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PREFACE

The thesis entitled "Analytical Investigations in Turbulent and MHD
Turbulent Flow" is being presented for the award of the degree of Doctor of
Philosophy in Mathematics. It is the outcome of my research conducted in the
Department of Mathematics, Rajshahi University during the year 1994-1998 under
the guidance of Dr. M. Shamsul Alam Sarker, Department of Mathematics,
Rajshahi University, Rajshahi-6205, Bangladesh.

The whole thesis has been divided into six chapters. The first is an introductory
chapter and gives the general idea of turbulence, magnetohydrodynamic turbulence
and its principal concepts. Throughout the work we have considered the flow of
fluids to be isotropic and homogeneous. The notions generally adopted are those
used by Batchelor, Chandrasekhar and Deissler in their research papers. Number
inside brackets [ ] refer to the references which are arranged alphabetical at the end
of the thesis.

In the second chapter, we have derived the equation for the rate of change of
magnetic field covariance in MHD turbulent flow. The result shows that the
defining scalars of the magnetic field covariance depend on the defining scalar H of
two point magnetic field correlation.

In the third chapter, the decay of turbulence at times before the final period in
presence of dust particles is studied. Two and three point correlation equation is
used to obtlain a relation for the iriple correlations and the equation is made
determinate by neglecting the quadruple correlations, Finally, we obtained the
energy decay law of dusty fluid turbulence before the final period.

In the fourth chapter, we have studied the decay of dusty fluid MHD turbulence
before the final period. Three pohﬁ correlation equation is used to obtain a relation
for the triple correlations applicable at times before the final period. In this case the
equation is made determinate by neglecting the quadruple correlations. Finally, we
obtain the energy decay law of dusty fluid MHD turbulence at times before the

final period.



In the fifth chapter, the decay of temperature fluctuation in a homogeneous MHD

turbulence before the final period has been studied. We considered the two and

three point correlation equations and solved them afier neglecting the fourth order

correlations in comparison with the second and third order correlations. Finally, the

energy decay law of temperature fluctuation of MHD turbulence has been-

obtained.

In the sixth chapter, we have studied the thermal decay process of MHD turbulent

flow in a rotating system in presence of dust particles. An early period decay

equation for convective MHD turbulent flow in a rotating system at high Reynolds

and Peclect number is used. The region where the variations of mean temperature,

mean velocity and mean magnetic field is considered may be neglected because the

transportation of the thermal energy from place to place is very rapid.

The following research papers which are extracted from this thesis have either been

accepted for publication or communicated in different journals.

(1) Magnetic field covariance in magnetohydrodynamic turbulent flow.(Accepted
in the Jour. Rajshahi Univ. Studies (1996)) | '

(2) Decay of turbulence before the final period in presence dust particles. (Accepted
in the Jour, Rajshahi Univ. Studies (1997))

(3) Decay of dusty fluid magnetohydrodynamic turbulence before the final period.
(Communicated for publication)

(4) Decay of temperature fluctuations in magnetohydrodynamic turbulence before

the final period.(Communicated for publication)

MA OdAJ(:fD?( Qahman

(Md.Lutfor Rahman)
Department of Mathematics : '
Rajshahi University
Rajshahi-6205
BANGLADESH
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CHAPTER—1

INTRODUCTION

1.1 TURBULENCE AND ITS BACKGROUND

The notion of turbulence 1is generally accepted nowadays, and,
broadly speaking, its meaning is understood, at least by technical
people. Yet it is curious to note that the meaning of the word
"turbulent" to characterize a certain type of flow, namely the
counter part of stream line motion. According to webster’s "New
international Dictionary"turbulence means : agitation, commotion,
disturbance....... In 1883 the first systematic experimental
investigations of turbulent flow were made by Osborne Reynolds
[51]. In his classical experiments, Reynolds used glass tube with
flowing water from a reservoir and observed the flow pattern by
injecting a thin stream of dye into the main stream. If the
velocity of the water is sufficiently low, the coloured filament of
dye remains straight and parallel to the walls of the tube which
indicates that the flow is steady. Again if the velocity is
increased beyond a certain value, the coloured filament begins to
oscillate and finaily loses its identity and diffuses through the
tube. The first type of flow.is clearly laminar and the second type
of flow is called turbulent. The essential characteristic of

turbulent flow is that the turbulent fluctuations are random in
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nature. In 1937, Taylor and Von Karman [62] gave the following
definition : "Turbulence is an irregular motion which in general
makes its appearance in fluids, gaseous or liquid, when they flow
past solid surfaces or even when neighbouring streams of the same
fluid flow past or over one another". According to this definition,
the flow has satisfy the condition of irregularity. Indeed, this
irregularity is a very important feature. Because of irregularit&
it is impossible to describe the motion in all details as a
function of time and space co-ordinates. But, fortunately,
turbulent motion is irregular in the sense that it is possible to
describe it by laws of probability. It appears possible to indicate
distinct average values of various quantities, such as velocity,
pressure, temperature etc., and this is very. important. Therefore
it is not sufficient just to say that turbulehce is an irregular
motion. Yet we don’t have a clearcut definition of turbulence. This
is rather difficult. In his book "Turbulence" Hinze [24] suggests
" Turbulent fluid motion is an irregular condition of flow in which
variation with time and space coordinates, so that statistically
distinct average values can be discerned". The addition "with time

" is necessary ; it is not sufficient to

and space coordinates
define turbulent motion as irregular in time alone. According to
the definition suggested by Taylor and Von Karman [62], turbulence
can be generated by fluid flow past solid surfaces or by the flow

of layers of {fluids at different velocities past or over one

another,
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The definition above indicates that there are two distinct types of
turbulence
(i) Turbulence generated by the viscous effect due to the presence
of a solid wall is designated by wall turbulence ; (2) Turbulence,
in the absence of a wall,generated by the flow of layers of fluids
at different velocities is called free turbulence. Turbulent flow
through conduits and past bodies are examples of wall turbulence,
and turbulent jet mixing regions and wakes fall into the category
of free turbulence. In the previous discussion we have mentioned
that Reynolds used a dye experiment to investigate the
circumstances of the transition from laminar to turbulent flow.
Based on his experimental results Reynolds concluded that
transition from laminar to turbulent flow in pipes always occurred
at nearly the same Reynolds number. The approximate value of the
critical Reynolds number, Rcr at which the laminar regime breaks
down was established to be the order of 2x103. Later, with
Reynolds, apparatus, Ekman was able to maintain laminar flow up to
a critical Reynolds number of 4x104 when the testing conditions
were made extremely free from disturbances. This suggested that the
upper limit of the critical Reynolds number depends very strongly
on the initial disturbance as it increase with the decrease of the
disturbance in the flow. In spite of the uncertainty of the upper
limit of the critical Reynolds number, there exists a lower limit
for a critical Reynolds number below which the flow always remains
laminar. For flow through a circular pipe with smooth walls this

lower critical Renolds number is established as being approximately
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2x103. This led one to believe that laminar flow was stable for an
infinitesimal disturbance, and transition occurred as a result of
an external disturbance of finite magnitude. The critical Reynolds
number which we have just discussed has considerable practical
significance in connection with the origin of turbulence. The
origin of the idea of statistical approach to the problem of
turbulence may be traced back to Taylor’s paper of 1921 [60] in
which he has advanced the concept of the lagrangian correlation
coefficient that provides a theoretical basis for turbulent
diffusion. The most important work done by Taylor [61) is that he
gave up the old theories of turbulence based on the Kinetic theory
of gases and introduces the idea that the velocity of the fluid in
turbulent motion is a random continuous function of position and
time. He introduced the concept of correlation between the
velocities at two points. To make the turbulent motion amenable to
mathematical treatment, he assumed the turbulent fluid to be
homogeneous and isotropic. In its support, he described the
measurements showing that the turbulence generated down stream from
a regular array of rods in a wind tunnel 1is approximately
homogeneous and isotropic. Inspite of the fact that the turbulence
in nature is not always exactly homogeneous and isotropic, it is
essential to study homogeneous and isotropic turbulence as a first

step to understand the more complicated phenomenon of non-

homogeneous turbulence.
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In the following, instead of giving a detailed account of the
historical development of the subject, we shall coﬁfine to mere
concepts and method of turbulence together with a few theories of

turbulence which have been used in the subsequent chapters.

1.2 METHOD OF TAKING AVERAGES

To describe a turbulent motion quantitativdagt is necessary to
introduce the motion of scale of turbulence; a certain scale in
time and a certain scale in space. In the mathematical description
of turbulent flow it is convenient to consider an instantaneous

velocity component u, is generally written as

ui=E§+u1 (1.2.1}),

where u; is the ith component of the total fluid velocity, EI is

the ith mean velocity component and uf is the ith component of

fluctuating velocity. In taking the average of a turbulent
quantity, the result depends not only on the scale used but also on
the method of averaging. In practice, four different methods of
averaging [47] have been used to obtain the mean value of a
turbulent quantity (such as velocity, density etc).

If the turbulent flow field is quasi-steady or stationary random,
averaging with respect to time can be used. In the case of

homogeneous turbulence flow field, averaging with respect to space
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can be considered. If the flow field is steady and homogeneous,
space~time average is used. Lastly, if-the flow field is neither
steady nor homogeneous, we assume that an average is taken over a
large number of experiments that have the same initial and boundary
conditions. We then speak of an ensemble averageﬂ
The methods of averaging are:

1.2(a): Time average in which we: take the average at a fixed point

in space over a long -period of time, i.e.

[u(x, t)] t=lim._,‘j‘,_2—1Tf::u(x,s)ds . (1.2.2).

In practice, the value of the period 2T is determined by the scale
used in the averaging process.
1.2(b): Space average in which we take the average over all the

space at given time, i.e.,

[u(x, t)],=Limv,,—‘%—fvu(s, t) ds | (1.2.3).
B B

In practice the volume of space Vg is determined by the scale used
in averaging process.
1.2(c): Space~time average in which we take the average over a long

period of time and over the space, i.e.,

[u(x't)]mc=LimP-W‘§§%:£;IG”(S'Y)dsdy (1.2.4).
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In practice both the values of T and of VB are determined by the
scale used.
1.2(d): Statistical average in which we take the average over the
whole collection of sample turbulent functions for a fixed point

space and at a fixed time, i.e.,

[U(X.t.Cﬂ)]fLu(x.t,m)dp.(w) (1.2.5).

Over the whole ! -space of w , the random pdrameter. The measure

is

Ldp.((o)=1 | . (1.2.6).

Some explanations are neglected for the statistical average. The
essential characteristic of the turbulent motion is that the
turbulent fluctuations are random in nature. A turbulent velocity
field can be regarded as a random vector field of a set of vectors
in space and time. Any random vector field can be regarded as a

Tield consisting of three random scalar fields as its components.

A random scalar function u(x,t, ® }is a function of the spatial co-
ordinates x and time t, which depends on a parameter w . The

parameter @ is chosen at random according to some probability law
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in a space. In the experimental investigation we use time averages
almost exclusively, space averages seldom and never statistical
averages, In the theory, we use almoét exclusively the statistical

averages.

1.3 REYNOLD’S RULES OF AVERAGE

Osborne Reynolds [51] was the first to introduce elementary
statistical motions into the consideration of turbulent flow. In
the theoretical investigations of turbulence, he assumed that the
instantaneous fluid velocity satisfies the Navier-Stokes equations
motion for a viscous incompressible fluid and that the
instantaneous velocity may be separated into a mean velocity and a
turbulent fluctuating veiocity. Thus, the physical quantities

characterizing the flow field are written as

u,=u +uj, p=p+p’, p=p+p/, T=T+ T/ etc. (1.3.1).

Here the quantities with bar denote the mean values and those with

primes are fluctuations. Furthermore

EZ:F:F:F:: 0

1n order to develop the rule of averaging, consider three arbitrary
statistically dependent physical quantities, A, B and C, each

consisting of a mean and a fluctuating part, i.e.,

A=A+A/, B=B+B/,c=C+C/ (1.3.2).



A=A+A’=A+A/=A. (ginceA’=0) (1.3.3).

In the above relations we used the properties that the average of
the sum is equal to the sum of the averages and the average of a

constant times B is equal to the constant times the average of B.

Next
AB=AB+A’B/ ' (1.3.4).

Consequently

AB=A.B=A.B (1.3.5).

Note that the average of a product is not equal to the product of

the averages, terms such as A’B’ are called "correlation".

For the product of three quantities, we have

ABC= (A+A7) (B+B’) (¢C+C7)=A.B.C+AB/C/

+BA’c’+ca’B’+A’B/c’ (1.3.6).

