
University of Rajshahi Rajshahi-6205 Bangladesh.

RUCL Institutional Repository http://rulrepository.ru.ac.bd

Department of  Mathematics PhD Thesis

2001

Spinning Particles in Curved

Spacetime of General Relativity

Ali, M. Hossain

University of Rajshahi

http://rulrepository.ru.ac.bd/handle/123456789/915

Copyright to the University of Rajshahi. All rights reserved. Downloaded from RUCL Institutional Repository.



SPINNING PARTICLES IN 

CURVED SPACETIME OF 

GENERAL RELATIVITY 

BY 

M. HOSSAIN ALI

THESIS SUBMITTED FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

IN THE UNIVERSITY OF RAJSHAHI 

DEPARTMENT OF MATHEMATICS 

FACULTY OF SCIENCE 

UNIVERSITY OF RAJSHAHI 

RAJSHAHI-6205 

BANGLADESH 

2001 



Professor Mainuddin Ahmed 
B. Sc. Honours (Calcutta) . 
M.Sc. (Rajshahi), D.I.C., Ph.D. (London) 
Department of Mathematics 
Senior Associate, ICTP, Trieste, Italy 

No .... ................ .. .... ....... ............ ........... .. .. 

Office +88-0721-75004 I /4108 
Phone: Resi. +88-0721-750468 

Fax: +88-0721-750064 
University of Rajshahi 
Rajshahi-6205, Bangladesh 

Date ...... 1 .. ~~.~J.: .. 9.\ ........ ................ . 

Certified that the thesis entitled "Spinning Particles 

in Curved Spacetime of General Relativity" submitted by 

Mr. M. Hossain Ali in fulfillment of the requirements for 

the degree of Doctor of Philosophy in Mathematics, 

University of Rajshahi, Rajshahi, has been completed 

under my supervision. I believe that this research work is 

an original one and it has not been submitted elsewhere 

for any degree. 

M. Ahmed 



.. 
11 

DEDICATED TO MY PARENTS 



Ill 

ACKNOWLEDGEMENTS 

l express my deep gratitude to my respectable supervisor Professor 

Mainuddin Ahmed for his guidance, encouragement and valuable discussion 

throughout the course of this work and in the preparation of this thesis. 

I am grateful to all of my teachers and colleagues, Department of 

Mathematics, Rajshahi University for cooperation and inspiration that I have had 

from them during this work. 

I also express my deepest sense of gratitude to my reverend teachers Prof. 

N.N. Khan and Prof. K.A. Dakua, Carmichael College, Rangpur for inspiring me 

in this work. 

I am thankful to the Abdus Salam International Centre for Theoretical 

Physics in Trieste, ITALY for giving me the opportunity to attend the Summer 

School in High Energy Physics and Cosmology of 1995, the Spring Workshop on 

Superstrings and Related matters of 2000, and utilize its library. 

Thanks are also due to Hyeon-Chan Kim, Dr. D. Baleanu, Dr. J. 

Chakrabaiii and Dr. A.S. Gupta for sending me some rare and imp01iant papers. 

Many thanks go to my brother Mr. M . Yunus Ali and wife Mrs. Akhtara 

Banu for encouragement and support during the entire period of this work. Thanks 

also to my affectionate niece Umme Salma for taking special care of me in writing 

this thesis. 

Finally, I would like to thank Mr. Kamruzzaman Sarkar for his patient 

typing the manuscript. 



IV 

NOTATION AND CONVENTION 

Units are chosen such that the Newtonian gravitational constant G, the 

speed of light c, and n =li/2 ;rr with h the Planck's constant are equal to unity: 

G = c = n = 1. 

Round brackets indicate full symmetrization, while square brackets denote 

full anti-symmetrization over the indices enclosed: 

A( -·J = _!_ (A .. + A .. ) 
y 2! lj p 

A[-·•·] = _!_ (A .. ,. - A.k. + A "k" - A ""k) 1/K • 3 ! Y• I I/ J I JI 

A comma, a semicolon, and a dot respectively denote a directional 

derivative, a covariant derivative, and a differentiation with respect to the 

argument. 

SUSY stands for Supersymmetry, 

NUT stands for Newman-Unti-Tamburino, 

RN stands for Reissner-N ordstrom, 

NUT-RN stands for NUT-Reissner-N ordstrom, 

NUT-KN stands for NUT-Ke1T-Newman, 

HNUTKNK stands for Hot NUT-Kerr-Newman Kasuya, 

BRST stands for Becchi-Rouet Stora-Tyutin, 

QFTs stands for Quantum Field Theories. 
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ABSTRACT 

This thesis is organized as follows. 

In Introduction we give a brief account of our work of studying spinning 

particles in curved spacetime of General Relativity. 

In Chapter I we discuss the relevant equations for the motion of spinning 

particles in curved spacetime. We present the generalized Killing equations for 

spinning space and describe the constants of motion. 

In Chapter II we derive the constants and the equations of motion for 

spinning pat1icles moving in the Schwarzschild spacetime. We discuss various 

types of orbits and describe exact solutions in a plane. 

In Chapter III we extend the work of Chapter II in the Reissner-Nordstrom 

spacetime, which is the Schwarzschild spacetirne generalized with a charged 

parameter and then fm1her extend this work in the Reissner-Nordstrom spacetime 

generalized with a NUT (or magnetic mass) parameter. In the Reissner-Nordstrom 

spacetime we investigate the motion of spinning particles on a plane for bound 

state orbits, while in the NUT-Reissner-Nordstrorn spacetirne we analyze the 

motion on a cone and on a plane. 
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In Chapter IV we study "nongeneric" supersymmetries of spinning particles 

m a curved spacetime. We present a general analysis of the conditions under 

which this type of supersymmetries appear, and describe Poisson-Dirac algebra of 

the resulting set of charges. · 

All members of the Kerr-Newman family of black-hole solutions admit a 

"nongeneric" supersymmetry. In Chapter V we describe this new supersymmetry 

along with the c01Tesponding conserved quantity in the Ken--Newman spacetime. 

In Chapter VI we extend the work of Chapter Vin the NUT-Ken-Newman 

spacetime, which includes th~ Kerr-Newman black-Hole spacetime as well as 

NUT spacetime, which is sometimes considered as unphysical. 

In Chapter VII we extend further the work of Chapter VI in the NUT-Kerr

N ewman spacetime generalized with an extra magnetic monopole charge and a 

cosmological constant. 

Finally, we present a discussion on our study at the end of this thesis. 
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INTRODUCTION 

In recent years there has been a renewed interest in the study of the motion 

of spinning particles in curved spacetime. The action of spin-1/2 relativistic 

patiicle with spinning degrees of freedom characterized by anti-commuting 

Grassmann [ 1, 2] variables was first proposed by Berezin and Marinov [3, 4] and 

soon after that was discussed and investigated by many authors [5-14] . 

In spite of the fact that the anti-commuting Grassmann variables do not 

admit a direct classical interpretation, the Lagrangians for these models have a 

natural interpretation in the context of the path-integral description of the quantum 

dynamics. The pseudo-classical equations of motion acquire physical meaning 

when averaged over the inside of the functional integral [3, 4, 25]. In the semi

classical ( classical metric with quantized matter) regime, neglecting higher order 

quantum co1Telations, it should be admissible to replace appropriate combinations 

of Grassmann spin-variables by real numbers, to obtain the corresponding 

quantum mechanical expectation values. These ideas have been used to study the 

motion of spinning paiiicles in external fields in refs. [3, 4, 16-26]. 

In addition to such direct physical applications, generalizations of 

Riemannian Geometry based on anti-commuting variables have been found to be 

of wide mathematical interest. This interest is mainly raised by supersymmetry 

[27-44] and supergravity [38-53] -local version of supersymmetry - theori es. 
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Supersymmetric point particle mechanics has found applications in the area of 

index theorem; for example, Witten's index [54], which exists in the context of 

N~J supersymmetric quantum field theories (QFTs) in any dimension, is an 

effective tool in addressing questions of supersymmet1y breaking, while the 

supersymmetric index for N=2 supersymmetric QFTs in two dimensions is related 

to the geometry of the vacua [55,56] . In addition, the BRST 

(Bechhi-Rouet-Stora- Tyutin) [57, 58] methods, in which the gauge symmetry is 

replaced by a global fe1mionic symmetry in an extended phase space consisting of 

the original phase space together with the ghost variables and their momenta, are 

widely used in the study of topological invariants. For all of these reasons, the 

study of the geometry of graded pseudo-manifolds with both rea1 number and 

Grassmann coordinates is we11 justified. 

Recently, Rietdijk [59], Rietdijk et al. [60] and van Holten et al. [61] 

investigated the general relations between symmetries of graded pseudo-manifolds 

and constants of motion for spinning point paiiicles in detail. These methods may 

be applied to any spacetime. More recently, Rietdijk and van Holten [62] studied 

spinning point particles in the Schwarzschild spacetime. Visinescu [63, 64], 

Vaman and Visinescu [65-67], van Holten [68] and Baleanu [69-72) investigated 

pseudo-classical spinning particles in the Taub-NUT spacetime. 

In this thesis we would . like to study spinning particles in the black-hole 

spacetime as well as in the spacetimes which are not black-hole spacetimes but 
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have common feature with the black-hole spacetimes that they have horizons, We 

a1Tange our sh1dy in seven chapters as follows. 

In Chapter I we would like to summarize the relevant equations for motion 

of pseudo-classical spinning point particles in curved spacetime along with their 

physical interpretation. We apply the generalized Killing equations derived in [60] 

for spinning space to describe constants of motion. 

In Chapter II we would like to review the work of Rietdijk and van Holten 

[62] of investigating the motion of pseudo-classical spinning point particles in the 

Schwarzschild spacetime. We describe the full set of first integrals of motion and 

present an exact solution for planar orbits. 

In Chapter III we extend the work of Chapter ·II to the Reissner-Nordstrom 

spacetime [73], which is the Schwarzschild spacetime generalized with a charged 

parameter, and then further extend this work to the Reissner-Nordstrom spacetime 

generalized with a NUT parameter, which has the interpretation of a gravitational 

magnetic monopole [74 - 79]. Our work may be interesting from the point of view 

of N=2 supergravity as well as string theory. Spacetime supersymmetry has 

previously been applied to charged black hole in the context of N=2 supergravity 

theory [80]. The string theory gives birth to general relativity at the linearized 

level in the low energy limit [81]. The NUT-Reissner-Nordstrom spacetime 

includes the NUT spacetime, which is sometimes considered as unphysical. 

According to Misner [82], the NUT spacetime is one which does not admit an 
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interpretation without a periodic time coordinate, a spacetime without reasonable 

spacelike surfaces, and an asymptotically zero curvature spacetime, which 

apparently does not admit asymptotically rectangular coordinates. McGuire and 

Ruffini [83] suggested that the spacetimes endowed with NUT parameter should 

never be directly physically interpreted. So the study of pseudo-classical spinning 

pai1icles in the NUT-Reissner-Nordstrom spacetime is interesting. 

Spinning pa11icles m curved spacetimes can have "nongeneric" 

supersymrnetries (SUSYs) [80, 84-86]. The appearance of such SUSYs depends 

on the specific form of the metric tensor. In ref. [80] Gibbons et al. presented a 

systematic analysis of investigating "nongeneric" SUSY s of classical spacetime in 

terms of the motion of pseudo-classical spinning point particles in a curved 

Lorentzian manifold. This new SUSY is generated by the square root of bosonic 

constants of motion other than the Hamiltonian. We would like to review the work 

of Gibbons et al. [80] in Chapter IV. We summarize the f01malism of pseudo

classical spinning point pa1iicles in an arbitrary background spacetime and 

describe "nongeneric" SUSY along with the other (universal) symmetries and give 

their algebras. 

The existence of a "nongeneric" SUSY is closely related to the appearance 

of Killing-Yano tensors [87] of the bosonic manifold. Although there are not so 

many physically interpretable· spacetimes in which Killing-Yano tensors exist 

[88-90], the Kerr-Newman [80, 91] and Taub-NUT [64, 68, 72] spacetimes admit 
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Killing-Yano tensors and hence they have "nongeneric" SUSYs. In Chapter V we 

would like to review the work of investigating "nongeneric" S~SY and the 

corresponding conserved quantity in the Kerr-Newman spacetime [80]. 

In Chapter VI we would like to extend the work of Chapter V to the 

Ken--Newman spacetime generalized with a NUT (or magnetic mass) parameter 

[92]. This study is interesting in that the spacetime contains the unphysical NUT 

spacetime. 

In Chapter VII we further extend the work of Chapter VI to the NUT-Kerr

Newman-Kasuya-de Sitter spacetime, which is the NUT-Kerr-Newman spacetime 

generalized with an extra magnetic monopole charge and a cosmological constant. 

The monopole hypothesis was propounded by Dirac relatively long ago. The 

ingenious suggestion by Dirac that magnetic monopole does exist was neglected 

due to the failure to detect such particle. However, in recent years the development 

of gauge theories has shed new light on it. On the other hand, in recent years there 

has been a renewed interest in cosmological constant as the cosmological constant 

is found to be present in the inflationary scenario of the early universe. In this 

scenario the universe undergoes a stage where it is geometrically similar to de 

Sitter spacetime [93]. Among other things inflation has led to the cold dark matter. 

According to cold dark matter theory, the bulk of the dark matter is in the form of 

slowly moving particles (axions or neutralinos). If the cold dark matter theory 

proves correct, it would shed light on the unification of forces [94, 95]. In view of 
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these interests in the cosmological constant and because of the presence of 

magnetic monopole charge our study of this Chapter is interesting. Since the de 

Sitter spacetime has been interpreted as being hot [96], we shall cal1 the spacetimc 

the hot NUT-Kerr-Newrnan-Kasuya (H-NUT-KN-K) spacetime. 

Finally, we present a discussion on our work at the end of this thesis. 
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CHAPTER I 

MOTIONS OF SPINNING PARTICLES IN 

CURVED SPACETIME 

1.1. INTRODUCTION 

The configuration space of spmnmg particles (spinning space) is an 

extension of a (pseudo-) Euclidean manifold, described by local coordinates {xP}, 

to a graded manifold described by local graded coordinates {xµ, If/µ} with the fi rst 

set of variables being Grassmann-even (commuting) and the second set 

Grassmann-odd (anti-commuting). Geodesic flow along time-like curves of such a 

graded manifold with Minkowskian signature (+ - - -) describes the classical 

limit of the motion of a relativistic point-like Dirac particle, which carries a spin 

s=n/2 in quantum mechanics [4, 7-9, 14]. 

We arrange this chapter as follows. In section 1.2 we summarize the 

relevant equations for the motion of spinning particles in curved spacetime, and 

briefly discuss their physical interpretation. In section 1.3 we discuss the relation 

between symmetries of the spinning space and conservation laws, and describe the 

generalized Killing equations for spinning space. In section 1.4 we discuss the 

derivation of "generic" constants of motion in terms of the solutions of the 

generalized Killing equations. 
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1.2. SPINNING SPACE 

Einstein's theory of gravity suggests that the world-lines of classical point 

particles in a curved spacetime are time-like geodesics. As geodesics are curves of 

extremal length, the equation for the world-line of a point particle can be derived 

from an action principle, with the action any smooth monotonic function of the 

spacetime interval along the curve 

(1.2 . 1) 

Here, dr is the conesponding interval of proper time. The last equality holds only 

in the absence of external forces, like electromagnetic dipole forces [24]. 

In spinning space the ad_ditional fermionic dimensions are characterized by 

vectorial Grassmann coordinates lf/ 11 • Since the number of bosonic and fermionic 

dimensions is the same, and the coordinates l/f JJ transform as I-forms dxµ, there 

can exist a supersymmetry in the geometry of the graded manifolds, which relates 

each xP with the corresponding lflµ, according to 

(1.2.2) 

where the overdot denotes a derivative with respect to proper time, dldr. A 

manifestly supersymmetric action that defines the extremal trajectories 

("geodesics") of spinning space is given by 
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2f ( ] i D 1/I v J S=m dr 20µv(x)xµ ,e +20µv(x)!flµ Dr I 

I 

where the constant m has the dimension of mass. In the following we consider 

particles of unit mass: m = 1, but occasionally we re-instate the explicit mass 

dependence when this is physically relevant. The capital derivative denotes 

covariant derivative with respect to proper time and it is defined by 

(1.2.4) 

Under a general variation of the co-ordinates (5:x!', 5 If/µ) the action S changes by 

(1.2.5) 

where the canonical momentum is 

( 1.2.6) 

and R,.J .. pv is the Riemann curvature tensor, while L1 If/µ 1s the covariantized 

variation of If/µ : 

(1.2.7) 



10 

The trajectories, which make the action S stationary under arbitrary variations li-<1 

and 61/fµ vanishing at the end points, are given by 

D
2
xµ ••µ r11 ·A.•V I . K A,R µ • V --= X + X X = - - l l/f 1/f KA. v X , 

Dr2 J v 2 
(1 .2.8) 

(1.2 .9) 

The solutions of equations (1.2.8) and (1.2.9) for xµ(r), with replacing If/µ by zero 

everywhere, give ordinary geodesics in the bosonic submanifold. 

