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SUMMARY 

This thesis studies the nature of n-ideals of a lattice. The 

topic arose out of a study on the kernels, around a particular 

element n, of a skeletal congruence on a distributive lattice. 

The idea of n-ideals in a lattice was first introduced by 

Cornish and Noor. For a fixed element n of a lattice L, a 

convex sublattice containing n is called an n-ideal. If L has 

a '0', then replacing n by 0, an n-ideal becomes an ideal. 

Moreover if L has 1, an n-ideal bcomes a filter by replacing 

n by 1. Thus, the idea of n-ideals is a kind of generalization 

of both ideals and filters of lattices. So any result 

involving n-ideals will give a generalization of the results 

on ideals and filters with 0 and 1 respectively in a lattice. 

In this thesis we give a series of results on n-ideals of a 

lattice which certainly extend and generalize many works in 

lattice theory. 

Chapter I discusses n-ideals, finitely generated n-ideals and 

other results on n-ideals of a lattice, which are basic to this 

thesis . We have shown that, a lattic e L is modular 

(distributive) if and only if In(L), the lattice of n-ideals 

is modular ( distributive ) . We have also shown that the set 

of prime n-ideals of a distributive lattice Lis unordered by 
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set inclusion if and only if Fn(L), the lattice of finitely 

generated n-ideals is generalized boolean. 

Chapter 2 discusses and generalize the concepts of the 

smallest and largest Congruences 9(I) and R(I) respectively of 

a distributive lattice containing an n-ideal I as a class. 

Also we have given a characterization of distributivity of a 

lattice using 9( I). We have shown that in a distributive 

lattice L, the mapping I ➔ 9(I) is an imbedding from In(L) to 

C(L), the lattice of congruences of L and there is an 

isomorphism if and only if Fn(L) is generalized boolean. Also 

we have shown that there is an isomorphism between C(Fn(L))and 

C(L). Finally, we include a result on the permutability of the 

congruences 9(I) and 9(J) for n-ideals I and J of a 

distributive lattice L. 

Chapter 3 studies then- kernels of skeletal congruences on a 

distributive lattice. Previously, skeletal congruences have 

been studied by Cornish very extensively. This chapter 

generalizes several results of his works. Here we have given 

a description on 9( J )* for an n - ideal J of a distributive 

lattice L. The Skeleton 

SC(L) = {9 e C(L) 9 = ~*for some~ E C(L)} 

= {9 e C(L) 
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We define J+ = {x EL: (x An) V (n A j) V (x A j) = n for 

all j E J}, which is of course an n-ideal. We also define 

Kern9 = { x EL: x ~ n 9} and KnSC(L) = { Kern9: 9 E C(L)}. 

This chapter establishes the following fundamental results 

(i) J+ is then-kernel of 8(J)*. 

(ii) 9(J) is dense in C(L) if and only if then-ideal J is 

both meet and join-dense and then-kernels of each 

skeletal congruence is an annihilator n-ideal. 

(iii) Fn(L) is disjunctive if and only if each dense n-ideal 

J is both meet and join-dense. 

(iv) Fn(L) is generalized boolean if and only if 9(Jf) = 

9(J)* for any n-ideal J. 

(v) Fn(L) is generalized boolean if and only if the map 

9 ➔ kein0 is a lattice isomorphism of SC(L) onto KnSC(L) whose 

inverses the map J ➔ 9(J), where J is an n-ideal. 

In chapter 4, we discuss on standard n-ideal of a lattice. 

Standard elements and ideals have been studied by many authors 

including Gratzer . From an open problem given by him,Fried and 

Schmidt have extended the idea to standard (convex) 

sublattices. In the light of their work we have developed the 

notion of standard n-ideals and showed that an n-ideal is 

standard if and only if it is a standard sublattice . We have 

also given a characterization of a standard n-ideal S interms 
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of the congruence 8( S). Then we · have proved the following 

results:-

(i) for an arbitrary n-ideal I and a standard n-ideal Sofa 

lattice L, if IVS and In Sare principal n-ideals, then I 

itself a principal n-ideal. 

(ii) For a neutral element n of a lattice with the proprerty 

that both (n] and [n) are relatively complemented, every 

homomorphism n-kernel of Lis a standard n-ideal and every 

standard n-ideal is then-kernel of precisely one congruence 

relation. 

(iii) for a relatively complemented lattice L with O and 1, 

C(L) is a boolean algebra if and only if every standard 

n-ideal of Lis a principal n-ideal. 

Finally, we prove two isomorphism theorems on standard 

n-ideals which are extensions of the isomorphism theorems on 

standard ideals given by Gratzer and Schmidt [18]. 
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CHAPI'ER I 
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p\ 
Introduction :- The int.en ·~~:i on of this chapter ia to 

outline and fix the notation for aome of the concepts 

of n-ideals of a lattice which are basic to this 

thesis. The idea of n-ideals in a lattice waa first 

introduced by Cornish and Noor in several papers 

[5], [34], [35]. Since then a little attention has 

been paid in these matters. For a fixed element n of 

a lattice L, a convex aublattice containing n is 

called an n-ideal. If Lhasa ·o·, then replacing n 

by ~o· an n-ideal becomes an ideal. Moreover if L has 

1, an n-ideal becomes a filter by replacing n by 1. 

Thus, the idea of n-ideals 

generalization of both ideals 

is 

anJ 

a kind 

filters 

of 

of 

lattices. So any result involving n-ideals will give 

a generalization of the results on ideals and filters 

with O and 1 respectively in a lattice. 



The set of all n-ideals of Lis denoted by 

2 

In(L), 

which is an algebraic lattice under set-inclusion. 

Moreover, {n} and Lare respectively the smallest and 

largest elements of In(L) while the set-theoretic 

intersection is the infimum. 

For any two n-ideals I and J of L, it is easy to 

check that 

In J = {x: x = m(i, n, j) for some iEI, jEJ }, 

where 

and 

m(x, y, z) = 

I V J = {x 

for 

(x A y) V (y A z) V (z Ax) 

ii A j1 ~ X ~ i2 V j2, 

some i 1, i 2 E I and j 1, j 2 EJ } . 

Then-ideal generated by a1, a2, ..... am ia denoted 

by 

Clearly 

am>n . 

Then-ideal generated by a finite number of elements 

is called a finitely generated n-ideal. The set of 

all finitely generated n-ideals is denoted by Fn(L). 

Of course Fn(L) is a lattice. Then-ideal generated 

by a single element is called a principal n-ideal. 

The set of all principal n-ideals of Lis denoted by 

Pn(L). We have 

<a>n = {x EL a An~ x ~ a V n }. 
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The median operation 

m(x, y, z) = (x A y) V (y A z) V (z Ax) is very well 

known in lattice theory. This has been used by 

several authors including Birkhoff and Kiss [03] for 

bounded ·distributive lattices, Jakubik and Kalib i ar 

[26] for distributive lattices and Sholander [44] for 

median algebra . 

An n-ideal P of a lattice L is called prime if 

m(x, n, y) E P, x, y E L 

y E P. 

implies either x E P or 

Standard and neutral elements in a lattice were 

studied extensively in [18] and [16, chapter-3]. An 

elements of a lattice Lis called standard if for 

a 11 x, y E L, x A ( y V s) = ( x A y) V ( x A s) • An 

element n EL is called neutral if it is standard 

and for all x, y EL, n A (x Vy)= (n Ax) 

V ( n A y). Of course O and 1 of a lattice are 

always neutral. An element n EL is called central 

if it is neutral and complemented in each interval 

containing n. 

A 1 at t ice L w i th O i ::1 ca 11 e d sect ion a 11 Y 

complemented if [O, x] ts complemented for all x EL. 

A distributive lattice with O, which is sectionally 
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complemented is called a generalized boolean 

lattice. For the background meterial we refer the 

reader to the texts of G. Gratzer (15], Birkhoff [04] 

and Rutherford (43]. 

In section 1, we have given some fundamental results 

on finitely generated n-ideals. We have shown that 

for a neutral element n of a lattice L, Pn(L) is a 

lattice if and only if n is central. We have also 

shown that for a neutral element n, a lattice Lis 

modular (distributive) if and only if In(L) is 

modular (distributive). We proved that, in a 

distributive lattice L, if both supremum and infimum 

of two n-ideals are principal, then each of them is 

principal. 

In section 2, we have studied the prime n-ideals of 

a lattice. Here we have generalized the seperation 

property for distributive lattices given by M.H. 

Stone [15, Th. 15, p-74] in terms of prime n-ideals. 

Then we showed that in a distributive lattice, every 

n-ideal is 

containing 

the 

it. 

intersection of prime n-ideals 

We have also shown that, in a 

distributive lattice L, the set of prime n-ideals 

is unordered by set inclusion if and only if Fn(L) is 
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generalized boolean, which generalizes a well known 

result of L.Nachbin [15, Th.22, p-76]. 

l_ Finitely generated n-ideals_ 

We start this section with the following 

proposition which gives some simpler descriptions of 

Fn ( L) . 

1_1_2_ Proposition: Let L be a lattice and n € L. 

For a1,a2, ... ,am € L, 

(i) <a1, a2, ... , am>n c: {y € L (a1] n n 

( am] n ( n ] c: ( y ] G ( a 1 ] V V ( am] V ( n] } . 

(ii) <a1, a2, ... , am>n = {y EL a1 A a2 A ... 

am An Sy S a1 V ... V am V n} 

(iii) <a1, a2, ... ,am>n = {y € L: a1 A ... A am A 

n s y = (y A a1) V ... V (y A am) V (y An), 

when L is distributive} 

(iv) For any a€ L, <a>n = {y EL a An SY 

= (y A a) V (y An)} 

= {y € L: y = (y A a) V (y An) V (a An)} 

whenever n is standard. 

{v) Kach finitely generated n-ideal is two 

generated. 
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and 
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Indeed <ai .... , am>n = <ai /\ ... /\ am /\ n, 

V am V n>n. 

Fn(L) is a lattice and its members are simply 

the intervals [a,b] such that a $ n $ b and 

for each intervals 

[a,b] V [a1, bi] = [a " a1, b V bi] 

[a,bJ n [ai, bi] = [a V ai, b " bi]. 

Proof: (i) Right hand side is clearly an n-ideal 

containing ai,a2, ,am. 

(ii) This clearly follows from (i) and by the 

convexity of n-ideals. 

(iii) When Lis distributive, then by (ii) 

y 5 a1 V a2 V . .. V am V n implies that 

y = y /\ [a1 V a2 V ... V am V n] = (y /\ ai) V 

(y /\ a2) V ... V (y /\ am) V (y /\ n), 

and (iii) follows. 

(iv) By (ii) <a>n = {y EL : a/\ n 5 y 5 a V n}. 

Then y = y /\ (a V n) = (y /\ a) V (y /\ n), when n is 

standard. This proves (iv) 

(v) This clearly follows from (ii) 

(vi) First part is readily verifiable. For 

the second part, consider the intervals [a, b] and 

[a1,b1] where a 5 n 5 b, and a1 5 n 5 b1. 
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Then using 

(ii), [a, b] V [a1, b1] :::: <a, a1, b, b1>n 

= [a A a1 Ab A b1 An, a V a1 Vb V b 1 V nJ 

= [a A a1, b V b1], while 

[a,b] n [a1, b1] = [a V a1, b A b1] is trivial. • 

In general, the set of principal n-ideals Pn(L) is 

not necessarily a lattice . The case is different 

when n is a central element The following theorem 

also gives a characterization of central element of 

a lattice L. 

l _ l _ 3 _ Theorem: 

lattice L. Then 

n is central. 

Let n be a neutral element of a 

Pn(L) is a lattice if and only if 

Proof: Suppose n is central . Let <a>n, <b>n E Pn(L). 

Then using neutrality of n and proposition 

1.1.2. (vi), 

<a>n n <b>n = [a An, a V n] n [b A n,b V n] 

= [(a Vb) An, (a Ab) V nJ 

and <a>n V <b>n = [a Ab An, a Vb V n]. 

Since n is central, the1:-e extst c and d such that 

c An= (a Vb) An, c V n = (a Ab) V n 

and d An= a Ab An, d V n = a Vb V n. 
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Which implies that <a>n n <b>n = <c>n and <a>n V <b>n 

= <d>n and so Pn(L) is a lattice. 

conversely, suppose that Pn(L) is a lattice 

and a . S n ~ b. Then [a,b] = <a>n V <b>n. Since 

Pn(L) is a lattice, <a>n V <b>n = <c>n for some c€ L. 

Thia implies that C is the relative complement of 

n in [a,b]. Therefore n is central. • 

Now, we like to discuss Fn(L) when it is sectionally 

complemented. 

1.1.4. Theorem .. Let L be a lattice. Then Fn(L) 

is sectionally complemented if and only if for each 

a, b EL, with a$ n $ b, the intervals [a, n] and 

[n, b] are complemented. 

Proof: Suppose Fn(L) is sectionally complemented. 

Consider a ~ c ~ n and n S d Sb. Then <n> s: 

[c, d] s: [a, b]. Since Fn(L) ia sectionally 

complemented, so there exists [ c - , d - ] such that 

[ C, d] n [c - d - J <n> and [ C, d] V [c - d - J , = , 

= [a, b]. This implies C V C = n, C I\ C - = a and 

d " d- = n, d V a- = b. That is C is the relative 

complement of C in [ a , n] and d- is the relative 



complement of din [n, b]. Hence 
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[a, n] and [n, b] 

are complemented for all a, be L with a ::Sn ::Sb. 

Conversely, suppose that [a, n] and [n, b] are 

complemented for all a, b E L with a ::S n ::S b. 

Consider <n> ~ [c ,d] ~ [a, b]. Then a ::Sc ::Sn ::S d 

:S b. Since [a, n] and [n, b] are complemented so 

there exist c· and ct· such that c Ac· = a, c V c 

= n and d A ct·= n, d V ct·= b. Thus 

[ C, d] n [c . , d.] = [c V C d " d.] = [n, n] = <n> 

and [c, dJ V (c . d.] = [c " C 
. d V d.] = [a, b], , , 

which implies that [ C, d] has a relative complement 

[c . d. J . Hence Fn(L) is sectionally complemented. , 

• 
The following corollaries follow immediately from 

above theorem. 

1.1.5: Corollary For a distributive lattice L, 

Fn(L) is generalized boolean if and only if [a, n] 

and [n, b] are complemented for each a, be L with 

a ::S n ::S b. 
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1.1.6. Corollary - For a distributive lattice L, 

Fn(L) is generalized boolean if and only if both 

(n]d and [n) are generalized boolean, where (n]d 

denotes the dual of the lattice (n]. 

In lattice theory, it is well known that a lattice 

L is modular (distributive) if and only if the 

lattice of ideals I(L) is modular (distributive). 

Our following theorems are nice generalizations of 

those results in terms of n-ideals when n is a 

neutral element. The following Lemma is needed for 

the next theorem, which is due to Gratzer [17]. 

1.1. 7 _ Lemma: An element 

neutral if and only if 

n of a lattice L is 

m(x, n, y) = (x A y) V (x An) V (y An) 

= (x Vy) A (x V n) A (y V n). 

1.1.8. Theorem: Let L be a lattice with neutral 

element n. Then Lis modular if and only if In(L) 

is modular. 

Proof: First assume that Lis modular. Let 

I, J, KE In(L) with K ~ I. Obviously, 

(I A J) V K ~IA (JV K) . 
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To prove the reverse inequality, let x e I/\ (JV K). 

Then X € I and X €JV K. Then j1 /\ k1 $ X $ j2 V k2 

k1, k2 e K. since I~ K BO 

X /\ k1 E I and x V k2 E I . Then by lemma 1.1.7. 

m(x /\ k1, n, j 1) I\ k1 

= k1 /\ [ ( ( X I\ k1) V n) I\ (n V j 1 ) I\ ( ( X I\ k1) V j 1) ] 

= [(x /\ k1) V n] I\ (n V j 1) I\ [ ( X I\ k1) V (k1 I\ j 1) ] 

as Lis modular. 

On the other hand 

={[(x V k2) /\ n] V (n /\ j2) V [(x V k2) /\ j2]} V k2, 

=[(x V k2) /\ nJ V (n /\ j2) V [(x V k2) /\ (k2 V j2)], 

as L is modular. 

so we have 

Hence x E (I/\ J) V K. 

Therefore 

I/\ (JV K) = (I/\ J) V K with Kc I and so 

In(L) is modular . 

Conversely, suppose that In(L) is modular . Then for 

any a, b, c EL with c 5 a, consider then-ideals 

<a V n>n, <b V n>n and <c V n)n. Then of course 

fhj~hahi Ut,1 1ven;ity libt.U)' 
Do,:u 11 .c,H1t1,.io -iec1iu 1 

Ovi L '1,ei: 1 I'll . J! .--:: . I:~.' I;; 
,. / .c-- T · 
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<c V n>n c <a V n>n. Since In(L) is modular, 

so <a V n>n n [<b V n>n V <c V n>n] 

= [<a V n>n n <b V n>n] V <c V n>n. 

Then by proposition 1.1.2. (vi) and by neutrality of 

n, it is easy to show that 

[a A (b V c)J V n = [(a Ab) V c] V n (A) 

Again, consider then-ideals <a A n>n, <b A n>n and 

<c A n>n, c ~ a implies <a A n>n c <c A n>n. Then 

using modularity of In(L), we have 

<a A n>n V (<b A n>n A <c A n>n) 

= (<a A n>n V <b A n>n) A <c A n>n. 

Then using proposition 1.1.2. (vi) again and the 

neutrality of n, it is easy to see that 

[a A (b V c)J An= [(a Ab) V cJ An ••• ( B) 

From (A) & (B) we have 

with c ~ a, as n 

modular. • 

a A (b V c) = (a Ab) V c, 

is neutral. Therefore L is 

From the proof of above theorem, it can be easily 

seen that the following corollary holds which is an 

improvement of the above theorem. 



1.1.9. Corollary : For a neutral element n 
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of a 

lattice L, the following conditions are equivalent:

(i) Lis modular, 

(ii) In(L) is modular, 

(iii) Fn(L) is modular. 

