|+ |
a,,b,,a u, T |1(1+25>+an5||un =] 3
. —Tu, (b)(1+268)+26) .
Denote by
a, =u, —x, ||

L =a,(1-851-b1-6)) (0,1,
o, = a,8u, —Tu,|(B, 1 +25) +26)-

4) of
Since, llm"u —p|| =0, T satisfies condition Z, and p € F(T), from the equation (4) o

the theorem 4.3.1 we obtain
0 <[, —Tu,|
<|lu, - o+ P~ T

<@ +Du,-p| >0 a1
Lemma 4.4.1 leads to ,l,l_{E"”n -

=0.
Hencehm”u —Tu ||_ 0, that is o,= 0(4, ) - |

n—w
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We will prove now that if Multi- -step iteration converges then Mann iteration does, i.e.,
(b):>(a) Using the equation (4) of the theorem 4.3.1 with x= ¥ and y = u,,we

obtain

||xn+1 - un+1 || < “(1 - an )(xn bk,

un”+an Ty; _Tun (4)
207, WS\ =Ty
The following relation holds
n Uy <
'1' Tx,, -x, 1 X, —u, " (5)
|
Substituting (4) in (5), we obtain
||xn+1 _un+1”S(l—an)"xn _unl n”)+2an6 y:: _Tyrln (6)
= (1 - (1 - 5)an)err -, I| + anbrlzé‘“Txn — Xy n yr]a - Tyrlr :

Denote by

a, =[x, —u,|,
A =a,(-68)c(0,1),

Ol =Tl

Since, hrn“x - p“ 0, T satisfies condition Z, and p e F(T), from the equation (4) of

n—om

the theorem 4.3.1 we obtain
0< ||x,, -Tx, ||

<|xs = Al +p T,
< (S +D|x, —p| >0 as n—>.
i< p-1, and the equation (4) of the theorem 4.3.1 to

Note that b [0,1), V221,1%

obtain

<[ =Ty,
<bi-sl+lp- |
<@+, - | <@+ D=8~ pl+2]
<@+, - o+ - 2|l

12 -l
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<@+, - pl+ |2 - A1
<G+l = pll+ A=5Dl, - pl+ 221y - o
<@ +Dlx, = pl+[x, - o] + 12 - o

<@+, - p]+8]y2 -

<@+, ~ o +[; - Pl o
<6 +Di(g -2, - |+
<+l -2, - pl+ A -1
<(8+Dlg -Dx, - p|+|x, - p|l

< (G +DI(p-D|x, - p+8|x, - £
=(5+ 1)“xn —p”[(q —-D+8]>0asn— o,

vt - pll

x, — p||+ 65

Tx, - p[l

7

Hence lim|x, — T, =0 thatis o,=0(4,). Lemma 4.4.1 and (4)

n—x

=0 and lim|y, -7y,

<

lead to lim|x, —u,|=0. Thus, we get |p—u,

n—»co

%, —un”+ %, —p”—)O.

This completes our theorem. =
‘Theorem 4.6.1 and Corollary4.4.3 lead to the following result.

Corollary 4.6.2. Let X be an arbitrary Banach space, B be a nonempty closed convex
subset of X and T :B — B be an operator satisfying condition Z i.e., T:B—> Bbe a
Zamfirescu operator. Let p € F(T) be a fixed point of T where F(T') denotes the set of
Jixed points of T . If the initial point is the same for all iterations, then the following are

equivalent:

(a)  the Mann iteration (V) converges top e F(T);

(b)  the Ishikawa iteration (vi) converges to p € F(T);
(c)  the Multi-step iteration (viii) converges to p € F(T);
(d)  the Noor iteration (vii) convergesto p € F(T);

(e)  the Krasnoselskii’s iteration (iii) converges to p e F(T). -

4.7 T —Stability of the Equivalence of Mann and Ishikawa iterative schemes
Definition 4.7.1. Let F(T) = {p € B:Tp = p}, p € F(I) .Consider

_(l—an)xn —a,,Tx,,“

7,= |*

n+l

B.= "xn+] - (1 -a, )xn - anTyn
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If lim7, =0 & ,111_{2 #, =0 then the iterative schemes (V) and (vi) respectively is said to
be T -stable.

Lemma 4.7.2. Let X be a Banach space, B be a nonempty, convex subset of X and
T:B — Bbe a Zamfirescu operator. Now, if the Mann and Ishikawa iterative scheme

converges, then }gn M, =0 & limy, =0 respectively. -

Theorem 4.7.3. Let X be an arbitrary Banach space, B be a nonempty closed convex
subset of Xand T:B — Bbe an operator satisfying condition Z i.e., T:B — Bbe q
Zamfirescu operator. Let p € F(T) be a Jixed point of T where F(T) denotes the set of

Jixed points of T. Let {un }:’=0 be the Mann iteration defined by (v) and{x, }:=0 be the
Ishikawa iteration defined by (vi). Then the Jollowing assertions are equivalent:

(a) The Mann iterative scheme (v) is T -stable;

(6)  The Ishikawa iterative scheme (vi ) is T -stable.
Proof. We show that(a)< (b). From definition 4.7.1, (@) (b) means
that’lli_l‘)gﬂn =0 & ’11133 #, =0. Now, ,111-133 M, =0=> liﬂ’?n =0is obvious by setting,
b,=0VneN(set of all natural numbers), in Ishikawa iterative scheme (vi).
ie.,(d) = (a).
Conversely, suppose that Mann iterative scheme (v) is 7 -stable. Using definition 4.7.1,
we get

limp, =0= limu, = p

n—eo n—>w

Now, by theorem 4.3.1we get,
limu, = p=limx, =p.
n—yc n—>w

Using lemma 4.7.2 we have,

lim gy, =0 .