More interesting solutions are those for which one or more components If" 

are different from zero. We briefly discuss the physical interpretation of such 

solutions in the following. The anti-symmetric tensor 

S I/\/ • I/ V , =-llfl'f/1 (1.2.10) 

describes the relativistic spin of the pa1iicle [4, 7, 12, 16, 24, 25], and 

correspondingly equations (1.2.8) and ( 1.2.9) describe the classical motion of a 

Dirac pa1iicle. Equation ( 1.2.8) then becomes 

D 2 11 I __ x_=-SK..t R µ '" 
' KA V X Dr· 2 

(1.2.11) 

It implies the existence of a spin-dependent gravitational force [16, 17, 20, 24-26) 
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analogous to the electromagnetic Lorentz force, 

· •µ - q Fµ ·V 
X -- vX , 

m 
(1.2.12) 

with the spin-polarization tensor replacing the scalar electric charge (here for unit 

mass). Equation (1.2.9) suggests that the spin is covariantly constant: 

DSfiV 
--=0. 
Dr 

(1.2.13) 

The space-like components Sij of the spin tensor are proportional to the particle's 

magnetic dipole moment, while the time-like components S;o represent the electric 

dipole moment. For free Dirac particles like free electrons and quarks (the ultimate 

constituents of hadrons) the time-like spin components ( electric dipole moment) 

vanish in the rest frame. This gives a covariant constraint 

( )sµ,, . ,l - 0 
fJv,i X X - , (1.2.14) 

which, in terms of the Grassmann coordinates, is equivalent to 

"()·JI v_o {:JJIV XX 1/f - . (1.2.15) 

This constraint has an elegant interpretation in the supersymmetry analysis . We 

shall return to this point in section 1.4 below. 

lbjshshi University Library 
~ocurne,1rnrion Sectfon 
Decu,ncr.t NJ .. Ji). .... 3.@iry,.. 
D·•te / " ••e,•!.· to/&~ D-~,~ 
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An interesting consequence of equation (1 .2.11) is that for real sw one can 

measure the spin directly via its coupling to the gravitational field, instead of 

indirectly by detennining its associated electromagnetic dipole moments. 

1.3. SYMMETRIES AND GENERALIZED KILLING EQUATIONS 

In classical mechanics there is a well-known relation between symmetries 

of the configuration space and conservation laws, as expressed· by Noether's 

theorem. In case of a scalar point pa1iicle, moving in an arbitrary curved 

spacetime, this relation can be summarized as follows . The geodesic law of motion 

of the particle can be derived from an action principle. The simplest form of the 

action is 

2 

S- fd 1 ( )")l ·V - T 2 qJII' X X X . (1.3.1) 

I 

If this action be invariant under the transformations 

(l.3.2) 

then the quantity 

+ _!_ Xµ .;Yx··,lj(J) (x)+ 3 ! , A )IV/4 • • • (1.3.3) 
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is a constant of motion [ 61 ]. The necessary and sufficient conditions for this are 

that the differential equations, 

(1.3.4) 

in which the parentheses denote full symmetrization over all indices enclosed. 

with total weight one, have to be satisfied for 

( 1.3.5) 

Explicit forms of the equations in (1.3.4) are 

(1.3.6) 

(1.3.7) 

(1.3.8) 

Equation (1.3 .6) implies that .f0J is an irrelevant constant. Equation (1.3.7) is the 

standard equation for Killing vectors, while equation (1.3.8) and its higher-rank 

counterparts constitute tensorial generalizations of this equation. Because of this. 

one refers to Kµv and higher-rank tensors satisfying (1.3.4) as Killing tensors. 
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We now generalize the above statements to the graded configuration space 

(spinning space) of spinning point particles. For this purpose it is necessary to 

consider specific variations oxµ and L'.1 I/IP which leave the action (1.2.3) invariant 

modulo boundary terms. Let us take the variations to be of the form 

UJ 

8.x" = ..::# µ(X, X, 1/f )=R(I)µ (X,1/f)+ ~ _!_Xv1 ••• Xv"R v(n+lv)/1 (X,1/f ), 
~n! , ... ,, 
11=/ 

<Xl 

IJl/fµ =Yµ(x,X,1/f )=S(O)µ (x,1/1)+ L ~:xv1 
••• :xv"S~~~:v,,(x,l/f) 

n. 
11=/ 

and the Lagrangian transform into a total derivative 

2 

oS= r d (s:. µ i s: " 1, (T ( • ) Jd, d, UX /:lp - 2 ul/f q pv'II - ✓ X, X, 1/f) , 

I 

(1.3.9) 

(1.3.10) 

where P,p is the canonical momentum conjugate to xµ, defined in (1.2.6). Then it 

follows that 

(1.3.11) 

If the equations of motion (1.2.10), (1.2.11) are satisfied, the right-hand side of 

( 1.3 .11) vanishes. Hence the quantity f is conserved. This is Noether's theorem. 
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Ifwe expand / ' (x,x, lfl) in terms of the four-velocity, 

ex, 

/(x,x,lfl)=J(o)(x,lfl)+'""' ~x111 ... x11"Ji:! .. µ,,(x,lfl), 
~n. 
n=I 

(1.3.12) 

and compare the left- and right-hand sides of equation (1.3.11) with the ansatz 

( 1.3.9) for <5x'' and /JI/IP , then the result gives the following identities: 

(1.3.13) 

and 

(I .3.14) 

These quantities satisfy a generalization of the Killing equations of the form [60] 

(1.3.15) 

this reduces for the lowest components to 

(1.3.16) 

(1.3.17) 
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(1.3 .18) 

These equations hold independently of the equations of motion. In the purely 

bosonic ( I/I-independent) case, these equations reduce to equations (1 .3.6)-(1.3.8). 

We note that, contrary to the bosonic case, the Killing scalar B(x, 1/f) = J(o) (x, lfl) is 

not always an irrelevant constant, because it can depend non-trivially on xP and 

vi 1' , as described in the equation ( 1.3. 16). 

1.4. GENERIC SOLUTIONS 

In contrast to scalar particles, spinning particles admit several conserved 

quantities of motion in a curved spacetime with metric 0wfx). We can divide them 

into two classes. First, there are conserved quantities which exist in any theory, 

even though the specific functional fmm may depend on the metric qw(x); these 

are called "generic" constants of motion. The second kind of conserved quantities 

result from the specific fo1m of the metric q11.jx). These are model-dependent, and 

hence are called "nongeneric". · 

For spinning-particle models as defined by the action (1.2.3) there exist 

four independent "generic" constants of motion [60, 61]. We are going to describe 

them in the following: 
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1. Similar to the bosonic case the metric qJ..1,jx) itself is a Killing tensor: 

( 1 .4.1) 

with all other Killing vectors and tensors (bosonic as well as fermionic) equal to 

zero. The corresponding constant of motion is the world-line Hamiltonian 

(1.4.2) 

where PJI is the covariant momenh1m defined by 

(1.4.3) 

2. The Grassmann-odd Killing vectors 

T V •J: V 
µ = lu µ , (1.4.4) 

provide another obvious solution. Here again all other Killing vectors and tensors 

are equal to zero. This solution gives the supercharge 

(1.4.5) 

3. In addition, the spinning particle action has a second non-linear 

supersymmet1y, generated by Killing vectors 
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(1.4.6) 

Obviously, the Grassmann parities of (R11. T11v) depend on d, the number of 

spacetime dimensions. The corresponding · constant of motion is the dual 

supercharge 

.[d 12] 
Q• = -l Gq5 pP, µ_, µ,1 

(d-l)!v-& µ, .,.;i" 1/f . .. 1/f . 
(1.4. 7) 

4. Finally, there is a non-trivial Killing scalar 

(1.4.8 ) 

which acts as the Hodge star duality operator on 1/fµ. In quantum mechanics it 

becomes the -/+' element of the Dirac algebra. Because of this reason r. is 

referred to as the chiral charge. 

From the fundamental Dirac brackets, 
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(1.4.9) 

one can find the following non-trivial Dirac brackets between these universal 

constants of motion: 

{Q, Q} = -2iH, {Q, r.} = -iQ • . (1.4.10 ) 

For d=2, Q• becomes linear and acts as an ordinary supersymmetry: 

(1.4.11) 

This implies that the theory in two dimensions possesses an N=2 supersymmetry. 

In the case of d~2, the right-hand side of equations (1.4.11) is to be replaced by 

zero. 

The conservation of the supercharge Q is actually crucial for the 

consistency of the physical interpretation of the theory. In fact, the condition for 

the absence of an intrinsic electric dipole moment of physical _fermions like 

leptons (the lighter paiiicles such as electron muon, tau, etc.) and quarks as 

formulated in ( 1.2.15) becomes 

Q=O. (1.4.12) 

Since Q is a conserved quantity, condition (1.4.12) can be satisfied at all times, 

irrespective of the presence of external fields, and at the same time it provides a 

clear physical interpretation of world-line supersymmetry. 
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CHAPTER II 

SPINNING PARTICLES IN SCHWARZSCHILD SPACETIME 

2.1. INTRODUCTION 

The Schwarzschild spacetime is the simplest of all black-hole spacetimes. It 

describes a static, spherically symmetric gravitational field, which is 

asymptotically flat. Recently Rietdijk and van Holten [62] studied pseudo-classical 

spinning point particles in the Schwarzschild spacetime. We would like to review 

their work in the present chapter. 

We arrange this chapter as follows . In section 2.2 we derive the equations 

of motion of a spinning particle· moving in the Schwarzschild spacetime. In section 

2.3 we discuss specific solutions, and derive an exact equation for the precession 

of the perihelion of planar orbits. In section 2.4 we present a discussion on the 

results. 

2.2. SPINNING SCHWARZSCHILD SPACETIME 

In this section we apply the results of Chapter I to the case of a spinning 

particle moving in the Schwarzschild spacetime which has the metric [97]. 
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(2.2.1) 

where a=2M is the Schwarzschild radius, with M the total mass of the object 

which is the source of the field. The metric possesses four Killing vector fields of 

form 

(2.2.2) 

where 

(2.2.3a) 

D(/) . a a = -sznrn - -cot0 cosrn-
r ae r 8<p' (2.2.Jb) 

(2.2.3c) 

(2.2.3d) 

These Killing vector fields generate the Lie algebra 0(1, I) x SO (3).: 

(i, J, k = 1, 2, 3). (2 .2.4a) 

(2.2.4b) 
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and describe the time-translation invariance and the spatial rotation symmetry of 

the gravitational field. 

The first generalized Killing equation (1.3.16) shows that for each Killing 

vector, R ;fl (x), there is an associated Killing scalar, s(/1) (x, If/) . Therefore, if we 

limit ourselves to variations (1.3.9) which tenninate after the terms linear in 

we obtain the constants of motion 

. JI 
.\" ' 

(2.2.5) 

which represent the total angular momenh1m, which is the sum of the orbital and 

the spin angular momentum. Equation (2.2.5) expresses the fact that the 

contribution of the Killing vector gives the orbital angular momentum, while the 

contribution of the spin is contained in the Killing scalars s(fl) (x, If/) . 

Inserting the expressions for the connection and the Riemann curvature 

components con-esponding to the Schwarzschild spacetime in ( 1.3 .16), we obtain 

for the Killing scalars 

B(O) _ . a t ,. 
--l-2 If/ If , 

2r 
(2 .2.6a) 

B (I) - · · r O · · 0 0 r ,p 2 2 0 m - tr smcp If If + 1r sm cos coscp If/ If/ -ir sin 0 coscp 1/1 If'", (2.2.6b) 
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(2 .2.6d) 

Substituting these in equation (2.2.5) and usmg the spin-tensor notation 5.11•· , 

introduced in equation ( 1.2.10), we obtain 

(2.2.7a) 

(2.2. 7b) 

(2.2.7c) 

(2 .2. 7d) 

In addition to these constants· of motion, the four generic conserved charges, 

described in the section (1.4) of Chapter I, also provide information about the 

allowed orbits of the particle. Finally the covariantly constant If/µ as formulated in 

( 1.2.9) gives 

dl/f
1 

=- a (dr I dt r) 
d r __ ( ___ ar-) d, 1/f + d, 1/f ' 

2r 2 1-

--=r 1--·- --ljl 0 +sin 2 0 -1/f<p , dl/f,. ( 3a)(d0 d(() ) 
d, 2r dr dr 

(2 .2.8a) 

(2.2.86) 
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dl/f
0 

l(dr 0 d0 ,.) . 0dcp 'P 
--=-- -If +-If +sin0cos -1/f , 
d, r dr d, d, 

(2.2.8c) 

--= - - - + cot 0 - 1/f - - - If - cot 0 - If . dl/f'P ( / dr d0) rp 1 d<p r d<p 0 

dr r dr cir r dr dr · 
(2.2.8d) 

Thus, we have twelve equations from which we want to solve four velocities and 

four components of l/f 11 • In order to construct a convenient set of equations 

incorporating physical boundary conditions, we consider motions for which 

1 
H=--m, 

2 
(2.2.9) 

or equivalently 

µv pp 2 -O q If V +m - . (2.2. l 0) 

This equation implies that the motion is geodesic, as described by (1.2. l ) . 

Combining equations (2.2 .7) and (2.2.9), one can express the velocities as 

functions of the coordinates, the spin components and the constants of motion: 

(2 .2.1 I a) 
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I 

-r'(1 < )[ (~:r +sin
2 o(~: rr 

dB= - 1-(- 1(1) sin rp + 1(2
) cos rp - rS'0 ), 

d, mr 2 • 

drp 
d, = I 1(3) - _I_ S''P - l.__ cot 0 S0rp . 

mr 2 sin 2 0 mr m 

From equation (2.2.7) one can derive a useful identity 

(2.2.11 b) 

(2.2.11 c) 

(2.2.11 d) 

(2.2.12) 

In physical terms, this equation states that there is no orbital angular momentum in 

the radial direction : the total angular momentum in that direction is the spin 

angular momentum. 

The supersymmetry constraint Q=O (equation (1.4.12)) expresses the fact 

that spin represents only three independent degrees of freedom. Indeed, one can 

then solve for t;) in terms of the spatial components f//i : 

(2.2.13) 
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• 
As a result, the (classical) chiral charge r. and the dual supercharge Q become 

zero: 

r. = Q. = a. (2.2.14) 

Equation (2.2.8a) is solved by the expression (2.2.13). The remaining equations, 

(2.2.8b)-(2.2.8d), can be rewritten in terms of the spin tensor components 

5iJ, (i, j = r,0, (fJ ), as follows: 

dS,.0 1 dr 5r0 . 0 0 d(f) 51·<p . 2 0(1 3a) d(f) 50({) --= - - - + sin cos - - r szn - - - , 
dr r dr dr 2r dr 

(2.2. l 5a) 

(2.2.15b) 

(2.2.15c) 

Equation (2.2.15c) is automaticaIIy solved by (2.2.12). 

Equation (2.2.13) allows one to rewrite all time-like components S' in 

terms of the space-like Sj. In particular, using the anti-commuting character of the 

If-variables, and the expression for dtld, one can write 

S rr - m.r l ( d 0 S r0 . l 0 d (f) S r <p ) --- - - +szn -
E dr d-r . 

(2.2.16) 

Substitution of this result in (2 .2.l la) gives 
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(2.2.17) 

Equations (2.2.11 ), (2.2.15) and (2.2.17) can be integrated to give the full solution 

of the equations of motion for the coordinates and spins. 

2.3. SPECIAL SOLUTIONS 

In this section we apply the results obtained in the previous section to study 

the special case of motion in a plane, for which we choose 0=7d2. For scalar 

particles, the orbital angular momentum is always conserved. Hence, any solution 

of scalar patiicles would actually describe a planar motion. But this is no longer 

true in general for spinning particles, for which only the total angular momentum 

is a conserved quantity. 