For the next theorem we omit the proof of only if 

part as it can be proved using the similar technique 

of the proof of above theorem. 

1.1.10. Theorem: Let L be a lattice with neutral 

element n. Then L is distributive if and only if 

In(L) is distributive . 

Proof: First assume that Lis distributive .Let I, 

J, K E In(L). Then obviously, (I/\ J) V (I /\ K) s; I 

/\(JV K). To prove the reverse inequality, 

let x EI/\ (JV K) which implies x EI and 

x E JV K. Then j1 /\ k1 ~ x ~ j2 V k2 for some 

j l., j2 E J, k1, k2 E K. Since L is distributive, 

m(x, n, j 1 ) I\ m(x. n, k1) 

= [ ( X I\ n) V (x I\ j l. ) V (n I\ j 1) ] I\ 

[ ( X I\ n) V (x I\ ki) V (n I\ ki)J 

= (x /\ n) V ( n /\ j1 I\ k1) V (x /\ j 1 /\ k1) 

~ X V (j1 I\ k1) = X 
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Also, m(x, n, j2) V m(x, n, k2) 

= [ ( X /\ n) V (x " j2) V (n " j 2) ] V 

[ ( X " n) V ( X /\ k2) V ( n /\ k2)] 

= (n " ( X V j 2 V k2)) V (x " ( j 2 V k2) ) , 

= [n " (j2 V k2)J V X ~ X 

Then we have 

m(x,n,j1) /\ m(x,n,k1) ~ x ~ m(x,n,j2) V m(x,n,k2) 

and so x E (I/\ J) V (I/\ K). Therefore I/\ (JV K) 

= (I/\ J) V (I/\ K), and so In(L) is distributive. 

Following corollary immediately follows from the 

above proof which is also an improvement of the above 

theorem. 

1.1.11. Corollary : Let L be a lattice with a 

neutral element n. Then the following conditions are 

equivalent 

(i) L is distributive, 

(ii) In(L) is distributive, 

(iii) Fn(L) is distributive. 

We conclude this section with a nice generalization 

of (15 Lemma-5, p-71]. To prove this we need the 

following lemma: 



Lemma: 
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In a distributive lat,tice L, any 

finitely generated n-ideal which is contained in a 

principal n-ideal is principal. 

Proof: · Let [b,c] be a finitely generated n-ideal 

such that bSnSc. Let <a>n be a principal n-ideal such 

that [b,c] c <a>n = [a An, a V n]. Then 

a An Sb Sn Sc Sa V n. Suppose t = (a Ac) Vb. 

Then 

t " n = [ ( a " C) V b] " n =(n " a " C ) V (n " b)' 

as L is distributive . 

= b " n = b 

and t V n = [ ( a " c) V b] V n = (a " c) V n 

= (a V n) " (c V n), as L is distributive. 

= C V n = C 

Hence [b, c] = [t " n, t V n] = <t>n. 

Therefore, [b, c] is a principal n - ideal. • 

1_1_13_ Theorem: Let I and J be n-ideals of a 

distributive lattice L . If IV J and I A J are 

principal n - ideals, then I and J are also principal . 

Proof: Let IV J = <a>n and I A J = <b>n . Th en 

for all i € I, jE J, i,j Sa V n and i,j ~ a An. 



16 

So there exist ii,i2 EI and j1, j2 E J such that 

a An= ii A j1 and a V n = i2 V j2. 

Consider then-ideal [b A ii An, b V i2 V n]. 

Since [b A ii An, b V i2 V n] c I c <a>n, 

[b A ii An, b V i2 V n] = <t>n, by lemma 1.1.12. for 

some t EL. Then 

<a>n =JV I~ JV [b A ii An, b V i2 V nJ 

~ [j1 An, j2 V n] V [b A ii An, b V i2 V n] 

= [j1 An Ab A ii, j2 V n Vb V i2] 

~ [a An, a V n] = <a>n. 

This implies that 

IV J =JV [b A ii An, b V i2 V n] =JV <t>n 

Further, 

<b>n = J n I~ J n [b A ii An, b V i2 V n] 

~ J n [b An, b V nJ = <b>n 

which implies that 

J n I= J A [b A ii An, b V i2 V n] 

= J n <t>n 

Since Lis distributive, In(L) is also distributive 

by lemma 1.1.12., and using this distributivity we 

obtain that I= <t>n. Similarly we can show that J is 

also principal. I 
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2. Prime n-ideala 

1.2.1. Recall that an n-ideal P of a lattice L 

is prime if m(x, n, y) E P, x,y EL implies either 

XE p or y E p_ 

The set of all prime n-ideals of L 

P(L). The following seperation 

is denoted by 

property for 

M.H. Stone distributive lattices was given by 

(15, Th. 15, p-74]. 

1.2.2. 

I 

Theorem: Let L 

be an ideal, let let 

and 

P of 

let 

L 

InD = ~-

such that 

Then 

be a distributive lattice, 

D be a dual ideal of L, 

there exists a prime ideal 

P ~ I and PnD = I. 

From the proof of above theorem given in (15], it can 

be easily seen that the following result also holds 

which is certainly an improvement of above. 

1.2.3. Theorem: Let L be a distributive lattice, 

let I 

of L, 

ideal 

be an ideal, let 

and let InD = ~

p of L such that 

D be a convex aublattice 

Then there exists a prime 

P ::> I and PnD = ~-
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Our next result gives a seperation property for 

distributive lattices interms of prime n-ideals which 

is of course an extension of the above results. 

1. 2 _ 4 _ · Theorem - In a distributive lattice L, 

suppose I is an n-ideal and D is a convex 

sublattice of L with rno = ~- Then there exists a 

prime n-ideal P of L such that P ~ I and PnD =~-

Proof: Let X be the set of all n-ideals of L that 

contains I and that are disjoint from D. Since 

IE X, X is non-empty . Let C be a chain in X and 

a, be T, then a EX, let T = U {XI Xe C } . If 

b E y for some X, Y E C. Since C is a chain, 

either X c Y or Y c X. Suppose X c Y. Then a, b Er 
and BO a A. b, a Vb E Y c T, as Y is an n-ideal. 

Thus, Tis a sublattice. 

If a, b ET and a~ r ~ b, r EL, then a, b E Y 

for some YE Ci and so r E Y c T as Y is convex. 

Moreover 

Obviously 

n e T . Therefore 

T ~ I and T n D = ~. 

T is the maximum element of 

T is an n-ideal. 
I 

which verifies that 
I 

' 
C. Hence by Zorn ~a 

lemma, X has a maximal element, say P . We claim 

that p is a prime n-:-ideal . 



Indeed, if P 
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ia not prime, then there exist a, be 

L such that a, bf P but m(a , n, b) e P. Then by 

the maximality of P, (P V <a>n) n D ~ ~ and 

(P V <b>n) n D ~ ~- Then there exist x, ye D such 

that pi A a An :S x :S p2 Va V n and Pa Ab An 

:$ y :S P'4. V b V n for some Pl. ' p2, pa, P4 E P. Since 

m(a, n, b) = (a " n) V (b " n) V (a " b) E P, taking 

infimum with pi " PS " n, we have 

(pi " PS " a " n) V (pi " pa " b " n) E P. 

Choosing r = (pi " pa " a " n) V (pi " Pa " b " n) ' 

we have r :S X V y with re P. Since 

X :S r V X :S X V Y, y :S r V y :S X V y and D is a 

convex sublattice, so r V x, r V y E D. 

Therefore (r V x) A (r Vy) e D. 

Again, r V X :S P2 V a V n :S P2 V P4 V a V n and 

r V y :S P-4 V b V n :S P2 V P-4 V b V n implies 

(r V x) " (r V y) :S (p2 V P4 V a V n) " 
(p2 V P-t V b V n) = s (say) . 

Since m(a, n, b) = (a V n) " (b V n) " (a V b) E P, 

taking supremum with P2 V P4 V n, we have s E P. 

Also, r :S (r V x) A (r Vy) :S s. Thus , again by 

convexity of P, (r V x) A (r Vy) e P. This implies 

PnD ~ ~. which leads ~o a contradiction. Therefore, 

Pis a prime n-ideal.l 



1.2.5. Corollary 

distributive lattice 

Let 

L 

I 

and 
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be an n-ideal of a 

let a f I, a e L. Then 

there exists a prime n-ideal P of L such that p ~ I 

and a f P. 

Every n-ideal I of a 1.2.6. Corollary -

distributive lattice L is the intersection of all 

prime n-ideals containing it . 

Proof: Let 

n-ideal of 

Ii= n { P : P ~ I, Pis a prime 

L }. If I ~ Ii, then there is an 

a e Ii - I. Then by above corollary, there is a prime 

n-ideal P with P ~ I, a f P. But a f P :2 Ii 

gives a contradiction. I 

For any n-ideal J of a distributive lattice L, we 

define 

J+ = { x e L: m(x, n, j) = n for all j e J }. 

Obviously, J+ is an n-ideal and J n J+ = { n }. We 

will call J+, the annihilator n-ideal of J. 

It is well known from [15, Ch.2, Ex.27, P-79], that 

a distributive lattice with O is generalized 

boolean if and only if the set of prime ideals is 

unordered. 
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Our next theorem is a nice generalization of that 

result. To prove this we need following lemmas. 

1.2.7. Lemma : [8,lemma 3.4] If Li is a sublattice 

of a distributive lattice L and Pi is a prime 

ideal in Li, then there exists a prime ideal P in 

L such that Pi= P n Li. 

1.2.8. Lemma: In a distributive lattice L, a prime 

ideal containing n is also a prime n-ideal. 

Proof - If P is a prime ideal containing n, then 

m(x, n, y) = (x A y) V (x A n) V (y A n) e P 

implies x A y E P and so either x e P or ye P. 

Hence p is a prime n-ideal.e 

1.2.9. Theorem Let L be a distributive lattice 

and n e L be neutral. Then the following conditions 

are equivalent : 

(i) Fn(L) is generalized boolean. 

(ii) For each principal n-ideal <x>n, 

<x>! = { ye L : m(x, n, y) = n; x, ye L} 

such that + <x.>n V <x>n = L. 
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(iii) The set of prime n-ideals P(L) is 

unordered by set inclusion. 

Proof · (iii) · - (i). First suppose that P(L) is 

L. Let unordered. Consider any interval [n, 

Pi, Qi be two prime ideals of [n, b]. 

1. 2. 7., there exist prime ideals P 

b] in 

Then by lemma 

and Q of L 

such that Pi= P n [n, b] and Qi= Q n [n,b]. Since 

n, P and Q contains 

by lemma 1.2.8., they 

they are also n-ideals. Then 

P(L) is unordered, BO 

are 

p 

also prime n-ideals. Since 

and Q are incomparable. 

and are also 

Pi c Qi. Then for any 

This follows that Pi 

incomparable. If not, let 

z E P, by [8, lemma 3.4] z ~ x for some x e Pi c Qi. 

Which implies z E Q. Thus, P c Q which is a 

contradiction. Then by [15, Ch.2, Ex.27], [n, b] is 

complemented. 

Again consider the interval [a, n] in L. Since the 

prime filters are the complements of prime ideals, so 

considering two prime filters of [a, n] and using 

the same argument as above 

also complemented. Hence 

boolean by 1.1.5. Which is 

we see 

Fn(L) 

( i ) . 

that [a, n] is 

is generalized 
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(i) - (iii). Suppose (i) holds, that is, Fn(L) is 

generalized boolean. Then by 1.1.5. the intervals 

[x, n] and [n, y] are complemented for each 

x, y E L with x 5 n 5 y. If P(L) 

unordered. Suppose there are prime n-ideals 

is not 

P, Q 

with Pc Q. Let b E Q-P . Now as Q ia prime there 

exists a e L such that a f Q. Then either a A nf Q 

or a V n f Q. For otherwise a E Q by convexity of Q. 

Suppose a V n f Q. Then a Vb V n f Q. 

Since [n, a Vb V n] is complemented and 

n ~ b V n ~ a Vb V n, so there exists 

t e [n, a Vb V n] such that t A (b V n) = n 

and t Vb V n = a Vb V n. 

So t A (b V n) = m(t, n, b V n) e P. 

This implies either t e P orb V n e P. If t E P 

then a V b V n = t V b V n e Q, which is a 

contradiction to our assumption. Hence b V n e P. So 

by convexity, n ~ (a Ab) V n ~ b V n implies that 

(a Ab) V n e P. But observe that (a Ab) V n = 

m ( a V n, n, b) and a V n f P, b f P. This is 

impossible as Pia prime. Thus again we arrive at a 

contradiction. Therefore a V n e Q. 
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Now, if a An E Q. Then a Ab An E Q. Since b An 

has a relative complement in [a A b A n, n], 

proceeding as above again we arrive at a 

contradiction. Thus a An e Q. Since both a A n 

and a V n belong to Q' so a e Q by convexity. 

Which gives a contradiction. Hence P(L) must be 

unordered which is (iii). 

Now, we shall prove (ii)• (i). Suppose (ii) holds. 

Consider {n} ~ [a, b] c [c, d] . Then we have 

c Sa Sn Sb S d. Since 

+ + <a>n V <a>n = L, so c E <a>n V <a>n . Then 

i A j Sc S ii V ji for some i; ii e <a>n 

and + e <a>n, which implies 

a An A j Sc . That is, a A j Sc and c = c V (a A j) 

= (c Va) A (c V j) = a A (c V j), as L is 

distributive. Again . + J E <a>n implies 

m (a, n, j ) = n, or ( a A n) V ( n A j ) V ( a A j ) = n, 

or a V (n A j) = n. 

Similarly, + de <b>n V <b>n 

d = d A (b Vs) 

b A (n Vs)= n 

implies that 

and 

+ for some s e <b>n. 
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Now, consider an interval 

[p, qJ = [c V (n A j), d A (n Va)]. Then 

[p, q] n [a, b] = [c V (n A j), d A (n V a)] n [a, b] 

= [a V c V (n A j), b Ad A (n Va)] 

= [a V (n A j), b A (n V a)J 

= { n}. 

and 

[p, q] V [a, b] = [c V(nAj), d A (nVa)J V [a, b] 

= [a A {c V (n A j ) } ' b V {d A (n Va)}] 

= [ ( a A c) V (a A n A j ) , (b V d) A (b V n V B)] 

= [ ( a A C) V (a A j ) ' (b V d) A (b V a)J 

= [a A (c V j ) , d A (b V B) ] 

= [ C' d] 

Therefore, [ p' q] ia the relative complement of 

[a, b] in {n} c: [a, b] c [c.d]. 

Hence Fn(L) ia generalized boolean. 

Now, we are to show that ( i ) .,. ( ii ) . Suppo ae ( i ) 

holds, that ia, Fn(L) ia generalized boolean. Suppose 

+ that <x>n V <x>n ~ L. Then there exists re L but 

+ r f I= <x>n V <x>n. 

Thia implies either r Ax An f I or r V x V n f I. 

Suppose r V x V n f I. · Now, n 5 x V n ~ r V x V n. 



Since 

have 

exists 

and 

Aleo, 
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Fn(L) is generalized boolean so by 1.1.5, we 

[n, r V x V n] is complemented. Then there 

S 2: n E L such that B " (x V n) = n 

B V (x V n) = r V X V n. 

n = B " (x V n) = (n V s) " (n V x) 

= n V ( s " X) , as L is distributive 

= (s " n) V ( s " x) V (n I\ X) 

= m ( s, n, X) , 

which implies that se 

so we have 

+ <x>n. As a V x V n = r V x V n 

rVxVne <x>n 

Similarly, for 

contradiction . 

+ V <x>n = I which is a contr.adiction. 

r /\ x /\ n f I , we arrive at a 

Hence + <x>n V <x>n = L.e 
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CHAPTER 2 

" Co:n.grwu.e:n.cea Cc>:r:rea:po:n.d.::l..r.ig to 

:n..-:i.dea.l..a :i.:n.. a. D:i.at:r.:i.°bu.t:i.v-e I..a.tt:i.ce"" 

Introduction - For any ideal I of a distributive 

lattice L, congruences 8( I) and R(I) represent 

the smallest and largest congruences of L 

containing I as a class respectively. These 

notations have been appeared in different instances 

in the literature; c.f.[15], [ 6] , [ 7 ] • [10). 8( I) is 

defined by X - y 8(1) if and only if X V i = y V i 

for some i E I . Again R(I) is defined by X - y R(I) 

if and only if for any r E L .- X " r E I if and only 

if y " r E I. For any a E L, 8a. denotes the 

congruence defined by X - y ( 8a) , ( X, y E L) if and 

only if X V a = y V a. Of course 8a = 8((a]). Again 

Va. denotes the congruence defined by x = y (Va.), 

(x, ye L) if and only if x /\a= y /\a.Also 8(a, b) 

denotes the smallest congruence which identifies a 

and b. Obviously and are mutually 

complementary. Also f9r a, b e L with a ~ b, 

8(a,b)=Va n Sb, while its complement is 8a V Vb. 
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Of course 9a = 9 (0, a)= 9 ((a]) if Lhasa o and 

~a= 9 (a, 1), when Lhasa largest element 1. 

In this chapter we generalize the concepts of 9(!) 

and R(I) for n-ideals. Here we have shown that for 

a neutral element n of a lattice L, every n-ideal 

is a class of some congrunces if and only if L is 

distributive. Then we have shown that in a 

distributive lattice L, the mapping I ~ 9(!) is an 

imbedding from the lattice of n-ideals to the lattice 

of congruences of L. Then we have generalized a well 

known result of J.Hashimoto [20] and showed that for 

a neutral element n ,cf a lattice L, In(L) is 

isomorphic to the congruence lattice C(L) if and 

only if Fn(L) is generalized boolean. We have also 

shown that there is an isomorphism between C(Fn(L)) 

and C(L). Finally, we showed the permutability of 

congruences 9(1) and 9(J) for n-ideals I and J 

of a distributive lattice L. We showed that the 

above congruences permute for all I and J if and 

only if n is complemented in each interval containing 

it, (i,e . n is central as L is distributive). 
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1. Congruences Containing n-ideal as a class. 

2.1.1. We start this chapter with the following 

theorem which gives a description of the smallest 

congruence relation of a distributive lattice L 

containing an n-ideal as a class where n is a fixed 

element of L. 