Thus, we getlimz, =0 = limu, =0 . ie, (@)= ().

This completes the proof.

4.8 1 —Stability of the Equivalence of Mann, Ishikawa and Noor iterative schemes
Theorem 4.8.1. Let X be a Banach space, B be a nonempty closed convex subset of X

and T:B—s B be an operator satisfying condition Z i.e., T:B— Bbe a Zamfirescu
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operator. Let p € F(T) be a fixed point of T where F(T) denotes the set of fixed points of
T. Let {u, }:":0 be the Mann iteration defined by (v), {x, }:’zo be the Ishikawa iteration

deﬁnea’ by (vi) and{p, }:;0 be the Noor iteration defined by (vii). Then the following
assertions are equivalent: |

(@)  The Mann iterative scheme (v) is T-stable,

() The Ishikawa iterative scheme (vi) is T-stable;

(c)  The Noor iterative scheme (vii) is T-stable.
Proof. We prove our theorem in the following three steps: step-1: (a) < (b) step-2:
(b) < (c) and step-3: (a) = (c).

Step-1: From definition 2.3, (a) < (b) means thatlimsm, =0 < limg, =0 and so,
limpu, =0= limz, =0is obvious by setting, b,=0VneN (set of all natural

numbers), in (vi).
Conversely, suppose that Mann iterative scheme (v) is T-stable. Using definition 4.7.1,
we get

limn, =0 = limu, =p .

n—w

Now, by theorem 4.3.1we get,

limu, =p = limx, =p.

n—w n—yw

Using lemma 4.7.2 we have,

limy, =0 .
Thus, we getlimz, =0 = ’lri_lgyn =p.
This completes the step-1 of our theorem.
Step-2: From definition 4.7.1, (b) <> (¢) means that}’i_rg u, =0 lijf,}fn =0 and so,
lim¢&, =0 = limu, = 0is obvious by setting, ¢, =0 Vn eN (set of all natural numbers),
in (vii). N
Conversely, suppose that Ishikawa jterative scheme (vi) is T-stable. Using definition
4.7.1, we get limp, =0 = plii_x)gx,, =p.
Now, by theorem 4.3.1we get,

limx, = p= li_r,?op” =p -

n—w
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Using lemma 4.7.2 we have,
lim& =0 .

n-w

Thus, we getli_myn =0= lim¢&, =0 .

. n—ow

This completes the step-2 of our theorem.

Step-3: From definition 4.7.1, (¢) © (@) means thatlim¢, =0 < limy, =0 and so,
152 &, =0=% li_{lgﬁn =0 is obvious by setting, 5 & ¢, =0 VneN (sel of &l nacual

numbers), in (vii).
Conversely, suppose that Mann iterative scheme (v) is T-stable. Using definition 4.7.1,
we get

limn, =0= limu, = p.

n—w

Now, by theorem 4.3.1we get,
limu, =p=limp, =p.

Using lemma 4.7.2 we have,

limé&, =0.

Thus, we getlim#z, =0 = limé&, =0.

This completes the step-3 of our theorem. =
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CHAPTER-5
NUMERICAL COMPARISON OF FIXED POINT
ITERATIVE SCHEMES

5.1 Introduction

In the last three decades many numerous papers have been published on the iterative
approximation of fixed points for certain classes of operators, by using Picard,
Krasnoselskij, Mann, Ishikawa and Noor iterative methods. In those papers there are
given various fixed point theorems. The importance of metrical fixed point theory

consists mainly in the fact that for most functional equations y= f(x) we can

equivalently transform them in a fixed point problem 7x = x and then apply a fixed point
theorem to get information on the existence or existence and uniqueness of the fixed
point, that is, of a solution for the original equation. Moreover, fixed point theorems
usually provide a method for constructing such a solution.

Main applications of fixed point theorems: to obtain existence or existence and
uniqueness theorems for various classes of operator equations (differential equations,
integral equations, integro-differential equations, variational inequalities etc.)

In this chapter, first we will state some existence theorems and some existence and
uniqueness theorems, which are based on some fixed point theorems. Secondly, we will
give some examples to realized when a fixed point theorem is valuable and provide a
suitable fixed point iterative scheme. Finally, we will study on the rate of convergence
of different fixed point iterative schemes and compare their rate of convergence at fixed
point.

The main aim of this chapter is to illustrate how, in the absence of theoretical results, we
can perform an empirical study of the rate of convergence of fixed point iterative
methods, by using the MATLAB-7 software package. The empirical approach of the

rate of convergence of fixed point iterative schemes was firstly considered by B.E.

Rhoades [3], [6].
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5.2 Existence theorems obtained by fixed point theorems

Theorem 5.2.1, (see, [A. Constantin, Annali di Mathematica 184(2005), 131-138))

This theorem is based on Schauder fixed point theorem 1.5.3.