For spinning particles, motion in a plane is strictly possible only in special 

cases, in which orbital and spin angular momentum are separately conserved. This 

may happen only if either the orbital angular momentum vanishes, or if spin and 

orbital angular momentum are parallel. 

For 0=7d2 the equations of motion (2.2.11) and (2.2.15) become 

(2 .3.1 a) 
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I 

:: -{(1-:)tJ -(1-:)-r'(1-:)(~:rr (2 .3.Ib) 

(2.3.lc) 

(2.3 . ld) 

!!_ 0-srrp )= 0. 
d, 

(2.3.leJ 

From equations (2.3.lc) and (2.3.le) it follows that the orbital angular momentum 

and the component of the spin perpendicular to the plane in which the particle 

moves, are separately conserved: 

rSrrp =I , (2.3.2a) 

(2.3.2b) 

where £ and L are two constants. This result leads to the remark that the presence 

of spin-dependent forces modifies the gravitational red-shift. Indeed, equation 

(2.3.1 a) becomes 

(2.3.3) 
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For a nonzero value of the orbital angular momentum L, it follows from equation 

(2.3.3) that there is an additional contribution to time-dilation from spin-orbit 

coupling. Thus the time-dilation is not a purely geometric effect; it also has a 

dynamical component [24, 25]. 

In the case of planar motion equation (2.2.1 lc) reduces to 

and equation (2.2.12) to 

These two equations can be combined to obtain 

There are indeed only two possibilities, if we compare (2.3.6) with (2.3.1 d): 

( I) drp=O 
dT ' 

(II) S 0
rp = 0. 

(2.3.4) 

(2.3 .5) 

(2.3.6) 

(2.3. 7) 

CASE I. Vanishing of dcpldr implies that there is no orbital angular 

momentum, and then the solution describes a particle moving along a fixed radius 

from or towards the source of the gravitational field. The motion of the particle for 

a distant observer is described by 
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(2.3.8) 

as in the case of a scalar point particle. Since the orbital angular momentum 

vanishes, the (Cartesian) spin tensor components are all conserved, e.g., if we 

choose ((J=O for the path of the particle, then 

CASE II: If d(() ,t: 0, then equation (2.3.7) gives 
d-r 

S 0
<P = 0, 

and hence 

Then, equation (2.3.4) gives 

srB =O 
' 

(2.3 .9) 

(2.3 . l0a) 

(2.3.l0b) 

(2.3.l0c) 

which means that the spm is parallel to the orbital angular momentum. The 

equation for the orbit of the particle is obtained from equations (2.3. la)-(2.3. Ic), 

which is 

(2.3 . 11) 



Using the dimensionless variables 

E 
E=- , 

m 
r 

x=-
a 

, 
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L 
/ ·=-, 

ma 

equation (2.3.11) can be put in the form 

I 
Ll=

L' 
(2.3.12) 

(2.3.13 ) 

The presence of L1, which is a bilinear combination of anti-commuting variables 

f//P, makes the equation rigorous. For the investigation of a possible motion, a 

numerical value needs to be assigned to LL As mentioned in the Introduction of 

this thesis, such a quantum mechanical expectation value is desirable. Then L1 can 

be used as a classical variable. In order to avoid any inconsistency that may result 

from this semiclassical approximation, the numerical value of L1 is supposed to be 

small: L1 <<I. 

Substituting the expression for d(fJ from (2.3.lc) on the right-hand side of 
dr 

equation (2.3.13), an effective potential UR(x, / 2
) can be defined. Then 

(2.3 .14a) 

where 
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( 2) 1 2 1 ( ) 2 1 UR X, / =] - - + / - - ] + ,1 /' J. 
X x 2 

X 

(2.3 .14b) 

This equation is the same as one would obtain for a one-dimensional problem with 

a potential UR(x, / 2
). In the one-dimensional problem, the particle is subject to a 

radial force 

(2.3 .15) 

This is the effective force that the three-dimensional particle feels in the radial 

direction, including a contribution from the centripetal acceleration. As the radial 

kinetic energy is positive, the right-hand side of (2.3.14a) must be positive as well. 

Figure 1 shows a picture of a possible potential UR(x, / 
2
) • 

0 

, 
E 1-

2 
E 3 

......... \. ! ... ~-~.<.~ ... : ... ~ ... ?. .......... ........................................ .... .......................... .. 

....... .. r·· .. ····· ············........ ........... .. . ... ····················· 
; 

x .. X . X 

Figure 1. Effective potential of a particle in Schwarzschild spacetime 

for large values of orbital angular momentum. 

The potential UR(x, / 2
) is maximum at x + and minimum at x_, where 
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(2.3.16) 

provided that / 2 > 3 (1 + Ll). There are four possibilities: 

(i) The approaching particle has the energy such that Ef >UR (x+ / 2 
). Far 

away an attractive effective force acts on the particle. After passing the minimum 

potential, Un(x_, / 2
), at x_, the effective force becomes repulsive. But the particle 

has enough kinetic energy to reach X+, where it is again subject to an attractive 

effective force. The particle then being attracted hits the object, which is the 

source of the gravitational field, or in case of a black hole, it crosses the 

Schwarzschild radius atx = 1. 

(ii) The energy of the approaching particle is such that 1 SE~< UR (x+ / ' 2 ) 

In this case the approaching particle from infinity is also subject to an attractive 

force, but it does not have enough energy to reach X+. After passing x_ the particle 

faces a repulsive effective force and at the perihelion xph, ox/orp becomes zero. 

Hence, the particle disappears to infinity again. These orbits represent scattering 

states. 

(iii) If the approaching particle has energy such that Un(x_,/2)<Ei<J, then 

there are two values of x where ox/orp=O. These two values of x are Xph and Xap, 

which respectively represent the perihelion and the aphelion. The pa1iicle moves 

between these two extreme points in orbit, which is not necessarily closed. Also 
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the particle cannot disappear to infinity. Hence, the orbit of the particle represents 

a bound state. For small relativistic effects these orbits approach precessmg 

ellipses; hence, they are also referred to as quasi-elliptic orbits. 

(iv) For E~ =Un (x_, / 2 }< 1, the energy equals the minimum of the potential 

and the perihelion coincides with the aphelion. There is no net effective force 

along the radial direction, i.e., 8UR/ox,=0. Then the orbit becomes a circle. Figure 2 

shows a picture of the effective potential UR(x.,/) for several values of / 2
. For 

/
2 <3(1+.d)(courve-1), there exists no bound state with E<l, and all particles 

with energy such that E;?f will finally hit the center. 

X 
-► 

Figure 2. Effective potential for different values of angular momentum. 



35 

If / 2>3(1+,1) (Courve-2-4), then bound states with E<l are possible. The bound 

states co1Tespond to quasi-elliptic and circular orbits. The radius of the circular 
J 

orbit is defined by x = x_, which is minimum at the point of inflection of UR(.x,/ I 

The point of inflection occurs for / 2 = 3(1 +,1) and hence the radius of the 

smallest possible circular orbit is 

The energy for this critical orbit is given by 

to the first order in 6.. 

E~rit = !_ (8 + LI) 
9 

(2 .3.1 7) 

(2 .3. 18) 

We now briefly discuss the quasi-elliptic orbits. In the classical case, the 

Kepler-type orbits, representing bound-state solutions, are circles and ellipses 

parameterized by 

(2.3 . 19) 

where K=k/a. The k is the semilatus rectum and £ is the eccentricity with 0<&< I 

for ellipses and &=0 for a circle. The perihelion Xp1i of the ellipse occurs at rp=rp0. 

In the Schwarzschild spacetime, relativistic effects tum the perihelion during the 
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motion of the particle. If the function w( (f)) describes this turning, then equation 

(2.3. 19) becomes 

K x=------~ 
1 + & cos [cp - w(cp) ]' 

(2.3.20) 

The perihelion and aphelion are now described by 

m (n) - w(m(n)) = 2n,r 
't' ph .,, ph ' (2.3.2la) 

m(n) - w(m(n)) = (2n + l)n 
't' ah 't' ah · (2.3.2lb) 

The pai1icle reaches its nth perihelion at the angle cp~;; and the turning of the 

perihelion after n revolutions is given by the angle w (cp~~)). Hence, the precession 

of the perihelion after one revolution is 

Llw = w(m(!) )- w(m(o) )= m(!) - m(o) - 2TC = Llm - 2,r 
't' ph 't' ph 't' ph 't' ph 't' • (2.3.22) 

The energy at the perihelion/ aphelion is given by 

(2.3.23) 

Since the energy E is a constant of motion, it follows from comparison of both 

expressions for E
2 that 

(2.3.24) 



37 

Using (2.3.20), (2.3.23) and (2.3.24) in equation (2.3.1 I) we obtain 

(2.3.25) 

Introducing 

y = <p - w(<p ), (2.3.26) 

equation (2.3.25) can be put in the form 

(2.3.27) 

Then Liq;, as defined in (2.3.22), can be found by integrating (2.3.27) from one 

perihelion to the next one with 0~y52,r: 

2,r 

1 f dy L1cp = - -,=~=r=== ' 
✓a ,J 1 - (b!a )cosy 

0 

(2.3.28a) 

where 

a =1-F, b=cF. (2.3.286) 

The F contains the relativistic effects and Lt-dependence. So, we first expand the 

elliptic integral (2.3.28a) in a power series in F around the classical (Kepler) 

solution, and then integrate term by term. Using the expansion 
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J (2m) Am=-( ) 22m m , 

2,r 

Jdy cos 2m y = 2nA(m), 
0 

2,r 

Jdy cos 2m+I y = 0, 

0 

we obtain the following expression for Llcp: 

(2.3.29) 

(2.3 .30a) 

(2.3.30b) 

(2.3.31) 

where a=2M is the Schwarzschild radius. For Ll=O the lowest order contribution 

to the relativistic precession of the perihelion is given by the second te1m in the 

expansion. The spin of a particle contributes to this lowest order precession, which 

can be found by keeping terms of first order in Ll. 
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A similar effect is also expected for scattering states. The scattering orbits 

are possible for / 2 c4(] +!J), because in that case UR (x+, /
2)cl. A particle coming 

in from infinity with energy 

(2.3.32) 

approaches the central mass until it reaches its perihelion and then disappears to 

infinity again. 

The scattering angle is calculated from equation (2.3.14). Introducing 

/ 
u=---

x✓E2 -] 

(2.3.33) 

it can be put in the form 

(2.3.34) 

where 

1 
CJ'=----

,,,,,.JE2 -] I 

(2.3.35) 

are constants of motion . Solution of this equation in the limit of vanishing y gives 

the classical orbit. The exact scattering angle 9 (figure 3) is given by 
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II ph 

f du 
9=n-2 -;======7• 

0 
~l+au-uz +yu 3 

(2.3.36) 

,(;/ 
······················· ·· ················································\···· ...... .\ .................................................. . 

Figure 3. Scattering angle.9 for quasi-hyperbolic orbits. 

Since dx/drp=O in the perihelion, Xp1z is one of the roots of (2.3 .14): 

E z - UR (x, / z ) = 0. (2.3 .37) 

Equation (2.3.37) has three roots: x 1, x2, and Xp1,, say. One root is always negative 

and hence, not realistic . These roots coITespond to the three roots u 1, u2, Upt, of 

W(u, a; y) , defined by (2 .3.34). The integral in (2.3.36) can be put in the form 

(2.3.38) 

where u1, u2, up,, are given up to &(/) by [62] 
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(2.3.39) 

As the root u2 is singular for y➔O, u2 and thus x2 do not exist in the classical case: 

in that case W(u, a, o) is a parabola with roots u, and up1,, given by (2.3 .39) for 

y=O. Obviously, the factor y(u2-u)➔l for y➔O. Using this the elliptical integral 

(2.3.38) can be solved as a series in y. We write it in the form 

""if du 1 ] 

Jl .Jr(u2 -u) .j(uP,, -u) (u -uJ · 
(2.3.40) 

a 

We note that the second factor in the integrand is the same as in the classical case, 

except for the y-dependent terms in u 1 and uph· This integral can be performed by 

expanding the first factor to first order in y. Expanding the resulting expression to 

first order in y, one can derive the scattering angle,&, in the form 

(2.3.41) 

This shows that the relativistic corrections to the scattering angle include 

contributions from spin. 
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2.4. DISCUSSION 

The study of this chapter predicts spin dependence of the time dilation in a 

gravitational field, of the perihelion precession for bound state orbits, and of the 

scattering of particles by gravitational fields. This confirms the existence of a 

gravitational analogue of the Stem-Gerlach-type forces well known to appear in 

electromagnetic phenomena. 

The equations of motion ( 1.2.8) and ( 1.2.9) remain valid if averaged inside 

a functional integral with the exponential of the action (1.2 .3) in the integrand, i.e .. 

when SJIV=- i r;J-1 
lf/v is replaced by its quantum mechanical expectation value 

<Sµv>. This allows one to consider the results of this chapter as a semiclassical 

approximation to the Dirac theory, and provides a procedure for numerical 

evaluation of the components of the spin. tensor, at least in principle. In general. 

' . 
(Sµ" )2 ::1- (S 11v-) = O. Hence, this semiclassical approximation can only hold to first 

order in the spin. 

Physically, in a macroscopic gravitational field like that of a star the effects 

of microscopic intrinsic spin of particles such as electrons can be completely 

omitted. Indeed, the ratio L'.1 (equation (2.3.12)) for an electron orbiting the sun is 

of the order of 10-
17

. Therefore, effects of pa1iicle spins are appreciable only in 

strong gravitational interactions at sh01i distances, near the Planck scale. 
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CHAPTER III 

SPINNING PARTICLES IN REISSNER-NORDSTROM 

AND NUT-REISSNER-NORDSTROM SPACETIMES 

3.1. INTRODUCTION 

In ref. [62] Rietdijk and van Holten investigated the motion of pseudo

classical spinning point particles in the Schwarzschild spacetime. In this Chapter 

we like to extend their work -to the Reissner-Nordstrom (RN) [73] and NUT

Reissner-Nordstrom (NUT-RN) spacetimes. The Reissner-Nordstrom spacetime 

[98, 99] is the Schwarzschild spacetime generalized with charged parameter. It is 

the unique [100] , asymptotically flat, spherically symmetric solution of the 

Einstein-Maxwell equations that describes the geometry of a spherical star with 

charge q and mass M . This spacetime may be analytically extended to an 

electrovacuum solution representing a black hole for O < lql < M [ 101, 102]. In the 

extremal case, i.e., when q = M, the Reissner-Nordstrom black hole 1s 

distinguished by its coldness (vanishing Hawking temperature) and its 

supersymmetry. It admits supersymmetry in the context of N = 2 supergravity 

[103 - 108]. The extreme Reissner-Nordstrom black hole spacetime occupies a 

special position among the black hole solutions of the Einstein or Einstein

Maxwell equations because of its complete stability with respect to both classical 
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and quantum process permitting its interpretation as a soliton [103,109] . So the 

study of spinning point particles in the Reissner-Nordstrom spacetime is 

interesting. 

The NUT-RN spacetime is the Reissner-Nordstrom spacetime generalized 

with NUT parameter, which has the interpretation of magnetic mass [74-79]. This 

spacetirne is stationary and asymptotically not flat. NUT parameter has peculiar 

properties [79, 82], its physical interpretation is not yet clear. Spacetimes endowed 

with NUT parameter are sometimes considered as unphysical [83]. Hence, our 

study of spinning point particles in the NUT-RN spacetime is interesting. 