Also, it can be shown that

dA_dA (1.3.7)

ds ads

and

fAdg:fzds | (1.3.8).
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1.4 REYNOLD'S EQUATIONS AND REYNOLD’S STRESS
It is assumed here that the fluids show Newtonian behaviour and
that their flows are solutions of the equation of conservation of
mass and of the Navier-Stokes equations of motion, satisfying
prescribed boundary and initial conditions. The turbulent flows
from a special class of such solutions, in which the dependent
variables such as velocity, pressure and density are not unique
functions of the space and time co-ordinates but must be described
by probability laws (randomness of the motion). In turbulent flow,
we usually assume that instantaneous velocity components satisfy

the Navier-Stokes eguations,

gttj+(UV)U-F—1Vp+vV2U (1.4.1).
In tensor form the equation (1.4.1) can be written as

du, 8ui_ 13 &u,
3 ox, p 3x, v 9x ,0x,

(1.4.2).

Substituting the expressions for the instantaneous velocity

components uiﬁﬁz+u£ into the Navier-Stokes equation (1.4.2) for an

incompressible fluid after neglecting the body forces and taking
the mean values of these equations according to Reynolds rule of
averaging (1.3.1)~-(1.3.5), we have the following Reynolds equation

of motion for the turbulent flow of»an incompressible fluid:
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du; — du; g . &Fu;

—4 —-— ;
P ot axj) ax, il ax,ax,-" ox, (-puzuy) ,

where i and j run from 1 to 3 and Einstein’s summation convection
is used. The bar represents the mean value and the prime represents

the turbulent fluctuation, Additional terms over the

Navier-Stokes equations are due to Reynolds stress are ~pufzand the

eddy stresses are —puiu;(iﬁJ) , Wwhere g is the density of the

fluid. These stresses represent the rate of transfer of momentum
across the corresponding surfaces because of furbulent velocity
fluctuations.

The solutions of Reynolds equation will be represents properly the
turbulent flow. 1In general the Reynolds equations are not

sufficient to determine the unknown variables Uiy U, (i,i=1,2,3),p

J
and Reynold stresses. This is one of the main difficulties in the
theoretical investigation of turbulent flow.

In similar way, Reynolds equation of motion for the turbulent flow
of a compressible fluid may be obtained. But the expressions for
the eddy stresses (Reynold stresses)of compressible fluid are much

more complicated because the fluctuations of density should be

considered.
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As in the case of the Navier-Stokes equations, it is not at the
present time possible to solve the Reynolds equations for any
practical flow problem. Addition assumptions and hypothesis are
necessary to simplify these equations, in order to obtain some

approximate solutions for important practical cases.

1.5 CORRELATION FUNCTION

In 1935, in a most important series of papers, G.I.Taylor [61]
introduced new notions into the study of the statistical theory of
turbulence. Taylor successfully developed a statistical theory of
turbulence which is applicable to continuous movements and which
satisfies the equation of motion

The first important new notion was that of studying the
correlation, or coefficient of correlation between two fluctuating
guantities in turbulent flow. In his theory, Taylor makes much use
of the correlation between the componentslof the fluctuations at

neighbouring points. Denote the components of the fluctuating

velocity at one point P by u,u,,u, and at another point p/

by u{,u{,u{ . The correlation function between any of the uiand u#
where i,j=1,2 or 3, defined as
pij=ﬁ:ﬁ; (1.5.1),

where the bar denotes the average by certain process.
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Sometimes it is convenient to use the correlation coefficient such

as

u.,u
Ry=—21 (1.5.2).

By Cauchy inequality, we have

uﬂg—wuf. uj <0 {1.5.3),
hence
1-2R..51 ‘ (1.5.4).

1

1f we consider uju; as the velocity components in a flow field, the

correlation of equation (1.5.1) is a tensor of rank two. By a
different process of averaging we obtain different kinds of
correlation functions. If we consider u; and u. as the velocity

]

components at a given point in space, u; and u; are functions of

time; hence, we should take the time average in equation (1.5.1) to

get the correlation function pgy .

. and u. as the velocity components at a given time,

I1f we consider u; i

u, and uj are functions of space co-ordinates x(x,,x,,x;) ; hence,

we should take the space average in equation to get the correlaticn

function.
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More generally if we consider u; and uj as functions of both time

t and spatial co-ordinates x(x,,x,,%,) , we obtain take a space-time

average in equation (1.5.1) to get the correlation function.

The correlation function between the components of the fluctuating
velocity at the same time at two different points of the fluid,
first introduced by G. I. Taylor [61], has been investigated
extensively in the isotropic turbulence.

The correlation function between two the fluctuating velocity
components at the same point and at the same time gives the
Reynolds stress. The correlation function between two fluctuating

quantities may also be defined in a manner similar to above.

1.6 ISOTROPIC AND HOMOGENEOUS TURBULENCE

Isotropic turbulence is the simplest type of turbulence,since no
preference for any specific direction and a ﬁinimum number of
quantities and relation are required to describe its structure and
behaviour. However, it is also a hypothetical type of turbulence,
because no actual turbulent flow shows true isotropy, though
conditions may be made such that Isotropy is more or less closely
approached.

From theoretical considerations and experimental evidence it is
known that the fine structure of most actual non-isotropic
turbulent flows 1is nearly isotropic (local l1sotropy). Hence many
features of isotropic turbulence may apply to phenomena in actual
turbulence that are determined mainly by the fine-scale structure,

where local isotropy prevails.
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In isotropic turbulence the mean value of any function of the
velocity components and their space derivatives is unaltered by any

rotation or reflection of the axes of references. Thus, in

—3_ 3

particular, u?=vi=w? and Uv=uw=vw=0 .

Isotropy introduces a great simplicity into the calculations. The
study of isotropic turbulence may also be of practical importance,

since far from solid boundaries it has been observed that

uf,uf,uf tend to become equal to one another, e.g. in the

natural winds at a sufficient height above the ground and in a pipe
fiow near the Axis.

Another simple type of turbulence is homogeneous turbulence. It is
defined as the turbulence having quantitatively the same structure
in all parts of the flow field. In a homogeneous turbulent flow
field the statistical characteristics are invariant for any
translation in the space occupied by the fluid.

The conception of homogeneous turbulence is idealized, in that
there is no known method of realizing such a motion exactly. The
various methods of producing turbulent motion in a laboratory or in
nature all involve discrimination between different parts of the
fluid, so that the average properties of the motion depend on
position. However, in certain circumstances this departure from
exact independence of position can be made very small, and it is

possible to get a close approximation to homogeneous turbulence.
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Most of the theoretical works in turbulence and MHD turbulence
concern homogeneous and isotropic field in an incompressible fluid
at rest.

1.7 SPECTRAL REPRESENTATION OF THE TURBULENCE

Theoretical treatment of the turbulence is merely related to the
solutions of the Navier-Stokes equations. These equations, however,
contain more unknowns than the number of equations and therefore
additional assumptions must be made. This is known as the "closure
problem”. An alternative approach is based on the spectral form of
the dynamic Navier-Stokes equation. The spectral form of the
turbulence is still under~determined, but it has a simple physical
interpretation and is more convenient. The spectral approach is,
however, almost exclusively wused for the description of
homogeneous turbulence [45, 46]. The principal concepts of spectral
representation in the study of turbulence are described below:

If we neglect the body forces from the Navier-stokes equation
(1.4.1) and multiply the X;-component of Navier-stokes equation

/

written for the point p by u,/, adding and taking the ensemble

]
average we get

7 37
sty | culu, iy /9%y 1 (73D, 87,
ot I %, T gyt T0x;  ax/
2 ox;j P 1 0x3
—
+v(uj/a”;+ Fuy (1.7.1).

i
9xj ax{’
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Since in the homogeneous turbulence, the statistical quantities are
independent of position in space and considering the points p and
/

p'separated by a distance vector r and applying the laws of spatial

covariance, a simplified form of equation (1.7.1) is obtained as

e — 7

Ft'uin=“-5-EI(uinul_uiu;u_{)
1, 8 =7 8 —7— & 7

+-— ( puj- pu,)+2v—u,u (1.7.2).
p  or, 3 arj 1 arf 1%y

The covariance uiu; is not suitable for direct analysis of

quantitative estimate of the turbulent flows and it is better to

use the three dimensional Fourier transforms of u ul with respect
i“3

to r. The variable that corresponds to r in the three dimensional

wave-number space is vector k=(k,,k,,k;) . We define the wave-number

spectral density as

¢,; (k) =—(§%:? ’ uiuj; exp (-ik.r)dr

=Ti::—)5 [[[Emexp -1 (kyx, + Ky 2yt ks ry) bdirydiyd,
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It can be shown that if uiu; has a continuous range of wave-length,

¢H(k) has a continuous distribution in wave number space. We can

rigorously regard ¢1j(k)dkﬂﬂgdk5 as the contribution of the

elementary volume dkldkfﬂg (centred at wave-number k and therefore

representing a wave-number of length ﬁ%& in the direction of the

vector k ) to the value of uiu; hence the name "spectral density"”.
This is consistent with the behaviour of the inverse transform
uguf (1) = [b;; (k) exp (ik.z) dk (1.7.4).
The one dimensional wave~number spectrum of E:EZ for a wave-number
component in the X, direct?on is
buythey) == [Tuguf (x)) exp (-ikyzy) dr, (1.7.5),

whose inverse is

uguf (£) = [,y (k,) exp (ik,r,) di, (1.7.6).
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The equation (1.7.2) for unstrained homogeneous turbulence becomes

on Fourier transforming

a;‘t::rij(k) gy (k) -2vK3 45 (k)

where I and [] transforms of the triple product and pressure terms

respectively.

1.8 FOURIER TRANSFORMATION OF THE NAVIER-STOKES EQUATIONS

The principal reason for using Fourier transforms is that they
convert differential operators into muitipliers. The eguations are
so complicated in configuration (or co-ordinate) space that very
little can be done with them and the transformation to wave-number
(or Fourier) space simplifies them very considerably.

Another and more mathematical argument shows that these transforms
are right method of treating a homogeneocus problem.

Associated with any correlation function ¢(x,x/) is a sequence of
eigen functions ¢(n,x) and their associated eigen-values A(n).

These quantities satisfy the eigen-value equation

f¢(x,X’)tl!(n,Jc)d3X’=l(n)tlr(n.x) (1.8.1)
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and the ortho-normalization relation

f!l! (n, x)¢* (n, x)d>x

=1 if m=n
=0 otherwise
These equations imply that ¢ is a vector. Actually it is a tensor
of order two, but this complicates the argument without introducing
anything essentially new. The index n, is in general, a complex

variable and yY* denotes the complex conjugate of (strictly,

PY* is the adjoint of ¢ , but since ¢ is real and symmetric the

adjoint is simply the complex conjugate). The integrations in
equations (1.8.1) and (1.8.2) are over all space, which may be
finite or infinite. If the space is finite, n is wusually an
infinite but countable sequence, while if space is infinite , n

will be a continuous all have real eigen-values. It follows from

(1.8.1) and (1.8.2) that

¢(X.X’)=§A(n)w(n.x)¢"(n,x/) (1.8.3)

and this is the diagonal representation of the correlation function
in terms of its eigen functions.Evidently these functions are only

defined "within a phase”™ that is ; a factor exp (iY) can be added

to w.{(n,x) without altéring ¢(x,x/) provided Y is real and
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independent of x. For a homogeneous field, ¢ is a function of x—x/
only, and the problem is to find eigen functions which are also

homogeneous within a phase, in the sense that

¥ (n, x) =exp(iY) ¢ (n, x+a) .

The equation is satisfied by the Fourier function,

(n,x)=exp(in.x)=exp(infxﬂ

with Y=-n,a. In this instance,therefore, "the index" n is a wave-

number equation (1.8.3) becomes,

$(x,x/) =) A(n)exp{in(x-x/)}

so that A(n) may be identified with é(n), the Fourier transform of
correlation function.

Since we are considering homogeneous isotropic turbulence, the
turbulence field must be infinite in extent. This produces
mathematical difficulties which can only be resolved Dby using
functional calculus. This difficulty is avoided by supposing that

the turbulence 1is confined to the inside of a large box with

sides (a,,a,,a,) and that it obeys cyclic boundary conditions on the

sides of this box. The a, are allowed to tend to infinity at an

appropriate point in the analysis. Thus the Fourier transform is
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defined by U;(x)=(2n)3(a,a,a,) ‘1¥ u, (k) exp (ik.x) (1.8.4).