Statement. Assume that |f(1,u)| < g(t,

ul), 120, ucR(set of real numbers), where

g€ C(R" xR*, R")is such that the map r > g(t, r) is non-decreasing on R* for every
fixed t20. Then for every c¢>0for which f g(t, 2ct)dt <c,the  equation

u' + ft,u)=0,1>0, where S eC(R" xR, R)has a global solution u,(t)>0for
u. (1)

t>0,and im——~=¢,
o f ]

Theorem 5.2.2, (see, [R.P.Agarwal, D. O’ Regan, Proc. AMS 128 (2000), No.7, 2085-2094])
This theorem is based on Krasnoselskij’s fixed point theorem 1.4.3.
Statement. Consider the singular (n; p) problem
YO O)+ NIV +A(y()] =0, 0 <t <1
yP(0)=0, 0<i<n
(1) =0
under several assumptions on g,h & @,the problem has a solution

yeC"'[0,1]NC"(0,1] withy > 0. -

5.3 Existence and uniqueness theorems obtained by fixed point theorems
Theorem 5.3.1, (see [2]). This theorem is based on a continuation theorem of Leray-

Schauder type and Mawhin’s coincidence degree theory.

Statement. Let the domain Q c R’is assumed to be bounded, with a boundary

T =6Qand H be a homeomorphism which can be lifted to a continuous map h :R— R
, which is an increasing function onto R such that 0<h(0)<land
h(s+)=h(s)+];seR, and S(H(P))=h(S(P))(mod/);Pel’, for each point PeT
we denote its coordinate by S(P) €[0,[. Let the number a(H) is the winding number or
rotation number of H such thata(H)is an irrational number, and H* has no fixed point

on Tfor any keN Also suppose that a(H)has a bounded sequence o g
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quotients. Then there existse >0 such tha the Dirichlet problem for the semilinear

equation of the vibrating string {un TUy th(x yu)=0, (x,3)eQ

Uln=0,
has a unique weak solution for each he F when the condition )~ hiy) <e, holds
u—v

2
for all u,veR, u=v, HereF:Lz(]O,ﬂ[x]O,Fﬂ[), BER andL be the abstract

realisation inF of the wave operator with Dirichlet boundary conditions on

2
]O,?Z'[X]O,?[ m

Theorem 5.3.2, (Classical, see [18])
This theorem is based on Banach fixed point theorem 1.4.2.

Statement. Consider the integral equation
Y®)=f )+ A[K(x, 5, y(s)ds, xe[0,T] )

Using appropriately the contraction mapping principle, we get for equation (1) the
following conclusions:
a) Existence and uniqueness of the solution;

b) A method for constructing the solution{y,},

Yo (@) =F@)+ [K(x, 5, p,(s)ds,

c) Error estimate, rate of convergence;

d) Stability results. -

Remark 5.3.3. In order to prove all the previous theorems, the key tool is to
equivalently write the problem (equation) as a fixed point problem x=7x and then

apply a certain fixed point theorem.

5.4 Some numerical concept of fixed point theorems

From a practical point of view, that is, from a numerical point of view, a fixed point
theorem is valuable if, apart from ensuring the existence (and possible, uniqueness) of
the fixed point, it also satisfies some minimal numerical requirements, (see, e.g., [5])

amongst which we mention:
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(a) it provides a method (generally, iterative) for constructing the fixed point;

(b) it is able to provide information on the error estimate (rate of convergence) of the

iterative process used to approximate the fixed point; and

(c) it can give concrete information on the stability of this iterative method, that is, on
the data dependence of the fixed point.

Only a few fixed point theorems in literature do fulfill all three requirements above.
Moreover, the error estimate and stablity of fixed points appear to have been given

systematically, mainly for the Picard iteration (sequence of successive approximations),

in conjunction with various contractions.
Now, we give two examples to illustrate our above discussion.
Example §.4.1. If T:X — X is an « -contraction on a complete metric space (X, d),
that is, there exists a constant 0 < <1 such thatd(Tx, Ty) <ad(x, y),V x, ye X , then
by Banach fixed point theorem (Theorem 1.5.2) we know that

(2) F(T)={x"}, Where F(T)denotes the set of fixed point of T.

(b) x, =T"(x,)(Picard iteration) converges to x for allx, € X .

(c) Both the a priori and a posteriori error estimates

n

o

d(x,,x )< 1 d(x,, %), n=0,1,2,... (1)

-

o

d(x,, x') < d(x,_, %,), n=1,2,... )

l-«
hold.

Remark 5.4.2. The errors d(x,, x ) are decreasing as rapidly as the term of geometric

progression with ratioe, that is {x,}°,converges to x at least as rapidly as the
geometric series. The convergence is however linear,

d(x,, x)<d(x, ., x), n=1,2,..
If T satisfies a weaker contractive condition, e.g., Tis non-expensive, then Picard
iteration does not converges generally or even if it converges, its limit is not fixed point

of T . More general iterative procedures are needed.

Example 5.4.3. Let X =R with the usual norm, K=[—;—,2] and 7:K —> Kbe a

1
function given by T'(x)=—, V x € K . Then
x
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(a) T is Lipschitzian with constant 7 = 4 :

(b) Tis strictly pseudocontractive;

(¢) F(T)={l}, where FT)={xe K:Tx=x};

(d) The Picard iteration associated to T does not converge to the fixed

T,forany x, € K —{1};

point of

() The Krasnoselskii’s iteration associated to T converges to the fixed point p =1,

forany x, e Kand 4 ¢ (0,1/16);

(f) The Mann iteration associated to T with a, =

,h=20 and
2n+1

x, =2 converges to 1, the unique fixed point of T'.