We anange this chapter as fo11ows. In section 3 .2 we investigate the motion 

of pseudo-classical spinning paiiicles in the Reissner-Nordstrom spacetime. We 

use the generalized Ki11ing equations described in Chapter I for the symmetries of 

spinning particles in curved spacetime and derive the constants of motion in terms 

of the solutions of these equations. In section 3.3 we consider the motion in a 

plane and analyze the bound state solutions. The precession of the perihelion is 

also obtained. In section 3.4 we investigate the motion of pseudo-classical 

spinning particles in the NUT-Reissner-Nordstrom spacetime. In section 3.5 we 

solve the equations obtained in section 3 .4 for special case of motion on a cone, 

and in a plane for which we choose 0 = Jr/2. In section 3.6 we present our remarks. 
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3.2. SPINNING REISSNER-NORDSTROM SPACETIME 

In this section we apply the results of Chapter I to investigate the motion of 

a spinning point particle moving in the Reissner-Nordstrom spacetime, which has 

the metric [98, 99, 11 O] 

[ 2] 2 a q 2 I 2 

ds = - I--;-+-;;- dt + [ a q 2 Jdr 
]- + 

r r 2 

+ r 2 (c10 2 + sin 2 0 dq/) (3.2.1) 

together with a vector potential, which has nonvanishing components: 

A, = qe , A"'= -q,,, cos 0. Here, a= 2M and q 2 = q; + q,;, with M the mass, qe the 
r 

electric charge, and q,,, the magnetic charge of the object which is the source of 

the field . For c/<M2
, there are two zeros of q11 at r± where 

(3 .2.2) 

They correspond to two horizons: an event horizon at r+ and an inner (Cauchy) 

horizon at r_ .The metric (3.2.1) describes the field outside the event horizon. The 

spacetime given by (3 .2.1) describes the extreme Reissner-Nordstrom black hole 

spacetime for q = M, and the Schwarzschild spacetime for q = 0. The invariance 

of the metric (3 .2 .1) under time translation and spatial rotations is expressed by 
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four w-independent solutions R(Pl(x), (,B = 0, .. . , 3), of the generalized Killing 

equation ( 1.3.15). The corresponding vector fields have the fonn 

(3.2.3) 

The explicit expressions for (3.2.3) are 

(3.2.4a) 

,,1 . a a 
D = -sznm - -· -cot0 cosm-

'f' ae 'f' aq; ' (3.2.4b) 

r') a . a D- =cosm-- cot0s1n(fl-
'f' ae ,,, a(f) ' (3.2.4c) 

(3.2.4d) 

These Killing vector fields generate the Lie algebra 0(1, ]) xS0(3): 

(3.2 .Sa) 

(3 .2.Sb) 

The first generalized Killing equation ( l.3.16) suggests that with each Killing 

vector R!fl(x) there is associated a Killing scalar B(/JJ_ These Killing scalars are 

necessary to 
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obtain the constants of motion 

(3.2 .6) 

These constants of motion represent the total angular momentum, which is the 

sum of the orbital and the spin angular momentum. For scalar particles the orbital 

angular momentum is a constant of motion. However, this is no longer true for a 

particle with spin; therefore, the Killing vector itself does not give a conserved 

quantity of motion. The contribution of spin, which is contained in the Killing 

scalars, has to be added. 

Inserting the Rr/JJ(x), as given by (3.2.3) and (3.2.4), and the expressions for 

the connections and the Riemann curvature corresponding to the Reissner

Nordstrom spacetime in ( 1.3.16), we obtain for the Killing scalars the following 

express10ns: 

( 

J J (o . a q- , ,. 
B )=-1 -2--1 1/11/f, 

2r 2r 
(3 .2.7a) 

(3.2 .7dl 
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Substituting these in J/JJ ( equation (3.2.6)) and using the spin-tensor notation S "'' . 

introduced in equation ( 1.2.10), one can find 

(3.2.8a) 

(3 .2.8b) 

(3.2.8c) 

(3.2.8d) 

In addition to these constants of motion, the four gen enc conserved charges, 

described in section 1.4 of Chapter I, provide information about the allowed orbits 

of the particle. Further, the covariantly constant I/IP as formulated in (1 .2.9) gives 

dlf/
1 

ar-2q
2 

(dr I dt ,. ·) 
-- - - -------,- -- lfl + - lfl 
dr 3 ( a q 2 

'\ dr dr ' 
2,- 1 - + 

1 
I 

r r · ) 

(3.2.9a) 

d If/,. ( 3 a 2 q 
2 
)( d 0 0 . z d rp f/) ) --=r ]--+-- -- lfl +sm 0 -If , 

dr 2r r 2 dr dr 
(3.2.9b) 

cllf/
0 

1 ( dr o cl0 ,. ) . drp f/) --= - - - lfl + - lfl + Sin 0 COS 0 - lfl , 
dr r cir dr cir 

(3.2.9c) 
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d 1/f If' ( I dr d 0 ) If' I cl cp ,. d cp o ·- - = - - - + cot 0 - - 1/f - - -- ljl - cot 0 - ljl . 
d, r d, cir r dr d, 

(3.2.9d) 

Altogether we have twelve equations for four velocities and four components of' 

t/f P. Of course, there are only eight independent equations . In order to construct a 

convenient set of equations incorporating phycical boundary conditions, we 

consider motions for which 

or equivalently 

1 
H=--m 2 , 

,,.1µ" pp +m.2 =O 
:, JI I ' 

(3.2.10) 

(3.2.1\) 

This equation implies that the motion ts geodesic, as defined by ( 1.2.1 ). 

Combining equations (3.2.8) and (3.2.10) one can express the velocities as 

functions of the coordinates, the spin components and the constants of motion: 

(3.2 .12a) 



cl<p 

cir 
= 
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I 

-r --+- - +sin -2
( 1 a q

2 J[(c10)
2 

. 
2 e(cl<p)

2

]}

2 
r r 2 ch cir ' 

J 1(3) - - 1-S ,.IP _ _!_cot 0 s01P. 

mr 2 sin 2 0 mr m 

(3.2.12b) 

(3.2.12c) 

(3 .2 .1 2d ) 

From equations (3.2.8) one can derive another independent linear combination or 

J'' and Jr2J: 

(3.2.13) 

This equation states that there is no orbital angular momentum m the radial 

direction: the total angular momentum in that direction is the spin angular 

momenh1m. 

The supersymmetry constraint Q = 0 [ equation ( 1.4.12)] expresses the fact 

that spin represents only three independent degrees of freedom. Then one can 

solve for l.f/
1 in terms of the spatial components I.fl;: 

'(d0 0 . 2 0 d<p IP ) +r- -l.jl +sin --1.jf . 
dr dr 

(3.2 .14) 
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As a result, the chiral charge r. and the dual supercharge Q* become zero: 

r. = Q. = o. (3.2.15) 

Expression (3.2.14) satisfies equation (3.2.9a) . Equations (3 .2.9b)-((3.2 .9d) can be 

rewritten in terms of the spin tensor components SiJ , (i, j = r, 0, rp ), as follows: 

rU { 
dS J C r S r0 . 0 0 

d (f) S rrp - - -=--- +sin cos -
dr rd, d, 

- r sin 0 1 - - + -- -- S , 2 ( 3a 2q
1

Jdrp Orp 

2r r 2 cir 
(3.2.16a) 

--=cot - - --+cot -dS,.," 0 dcp srO ( / cir 0 d0)sl'((J 
dr · dr r dr dr 

(3 .2. lGb) 

Equation (3.2.16c) is automatically solved by (3.2 .13). 

Using (3.2.14) all time-like components S1 can be rewritten in terms of the 

space-like SiJ, (i, j = r, 0, <P ), . In patiicular, the anti-commuting character of the VJ

variables and equation (3 .2. l 2a) allow us to write 
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S rt - mr 2 ( cl 0 s r0 . 2 0 cl (f) s rrp ) --- -- +szn - . 
E cl, d, 

(3.2.17) 

Combining this result with (3.2.12a) we obtain 

( 
d 0 S r0 . 2 0 d (f) S rrp )] x - +sm - . 
d, d, 

(3.2.18) 

Equations (3.2.12), (3.2.16) and (3.2.18) can be integrated to solve the equations 

of motion for the coordinates {xP} and spins { 1./f P}. For q=O these equations 

reduce to those obtained in Chapter II for the Schwarzschild spacetime. 

3.3. PLANAR MOTION IN REISSNER-NORDSTROM SPACETIME 

In this section we solve the equations obtained in the previous section for 

the motion of spinning particles in a plane, for which we choose 0 = m2. For 

scalar particles the orbital angular momenhnn is always conserved; hence, any 

solution of scalar pariicles would actually describe planar motion. But this is no 

longer true in general for spinning particles, because in this case only the total 

angular 1110111enh1m is a constant of motion. Therefore, planar motion for spinning 
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particles is strictly possible only in special cases, in which orbital and spin angular 

momentum are separately conserved. This may happen only if either the orbital 

angular momentum vanishes, or if spin and orbital angular momentum are parallel 

to each other. 

The equations of motion (3.2 .1 2) and (3.2.18) with 0 = ,r/2 and d0/dr =0 

become 

(3.3.la) 

(3.3 . lb) 

d(f) = _J_ 1(3) _ _ l_ srrp. 
dr mr 2 mr 

(3.3.1 c l 

(3.3. ld) 

!!_ ~-Srrp )= 0. 
dr 

(3.3 . le) 
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Equations (3.3.lc) and (3.3.le) imply that the orbital angular momentum and the 

component of the spin perpendicular to the plane of motion are separately 

conserved: 

rS,.f/J =I 

mr 2 d<p =J(3)_ I=L 
d, 

(3.3.2n) 

(3.3.2b) 

where I and L are two constants. This result leads to the remark that the presence 

of spin-dependent forces modifies the gravitational red-shift. Indeed, equation 

(3 .3. la) becomes 

' q-
a--

I dr E r L " ct=-- ----+--- L, 

( 
a q 2

) m 2 m E r
3 

· 
I- + 

r r 2 

(3.3.3) 

For a nonzero value of the orbital angular momentum L, it follows from equation 

(3 .3.3) that there is an additional contribution to time-dilation from spin-orbit 

coupling. This expresses the fact that the time-dilation is not a purely geometric 

effect, but also has a dynamical component [24, 25] . Equation (3.3.3) reduces to 

the Schwarzschild result for q = 0. 

In the case of planar motion equation (3 .2. 13) simplifies to 

(3 .3.4) 
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while equation (3.2. l 2c) to 

(3 .3.5) 

Equations (3.3.4) and (3.3.5) can be combined to give 

(3.3 .6) 

Comparing equation (3.3.6) with equation (3.3. ld) we find that there are only two 

possibilities: 

(II) S6
rp = 0. (3.3.7) 

CASE I: For d((J = 0 the orbital angular momentum vanishes. Then the 
d, 

solution describes a particle moving along a fixed radius from or towards the 

source of the gravitational field. The motion of the particle for a distant observer is 

described by 

(3.3 .8) 

as in the case of a spin less pa1iicle. Because of the vanishing of the orbital angular 

momentum the (Cartesian) spin tensor components are all conserved, e.g., if we 

choose <p = 0 for the path of the particle, then 
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CASE II: If dcp * 0. then equation (3.3 .7) gives 
dr 

and hence 

Then equation (3.3 .5) gives 

SrO = 0. 

(3.3 .9) 

(3.3.lOa) 

(3.3 . lOb) 

(3.3.1 Oc) 

This implies that the spin is parallel to the orbital angular momentum. From 

equations (3.3. la)-(3.3. lc) we obtain 

for the orbit of the particle. Using the dimensionless variables 

E 
E=-, 

;n 

r 
x=

' a 

L 
/ ' =-

' ma 

(3.3.11) 

(3.3.12) 
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equation (3 .3 .11) can be put in the form 

(3.3 . !3 ) 

The presence of Li, which is a bilinear combination of anti-commuting variables 

v1 11 , makes the equation rigorous. For the investigation of a possible motion, a 

numerical value needs to be assigned to Li. As mentioned in Introduction of this 

thesis, such a quantum mechanical expectation value is desirable. To avoid any 

inconsistency that may result from this semiclassical approximation, the numerical 

value of L1 is supposed to be small: Li<</. 

If the expression for d<p from (3.3 . lc) is substituted on the right-hand side 
d, 

of equation (3.3.13), then it follows that 

/
2 

( dx ]
2 

_ 2 ( dx )
2 

= 2 -U ( / 2 s: 2) - a -E R X,,. ,u , 
x 4 d<p d, 

(3.3.14a) 

where 

( ,, 2 s::2) 1 ( •2 s:2)1 u I/ x, / 'u = 1- - + / + u -2 
X X 

(3.3.14b) 
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is defined as an effective potential. This equation is the same, as one would obtain 

for a one-dimensional problem with a potential UR (x, / 2 , 8 2
) In the one

dimensional problem, the pa1iicle is subject to a radial force F(x, / 2
, 8 2

) given by 

( .2 2) a ( , ') F x, / ,8 =--UR x,/-,8-ax (3.3 .15) 

This is the effective force that the three-dimensional particle feels in the radial 

direction, including a contribution from the centripetal acceleration. Because of 

the non-negativity of the kinetic energy, the right-hand side of (3.3.14a) must be 

positive. 

Bound state orbits are possible for E<I. They correspond to quasi-elliptic 

and circular orbits. The radius of the possible circular orbit is minimum at the 

point of inflection of the function UR (x, / 2
, 8 2

) This critical radius satisfies the 

equation 

x 3 - 3(1+i!)x2 +9(1+i1)8 2 x-8(1+i1)8 4 =O, (3 .3.16) 

and the corresponding energy and angular momentum are given by 

E~rit = (] - -3__) 
Yx 

(3.3.17a) 

and 
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2 1 ( 2) / =- x-25 
y (3.3. l 7b) 

respectively, provided that Y>O, where 

(3.3. l 7c) 

Y=2-3 (1+L1)~+4 (1+L1)5 2 _!_. 
X X2 

(3.3.l7d) 

For q = 0, equations (3.3.16) and (3.3.17) reduce to the Schwarzschild results 

described in Chapter II, if the terms first order in L'.1 are only considered. 

We now discuss the quasi-elliptic orbits shortly. The classical Keplerian 

orbits are bound-state solutions, which are circles and ellipses parameterized by 

K 
X = ----,-----,-

} + E COS (q; - (f)o) 
(3 .3.18) 

where K=kla, le being the semilatus rectum and & the eccentricity with 0<&<1 for 

ellipses and &=0 for a circle. For an elliptic orbit the perihelion Xptr is reached for 

(f)=((J0 . However, in Reissner-Nordstrom spacetime, relativistic effects tum the 

perihelion during the motion of the particle. Let the function w( (fJ) describes this 

turning. Equation (3.3 . 18) then takes the form 

K x=---~--~ 
} + E COS [ (f) - w( (f))] . 

(3.3.19) 
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The perihelion and aphelion are now given by 

l (11) ( (11) ) - 2 p ph - w (fJ ph - n rc, (3 .320a) 

and 

m(n) -w(m(")) = (2n + l)rc 
'f' ah 'f' ah · (3 .3.20b) 

respectively . The particle reaches its nth perihelion at the angle (fJ~;} and the 

turning of the perihelion after n revolutions is given by the angle w(<P~;} ). Hence, 

the precession of the perihelion after one revolution is 

Llw=w(m(1l)-w(rn(o))= rn(l) _rn(o) _2rc=Llrn-2rc 
'f' ph 'f' pi, 'f' pl, 't' ph 'f' · (3.3 .21) 

The energy of the particle Eat the perihelion / aphelion is given by 

(3.3.22) 

Since the energy E is a constant of motion, comparing both expressions for E
2 

we 

obtain 
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K2 K-28 2 

/2-------'----~--'---;--~ 
- 2K 2 

- (i+L\)~3+6 2 K-48 2 1+62 
(3.3.23) 

Using (3.3.19), (3.3.22) and (3.3.23), equation (3.3.11) can be rewritten in terms of 

w( (fJ) and (fJ. The result is 

Introducing 

y=cp-w(cp), 

equation (3.3.24) can be put in the form 

where 

dy 
dcp=,::::=r===========:='7 • 

.J A(a -b cosy+ c cos
2 
y) 

K 
A= 2' 

K-26 

a=J-3F, 

1 
F=(i+Ll)-, 

K 

b= DF, c=N F, 

(3.3 .25) 

(3.3.26a) 
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(3.3 .26b) 

In order to obtain the precession of the perihelion after one revolution we need to 

integrate equation (3.3 .26) from one perihelion to the next one with 05y:Q,r. The 

result gives L1<p, as defined in (3.3.21): 

2,r 

I f dy 
,1cp = ~ ,Ji -{(bla)cosy -(c!a)cos 2 y} · (3 .3 .27) 

0 

The relativistic effects and all L'.1-dependence are contained in F. So, we first 

expand the integral (3.3 .27) in a power series in F and then integrate term by tern,. 

Using the expansion 

c;,:, 

(!-xt~ = L A(m)x"', 
m=O 

J (2m) A(m)=- , 
2 2111 m 

(3.3.28) 

and the integrals 
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llr 

Jdy cos 2my = 21r A(m), 
0 

br 

fd cos 2m+I = 0 y y ' 

u 

we obtain the following expression for Ll<p: 

where 

(3.3 .29 

(3.3.30) 

(3.3 .3 la) 

(3.3.316) 
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For L1=0 the lowest-order contribution to the relativistic precession of the 

perihelion is given by the second term in the expansion. Considering terms of first 

order in L1, we find that in principle the spin of a particle contributes to this lowest

order precession. With q = 0 the results in (3.3.22), (3 .3.23) and (3 .3.31) reduce to 

the Schwarzschild results described in the previous chapter. 