Here, k is limited to wave vectors of the form

2n,;T 2n,m 21m,T

where the n, are integers while the a; are, as before, the sides of

the elementary box. As these sides become infinitely large,

equation (1.8.4) goes over into the standard form,

Uy (x) = [u; (k) exp (ik.x) d*k. | (1.8.5).
The inverse of (1.8.5) is

u; (k) =(2n) "2 f U}(x)exp(—ik.x)d3x. (1.8.6).
box

The Fourier transforms of the Navier-Stokes equation may be written

as

(Ed.z.:.wkz)ui(k) =M, 1 (K) Y U (D) Up (D) (1.8.7),

where £ is a short notation for the integral operator in
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[[o;(0) U8 (k-p-1) dp. Pz

where kaﬂ is the kronekar delta symbol which is zero unless
k=p+r
Here, M,. is a symple algebraic operator. We have

ijm

My3p (k) == 2 1Dy 1 (K)
where,
p_ijm(k) =kmp_ij (k) +kjpim(k)

and

ki k,

pij=bij—.

pu(k)is the Fourier transforms of p;; ( V )but p”m(k)is not

the transforms of pud V).

As it stands, equation (1.8.7) can not describe stationary
turbulence. Since it contains no input of energy to balance the
dissipative effect of viscosity. In real life this input is
provided by effects, such as the interaction of the Reynolds

stress, which are incomparable with the ideas of homogeneity and
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isotropy. To avoid this difficulty, we introduce into the right -
hand side of equation (1.8.7) a hypothetical homogeneous isotropic
stirring force fi‘ The equation then reads,

(=S v K®) U, () =M,y (0 X 1y (D) 1, (2) + £, (K) -

1.9 MAGNETOHYDRODYNAMIC TURBULENCE

The study of magnetohydrodynamic turbulence, i.e. the study of the
interaction between a magnetic field and the turbulent motions of
an electrically-conducting fluid, was first undertaken in
connection with the implied existence of aﬁ interstellar magnetic
field. The interaction between the velocity and magnetic fields
results in a transfer of energy between the kinetic and magnetic
spectra, and it is thought that the interstellar magnetic field is
maintained by a "dynamo" action from turbulence in the interstellar
gas.

Modern applications of magnetohydrodynamics in the field of
propulsion, nuclear fission, and electrical power generation make
the problem of magnetohydrodynamic turbulence one of considerable
interest to engineers, since turbulence phenomena seem to be
inherent in almost all types of flow problems.

It is generally supposed that in a medium of high electrical
conductivity turbulence will give rise to a spontaneous generatiof:
of magnetic fields; that in the course of time these fields will be
amplified; and that in an eventual equilibrium state the energy per
unit volume in the magnetic field and in the velocity field will

approach equality.
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In drawing these conclusions one argues qualitatively interms of
a picture, first extensively used by Alfven, that in a medium of
high electrical conductivity the lines of magnetic force tend to be
attached to the matter. They will, therefore, be dragged about in
all directions by the random turbulent motions. In this manner an
initial stray magnetic field will be amplified. This process of
amplification will be checked when the prevailing magnetic field
has increased to a certain strength; for, if the magnetic field is
sufficiently strong it will prevent its further increase by
suppressing the turbulent motions. In an equilibrium state, the
amplification of the magnetic field by the turbulent motions and
the suppression of the motions by the magnetic field will balance
each other and one may expect that an equipartition between the two
forms of energy will result. Itlis on such a picture that Fermi
[18] postulated intestillar magnetic fields as a basis for his
theory of the origin of the cosmic rays. But so far this picture
has never been incorporated in a quantitative theory of
hydromagnetic turbulence-even a heuristic theory of the type of
Heisenberg’s [22, 23] in ordinary hydrodynamics.

Ilere the theory of turbulence in an incompreséible, viscous and
electrically conducting fluid is formulated probabilistically
through the use of the joint characteristics functional and the
calculus. The use of the joint characteristics functional approach
relies upon the fact that velocity and magnetic fields are both
solenoidal, and, hence, in the probabilistic sense, are jointly

distributed over the phase space consisting of the set of all
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solenoidal vector fields. The formulation of the problem in phase
space is completely carried out. The full space time functional
formulation of the problem as developed by Lewis and Kraichnan [40]
for "ordinary" turbulence is extended to magnetohydrodynamic
turbulence., This approach enables us to generate space time
correlations between the velocity and magnetic field components
rather than merely spatial correlations asl were used in the
original Hopf [25] Presentation. Dynamical equation for various
order space-time correlation between velocity and magnetic field
component are derived from the joint charactefistic functional by
its expansion in a Taylor series.

The concept of kolomogroff’s [31] equilibrium hypothesis for
ordinary turbulence are extended to magneto-hydrodynamic
turbulence. The problem of predicting the form of the energy
spectrum in the equilibrium range is taken up.

The fundamental equation of magnetohydrodynamics for an

incompressible fluid are

-%%+(u.V)u=—€évp+J%£E+{5jxﬂ4v§”u+F (1.9.1),
V.u=0 (1-'9-2)!

alx
S5

t=VxH~41tj (1.9.3),
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B OH__y.p | ' (1.9.4),
c ot

V.H=0 (1.9.5),
J=o(cE+peuxH)+pe—'-:: (1.9.6),

where u is the velocity vector; F is the body force; p, the
pressure; ?, the fluid density; p, , electric charge; E, the
electric field strength; u, the magnetic permeability; J, the
electric current density; H, the magnetic field strength; v, the
kinematic viscosity; k, the di-electric constant; c, the velocity
of light; o, the electrical conductivity; V, the gradient
operator, and t is the time.

When conductivity o of the fluid tends to infinity the electric

field strength E, at each point must tend to the value uxH

r
otherwise the current j given by eguation (1.9.6) will become very
large even when the slightest mass motions are present.Hence when

o is large we may assume that,

uxH
(o4

E=-p (1.9.7),

a rotation which will be increasingly valid as §-w
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An important consequence of relation (1.9.7) is that under the

circumstances in which this is a good approximation the energy in

—12 '
the electric field is of the order of JE;-of the energy in the
c

magnetic field and can therefore be neglected. Consequently in this
approximation which is known as the approximation of magneto-
hydrodynamics. We have to consider only the interaction between the
two fields u and H. In the magneto-hydrodynamics approximation,

Maxwell equation (1.9.3) becomes,

=1 VxH (1.9.8).
in
In the frame work of the approximations (1.9.7) and (1.9.8), the
Navier-Stokes equations are modified to take into account the

electromagnetic body force (assuming that there is no body

force F) and equation (1.9.1) becomes

U 4 (0. V) u=—B (Vx#) xH--L Vp+vVPy , (1.9.9).
at anp P
Again, in the approximation (1.9.7), Maxwell equation (1.9.4)
becomes
-%%=Vk(uxH) (1.9.10).

In a higher approximation in which the loss of energy by joule heat

is allowed for equation (1.9.10) is modified to [3].

%’gwx(uxmuvm (1.9.11),

where A=(4mxpo)?
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The magnetic field intensity H is a solenoidal vector; and in an
incompressible fluid the velocity u is also a solenoidal vector,
when we use this property of u and H, equations (1.9.9) and

(1.9.11) can be written in the forms [2] as

Ou; OQuu, y OH M 1 3 (prpAHL Y sy w2y, (1.9.12)
dt  dx, 4np O0x, p Oxy 8x

and
oH o]
-?ﬁ$4~5;;(Lﬁuk—uiﬂk)=leH1 (1.9.13).

Equation (1.9.12) and (1.9.13) from the basis of Batchelor’s
discussion [3]. Chandrasekhar [7] extended the invariant theory of

turbulence to the case of magneto-hydrodynamics. He introduced the

new variable h=«l2ﬁh;f{ for H which has the dimensions of a

velocity known as Alfven velocity. Interms of h, equations
(1.9.12) and (1.9.13) can be

written as

du 8
a—;+-a-x—k (uguy-hly) ==-2+v¥u,
or
du, du, oh; 0P,
gt Uax, Max, 3%, VY (1.9.14)
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and

oh,

d

-AVRH, (1.9.15),

where, PH=%+-—;—|II|2 is the total MHD pressure and A=(4mpo) ! is the
magnetic diffusivity.
Chandrasekhar [10,11] in his theory, consider the correlations

between u and h at two points p and IJin the field of isotropic

turbulence in the same manner as in ordinary turbulence. Here, we

have the double correlations, uiuj,hih;,uib{ and triple correlations

uiujul,hih uﬁ,uiujhz,hihjhﬁ,(hiuj—uihj)hi and (h;ué—hﬁuj)ui ,
7 ;

where the subscripts refer to the components of the vectors

i,j, k=1,2,3.

Each of these double and triple correlations depénds on one scalar
function in the case of isotrepic turbulence because the divergence
of both u and h is zero.

Equations (1.9.14) and (1.9.15) are derived by coupling Maxwell’s
equations for the electromagnetic field and the Navier-Stokes
equations for the velocity field. The Maxwell equations are
modified to include the induced electric field due to the fluid

motion,and the Navier-Stokes equations are modified to include the
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Lorentz force on fluid elements due to the magnetic field. The so-
called "Magnetohydrodynamic approximation" is made, 1in which
displacement currents are neglected in Maxwell’ equations. This
approximation is well-founded provided we are not dealing with very
rapid oscillations of the electromagnetic lield quantities, as is
the case in the propagation of electromagnetic waves. Under this

approximation, the energy in the electric lield is of the order

of —EE times the energy in the magnetic field, where c is the speed
c

of light and hence may be neglected. Therefore, we have only to
consider the interaction between the velocity field u and the

magnetic field h.

1.10 DECAY OF TURBULENCE BEFORE THE FINAL PERIOD

The energy spectrum at very small wave numbers suffers very little
modulation during the whole of the decay process. On the other
hand, the energy in higher wave-numbers of the spectrum is being
rapidly dissipated by viscosity, and it follows that ultimately the
big eddies will supply most of the remaining energy of the
turbulence. If we choose the current time t as any instant after
this ultimate state has been reached, we have the opportunity of
formulating a decay problem in which the initial form of the

spectrum (or, rather, the relevant part of it) can be prescribed

form the relation ¢ij(k)=kukhc#“m+o(k3)

This would not by itself make a tractable problem, but the
assumption already made, that the decay is in an advanced stage,

suggests that we might suppose with consistency that the turbulent
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velocities are so small as to make inertia forces negligible. On
this basis the dynamical equation is linear, and we are able to get
a complete solution of the decay of the turbulence at very large
times after its formation. It happens that this final period of
decay occurs at decay times which are within the reach of
measurements in a wind-tunnel stream, and it has been possible to
obtain valuable information about what, in the initial stages of
decay, were the biggest eddies.

In the final period the inertia terms (triple correlations) in the
two-point correlation equation obtained from the momentum and
continuity equations can be neglected because the Renolds number of
the eddies is small, and a solution can be obtained. However, at
earlier times the inertia terms in the two-point correlation
equation can not be neglected, so that in order to obtain a
solution, an intuitive assumption is generally introduced to relate
the triple correlations to the double correlations. The situation
in homogenecus turbulence is therefore analogous to that in
turbulent shear flow where intuitive assumptions have been
introduced to relate the Reynolds stress or the eddy diffusivity to
the mean flow; although one case of homogeneous turbulence, the
turbulence in the {final period, has been solved without
introducing intuitive hypotheses where as those analysis aided
greatly in unifying much of the information on turbulent flow and
in clarifying some of the physical aspects of turbulence, they do
not, of course, constitute deductive theories based on the momentum
and continuity equations.

It should be possible to predict the turbulent decay at times
before the final period from the momentum and continuity equations.

If the initial distribution of velocities and pressures is known,
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the momentum and continuity equations could be used numerically to
predict the distributions a short time later. However it appears
that because of the small size in the calculations would have to be
extremely small.

A better plan may be to construct, from the momentum and continuity
equations, equations involving correlations between velocities and
pressures at more than two points. Then, for instance, in the
three-point correlation equation, one neglects the quadruple
correlations and obtain’s an equation for the triple correlations
which should be applicable before the final period. In the final
period the triple correlations are of course negligible.Using the
expressions for the triple correlﬁtions so obtained, the two-point
equation can be solved and the various quantities describing the
furbulence at times before the final period can be obtained. Higher
order approximations, valid at still earlier times, can be obtained
in the same way by constructing four or five point correlations.
Each time the set of equations is made determinate by neglecting

the highest order correlation.



CHAPTER —2

MAGNETIC FIELD COVARIANCE 1IN MIHIOD
TURBULENT EFLOW

2.1 INTRODUCTION

The main characteristic of the turbulent flow is that turbulent
fluctuations are random in nature and the statistical property of
a random variable may be described by the correlation function.It
is generally supposed that in a medium of high electrical
conductivity turbulence will give rise to a spontaneous generation
of magnetic fields ; that in the course of time these fields will
be amplified ; and that in an eventual equilibrium state the energy
per unit volume in the magnetic field. Taylor [61] studied the
correlation or coefficient of correlation between two fluctuating
quantities in- turbulent flow. Batchelor [4] determined an
expression for acceleration covariance of the two particles at two

/

different points x and x' provided that turbulence is isotropic and
homogeneous. Jain [28] derived expression for pressure fluctuation
and acceleration covariance by using Chandrasekhar’s [11] theory of
turbulence in turbulent medium which is isotropic homogeneous in
space and stationary in time. Kishore and Sinha [33] studied the
rate of change of vorticity covariance in ordinary turbulence.