2. 1. 2. Theorem: Let n be a fixed element of a 

distributive lattice L. Then for each n-ideal l of 

L the relation 8(I) on L defined by x - y 8(I) 

if and only if x A ii= y A ii and x V i2 = y V i2 

for some ii, i2E I, is the smallest congruence of 

L containing I as a class. 

Proof: Clearly 8(1) is an equivalence relation. Now 

suppose x = y 8(1). Then x A ii= y A ii and x V i2 

= y V i2 for some ii, i2 EI. So for any m EL, 

(x V m) V i2=(x V i2) V m=(y V i2) V m=(y V m) V i2 

and (x V m) A ii= (x A ii) V (m A ii) 

= (y A ii) V (m A ii) 

= (y V Ill) A ii, 

which shows that x V m = y V m 8(I). Again clearly 

(x Am) A ii= (y Am) A ii and using distributivity 

of L, (x A m) V i2 = (y A m) V i2. This shows that 

x Am= y Am 8(I). 

Hence 8(1) is a congruence relation on L. 
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For any ii, i2 E I , observe that 

ii V (ii V i2) = i2 V (ii V i2) = ii V i2 

and ii " (ii " i2) = i2 I\ (ii " i2) = ii " i2. 

Thia implies ii - i2 8(I). That is the elements of 

I belong to the same class of 8(!). 

Now, suppose m EL and m = i 8(I) for some i EI . 

Then m A ii= i A ii and m V i2 = i V i2 for some 

ii, i2 EI, which shows that m A ii, m V i2 EI and 

so by convexity of I we get m EI. Hence I is a 

congruence class of 8(!). 

Finally, suppose that ~ is any congruence relation 

on L containing I as a class. Let X - y 8( I) . 

Then X " ii = y " ii and X V i2 = y V i2 for some 

ii, i2 E I . Since L is distributive, 

X = X " (x V i2) = X " (y V i2) 

= (x " y) V (x " i2) 

- (x " y) V (x " ii) ( ~) 

= (x " y) V (y A ii) 

= y " (x V ii) 

- y " (x V i2) ( ~) 

= y " (y V i2) = y. 



Thus, x = y (~) and so 

the smallest congruence 

I as a clasa.e 

31 

9(I) ~~-Therefore 9(I) is 

relation on L containing 

Following theorem gives a characterization of 

distributivity of a lattice when the fixed element n 

is neutral in it. This is also a generalization of 

well known result . 

2.1.3. Theorem: A lattice L with a neutral element 

n, is distributive if and only if for each n-ideal I 

of L, there exists a congruence on L, having I as a 

class. 

Proof: If Lis distributive, then by theorem 2 . 1.2, 

9(I) is the smallest congruence relation on L 

containing I as a class. 

To prove the converse, suppose 

of L is a congruence class 

that every n-ideal I 

of some congruence 

relations on L. If L is not distributive, then it 

contains a sublattice isomorphic to NB or MB which 

are shown in figure 2.1.1. and figure 2.1.2. 

respectively. 
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d d 

b 

C a b 

a 

e 

Figure 2.1.1 Figure 2.1.2 

Here we have either a An¢ b An or a V n ~ b V n. 

For, if a An= b An, a V n = b V n then by 

neutrality of n, a= b, which is impossible. Without 

loss of generality, suppose a An¢ b An. Consider 

I= <b A n>n = [b An, n]. Suppose 8 

congruence which contains I as a class. Since 

b An~ d An~ n, d An EI. 

Thus, d An= b An 8(I) 

so d A n A C - b A n A C 8( I). That is 

C A n - e A n 8( I). Then 

(c A n) V (a A n) - ( e A n) V (a A n) 

and so 

is a 

8( I ) , 

(c V a) A n (e V a) A n 8( I) as,n is neutral. -
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This implies d An= a An 9(1), which shows that 

a An EI.Then b An Sa Ans n. 

Similarly, consider the n-ideal <a A n>n, and 

proceeding as above we obtain b An E <a A n>n. Then 

a An Sb An Sn and so a An= b An, which gives 

a contradiction to our assumption. Therefore L must 

be distributive.• 

Following lemma is needed for our next theorem. 

2.1.4. Lemma - Let L be a distributive Lattice. 

Then for any two n-ideals I & J of L, 

(i) 9(I n J) = 9(1) n 9(J) 

(ii) 9(I VJ)= 9(I) V 9(J) 

Proof· (i) Obviously, 9(I n J) c 9(I) n 9(J). 

To prove the reverse inequality, let 

x - y 9(I) n 9(J). Then x A i1 = y A i1 and x V i2 

= y V i2 for some i1, i2 EI. Also x A ji = y A j1 

and x V j2 = y V j2 for some j1, j2 E J. As 

m(i1, n, j1), m(i2, n, j2} EI n J and since L is 

distributive, 

x A m(i1, n, j1) 

= x A [(i1 An) V (n A j1) V (i1 A j1)] 

= (x A ii An) V (x An A j1) V (x A i1 A j1) 
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= (y A ii An) V (y A ji An) V (y A ii A ji) 

= y A m(ii, n, ji). 

Similarly, using distributivity of L, we have 

x V m(i2, n, j2) = y V m(i2, n, j2), which shows 

that x = y 9(I n J). 

Hence 9(I n J) = 9(I) n 9(J). 

(ii) Obviously, 9(I) V 9(J) ~ 9(I VJ). 

To prove the reverse inequality, let X - y 9( I V 

Then X V p = y V p and X A q = y A q for some 

p,q E I V J. Then there exist ii, i2, i3, i4 

and 

ji, j2, j3, j4 E J such that ii A ji s p 

and is A j3 Sq S i4 V j4. Thus, we have 

XV i2 V j2 = Y V i2 V j2 

and x A is A js = y A is A js. 

s i2 

J) . 

E I 

V j2 

Observe that, is A js - is An 9(J) - i2 An 9(I) 

- i2 V n 9( I) - i2 V J2 9( J), 

and so is A js - i2 V j2 9( I) V 9( J). Then 

X = X A (x V i2 V j2) 

= X " (y V i2 V j2) 

- X A [y V (is A j s)] ( 9( I) V 9( J)) 

= (x A y) V (x A is A js) 

= (x " y) V (y A is A js) 
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= y " [x V (i3 " j3)] 

- y " [x V i2 V j2] ( 9( I ) V 9( J) ) 

= y " (y V i2 V j2) 

= y 

Thus, X - y 9( I) V 9(J) 

Therefore 9( I V J) = 9( I) V 9( J). • 
2.1.5. Theorem: For an element n of a distributive 

lattice L, the correspondence I -+ 9(!) is an 

imbedding from In(L) to C(L), where In(L) is the 

lattice of n-ideala of L. 

Proof: By above lemma , the mapping I .. 9( I) i a a 

homomorphism. So it is sufficient to show that the 

mapping is one-to-one. Suppose for n-ideals I and J, 

9(I) = 9(J). Let i € I. Then for any jE J, it is not 

hard to see that 

m(i, n, j) Vi V n = i V n 

and m(i, n , j) Ai An= i An. 

Thia implies i - m(i, n , j ) 9( I) = 9( J). Then 

i " j1 = m ( i, n, j ) " j1 

and i V j2 = m ( i, n, j ) V j2 for some j 1, j2 E J. 

Now, clearly j I\ j1 I\ n ::5 m(i, n, j ) I\ j1 ::5 j V n 

and j " n ::5 m( i, n, j ) V j2 ::5 j2 V j V n. 
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Then by convexity of J' m ( i, n, j ) " ji 
and m(i, n, j ) V j2 E J and BO i " ji 
and i V j2 E J. Since i " j1 ~ i ~ i V j 2' using 

convexity of J again, iEJ. Therefore 

Similarly J s:: I , and BO I = J. Hence the 

one-to-one and so it is an imbedding. • 

We have already defined 

m(x, y, z) = (x A y) V (y A z) V (z A x) 

for x, y, z EL, we also define 

I s:: 

mapping 

md ( x, y, z) = ( x V y) A ( y V z) A ( z V x) . 

J. 

is 

In presence of distributivity of L, it is easy to 

show that m(x, y, z) = md(x, y, z) for all x,y,z EL. 

Now, we give a describtion of the largest congruence 

of a distributive lattice containing an n-ideal as a 

class. 

Theorem Let n be a fixed element of a 

distributive lattice L. For each n-ideal I define 

the relation R(I) on L by x = y R(I) if and only if 

for any t EL, m(x,n,t) EI if and only if 

m(y,n,t) EI. Then R(I) is the largest congruence 

containing I as a class. 
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Proof: Obviously R(I) is an equivalence relation. To 

prove the sub st i tut ion property, Let x = y R (I). 

consider any r EL. Suppose m(x Ar, n, t) e I for 

some t EL. Then it is easy to check that 

m(x /\ r, n, t) A n ~ m(x, n, (t /\ r) V (t /\ n)) 

~ m(x /\ r, n, t) V n. 

Then by convexity of I, 

m(x, n, (t Ar) V (t An)) EI. Since x = y R(I) 

so m(y, n, (t A r) V (t /\ n)) E I. Then using 

distributivity of L, a routine calculation shows that 

m(x /\ r, n, t) /\ m(y, n, (t /\ r) V (t /\ n)) 

~ m(y A r, n, t) 

~ m(y, n, (t /\ r) V (t /\ n)). 

Then by the convexity of I, m(y /\ r, n, t) e I. 

Hence x /\ r - y /\ r R(I). 

Since in a distributive lattice 

m(x, y, z) = md(x, y, z), a dual proof of above 

shows that m(x V r, n, t) EI for some t EL if and 

only if m(y V r, n, t) EI . Therefore 

x V r = y V r R(I), and so R(I) is a congruence. 

Now, for any i EI, and any t EL, 

i /\ n ~ m(i, n, t) ~ i V n. 

So by convexity m(i, n, t) EI. Therefore, for any 

i1 = i2 R(I). 
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Moreover, if X - i R(I) for X E L and i E I , 

then m ( i, n, x) e I implies that X = m(x, n, x) E I . 

Therefore, R(I) is a congruence containing I as a 

class. 

Finally, let ~ be a congruence of L containing I as 

a class. Let X - y ~- Suppose m(x, n, t ) E I for 

some t E L. Then X - y ~ implies 

m(x, n, t) = (x I\ n) V (t I\ n) V (x I\ t) 

- (y I\ n) V ( t I\ n) V (y I\ t)~ 

= m(y, n, t) . 

Since m(x, n, t) E I and I is a class of ~. BO 

m(y,n,t) E I . Therefore, X - y R(I) and BO R(I) is 

the largest congruence containing I as a clasa.e 

In lattice theory it is well Known that the lattice 

of ideals is isomorphic to the lattice of congruences 

if and only if the lattice is generalized boolean, 

c.f.[15.Th.8,p-91). Our next theorem is a 

generalization to that result. 

2.1.7. Theorem For a neutral element n of a 

lattice L I (L) ~ C(L) if and only if Fn(L) is , n 

generalized boolean. 
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Proof - First suppose that Fn(L) is generalized 

boolean. Then by 1.2.8., L ie distributive. Let us 

define a map f : In(L) ➔ C(L) given by f(J)=8(J). 

Then by 2.1.5, f is a homomorphism and one-to-one. 

For ontoness, let~ e C(L)_ Consider 

I ={x EL: x = n~}. Then clearly I is an n-ideal. 

Since 8(I) is the smallest congruence containing I 

as a class, so 8(I) ~ ~- Now, let x = y (~). Then 

x A y - x Vy (~). Consider [n, x Vy V n] E Fn(L). 

Here n 5 (x A y) V n 5 x Vy V n. As Fn(L) is 

generalized boolean so by 1.1.5. there exists t e L 

such that 

and 

t A [(x A y) V n] = n 

t V [(x A y) V n] = x Vy V n. 

Now, n = t A [(x A y) V n] - t A [x Vy V n](~) = t. 
This implies t e I. Also t V [(x A y) V n] 

= x Vy V n. Then 

(x A y) V (t V n) = (x Vy) V Ct V n) ... ( i ) 

Again consider, x A y An S (x Vy) An Sn. Since 

[x A y An, n] is complemented we can similarly show 

that there exists an r eI such that 

(x A y) A (r An)= (x Vy) A (r An) ... (ii) 

combining (i) and (ii) we have x A y = x Vy 8(I), 

as t V n, r An e I. This implies ~ ~ 8(I), and so 

~ = 8(I). Thus f is onto. Therefore In(L) ~ C(L). 
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Conversely, suppose that In(L) ~ C(L) . Then In(L) 

is distributive and so by 1.1.10., both L and 

Fn(L) are distr i butive. Consider the interval [n, b] 

with n :Sa< b. 

Let I = { X E L x = n 8(a, b)}. Then I is an 

n-ideal. As 9(1) is the smallest congruence having 

I as a class and since In(L) ~ C(L), so we have 

9( I) = 9(a, b) . Then a - b 9( I) and a V ii = b V ii 

and a " i2 = b " i2 for some i 1, i2 E I . Then 

i1 - n 9(a, b) and i2 - n 9(a, b) . 

But 9(a, b) = 9b n Va. Then ii V b = n V b = b and 

ii " a = n " a = n. This implies ii is the relative 

complement of a in [n, b] . 

Again, considering any interval [c, n] with 

c < d :Sn and the principal congruence 9(c, d), we 

can similarly show that d has a relative complement 

in (c, n]. Therefore by (1.2.8) Fn(L) is 

generalized boolean.• 

Now, we describe an isomorphism between C(Fn(L)) 

and C(L) in presence of distributivity. We prove 

th i s with the help of the following lemma . 



Lemma Let n 
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be a neutral element of a 

lattice L. For each 9 E C(Fn(L)), define a relation 

p(9) on L given by X = y p(8) if and only if 

<x>n = <y>n9. Then p(9) is a congruence relation on 

L. 

Moreover, for 

indexed set 

9i E C(Fn(L)), ieA where A is an 

(ii) 

Proof - Clearly p ( 8) is an equivalence relation . To -
prove the substitution property, suppose X - y p ( 8) 

and teL. Then <x>n - <y>n(8), and so 

<x>n " [n, X V n] - <y>n " [n, X V n](9). Then 

by 1.1.2, [n, X V n] - [n, (y V n) " (x V n)](9). 

Similarly, [n, y V n] - [n, (y V n) " (x V n)](8). 

Thus, [n, X V n] - [n, y V n](9). Then 

[n, X V nJ V [n, t V n] - [n, y V n] V [n, t V n](8). 

This implies 

[n, x Vt V n] = [n, y Vt V n](9) ... ( i ) 

Again, <x>n n [t /\ n, n] = <y>n n [t /\ n, n](8). 

This implies 

[(x /\ n) V (t /\ n), n] - [(y /\ n) V (t /\ n), n](8) 

... ( ii ) 
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Taking supremum of ( i ) and (ii) ' we have 

[ ( X I\ n) V ( t I\ n) ' X V t V nJ 

- [ ( y /\ n) V (t I\ n) ' yVtVnJ(9). 

Thus, [ ( X V t ) I\ n, X V t V nJ 

- [ ( y V t) I\ n, y V t V nJ(9), 

as n is neutral. 

That is, <x V t>n - <y V t>n(9), and 80 

X V t - y V t p ( 9) . Similarly, a dual proof of above 

shows that X I\ t - y I\ t p ( 9) , and so p( 9) is a 

congruence of L. 

For the second part, the proof of ( i ) is trivial. 

For the proof of (ii), since p is order preserving, 

obviously V p(9i) c p(V 9i). 

To prove the reverse inequality, assume that 

x = y p(V 9i). Then <x>n = <y>n (V 9i). Thus 

<x>n n <Y>n = <m ( x, n, y) >n = <x>n ( V 9i) BO by 

using 1.1.12. we have 

<m(x, 

with 

n, y)>n = <zo>n, 

- <Zj>n (9.1. ); 
k 

<zi>n, <zr>n = <y>n, 

EA; j = 1, 2, .. - , r ; 

k = 1, 2, ' r. 



This implies Zj-1 = Zj p (8.1. ), which shows that 
k 

m(x, n, y) - x( VP (8i)). Similarly, 

m ( x, n, y) - Y ( V P ( 8i) i. Hence x = y ( V p ( 8.1.) ) . 

So we have p ( V 8.1. ) c: V p ( 81. ) . 

Hence p ( V 8.1. ) = V p ( 8i ) . I 
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2.1.9. Theorem: Let L be a distributive lattice. 

The map p: C(Fn(L)) ➔ C(L) is an isomorphism where 

for each 8 e C(Fn(L)), p(8) is defined by x = y p(8) 

if and only if <x>n = <y>n(8). 

Proof : By above lemma, it is sufficient to prove 

that p is one - one and onto. Suppose p(8) = p(~). 

Let [a, b] = [c, d](8). Then 

[a, 

1.1.2. 

b] n <c>n [c, d] n <c>n (8).Thus by 

we have [a V c, n] = [c, n](8). That is 

<a V c>n = <c>n(8), and so 

a V c = c p(8) = p(~)- Then 

<a V c>n = <c>n(~), and so 

[a V c, n] = [c, n](~) 

Similarly, considering 

we get 

[a, b] n <a>n = [c, d] n <a>n(8), 

[a, n] = [a V c, n](~). Therefore 

[a, n] = [c, n](~). 
'f 
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Again considering 

[a, b] V <b>n - [c, dJ V <b>n(8) and 

[a, b] V <d>n - [c, d] V <d>n(8), we obtain 

[n, b] - [n, d] (~). Therefore [a, b] _ [c, d] (f}, 

and so 8 ~ ~- Similarly ~ c 8. Hence 8 =~.and 60 

p is one-to-one. 

For ontoneas, let ~ E C(L). Define 8 E C(Fn(L)) by 

8 = V { 8 (<a>n, <b>n) . a - b ~ } . . 

If X - y ( ~) , then <x>n - <y>n 8 (<x>n, <y>n), 

and so <x>n - <y>n ( 8) - Thia implies X - y p ( 8) 

and so ~ C p ( 8) 

To prove the reverse inequality, let 

x = y p ( 8 ( <a>n, <b>n) : a = b ~ ) . Then 

<x>n = <y>n 8 (<a>n n <b>n, <a>n V <b>n). 