5.5 Rate of convergence of fixed point iterative schemes

In numerical analysis, the speed at which a convergent sequence approaches its limit is
called the rate of convergence. Although strictly speaking, a limit does not give
information about any finite first part of the sequence, this concept is of practical
importance if we deal with a sequence of successive approximations for an iterative
method, as then typically fewer iterations are needed to yield a useful approximation if
the rate of convergence is higher. This may even make the difference between needing
ten or a million iterations.

Basic definition

Suppose that the sequence {x, }converges to the number&. We say that this sequence

converges linearly to &, if there exists a number y e (0, 1)such that

11m I X+l §|

= H.
k— o lxk —§|

The number u is called the rate of convergence. If the above holds with 4 =0, then the
sequence is said to comverge superlinearly. One says that the sequence converges

sublinearly if it converges, but x =1.

The next definition is used to distinguish superlinear rates of convergence. We say that

the sequence converges with order g for g >1to ¢ if
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| k+1 §|

k—)wlxk—glq = & with ‘u>0

In particular, convergence with order 2 is called quadratic convergence, and

convergence with order 3 is called cubic convergence.

This is sometimes called Q-linear convergence, Q-quadratic convergence, etc., to
distinguish it from the definition below. The Q stands for "quotient,” because the

definition uses the quotient between two successive terms.

Extended definition. The drawback of the above definitions is that these do not catch
some sequences which still converge reasonably fast, but whose "speed" is variable,

such as the sequence {b,}below. Therefore, the definition of rate of convergence is

sometimes extended as follows.

Under the new definition, the sequence {x,}converges with at least order ¢ if there
exists a sequence {g,}such that|x, -£|<¢, V k, and the sequence {s,} converges to
zero with order ¢ according to the above "simple" definition. To distinguish it from that
definition, this is sometimes called R-linear convergence, R-quadratic convergence,

etc. (with the R standing for “root”).

Example. Consider the following sequences:

1 11 1 11
a()—l’al=_’a2=Z’a3_§’a4_E’aS_32’ ’ k_2k>
1 1 1 1 1
bO — 1’ bl ::1, b2 ZZ’ b3 ZZ’ b4 ZE, bS == Ra-..,bk —W:--.
1 1 1 1 1 . o]
— =—.C =l—, =, e s s =—k,...
€= AT 2T 16 T 56° 4 T 65536 P
1 1 1 1 1 1
- ==, d,=—,d,=—,d,==,d. =—,...d, =——,..
do =1, 4, 2772 3773 4t 7 g Ykl

The sequence {a,}converges linearly to 0 with rate 1/2. The sequence {b,}also

converges linearly to 0 with rate 1/2 under the extended definition, but not under the
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simple definition. The sequence {c} converges superlinearly. In fact, it is quadratically

convergent. Finally, the sequence {d, } converges sublinearly.

The problem of studying the rate of convergence of fixed point iterative schemes arises
in two different contexts:

(a) For large classes of operator (quasi-contractive type operators) not only Picard
iteration, but also the Mann, Ishikawa and Noor iterations can be used to
approximate the fixed points.

In such situation, it is of theoretical importance to compare these methods in order to
establish, if possible which one converges faster.

(b) For a certain fixed point iterative method (Picard, Kranoselskij, Mann, Ishikawa,
Noor etc.) we do not know an analytical error estimate of the form (1) and (2) of
example 5.4.1.

In this case we can try an empirical study of the rate of convergence. These two cases
we will describe in the art 5.6 and art 5.7. Now, we give a theorem, which have been
stated and proof by the help of Banach fixed point theorem. By this theorem we are able
to provide some useful information about the rate of convergence of fixed point
iterative schemes towards the fixed point.

Theorem 5.5.1. Let T be a contraction mapping on a complete metric space M, with

contraction constant A and fixed point a. For any x, € M, with T —iterates

{x.}, we have the error estimates
/1"

d(x,, a)<

( n? ) 1 _ 2'

d(x", a)Sﬂd(x,._p a)s (2)

d(x,, T(x,)), )

d(X,1> %,); 3

d d < 4
and d(x,, a)_l_/1

Proof. From the proof of the Banach fixed point theorem 1.4.2, for m > nwe have

n n

A
I—E,d(xo’ x;) =md(xo> T(x,)).

The right side is independent of m . Let m — oo to get

d(x,, x,) <

n

d(x,, a)<

” T3 d(x,, T(x,)).This shows (1) .
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To show (2) from the contraction property and abeing a fixed point we get

d(x,, @=d(I'(x,.), T(a) < Ad(x, ,, a). @

Applying the triangle inequality to d(x,., a)on the right side of (4)using the three

points x,_;,x, and a,

d(x,, @) < Md(x,., x,)+d(x,, a)),

and solving for d(x,, a) shows

A
d(x,, a)< md(xn_l, x,)

This completes our theorem.