Kishore and Sarker [35] also studied the rate of change of

vorticity covariance in MHD turbulence.
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The main purpose of this chapter is to derive an equation for the
rate of change of magnetic field covariance in MHD turbulent flow.
Finally, we have shown the analogy between vorticity covariance in

ordinary turbulent flow with the magnetic field covariance in MHD

turbulent flow.

2.2 MATHEMATICAL MODEL OF THE PROBLEM

The induction equation of MHD turbulent flow is

on,  on,  du , &h,
ot Xox, ¥ax, = ox,9x,

(2.2.1),

where

4";:(41ruo)'l =magnetic diffusivity

%(x,t)=component of turbulent velocity

lﬁ(x,t)=component of magnetic field

u=magnetic permeability

c=zelectric conductivity

The equation (2.2.1) is the ith component of the induction equation
for MHD turbulent flow. Now, a similar equation for the jth
component is

/ / / /
a.hj 'HJ)/C ahj =h){ auj A a‘*'hj
ot  “axf = oxf oxfox{

(2.2.2).
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Multiplying equation.(2.2.1) by hﬂ and equation (2.2.2) by hy, we
get |

/ahi ,ahi aui ). / azhi

h o (2.2.3
I Y gt =hi Byt Ah] )

and

on! / [
J +h1u§~—-—ah1/ AL oAb,

h —d
! ot axk axk ax4ax;

(2.2.4).

Adding equations (2.2.3) and (2.2.4), we obtain

oh ;U du
hj at i k'h/ i+ i ‘h

duf
hyuf—2 =h;h h{—32
1u ax,’: » it S-S 1

9%y ox}

/

+Ahj
7°0%,0%, iaxﬂaxé

{(2.2.5).

For an incompressible fluid, we have

ahk du, o

2.2.6).
Ox, 0x, (2.2.6)

Using equation (2.2.6) in equation (2.2.5), we get

(hihj) + (u,’hin,{)

(hihju,,) +—— (hyhjuf) =—=— (uihkhj) +
axk xk

o / & /
+A (hjh}) +A——— (h;hy) (2.2.7).
dxdx, 17 dxfox{ £ )
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Taking ensemble average in equation (2.2.7), we have

-] (h ibj) + (hibj; u,) + (h hj uk;)--—— (uihkh7)+ a/ (u;bihk;)
at axk axk
* ‘_7 F T
+A (h;hj) +A (h,h%) (2.2.8).
0,0 I dxfoxt ol

For condition of homogeneity (J.O. Hinze [24] ), we use
3 k=X£—Xk

and

a=—a=a
ok, 0x, ax}

in equation (2.2.8), we have

5 () ~ 0= (hhfug) + - (Bhful) =- 2 (u;hh])

€k o »

(hhful) +2h—z 20— (B111]) | (2.2.9).

o
3%, 5% ,3E ,

Putting the following correlation tensors as (Chandrasekhar [11] )

7 Y, 7
hyhju,=Syy 5, hyhyup=S,; ;,=-Syy 1 U y=Sgy 4.

hihkuj=si,kj=_sjk,i’bih_']:Hij (2.2.10)

and substituting in equation (2.2.9), we get

d 7778 g 2 (- &
ath hj aE S.l'.kj GE (- Sjk.i) aEkS'ik'j+ aEk( Sjk.i) +21'6—E—ka€—;ﬂij,
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or
d37 7. d d d 7
“gghihj—'gﬁsu 4 aEijk,i FI Sik, 1™ aE —=z— Sy, 1+2A ¢ kaEkHﬂ'
or
O W~ i ' - (2.2.11).

L hhl=2A =L H
ot 17 JE ,0F, "4

The tensor Iﬁj are clearly symmetrical and solenoidal in their

indices. Therefore, it can be expressed as [8]

/
where,
IE]EA and H(r,t) is the defining scaler of the tensor H;.. 1In

1]
equation (2.2.12) primes attached to scaler function such as H

denote the differentiation with respect to r. Therefore,

/17 //
aekaa ij'(H 4£—'4—)5151 (IH///+6H//+4—)61'., (2.2.13).

Substituting equation (2.2.13) in equation (2.2.11), we have

! 44
5‘11: nl= zx(ﬁf_ +a g _)5151 21(rH’”+6H//+4-——)6 (2.2.14).
I

Since hih; being an isotropic tensor of the second order depending

onr and t, therefore, it can be expressed as

hhl=a(r, £) & £, +B(1, )3 (2.2.15),
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which implies that

aathh; aata(r SEMPLE ﬂ(r,t)biJ (2.2.16).

Now comparing equations (2.2.16) and (2.2.14) the expressions

d d
for -EEa(r,t) and _EEb(r't) are found as
. 7 /
9 wir. t)= 2A(L a H- 4 H (2.2.17),
at r2 3
B(r, t)=—2l(rH///+6H//+4H ) (2.2.18).

Thus with the help of the above two independent scaler equations
(2.2.17) and (2.2.18), the rate of change of magnetic field
covariance for MHD turbulent flow can be determined from the

equation (2.2.16).

2.3 CONCLUSION

According to Ferraro and Plumpton [19] we know that the
vorticity of a fluid is analogous to the magnetic field H. Kishore
and Sinha [33] studied the vorticity covariance for ordinary

turbulent flow and they obtained the equationé

/1 /
9 a(r, t)=2v (2 +4_Q—-4%) (2.3.1)

at r r?
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and
/
9 Bz, t) =-2v (£ +60//+a 2L ) (2.3.2),
at r
where, Q(r,t) is the defining scaler of the tensor 0ﬂ=mimg . Thus

we observed that the equation (2.2.17) and (2.2.18) for magnetic
field covariance are analogous to the equations (2.3.1) and (2.3.2)
of the vorticity covariance for turbulent flow obtained earlier by

Kishore and Sinha [33].



CHAPTER—3

DECAY OF TURBULENCE BEFORE THE
FINAL PERIOD IN PRESENCE OF DUST
PARTICLES

3.1 INTRODUCT ION

In the final period of decay, the inertia terms (triple
correlations) in the two-point correlation equation obtained from
the momentum and the continuity equations can be neglected because
the Reynolds number of the turbulent motion is 1low enough.
Batchelor and Townsend [1] studied the decay of turbulence in the
final period and they neglected the inertia terms(three point
correlation) from the equation of motion. Deissler [15] developed
a theory "Decay of homogeneous turbulence for times before the
final period"”. In his paper, he considered two and three point
correlation terms and neglecting fourth and higher order
correlation terms. Using Deissler’s theory Kumar and Patel [36]
studied the first order reactant in homogeneous turbulence before
the final period for the case of multipoint and singie time
correlation. Saffman [52] derived an equation that describe the
motion of a fluid containing small dust particles.

In this chapter, we have studied the decay of turbulence in

presence of dust particles at times before the final period.
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3.2 CORRELATION AND SPECTRAL EQUATIONS

The equations of motion of turbulent flow in presence of dust

particles for the points P and Pl separated by the vector r are

du;  d(uyu,) 1 dp Pu;, gn
P - 3.2.1
at ox, p Ox, ¢ <'3ch,:¢'341ck+ p (vymug) ( )
and
/ /! / .
an+a(UJuk) -_l ap/+v a’uj +KN(V_;-U;) (3‘2'2),
at axf P ax]| axjoxf

where,
u;(x,t) =component of turbulent velocity
p(x,t)=hydrodynamic pressure

X;=space co-ordinate

v=kinematic viscosity

v1=component of the fluctuating velocity of dust particles
N=number density of dust particles
g=density of the fluid

K=stock resistance.

/

Multiplying equation (3.2.1) by u.

j and equation (3.2.2) by u;, we

respectively have

/
s Buy su! d(uyuy) Uy 9p svul Fu,

! (v.-
Wee T T ax, p ax, " T, T (ViU (3.2.3)
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and
ou!  otulul /
uy O Q) U 0p7 Ly Ty () (3.2.4),
t ax{ P axj dxfox{
where,

f=KN/9 has the dimension of the frequency.

Adding (3.2.3) and (3.2.4) and taking the space or time averages,

we get

auiuj’+ {iuiu_guk+ du,ujuf —_1 apllj; . dp’u, )4y ( aa,uiuji+ Puyuy
gt 9, ax} P Ox;  axf 0x;0%;  axfox{

+f((v1u5—uiuj+uivj-uiuj) (3.2.5).
By use of
d ___d _d
or, 9x; ax{
equation (3.2.5) can be written as
Quguy | 8 (g aTul-walul) =- ¢ pTuy dpuj, . Fuguj
at  ar, 1Tk 4T p Oz, or, 0r,dr,
(3.2.6).

+f(v]uj—2uiu5+uiV5)

Now we write equation (3.2.6) in spectral form in order to reduce
it to an ordinary differential equation because of the physical

significance of the spectral quantities. For this, we use
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three- dimensional Fourijer transforms defined as follows:

Uiuj(f)=f:_‘|’1‘|'j(k)exp(ik.r)dk (3.2.7),
Uﬂhuj(r)=£:¢1¢k¢9(k)exp(ik.r)dk (3.2.8),
pul=[ Ay’ (k) exp (ik.r) dk (3.2.9),
and

Viuj/=f::l111'7;(k)exp(ik-r)dk (3.2.10),

where k is known as a wave number vector and dk=dk1 dk2 dkr

From equation (3.2.8), we have

u,uuf (-r) =f":t|:-i\|: ¥ (k) exp (-1k.x) di=[ "% 4 (-k) exp (ik.z) dk .

Interchanging the subscripts i and j and then interchanging the

points P and P/ give

uiuj/(r) u; () =ujUkU1/(*I) -_-j:lpjnpkq;/i(—k) exp(ik.r)dk (3.2.8a)

simjlarly,

a7 (L) =pl; (- 1) =]:)_¢71(—k) exp (ik.r) dk (3.2.9a)

and

uiVJ{=ViuJ{(_r)=Lpiqr71(—k)exp(ik. r) dk (3.2.10a).
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Substituting equations (3.2.7), (3.2.8), (3.2.8a), (3.2.9),

(3.2.9a), (3.2.10) and (3.2.10a) into (3.2.6) we get

d 7. . —7
AR AR LT B TR AT SRR =-% [ik Ay (-k) -1k AY/y] -2vE2

£ 1R 5 () + 97 (-K) -2 97, (R) ] (3.2.11).

The tensor equation (3.2.11) becomes a scaler equation by

contraction of the indices i and j

SO 20K =K, (W WY ]

+f[ui¢ﬁ(k)+piﬁi(—E)—zwiwﬂ(k)] (3.2.12).

The pressure terms drop out of equation (3.2.12) because of the

continuity relation

du, dul
1. %Ui_,

x; oxf

The first term on the right hand side of equation (3.2.12) is
called energy transfer term and the second term comes out for dusty
fluid.In the present investigation it is proposed to obtain an
expression for the transfer term applicable at times before the
final period in presence of dust particles frpm the three point
correlation. To obtain the three- point equation, we consider the
equation of motion of turbulent flow in presence of dust particles

at points P, Pl, and PN as
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du; 9(uyu,) 1 9 &
=-1 0D uy
at axl p ax.l v axlaxl"'f(vi"ui) (3.2.12&),
duf dlujuf) 1 g/ &
-= 2 1 f-uf 3.2.12b
at ax! p ax; ax1/ £+f(Vj uj) ( )
and
/7,717 1/
O/ Quius) 1 aprt, Fu +£(vi!-uf’) (3.2.13).
ot ax{/ P axl/  oxl'axy

Multiplying (3.2.12a) by ujuf/ , (3.2.12b) by wuf/ and (3.2.13)

by uﬂd , adding the three equations and taking space or time

averages, we obtain

9 T 777 PP Y LA BT Y LA Tl 1 8 T
'—a-EU_inuk + 6X1 uyujuy’ u;t x/ usujup uzt x// Uuyup u; -"'-‘;'( axipujuk
1 1
Pu,uiul fuuivl Fuuful’
+_0 pluul’+ a p/Tagul) +v ( aig K, ii 1; . ;/:I Ik/
ax; axf’ X10X; Ox} x9x] Ox}’0x}
+f(v1u§uz’+vjuiu£]+v{/uiu5-uiujufl-ujuiul7—uiu§u£i) (3.2.14).