This implies <x>n n <a>n n <b>n = <y>n n <a>n n <b>n 

and <x>n V <a>n V <b>n = <y>n V <a>n V <b>n. Then by 

some routine calculation, we get 

(x An) V (a An) V (b An) 

= (y A n) V (a A n) V (b A n) 

(x V n) A (a V n) A (b V n) 

= (y V n) A (a V n) A (b V n) 

and x A a Ab An= y A a Ab An 

x V a V b V n = y V a V b V n 
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Now, X /\ n = ( X /\ n) I\ [ ( X /\ n) V (a I\ n) V (b I\ n)] 

= (x /\ n) I\ [ ( y /\ n) V (a I\ n) V (b " n)J 

- (x I\ n) I\ [ ( y I\ n) V (b A n) J 9(a, b) 

= (x I\ y /\ n) V ( X /\ b /\ n) ' 

as L is distributive 

- (x I\ y I\ n) V (x I\ a /\ b I\ n) 9(a, b) 

= (x I\ y I\ n) V (y I\ a I\ b I\ n) 

= (y I\ n) I\ [ ( X I\ n) V (a I\ b I\ n)] 

- (y I\ n) I\ [ ( X I\ n) V (a I\ n) V (b I\ n)] 9(a, b) 

= (y I\ n) I\ [ ( y /\ n) V ( a /\ n) V (b /\ n) ] = y I\ n. 

Thus, X /\ n - y I\ n 9(a, b) . Similarly, we can show 

that x V n - y V n 9(a, b) . Hence by distributivity 

x = y 9(a, b). Also 9(a, b) ~~-Thus x = y (~)

Therefore by lemma 2.1.8. (ii), p(9) ~ ~-

Hence p(9) = ~ and so p is onto. • 

Since the lattice of ideals of a lattice L is 

isomorphic to the lattice of congruences if and only 

if L is generalized boolean, so using 2.1.7. and 

above theorem, we obtain the following corollary : 

Corollary For a fixed element n of a 

distributive lattice L, In(L) ~ I(Fn(L)) if Fn(L) 

is generalized boolean . 
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We now turn our analogue to the permutability of the 

congruences 8( I) and 8(J) in a distributive 

lattice L, where I and J are n-ideals of L. In 

a lattice L, two congruences 8 and ~ permute if 

for a, b, c e L with a = b ( 8) and b = C (~) 

imply that there exists some de L such that 

a = d (~) and d = c ( 8). 

It is well known in lattice theory that for any two 

ideals I and J of a distributive lattice L, 8(I) 

and 8( J) always permute. But this is not true in 

general for n-ideals. For example, consider the 

3-element chain L = {0, n, 1}. 

Let I = {O, n} and J = {n, l}. Here O = n 8( I) 

and n = 1 8(J). But there exists no x EL such that 

0 = X 8(J) and x = 1 8( I) . 

The following theorem shows that the permutability of 

those congruences hold when n is complemented in 

each interval containing it (i.e., n is cetral when 

Lis distributive). 

2.1.11. Theorem · : Let 

and n e L . Then for 

L be a distributive lattice 

I, J e In(L), the following 

conditions are equivalent 



(i) . 8(I) and 8( J) permute ; 

(ii) n is complemented in each interval 

containing it ; 

(iii) Pn(L) is a lattice . 

Proof - follows from 1 . 1.3. 
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(ii) .. (iii) 

(ii) .. (i). Suppose (ii) ho 1 de. That i a 

n is complemented in each interval containing it . 

Let 

and 

and 

x, 

y -

for some 

interval 

let t 

Y, 

z 

X 

y 

z E L with X ~ y ~ z, and X - y 8( I) 

8( J). Then 

I\ i1 = y I\ i l., X V i2 = y V i2 

I\ j1 = z I\ j 1, y V j2 = z V j2 

ji, j2 e J. Now consider an 

[ x /\ ( z V j 1) /\ n, z V ( x /\ i2) V n] and 

be the relative complement of n in this 

interval such that t /\ n = x /\ (z V ji) /\ n and 

t V n = z V (x /\ i2) V n. 

Now, t /\ n /\ j1 = x /\ (z V ji) /\ n /\ ji = x /\ n /\ ji, 

and t V n V j2 = z V (x I\ i:2) V n V j2 

= y V j2 V (x I\ i2) V n 

= j2 V [ ( y V x) I\ (y V i2)] V n 

= j2 V [x I\ (x V i2)] V n 

= X V n V j2 , 

which implies x - t 8(J). 
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Again, t " n " ii = X " ( z V j i) " n " ii 
= y " ii " ( z V j i) " n 

= ii " [(y " z) V (y " j i) ] " n 

= ii " [z V (z " j 1) ] " n 

= z An A i1, 

and t V n V i2 = z V (x A i2) V n V i2 = z V n V i 2 , 

which implies that t - z 9(1). 

Moreover, t An ::5 x An and t V n ::5 x V n implies 

t ::5 x, and t An~ z An and t V n ~ z V n implies 

z ::5 t. Thus, z ::5 t ~ x. 

Now, for any x, y ,z e L, suppose x - y 8(1) and 

y - z 8(J). Then x = x Vy 8(1) and 

x Vy - x Vy V z 8(J). Then by above there exists 

u with x ::5 u ::5 x Vy V z such that x = u 8(J) and 

u - x Vy V z 8(1). Similarly, z = y V z 8( J) 

y V z - y V z V X 8( I) implies there exists V 

z ::5 V ::5 y V z V X such that z - V 8( I) and 

V - y V z V X 8( J). Set s = u " V. Then 

s = u " V - u " (y V z V >:.) 8(J) = u 8( J). 

But u - X 8( J). Thus, B - X 8( J) . 

and 

with 

Again, s = v A u = v A ( x V y V z) 8( I) = v 9( I ) . 

But v = z 8(1). Thus, s = z 8(1). Therefore 8(!) 

and 8(J) permute which is (i). 
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Now we are to show that (i) - (ii). Suppose (i) 

holds, 8(I), 8(J) permute for all n-ideals I and 

J. Let x ~ n ~ y. Then 8(x, n), 8(n, y) permute. 

Now, x - n 8(x, n) and n = y 8(n, y), so there 

exists t with x ~ t ~ y such that x = t 8(n, y) 

and t = y 8(x, n). Thia implies x An= t An and 

t V n = y V n, and so t is the relative complement 

of n in x ~ n ~ Y, which is (ii) • 

t · 
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CHAPTER 3 

''TLl.e :n.-k.e:r:n.ela of Skeleta.l 

I...a.ttice" 

Introduction: For any 0 E C(L), denotes the 

pseudocomplement of 0. By its very definition 

0 n ~ = ~, ( the smallest congruence) if and only if 

~ E C(L). A subset T of a lattice L is 

called join-dense if each z EL is the join of its 

predecessors in T, while a meet-dense subset of L 

is defined dually. 0 E C(L) is called dense if 

0* =~-A distributive lattice L with O is called 

disjunctive if O 5 a < b implies that there is an 

element x EL such that x A a= 0 and O < x 5 b. 

For a distributive lattice L with 0, I(L) is 

paeudocomplemented. The pseudocomplement J* of an 

ideal J is the annihilator ideal 

J* = {x E L x A j = 0 for all j E J}. For any 

n-ideal J of a distributive lattice L, we already 

defined J-+- = {x EL: m(x, n, j) = n 
t-

for all j E J }. 



is an n-ideal and Obviously 

call J+, 

J+ 

the annihilator n-ideal 
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J n J+ = {n}. We 

of J. We define 

then-kernel of a congruence 9 by 

Kern9 = {x e L x - n (9)}, which is clearly an 

n-ideal. 

In [9], Cornish has studied the skeletal congruences 

extensively and gave several characterizations of 

disjunctive and generalized boolean lattices in terms 

of skeletal congruences. In this chapter we have 

extended several results of [9]. 

In section 1, we have studied the skeletal 

congruences 9* of a distributive lattice L, where 

* represents the pseudocomplement. Then we have given 

a neat description of 9(J)*, where 9(J) is the 

smallest congruence of L containing n-ideal J as 

a class and showed that J+ is the n-kerne 1 of 

9(J)*. We have also shown that then-kernels of the 

skeletal congruences are precisely those n-ideals 

which are the intersection of relative annihilator 

ideals and dual relative annihilator ideals. Finally, 

we have shown that for any n-ideal J, 9(J) is dense 

in C(L) if and only if J is both meet and join

dense. 
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In section 2, we have shown that Fn(L) is 

disjunctive if and only if each dense n-ideal J is 

both meet and join-dense. Moreover, then-kernels of 

each skeletal congruence is an annihilator n-ideal. 

We have also shown that Fn(L) is generalized 

boolean if and only if 8(J+) = 9(J)• for any 

n-ideal J_ Finally, we show that Fn(L) is 

generalized boolean if and only if the map 

is a lattice isomorphism of S C(L) onto 

whose inverses the map J ... 9( J) where 

n-ideal. 

9 ..,. Kern9 

KnSC(L) 

J is an 
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1. Skeletal congruences. 

For any 8 E C(L), the existence of 8* is guaranted 

by the fact that C(L) is a distributive algebraic 

lattice. The skeleton 

SC(L) = { 8 E C(L) : 8 =~*for some ~ e C(L)} 

= { 8 e C ( L ) 8 = 8* * } . 

The kernel of a congruence 8 e C(L) is 

Ker8 = { x e L : x = 0 (8) }. Of 

Ker (8 (J)) = J. For a, b EL, 

the relative annihilator. That is, 

<a, b> = { x e L : x A a Sb}. 

of distributivity, it is easy to 

course, 

<a, b> denotes 

In the presence 

show that each 

relative annihilator is an ideal. Also note that 

<a, b> = <a, a Ab>. Dual relative annihilator ideal 

<a, b>d can be defined dually. For details on 

relative annihilator ideals, we refer the reader to 

consult [33] . 

The following theorem gives a neat description of the 

pseudocomplement 8* of 8 e C(L), which is due to 

Cornish (9, Th.1.2., 1.3.]. This could also be 

deduced from Paperts description in [40, Th.2], also 

c.f.[2, 3.1. 3.2.J. 
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3.1.1. Theorem For a congruence 8 on a 

distributive lattice L, the following conditions are 

equivalent . . 

( i ) For x, y E L, X - y ( 8*) 

( ii) For each a, b E L with a :S b and a - b ( 8) ' 

(x " b) V a = (y " b) V a 

(iii) 9x n 9 = 9y n 9. 

If Lhasa 0, then of course 9x = 9 ( 0 , x ) . Here 

our following theorem gives a nice generalization of 

a portion of the above result for a lattice L with 

0. 

3.1.2. Theorem: Let L be a distributive lattice 

and n e L. Then for any 9 e C(L), x = y (9*) if and 

only if 9(n, x) n 9 = 9(n, y) n 9. 

Proof: Define a relation ~ on L as x = y (~) if 

and only if 8(n, x) n 9 = 8(n, y) n 9. First we 

shall show that is a congruence relation. 

Obviously,~ is an equivalence relation. Let x = y ~-

As 9(a, b) = 9(a Ab, a Vb) - 9 V n V - a b a Ab. 

So by definition of ~ we have 

n 9 = 8 
n 
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Now, suppose P = q 9(n, x At) n 9 for some t e L. 

Then P = q ,, 
n A x A t and so 

p A n A x A t = q A n A x A t 

This implies PA t An - q At An 9 (n, x) n 9 

= 9 (n, y) n 9, 

and so p At An A Y = q At An A y. Thus 

P = q V (') n A y At ··· i 

Again, p = q 9 (n, x At) n 9 implies 

p V n V (x At)= q V n V (x At), and so 

p V n V x = q V n V x and p V n Vt= q V n Vt. 

Thus, p V n - q V n 9( n, x) n 9 = 9( n, y) n 9. 

Therefore, p V n Vy= q V n Vy 

and p V n Vt= q V n Vt, and so, 

(p V n Vy) A (p V n Vt)= (q V n Vy) A (q V n Vt) 

That is, p V n V (y At)= q V n V (y At). 

Thus, p = q 9 n V (y At) . . . . . ( i i ) 

Combining (i) & (ii), p = q 9(n, y At). 

Hence 9(n, x At) n 9 c 8(n, y At) n 9. 

Similarly, 9(n, y At) n 8 c 0(n, x At) n 9, 

and so 9(n, x At) n 9 = 9(n, y At) n 9, 

which implies x At= y At(~)-

A dual proof of above also gives 

x Vt= y Vt (~) for all t EL. Therefore I is a 

congruence . 
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Now, suppose X - y (9 n ~) . Then X - y ( 9) and 

9(n, x) n 9 = 9(n, y) n 9. Observe that 

(x A y) V n - X V n 9(n, x) n 9 -· 9(n, y) n 8, 

and BO y V n = X V y V n. Thus, X V n ~ y V n. 

Similarly, we get y V n ~ X V n, and 

hence xVn=yVn . . . . . (iii) 

Again, observe that 

(x Vy) An= x An 9(n, x) n 9 = 9(n, y) n 9. 

This implies y An= x A y An and soy An~ x An. 

Similarly, we get x An~ y An, 

and so 

Combining 

x A n = y A n 

(iii) & (iv) we obtain 

distributive. Therefore, 9 n ~ = (&). 

x = y, as 

(iv) 

Lis 

To show that ~ = 9*, let V be any other congruence 

such that 9 n V = (&). Suppose x =·Y (V). 

Let a - b 9(n; x) n 9. This implies 

a V n V x = b V n V x and a An Ax= b An Ax. 

Then a A n A y - a A n " X ( V) 

= b A n " X 

- b A n A y ( V) 

and a V n V y - a V n V X CV> 

= b V n V X 

- b V n V y ( V.) • 
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Also, we have a An A y _ b An A y (8) 

and a V n Vy - b V n Vy (8) 

and so a An A Y = b An A y (8 n T) = ~, implies 

that a An A Y = b An A Y, which shows that 

Similarly, a V n VY= b V n Vy (8 n T) = ~, implies 

a= b 8n Vy. Thus, a = b 8(n, y) n 8. 

Therefore 8(n, x) n 8 s: 8(n, y) n 8. 

Similarly, 8(n, y) n 8 s: 8(n, x) n 8, and BO 

8(n, x) n 8 = 8(n, y) n 8. 

This implies X - y ( 4> ) • Therefore ' C t, and BO 

~ = 8•. • 
The following theorem is due to Cornish [9]. 

3.1.3. Theorem: Let L be a distributive lattice with 

0. Then the following conditions hold. 

(i) For any ideal J, x = y (8(J)*), (x, yeL) 

if and only if (x] n J = (y] n J, i.e., if and only 

if x A j = y A j for all j e J. 

(ii) For an ideal J, both 8(J)* and 8(J*) have 

J* as their Kernel. 



(iii) An ideal 
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J is the kernel of a skeletal 

congruence if and only if it is the intersection of 

relative annihilator ideals. 

(iv) Each principal ideal is an intersection of 

relative annihilator ideals. 

The following theorem generalizes theorem 3.1.3. 

3.1.4. Theorem: Let L be a distributive lattice 

and n e L. Then the following conditions hold. 

(i) For any n-ideal J of L, x = y (9(J)*); 

x, y EL if and only if <x>n n J = <y>n n J, 

i.e., if and only if m(x, n, j) = m(y, n, j) for all 

j E J. 

(ii) For any n-ideal j of L, both 9(J)* and 

9(J+) have J+ as their n-kernel. 

(iii) Then-kernels of the skeletal congruences 

are precisely those n-ideals which are the 

intersection of relative annihilator ideals and dual 

relative annihilator ideals whose end points are of 

the form x V n and x An respectively. 

(iv) Each principal n-ideal of L is the 

intersection of relative annihilator ideals and dual 

relative annihilator id~als whose end points are of 

the form x An and x V n respectively. 
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Proof - ( i) For any two n-ideals I and J of L, we 

have 0(I n J) = 8(I) n 8(J). Also, 

0(n, x) = 8(n Ax, n V x) = 0(<x>n). 

Then by 3.1.2., X - y ( 0( J) *) if and only if 

0(n, x) n 0( J) = 0(n, y) n 0( ,J) if and only if 

0(<x>n) n 0(J) = 0(<y>n) n 0(J) if and only if 

0(<x>n n J) = 0(<y>n n J) if and only if 

<x>n n J = <y>n n 0, by 2.1.5. if and only if 

m(x, n, j ) = m(y, n, j ) for all j E J. 

Hence (i) holds. 

(ii) If x E Kern (0 (J)*), then x = n (0(J)*). Then 

by (i) above, <x>n n J = <n>n n J if and only if 

m(x, n, j) = m(n, n, j) = n, for all j e J and so 

x e J+, and thus (ii) holds. 

(iii) Consider a, be L with a Sb. Since 0(a, b)* 

= 0(a, b)·, so by (9. lemma 1.1.], x E Kern 0(a, b)* 

if and only if (x Ab) Va= (n Ab) Va 

Now, we shall show that (x Ab) Va= (n Ab) Va is 

equivalent to x e <b V n, a V n> n <a An, b A n>d. 

Since (x Ab) Va= (n Ab) Va implies 

x Ab Sa V n, we have x A (b V n) 

- (x Ab) V (x An) 

~; a V n, 
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and ao x E <b V n, _a V n>. 

Again from (x Ab) Va= (n Ab) Va, we have 

b Ans (x Ab) Va. Sob Ans (x Ab An) V (a An) 

S x V (a An), 

which implies x e <a An, b A n>d. 

Hence x E <b V n, a V n> n <a An, b A n>d. 