5.5.2 Information about the rate of convergence
The inequality (1) of the theorem 5.5.1 tells us, in terms of x,, how far we have to iterate
T starting from x,to be certain that we are within a specified distance from the fixed
point. Inequality (2) of the theorem 5.5.1 shows that the x, ’s are always moving closer

to the fixed point. The inequality (3)of the theorem 5.5.1 tells us, after each

computation, how much closer we are to the fixed point in terms of the previous two

iterations. This can be a much more useful estimate than (1), because two successive

iterations which are nearly equal will tell us that we are very close to the fixed point.
Example 5.5.3. Returning to Example of the definition 1.4.1, how many iterates of

cosine are needed to be sure we have found the solution to cosa =ain [0, 1]accurately
to 3 decimal places? On[0,1], cosine is a contraction mapping with contraction

constant A = 0.8415. Taking x,=0,by ()of the theorem 5.5.1we know

, where cos"means the »n-fold iterate of cosine, not its

[cos” (0) — a| < (A7 /(1= AL~ cos(D)
nth power. For which n is (4" /(1 —/’L))]l - cos(1)| <1/1000? The first such n# is n =47, so
after 47 iterations of cosine starting at x, = 0 we guaranteed to have found the solution

to cosa=a accurate 3 decimal places. This recovers the approximation
a~ 0.739 referred to in Example of the definition 1.4.1, where we did ignored error
analysis.

Actually, the numerical evidence suggests the 3-digit approximation to a is already

achieved (and remains this way) starting from the 21* iterate. While (1) of the theorem
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5.5.1 tells us that the 47™ jterate would be provably sufficient, if we use (2) of the

theorem 5.5.1 we can essentially prove that the 21 iterate is accurate to 3 digits:

0.8415

EREE 1-0.8415

lx20 _x21|-

Since x,, ~0.739184 and Xy ~0.739018,we obtain ]xu -aJS0.00B, which is just
slightly more than 1/1000, s0 we have not proved|x,, — al <1/1000. However, at the next

step we have provable 3-digit accuracy: X5 ~0.739018 and

ey, —a] < %‘;_5]5_];;2, ~x,,| ~ 0.00088 <1/1000 .

Of course, the iterative schemes should converge faster if we began our iteration closer

to the fixed point. A comparison of the graphs of y=cosxand y=xshow the
intersection point occurs where x ~ 0.7,50 let’s start with x, = 0.7 instead of starting at
0. The iterations appear to stabilize in the first 3 digits starting at X5, and we can use
inequality (3) of the theorem 5.5.1 to prove there is 3-digit accuracy at x :

0.8415
lxlé - Cl] < m}—s'xm —xlsl ~ 0.0009.

If we had used inequality (1) of the theorem 5.5.1 instead of inequality (3) of the theorem
5.5.1 with x, =0.7, we could guarantee x,is within 1/10000f g for #>35. This

reinforces why it’s good to have estimates of convergence using points computed along

the way and not only in terms of the initial point x,.

3.6 Theoretical approchement of the rate of convergence

Definition 5.6.1. Let {a,}>,and {b,}~, be two sequences of real numbers that converge

to aand b respectively. Assume there exists

i )34 3)
1"553|b,,—b|

(i)  If 1=0,then it is said that the sequence {a,}" ,converges to a faster than

the sequence {b,},_, converges to b.

(i) If 0</<w then we say that the sequences {a,},, and{b,}  have the

same rate of convergence.
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Remarks on the definition 5.6.1. (@) If I =00, then the sequence {b, }  converges faster

than the sequence {a,}.., that is b, —b=o0(a, —a).The concept introduced by definition

5.6.1 allows us to compare the rate of convergence of two sequences, and will be useful in

the sequel.
(b) The concept of rate of convergence given by definition 5.6.1is a relative one, while
in literature; there exists concepts of absolute rate of convergence. However, in the
presence of an error estimate of the form (1) and (2) of example 5.4.1; the concept given
by definition 5.6.1 is much more suitable. Indeed, the estimate (1) shows that the
sequence {x,},, converges to x' faster than any sequence {6,} to =zero,
where0 <8 <aq.
Suppose that for two fixed point iterations {x, }oeo» and{y,} . converging to the same
fixed pointx”, the following a priori error estimates
d(xn,x')Sa,,, n=90,1,2,..... (4)

and d(y,,x)<b,, n=0,1,2,........ (5)
are available, where {g,}7 and {b )} are two sequences of positive real
numbers(converging to zero). Then, in view of definition 5.6.1, the following definition
appears to be very natural,

Definition 5.6.2. If {a,},_, converges faster then{b,},, then we shall say that the fixed

point iteration {x,}, ,converges faster to x'than the fixed point iteration {y,}ooor,

simply, that {x,}>, is better than{y }=_.
Theorem 5.6.3, (see [71, 78]). Let B be an arbitrary Banach space, K a closed convex

subset of B, and T :K — K an operator satisfying Zamfirescu’s conditions, i.e., there

exist the real numbers a, b& c satisfying 0<a<1,0<b <1, ¢ <1/2such that for each

pair x,y inX, at least one of the following is true:

.
H

(z) [Tx—D|<alx-)]

@) s -n<bihe -7+ -
(z3) ”Tx - Ty" < c[”x - Ty” + “ y — Tx"].