3.4. SPINNING NUT-REISSNER-NORDSTROM SPACETIME 

In this section we extend the work of section 3.2 in the Reissner-Nordstrom 

spacetime generalized with NUT parameter. This study gives the parallel results as 

we got in section 3 .2. But it is interesting to note that a spacetime generalized with 

NUT parameter has not direct physical interpretation [83] . The NUT-Reissner

Nordstrom spacetime is described by the metric [111] 

(3.4.l) 

where 

2 [ q
2

] U(r)=l- ' ' M r+n2 --2 ' 
r· + n-

(3.4.2) 
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n is the NUT ( or magnetic mass) parameter, q the charge and M the total mass of 

the gravitating body. The spacetime given by (3.4.1) and (3.4.2) gives 

(i) for q = 0, the NUT spacetime [112], 

(ii) for n = 0, the Reissner-Nordstrom spacetime [98, 99]., 

(iii) for n = q = 0, the Schwarzschild spacetime [97]. 

Spaces with a metric of the form given above have an isometry 

group SU(2) x U(!). The invariance of the metric (3.4.1) under time translations 

and spatial rotations is generated by the four If-independent solutions Rr P)t'(x) of 

the generalized Killing equation (1.3 .15), (f]=0, ... , 3). The associated vector fields 

have the form 

(3.4.3) 

or explicitly 

(3.4.4a) 

a a 0 a or I J = - sin<p- - cot0 cos<p- - 2n tan - cos<p -, 
a0 arp 2 a, 

(3.4.4b) 

a a 0 . a 
Dri ; =cos<p - -cot0sinrp--2n tan-szn<p-, 

ae arp 2 a, 
(3.4.4c) 
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(3.4.4d) 

DroJ h' h , w 1c generates the U(JJ oft translations, commutes with the other Killing 

vectors. The remaining three vectors obey an SU(2) algebra with 

(a,b,c = 1,2,3). (3.4.5) 

This can be contrasted with the Reissner-Nordstrom spacetime, where the 

isometry group at spacelike infinity is S0(3)xU(I). This illustrates the essential 

topological character of the magnetic mass [113, 114]. 

In the purely bosonic case these invariances would correspond to 

conservation of the so-called "relative electric charge" and the angular momentum 

(79, 115 - 121] 

[ 
dt 2 0 d<p] q,. =-U -+4nsin -- , 
dr 2 dr 

(3.4.6) 

- - - 2 r J=rxp+ nqr-· (3.4.7) 
r 

The first generalized Killing equation ( 1.3.16) suggests that for each Killing 

vector, R;f')(x), there is an associated Killing scalar, B (/3)_ Therefore, if we limit 

ourselves to variations ( 1.3 .9) which terminate after the terms linear in i, we 

obtain the constants of motion 
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(3.4.8) 

Equation (3.4.8) asserts that the Killing scalars contribute to the "relative electric 

charge" and the total angular momentum. 

Inserting the expressions for the connection and the Riemann curvature 

components corresponding to the NUT-RN spacetime in (1 .3.16), we obtain for 

the Killing scalars 

B(O) = vs 1r - 4nV sin2 e srrp - 2nU sin 0 s0rp, 
2 

B(I) = -2nV cos cp tan e (1 + cos0) S'r 
2 

0 S ,o . sre - n U cos cp cos - r sm cp 

[(
1 ') , 2 2 20]s0rp +coscp r +n- sin•0+4n U-8n Utan 2 , 

s(2 ) =-211V sincptanf (1 + cos0)S',. 
2 

. g 5 ,e srB -nU szncpcos +rcoscp 

(3.4.9a) 

(3.4.9b) 



68 

. 0[8 2 0 . 2 0 . 2 e]s rrp + suup cot n V cos0 tan 2sm 2- rszn 

(3.4.9c) 

(1) e str v . 2 e s,o B = -211 V cos + 4n szn -
2 

(3.4.9d) 

where (3.4.9e) 

and U is given by (3.4.2). 

Taking into accounts the contribution of the Killing scalars, one finds for 

the conserved quantities .f/JJ, 

(3 .4.1 Oa) 

+ 2nqr sin0cosq;, (3.4.106) 
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(2) (2) (2 2) d0 (2 2) .. d(fJ J =B + r +n cos(fJ-- r +n cos0sm0sm(fJ-
dr dr 

+ 2nqr sin 0 sin (fJ , (3.4. l0c) 

(3.4.l0d) 

where Cfr has the expression from (3.4.6). 

It is obvious that the "relative electric charge", q,., is no longer conserved, 

contrasting with the purely bosonic case. On the other hand, the conserved total 

angular momentum is the sum of the orbital angular momentum, the Poincare 

contribution and the spin angular momentum: 

J =B + ] , (3.4.lla) 

where 

(3.4.11 b) 

From (3.4.10) we can derive two very interesting relations: 

(3 .4. 12) 

and 
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(0) ] · r V.Str ( 2 0 ) 18 211] - -r- = 4n - 4V sin 2 - U sin 0 n cos 0 S 

(3.4.13) 

In the standard NUT-RN space, (3.4.13) reduces to 

L!_ = I ] I COS 0 = 2 n qr , 
r 

(3.4.14) 

which fixes the relative motion to lie on a cone whose vertex is at the origin and 

whose axis is ] . Equation (3.4.13) expresses the fact that the total angular 

momentum in the radial direction receives contributions from the spin angular 

momentum, the orbital angular momentum being absent in that direction. 

In addition to these constants of motion there are four universal conserved 

charges described in Chapter I. Using the notation from this section they are 
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(i) The energy 

( )
2 ( ) 

I dr I 1 2 d 0 . 2 d cp 
E = - - + - ~-- + n ) - + szn 0-

2U dr 2 d, dr 

)

2 
I dt . 2 0 dcp 

--u(-+4nsin -- . 
2 dr 2 dr 

(3.4.15) 

(ii) The supercharge 

1 dr ( 2 2 )d0 0 Q=--1/fr+ r +n -1/1 +qrlflr 
U dr dr 

(3.4.16) 

(iii) The chiral charge 

(3.4.17) 

(iv) The dual supercharge 

(3.4.18) 
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Finally, . having in mind that 1/1 11 is covariantly constant as formulated m 

( 1.2.9); the rate of change of spin is obtained as follows: 

dl/fo r d0 ,. 
-=- -1/1 
d, r 2 +n 2 cl, 

r cir 0 -w 
r 1 + n 2 ch 

(3.4.19a) 

. [( 4n
2
U . 2 0Jdcp nq, ] rp ( + szn 0 cos 0 -

2 
, sin - - + 

2 2 
1/f , 3 .4.19b) 

r + n· 2 d, r + n 

dl/f<p nU 
0 

d0 1 r dcp ,. = cos ec -1/1 - --- --1/1 
r 2 + n 2 d, r 2 + n 2 d, d, 

( 0 
d cp n cos ec 0 ) e 

- cot - + 
2 

, q, 1/1 
d, r +n · 

[ 
r dr ( 2n

2
U 0] d0 ] rp - , .-+ cot0----tan- - 1/1 , 

r· + n 2 d, r 2 + n 2 2 d, 
(3.4.19c) 

[ 
. 2 0 ( r 2V ) dcp V ] ,. + 4nszn - , -- - --q,. 1/f 

2 r 2 + n · U ch U 2 
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( 

. 2 0 0 chp 2,i2 q. 0] 0 - 2nszn -tan-- - ' tan- !fl 
2 2 d, r 2 + n 2 2 

+ 4nszn - ----- -
[ 

. 2 0 ( r V) dr 
2 r 2 +n 2 U d, 

2 0 0( 4,i2U )d0] <P -2nsin -tan- 1 +--- -- !fl . 
2 2 r 2 +n 2 dr 

(3.4.19d) 

As a rule these complicated equations could be integrated to obtain the full 

solution of the equations of motion for the usual coordinates, {xµ}, and Grassmann 

coordinates, {!fl;.,}. These equations are quite intricate and the general solution is 

by no means illuminating. Instead of the general solution, we shall discuss special 

solutions in th_e next section for the motion on a cone and in a plane. 

We notice that the above equations reduce to those obtained in section 3 .2 

for the Reissner-Nordstrom spacetime when n = 0, and to those obtained in section 

2.2 of Chapter II for the Schwatzschild spacetime when n = q = 0. 

3.5. SPECIAL MOTION IN NUT-REISSNER-NORDSTROM SPACETIME 

In this section we solve the equations derived in the previous section for the 

motion on a cone and in a plane. We first consider the motion on a cone. 

Let us choose the z-axis along ] so that the motion of the particle may be 

conveniently described in terms of polar coordinates 



74 

r=re(0,<p) (3.5.1) 

with 

e = (sin 0 cos <p,sin 0 sin <p, cos 0). (3 .5 .2) 

The equation of motion for the spin components, when d0/dr = 0, are 

--=----- +szn cos ----szn - -+---dS,.
0 

r dr sr0 . 0[( 0 4n
2
U . 2 0] d<p nq,. ]s,.<P 

d-r r 2 + n 2 d-r r 2 + n 2 2 d-r r 2 + n 2 

(3 .5.3a) 

dSrrp r cir sr(p ( 0 d<p n cos ec0 )srO 
--=------ - cot -+ 

2 2 
q,. , 

d-r r 2 + n 2 d-r d-r r + n 
(3 .5.3b) 

(3 .5.3c) 

[( 
4n

2
U . , 0] d<p nq,. ]s<P' + sin 0 cos 0 -

2 2 
szn - - -d + 

2 2 r +n 2 -r r +n 

[ 

2 0 ( r 2V) d<p V ] ,-0 - 4nsin - ----- ---q,. S 
2 r 2 + n 2 U d-r U 2 
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+4nsm - ----- -S8<P . 2 0 ( r V) dr 
2 r 2 + n 2 V d, ' 

dSn [ ( 2 2) ] 2 dcp V dr - - = rU - r + n V sin 0-Slfl' +- ·-Sn 
d, d, U d, 

- ntan- szn ------ S 2 0 ( . z 0 dcp nq,. ) r0 

2 2 cl, r 2 + n 2 

+ nszn - ----- -4 . 2 0 ( r V) dr sr1p 

2 r 2 + n 2 V d, ' 

dStpl r dcp srt ( 0 dcp ncosec0 )s01 =----- - cot -+---q 
d, r2 + n2 d, d, r2 + n2 r 

[ 
2 0 ( r 2 V ) d cp V ] r1p - 4nsin - ----- ---q,. S 
2r2 +n 2 V d, U 2 

+2ntan- sin- --- ' S 1/J_ 
0 ( 1 0 dcp nq . ) 0 

2 2d, r 2 +n 2 

Since we are looking for solutions with d0/d, = 

J(I) = 1(2) = O, we have from (3.4.12), 

(3.5 .3d) 

(3 .5.3e) 

(3.5 .3f) 

0 and because 
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srB =0. (3.5.4) 

This relation implies that the special solutions investigated m this section are 

situated in the sector with 

r.=O. (3 .5.5) 

A patiicular solution may be obtained, if we choose S({/ 1 = O, in the form 

(3.5.6a) 

Orp 

sorp =-c __ 
2 2 I 

r +n 
(3.5 .Gb) 

I 

S OI ( u )2 COi 2n . 2 0 co"' = , - , , szn - , 
r 2 +n- r-+n- 2 

(3.5.6c) 

S rt r;-;ucrt 4n . 2 0 c'"' = ✓ u - ---,:,====, szn -J(r2 + n2) 2 I 

(3.5.6d) 

where cr<p. c0
<p 'c01 'er/ are Grassmann constants. 

We investigate the case in which Q = 0 ( equation (1.4.12)). As in section 

3.2 (equation (3.2.15)) we haver.= Q
0 

= 0. For the spin components we deduce 

the following relations: 
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1 cir S rO [( 7 
, ) • 2 d (f) 2 0 ] Orp o 1 -- = r- +1·1- sin 0-+4nsin -q . S +q S 

U dr dr 2 ' r ' 
(3.5.7a) 

(3.5.7b) 

(3.5.7c) 

The condition Q = 0 modifies drastically the form of the solutions. 

In spite of the complexity of the equations, we have a simple exact solution 

for the components of the spin-tensor, 

corp 
S Orp =---

2 2 ' 
r + n 

From (3.4.10) we can deduce that 

corp 
q,. = J(a) + 2nU sin0-

2 
--

2
, 

r + n 

4n 2U . 4-cos0(1+cos0)Cerp] 
+ ' ' ( ) . r- + n- sin 0 1 + cos 0 

(3.5.8) 

(3.5 .9) 

(3.5. I 0) 
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These relations may be integrated to obtain the expressions for q; and t. We can 

deduce dr/drfrom the energy, given in equation (3.4.15). 

We now study the special case of motion in a plane, for which we choose 

0=,r/2. For scalar particles any solution would actually describe planar motion , 

because the orbital angular momentum is always conserved. But this is no longer 

trne in general for spinning particles. As mentioned in section 3.3, motion in a 

plane for spinning particles occurs only in two kinds of situations: '(I) the orbital 

angular momentum vanishes, and (II) spin and orbital angular momentum are 

parallel. 

For 8=rc/2 the equations of motion are 

dS,.0 
--= 

dr 

r dr sro _ 2n
2
U drp sr<p 

r 2 + n 2 dr r 2 + n 2 dr 

[ ( , 2) ] drp erp -ru-r-+n V-S , 
dr 

(3.5 .1 la) 

ds rrp d __ = _ r _!_ S rrp 

2 ' ' dr r + n- dr 
(3.5.1 lb) 

_ds_0_({) = _ 2r _d_r sBrp + __ r_ drp srB, 

r 2 +n 2 dr r 2 +n 2 dr dr 
(3.5.11 c) 
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_ 2 ( r 2V) cl (fJ S r0 ( r V ) cir 0 n ----- - +2n ----- -S rp 
r 2 + n 2 U d, r 2 + n2 U d, ' 

(3.5.11 d) 

-n- + n ----- -cl (fJ S rO 2 ( r V ) dr S rrp 

d, r 2 +n 2 Ud, ' 
(3 .5.11 e) 

_c!S_rp_1 = - r _d_(f) S rt + n _d (f)_ S 0rp 

r 2 + ,/ d, d, cir 

(3.5.1 lf) 

CASE I. In this case the solution describes a particle moving along a fixed 

radius, for which drpldr = 0. We are able to obtain a simple exact solution, 

o"' 
serp =-c __ 

r2 + n2 , 

(3.5 .12a) 

(3.5.12b) 
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S
I'{ r;-; r{ 2n rv, 

= Vu C - -,::;=-====, C 
./(r2 + n2) , 

I 

srpl =( 2 u )2 crpl. 
r + n 2 

(3.5.12c) 

(3.5.12d) 

(3.5.12e) 

A special interest represents the case when the supersymmetry constraint 

Q = 0 . From this condition we obtain, 

(3.5 .13a) 

(3 .5.13b) 

For d(fJ/dr = 0 we have only a spin component nenule: 

8,p 

serp = c . 
r2 + n2 (3 .5.14) 

In this case dr/dr and dtldr have a simple expression, 

(3.5.1 Sa) 
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(3.5.15b) 

CASE II. This possibility concerns motion for which d((Jldr ;c 0. From 

Q = 0, we obtain the following relations: 

(3 .5.16a) 

(3.5 . l 6b) 

It is very interesting that even in this case we have a spin component nenule: 

s0(/J = (3.5.17) 

In this case the expressions for the dt/dr, d(fJ/dr and dr/dr can be integrated to give 

the full solution of the equations of motion for all coordinates and spins: 

(3.5. l 8a) 

(3.5.18b) 

(3.5.18c) 
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3.6. REMARKS 

In this chapter we have studied the geodesic motion of pseudo-classical 

spmnmg pmiicles in the Reissner-Nordstrom and NUT-Reissner-Nordstrom 

spacetimes. In this study we have restricted ourselves to the contribution of the 

spin contained in the Killing scalars B(fJJ(x, l/1), defined by (1.3.16). Despite the 

complexity of the equations, we are able to present special solutions for the motion 

in a plane in the Reissner-Nordstrom spacetime, and on a cone and in a plane in 

the NUT-Reissner-Nordstrom spacetime. 