Using the transformations

@ .9 _8 . @
dxy or,’ axy’ ar}
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aX} arl arf

into equation (3.2.14), we get

O TTull_-_® 7 8 ——7—— Py vy s svw SR < S S £
BE U UK gy watg s =S uufullu e s wful ufe = uufuluf
r1 1 I'1

8 —7—77 Ru,ulul’

=—__.(—_a___pujuk —ipu u77+ a p/uiuk77+ a _—_‘.i#_
p . dr, ar} o arf 91,91,

Fu u’u77 Ru,ujul’
oY TR ) | (v s Vugl s wul-3uudaf) (3.2.15).

dr ,dr} dr{or{

In order to convert equation (3.2.15) to spectral form, we can

define the following six dimensional Fourier transforms:

uuf (r) uf’ (/) f_f BB (k) B (k/) .expli(k.r+k/.r/)}dkdk’! (3.2.16),

ugu,uf (z) uf/ (k/) f_[ B B 8% (K)BY (K/) .expi(k.T+k/. 1/} ) dkdk’

pu)(r)uf’ (£/) f_[ aﬂ’(k)ﬂ”(k’) expli(k.r+k/.x/)}dk.dk/ (3.2.18)
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and

Vlug(r)uéf(r/)=[:[:7139(k)ﬂ¥1k/),exp[i(k.r+k’.r’)]dkdk/ (3.2.19).

By using the method used in obtaining equation (3.2.8a), the

following relations result from equations (3.2.17), (3.2.18) and

(3.2.19):

u,uf () uf () uf/ (/) =uuul -y ul (c/-2) =[ [ BB B1 (-k-Kk/) B (k)
b I L L

.expli(k.r+k’r’)]dkdk’ (3.2.17a),

u,uf (r)uf/ (r/yuf’ (/) =uu,uf (-r/) uf’ (-1/)

=£1:kalpli(_k"k/) p/j/(k) -exp[i(k_r+k/_r/)]dkdk/ (3.2. 17b) ,

where the points P and P/ are interchanged to obtain equation
(3.2.17a). For obtaining (3.2.17b) P is replaced by Ph P/ is
replaced by p”, and PH is replaced by P.

Similarly,

u,p’ (2) i/ (z/) =puf (-1) uf/ (z/-1)

=["[Tapli(-k-K)) B/ (k7) .expli(k.r+k/.x/)] dkdk’ (3.2.18a),

uiuj(I)P//(I/)=puf(-r’)u}’(r-r/)
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=[:L:aDG('k*k/)pgxk/)-exD[i(k.r+k/.r/)]dkdk/ (3.2.19a),

77—
vi/ (r ) uguf (1) = (7= 1y u (<Y u] (z-17)

=f.:[_:7/*/(k/) B/i(-k~k/)B”] .exp[i(k.r+k’.r/)] dicdk’ (3.2.19b),

~7
viuwul (/) =v]{" (r-cY ul (-2 "y u]l (z/-1)

=[ [ YT G B (~k-k)) B () .exp i (k. r+k/. £/) ] dkedk/ (3.2.19¢).

Substituting the preceding relations into equation (3.2.15), we get

BB BT w2y (k2 kf+k /) B BB =i (k) B B PP

—ik,B B B (—k-Kk7) PY (k7)Y -1kiP B B’ (-k-Kk/) P/ (k) ]

—% [-1 (k;+k]) aP/;p +ik,ap’; (~k-k7) P (k) + ik’ (~k-Kk7) By (k)]

+ £y (B3 (k) P (k) +v'] Bl (~k=k7) LK) +y (k7Y By (~k-k7) B7] (k)

-3p B/, (k) B/ (k)] (3.2.20).

The tensor equation {3.2.20) can be converted to a scaler equation

by contraction of the indexes i and j and inner multiplication by

kp
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) 4
St B BB +2v etk k{+k ) KB BB

=iky (eyvk{) B 4B 7B ik, k,B B 0 (-k=K/) P (K) -1k, k(P P 1Ba(~k-Kk7) P,

-% [-ikyCkyrkef) B+ ik, aBy (~k=k7) B (K7) +ikykfa s (~k-k7) BT (k).

+Lky Ly B3 (k) B (k7Y +y7] (k) By (-k=K7) P (k) +17% ) P’y (-k~k') B’ (k)

-3p ,B1BY (k7)1 (3.2.21).

To obtain a relation between the terms on the right hand side of
equation (3.2.21) derived from the quadruple correlation terms,
pressure terms and the dust particle term in equation (3.2.15},
take the divergence of the equation of motion and combine with the
continuity equation to give

d’p =_az(u1“1) +F9
dx,;0x, dx,0x, ox,

i& (vy-uy) (3.2.22).

, taking space or time

Multiplying the equation (3.2.22) by uﬂu“/

averages and writing the resulting equation in terms of the

/

independent variables r and 1, glve
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1 aﬁpui; uk” Fpuluf’ ®Ppujul’
p  0r,dr, or ,0r) dr{ar]
. azi;ulujuil__aﬂuiulufuZT_ aﬂuiulufuz7__aguiulufuﬁi
401, dr{ar, or ,0r} dr{or
d d
_f(__+_) (Vu u77_u u/u’7) (3.2-23).
Y e

The Fourier transform of equation (3.2.23) is

X .
- (k2+2k k] +k/*) e B = (kk,+kik,+kki+kiki) P B BB

-1f(ky+k]) (v 7B -B B BYY

.._?.'..aﬁ ﬁ;;= (kik_l"‘k_{kl"'kik,{'fk_{k{) P.P,b ipk"if(ki-rk_{) (Tip/iw_pipiiﬂ]k/
e k2+2kk{+k”

..... (3.2.24).

Equation (3.2.24) can be used to eliminate the quantities

apﬁﬂﬂ,apﬁ(—k—k’)ﬂﬁ , etc., from equation (3.2.21).

3.3 SOLUTION FOR TIMES BEFORE THE FINAL PERIOD.
To obtain the equation for final period of decay the third order

correlation terms are neglected compared to the second order
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correlation terms. Anﬁlogously, it would be possible to obtain a
solution for times before the fina! period of decay by neglecting
the fourth order correlation terms in comparisbn with third order
correlation terms. If this assumption is made, all the fourth order
correlation terms in the right side of equation (3.2.24) should be

neglected. Thus from (3.2.21) and (3.2.24) we obtain

~§E (kB B BY) + [2v (K2+k,k{+Kk/) ~Mf] kB ,pipY =0 (3.3.1),

where,

(“ki+k{)2+k1(k1+k{)+k£(k1+kf)

=
k2+2k k{+k/*

(R-1) +5-3] ,

Y BB =RP BB

and

¥ B (k) B (k7Y +¥7f (k) B/ (k=K7Y B (k) +y'{ (k7) B/ (~k-K7) B7] (k) =5P ,B/B ,

also M, R and S are arbitrary constants.

Integrating the equation (3.3.1) between t and t to give
K, B PP =k, (B BB ) ooxp [- (2v (k?+kk/cosB+k/*) -Mf) (t-t,)] (3.3.2),

where @ is the angle between k and k.

Now, by letting /=0 in equation (3.2.16) and comparing with

equations (3.2.8) and (3.2.8a) we obtains
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*1¢k¢g(k)=ﬁ:ﬂipﬁ(k)ﬂgfk/)dk/ (3.3.3),

VY R =78 B (k) B (-K7) k! | (3.3.4).

Substituting the equations (3.3.2), (3.3.3) and (3.3.4) in equation
(3.2.12) we have

FALL +2vk21r WK =2k Liky (B BUBY-P B (-K) BY (-K/)),

[/, lexp (- {2v (k*+kic/cosB+k/") -M£}) (£-t,) 1d(cos0) ] dk (3.3.5),

where dk=dk“dkﬂdk¥ is written interms of k/ and O (cf. Deissler

[15])as dk'=—2nk/ld(cos®)ax’ ..... (3.3.6).

In order to find the solution completely and following Loeffler and
Deissler [3], we assume that

ik, [P B BY-B B (k) B (~k7)1,=-B ,(k*k/-Kkk/*) (3.3.7),

where P, is a constant determined by the initial conditions.

Substituting the equation (3.3.7) in equation (3.3.5) and

completing the integration with respect to cos®, we have

B f (k5K -k k)

T;Lt (2 k2y 1"’31) +2vk? (2nk2y ,¥y) ="m o

. [exp [- (&-t,) {2v (k?-kk/+k/") -Mf} ]

—exp [~ (t-t,) {2v (kK*+kk/+k/") -METHK/ (3.3.8)
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or

£+2vk2E=w

dt (3.3.9),

where, EEZﬂkzwiWG is the energy spectrum function and W is the

energy transfer term given by

p - , . :
TS e (to—_to-) j; (k5k/ -kK"Kk'°) . [exp [- (t-t,) {2v (k2-kk/+k”’) -Mf} ]

-exp [- (t-t,) (2v (k?+kk/+k/*) -MF}]] dk/ (3.3.10).

Integrating equation (3.3.10) with respect to k/, we get

| m _Bo - 3 _ k¢ k5
==\ 3 256exp[ 2vk2(t—%)+kﬁ1t t,)1.1[105 5 +45 3
1 12
-19 k*° -3 k ] (3.3.11).

5 3
(e-t,) 2 (t-t,) 2

The series of equation (3.3.11) contains only even power of k.

It is interesting to note that
f"de:O : (3.3.12).
)

This indicates that the conditions of continuity and homogeneity

are maintained.
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The linear equation (3.3.9) can be solved to give

E=exp[-2vk? (t-t,)] _[exp [2vk? (t-t,) ] Wdt+c (k) exp [-2vk? (t-t,) ]

...... (3.3.13),

(7,k*)

where C(k)= 3w is a constant of integration and can be obtained

following corrsin [12].

Substituting the values of W from equation (3.3.11)
(3.3.13) and

in equation

integrating with respect to t, we get

2 4

Jo yr B 3
= exp[-2vk?(t-¢t,)] - exp[- +ME(t-t,) ]
m o' 256y TP T kA (2o 1) °
[-__15VZk" 12yZKk® 7Yk, 1642k 32k o4y
7 7 5 5 3 3 1 1 3

V23 (t-t,) 7 wa(t-t))? 3vZI(t-t,)? 3v?(t-t,?

..... (3.3.14),
where ,

(t-t,) . 3

F(®) =exp (-0?) [ “exp (x?) dx, 0=k[v——52=] 2
Q

By setting r=0,‘j=i, dk=—2nkhi(cos@)dk and

E=2mnk?y ,¥';

in equation (3.2.7). We get energy decay as

2

_["Edk (3.3.15).
1]
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Substituting equation (3.3.14) into (3.3.15) and after integration,
we have the energy decay law

5

uguy _ Jov 2 (t-t,)
2 32/2%
Thus, the energy decay law of velocity fluctuation before the final

period in presence of dust particle may be written as

win

+oxp (MF(t-t,) ) x0.2296P vo (t-¢t,) 7.

vl

uZ=A(t-t,) Z+B(t-t,)Texp(ME(t-t,)} (3.3.16),

where u? is the mean square of the velocity fluctuation, t is the

VY
time, A=—2 . B=0.2296p v®(t-t_ )7 and t, are constants determined
32/2% Po ° 0

nmjw

by the initial conditions.

3.4 CONCLUSION

By neglecting the fourth order correlation terms in the three point
correlation equations, results applicable to the turbulence in
presence of dust particles before the final period of decay were
obtained.For clean fluid, i.e. in absence of dust particles we put

f=0, the equation (3.3.16) becomes

wiwn

u=A(t-t,) 2+B(t-ty)7 ,

which was obtained earlier by Deissler [15]. At large time the

results reduced to those for the final period.



CHAPTER—4

DECAY OF DUSTY FLUID MHD
TURBULENCE BEFORE THE FINAL
. PERIOD

4.1 INTRODUCTION

Saffman [52] obéerved the effect of dust particles on the stability
of the laminar flow of an incompressible fluid with constant mass
concentration of dust particles and gave an equation which
described the motion of a fluid containing small dust particles. It
is a great interest of the behavior of dust particles in turbulent
flow to many branches of science and technology, particularly if
there is a substantial difference in density between the particles
and th§ fluid. The behavior of dust particles in turbulent flow
dependslon the concentration of the particles and the size of the
particles with respect to the scale of turbulent flow. Deissler
[15] developed a theory "Decay of homogeneous turbulence for times
before the final period”. In his paper, he considered two and three
point correlation equations and neglecting fourth and higher order
correlation terms. Using Deissler’s theory Kumar and Patel [36]
studied the " first order reactants in homogeneous turbulent flow
before the final period" for the case of multipoint and single time
Loeffler and Deissler [39] studied the decay of

correlation.

temperature fluctuation in homogeneous turbulence before the final
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period. In their approach they considered the two and three point
correlation equations and solved these equations after neglecting
the fourth and higher order correlation terms. Following Deissler’s
approach Sarker and Kishore [54]1 also studied the decay of MHD
turbulence before the final period.