Let {x \* be the Picard iteration associated with T, starting from x, € K, and {y,},_

n=0

s _ d
be the Mann iteration, where{a,}=, is a sequence satisfying (@a,=1()0<a, <1 an
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© D a,,ie.{a,}is divergent Then, 1) T has a unique fixed point peB; 2) Picard
n=0

iteration{x,},, converges to pforany x, € K, 3) Mann iteration {Vn 1o converges to

p for any y, e K and {a, b0 satisfying(v); 4) Picard iteration is Jaster than Mann

iteration. -

The same result we established in our theorem 3.9.2 for Noor iterative scheme. This
result we also established in another theorem 3.7.2, but there we used another
contractive definition.

However, in most of practical problems, we do not know error estimates like those in (D
and therefore there is no possibility of getting information on the rate of convergence of
the corresponding iterative processes as in Theorem 5.6.3. There are several results in
literature concerning Picard and Krasnoselskii’s iterative schemes, see [4], but there is
no systematic study of the numerical aspects related to other fixed point iteration
procedures like Mann, Ishikawa, Noor, Mann type, Ishikawa type and Noor type etc.
For classes of real functions and fixed point methods, it is possible to perform empirical
studies, by using the software package MATLAB-7 and test functions and then by
inferring conclusions for the entire class of mappings and a certain fixed point iterative

method.

3.7 Empirical approachment of the rate of convergence

Some empirical studies on different numerical iterative schemes by using the software

package MATLAB-7 follows:
1) The Krasnoselskii’s iteration converges to the fixed point p =1for any A (0, 1) and

initial guess x, (recall that the Picard iteration does not converge for any initial value
x €[1/2, 2]different from the fixed point). The convergence is slow for A close enough

to 0 (that is, for Krasnoselskii’s iteration close enough to the Picard iteration) or close

enough to 1. If Acloser to 1/2 = the middle point of the interval (0, 1), then the
Krasnoselskii’s iteration converges very fast to the fixed point p =1. In the Example-

5.4.3 if we put A = 0.5, then the Krasnoselskii’s iteration converges very fast to the fixed

point p =1, which is the unique fixed point of 7'. For example, starting with x; =1.5,

only four iterations are needed in order to obtain p with 6 decimal places:
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x, =1.08335, x, =1,00325, x; =1.000053, x, =1

For the same value of 4 and X, =2 again only four iterations are needed to obtajn
p with the same precision, even though the initial guess is for away from the fixed
point: x, =1.25, x, =1.025, x; =1.0003, x, =1

2) The speed of Mann, Ishikawa and Noor iterative schemes also depends on the
position of the sequences {a,}, {b,}and {c,}in the interval (0,1). If we take x, =1.5,
a, =1/(n+1), b, =1/(n+2)and ¢, =1/(n+3) then the Mann, Ishikawa and Noor
iterative schemes converge (slowly) to p=1: after n=35 iterations and we get
X35 =1.000155 for Mann iterative scheme, X35 =1.0007 for Ishikawa iterative scheme

and x5 =1.43369034273599 for Noor iterative scheme.

For a, =1/3/(n+1), b, =1/4/(n+2) and c, =1/3/(n+3) we obtain the fixed point with
6 exact digits performing 7 iterations for the Mann iterative scheme whereas 9 iterations
are necessary for the Ishikawa iterative scheme and 30 iterations are necessary for the
Noor iterative scheme to obtain the same result. Notice that in this case Mann, Ishikawa

and Noor iterative schemes converge not monotonically to p=1. Conditions like that
a, >0(asn—>ow) or/and b, - 0(asn —>®) or/and ¢, - w(asn —>o0) are usually

involved in many convergence theorems. The next results show that these conditions are
in general not necessary for convergence of Mann, Ishikawa and Noor iterations.

n 1 _n+l 1 n+2

=>—,b,=—>—¢, -—)l,thenweobtainthe
2n+1 27" 2n 2 2n-1

If we takingx, =2, a, =

following results:

For the Mann iteration:
x, =1.50000000000000, x, =1.16666666666667 , x, =1.03401360544218

x, =1.00427656442694 , x; =1.00039705636711,...ccvrrrsvcrererre , X =1

For the Ishikawa iteration:
x, =1.50000000000000, x, = 1.25000000000000, x, =1.12142857142857

x, =1.05762056414923, x; =1.02704732308074 ,...coconvvurevnncnnne v Eie =i

For the Noor iteration:
x, =0.50000000000000, x, = 1.10000000000000, x, =1.04545454545455
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Xy =1.02428006775833, x, =1.01410151875570,............. ) Xy =1,
For all combinations of X, 4, a, and b, we notice the following decreasing (with

respect to their speed of convergence) chain of iterative processes: Krasnoselskii’s,
Mann, Ishikawa, Noor, Consequently, if for a certain operator in the same class, all this

schemes converge, then we shall use faster one (empirically deduced).

5.8 Numerical examples and conclusions

Now, we give two examples which represent a function with two repulsive fixed points
with respect to the Picard iterative scheme. By these examples we compare the rate of
convergence of different iterative schemes.