The result obtained in the Reissner-Nordstrom spacetime reduces to the 

Schwarzschild result [62] for q = 0, and to the result for the extreme Reissner

Nordstrom black hole spacetime when q = M. 

The result obtained in the NUT-Reissner-Nordstrom spacetime reduces to 

the result for the Reissner-Nordstrom spacetime [73] when n = 0, and to the 

Schwarzschild result when n = q =O. This study is interesting because of the fact 

that it not only encompasses the result obtained in the Schwarzschild and 

Reissner-Nordstrom black hole spacetimes but also provides similar result for the 

NUT spacetime, which is sometimes considered as unphysical [83]. 
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CHAPTER IV 

NONGENERIC SUSY IN CURVED SPACETIME 

4.1. INTRODUCTION 

One of the most remarkable properties of the Kerr black hole is that, in this 

background, particle motion is completely integrable. From the point of view of 

canonical analysis, this is a direct consequence of the existence of a nontrivial 

Stackel type Killing tensor Kµ v [122-125], which is the !fl-independent solution of 

the generalized Killing equation (1 .3.15) with n = 2. This Killing tensor gives rise 

to the associated constant of motion 

(4.1.1) 

which is quadratic in the four-momentum P.µ• That is, this constant of motion 

completes the maximal number of constants of motion in conjunction with the 

other three well-known constants of motion: the energy 

( 4.1.2) 

coming from the time translation invariance generated by the Killing field Kl-', the 

angular momentum 
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(4.1.3) 

commg from the axial symmetry generated by the Killing field MP, and the 

Hamiltonian 

(4.1.4) 

More surprisingly, various field equations, e.g., the Dirac equation [126], separate 

in the Ken- geometry, and [91] this fact has a direct consequence of the existence 

of the Ki1ling-Yano tensor /µv, which is defined as an anti-symmetric second rank 

tensor satisfying the following Penrose-Floyd equation [127, 128]: 

( 4 .1.5) 

This Killing-Yano 2-fonn/µv is a square root of the Stackel-Killing tensor KJ-lv: 

K µ -fl' j,l V - A v. (4.1.6) 

Here, indices are raised and lowered with the spacetime metric (Jpv and its inverse. 

Recently, in ref. [80] , Gibbons eta!. have been able to show by considering 

supersymmetric particle mechanics that the Killing-Yano tensor can be understood 

as an object belonging to a larger class of possible structures which generate 

generalized supersymmetry algebras. This novel aspect has renewed people's 
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interest in the Killing-Yano tensor, which has long been known for relativistic 

systems as a mysterious structure. 

To describe "nongeneric" SUSY s, generated by the Killing:-Yano tensors 

and the con-esponding conserved quantities in an arbitrary background spacetime, 

we would like to review the work of Gibbons eta/. [80] in this chapter. 

The plan of this chapter is as follows . In section 4.2 we review the 

fo1malism of pseudo-classical spinning point particles in an arbitrary background 

spacetime, in which anti-commuting Grassmann variables describe the spin 

degrees of freedom. In section 4.3 we describe the general relation between 

symmetries, supersymmetries and constants of motion for these equations. In 

section 4.4 we discuss extra supersymmetries and their algebras. These 

"nongeneric" supersymmetries depend on the existence of a second-rank tensor 

field J;,v which is referred to as .f-symbols. In section 4 .5 we describe the general 

prope1iies of j-symbols and point out their relation to Killing-Yano tensors. 

4.2. SPINNING PARTICLES IN CURVED SPACETIME 

The pseudo-classical limit of the Dirac theory of a spin-1/2 fermion in 

curved spacetime is described by the supersymmetric extension of the ordinary 

relativistic point particle [4, 7-9, 12, 16, 20]. Local version of supersymmetry 

(supergravity) is described in terms of the vielbein (tetrad) [129] eµ°(x), which is 

the "square root" of the metric tensor g11 11 in some sense. In e11 ° the Greek index, Ji, 
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is a "world" vector index in the curved spacetime; it transforms like a vector under 

coordinate transformations and is raised ( or lowered) with q1v ( or (Jµv), The Latin 

index, a, is a tangent space (flat-space) index; it transforms under (local) Lorentz 

transformations as a Lorentz vector and is raised (or lowered) with the Minkowski 

space metric rlb ( or 7Jab) . The e / is the "square root" of (Jpv in the sense that 

(4.2.1) 

This allows one to translate any formula involving the metric tensor into a 

corresponding one, which involves vielbeins. 

The configuration space of the theory is spanned by the real position 

coordinates x"(T) and the Grassmann-valued spin coordinates vf (T), whereµ and a 

both nm from ], ... , d, with d the dimension of the spacetime. The world and 

tangent vector indices (i.e., a and µ) can be converted into each other by t_he 

vielbein e ,/1 (x) and its inverse eµ a (x); for example, it is sometimes convenient to 

introduce the object 

(4.2.2) 

transfom1ing under general coordinate and local Lorentz transformation as a world 

vector rather than a local Lorentz vector. The world-line parameter r is the 

invariant proper time, 
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(4.2.3) 

We choose units such that c = 1. 

The equations of motion of the pseudo-classical Dirac particle can be 

obtained from the Lagrangian 

(4.2.4) 

The overdot, here and in the following, represents a derivative with respect to r. 

The covariant derivative of the spin variable is 

(4.2.5) 

where OJ.u
0 

b is the spin connection. 

To fix the dynamics completely one has to add the condition expressed by 

equation ( 4.2.3), which is equivalent to the mass-shell condition, together with 

others necessary to select the physical solutions of the equations of motion; for 

example, the restriction that spin be space-like, as expressed by (1.4.12), reads 

(4.2.6) 

which implies that I// has no time-component in the rest frame. These 

supplementary conditions have to be compatible with the equations of motion 
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derived from the Lagrangian 2 [59, 61, 62]. However, in the formulation of 

spinning particle dynamics these additional conditions are only to be imposed after 

solving the equations of motion of the theory. 

The configuration space of spmnmg particles spanned by ~P, I/In) is 

sometimes referred to as spinning space. The solutions of the Euler-Lagrange 

equations derived from the Lagrangian (4.2.4) may be considered as 

generalizations of the concept of geodesics to spinning space. The supplementary 

conditions then select those geodesics that correspond to the world lines of the 

physical spinning particles. 

Under arbitrary variations (oxµ . Of/In), the variation of the Lagrangian 

( 4.2.4) is given by 

where 

( 
D2 V j ) 0 ./ µ X • n b •V ox =ox -rJpv --2---lljl 1/f RnbµvX 
Dr 2 

+ lJl/fn17nb Dljlb + total derivative, 
Dr 

(4.2.7) 

(4.2.8) 

is the covariantized variation of I/In [60]. The equations of motion can immediately 

be cast in the following form: 



d If/a 
-=0. 
dr 
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The canonical momenta conjugates to xJ.1 and 'fin are 

and 

(4.2.9a) 

(4.2.9b) 

( 4.2.1 Oa) 

(4.2.lOb) 

respectively. This gives a second-class constraint. Eliminating the constraint by 

Dirac's procedure one can obtain the canonical Poisson-Dirac brackets 

(4.2.11) 

Accordingly, the Poisson-Dirac brackets for general functions F and G of the 

canonical phase-space variables (x, p, If/) read 

(4.2.12) 

where aF is the Grassmann parity of F with ap=(O, 1) for F = (even, odd). The 

canonical Hamiltonian of the theory has the form 
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(4.2.13a) 

where 

(4.2 . l3b) 

The time-evolution of any function F(x, p, 1/1) is generated by its Poisson-Dirac 

brackets with this Hamiltonian: 

dF = {F, H}. 
dr 

(4.2.14) 

Equations ( 4.2.11 )-( 4.2.14) describe the canonical formulation of the theory. The 

disadvantage of this formulation is, that one loses manifest covariance. For this 

reason it is often convenient to fo1mulate the theory in terms of covariant phase-

space variables xi", llµ, lf/
0 where 

(4.2.15) 

is the covariant momentum. The Poisson-Dirac brackets for functions of the 

covariant phase-space variables (x, 17, I//) then become 
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(4.2.16) 

where 

G F - a F r ). fl aF a b aF 
~I = µ + µv ).--+co bl.fl --anv µ al.fin (4.2 .17) 

is the phase-space covariant derivative and 

.'.ILJ - J . a bR 
Jl,p V = - / I.fl I.fl (1 bµ ,, 

2 
(4.2.18) 

is the spi n-va1ued Riemann tensor. It follows from ( 4 .2.16) that 

(4.2.19) 

which is the classical analogue of the Ricci identity when there is no torsion. In 

tem1s of the covariant phase-space variables the Hamiltonian becomes 

(4.2.20) 

The dynamical equation (4.2. 14) remains unaltered, while the constraints in (4.2.3) 

and ( 4.2.6) become 
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2 H = rJµv fl fl = - ] 
::? )I V , (4.2.21) 

f!l = fl· If =0 . ( 4.2.22) 

Since these are not compatible with the Poisson-Dirac brackets in general, they are 

to be imposed only after solving the theory. However, one easily finds that 

{&, I-I}= 0. (4.2.23) 

As the Hamiltonian itself is trivially conserved, equation ( 4.2.23) implies the 

conservation of &'. Hence, the values of Hand &' given by (4.2.21), (4.2.22), are 

preserved in time, and the physical conditions imposed on the theory are 

consistent with the equations of motion [59]. 

4.3. SYMMETRIES AND CONST ANTS OF MOTION 

The theory of a pseudo-classical spmnmg particle model possesses a 

number of symmetries, which are very useful in solving the equations of motion 

explicitly [62] because of their connection with constants of motion via Noether's 

theorem. As mentioned in Chapter I, these symmetries can be divided into two 

classes, generic and nongeneric symmetries. The generic kind exists for any 

spacetime metric q µv (x ), while the latter type depends on the explicit form of the 

metric. The theory described by the Lagrangian (4.2.4) admits four generic 

symmetries [59-61], two of which are proper-time translations generated by the 
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Hamiltonian H, and supersymmetry generated by the supercharge & ', equation 

(4.2.22). The other two are chiral symmetry generated by the chiral charge 

(4.3.1) 

and dual supersymmetry, generated by the dual supercharge 

(4.3.2) 

It can be checked that {H. r. } = 0. Then the Jacobi identity with ( 4.2.23) 

confirms that all the above quantities are constants of motion. 

In order to obtain all the symmetries, including the nongeneric ones, we 

now find all functions/(x, ll, I//) such that 

{H, /}=O. (4.3.3) 

Using the covariant form (4.2.16) of the brackets, we simplify (4.3.3) to 

(4.3.4) 



94 

The second term in (4.3.4) vanishes if/depends on the covariant momentum only 

via the Hamiltonian: /(x.n,lfl)=/(x,H,lfl). Then the equation (4.3.4) 

simplifies to 

n -9.'if = o. (4.3.5) 

In all other cases we need the full equation (4.3.4). This equation is satisfied for 

arbitrary fl;, if and only if the components of/ in the expansion 

(4.3 .6) 

satisfy the generalized Killing equations 

(4.3.7) 

where D µ is an ordinary covariant derivative, and the parentheses denote full 

symmetrization over the indices enclosed. 

Further, any constant of motion/ satisfies 

{&. (T} = _lflµ(g (T + ..,w. q.Y ) - ieµa n a/ . 
' ,/ µ/ JIV an µ a a 

V If/ 

(4.3.8) 
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If the curvature te1m undergoes three contractions with the anticommuting spin 

variables, then with the Bianchi identity R[pvJ]K = 0, equation ( 4.3 .8) can be 

written as 

(4.3 .9) 

In pa1iicular, for f = t!l we obtain the usual supersymmetry algebra: · 

{i<?" , i&.'} = - 2iH . (4.3.10) 

Then, the Jacobi identity for two ~ •s and any constant of motion / confoms that 

the quantity 

(4.3 .11) 

is a superinvariant and hence a constant of motion as well : 

{8, e} = o, {H, e}=O. (4.3.12) 

This result implies that constants of motion generally come m supermultiplets 

{/ , e}, of which the prime example is the multiplet ( d , H) itself. The only 

exceptions to this result are the constants of motion for which e=o, but which are 

not themselves obtained from the bracket of cf/ with another constant of motion. 
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It foliows from (4.3 .9) that a superinvariant is a solution of the equation 

(4.3.13) 

Expanding 1(
11

)µ, ... Jt" (x, 1/f) of ( 4.3 .6) in powers of vi' and letting the coefficients be 

J(m.n)J.1, ··110 (x), the series expansion off can be put in the form 
a1 •.• am 

L
oo ·[d/2] 

/(x, 17 , 1/f) = _1 _ 1/f a, . .. I/fa., f(m.11)µ, ... µ,, (x)ll ... 17 , 
ml n! a, ... a,,. Jl1 µ,, 

(4.3 .14) 
111,11=0 

where / 111
•

11
) is completely symmetric in the n upper indices {µle} and completely 

antisymmetric in the m lower indices {a;}. Equation (4.3.13) then gives the 

component equation 

,,(111+!.n-!)(J.1, ... J1,,_ 1 µ,,}a0 _ D f(m-! ,n )p, ... µ,, 
n1 . e - m [a ) , n0n1 ... a,,, J n1 ... am 

(4.3.15) 

where Da = eµ aDw and square brackets denote full antisymmetrization, while 

parentheses denote full symmetrization over the indices enclosed, all with unit 

weight. In particular for m=O, 

(4.3.16) 

In a certain sense these equations represent a square root of the generalized Killing 

equations (4.3 .7). They only provide sufficient, but not necessary conditions for 

obtaining solutions. However, at least one component of each supermultiplet 
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(singlet or non-singlet) is a solution of equation ( 4.3.13). Having found e one can 

then proceed to reconstmct the corresponding /by solving (4.3.11). 

The content of equations ( 4.3 .15) is twofold. On the one hand they partly 

solve f(m+t.n-t), which is symmetrized in one flat index and all (n-1) curved 

indices, in te1ms of f(m-t.n)_ On the other hand Equations (4.3.15) do not 

automatically mean that f(m+t.n-t) is completely anti-symmetric in the first (m+ J) 

indices. If that condition is imposed on equations ( 4.3 .15), one can find a new set 

of equations which are precisely the generalized Killing equations for that part of 

f(m+t.n- t) which was not given in tem1s of f(m-t ."), and which should still be 

solved for. This is the anti-symmetrized part of f(m+t.n-t) in one curved index and 

all (m+ 1) flat indices. 

Thus equations ( 4.3.15) clearly have advantages over the generalized 

Killing equations (4.3.7). To obtain the constant of motion corresponding to a 

Killing tensor of rank n, 

(4.3.17) 

we have to solve the complicated hierarchy of partial differential equations ( 4.3. 7) 

for (J("-1) , .. . ,1(0
)) and add the terms, as in expression ( 4.3.6). However, if one has 

a solution f(m.n)µ 1···µ,, of the equation 
n1 ···n,,, 
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(4.3.18) 

then one can generate at least part of the components / (m+ia.n-a)µ, .. JJ,,.u for 
a, .. am ..,_'u 

a=l, ... ,n by mere differentiation. Then, equation (4.3.14) gives the co1Tesponding 

constant of motion. We consider an example in section 4.4 in which these 

advantages become clear. 

Finally we note that equations (43.11) and (4.3.12) imply that the Poisson

Dirac bracket with ~'defines a nilpotent operation in the space of constants of 

motion. Thus, the supersinglets span the cohomology of the supercharge, while the 

supe1multiplets (/,6) form pairs of ~··-exact and ,&.·-coexact forms. Then, the 

solutions of equation ( 4.3 .13) correspond to the &':closed forms. 

4.4. NONGENERIC SUPERSYMMETRIES 

For any constant of motion ./' there exist infinitesimal transformations of 

the coordinates which leave the equations of motion invariant: 

5 lfl n = oa {lfl n , f }, ( 4.4.1) 
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where 5a is the infinitesimal parameter of the transformation. For example, the 

action as defined by the Lagrangian in ( 4.2.4) remains invariant under the generic 

symmetries, such as supersymmetry: 

=Ee a Xµ + !fxPOJ ab urb 
µ . µ 't' ' ( 4.4.2) 

where the infinitesimal parameter E of the transformation is Grassmann-odd. 