Conversely, let X E <b V n, a V n> n <a A n, b 

Then, x · A (b V n) :$ a V n and X V (a A n) ~ 

Now, X A(b V n) :$ a V n implies 

X A b = X A b A (b V n) 

:$ (a V n) A b 

= (a A b) V (b A n) 

= a V (b A n) , 

- and BO (x A b) V a :$ (b A n) V a. On the other 

b A n :$ X V (a A n) implies 

b A ·n :S b A (x V (a A n) ) 

= (x A b) V ( a A b I\ n) 

= (x A b) V (a A n) 

A n>d. 

b A n. 

hand, 

and so, (n A b) V a ~ {x A b) V a. Combining both 

relations we have (x Ab) Va= (n Ab) Va. Since 

for any 9 E C(L), 

9* = n { 9(a,b)* 

result follows. 

a _ b 9 } , hence the 
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(iv) Since each principal n-ideal <a>n = Kern8(<a>n) 

= Kern8(a An, a V n) and since 8(a An, a V n) is 

skeletal so by (iii) the result follows. • 

3.1.5. A non-empty subset T of a lattice Lis called 

large if x At= y At for all t e T, x,y e L implies 

x = y, while Tis called join- dense if for each 

z e Lis the join of its predecessors in T. Also Tis 

called small if x Vt= y Vt for all t e T, x,y e L 

implies x = y, while Tis called meet-dense if for 

each z e Lis the meet of its successors in T. It can 

be easily shown that an ideal in a lattice is large 

if and only if it is join-dense. It is clear from 

3.1.3 that an ideal J of a distributive lattice Lis 

join-dense if and only if 8(J) is dense in C(L), 

i.e., 8(J)* = w, the smallest element of C(L). 

Lemma. 3.1.6 and theorem 3.1.8 were suggested to the 

author by his supervisor Dr. Noor. 

3.1.6. Lemma A convex sublattice J of a 

distributive lattice Lis large if and only if it is 

join-dense in L. 

Proof : Obviously, eve~y join-dense subset of Lis 

large in L. Conversely, let J be large in L. Suppose 
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x EL and {ji} are its predecessors in J. Lett be an 

upper bound of {ji}. Clearly, for any j e J, j 1 A j 

s x A j ~ j and so by convexity of J, x A j e J. 

Thus, x A j = jk for some k. 

Hence, x A j St for all j e J which shows that 

x A j = x A j At for all j E J. Since J is large, 

x At= x, i.e., x St. This implies that xis the 

supremum of {ji} • 

Similarly, a dual proof of above shows that a convex 

sublattice J of a lattice Lis meet-dense if and only 

if x V j = y V j for all j e J implies x = y. • 

Thus, we have the following corollary. 

Corollary An n-ideal of a distributive 

lattice Lis large if and only if it is join dense in 

L. 

3.1.8. Theorem: For any n-ideal J of a distributive 

lattice L, 9(J) is dense in C(L) if and only if J is 

both meet and join-dense. 

Proof: Let 9(J) is dense in C(L), i.e., 9(J)* · = C&>. 

Suppose x A j = y A j for all j e J. Then, 
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m(x, n, j ) = m(y, n, j ) for all j E J. Then by 

[3.1.4.(i)], we have X - y 8(J)* = 6). Hence X = y. 

Again, if X V j = y V j for all j E J, then 

m(x, n, j ) = (x V n) " (n V j ) " (x V j ) 

= (y V n) " (n V j ) " (y V j ) ' as n E J 

= m(y, n, j ) for all j E J. 

Thus, by [3.1.4 . (i)], x = y 8(J)* = 6> and hence 

x = y, which shows that J is both meet and 

join-dense. 

Conversely, let J be both meet and join-dense and 

X - y 8(J)*. Then by 3.1.4., m(x, n, j ) = m(y, n, j ) 

for all j E J. Thus, (x " n) V j = m(x, n, j ) V j 

= m(y, n, j ) V j = (y " n) V .i and (x V n) " j 

= m(x, n, j ) " j = m(y, n, j ) " j = (y V n) " j for 

all j E J. These imply X " n = y " n and 

X V n = y V n. Hence by the d:i.stributivity of L, 

x = y, i.e., 8(J)* = 6>, and so 8( J) is dense in 

C ( L). e 
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2- ·Disjunctive and Generalized Boolean Lattices-

3_2_1_ We recall that a distributive lattice L with 

O is disjunctive if O ~a< b implies there is an 

element x EL such that x A a= 0 and O < x ~ b. 

We already know that for any n-ideal J of L, R(J) 

denotes the largest congruence having J as its 

kernel, where x = Y R(J) if and only if for each 

r EL, m(r, n, x) E J if and only if m(r, n, y) E J. 

The following theorem gives a description of 

disjunctive lattices which is mentioned in section 2 

of Cornish [9]. We omit the proof as it is very easy 

to show. 

3_2_2_ Theorem: For a distributive lattice L with 0, 

the following conditions are equivalent : 

(i) Lis disjunctive. 

(ii) For each a EL, (a] = (a]**. 

(iii) R( (OJ ) = ~- t 

We now extend the above result. 

3.2_3_ Theorem: Suppose Lis a distributive lattice 

with an element n. Then . the following conditions are 

equivalent 



(i) Fn(L) is disjunctive. 

(ii) For each a E L, <a>n 

(iii) R({n}) = ~-

++ = <a>n. 
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Proof: (i) - (ii) Suppose Fn(L) is disjunctive and 

suppose that 

there exists 

either 

<a>n -1> 
++ <a>n for some a e L. Then 

++ t e <a>n but t f <a>n, which implies 

a Ant t or ti a V n. In either case 

<a>n c [t A a A n, t V a V n]. Since Fn(L) is 

disjunctive , there exists [b, c] with 

{n} c [b, c] ~ [t A a An, t Va V n] such that 

<a>n 

(a A 

[ b, c] {n}. 'l'his impl:Les [b, c] + and n = E <a>n 

n) V b = n = ( a V n) A C. Then 

[b, c] = [b, c] n [t A a A n, t V a V nJ 

= [ ( t A a A n) V b, (t V a V n) A c] 

= [ ( ( t A n) Vb) A ( ( a A n) V b) , 

( ( t V n) A C ) V ((a V n) A C)] 

= [((t A n) Vb) A n, ( ( t V n) Ac) V nJ 

= [ ( t A n) V b, (t V n) A c] 

= <t>n n [b, c] 

= {n}, 
++ as t e <a>n and 

+ [b, c] ~ <a>n. 

Thus, [b, c] = {n}, which is a contradiction. 
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The·refore, <a>n ++ = <a>n for all a EL, which is (ii). 

( J.• 1· ) ( • ) S th t ++ - J. • uppose a <a>n = <a>n for all a EL. 

Let {n} c [a, b] c [c, d]. Then either c < a :S n 

or n :Sb< d. Suppose n :Sb< d. Then 

{n} C <b>n c <d>n. Then <b>n ++ ++ = <b>n and <d>n = <d>n, 

implies + + + <b>n ~ <d>n. So there exists r E <b>n such 

f + This implies that m(r, b) that r <d>n. n, = n 

and m(r, n, x) ~ n for some X E <d>n. Since b ~ n 

and X ~ n, We have m(r, n, b) = (r V n) A b = n 

and m(r, n, x) = (r V n) A X. Then 

{n} C <m(r, n, x)>n ~ <d>n, 

and [a, b] n <m(r , n, x)>r.. 

- [a, b] n [n, (r V n) A x] 

= [ n' (r V n) I\ X I\ b] 

= [n, X A n] 

= {n} 

which shows that Fn(L) is disjunctive which is (i) 

(i) ... (iii), suppose (i) holds. That is, Fn(L) is 

disjunctive. Let X y R({n}). If X ,,, y, then 

either x /\ y < x or x /\ y < y . suppose x A Y < x. 
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Since L is distributive, either X /\ y /\ n < X /\ n 

or (x A y) V n < X V n. If X A y A n < X /\ n, then 

<x>n C <x>n V <y>n and so <X>n n <y>n C <y>n. If 

(x A y) V n < X V n, then <x>n n <y>n C <x>n. Thus 

X ~ y implies either <x>n n <y>n c <x>n or 

<x>n n <y>n c <y>n. Without loss of generality 

suppose <x>n n <y>n C <x>n. Since Fn(L) is 

disjunctive, there exists {n} C [a, b] s:: <x>n such 

that [a, b] n <x>n n <y>n = {n}. Now, by 

1.1.12., [a' b] = <t>n for some t E L. 

Thus, <t>n n <x>n n <y>n = {n}, and so <t>n n <y>n 

= { n}. That is m(y, n, t) = n. Since X - y R({n}), 

so m(x, n, t) = n, and so <x>n n <t>n = {n}. This 

implies <t>n = {n}, which is a contradiction. 

Therefore, x = y and so R({n}) = C&l, which is (iii) . 

Finally, we show that (iii) • (i). Let R({n}) = C&l. 

If Fn(L) is not disjunctive then for 

{n} s:: [a, b] c [c, d], there exists no [e, f] "' {n} 

such that [a, b] n [e, f] ~ {n}. Since 

[a, b] c [c, d] so either c < a orb< d, Let c < a. 

Chose any t e L. Then for all [t /\ n, b], 

[t /\ n, b] n [c, d] ~ {n} if and only if 

[t /\ n, bl n [a, b] .,,. {n} 
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i.e., [t An, b] () [c, d] = {n} if and only if 

[t A n, b] n [a, b] = {n} 

or [(t An) V c, b Ad] = {n} if and only if 

[(t An) Va, b] = {n} 

or [(t An) V c, b] = {n} if and only if 

[(t An) Va, b] = {n} 

i.e., (t An) V c = n if and only if (t An) Va= n 

i . e., m(c, n, t) = n if and only if m(a, n, t) = n 

i.e. , c = a R({n}) = 6>, and soc= a, which is a 

contradiction. So Fn(L) must be disjunctive, which is 

( i) . • 

An ideal J is called dense ideal if J* = (OJ. 

According to Cornish [ 9 ] , we have the following 

result : 

3.2.4. Theorem: In a distributive lattice L with 0, 

the following conditions are equivalent . . 
( i ) L is disjunctive. 

(ii) Each dense ideal J is join dense, 

( iii ) For each dense ideal J, 8(J*) = 8(J)*. 

(iv) For each dense ideal J, 8(J**) = 8(J)**. 

'd al J of Lis dense if J+ = {n}. The We call an n - i e 

· a generalization of above : following theorem is 
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3.2.5. Theorem -: Let L be a distributive lattice and 

n EL, then the following conditions are equivalent: 

(i) Fn(L) is disjunctive. 

(ii) Each dense n-ideal J is both join and 

meet-dense. 

(iii) For each dense n-ideal J, 9(J+) = 9(J)*. 

(iv) For each dense n-ideal J, 9(J++) = 9(J)** 

Proof: (i) - (ii). Suppose (i) holds. That is,Fn(L) 

is disjunctive. Suppose J is a dense n-ideal. 

Then J+ = {n}. Let x /\ j = y /\ j 

for all j e J, x, ye L. 

If x ~ y, then either x /\ y < x or X /\ y < y. 

Without loss of generality suppose x /\ y < x. Then 

either X " y " n < X " n or (x " y) V n < X V n. 

Since n E J, X " n = y " n. So X " y " n = X " n. 

Thus, (x " y) V n < X V n. Then 

{n} i:: [n, (x " y) V n] C [n, X V n]. Since Fn(L) is 

disjunctive, there exists 

[n, b] ~ {n} and [n, b] ~ [n, x V n] 

such that [n, (x /\ y) V n] n [n, b] = {n}, which 

implies [ ( X " y) V n] " b = n. Then for all j E J, 

n = n " (j V n) 

= [ ( X " y) V n] " b " ( j V n) 

= b " [ ( X " y " j ) V n] 
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= b " [ ( X " j ) V n] 

= b " (x V n) " ( j V n) 

= b " ( j V n) 

= m(b, n, j ) 

which shows that b E J+ = {n} implies b = n which 

is a contradiction. So, X = Y, i.e. , J is 

join-dense. Similarly we can show that J is also 

meet-dense. Hence (ii) holds. 

(ii) - ( i) . For any a EL, + <a>n V <a>n is always a 

dense n-ideal. Since (ii) holds so we have 

+ <a>n V <a>n is both meet and join-dense. Then by 

[3.1.8], 

+ = ( 9(<a>n) V 9(<a>n))* 

Thus 9 (<a>!)*~ 9 (<a>n)** = 9 (<a>n). 

Taking then-kernels on both aides we have 

<a>~+~ <a>n due to 3.1.4 (iii) . It follows that 

++ <a>n = <a>n , which implies 

disjunctive. Hen c e (i) holds. 

that Fn(L) is 
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Since J is dense n-ideal implies J is both meet and 

join-dense so we have J+ = {n} if and only if 

J++ =Land J is both meet and join-dense if and only 

if 9(J)• = <.i>, so obviously, (ii), (iii) and (iv) are 

equivalent. • 

The following theorem is a generalization of 

[ 9 , Th . 2 . 2 . J • 

3.2.6. Theorem: Let L be a distributive lattice and 

n EL. Then the following conditions are equivalent: 

(i) Fn (L) is disjunctive. 

(ii) For each congruence~, ~* = 9 (Kern~)*. 

(iii) For each n-ideal J, R(J)* = 9(J)* 

(iv) For each congruence~. Kern(~*)= (Kern~)+. 

(v) For each congruence~. Kern(~**)= (Kern~)++_ 

(vi) Then-kernel of each skeletal congruence is 

an annihilator n-ideal. 

Proof: (i) - (ii). Since 9 (Kern~) c ~. so we have 

9* c 9(Kern~)*. So it is sufficient to prove that 

~ n 9 (Kern~)*= <.i>. Suppose (i) holds. That is,Fn(L) 

is disjunctive. Suppose x ~ Y and 

x _ y (~ n 9(Kern~)*) implies x = Y ~ and 

x - y 9(Kern~)*. If x < y, then either x An< YA n 
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or x V n < y V n. Suppose that x V n < y V n. Then 

{n} c [n, .x V n] c [n, y V n]. Since Fn(L) is 

disjunctive so there exists [n, a] E Fn(L) with 

a> n and [n, a] c [n, y V n] such that 

[n, a] n [n, x V n] = {n}. This implies 

a A (x V n) = n. 

Now, n = a A (x V n) = a A (y V n) = a (cl>) implies 

a E Kern~- Since x = y 8(Kern~)•, so 

x V n = y V n 8(Kern~)* and since a E Kern~, so we 

have m(x V n, n , a) = m(y V n, n, a). That is, 

( (x V n) A n) V (a A (x V n)) V (n A a) 

= ((y V n) An) V (a A (y V n)) V (n A a) 

i . e., n V (a A (x V n)) V n = n Va V n. 

This implies, n = a, which is a contradiction. 

Therefore, x = y and so ~ n 8 (Kern~)•=~-

Hence (ii) holds . 

(ii) - (iii) holds since J ia then-kernel of R(J) 

and 8( J). 

(iii) - ( i) . Suppose (iii) 

and since (iii) holds so 

holds. Since 8({n}) = ~ 

R({n})* = 8({n})* = t 

implies, R({n})** =~-Then by 3 . 2.3. we have Fn(L) 

is disjunctive. 
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(ii) - (iv) is clear since by 3.1.4.(ii) 8(J)* and 

8(J+) have J+ as their n-kernels. 

(iv) - (v) and (v) - (vi) are obvious. 

(vi) - (i). Suppose (vi) holds. Let {n} c [a, b] 

c [c, d], then either c < a Sn or n Sb <d. Suppose 

c < a Sn. Then by 3.1.4.(iii) 

<c, a>d = <c A n, a A n>ct is the n-kernel of a 

skeleton congruence. Since (vi) holds, so there is an 

annihilator n-ideal K such that <c, a>a = K = K++. 

As a V c ~ a implies a E <c, a>d = K = K++. Also, 

since c < a, c R <c, a>d = K = K++_ So there exists 

e e K+ such that m(c, n, e) ~ n. But m(a, n, e) = n 

implies a V (n A e) = n. Now, consider the interval 

[e An, n]. Then [e An, n] n [a, b] 

= [(e An) Va, n Ab] 

= {n} 

Hence Fn(L) is disjunctive, which is (i). t 

The following theorem is due to Cornish 

[ 9. Th. 2.3.], 

boolean lattice; 

which characterizes 

Also c.f.[28, Th. 6]. 

generalized 
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3.2.7. Theorem: Let L be a distributive lattice with 
, 

0. Then the following conditions are equivalent 

(i) The lattice Lis generalized boolean. 

(ii) For each congruence~. ~* = 8(Ker(~*)). 

(iii) For each ideal J, 8(J)* = 8(J*). 

(iv) For each ideal J, 8(J)** = 8(J**).I 

Now, we extend and generalize the above theorem. 

3.2.8. Theorem: Let L be a distributive lattice and 

n e L. Then the following conditions are equivalent: 

( i ) Fn(L) is generalized boolean. 

(ii) For each congruence ~. ~· = 8(Kern~*). 

(iii) For each n-ideal J, H(J+) = 9(J)*. 

(iv) For each n-ideal J' E►(J++) = 8(J)**. 

Proof: (i) - (ii). Suppose (i) holds. Let V be any 

congruence on L. Then by 2.1.7., V = 8 (Kern'f). Thus 

with V = ~•, we see that (i) implies (ii). 

(ii) - (iii) follows from (3.1.4.J and 

(iii) • (iv) is obvious. 
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(iv) - (i). Suppose (iv) holds. Put J = <a>n V <a>n! 

Since J++ = L, (iv) implies 9(<a>n V < >+)** It a n = l . 

follows that 9(<a>n)* n 9(<a>!)* = ~. and so 

+ 9(<a>n)* c 9(<a>n)** = 9(<a>n). Now by 3.1.4. 

<a>~= Kern9(<a>n)*. Then, 9(<a>~) c 8(<a>n)*, and so 

9(<a>n) + = 9(<a>n)** c 9(<a>n)*. Therefore, 

9(<a>n) = 9(<a>!)*. But <a>~= <a>~++ so by (iv) 

+ +++ + 9(<a>n)* = 9(<a>n)** = 9(<a>n ) = 9 (<a>n ). 

Now, let n ~a~ b. Then for all j e <a>n = [n, a], 

m(a, n, j) = m(b, n, j) = j. 

Thus + a= b 9(<a>n)* = 9(<a>n). Then a V r = b V r 

for + So b V (b " r ) . Again some r e <a>n = a 

+ implies (a " r) V r E <a>n (a " n) V (r " n) = n, 

and 80 a " r ~ n. Thus a " r = a " r " n = r " n. 