Example 5.8.1. Let K =[0, 1Jand let T: K — K given by T'(x) = 4x(1 — x) be the famous
logistic function. Then T has p, =0 and P, =0.75 as fixed points. It is clear from the
following figure 5.1. Both of them are repulsive fixed points with respect to the Picard
iteration, since T’(p,)=4and7T’ (p,;) =-2. The numerical tests show p, is attractive
with respect to Krasnoselskii’s, Mann, Ishikawa, Noor and Newton-Raphson iterative
schemes while p, stays repulsive. Information regarding the rate of convergence of the
convergent methods is illustrated by the following numerical results obtained by running
the new version of the software package MATLAB-7.

asy

i
354

3__
259

2-
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If we start from x,
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obtain following results:

= 0.3 and the parameter that defines the iteration is A = 0.5, then we

Iteration Approximated value Iteration Approximated value
Number(n) | obtained by Krasnoselskii’s | N umber(n) | obtained by Krasnoselskii’s
iterative scheme (x,) iterative scheme (x,)
n=1 x, =0.57000000000000 | ..eorvrrrrrnnnn |
n=2 x, = 0.77520000000000 n=10 x,, =0.75010404295762
n=3 X3 =0.73612992000000 | .eeererreenns | e
n=4 x, =0.75655028176159 n =30 X3,=0.75000000009925
n=>5 X; =0.74663904673689 | eivvveveee | e
n==6 x, =0.75165788461788 n =45 x4 = 0.75000000000000
n="7 X; =0.74916556052825 | ceviivervrenen | e,

For the Mann iterative scheme:

If we start from x, = 0.3 and the parameter sequence is a, =1/(n+1), then we obtain

following results:

Iteration Approximated value Iteration Approximated value
Number(#») obtained by Mann Number(n) obtained by Mann
iterative scheme (x,) iterative scheme (x,)
n=1 ¥ =0.57000000000000 | omsiommnpmss | s smvmemmoms v
n=2 x, =0.70680000000000 n=10 x,, =0.74968138766394
n=3 x; =0.73733376000000 | .coeviiieiiins | e
n=4 x, =0.74480515709141 n =30 X45,=0.74998829850963
n=>5 x, = 0.74738458761714 | covvneniiens | e
n=6 x, = 0.74850156984869 n =45 x,s = 0.74999653499154
n=7 x, = 0.74906235850897 | cooceniiiin | s
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For the Ishikawa iterative scheme:

If we start from x,

b, =1/(n+2), then we obtain following results:
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= 0.3and the parameter Sequences are a, =1/(n+1) and

Iteration Approximated value Iteration Approximated value
Number(») | obtained by Ishikawa Number(») obtained by Ishikawa
iterative scheme (x,) iterative scheme (x,)
n=1 % =0.39000000000000 | ..ooeerrneerenn | o
n=2 x, =0.43680000000000 n=10 x,, =0.52354622661835
n=3 X3 =0.46416115200000 | weveevenenvenns | e
n=4 x, =0.48185119052987 n =30 x3,= 0.54750839727341
n=>5 Xs =0.49415669749009 | iveovvvvveeee | e
n=06 x, = 0.50318717473604 n =45 x5 = 0.55190280649804
n=7 X; = 0.51008678852677 | ceveveeiviiene | e

For the Noor iterative scheme:

If we start from x, = 0.3 and the parameter sequences are a,=1/(n+1), b, =1/(n+2),

and ¢, =1/(n+ 3) then we obtain following results:

Iteration Approximated value Iteration Approximated value
Number(n) obtained by Noor Number(#») obtained by Noor
iterative scheme (x,) iterative scheme (x,)
n=1 % =0.32250000000000 | cosmessmmmsoemn | msbosmen oo crvessnens o
n=2 x, =0.33169125000000 n=10 x,, = 0.34381918676870
n=3 x; =0.33631622840578 | ceovviiiiiiiiin | e
n=4 x, = 0.33896629632607 n =30 x3= 0.34534557972094
n=>3 X, = 0.34062494599511 | covvvemmiienins | e
n==6 x, = 0.34173163929402 n=45 x5 = 0.34548636537893
n=7 %, =0.34173163929402 | ceovieniiiin | s
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For the Newton-Raphson iterative scheme:

If we start from x, = 0.3, then we obtain following results:

Iteration Approximated value Iteration Approximated value
Number(n) | obtained by Newton-Raphson Number(#) | obtained by Newton-Raphson
iterative scheme (x, ) iterative scheme (x, )
n=1 x; =-0.22500000000000 | ...oorrrrvners |
n=2 x, =-0.03491379310345 n=10 X, =0
n=3 x; =-0.00113941065326 | .eovevvvevvnnen | o
n=4 x, =-0.00000129530487 n =30 X;=0
n=3 X; =-0.00000000000168 | .ccovvevvmcvnvee | e
n=6 xs = -0.00000000000000 n=45 X =0
n=7 =0 | | e,

The previous numerical results suggest that Krasnoselskii’s iterative scheme converges
to the-fixed point faster than Mann, Ishikawa and Noor iterative schemes. Although, the

Newton-Raphson iterative scheme converge to the fixed point p, =0 very fast but this
fixed point not attractive. The same fact s illustrated for all values of x, we tested. We

may infer that, for the function above and, possibly, for all functions possessing similar
properties (i.e., Lipschitzian), one can expect that Krasnoselskii’s iterative scheme
always converges to the fixed point faster than Mann or Ishikawa or Noor iterative
scheme. The next step would be of course to try to prove (or disprove) this assertion, if
possible, but certainly this is not an easy task. Sometimes this approach could be
successful. It is perhaps important to stress on the fact that the conclusions of Theorem
5.6.3 was reached in this way: we first observed empirically the behavior of Picard
iterative scheme, Mann iterative scheme, [shikawa iterative scheme and Noor iterative

scheme iterative scheme for many different sets of initial data and parameters and then

succeeded to prove analytically the observed property.