In this chapter, we studied the decay of dusty fluid magneto-
hydrodynamic turbulence before the final period. This 1is the

extension work of Sarker and Kishore [54]. The energy decay law for

magnetic field fluctuation of dusty fluid MHD turbulence before the

w

final period is in the form h%=A(t-t,) 2+B(t-t,) S.exp{Rf(t-t,)} ,

where |h2| denotes the total energy, t is the time, A,B, t, and R are

constants and f=KN/3 has the dimension of frequency.

4.2 TWO POINT CORRELATION AND SPECTRAL EQUATIONS.
The induction equation of a magnetic field at the point P and

IJseparated by the vector r are

(") Fh (4.2.1)

axghw

3t o, by axk

and
dh anf _,dul vy a“hj’
3 yuf T2 _pf{—2L=(=) (4.2.2},

+Uu
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where,
|h(x,t)=turbulent velocity,

]H(x,t)=magnetic field fluctuation,

P“= % =magnetic prandtl number,

v =kinematic viscosity,

A =magnetic diffusivity.

Multiplying equation (4.2.1) by h{and (4.2.2) by h;, adding and

taking ensemble average, we get

ahib;/+ d(uph;h)) | d(ufhh]) a(u;hh))  8(ufhh)

at 09X, axﬁ 9xy axf

=l(azhihj7+aznihj’ (4.2.3).

Py 0x9%y  gxfax]

Using the transformations,

9 ___d __ad
dr, Ox, gxf

and the relations (cf.Chandrasekhar[8])

u h hj=-hyufhj

and

hiu;{hi’_ui‘hkh;
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in equation (4.2.3), we get

a(hihj) 0 [ T7i 57 7 & (h;hj)
A7 +2[ark(ukhihj)—a—l}(uihkhj)]=2_g;_é?j’}_i_ (4.2.4).

Now, we write equation (4.2.4) in spectral form by use of the three

dimensional Fourier transforms

thj(r)=[:W1¢G(k)exp(ik.r)dk (4.2.5),

Uihkh§=f_:¢Nkll"j(k)exp(ik.r)dk (4.2.6).

Interchanging the subscripts i and j and then interchanging the

points P and P/, we have

ufh h] (r) =uhhf(-r) =£:Ek¢iﬂ(-k) .exp(ik.r)dk (4.2.7).

Putting (4.2.5), (4.2.6) and (4.2.7) into equation (4.2.4), we get

3354, W (k) +2 TYkZ:; RAGE AR R AGE R R AR (4.2.8).
M

The tensor equation (4.2.8) becomes a scaler equation by

contraction of the indices i and j

2y Wi s2 L Ky @500 =2k (2 ¥ -a,0 Wi R (4.2.9).
M

The term on the right side of equation (4.2.9) is called energy

transfer term while the second term on the left hand side is the

dissipation term.



4.3 THREE POINT CORRELATION AND EQUATIONS

The momentum equation of MHD

turbulence

61

in presence of dust

particles at the point P and the induction equations of magnetic

field fluctuation at P/ and P// as

alui+u aui_h oh, __ow Pu,

— —_—T m _
gt Kax, XOx,  dx, ) Bxpx,p (Vaud

and
/7 /7 /7 /!
ohy" gt 8By _py3ur v &h
at ox// Bx{/ 1%;8x{4h4/
where,

W= £+%|E|2 =total MHD pressure,
p

p(x,t)=hydrodynamic pressure,
9=f1uid density,
K =stock resistance,

N =number density of dust particles.

v=component of th

e fluctuating velocity of dust

(4.3.1),

(4.3.2)

(4.3.3),

particles.
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Multiplying the equatijon (4.3.1) by hihj” , (4.3.2) by uih_-{’ ,and
(4.3.3) by uihf » 8dding three equations and taking space or time

averages, we obtain

7. d T TR
(uhlh]7) + axk(uiukhfhjf-a—i;(hihkhfh_{’)+ ai/ (ugulh]h])
k

9
at

d THIR!7 0 77— 0 3
-9 (u,ulhin TTniny _ 777577y = TwhIRT
ax£ FRat B Sbb ] )+ ax’ﬁ/ (uiuk h hj ) ax’{/ (uin hihk ) —aXi( 1417 )

+V (u;hih}) +— [ —— (u,h{h}) +—5—— (u,h{hi") ]
0x) 9%, 4 Py~ gxfox{ 1 axf/axt! Sl
+£(v;h,hi -uhih)’) | (4.3.4).
where,

f=KN/9 has thé dimension of the frequency.

Substituting the relations

PR
= e
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into equation (4.3..4), we get

(uibih;;)—-—-[(1+P ) (uihih;;)+(1+Eh)~——§i—-(uihihj)
ark
u.hlnl7
+2Py az,01] 7 (ushihg )]———(uiukhilh uhih}’)

d
7 (hihkhfhﬁ——ég-: (ugufh{n]’) +

J
rf a . (uiu_i.hk )‘3"—- (uiuklh h7/)

Ik

+

6/ (uiujlfhfh,{7)—+—5§——(wh’hj")+ (whihj’)
Iy I ar]

+f(Vih1hj —uihib_., ) (4.3.5).

Now, we write equation (4.3.5) in spectral form in order to reduce
it to an ordinary differential equation and because of the physical
significance of spectral quantities. For this, we wuse six

dimensional Fourier transforms:

u,hf (r) by’ (z/) =j_:f_:¢ipg(k) B’f (k7) .exp[i(k.z+k’.x/) ] dkdk/
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/ 4 17 “ por
uyuj (r) b (r) b (r/)=[_£J¢i¢ﬁ(k)ﬂi(k)ﬂg(k/).exp[i(k.r+k/.r/)]dkdk

/ 7 “re
why (r) hy (r/)=f__f__'fﬁli(k)ﬂlj/(k/).exp[i(k.r+k/.r/)]dkdk/ (4.3.9),

thkhf(r)hfl(r/)i[:[:ﬁiﬂkﬂaﬁg(kJ).exp[i(k.r+k/.r’)]dkdk/(4-3'10)’

whi (£) b7 (z/) = ["[ "y (k) B (K7} .exp Li (k. r+k/ . }/) Jukdk/  (4.3.11)

and

Vihf(r)hf(r’)=f_:f_:uiﬂ_ﬁ(k) B’f(k/) .expli(k.r+k/.r/)]dkdk/ (4.3.12).

Interchanging of points IJand P” along with the indices i and j,

result in the relations

uuf’h)h]=uufhihy’

and

u,u) hlh{’=uu{hihy’ .

By use of these facts and relations (4.3.6)-(4.3.12), we can write

equation (4.3.5) in the form

_ag't‘¢ (BB +-—;—— [(1+P,) k2+(1+Py) k/"‘szkkki/:] ¢ ,0:B j;
M

=3 (kk+k;{) & b BB -1 (kx”‘é) B 4B KPPy -1 (k"”c’{) b PP

v Uey i) & BB+ Uk YRGBT+ £ (M 187877~ BB (4.3.13).
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The tensor ‘ '
fquation (4.3.13) can be converted to the scaler

equation by contraction of the subscripts i and j

9 pB7

= +- - L(L4Py) (K 4k/) +2 P k{18 P =1 (ko + kL) & 16 1B 1B ]

. INrwrwrvavay ——— ey
—l(k}+kk)piﬂkﬁiﬁi"1(kk+k£)¢i¢kﬂiﬂi+i(k}+kﬁ)¢i¢iﬂkﬂi

+1 (kI YRR + £ (u 7107 -0 BTB7T) (4.3.14).

If we take the derivative with respect to x; of the momentum

equation (4.3.1) at P, we obtain

__Pw &

(uiuk—hihk)—-ég:f(vi—ui) | (4.3.15).

Multiplying equation (4.3.15) by h#hﬁl, taking time averages and

writing the equation in terms of the independent variables r and !

we get,

& + & +2 i ] Whihjl
ar.iari aIiaI'i aIiaI_{

g _, & , & ., & )(uuhln]-hnnlb])
Jr ,0r, arfark ariar£ arfark ‘

7
+f(_§_+____/) (vehih] -uhihy’) (4.3.16).
a’ri aI'i
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Taking the Fourijer transforms of equation (4.3.16), we get

“a’nll_
YRR = Uk kfkyv ke kf+ k{k]) (¢ 16 DD’/ ,p B B77)

-1ECkeyvkd) (WP~ D771 / (ks k24 k) (4.3.17).

Equation (4.3.17) can be used to eliminate yPip/ from equation

(4.3.13).

4.4 SOLUTION FOR TIMES BEFORE THE FINAL PERIOD
To study the decay of MHD dusty fluid turbulence for times before
the final period, the three point correlation are considered and

the quadruple correlation are neglected. If this is happened then
equation (4.3.17) shows that the term yﬂuﬁg associated with the

pressure correlations,should also be neglected. Thus we have from

the equation (4.3.14)

—a%tb BB+ [—I—:— {(1+p,) (k?+k”) +2pkk/}-RE] & B/ B7/=0 (4.4.1),
M
where,
/
R=1{ (ky+ki)® -1} (8-1)
k2+k 42k k]
and
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also R and S are arbitrary constants

Integratin t :
& the equation (4.4.1) between t, eand t with inner

multiplication by k, and gives

a’/ -
kb B4BY =ky [d 4B ,B7]1 jexpl {——g- [(1+p,) (k?+k/*) +2p kk/cosB]
u

+Rf} (t-t,) ] (4.4.2),

where @ is the angle between k and k/. Now letting /=0 in equation

(4.3.6) and comparing (4.2.6) and (4.2.7), we have

o W ¥ (k) =" BB ak/ (4.4.3)
and
o, ¥ 0 (k) = [ 87 (-1 BT (-k7) dk/ (4.4.4) .

Substituting equations (4.4.2), (4.4.3) and (4.4.4) in equation

(4.2.9), we get

_C?EW+25"_1(2¢1¢71(1<) =[(2ik, [6, B -®:Bs (-K) BY (-Kk/) ],
M

cexp [ (=Y [ (14D, (k3+k/") +2D,kk/cos0] +RE} (t-t,)]dk’ (4.4.5).
Py
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Now dk/=dk/ / /
’ idk;dky can be expressed interms of k/and @ (cf.Deissler

[15]) as

/= /?
dk’/=-2nk/"’d(cos8) dk’/ (4.4.6).

Substituting (4.4.6) to equation (4.4.5) to give

d T 7 iy ————— =
V¥ (k) +2pluk2¢1¢i(k) =zfo 2nik, [ B B77-¢ B, (-k) 7 (-k/) ] k"

1
: [Lexp [ i-g— [(1+p,) (k2+k/*) +2p,kk/cosB] +Rf} (- t,]|d(cos8) 1 dk/
M

deissler [3], we assume that

ikl BB - B’ (-k) p'{] °='Tz%? (k2k/*-k*k/?) (4.4.8),

where £, is a constant depending on the initial conditions.Putting

(4.4.8) in equation (4.4.7) and completing the integration with

respect to cos®, we get
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d (o T
—d-,;(Zwih(k))Jrzpl'ka(z“;ﬁ——— E,

k))= 5 r
iq’i( ))= v i(E- O)f (kk K3k’

v 2
. [exp[{--—P;[(1+p,,) (k2+k’") -2p, kk/] +RF} (- ty) ]

"exp“_?:: ((1+p,) (k>+k”") +2pkk/) +RF} (t-t,)]] dk/ (4.4.9).

Multiplying both sides by kz, we have

dH v :
—==-+2—k2H=G ‘ 4.4.10),
dt 2 oo ( )

where H=21Ck2l|u¢;1(k) is the magnetic energy spectrum function and

G is the energy transfer term given by
2 /’
Gm S0 (k" -k5k") vexp [ {-—- [ (1+Dp,) (k2+k
vit-t, )f Py

-2p,kk/]Rf}(t¥to)]dk’ (4.4.11).

. / .
Integrating eguation (4.4.11) with respect to k', we obtain
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3
YT EDy 2 142
G=— 3 3" éexp[{_ VI.)k ( 1++;H)+Rf}(t_to)]
v2(t-t,) 2(1+p,) 2 M M
. 2
15pk . SDg 3 | K8

avi (E-£,) 2 (1+py)  (L+pg) 2v(t-t,) 2V (E-£)

2 _
Py Py
{ -1} k8 .4. .
* 1+Py  (1+p,)? 1k°) (4.4.12)

The series of equation (4.4.12) contains only even power of k.

It is interesting to note that

fo'a.dk=o (4.4.13).