Now, put p = (b " r) V n. Then n ~ p ~ b. Also 

p " a = ( a " b " r) V (a " n) = (a " r) V (a " n) 

= (r " n) V n = n, 

and p V a = (b " r) V n V a = b V n = b. 

Hence [ n, b] is complemented for each b E L, (b ~ n) . 
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On the other hand, let b :Sa Sn. Then for all 

j E < a>n, m (a, n, j ) = m ( b, n, j ) = j . So, 

a - b 8( <a>n) * = 9( <a>"!:i). Then a dual proof of above 

shows that [b, n] is also complemented for each 

b :S n. Hence by (1.1.5.], Fn(L) is generalized 

boolean. • 

The skeleton SC(L) = { 9 E C(L) : 9 =~•for some 

~ E C ( L) } = { 9 E C ( L) 9 = 9* * } is a comp 1 et e 

boolean lattice. The meet of a set { 9~} c SC(L) is 

n 9~ as in C(L), while the join is~ 9~ = (V 9~)•* 

= (n 8~)• and the complement of 9 e SC(L) is 9*. The 

fact that SC(L) is complete follows from the fact 

that SC(L) is precisely the set of closed elements 

associated with the closure operator 9 ➔ 9** on the 

complete lattice C(L) and SC(L) is boolean because of 

Gliveanko-s theorem, c.f. Gratzer (15, Th.4. p.p.58]. 

The set KSC(L) = { Ker 8 8 E SC(L) } is closed 

under arbitrary set theoretic intersection and hence 

is a complete lattice. Also, for any n e L, 

KnSC(L) = { Kern9 9 E SG(L) } is a complete 

lattice. 
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The following two theorems are due to Cornish 

[ 9 , Th . 2 . 4 . & 2 . 5 . ] , Which are extensions O f the 

classical theorem of Hashimoto [15, Th. 8, p-91] and 

also characterize generalized boolean lattices and 

give a one-to-one correspondence between ideals and 

congruence relations. 

3.2.9. Theorem: Let L be a distributive lattice with 

0. Then the following conditions are equivalent 

(i) The lattice Lis disjunctive. 

(ii) The map 9 ... Ker9 of SC(L) onto KSC(L) is 

one-to-one and so is a one-to-one 

correspondence. 

(iii) The map 9 ... Ker9 of SC(L) onto KSC(L) 

preserves finite joins. 

(iv) The map 8 ... Ker8 is a lattice isomorphism of 

SC(L) onto KSC(L), whose inverse is the map 

J ... 8(J)**. 

3.2.10. Theorem - Let L be a distributive lattice 

with o. Then the lattice Lis generalized boolean if 

and only if the map 8 ... Ker8 is a lattice isomorphism 

of SC(L) onto KSC(L), whose inverse is the map 

J ... 8( J) . • 
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We conclude this section with the following 

generalizations of the above theorems. 

3.2.11. Theorem - Let L be a distributive lattice 

with an element n. Then the following conditions are 

equivalent : 

(i) Fn(L) is disjunctive. 

(ii) The map 9 ➔ Kern9 of SC(L) onto KnSC(L) is 

one-to-one and so is a one-to-one 

correspondence. 

(iii) The map 9 ➔ Kern9 of SC(L) onto KnSC(L) 

preserves finite joins. 

(iv) The map 9 ➔ Kern9 is a lattice isomorphism 

of SC(L) onto KnSC(L), whose inverse is the 

map J ➔ 9(J)** for any n-ideal Jin L • 

Proof: Firstly, we show that (i) - (iv). Suppose (i) 

holds, i.e., Fn(L) is disjunctive. Then by 3.2.6.(iv) 

we have KnSC(L) = { J J = ,J++ J is n-ideal }. 

Also, by 3.2.6.(ii) for any~ E SC(L), 

~ = ~** = 9( Kern~)**. Thus, the map 9 ➔ Kern9 of 

SC(L) onto KnSC(L) is one-to-one. Clearly this map 

preserves meets and it also preserves joins since for 

any 9, ~ E SC(L) 
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= [Kern (0* n ~•)]+ = [(Kern0)+ n (Kern~)+]+ 

= (Kern0)++ V (Kern~)++= Kern(9**) V Kern(~**) 

= Kern0 V Kern~-

Thus, 0 - Kern0 is a lattice isomorphism. Also, note 

that, Kern(0(J)**) = (Kern9(J))++ = J++ = J for any 

n-ideal J E KnSC(L), while 0(Kern~)** =~**=~for 

any~ E SC(L). Thus J - 0(J)** is the inverse of 

0 - Kern0. Hence (iv) holds. 

(iv) - (ii) is obvious. 

(ii) - (iii). Suppose (ii) holds, i.e., 0 - Kern0 is 

one -to-one. Then it is a meet isomorphism of the 

lattice SC(L) onto the lattice KnSC(L). It follows 

that 0 - Kern0 is a lattice isomorphism and so (iii) 

holds. 

Lastly, we shall show that (iii) - (i). Suppose (iii) 

holds. Then 0 - Kern9 is a lattice isomorphism of 

SC(L) onto KnSC(L) . Hence KnSC(L) must be boolean. It 

is not hard to see that Fri(L) is a join-dense 

sublattice of KnSC(L). Since KnSC(L) is boolean, so 

Fn(L) is disjunctive. Hence (i) holds. 
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3.2.12. Theorem: For a distributive lattice L with 

an element n, Fn(L) is generalized boolean if and 

only if the map 9 ➔ Kern8 is a lattice isomorphism of 

SC(L) onto KnSC(L), whose inverse is the map 

J ➔ 9(J), J is an n-ideal of L. 

Proof · Supp o s e F n ( L ) i a gen•~ r a 1 i zed boo 1 ea n . Then 

Fn(L) is disjunctive and so by 3.2 . 11. the inverse of 

9 ➔ Kern9 is J ➔ 8(J)**. But due to 3.2.8., 

9(J)** = 9(J++) for any J E KnSC(L). So due to 

3.2.6., J = J++_ Hence J ➔ 9(J) is the inverse of 

8 ➔ Kern9. 

Conversely, let J ➔ 9(J) is the inverse of 9 ➔ Kern8. 

Then by 3.2.11., Fn(L) is disjunctive and so by 

3.2.6., Kern(9(J)**) = [Kern(8(J))]++ = J++ for any 

n-ideal J of L. Then by 3.1.4 . , we have J++ E KnSC(L) 

We must also have, 9(J++) = 0(Kern(0(J))**) = 0(J)**. 

Then due to 3.2.8 . , Fn(L) is generalized boolean.t 
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Introduction Standard elements and ideals in a 

lattice were introduced by Gratzer and Schmidt [18]. 

Some additional work has been done by Janowitz [29]. 

While Fried and Schmidt [14] have extended the idea 

of standrad ideals to convex sublattices. 

According to Gratzer and Schmidt [18], if a is an 

element of a lattice L, then 

( i ) 

( i i ) 

(iii) 

and 

a is called distributive if a V (x A y) 

= (a V x) A (a V y) , for all x, y E 

a is called standard i.f X A (a V y) 

= (x A a) V (x A y) ' for all x, y E 

a is called neutral if for all x, y E L, 

(a) x A (a Vy) = (x A a) V (x A y), 

i,e, a is standard 

( b) a A (x Vy) = (a Ax) V (a A y) . 

L. 

L. 

Gratzer [17] has shown that an element n in a lattice 

Lis neutral if and only if 
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(n Ax) V (n A y) V (x A y) 

= (n V x) A (n Vy) A (x Vy), 

for all x, y EL. 

An ideal Sofa lattice Lis called standard if it is 

a standard element of the lattice of ideals I(L). 

Fried and Schmidt [ 14] have extended the idea of 

standard ideals to convex sublattices. Moreover, 

Nieminen in [37] has discussed on distributive and 

neutral (convex) sublattices. On the other hand, in 

a more re cent pap e r Dix it and Pa 1 i w a 1 [ 12 ] , [ 13 ] have 

established some results on standard, neutral and 

distributive (convex) sublattices. But their 

technique is quite different from those of the above 

authors. We denote the set of all convex sublattices 

of L by Csub(L) . According to (14] and [37), we 

define two operations A and V (these notations have 

been used by Nieminen in (37] on Csub(L)) by 

A A B = <{a A b a E A, b E B}> 

and A VI B = <{a V b a E A, b E B}> 

for all A, B E Csub ( L) ' where <H> denotes the convex 

sublattice generated by a subset H of L. 

If A and Bare both ideals then AV/Band Ah Bare 

d et Of A and Bin the ideal exactly the join an me 
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lattice. However, l.n general case neither A~ A V B 
and Ah B ~ A are valid. For 

example if A= {a} and 

B = {b}, then both inequalities imply A= B. 

According to [18], a convex sublattice sofa lattice 

Lis called a standard convex bl su attice (or simply 

a "standard sublattice") if 

I h <S,K> =<I/\ S, I AK> 

and I~ <S,K> =<IVS, IV K> hold for any pair 

{I,K} of Csub (L) whenever neither Sn K nor 

I n <S,K> are empty, where n denotes the set 

theoretical intersection. 

We call an n-ideal of a lattice L, a standard n-ideal 

if it is a standard element of the lattice of 

n-ideals In(L). 

In section 1, we give a characterization of standard 

n-ideals using the concept of standard sublattice 

when n is a neutral element. For a neutral element n 

of a lattice L, we prove the following: 

(i) an n-ideal is standard if and only if it is 

a standard sublattice. 

(ii) the intersection of a standard n-ideal and 

n-ideal I of a lattice Lis a standard n-ideal in I. 
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(iii) the principal n-ideal <a>n of a lattice L 

is a standard n-ideal if and only if a V n is 
standard and a " n is dual standard. 

(iv) for an arbitrary n-ideal I and a standard 

n-ideal s of a lattice L, if I V s and I n s are 

principal n-ideals, then I j_tself is a principal 

n-ideal. 

In section 2, we have shown that if n is a neutral 

element and (n] and [n) are relatively complemented, 

then every homomorphism n-kernels of Lis a standard 

n-ideal and every standard n-ideals is then-kernel 

of precisely one congruence relation. We have also 

shown that for a relatively complemented lattice L 

with O and 1, C(L) is a boolean algebra if and only 

if every standard n-ideal of L is a principal 

n-ideal. 

Finally, 

standard 

we prove 

n-ideals 

two 

which 

isomorphism theorems on 

are extensions of the 

isomorphism theorems on standard ideals given by 

Gratzer and Schmidt [18] . 



85 
1. "Standard n--ideala .. 

According to Fried and Schmidt [ 
14, Th.-1], we have 

a fundamental characterization theorem for standard 

convex aublattices : 

4.1.1. Theorem - The following conditions are 

equivalent for each convex sublattice Sofa lattice 

L : 

(a) Sis a standard sublattice, 

U3) Let K be any convex sublattice of L such 

that Kn S ~ ~ - Then to each x e <S,K>, there exist 

si, s2 e S, a1, a2 e K such that 

(~#) For any convex sublattice K of Land for 

each s2, s1# ES, there are elements s1,s2# ES, a1, 

a2 EK such that x = (x A s1) V (x A (a1 V s2)) 

= (x V s2#) A (x V (a2 A s1#)), 

(y) The relation 9[S] on L defined by 

x = y ( 9[ SJ ) if and on 1 y if x A y = ( ( x A Y) V t) A 

(x V y) and x V y = ((x Vy) A s) V (x A y) with 

suitable t, 8 e S, is a congruence relation. 
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Following result which. d 

18 ue to [l4] shows that the 
concept of standard aublatticea 

and standard ideals 
coincides in case of ideals. 

4.1.2. Proposition. [14 Pro 2] A · ct 1 , - n 1 ea S of a 

lattice L is standard if and only if it is a 

standard sublattice. 

Recall that an n-ideal I of a lattice Lis called a 

standard n-ideal if it is a standard element of 

In(L), the lattice of n-ideals. 

The following theorem gives an extension of 

proposition 4.1.2. above. 

4.1 . 3. Theorem: For a neutral element n of a lattice 

L, an n-ideal is standard if and only if it is a 

standard sublattice. 

Proof: First assume that an n-ideal Sofa lattice 

L is a standard sublattice. That is, for all convex 

sublattice I & K of L with s n K .,,. ~ and I n <S, K> 

,,_ ~, we have, I I>. <S, K> = <I I>. s, I A K> and 

I V <S, K> = <I \-./ s, I '(/ K>. 

We show that s is a standard n-ideal in In{L). 
are to 



That is, for all n-ideals I, Ke In(L), 

In (S V K) = (In S) V (I n K ) . 

Clearly, (I n S) V (I () K) ~ I n (S V K). 
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So, let x e In (S V K) . Then x e I and x es V K, 8 0 

by theorem 4.1.1., we have 

x = (x A si) V (x A a1) = (x V 82) A (x V a2), 

for some 81, 82 e Sand ai a2 e K. 

Now, X = (x A s1) V (x A a1) 

:$ [ ( X A B1) V (x A n) V (B1 " n)] V [ ( X " a1) 

V ( x " n) V (ai " n)] 

= m(x, n, Bl.) V m(x, n , ai.), 

that is, X :$ m(x , n , Bl.) V m(x, n, a1) 

Again, X = (x V s2) " (x V a2) 

~ [ ( X V B2) " (X V n) " (B2 V n)] " 
[ ( X V a2) " (x V n) " (a2 V n)] 

= md(x, n, B2) A md(x, n, a2) 

= m(x, n, B2) A m(x, n, a2) , as n ia 

neutral. 

Hence m( x , n, s 2 ) A m(x , n, a2) ~ x 5 m(x , n, 
Bl.) V 

m(x , n, 
Which implies x e (In S) V (In K). a1) . 

Thus, 
I n ( s v K) = ( I n s) V ( I n K) and ao s is a 

standard n-ideal. 



88 

Conversely, suppose that n-ideal Sofa lattice Lis 

standard. Consider any convex sublattice K of L such 

that Sn K ~ ~- Since Sis an n-ideal, clearly 

<S, K> = <S, <K>n>. Let x e <S, K>. Then 

XE <S, <K>n> = s V <K>n. Then XE <x>n n (S V <K>n) 

= ( <x>n n S) V ( <x>n n <K>n), as S is a standard 

n-ideal. This implies 

<x>n = (<x>n n S) V (<x>n n <K>n) ( 1) 

Since X V n is the largest element of <x>n, BO we 

have X V n = m(x V n, n, 81) V m(x V n, n, t ) 

for some s E s, t E <K>n. 

= ( ( X V n) " 81) V ((x V n) " t) V n 

= (x " s1) V (x " t) V n, as n is neutral. 

Now, t E <K>n implies t :S t1 V n for some t1 E K. 

Then X V n :S (x " s1) V (x " (t1 V n)) V n 

= (x " a1) V (x " t1) V n 

::S (x " (81 V n) ) V (x " t1) V n :S X V n. 

which implies that 

Then 

X V n = (x " (s1 V n) ) V (x " t1) V n. 

x = x A (x V n) 

= x A [(x A (ai V n)) V (x A t1) V n] 

= [x A {(x A (s1 V n)) V (x A t1)}] V (x An), 

as n is neutral. 



= (x A (s1 V n)) V (x A ti) V (x An) 

= (x A (s1 V n)) V (x A t1), 

where s1 V n ES , t1 e K. 
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Since x An is the smallest element of <x>n, using 

the relation (1) a dual proof of above shows that 

x = (x V (s2 An)) A (x V t2) for some s2 ES, 

t2 EK . Hence from Th. 4.1.1. (~) we obtain that Sis 

a standard sublattice. I 

Now, we give characterizations for standard n-ideals 

when n is a neutral element . We prefer to call it the 

"Fundamental Characterization Theorem" for standard 

n-ideals. 

4 _ 1 . 4 . Theorem If n is a neutral element of a 

lattice · L. Then the following conditions 

equivalent 

(a) Sis a standard n-ideal; 

(b) For any n-ideal K, 

S V K = { x: x = (x A s1) V (x A k1) 

= (x A s1') V (x A k1') V (x An) 

and x = (x V s2) A (x V k2) 

= (x V s2 ' ) A (x V k2') A (x V n) 

for some s1, 82, 

are 
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(c) The relation 9(S) on L defined by x = y 9(S) 

if and only if x A y = ((x A y) Vt) A (x Vy) and 

x VY= ((x Vy) As) V (x A y), for some t, s ES, 

is a congruence relation. 

Proof - (a) - (b). Suppose Sis a standard n-ideal 

and K be any n-ideal_ Let x ES V K. Since K is also 

a convex sublatice of L, we have from the proof of 

theorem 4.1.3., x = (x A (s1 V n)) V (x A ti) 

= (x V (s2 An)) A (x V t2) for some s1, 

s2 ES; ti, t2 EK. Since n is neutral, from above we 

also have x = (x A s1) V (x A ti) V (x An) 

= ( x V s2) A ( x V t2) A ( x V n) . 

Thus (b) holds. 

( b) - ( C ) • 

Let ( b) holds. Let 9(S) be defined as X - y 9(S) if 

and only if X A y = ((x A y) V t) A (x V y) and 

X V y = ( ( X V y) A s) V (x A y) . For X 2:: Y, 

y = (y V t) A X and X = (x A s) V Y, for some 

t, s E s, with s 2:: t. 

Obviously, 0(S) is reflexive and symmetric. Moreover, 

x = y 0( s) if and only if x A y = x V Y 9( S). Now 

suppose x 2:: Y 2:: z with x = y 9(S) and Y = z 9(S). 
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Then X = (x A s1) V y ' y = (y V ti) A X and 

y = (y A s2) V z' z ·- ( z V t2) A for y some 

si, 82, ti, t2 e s -
Then X = (x A s1) V y = (x A si) V (y A s2) V z 

s (x A si) V (x A s2) V z 

s (x A (s1 V s2)) V z s x, 

which implies X = (x A (si V 82) ) V z -

Similarly, we can show that z = ( z V (ti A t2)) A x. 