Example 5.8.2. Let K =[0, 1]and let 7:K — K be given by T(x) =(1-x)°, then T has
P, ~0.2219and p, ~2.1347 as fixed points. It is clear from the following figure.
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Now, we compute some numerical results from example 5.8.1 for different iterative
schemes by using the software package MATLAB-7.

For the Picard iterative scheme:

For x, =2, weobtain x, =1, x, =0,x, =1, x, = 0,x;, =1, x;, =0, x, =1, i.e., the Picard
iteration is repulsive for the functionT .

For the Krasnoselskii’s iterative scheme:

For x, =2& A =0.5, we obtain following results:

Iteration Approximated value Iteration Approximated value
Number(») | obtained by Krasnoselskii’s | Number(») | obtained by Krasnoselskii’s
iterative scheme (x,) iterative scheme (x,)
n=1 % =1300000 | ceomersivrenm | s ez ssmee
n=2 x, =0.757813 n=9 x, =0.221932
n=3 %, =0.379007 | cosersemmescmss | swesman o sdsns
n=4 x, =0218178 n=100 X100=0.22191040
n=>5 X, =0.223276 | s | e
n==6 xs =0.221430 n =500 X550 = 0.21910400

For the Mann iterative scheme:

Forx, =2& a, =1/(n+1), we obtain following results:
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Iteration Approximated value Iteration Approximated value
Number(n) obtained by Mann Number(n) obtained by Mann
iterative scheme (x,) iterative scheme (x,)

n=1 X =1.50000000 | ... |
n=2 x, =1.00520833 n =100 X0 = 0.22209929
n=3 X, =0.75390625 | v | e,
n=4 x, =0.60316942 n=132 X;5,=0.2219994
n=>5 x5 =0.50329203 | v | e,
n=6 x; = 0.43353857 n =500 Xso =0.22191281

For the Ishikawa iterative scheme:

For x; =2, a, =1/(n+1)&b, =1/(n+2), we obtain following results:

Iteration Approximated value Iteration Approximated value
Number(») obtained by Ishikawa Number(n) | obtained by Ishikawa
iterative scheme (x,) iterative scheme (x,)
n=1 L ECN 00 N ([Pl I ————
n=32 x, = 0.69596537 n =100 ¥ =0.22209929
n=3 g =0528B0838 | sesesmivummaton | sssomee g ynen
n=4 x, = 0.42536054 n=111 x,;,=0.22199995
n=>5 x, =0.36491368 | s | sreesieeiiien
n==6 x, =0.325997668 n =500 X5 = 0.22191196

For the Noor iterative scheme:
For x, =2, a, =1/n+1), b, =1/(n+2) & c, =1/(n+3) we obtain following results:

Iteration Approximated value Iteration Approximated value
Number(») | obtained by Noor iterative | Number(#) obtained by Noor
scheme (x,) iterative scheme (x,)
n=1 x. =7.1538¢’% n=6 x, = 0.23177046
= =7,
n=2 ¥, =034642111 | e | e
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=3 X, =0.27324844 * n=100 X100= 022191615
e |

-— ¥o=0.224818052 | T

— x; =0.23729487 n =500 Xg = 0.221904837

For the Newton-Raphson iterative scheme:

For x, =2, we obtain following results:

Iteration Approximated value Iteration Approximated value
Number(7) | obtained by Newton-Raphson Number(#) | obtained by Newton-Raphson
iterative scheme (x ) ' iterative scheme (x, )
n=1 x, =1.83333333333333 n=6 xs =1.33489797668038
n=2 x, =1.69444444444444 | | T
n=3 x; =1.57870370370370 n=100 X100=1.00000001207467
n=4 X, =1.48225308641975 | ccvvervevnee | eeeereiii
n=>5 x; =1.40187757201646 n =500 X550 =1.00000000000000

From, the previous numerical results we can see that Krasnoselskii’s iterative scheme
converge to the fixed point 0.2219 after 9 iterations, Mann iterative scheme converge to
the fixed point 0.2219 after 132 iterations and Ishikawa iterative scheme converge to the
fixed point 0.2219 after 111 iterations, where as Noor iterative scheme converge to the
fixed point 0.2219 very slowly and Newton-Raphson iterative scheme never converge to
the fixed point 0.2219. So, we can suggest that Krasnoselskii’s iterative scheme
converges faster than Mann, Ishikawa, Noor and Newton-Raphson iterative schemes.
This fact is more clearly illustrated if we choosex, = p, ~ 2.1347: after 17 iterations,
Krasnoselskii’s iteration gives x,, =0.22190721, while Mann, Ishikawa and Noor

iterative schemes give x, =1.03862188, x, =2.13397981 and x, =2.13467288

_ — i
respectively. The convergence rate of Mann, Ishikawa and Noor iterative schemes 1i

indeed very slow in this case: after 500 iterations we get for Mann iterative

i i i =0.22191196 and for
scheme x,,, = 0.22233185, for Ishikawa iterative scheme xy,

Noor iterative scheme x,, = 0.221904837, where as Newton-Raphson iteration never
500 — 7

converges to the fixed point 0.2219.
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