The linear equation (4.4.10) can be solved to give

H=exp [

2 (4— 2(¢g-t
_2vKkE(E-£) 1 fe.oxpt 2vKk2 (E-to) | o0
pu pH

2vk? (-t 4 (4.4.14),

+J(k)exp [- >
M

where J(k)=f@£i ijs a constant of integration and can be obtained
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as by Corrsin [12}. Substituting the values of G from equation

(4.4.12) in equation (4.4.14) and integrating with respect to t,we

get
3 :
N, k2 : 2 k2 , 1+2p _
H=—2 exp[—%:'—‘-kz(t-to)h ;hTth _,exp[{~v ( 1+p”)+Rf](t to) ]

= = M M
vZ(1+p,) ?

(3p2-2p,+3) k®

3pyk* . (7pa-6Dg) k¢ 4
L 5 3 3 1
2v2(t-t,) 2 3v(1l+p,) (t-t,) 2 (1-p)2(t-t,) 2
2, 9
+_8_%E (3px ZPH:3)1k F(o)] (4.4.15),

(1+p,) Py

where,

F(®) =exp(—w3)L—exP (x2) dx

and

v(t-t)) .3

w=k[ —— —m 87—
[ Dy(1+py)

By setting r:o,dk=21ck3d(cosﬁ)dk and H=21tk2!|11¢;1 in equation (4.2.5),

we get energy decay as

h 7 -
1h1=f Hdk (4.4.16).
2 0



72

substituting equation (4.4.15) into the equation (4.4.16) and after

integration, we can obtain

3 _a 3

—-———7' 2 —3 —.E .

hhi  Nopy v 2 (t-¢,) -6 -5

—_—= +exp {RE(t-£,) Y E,Qv™° (E-t,) (4.4.17)

2 82T p{RE(t-£,) 1, 0 ’

where,

b PR 9 5Dy(TDy6) 35 Py(3PA-2Dk*3) )

5 16 16 (1+2py,) 8 (1+2p,) 2

(1+py) (142py) ?
Thus, the decay law for magnetic energy fluctuation before the

final period in presence of dust particle may be written as

nfw

BE=A(t-t,) 2+B(t-t,) Sexp{Rf(t-t,)} (4.4.18),

where, h? is the mean square of the magnetic field fluctuation, t

2
2

N,Dy v

is the time, A= ,B=E,Qv® and t, are constants determined by

the initial conditions.

4.5 CONCLUSION

The results of the present study, obtained by neglecting the
quadruple correlations in the three point correlation equation,
appear to represent the MHD dusty fluid turbulence for times before

the final period.For clean fluid, i.e. in absence of dust
particles, we put f=0, the equation (4.4.18) becomes

wlw

hZ=A(t-t,) Z+B(t-ty)™5 ,

which was obtained earlier by Sarker and Kishore [54]. For large
times, the last term in the equation becomes negligible,giving the

-3/2 power decay law for the final period.



CHAPTER -5

DECAY OF TEMPERATURE FLUCTUATIONS
IN MHD TURBULENCE BEFORE THE
FINAIL PERIOD

5.1 INTRODUCTION

The problem of the decay of temperature fluctuations in homogeneous
turbulence would appear to be one of the initial steps required
for understanding the important process of heat transfer in shear
turbulence.As pointed out in [12], such a study would also be
applicable to concentration fluctuations during the mixing of
equidense fluids, for the case of constant mutual diffusion
coefficient and no interfacial tension. Deissler [15], the decay of
homogeneous turbulence before the final period was analyzed by
utilizing correlation equations for fluctuating quantities at two
and three points in the fluid. The set of equations was made
determinate by neglecting the quadruple correlations in the three
point equation. Corrsin [12,13] has already made an analytical

attempt on the problem of turbulent temperature fluctuations using

the approaches employed in the statistical theory of turbulence.

Loeffler and Deissler [39] presented a theory "Decay of temperature

fluctuation in homogeneous turbulence before the final period".In

their approach they considered fourth-order correlation terms are

negligible compared to the third order correlation terms.
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In this chapter, we also studied the decay of temperature
[luctuations in magneto hydrodynamics turbulence before the final
period. Finally energy decay law for temperature field fluctuation

of MHD turbulence before the final period is obtained.

5.2 CORRELATION AND SPECTRAL EQUATIONS

The induction equation of a magnetic field at the point P is

an,  an,
at X ax,

d
Ui vy T (5.2.1)

-h
kaxk Dy Ox,0X,

and the energy equation at the point PHS

ar) ar/ FlivA
atj‘” ; F=(2) —L (5.2.2),
axk p.t ‘axkax_k

where,

u; =component of turbulent velocity,
h, =component of magnetic field,
b, =v/A=magnetic prandtl number,

P=v/ ¥ =prandtl number,

v =kinematic viscosity,
A =(4nuo)4= magnetic diffusivity,

Y = —£L-=thermal diffusivity ,
PCp

Cp=heat capacity at constant pressure,

X, =space co-ordinate.
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Multipl)’iﬂg equation (5.2.1) by Tj/ and (5.2‘2)by bi , adding and

taking ensemble average, we get

on,Tj = oh,T]

dat ox,

axf ax}

=V[-—]-'— 82111TJ+_1_ azbiTj (5 5 3)
Py 9%9%; D, axfox]

The continuity equation is

e a7 9 (5.2.4).

Substituting equation (5.2.4) in to equation (5.2.3) yields

9 Va0 Thith - Tahth
ax, (uh;Ty) + 2l (uxh,Ty) ax; (u,hyTj)

k

CATEAR

=V[ 1 az(biTj) +~i az(hiTj)

it Sl A (5.2.5).
Dy 0x0%, Dr dxfoxf
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using the transformation
0 ... 8 _3
dry 0%y gx
and relations (cf. Chandrasekhar [81)
uphy Tj=-hyupT]
equation (5.2.5) becomes
6'“_' 7 d d
3E )+2——E-;(u xh Tj)+-—-—(uihij)
& (h,T!
=v[____£_i_)_(_1_+_1_)] (5.2.6).

or,dr, Dy Dy

It i8 convenient to write this equation in spectral form by use of

the following three dimensional Fourier transforms

h,T] () =[ 1,5/ (k) exp (ik.r) dk (5.2.7),
uihkrj=f'i>i1ktg(k) exp (1k.r) dk (5.2.8)

and since it is obvious by interchanging p and p/that

ulh, T] =G H,T; (<27 = [ 6,17 (-k) exp (ik.x) dk | (5.2.9).

Substituting of equation (5.2.7) to (5.2.9) in to equations (5.2.6)

leads to the spectral equation
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TR
FEARGEANRAS N EL e A O S R W ATSY
1 1
=y U+ L () (5.2.10).

The tensor equation (5.2.10) becomes a scalar equation by

contraction of the indices i and j

_;Er—mrir B + 1k, (28 717 ;1=K +0 1,0 (K ]

=y [(2+ 1) kT 7 (K) ] (5.2.11).

n Dy

5.3 THREE POINT CORRELATION AND EQUATION
The momentum equation of MHD turbulence at the point P, the
induction equation at the point P, and the energy equation at PHas

du du, oh, ow Fu,
vud - = 5.3. s
3¢ +u, 3%, X %, ax, +y 3%,0x, ( 1)

/ /
o +u,/c—-——ah'{ —h;{———au'{ =(-L) Fhi 7

. =L (5.3.2)
at axi axt Pw 0x}0x;
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and

ajg/ //aTg/ (—14 EPT3

ot oxf! P: axflon] (5.3.3),
where,

1
W= _E+-§[Ti|2 =total MHD pressure and

p(x,t)=hydrodynamic pressure.
Multiplying equation (5.3.1) by hJTJ’, (5.3.2)by uiTﬁl, and (5.3.3)
by uﬂn/, adding the equation and taking space or time averages, we

obtain

x (uihz T,”) N (uiukhZTjN) -_- (hjhkhZTj”) + aa/ (uguihT])

Xk

-—§_ (uulnlT)) + a// (uhjuf 7)) =- aa (WRIT]) +0 az (u,h]T])
ax* k.. . Xy X OX
+v[— 1 az ( 7 ”)+-—— ?2 //(uihiTj”)] ’ (5.3.4).
lhrax{axk , D axf/axg

Substituting the relations
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and
d __(_0 d
0y ( ark+ arﬁ)
into equation (5.3.4), we get
d [T 1 ?
— (u ;T -v[(1+-=— Tl 7 1 o 777
3 4 143 [« "'pu) arkark (uilliTj )+(1+—5;) a_r{ark (u,h; T; )
+2 ?2 (uihiTj )]=‘—'—(uiuk.hiTj )+ a (uiuk.h_iTj )_——Q—' (b_ihk'hiTj )
arkark 61’4 a-rk
—a—-(h hkhi7Tj77)-_-(h hkhzrj”)- (ugulhlT 77)+ai (wulbLT])
Ik k k
-:_’——(uiuk hiTj )"'—-—-—(WhiTj )+ai/ (W.hiTj ) (5.3.5).
.rk 1

Six-dimensional! Fourier transforms for quantities in this equation

may be defined as

uihii(r)Tj/7(r/)=j:1:&)iﬂ’i(k)9/j’(k/).exp[_i(k.r+k/.r/)]dkdk/ (5.3.6),
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T (" |
un {75 =[ [ .8, 007 i) .exp [i(k.r+k/.r/)]dkdk/ (5.3.7),
hh[T]'=[ B (B BT ()07 (K7) .exp 14 (k. vk £/) ] dkdk/ (5.3.8),

uiux;hiTj;:=f_1:¢1¢i(k)ﬂﬂ(k),07(k/).exp[i(k.nk/.:/)]dkdk/ (5.3.9),

”iuiihk;Tj;;=f_1:¢1¢7i(k)ﬂlk(k)ﬂy(k/).exp[i(k.r+k/.r/)]dkdk/ (5.3.10),

WhZ(r)I?/(r/)=[:[fvﬁﬂ(k)9gkkJ).exp[i(k.r+k/.r/)]dkdk/ (5.3.11).

Interchange of points P/and P”along with the indices i and j,

result in the relations

upil BTy =u g BITY

By use of these facts and equations (5.3.6) to (5.3.11), equation

(5.3.5) may be transformed to

-a%. (4)1[}7167}) +v [ (1+;~il—)k2+ (1+-£—)k/’+2kkkl{] ¢ ;B 191; =1 (kyrkf) & kBJIBJj;
H .

z

~1 (ke rkf) P B PO -1 (k k) & S4B 07 + 1k, 078507+ i U+ k) yB7,07

..... (5.3.12).
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ensor equati :
The t quation (5.3.12) can be converted to scalar equation by

contraction of the indices j and j

a 0/)+v [ (1+-Lyg2 1 2
= & B707) +vi(1+ )k ““E”‘/ +2k, k{16 B 07

=1 (kk+k£)¢1¢kp iei -1 (kk"'k){) Bi k 161 -1 (kk+kj{)¢j¢kﬂ iei

sk, PO + i (K, + k) YD 07 (5.3.13).

if the derivative with respect to xﬁs taken of the momentum
equation (5.3.1) for point P, the equation multiplied through

by hifg/ and time average taken, the resulting equation

az(WbiTj ) Fe 777 777 .
TToxgx,  Oxgax, (MU Ty By ATy (5.3.14)

or, interms of the displacement vector r and r’ this becomes

i & @ _ 1 (wn/T]
_.[ + + ](WhT )
or,dr;  3riar, orjor] ’

Y SO UL : azll(uiukhZTjn—hihkhZT;]) (5.3.15).
or 81, Qarfar, ordr} or{ar}

Taking the Fourier transforms of equation (5.3.15),

“W (kikk'i'k_{kk*'kik{*k_{k{) (¢ :l¢ kBlie{j?_p ip kp/iegy) (5.3.16 ) .
YRy Kk 2kik +k]k]

Equation (5.3;16) can be used to eliminate ypﬁﬁg from equation

(5.3.12).
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5.4 SOLUTION FOR TIMES BEFORE THE FINAL PERIOD

1t is known that the equation for final period decay is obtained

by conslderlng the two point correlation terms after neglecting the

third order correlations. Analogously, it would be anticipated that

for times before the final period the fourth-order correlation
terms should be negligible in comparison with the third order

terms. If this assumption is made then equation (5.3.16) shows that

wa’a’’
term YP’07 associated with the pressure fluctuations, should also

be neglected. Thus, neglecting all the terms on the right hand side

of equation (5.3.13), we get

{E (%8707 +v1 (1+§—)k2+ (1+51_) K42k, {16 8707 =0 (5.4.1).