Thia shows that X - z 9( s) • 

For the substitution property · , suppose x ~ y and 

x = y 9(S). Then x = (x A a) Vy and y = (y Vt) Ax, 

for some s, t e S. From these relations it is easy to 

finds, t e S with t S s satisfying the relations. 

Then for every z e L, y A z s x A z 

and y A z st V (y A z). 

Therefore, y A z s (t V (y A z) ) A (x A z) 

s ( t V y) A (x A z) 

= ( ( t V y) I\ x) I\ z 

= y I\ z -

This implies, y I\ z = (t V ( y A z) ) I\ (x I\ z ) -

Let K be the n-ideal <t A y A z' Y>n. 

Since t A AZ ~ S V K so by the convexity of s, Y •= ' 

S V K, t A y A z St A y St Ax Sa Ax Sa as 

t :$; B. 
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This implies that 

s Ax ES V K. Hence x = (s Ax) Vy es V K. 

Also, by the convexity of S V K, t A y A z ~ y A z ~ 

x A z ~ x, implies y A z, x A z e S V K. Then by (b) 

we have 

x A z = (x A z A s1) V (x A z A k1) V (x A z An) 

for some s1 e S, k1 e K. 

= (x A z A S1) V (x A z A (y V n)) V (x A z A n), 

as y V n is the largest element of K. 

= (x A z A s1) V (y A z) V ( X A z A n) , 

as n is neutral. 

= ( ( X A z ) A (s1 V n) ) V (y A z ) , 

where S1 V n E s. Therefore, X A z - y A z 9(S). 

Dually we can prove x V z = y V z 9(S). Therefore 

using [15. Lemma 8.p-74], 0(S) is a congruence 

relation. Hence (c) holds. 

Finally, we shall show that (c) - (a). 

Let (c) holds. For any n-ideals I,K of L, obviously 

(In S) V (In K) ~In (S V K). To prove the reverse 

inequality, suppose x e In (S V K). 
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Then x EI and x ES V K. Since x ES V K it 1.· , s easy 

to find the elements 81, 82 ES, k2 EK with 

s1 Sn S s2 and k1 Sn S k2 such that 

Now,s1 - 82 0(S) implies 52 V k2 - 81 V k2 = k2 0( s) . 

Since X s 82 V k2, we have X = X " ( 82 V k2) 

- X " k2 0( s). Then by ( C ) 

' 
X = (x " s ) V (x " k2) for some s E s. 

S m(x, n, s) V m(x, n, k2). 

Also, s1 = s2 0(S) implies s1 A k1 = s2 A k1 

:::: 0( S). So , X :::: X V X V k1 0( s) . 

Applying {c) again we have 

x = (x Vt) A (x V k1) for some t e S. 

= m(x, n, t) A m(x, n, k1), as n is neutral. 

Hence x e (In S) V (In K). 

This implies In (S V K) = (In S) V (In K). 

Therefore (a) holds.• 

4.1.5. Corollary: Suppose n is a neutral element of 

a lattice L. Then for a standard n-ideal S of L, 8(S) 

is the smallest congruence relation of L cotaining S 

as a class. 

Proof 
Clearly anY two elements of Sare related by 
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8( s) . Now suppose x = y 8(S) with > 

X - y. 

Then by theorem 4.1.4,we have y = ( y V t) /\ x and 

x = (x As) VY for some s, t e S. Suppose yes. 

Then Y :S x = ( x /\ s) V y :S y V s. Then, by the 

convexity of S, x e S. On the other hand,if x es, 

then x ~ Y = (y Vt)/\ x ~ t /\ x implies ye S. Hence 

8(S) contains Sas a class. 

Let ~ be a congruence relation containing S as a 

class. We have x = y 8(S) with x ~ y, 

x = (x /\ a) Vy and y = (y Vt)/\ x for some 

s, t E 5. 

Now, X = (x I\ s) V y - (x I\ n) V y ~ 

= (x V y) I\ (n V y), as n is neutral. 

= X I\ (n V y) - X I\ (y V t) ~ = y ~-
This implies 8(5) s: ~- Hence 8(S) is the smallest 

congruence containing s aa a class. • 
Corollary If n is a neutral element and S 

and T are two standard n-ideals of a lattice L, then 

Sn Tis a standard n-ideal. 

Proof: Clearly Sn Tis an n-ideal. Suppose 

X = y (8(S) n 8(T)) with x ~ y . Since x = Y 8(S), BO 
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we have x = (x A s1) Vy d ( V an Y = Y s2) Ax, for 

82 E some s1, S. Here we can consider s2 s n s si. 
Now X - y 9(T) implies X A 81 - y A 81 8( T), and BO 

there exists ti E T ' ti ?; n such that X A 81 = ((x A 

s1) A ti) V (y A B 1) . Then X = (x A si) V y = [ ( ( X " 
s1) A ti) V (y A s1)] V y 

= (x A s1 A ti) Vy= (x A (s1 A ti)) Vy. 

Again x = y 8(T) implies x V s2 = y V s2 9(T). Then 

we can find t2 ET with t2 Sn such that 

y V 82 = ( ( y V 82) V t2) A (x V s2). Then 

y = (y V s2) A X = [ ( ( y V s2) V t2) A (x V 82)] " X 

= (y V 82 V t2) A (x V s2) A X 

= (y V (a2 V t2)) A x. 

Now, n s 81 A ti s 81 and n s 131 A ti s ti implies 

s1 A ti ES n T. Also 82 s s2 V t2 Sn and 

t2 S s2 V t2 Sn implies s2 V t2 ES n T. Hence 

x = y 8(S n T). Therefore 9(S n T) = 8(S) n 8(T). 

Hence by 4.1.4. Sn Tis also a standard 

n-ideal. • 

4.1.7. Corollary : Let n be a neutral element of a 

lattice Land S be a standard n-ideal. Then 

x = y 8(S) if and only if <x>n VS= <y>n VS. 
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Proof : Let x = y 8(S). Then for x > y h - , we ave 

X = (x A s1) Vy and y = (y V s2) Ax for some 

s1, a2 ES. This implies x V s1 = y V s 1 , 

x A s2 =YA s2. Now, y S x S x V s1 = y V s 1 , which 

implies x e <y>n VS. On the other hand, 

X A 82 = y A S2 s y :S X implies y e <x>n V s. Hence 

<x>n V s = <y>n V s. Conversely, suppose that 

<x>n V s = <y>n V s. As X E <x>n V s = <y>n V s' 80 

by 4.1.4., X = (x A y1) V (x A s) ' 

for some yi E <y>n, 8 E s. 

= (x A (y V n) ) V (x A s ) 

= (x A y) V (x A n) V (x A s) 

= y V [x A (n V s ) ] ' as n is neutral. 

Also, y e <y>n V s = <x>n V s. Then applying 4.1.4. 

again we have y = (y V xi) A (y V S
1

), 

for some x E <x>n, 8
1 

e S. 

Then y = (y V (x A n)) A (y V a I ) 

= (y V x) A (y V n) A (y V al) 

= (x A [y V (n A a I ) ] ' as n is 

neutral. Since n V s' n A s I 

E s, 80 we have 

X - y 8( s) _ • 
We know from [18] that the intersection of a standard 

'd 1 I of a lattice Lis ideal with an arbitrary 1. ea 

standard in I. 
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Following lemma is a g 1· t' enera 1za ion of this result. 

4.1.8. Lemma: The intersection of a standard n-ideal 

and an n-ideal I of a lattice Lis a standard n-ideal 

in I, where n : is a neutral element. 

Proof - Let S be a standard n-ideal of L. We are to 

show that Sn I is a standard n-ideal in I. Consider 

an n-ideal K of I, which is also an n-ideal of L. 

Now, let x E ( S n I) V K s: S V K. Since S is 

standard, so we have by theorem 4.1.4., 

x = (x As) V (x A k), for - some s ES , k EK. By the 

monotonity, we can choose both s ~ n, k ~ n. 

Puts 
i \' 

= (x V !ri) '. A s . Then 

and n = ( x V n) A n ~ ( x V n) A s = s · ~ x V n -

Since x V n e · l , i so by convexity of S and I, 

s· ES n I. Al~o : x As·= x As . Thus 

x = ( x A s • ) V :. ( x A k ) , f o r some s ES n I, k EK. 

Also, by duality we get x = (x Vs··) A (x V k.) for 

some s ES n I, k. EK . Hence by theorem 4.1 . 4., we 

have Sn I is standard in I. I 
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element of a 
4.1.9. Lemma · Let n be a neutral 

lattice Land~ is a homomorphism of L onto a lattice 

L. such that ~(n) = n·, n·e L·. Then for any standard 

n-ideal I of L, 4.>(I) is a standard n·-ideal of L'. 

Proof Clearly ~(I) is a sublattice of 1·. 

Let p St Sq~ where p, q e ~(I), t e L'. Then 

P = i(x) and q = 4.>(y) for some x, ye I. Since~ is 

onto, t = ~(r) for some re L. 

Then ~(r) = 4.>(r) A 4.>(y) = ~(r A y) 

and ~(r) = 4.>(r) V 4.>(x) 

= 4.>(x) V ~(r A y) 

= ~(x V (r A y)). 

Now, x S x V (r A y) S x Vy and so by convexity we 

have x V (r A y) e I. Thus t = ~(x V (r A y)) e ~(I). 

Hence ~(I) is a convex sublattice of L'. 

Moreover ~(n) = n· implies ~(I) is an n·-ideal of L'. 

For standardness, we shal 1 prove ( b) of theorem 

4 . 1.4. for ~(I). Let K. be any n'-ideal of 1·. Then 

K. = ~(K) for some n-ideal K of L. 

Let y E i(I) V ~(K) s: 4.>(I V K). Then y = ~(x) for 

some x e IV K. Since I is a standard n-ideal of L, 

using (b) of Theorem 4.1.4. 
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we have X = (x " ii) V (x " ki) V (x /\ n) ' 

for some ii E I ' k1 E K 

= (x V i2) " (x V k2) " (x V n) ' 

for some i2 E I ' k2 E K. 
Then y = <l>(x) 

= <l>(x " ii) V <l>(x " ki) V <I>(x /\ n) 

= [~(x) /\ <!>(ii)] V [<l>(x) /\ <l>(ki)J V [<l>(x) /\ 4->(n)] 

= [y " <!>(ii)] V [y " <l>(ki)J V [y /\ n']. 

Also, Y = <l>(x) 

= [y V <I>(i2)J /\ [y V <I>(k2)J /\ [y V n'J. 

Then using (b) of theorem 4 . 1.4. again, 4->(I) is a 

standard n'-ideal of L'. t 

From Gratzer and Schmidt [18], we know that ideal (s] 

is standard if and only ifs is standard in L. One 

may ask the question whether this is true for 

principal n-ideal when n is a neutral element. In 

fact this not even true when L is a complemented 

lattice. Figure 4.1.1. and Figure 4,1.2 exhibits the 

complemented lattice L, where n is neutral. There 

<a>n is standard in In(L) but a is not standard in L . 

Moreover bis standard in L but <b>n is not standard. 
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n 

b < a >n 

C 

a 

0 
L < n > 

lin (L) 

F i g u re 4. 1. 1. Figure 4. 1. 2 

But we have the following result 

4.1.10. Lemma For a neutral element n, the 

principal n-ideal <a>n of a lattice Lis a standard 

n-ideal if and only if a V n is standard and a An is 

dual standard. 

Proof - First suppose that a V n is standard and . 

a A n is dual standard . We are to show that <a>n is 

a standard n-ideal. Let us define a relation 

9(<a>n) on L by X - y 9(<a>n) if and only if 

X A y = ((x A y) V t ) A (x V y) 

and X V y = ( ( X V y) A S) V (x A y) 

for some t , s E <a>n. 
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For x 2:: y, we have 

x = (x /\ s) Vy and y = (y Vt)/\ x. Clearly 8(<a>n) 

is reflexive and symmetr1.·c. Also x - 8( ) - = Y <a>n if 
and only if X I\ y - X V y 8(<a>n). Now,let X :2:: y :2:: z 
and X - y 8(<a>n) and y - z 8( < a>n) . Then 

X = (x I\ s) V Y, y = (y V t) I\ X and 

y = (y I\ p) V z, z = ( z V q) I\ Y, 

for some s, t, P, q E <a>n. 

Now, X = (x I\ s) V y 

= (x I\ s ) V (y I\ p) V z 

::S (x I\ s ) V (x I\ p) V z 

::S [x I\ ( s V p)] V z ::S x, 

which implies X = (x I\ (s V p)) V z. 

Also, z = ( z V q) I\ y 

= (z V q) I\ (y V t) I\ X 

2:: (z V q) I\ ( z V t) I\ X 

2:: ( z V (g I\ t) ) I\ X 2:: z, 

which implies z = ( z V (q I\ t ) ) I\ x. 

Hence x = z 8(<a>n). 

To prove the substitution property,let x ~ Y 8(<a>n), 

x 2:: y and r EL. Then x = (x /\ s) VY and 

y = (y Vt)/\ x for some s, t E <a>n. Since 

s, t E <a>n, I\ < t < a 'v' n. Sets= a V n, a n - a, -

t =a/\ n. 
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Then we have 

x = (x As) Vy= y V [x A (a V n)] 

= x A (y Va V n), as a V n is standard. 

Therefore, x Ar= x Ar A ( y Va V n) 

= (x Ar A y) V [(x Ar) A (a V n)] 

= [(x Ar) A (a V n)] V (y Ar). 

On the other hand, y = (y Vt) Ax 

= (y V ( a A n) ) A X 

and so y A r = [ ( y V (a A n) ) A x] A r 

= (y V (a A n) ) A (x A r) 

2:: [ ( y A r) V (a A n)] A (x Ar) 

2:: y A r. 

Thus, y A r = [ ( y A r) V ( a A n)] A ( x A r) . 

Therefore, x Ar= y Ar 8(<a>n). 

Again, y = (y Vt) Ax= x A (y V (a An)) 

= y V ( x A ( a A n) ) , as a A n is dua 1 

standard. 

Therefore, y V r = y V r V(x A (a An)) 

= (y V r V x) A ( (y V r) V (a An)), 

= (x V r} A [(y V r) V (a An)] . 

On the other hand, x = (x As) Vy 

= (x A (a V n)) VY 

and so, x V r = (x A (a V n)) VY V r 

~ [(x V r) A (a V n)] V (y V r) 

~ x V r. 



Thus x V r = [(x V r) 
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/\ (a V n)] V (y V r). 

Therefore x V r = y V r 0(<a>n). H 8 ence (<a>n) is a 

congruence relation. Thus by theorem 4.1.4., <a>n is 

a standard n-ideal. 

Conversely, suppose that <a>n is a standard n-ideal. 

We shall show that a V n is standard and a/\ n is 

dual standard. Since <a>n is standard so for any 

principal n-ideals <x>n, <y>n we have 

<x>n n (<a>n V <y>n) = (<x>n n <a>n) V (<x>n n <y>n). 

Then by some routine calculations, we get 

[(x /\ n) V {(a/\ n) /\ (y An)}, (x V n) /\ {(a V n) V 

(y V n)}] = [{(x /\ n) V (a/\ n)} /\ 

{(x /\ n) V (y /\ n)}, {(x V n) A (a V n)} 

V {(x V n) A (y V n)}] ( 1 ) 

Thia implies, (x V n) " {(a V n) V (y V n)} 

= { ( X V n) " (a V n)} V { ( X V n) " (y V n)}• 

Since n is neutral, so 

L.H.S. = (x V n) " { ( a V n) V (y V n)} 

= (x V n) " (a V n V y) 

= [x " (a V n V y) J V n, 

and 

R.H.S. [ ( X V n) " (a V n) J V [ ( X V n) " (yVn)J 
= 

V (x " (a V n)) V (x A y) V n, 
= n 

= (x " y) V ( X /\ (a V n) ) V n. 
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and 

Now, A 

A = 

B = 

/\ n 

X /\ (y V 

(x /\ y) 

= X /\ (y 
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( a V n)) 

V ( X /\ (a V n) ) . 

V ( a V n)) /\ n = X /\ n 
and B /\ n = ((x /\ Y) V (x /\ (a V n)] An= x An. 

So by neutrality of n, A= B. That is, 

x /\ (y V (a V n)) = (x /\ y) V (x /\ (a V n)). 

Thia implies a V n is standard. 

Also, from (1) we get 

(x /\ n) V {(a/\ n) /\ (y /\ n)} = {(x /\ n) V (a/\ n)} 

A {(x /\ n) V (y An)}. 

Then applying the similar technique we can show that 

XV ((a/\ n) /\ Y) o= (x V (a/\ n)) /\ (x Vy). 

Thia implies a/\ n is dual standard. • 

In a distributive lattice, it is well known that if 

the infimum and supremum of two ideals are principal, 

then both of them are principal. In [18, lemma 8.], 

Gratzer and Schmidt have generalized that result for 

standard ideals. They showed that in an arbitrary 

lattice L, if I is an arbitrary ideal and S is 

standard ideal of L, and if I V S and I A S are 

principal, then I itself is a principal ideal. The 

following theorem is a generalization of their 

result. To prove this we need the following Lemma: 
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Let n be a neutral element of a 

lattice L. Then any finitely generated n-ideal which 

is contained in a principal n-ideal is principal. 

Proof - Let [b, c] be a finitely generated n-ideal -
such that b 5 n 5 C • Let <a>n be a principal n-ideal 

which contains [b,c]. Then a /\ n 5 b 5 n 5 C 5 a V n. 

Suppose t = (a V b) /\ c. Since n is neutral, we have 

n /\ . t = n /\ [ ( a V b) /\ c] = n /\ (a V b) 

= (n /\ a) V (n /\ b) = n /\ b = 

and n V t = n V [ ( a V b) /\ c] 

= (n V a V b) /\ (n V c) 

= (n Va)/\ c = c. 

Hence [b, c] = [n At, n Vt]= <t>n. 

Therefore [b, c] is a principal n-ideal. • 

b, 

4 . 1 . 12. Theorem: Let I be an arbitrary n-ideal and 

S be a standard n-ideal of a lattice L, where n is 

neutral. If I VS and In Sare principal n-ideals, 

then I itself is a principal n-ideal. 