We now investigate whether the theory admits other (nongeneric) 

supersymmetries of the type 

( 4.4.3) 

Such a transformation is generated by a phase-space function (2j, 

~• = j!Jp ,-, + jO) r-:zr- 11µ , ( 4.4.4) 

where j!J (x, If/) and J0
J (x, 1/1) are independent of ll If this ansatz is inserted into 

the generalized Killing equations (4.3.7), it follows that 

( 4.4.5) 
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with the tensors f JI a and Cabe satisfying the conditions 

( 4.4.6) 

and 

( 4.4.7) 

Let there be N such symmetries specified by N sets of tensors 

(J/", Cahc). i = 1, .. . , N. Then the corresponding generators will be 

A/ = (JI n a + _!_ C a b C 
l..:.?,; J i a ,, If/ inbc 1/1 1/1 1/1 · ,.. 3! 

( 4.4.8) 

Obviously, for / 11 a =eµa and C a be =O, the supercharge in (4.2.22) is precisely of 

this f01m. It IS therefore convenient to assign the index 

· O °"1/ Ar µ - .(JI t h ..: t th t"t"e d fi . th 1= : r,1 = 1-.?"o, e n - lO a • e C., Wen We re1er O e quan 11 S e mmg e 

standard supersymmetry. 

The covariant form ( 4.2.16) of Poisson-Dirac brackets gives -the following 

algebra for the conserved charges &; : 

(4.4.9) 

where 



and 
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Z =j__Kµv fl fl Iµ ,. i 2 ; i II v + ; i n µ + G; i , 

Kp_v = !__ ( r_p fva + r_v f!-'a \ 
IJ 2 V, a J 11 a J }, 

If'. = !__ i I.fl a I.fib J !'. 
1 J 2 11ab 

_ 1 . a b(Jv D fµ fv D rµ - 2 LI.fl I.fl ib v ja+ jb vJia 

1 ,·µ C C 1 Iµ C C ) + - J i j abc + - j i abc • 
2 2 

G _ 1 ab c r/G 
i j - - 4 I.fl I.fl I.fl I.fl i j abed 

_ I a b c rl (R rl' fv 1 C e C ) - - 4 I.fl I.fl I.fl I.fl µ1-flb Ji c j rl + 2 i ab j cde · 

(4.4.10) 

( 4.4.11) 

(4.4.12) 

(4.4.13) 

From an explicit calculation one can infer that Kuµv is a symmetric Killing tensor 

of second rank: 

(4.4.14) 

while //~ is the corresponding Killing vector: 
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(4.4.15) 

and GiJ the corresponding Killing scalar: 

.9.G _ 1 abcdDG 
µ i j - - 4- If If If If p i j abed 

- 1 . {I b R I). - l l If If a b J..p i j · (4.4.16) 

Thus we see that the Grassmann-even Phase-space functions Zu satisfy the 

generalized Killing equations. Hence, their bracket with the Hamiltonian vanishes 

and they are constants of motion: 

dz .. 
__ ,_J =O. 
d, 

(4.4.17) 

For i = j = 0, (4.4.9) reduces to the usual supersymmetry algebra (4.3.10). If i or j 

is not equal to zero, the Zu correspond to new bosonic symmetries, unless 

K µ,, 1 JIV • h 1 ( b ) Th h d' ; j = A(; j)q , wit A(; j) a constant may e zero . en, t e correspon mg 

Killing vector /,~ and Killing scalar Gu vanish identically. Further, if A-(; j) =t:- 0, the 

corresponding supercharges close on the Hamiltonian. This proves the existence of 

a second supersymmetry of the standard type. We then have an N-extended 

supersymmetry with N ~ 2. On the other hand, if we have a second independent 
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Killing tensor Kpv not proportional to d'v, there exists a genuine new type of 

supersymmetry. 

Following ( 4.3.12) we obtain 

(4.4.18) 

and hence &ii is a superinvariant, if and only if 

KJ.1.V =fµ e'' n +JV eµn =O 
01 n n · (4.4.19) 

In the language of ~ cohomology, /jf is QCclosed. Using the discussion given at the 

end of section 4.3 one can then _construct the full constant of motion Zij directly by 

repeated differentiation of f µ n • 

Since the Zij are symmetric in (i j) by construction, we can diagonalize 

them. Thus we obtain an algebra 

(4.4.20) 

with N+ I conserved bosonic charges Zi. If all tY ; satisfy condition ( 4.4.19), the 

first of these diagonal charges (with i=O) is the Hamiltonian: Z0 = H. 

4.5. PROPERTIES OF /-SYMBOLS 

In this section we turn our attention to the quantities f µ n to study the 

properties of the new supersymmetries. For convenience we introduce the second 

rank tensor 

(4.5.1) 
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which will be referred to as the /-symbol. Condition ( 4.4.6) then gives 

(4.5.2) 

This implies that the divergence on the first index of the f-symbol vanishes: 

(4.5.3 ) 

On contraction, equation ( 4.5 .2) gives 

(4.5.4) 

and hence, the f-symbol will also be divergenceless on the second index if and 

only if its trace is constant: 

( 4 .5.5) 

If the trace is constant, then, since the metric tensor {Jµv is a tiivial solution of 

equation (4.5 .2), it may be subtracted from thef-symbol without spoiling condition 

( 4.5 .2). In this case one may without loss of generality always take the constant 

equal to zero and then,/ is traceless. 

From equation (4.4.11) with f1'n=eµn' the symmetric part of the i-thf 

symbol is the tensor 

(4.5 .6) 



105 

which satisfies the generalized Killing equation 

(4.5.7) 

Also, the antisymmetric part can be constructed as 

(4.5 .8) 

satisfying the condition 

(4.5.9) 

Therefore, if the symmetric part does not vanish and is not covariantly constant, 

the antisymmetric part Bpv is not a solution of equation ( 4.5.2). Also, then the 

antisymmetric part off can not vanish either. Hence, f can be completely 

symmetric only if it is covariantly constant. 

The interesting case is that in which the fsymbol is completely 

antisymmetric: fw=Bpv . This is precisely the condition ( 4.4.19) for the 

supercharge, t.1?1 , to anticommute with ordinary supersymmetry in the sense of 

Poisson-Dirac brackets. Also, equation ( 4.5.5) is trivially satisfied in this case. 

The antisymmetric fpv leads to say much more about the explicit form of the 

quantities introduced above. If the symmetric part of a certainf;µv vanishes: 

S fV =Kµv =O 
I IO ' 

(4.5.10) 
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then the corresponding Killing vector If~ and the Killing scalar Gio vanish as well. 

Thus for this particular i, Zi0 =0 and then 

(4.5.11) 

which shows that t,Yi is superinvariant. To prove this assertion, we first note that 

equation (4.5 .2) for antisymmetric.f;,v becomes 

(4.5.12) 

Then, it follows that the gradient is completely antisymmetric: 

(4.5 .13) 

Taking the second covariant derivative of J;,v, and then commuting the derivatives 

and using equation (4.5.2) we obtain the identity 

(4.5.14) 

For antisymmetric.f;,v, equation (4.5 .14) implies 

(4.5.15) 

Comparing equation (4.5.15) with (4.4.7) we find that 

JC -H - µ v J H 
- - abc - abc - e a e b e C µvJ' 

2 
(4.5.16) 
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modulo a covariantly constant term. This result is an instance of equation ( 4.3.15) 

with n=l. m=2. 

The covariantly constant three-index tensor Cabe provides another 

independent symmetry corresponding to the Killing vector 

f I .a b cC 
µ = 2 l t/f VI e µ abc . (4.5.17) 

More precisely, if we choose 

(4.5.18) 

then 

(4.5.19) 

and automatically !JI satisfies the generalized Killing equation . 

We observe that according to equation (4.5.10), Kft = 0. Furthermore, 

since Coabc = 0 identically, the right-hand side of equation ( 4.4.12) becomes 

I I O 
" DB 

1 c o iOpv}., = iOµab ev e }., = ..l ip v +- iµv ..l = • 
2 

(4.5.20) 

where the last equality follows from equation ( 4.5.16). Finally, the Killing scalar 

G;o becomes zero because of the cyclic Bianchi identity for the Riemann tensor 

Rpv}..K and the vanishing of Coabc· This proves equation ( 4.5.11). 
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CHAPTERV 

NONGENERIC SUSY IN KERR-NEWMAN SPACETIME 

5.1. INTRODUCTION 

The Ke1T-Newman spacetime [130] is an axisymmetric asymptotically flat 

stationary solution of the Einstein-Maxwell equations that describes the geometry 

of a charged rotating black hole. 

Recently, Gibbons et al. in ref. [80] investigated nongeneric supersymmetry 

m the Kerr-Newman spacetime in terms of the motion of ps~udo-classical 

spinning point particles. In view of extending this work m a more general 

spacetime in the subsequent chapter we would like to revi ew it in this chapter. 

We arrange this chapter as follows. In section 5.2 we derive first the 

Killing-Yano tensor in the Kerr-Newman spacetime and then describe the 

corresponding Killing tensor, Killing vector and Killing scalar, which generate the 

nongeneric supersymmetry. In section 5 .3 we present a discussion . 

5.2. SPINNING KERR-NEWMAN SPACETIME 

In this section, the results of Chapter IV have been applied to show that a 

new kind of supersymmetry exists in Ke1T-Newman spacetime 



109 

The gravitational and electromagnetic field of a rotating body with mass M 

and charge q is described by the Kerr-Newman metric, which is 

sin 
2 

0 ~( 2 2 \ , d ]2 + 
2 

rr + a pep - a t , 
p 

(5.2.1) 

and the electromagnetic field tensor 

2qarcos0sin0d0 [ d ( 2 2 )d] +------ I\ -a t+ r +a cp, 
p4 

(5.2.2) 

where 

L1=r 2 +a 2 -2M r+q 2
, 

(5.2.3) 

and the total angular momentum is J=Ma. The Kerr-Newman spacetime has two 

horizons which are the event horizon located at r + and the (Cauchy). inner horizon 

located at r _ where 

.J 2 2 2 r± =M ±M -q -a (5.2.4) 
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Expressions in (5.2.1) and (5 .2.2) describe fields only outside the event horizon. 

As was found by Carter [ 123], the Kerr-Newman spacetime admits two 

independent second-rank Killing tensors. One is the metric ten.sor qpv, here 

defined by (5.2.1), which is a Stackel-Killing tensor for any geometry and the 

corresponding conserved quantity is the Hamiltonian H given by ( 4.1 .4): 

The other one is the Stackel-Killing tensor Kµv, which corresponds to the 

conserved quantity Z, given by ( 4.1.1 ): 

- J µv 
Z--K PµPv. 

2 

In order to apply to spinning particles a supersymmetric extension of this result is 

required. Such a type of extension is based on the antisymmetric Killing-Yano 

tensorf;, 1• found by Penrose and Floyd (128, 129], which satisfies equation (4.5 .2) : 

The Stackel-Killing tensor KP" is exactly the covariant square of this tensor. Then 

the new supersymmetry in the Kerr-Newman spacetime is generated by a 

supercharge of the form given in equation (4.4.8), with the Killing-Yano tensor as 

the fsymbol of 
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the double vector Jµ a, 

f a - J v a 
JI - P'' e ' 

and a co!Tesponding three-index tensor C abe obtained as in equation ( 4.5 .16). 

We now derive the explicit expression for the new supercharge and use this 

to obtain the Killing vector Iµ and the Killing scalar G which correspond to the 

Stackel-K.illing tensor K;,v in the Kerr-Newman spacetime and which define the 

conesponding conserved charge Z. 

The K.illing-Yano tensor in the Ken-Newman spacetime 1s defined by 

[127,1 28] 

!_ f,tv dx 1' I\ dx'' = a cos0 dr I\ (dt -a sin 2 0 dq;) 
2 r . 

(5.2.5) 

The vielbein e/(x) co1Tesponding to the metric (5 .2.1) has the following 

express10ns: 

e I dxµ = _p_ dr 
µ ✓iJ ' 
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e 1 dxµ = p d0 µ • 

3 µ sin 0 [ ( 1 , ) ] e JI dx = -- - a dt + r + a - cl cp . 
p 

(5.2 .6) 

Then, one finds the following components of/µ a (x): 

, r sin 0 [ ( 2 2 ) } JP - dxP = - -- - a dt + r + a dcp 
p 

(5 .2.7) 

It can be checked that this Jµ a (x) indeed satisfies equation ( 4.4.6). In order to 

find a conserved quantity we now need to calculate Cabc(x) from (4.5.16). Its 

components are 

C =2asin0 
012 (5.2 .8) 

p 

Using the quantities derived in equations (5.2.7), (5.2.8) we obtain from ( 4.4.8) the 

new supersymmetry generator &' 1 for the Ke1T-Newman spacetime. From 
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equations (4.4.11)-(4.4.13), the Killing tensor Kµv, Killing vector Iµ and Killing 

scalar G can be constructed as follows: 

2 2 2 0 2 20 
K ( ) I 11 d 11 _ p a cos d 2 L'.I a cos (d . 20 )2 

µ v x ex x ------ r + 
2 

t-aszn dq; 
L'.I p 

iasin0( o J 1 2) + - J::i r If If + a cos 0 If If dr 

G 
2 q a COS 0 O I 2 3 = - -----'---- If/ If/ If/ If/ 

pl 

The above expressions and &1 then define the conserved charge 

(5 .2 .9) 

(5 .2.10) 

(5.2.11) 
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5.3. DISCUSSION 

As expressed in ( 1.2.10) the anticommuting spin variables are related to the 

standard antisymmetric spin tensor S'11, which appears in the definition of the 

generators of local Lorentz transfo1mations, by S'b=-i vi r;J. This relation makes 

the physical interpretation of the equations (5.2.9)-(5.2.11) more clear. Indeed, 

using the Dirac-Poisson brackets ( 4.2.16), it can be verified straightforwardly that 

these equations satisfy the S0(3, I) algebra. The full Lorentz transfo1mations are 

then generated by Mab = Lnb + snb' with Lnb the orbital part. Likewise, the 

generators of other symmetries such as Z also receive a spin-dependent part. The 

Killing tensor Kµv given in (5.2.9) is the one, which was found in ref. [12]. For 

spin less point particles in Kerr-Newman spacetime it defines a constant of motion 

directly, but for spinning particles it now requires the nontrivial contributions from 

spin. This spin dependent part contains the Killing vector and Killing scalar 

computed in (5.2.10) and (5.2.11) . 
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CHAPTER VI 

NONGENERIC SUSY IN NUT-KERR-NEWMAN SPACETll\tlE 

6.1. INTRODUCTION 

In the previous chapter we have reviewed the work of Gibbons et al. [80] of 

investigating nongeneric supersymmetry in the Kerr-Newman spacetime. In this 

Chapter we would like to extend that work in the Kerr-Newman spacetime 

generalized with NUT (magnetic mass) parameter [92]. This type of extension is 

interesting in th?t the spacetime endowed with NUT parameter should never be 

directly physically interpreted [83] . 

We arrange this chapter as follows . In section 6.2 we derive the Killing

Yano tensor in the NUT-Kerr-Newman spacetime and calculate the corresponding 

Killing tensor, Killing vector and Killing scalar, which generate the nongeneric 

supersymmetry. In section 6.3 we present our remarks. 

6.2. SPINNING NUT-KERR-NEWMAN SPACETIME 

In this section we apply the results obtained in Chapter IV to the motion of 

pseudo-classical spinning point particles moving in a stationary axisymmetric 

spacetime of general relativity described by the NUT-Kerr-Newman ·metric, which 

has the form 
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d 2 _ L1 [ lt ( (n - a cos 0 )2 J d ] 
2 

s --- c. - a-~--------'- q; 
p2 a 

where 

7 2 ( )2 p- = r + n - a cos 0 , (6.2.2) 

M is the mass, q the charge, a=(JIM) the specific angular momentum of the 

gravitating body, and n the NUT (or magnetic mass) parameter. The 

electromagnetic field tensor associated with the spacetime (6.2.1) is expressed by 

(6.2 .3) 

The NUT-Kerr-Newman spacetime has two horizons, which are 

respectively the event horizon located at r + and the inner (Cauchy) horizon at r _ , 

where 

.J 2 2 2 2 r± =M ±M -q -a +n . (6.2.4) 
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Expressions in (6.2. l) and (6.2.3) describe fields only outside the event horizon. 