Proof Let IVS = <a>n = [a/\ n, a V n] and 

[b /\ b V ] Sl.· nce Sis a standard In S = <b>n = n, n · 

n-ideal, then by theorem 4.1.4., 
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a V n = [(a V n) As] V ((a V n) Ax) 

for some s ES, x e I. 

= s V X. 

Again, a A n E S V I. So by theorem 4.1.4. again 

there exist 81 E s and X1 E I such that 

a " n = ( ( a " n) V 81) " ( ( a " n) V x1) = 81 " X1. 

Now, consider the n-ideal [b " X1 " n, b V X V n] . 

Obviously, [b " X1 " n, b V X V n] C: I C: <a>n. So by 

above lemma, [b " X1 " n, b V X V n] is a -principal 

n-ideal say <t>n f"or some t E L. 

Then <a>n = I V s ::l s V [b " X1 " n, b V X V n] 

:2 [s1 " n, s V n] V [b " X1 " n, b V X V n] 

= [s1 " n " b " X1 " n, s V n V b V X V n] 

= [a " n, a V n] = <a>n. 

This implies s V I = s V [b " X1 " n, b V X V n] 

= s V <t>n (A) 

Further, <b>n =Sn I :2 Sn [b /\ X1 /\ n, b V XV n] 

:2 Sn [b An, b V n] = <b>n, as 

b A x 1 An~ b /\ n ~ b V n ~ b V x V n. This implies 

s n I= s n [b "xi" n, b V XV n] = s n <t>n ... (B) 

Since Sis standard so we have from (A) & (B), 

r = <t>n. Therefore I is a principal n-ideal. t 
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In this section we shall deduce some important 

properties of standard elements and n-ideals from the 

fundamental characterization theorem. If s ia a 

standard 

relation 

n-ideal, 

8( S), 

then we 

generated 

call 

by 

the 

s, a 

congruence 

standard 

n-congruence relation. If S = <s>n, then 8(S) = 

8( <s>n) and so 8( <s>n) is a standard n-congruence 

relation which we call principal standard 

n-congruence . Firstly, we prove some results on the 

connection between standard n-ideals and standard 

n-congruence relations. 

4_1_13_ Theorem - Let n be a neutral element of a 

lattice L. Let Sand T be two standard n-ideals of L. 

Then 

(i) 8(S n T) = 8(S) n 8(T) 

and (ii) 8(S VT) = 8(S) V 8(T). 

Proof: (i) This has already been proved in corollary 

4 . 1.6. 

(ii) Clearly, 8(S) V 8(T) c 8(S VT). To prove 

· l't let x = y 8(5 VT) with the reverse inequa 1 Y, 

X 2: y. 
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Then Y = (y V p) Ax and x = (x A q) Vy, 

for some p, q ES VT. 

Then by theorem 4.1.4., 

p = (p A si) V (p A ti) and p = (p V s2) A (p V t 2 ), 

q = (q A s3) V (q A ta) and q = (q V s4) A (q V t4) 

for some si, s2, ss, s4 e Sand ti, t2, ts, t4 ET . 

Now, p = ( p A s i) V ( p A ti) 

- (p An) V (p A ti) 8(S) 

- ( p A n) V ( p A n) 8( T) 

= p A n. 

Thus, p - p A n ( 9( S) V 9( T)) 

Again, p = (p V s2) A (p V t2) 

- (p V n) A (p V t2) 9(S) 

- (p V n) A (p V n) 0(T) 

= p V n. 

Thus, p - p V n ( 9( S) V 9(T)). This implies 

p A n - p V n ( 9( s) V 8( T)) 

and so p - n ( 9( S) V 9( T)). 

Similarly, we have q - n ( 9( S) V 9(T)). 

Now, y = (y V p) Ax 

_ (y V n) Ax (9(S) V 8(T)) 

= (y Ax) V (n Ax), as n is neutral. 

= y V (x An) 

_ y V (x A q) (9(S) V 8(T)) 

= x. 



This implies x = y (9(S) V 9(T)) . 

Therefore, 8(S VT)= 8(S) V O(T), 

which proves (ii). • 
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4_1_14_ Lemma - Let s be a standard element of a 

lattice Land ~a 1 be an arbitrary element of L. Then 

m(a, n, s) is standard in <a>n, where n is neutral in 

L. 

Proof - Let p , q E <a>n. Then a An SP, q Sa V n. 

Also p = p A (a V n) = (p A a) V (p An), and 

q = q A ( a V n) = ( q A a) V ( q A n), as n is 

neutral . Let r = m(a, n, s). 

Now, p A (q V r) = p A [{(q A a) V (q An)} V 

{(a An) V (a As) V (n As)}] 

= p " [{(q " a) V (q" n)} V { ( a A s) V 

(n " 8) } ] ' as q A a ~ a A n. 

= p " [ {q " (a V n)} V {s " (a V n)}] 

= p " (a V n) " (q V s) ' 

as s is standard. 

= p A (q Vs), asp Sa V n, 

= (p A q) V (p As), ass is standard. 

= (p A q) V (p As) V (a An) • • • • • ( A ) 



Also, p " r 
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= p " m(a, n, s) 

= p " [ ( a " n) V ( a /\ S) V ( n /\ s)] 

= [ p " {(a/\n) V ( a " s)}] V (p /\ n /\ S) ' 

as n /\ s is standard. 

= [p " {a " (n V B) } ] V (p /\ n /\ B) ' 

as s is standard. 

= (p /\a/\ n) V (p /\a/\ s) V (p /\ n /\ s) 

= ( p /\ a /\ n) V [ ( p /\ s) /\ ( a V n) ] , as 

= (a/\ n) V (p /\ s). 

Hence from (A), p /\ (q V r) = (p /\ q) V (p /\ r) and 

so r = m(a, n, s) is standard in <a>n. I 
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2. Homomorphiama and Standard n-ideala. 

4.2.1. According to Gratzer and Schmidt [18], we know 

that a standard ideal of a lattice is a homomorphism 

kernel, but the converse is not true in general. For 

an example they consider the following figure. In 

this lattice, the principal ideal (a] is a 

homomorphism kernel because it is a prime ideal, but 

it is not standard for 

x A (a Vt)= x but (x A a) V (x At)= y. 

t 

a 

0 Figure 4.2.1. 

In this section, we generalized their concepts to 

homomorphism n-kernels and standard n-ideals. 

be a homomorphism of a lattice L, then 

Let~ 

n-kernel ~ = {x e L : ~(x) = n}. Of course, if~ is 

l.
·nduced by the congruence relation 9, 

a homomorphism 

then n-kernel ~ = {x e L x. = n (9)}. 



It is already assured by co 11 4 ro ary .1.5, 

112 

that a 

standard n-ideal is a homomorphism n-kernel, where n 

is a neutral element of L. Considering n as the 

smallest element in figure 3, we find that the 

converse is not true in general. But the converse is 

true when Lis a relatively complemented lattice. In 

this connection, we shall prove some of their 

theorems for standard n-ideals and finally we shall 

prove two isomorphism theorems for standard n-ideals. 

4.2.2. Theorem Let n be a neutral element of a 

lattice L with the property that both (n] and [n) are 

relatively complemented. Then every homomorphism 

n-kernel of L is a standard n-ideal and every 

standard n-ideal is the n-kernel of precisely one 

congruence relation. 

Proof Let I be the homomorphism n-kernel of L 

induced by the congruence relation 8. That is, 

I= {x e L x en 8}. Clearly I is an n-ideal. We 

are to show that I is standard . Let a - b ( 8) . 

Consider the interval [n, a V b V n J • 

Now, (a I\ b) V n e [n, a V b V n J • Since [n) is 

relatively complemented so there exists 
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r E [n, a Vb V n] such that (a/\ b) V n V r 

= a Vb V n d (( /\ an a b) V n) /\ r = n. 

Since a - b (9) h /\ so we ave a b = a Vb (9). Thia 

implies (a/\ b) V n = a Vb V n (9). That is, 

r = n (9) and so r EI. 

Now, a Vb V n = (a/\ b) V n V r = (a/\ b) V r 

= (a/\ b) V {r /\ (a Vb V n)} 

= (a/\ b) V {(r /\ (a Vb)) V (r /\ n)}, 

as n is neutral. 

= (a " b) V { ( a V b) " r} V n. 

Also a V b = (a V b) " ( a V b V n) 

= (a Vb) " { ( ( a Vb) " r) V (a /\ b) V n} 

= [(a Vb) " { ( ( a Vb) " r) V (a/\ b)}J 

V ((a Vb)/\ n) ' as n is neutral . 

= ( ( a V b) " r ) V (a /\ b) V ( ( a Vb) /\ n) 

= ((a V b) " r) V (a " b) , where r E I . 

Again , consider the interval [a Ab/\ n, n]. 

Now, (a V b) /\ n E [a /\ b /\ n, n]. Since (n] is 

relatively complemented, so there exists 

s e [a/\ b /\ n, n], such that (a Vb)/\ n /\ s 

=a/\ b /\ n and ((a Vb) An) Vs= n. Now, a/\ b = 

a V b ( 9) implies a " b " n - (a V b) " n ( 9) - Thus 

S - n ( 9) and so s E I . Then by the dual proof of 

above it is not hard to show that 

a " b = ( ( a " b) V B) " (a V b) , where B E I . 



Thus, a - b (8) implies 

a Vb= ((a Vb) Ar) V (a Ab) 

and a Ab= ((a Ab) Vs) A (a Vb) for some r,s 

Hence by theorem 4.1.4. we have I is standard. 
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E I. 

At the same time we have proved that if I is the 

homomorphism n-kernel of L induced by 8, then 

8 = 8(I) which shows that every standard n-ideal is 

the homomorphism n-kernel of precisely one congruence 

relation. • 

4.2.3. Lemma - Let L be a relatively complemented 

lattice with O and 1 and n be neutral. Suppose <s>n 

is a standard n-ideal, s EL. If tis the complement 

of s, thens An, t An, s V n, t V n are all neutral 

elements (and so they are central elements). 

Proof: Since <s>n is standard so by lemma 4.1.10. 

s V n is standard ands An is dual standard. Since 

Lis relatively complemented so by [18 corollary 3, 

p-45] both s V n ands An are neutral and hence are 

central. Thus, (s V n)' = s· An· = t An· 

and (s An)'= s· V n· = t V n are also central. 
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Since n is neutral, t V n = ( t V n) " 1 

= ( t V n) " ( n # V n) 

= ( t " n # ) V n. 

This implies t V n is central. 

Again as B " n is central, BO t V n = B 
# V n 

= ( B I\ n)# is central. Therefore t I\ n = (t " n) V 0 

= (t I\ n) V (n " n#) = n " ( t V n # ) is also central. 

Hence s " n, t " n, B V n, t V n are all central . • 
In [ 18 J , authors proved that "In a relatively 

complemented lattice L with O and 1, C(L) is a 

boolean algebra if and only if every standard ideal 

of Lis a principal ideal". The following theorem is 

a generalization of the above result : 

4.2.4. Theorem - Let L be a relatively complemented 

lattice with O and 1. Then C(L) is a boolean algebra 

if and only if every standard n-ideal of L is a 

principal n-ideal. 

Proof Suppose every standard n-ideal of L is 

principal. Now, every congruence relation 9 is of the 

form 9 = 9( S), where S is the n-kernel of the 

homomorphism induced by 9. Then by theorem 4.2.2. 
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Sis a standard n-ideal. Since every standard n-ideal 

is principal, so 8 = 8(<s>n) for some a e L. Then by 
Lemma-4.2.3., both t V n and t /\ n are central, where 
t is the complemented of S. Thus by lemma 4.1.10, 

<t>n is also standard. Henc b th 4 1 e Y eorem .. 13., we 

have 

Also, 

which 

8(<s>n) n 8(<t>n) = 8(<s>n n <t>n) 

= 8( ( s /\ n) V ( t /\ n) , ( s V n) /\ ( t V n) ) 

= 8(n /\ (s Vt), n V (a/\ t)), 

as n is neutral. 

= 8 (n /\ 1, n V 0 ) 

= 8 ( n, n) = <,). 

8(<s>n) V 8(<t>n) = 9(<s>n V <t>n) 

= 8(s /\ t /\ n, S V t V n) 

= 8(0 /\ n, 1 V n) 

= 8(0, 1) = t 

shows 8(<t>n) is the complement of 8(<s>n). 

Therefore, every congruence relation of C(L) has a 

complement. In other words C(L) is a Boolean algebra. 

Conversely, suppose that C(L) is a Boolean algebra. 

By theorem 4.2.2, every congruence relation of Lis 

of the form 9( S), where S is a standard n-ideal. 

Suppose 9(T) is the complement of 8(S). Since C(L) is 

boolean, 8(S) has a complement~- Then by 4.2.2. 

again, ~ = 8(T) for some standard n-ideal T. 
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Now, from theorem 4.1.13, we have 

9(S n T) = 9(S) n 8(T) = Ci) • 

Also, 9(S V T) = 9(S) V 9( T) = t • 

Thus by theorem 4.2.2, s n T = {n} and s V T = L . 

Since Lhasa unit element, so L = <n 1 >n, where n# is 

the complemented of n. So we have Sn T and S VT are 

both principal n-ideals . Therefore S and T are 

principal n-ideals. This completes the proof. • 

In [18], Gratzer and Schmidt has proved two 

isomorphism theorems for standard ideals. In the next 

two theorems we give a generalization of their 

results in terms of standard n -· ideals. For a standard 

n-ideal S of L , we denote the quotient lattice 

L/9(S), simply by L/S. 

4.2.5. Theorem [First isomorphism theorem· for 

standard n-ideals]. Let L be a lattice. Let S be a 

standard n-ideal and I be any n-ideal of L. Then 

In Sis a standard n-ideal of I and 

(I V S)/S ~ I/(I n S) 

Proof The first part has already been proved in 

8 For the second part, we use the first lemma 4.1 .. 
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isomorphism theorem for Universal algebra. Then it 

remains to prove that every congruence class of 
I V s may be represented by an element of I . So, let 
X e I V s, then by theorem 4.1.4., we have 

X = (x " s1) V (x " a1) = (x V s2) " (x V a2) , 

for some s1, s2 e S; a1, a2 e I. 

Without loss of generality we can chose s2 :$ n :$ si 

Now, we have s1 = s2 9(S), so x /\ s1 - x /\ s2 9(S). 

Then x = (x /\ si) V (x /\ ai) 

- (x /\ a2) V (x /\ a1) 

= x /\ a1 9(S). 

Similarly, x - x V a2 9(8). 

Let y = (x /\ ai) V a2. Then a2 :$ y :$ ai, which 

implies y EI and x = x V a2 - (x /\ a1) V a2 

= y 9( S) . 

That is, for any x e I VS, there exists ye I such 

that x = y 9 (S). That is, [x) = [y) 9(S). 

Therefore, ( I V S) /S ~ I/ ( I n S) . • 

4. 2. 6. Theorem [ Second isomorphism theorem for 

standard n-ideals . ) Let L be a lattice. S be an 

n-ideal and T be a standard n-ideal of L such that 

S :l T. 
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case 

is 
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a standard n-ideal in L if and only 

a standard [n]-ideal in L/T and in this 

L/S ~ 
L/T 

S/T 

Proof: First suppose that Sis a standard n-ideal of 

L. Let~ : L ~ L/9(T) be the natural epimorphism. 

Then x ~ [x] 9(T) is homomorphism and onto. So by 

lemma 4.1.9, ~(S) is a standard [n)-ideal of L/9(T). 

Now ~ ( S) = S/9( T) = S/T. Hence S/T is a standard 

[n]-ideal of L/T . 

Conversely, suppose that S/T is a standard [n]-ideal 

of L/T. We are to show that Sis a standard n-ideal 

of L. Let us define a relation on Sas follows 

x = y 9(S) defined by x A y = ((x A y) Vt) A (x Vy) 

and x Vy= ((x Vy) A a) V (x A y), 

for some t,s ES. 

We shall prove that 9( S) is a congruence relation. 

Clearly 9(S) is reflexive. 

Now, let x ~ y ~ z and x = y 8'(S), y = z 9(S). Then 

from the proof of (b) - (c) in theorem 4.1.4. we have 

x = z 9(S). For the substitution property, let x ~ Y 

with x = y 9(5) and r EL . 
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Then x = (x As) Vy and y = (y Vt) Ax 

for some s, t ES. 

Now, x = Y 8(S) implies [x] = [y] 8(S/T). Since S/T 

is standard, so 8(S/T) is a congruence. 

So, [x] A [r] - [y] A [r] 8(S/T). Since [x] A (r] ~ 

[y] A [r] and S/T is standard in L/T, we have 

[y] A [rJ = (([y] A [rJ) V [s1J) A ([xJ A [rJ) ... (A) 

and 

[x] A [r] = (([x] A [r]) A [s2]) V ([y] A [r]) ... (B) 

for some [s1], [s2J e S/T. 

From (A) we get y Ar =((y Ar) V s1) A (x Ar) 8(T). 

Here y Ar~ ((y Ar) V s1) A (x Ar) and since Tis 

standard in L, so we have 

y Ar= ((y Ar) Vt) A {((y Ar) V s1) A (x Ar)} 

for some t e T. 

~ ((y Ar) V (s1 At)) Ax Ar~ y Ar. 

This implies y Ar= ((y Ar) V (s1 At)) A (x Ar) . 

Also from (B) we have 

[x] A [r] = (([x] A [r]) A [s2]) V ([y] A [r]) 

implies x Ar - ((x Ar) A s2) V (y Ar) 9(T). 

Here x Ar~ ((x Ar) A s2) V (y Ar) and since Tis 

standard in L, so we have 
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x Ar= ((x Ar) A ti) V ((x Ar) A s

2
) V (y Ar) 

for some tie T. 

5 {(x Ar) A (ti V s2)} V (y Ar) 5 (x Ar). 

This implies x Ar= ((x Ar) A (ti V s2)) V (y Ar). 

Hence x Ar= y Ar 9(S), as s1 At ES and 

ti V s2 ES. A dual proof will show that 

x V r = y V r 9(S). Therefore 9(S) is a congruence 

relation and so by theorem 4.1.4. S is a standard 

n-ideal of L. • 
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