The NUT-KN spacetime has two independent second-rank Killing tensors. The 

metric tensor qpv, here given by equation (6.2.1), is a Stackel-Killing tensor, which 

exists for any geometry, and the corresponding conserved quantity is the 

Hamiltonian H given by ( 4.1.4): 

The other Killing tensor is the Stackel-Killing tensor Kpv, whi'ch is the f//

independent solution of the generalized Killing equation (4.3.7) with n=2. The 

co1Tesponding conserved quantity Z is given by ( 4.1.1 ): 

We need a supersymmetric extension of the above result to apply to 

spinning particles. This type of extension is based on the antisymmetric Ki11ing

Yano tensor,fµ v , found by Penrose and Floyd [127, 128], which satisfies equation 

(4.5 .2): 

The Stackel-Killing tensor Kpv is exactly the covariant square of this tensor. Then 

the new supersymmetry in the NUT-KN spacetime is obtained from a supercharge 
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given in equation ( 4.4.8), with the Killing-Yano tensor as the /-symbol of the 

double vector Jµ 0
, 

f n _ f vn 
µ - JIV e , 

and a corresponding three-index tensor Cabe as obtain in equation ( 4.5.16). 

We first derive the explicit expression for the new supercharge. Using this 

we then obtain the Killing vector Iµ and the Killing scalar G which correspond to 

the Stackel-Killing tensor Kw in the NUT-Kerr-Newman spacetime and define the 

conserved charge Z. 

As was defined m [127, 128], the Killing-Yano tensor in the NUT-KN 

spacetirne is given by 

1 [ ( (n-acos0)
2

) ] 

2 f
1
,vdxP Adxv=-(n-acos0)dr/\ dt- a- a dq; 

(6.2.5) 

The vielbein eµ 0 (x) coITesponding to the metric (6.2.1) has the following 

expressions: 

o JI _ .J1J [d ( (n - a cos 0 )2 ]d ] e dx - - - t - a - ---'------- <p , 
µ p a 



'tJl_p d eJI ex - ~ r, 

2 l JI - d0 eJI CX - p , 
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3 JI sin 0 [ ( 2 ) ) ] e JI dx = - -- a dt - r + a- cfrp . 
p 

Using the vielbein one then finds the following components of// (x) : 

f O dxµ = - _E_ (n - a cos0)dr 
JI ~ , 

1 , ~ ( )[ ( (n - a cos0)2 J ] /µ dx 1 = p n-acos0 dt - a- a d<p, 

f 2 d JI _ r sin 0 [ d ( 2 2 )d ] x --- at-r+a <p µ , 
p 

J/ dxJI = pr d0. 

( 6.2.6) 

(6.2.7) 

It can be checked that this /
1
, n (x) indeed satisfies equation ( 4.4.6). Finally, to find 

a conserved quantity we need to calculate Cabc(x). Using equation (4.5.16) its 

components are given as follows: 

C = 2a sin0 
012 p 

(6.2.8) 
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Inserting the quantities derived in equations (6.2.7), (6.2.8) into equation ( 4.4.8) 

we obtain the new supersymmetry generator &1for the NUT-KN spacetime. From 

equations ( 4.4 .11 )-( 4.4.13) we construct the Killing tensor, vector and scalar as 

follows: 

( ) 11 11 
p 2 (n - a cos 0 f 

1 1 .1(n - a cos 0 )2 

K ;,v x dx dx = - :..-.i-....-Ll- - -'- e, r + --'-- -p-2--'--

IP(x )dx 11 =-
2

~ ~sin01j/ 1 +Jlicos01j/ 2 )(asin01j/0 -Jlilf/
3

) 

p 

x [a dt - ~ 2 + a2 )d(f)] 

- i Jli cos0 lf/ 2 (a sin0 lf/o -.J:d lf/ 3 )d(f) 

i a sin 0 [ o 3 ( ) 1 2] + Jli rlj/ If/ - n - a cos 0 If/ If/ dr 

-iJIJ [(n-acos0) lf/ 01f/ 3 +rlj/ 1
1f/

2
]d0, 

2q (n - a cos 0) o 1 2 J 
G = ~-'-----'- If/ If/ If/ If/ . 

p2 

(6.2.9) 

(6.2. l 0) 

(6.2.11) 
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The expressions for &'_rand (6.2.9)-(6.2.11) then define the conserved charge 

We note that for n =O the above results reduce to those obtained • for the Kerr

Newman spacetime [80] (desc1ibed in Chapter V). 

6.3. REMARKS 

The supersymmetric extension of the NUT-Kerr-Newman spacetime admits 

nongeneric supersymmetries. 

The Killing tensor K1,1v given in (6.2.9) defines a constant of motion directly 

for spinless particles in the NUT-Kerr-Newman spacetime, whereas for spinning 

particles it now requires the nontrivial contributions from spin which involve the 

Killing vector and Killing scalar computed in (6.2.10) and (6.2.11). 

The results obtained in this Chapter for the NUT-Kerr-Newman spacetime 

[92] go for the NUT spacetime when a=q=O, and for the Kerr-Newman spacetime 

[80] when n=O. The study thus not only encompasses the results of Gibbons et al. 

[80], but also provides similar results for the NUT spacetime, which is sometimes 

considered as unphysical [82]. 
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CHAPTER VII 

NONGENERIC SUSY IN HOT 

NUT-KERR-NEWMAN-KASUY A 

SPACETIME 

7.1. INTRODUCTION 

In Chapter VI we have investigated a new kind of supersymmetry and the 

conesponding conserved quantity in the NUT-Ken--Newman spacetime [92] in 

terms of the motion of pseudo-classical spinning point particles. In this chapter we 

would like to extend that work in a more general spacetime called the combined 

NUT-Ken-Newman-Kasuya-de Sitter spacetime. This is the NUT-Ken-Newman 

spacetime generalized with an extra magnetic monopole charge and a 

cosmological constant. This spacetime is asymptotically de Sitter and since de 

Sitter spacetime has been interpreted as being hot [96], we call it the hot NUT

Ken-Newman-Kasuya (H-NUT-KN-K) spacetime. 

In recent years there has been a renewed interest in the study of magnetic 

monopole [113, 117-120, 131-134]. Our work is also interesting in that regard. 

Besides, because of the presence of cosmological constant, this work is interesting 

from the point of view of inflationary scenario of early universe. 
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We arrange this chapter as follows. In section 7 .2 we derive the Killing

Yano tensor in the H-NUT-KN-K spacetime and calculate the corresponding 

Killing tensor, Killing vector and Killing scalar, which generate the nongeneric 

supersymmetry. In section 7.3 we present our remarks. 

7.2. SPINNING HOT NUT-KERR-NEWMAN-KASUYA SPACETIME 

In this section we apply the results of Chapter IV to the motion of pseudo

classical spinning particles moving in a more general spacetime in general 

relativity described by the hot NUT-Kerr-Newman-Kasuya metric, which has the 

fonn 

d 2 J; d02 ;; d 2 :r2 Lle sin 2 0 ( d d ) 2 
s =- +- r +----- -a t+p (fJ -

Lle Llr ;; 

(7.2.1) 

where 

J; = r 2 + (n + a cos0)2, 

1 2 2 L18 = 1 + - 11 a cos 0, 
3 



I 
3=f+-/1a 2 

3 

p=rl +al +n2 , 
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A= a sin 2 0 - 2 n cos0 . (7.2.2) 

Besides the cosmological constant A, the metric possesses the mass parameter M, 

the NUT (or magnetic mass) parameter n, the specific angular momentum 

parameter a (=JIM), the electric charge parameter qe, and the magnetic monopole 

charge parameter q,11 • The surface Llr=O gives the horizons of the spacetime. The 

electromagnetic field tensor associated with this spacetime is expressed by 

2(qe +iq111 ):r
1 

r(n+acos0)sin0 dB ( d d ) 
-

4 
/\-a t+p rp . 

£ 
(7.2 .3) 

The spacetime given by (7 .2.1) and (7 .2.2) includes: 

(i) NUT-Kerr-Newman-Kasuya (NUT-KN-K) spacetime for 11=0; 

(ii) hot Kerr-Newman-Kasuya (H-KN-K) spacetime for n=O; 

(iii) hot NUT-Kerr-Newman (H-NUT-KN) spacetime for •q,11 =0; 

(iv) hot Kerr-Newman (H-KN) spacetime [135, 136] for n=q,11=0; 

(v) hot Kerr spacetime [136, 137] for n=q,11 =qe=O; 
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(vi) hot Reissner-Nordstrom spacetime for n=q,11=a=0; 

(vii) hot Schwarzschild spacetime [136, 138] for n=q,
11
=a=qe=0; 

(viii) hot NUT spacetime [139] for a=qe=q,11=0; 

(ix) de Sitter spacetime [140] for M=n=a=qe=q,
11
=0. 

Thus we observe that the H-NUT-KN-K spacetime includes the NUT-KN-K, H

KN-K, H-NUT-KN, hot NUT, de Sitter spacetimes as well as all the black hole 

spacetimes (iv)-(vii) which are asymptotically de Sitter. Further, if we put 11=0 in 

the cases (ii)-(vii), we get the Ken--Newman-Kasuya, NUT-Ken--Newman 

spacetimes and all the black hole spacetimes which are asymptotically flat. In the 

limit 11=0, the case (viii) reduces to the NUT spacetime, which is sometimes 

considered as unphysical. 

The H-NUT-KN-K spacetime has two independent second-rank Stackel

Killing tensors. One is the metric tensor f:/µv, here defined by equation (7 .2 .1 ), 

which exists for any geometry and the corresponding conserved quantity is the 

Hamiltonian H, given by ( 4.1.4): 

- J µv 
H - -q Pµ Pv· 

2 

The other Stackel-Killing tensor is the tensor Kpv and the con-esponding conserved 

quantity Z is given by ( 4.1.1 ): 
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Z = !_ KP" p µ Pv . 
2 

To apply to spinning particles we need a supersymmetric extension of this result 

and such an extension is based on the antisymmetric Killing-Yano tensor h,v found 

by Penrose and Floyd [127, 128], which satisfies equation (4.5.2): 

The Stackel-Killing tensor Kpv is exactly the covariant square of this tensor. Then 

the new supersymmetry in the H-NUT-KN-K spacetime is obtained from a 

supercharge given in equation ( 4.4.8), with the Killing-Yano tensor as the !-

symbol of the double vector /
1
, a, 

f a f va 
JI = JIV e , 

and a conesponding three-index tensor Cabe as obtained in equation (4.5.16) . 

We first derive the explicit expression for the new supercharge. Using this 

we then obtain the Killing vector Iµ and the Killing scalar G, which conespond to 

the Stackel-Killing tensor Kµv in the H-NUT-KN-K spacetime and define the 

conserved charge Z. 

As was defined in [127, 128], the Killing-Yano tensor in the H-NUT-KN-K 

spacetime is given by 



127 

1 (n + a cos 0) ( ) - f dxJldxv =~----'- dr I\ dt -A drp 
2 µv 3 

r sin 0 ( ) +--drA -adt+pdrp. 
3 

(7.2.4) 

The vielbein e/(x)corresponding to the metric (7.2.1) has the following 

expressions: 

0 rx: ( ) e dxJI = - -- cit - A drp , 
JI 3ff 

I i. JI ff l 
eµ GX = ~ Gr, 

,1t1,. 

e/ dxµ = ~ (-a dt+ pdrp). 
3v.E 

Using the vielbein one then finds the following components off/ (x): 

O ff ( ) /µ dxµ = ~ n+acos0 dr, 
'\J Llr 

f/ dxfl =-1% (n + a cos0)(dt -A drp ), 
3v.E 

(7.2.5) 
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f 3 I ti - -Ji d 
P ex - r;;- r 0 . 

"LJ0 
(7.2.6) 

It can be checked that this/~, n(x) indeed satisfies equation (4.4.6). Finally, to find 

a conserved quantity we need to calculate Cnbc(x). Using equation (4 .5.16) its 

components are given as follows: 

C 2a/Li; sin0 C 2[1; 
0 I 2 = 3 Ji , 0 I 3 = 0, CO 23 = 0, CI 2 3 = - 3 Ji . (7.2.7) 

Inserting the quantities derived in equations (7.2.6), (7.2.7) into equation (4.4.8) 

we obtain the new supersymmetry generator &>1 for the H-NUT-KN-K spacetime. 

From equations ( 4.4.11 )-( 4.4.13) we construct the Killing tensor, vector and 

scalar as follows: 

LJ0 r 2 sin 2 0 ( d d )2 J; 2 d0 2 +-----a t+p (fJ +-r , 
3 2 J; LJ0 

(7.2.8) 
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(7 .2 .9) 

(7.2.10) 

The expressions for &1 and (7 .2.8)-(7 .2.10) then define the conserved charge 

We note that the above results reduce to the results of the NUTMKerrMNewman 

spacetime, described in Chapter VI, for A=q111 =0, and of the Kerr-Newman 

spacetime, described in Chapter V, for n=A=q,11 =0. 
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7.3. REMARKS 

The supersymmetric extension of the hot NUT-Kerr-Newman-Kasuya 

spacetime admits nongeneric supersymmetries. 

The Killing tensor K,uv given in (7 .2.8) defines a constant of motion directly 

for spinless particles in the H-NUT-KN-K spacetime, whereas for spinning 

particles it now requires the nontrivial contributions from spin which involve the 

Killing vector and Killing scalar computed in (7.2.9) and (7.2.10). 

The result obtained in this Chapter for the H-NUT-KN-K spacetime goes 

for the NUT-KN spacetime [92] when A=q,11=0, and for the Kerr-Newman 

spacetime [80] when n=/l.=q,11=0. 

This study not only encompasses the result of Gibbons et al. in the context 

of Kerr-Newman black hole spacetime and of our work in the context of NUT

Ken-Newman spacetime, but also provides similar result if the Kerr-Newman 

spacetime is involved with magnetic monopole and/or cosmological constant. So, 

it is interesting to note that the physical result remains the same whether or not the 

magnetic monopole does exist in nature. 
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DISCUSSION 

Our mam concern has been the geodesic motion of pseudo-classical 

spinning particles in the Schwarzschild spacetirne [Chapter II] generalized with a 

charge parameter [Chapter III] along with a NUT parameter [Chapter III] and 

nongenenc supersyrnrnctry in the KeIT-Newman spacetime [Chapter VJ 

generalized with a NUT parameter [Chapter VI] along with an extra magnetic 

monopole charge and a cosmological constant [Chapter VII]. From this work, it 

appears that the mathematical treatment for studying the spinning particles in the 

non-black hole spacetirnes having horizons is the same as in the black hole 

spacetimes. Not only the mathematical treatment for studying the spinning 

particles but also for other cases this assertion holds true. For example, we would 

like to mention different works of Ahmed [141-146], Ahmed eta!. [147-152] and 

of ours [153]. Ahmed extensively studied different problems such as 

superradiance phenomena, Hawking radiation in the spacetimes, which are not 

black hole spacetimes but the spacetimes having horizons. Ahmed observed in his 

different works that the physical results in superradiance phenomena and Hawking 

radiation are not only true for the black hole spacetimes but also true for the 

spacetimes having horizons. The mathematical treatment followed by Ahmed in 

all of these cases is analogous to those used for the study of radiation for the black 

hole spacetime. 
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The supersymmetric extension of curved spacetime admits "nongeneric" 

supersymmetries along with "generic" ones. Spacetime supersymmetry has 

previously been applied to charged black holes in the context of N=2 supergravity 

theory. The application of world-line supersymmetTy in Chapters IV-VII seems at 

first sight to be unrelated to that work. The results concerning a 'hidden' 

supersymmetry related to the motion of spinning point particles are applicable to 

all members of the Kerr-Newman family of black-hole spacetimes and to the 

spacetimes which are not black-hole spacetimes but have horizons such as hot 

NUT-Kerr-Newman-Kasuya spacetime. On the other hand, the Killing spinors 

giving rise to symmetries of the spacetimes of charged black-holes in the context 

of N=2 supergravity theory, arise only in the extreme cases ( or indeed naked 

singularities) in which mass and charge in suitable units are equal. 

Supersymmetry and its local version -supergravity-are relevant in the 

fundamental theory of pa1iicle interactions. In modern particle theory, SUSY is the 

most general symmetry of the S-mah·ix consistent with relativistic quantum fi eld 

theory [ 154]. So it is not inconceivable that nature might make some use of it. 

Indeed, superstrings [155, 156] are the present best candidates for a consistent 

quanh1m theory unifying gravity with all other fundamental interactions, and 

SUSY appears to play a very important role for the quanh1m stability of 

superstring solutions in four-dimensional spacetime. 

For all of the above reasons, the study of spinning particles m curved 

spacetime is well motivated. 
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