N x

Integrating the equation (5.4.1) between toand t with inner

multiplication by kiand gives

Kb 707 =1y (6 P07 15 xp -y L (14220 K3+ (145 k"4 2kkc/cosb) (£-£,) ]
M

I

where @ is the angle between k and kh
Letting rl=o in equation (5.3.6) and comparing with equations

(5.2.8) and (5.2.9) we get

¢ 1,5 (k) =[ 80 dk’ (5.4.3)

¢1111§(_k)=I:$kﬂg(nk)671—kf)dk/ | (5.4.4).
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tituti i
Substi N8 equation (5.4.2), (5.4.3) and (5.4.4) in equation

(5.2.11) we get

8 T (av( L. 1\, ;=T p=

_é_Elit 1(k) +v (E+E) k21,5 (k) =—£.[¢1B[16717+24’k571 (~k) 97](—1(/) 1,

.exp [-v (t-¢t,) {(1+-I—:,L~)k2+(1+—$~)k/'+2kk/cosﬂ}]dk/ - (5.4.5).
M ) 4

Now dk/(=dk{dk{dk{) can be expressed interms of k/ and O(cf.Deissler

[15]) as
dk’:-znk”d(cpse)dk/ . (5.4.6).

Putting equation (5.4.6) in equation (5.4.5) yields

DT+ (v Ly T (k) = [T2mik, 16,5707
at pH pz' 0

2 1 1 1
426 B (-K) 07 (-k7) ] k. [ﬁlexp{—v(t-to) [(1+E)k2+(1+—§;)k/
+2kk’cos0] } d{cos0) ] dk/ (5.4.7).

In order to find the solution completely and following Loeffler and

Deissler [3], we assume that

7 77 B /l_ /2
ikk[¢15191*2¢kﬂﬁ(*k)eyx'k/)]fLYEiL-(kzk k*k’) (5.4.8),

)2

] initi ition.
where po is a constant depending on the initial condition
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5ubst1tut1ng equation (5.4.8) in equation (5.4.7) and completing

the integration with respect to cos®, we get

. .
._~(2ﬂ ;)+v(-——+ Yk2(2 7 - Bo - /P13
T Dy D, ( nl,;v';i(k)) _————Zv(t—to) . (kk/ -k3k’’)

lexp (v (t-tg) [(1+-2) K3+ (142 ) k}-2kk/]} -exp{-v (£~ &) [(1+—2)k?
D p Py

M r

+(1+—I—;L—)k”+2kk’]}]dk/ (5.4.9).

r

Multiplying both sides by kl, we have

90,y (- L+ L)yk20=F (5.4.10),
ot Dy DPr :

where
O=21:kzlit;i(k) (5.4.11)

and

1 i iR
[T ueK”- _x°k”") lexp (-v (t- t)l(1+ayk=+(1+z)k/

F=- 2v(t £
L L)k +2kk! / 5.4.12).
"Zkk’]}-expl—\!(t—to)[(1+-5;)k2+(1+pr)k +2kk/]1}1dk ( )
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Integrating equation (5.4.12) with respect to k/, we have
5
VT B.p,°
F=-—3 5 —oxp{-v(t-t,) (1+-L - _Pr )y
2y 2 (t"to) 2 (1+pz) =z pu 1+Pz
lsptkd. + 5p§ __3__} k¢ + pg _ Py } k°}
av2(t-t, )% (1+p,) (1+p)? 2 v(t-t,) ~ (1+p,)* (1+p,)
..... (5.4.13).

The series of equation (5.4.13) contains only even powers of k and
start with k4 and the equation represents the transfer functioﬁ
arising owing to consideration of magnetic field at three points at
a time.

It is interesting to note that

qu-dk=0 (5.4.14),
o

this indicates that the conditions of continuity and homogeneity
are maintained. Physically, it was to be expected, since F is a
measure of transfer of energy and the total energy transferred to

all wave number must be zZero.

The linear equation (5.4.10) can be solved to give
O=exp [-vk2 (t-t,) (}}—+-§—)1fFexp[vk2(-1—+—1-) (t-t,) 1dt
r

N pﬂ pf

+C(k)exp[-vk2(—é—l+—§:)(t'to” (5.4.15),
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- 1 .
where C(k)=(N k') /n is a constant of integration and can be obtained

as by Corrsin [8]. Substituting the values of F from equation

(5.4.13) in equation (5.4.15) and integrating with respect to t, we
get

N 2
T

(k, £) =

2
exp{—vkz(_l_.'.i)(t_to)}_'_ \/“—poprz
Dy r 3

-]

2vZ (1+p,) 2

1+D*Dy 4y 32kt | P 7D 6k

~vk2 (-
.exp[-vk?(¢t t°”p,,(1+p,)

LM

5 —
2v3(e-t,) 2 3v(i+p,) (t-t,) 2

_ 4(3pi-2p +3) k° . 84V (3p2-2p,+3) k°

T 5 N({w)]} (5.4.16),
3{(1+p,) 2(t-¢t,) 2 3 (1+p,) 2D,
where,
- 2 v “Leo
N(m)=exP("w2)foexp(x )dJ{'w=k pz(1+pz) )

The function F(w) has been calculated numerically and tabulated in

[5]. 1f in equation r is sel equal to zero and use is made of the

definition of Q as given by equation (5.4.11)7
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The result is

— T
T2 _ T;Ty =
2 2 'ao(k)dk (5.4.17).

substituting equations (5.4.16) in to (5.4.17) and after

integration, we get

3 - 25
TE_Nplpw (t-ty) * | Bonplpd (E-t,) (9, 5Pu(7P,~6)
3 2 56 16 (1+p,+p,,)
4\/1TV 2 (pr-ppn 2 2v6(1+pz) (1+pz+pu) 2 b 4 M

wiw
vjw

_35p4(3p7-2p,+3) 8Dy (3p7-2D,+3) g 1:3.5.....(2m49)
8p,(1+p,+py)?  3.2°p2(1+p,+py)? “™° ln(2n+1)2°n(1+p,) "

or
3 3 _2
— 2 2 2
TZ _N.p/ by (t-t,) 6 (fop )5 (5.4.18)
R PR ’
4\/1?v2(pz+p“)2
where,
3 3 (7p.-6) 35p3(3p3-2p,+3)
2 - -
ﬂpzzpﬂ [ 9 + Py 7D, - M z L 3 s ] .
S= 5 16 16{(1+p,+by)  8p.(1+p,+p)

2 (1+pz) (1+p1+p") 2
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the e '
Thus nergy decay law for temperature field fluctuation of

turbulent flow in presence of magnetic field before the final

period may be written as

k)

._—- _ "'-5 -
T?=X(t-t,) ?+Y(t-t_ )5, (5.4.19),

where,

323
NP2 P

X= 3 3 and Y=2f,5v"¢

2/mv 2 (P+P,) 2

For large times, the last terms in the equation becomes negligible,

leaving the -3/2 power decay law for the final period.

5.5 CONCLUSION

By neglecting the quadruple correlations in the three point
correlation eguation, the results (5.4.19) applicable to the
temperature fluctuation in MHD turbulence before the final period
were obtained. If the equation (5.4.10) is integrated with respect

to k from zero to infinity and use is made of equations (5.4.14)

and (5.4.17), the resulting equation is

— -
_:I_'_=v(.._.1_+_1_)f szdk.
2 Py Py Y0

9.
at
This equation points out the interesting fact that for a given

viscosity and temperature fluctuation spectrum the decay rate is
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inversely proportional to the Prandtl number. The results of this
analysis however are not comparable on this basis since the manner
in which the initial conditions were imposed (equation{(5.4.8))
precludes comparing two different Prandtl number fluids with the
same spectral curve, However, the results of this analysis do show
that the decay rate decreases relative to the final period rate
with increasing Prandtl numbers. Corrsin [12] has previously
pointed out that for the final period, as well as for self-
preserving and initial spectrums at very large Reynold number,
temperature fluctuations die out more slowly than velocity

fluctuations. This analysis indicates that the same is true for

times before the final period, as can be seen by comparison of
equation (5.4.19) for T? is analogous to the equation for u?

(equation (38) of [15]).
In absence of a magnetic field, magnetic prandt]l number coincides

with the prandtl number (i.e. m;p"), then the equation becomes

wjw

T? N,p, + p o>

2 3 3 6 (g-t,)5
8/2mv 2 (t-t,) 2 °

which was obtained earlier by Loeffler and Deissler [15].



CHAPTER - 6

THERMAL DECAY PROCESS OF MHD
TURBULENT FLOW IN A ROTATING
SY¥STEM IN PRESENCE OF DUST
PARTICLES

6.1 INTRODUCTION

Turbulent flows are always discipative in nature. Deformation
occurs as a result of viscous shear stress. This deformation
increases the thermal energy of the fluid at the cost of kinetic
energy of turbulence, To compensate for these viscous Jlosses
turbulence requires a continuous supply of enefgy. If there is no
supply of energy turbulence decays rapidly. Saffman [52] observed
the effect of dust particles on the stability of the laminar flow
of an incompressible fluid with constant mass concentration of dust
particles and gave an equation which described the motion of a
fluid containing small dust particles. Corrsin [13] considered the
problem of temperature [luctuation is isotropic turbulence. Jain
[28] studied the temperature fluctuation in turbulence and the
results so obtained have been compared with those obtained by
corrsin [12]}. By using Millionschikov’s hypothesis {43] of
quasinormality in the fluctuating components of velocities. Ghosh
[21] obtained a dynamical equation for the early period decay of

turbulence. Mazumder [42] derived the early-period decay equations
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al t
for gener ype of turbulence by Superimposing a scalar field

: tempera .
(i.e- perature) on ap Incompressible velocity field. The

approach is Phenomenological in the sense that he has considered
the region where the variations of the mean temperature and mean
velocity may be neglected because the transportation of the thermal
energy from place to place is very rapid. Sinha [57] obtained an
early-period decay equation for MHD turbulent flow. Sarker [55]
also derived an equation for MHD turbulent flow in a rotating
system,

In this chapter we have considered the convective MHD turbulent
flow in a rotating system in presence of dust particles. The
coriolis force due to rotation plays an important role in a
rotating system of turbulent flow. The main object of this chapter
is to derive an early-period decay equation for MHD turbulent flow
in presence of dust particles in a rotating system at high Reynolds
and Peclect numbers. We have considered the region where the
variations of mean temperature, mean velocity and mean magnetic

field may be neglected because the transportation of the thermal

energy from place to place is very rapid.

6.2 FUNDAMENTAMENTAL EQUATION
The temperature diffusion equation and the equations of motion and

continuity for viscous, incompressible and conducting fluids for

MHD turbulent flow in a rotating system are

B v, 2 a0 (6.2a),

—t U
at unaxh



__a_.'—i‘!.+_-§_(u“_hh)_ apt
at axk 1k I54k? == aX1 +\’wxu1-2¢mmmux

ohy g
_§E“L§};(hiuk‘uihk)=lVihi

and
dx; 0x;
where

O=temperature field fluctuation,

a= Kz =thermal diffusivity,
pC,

P"=£—+—1—|h|"’+|(«)x;lc|2 =generalised pressure inclusive
p 2

centrifugal force,
u;(x,t)=fluctuating velocity component,

h;(x,t)=fluctuation of magnetic field.

w, =the component of

rotation,

92

(6.2b),

(6.2¢c),

(6.2d),

of potential of

constant angular velocity of uniform
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Elki:.—alternating tensor,

v=kinematic viscosity,

A=magnetic diffusivity,

Mzthermal conductivity,

cp=specific heat at constant pressure,
? =fluid density.

For MHD turbulent flow of a dusty incompressible fluid, equations

(2) can be written as

i) 00 _ :
_5E+un_§;;..av‘;o (6.2.1),
du; 9 op* KN
'?ﬁ%+ aXR(uiuk—hthk)=—7§§I+vV§ui—28mkﬂomuk+—a—(v&—ui) (6.2.2),
ch o

with
3&:3{1_'1_:0 (6-2-4)’
ox; Oxy

where v.is the ith component of the fluctuating velocity of dust
i

particles, K is the stock resistance coefficient, N is the number
1

density of the dust particles, x=(X|;%;,x;)and

F . >,

V2= +
x 2
ax2 i 0x
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e third term i i
Th °n the right side of equation (6.2.2) represents the

iolis for
cori ce and fourth term is due to the presence of dust

particles.

6.3 DYNAMICAL EQUATION

To derive the dynamical equation, we can write an equation, for

temperature fiuctuation @ at the point p/(x“t) similar to (6.2.1)

as
00/, ;o0
3E Ut 70V 6.3.1),
at ax{ x ( )
where,

x/=(x1,x2,x])

and

Vi/= az:+ azz+ az:'
ax{ ax{ ax{

Multiplying the equation (4.2.1) by @’ and (6.3.1) by 8, then

adding and taking average we obtain

o007 o0ulo B
8007 , ®u, 8’ 36u;d - (V+V2,) 607 (6.3.2).
at aXn ax{

If we put the following correlation tensors,

W=Fﬂ,0(x1xll t) :Bune =FOD.0(X'X/' £)

and

0uiﬁ=ﬁ§mlcx,x;t)
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in the equation (6.3.2), we have

Fy , OFone  OF, 95,01
At %, gyl a7 VeV F, (6.3.3).

The equation for the velocity fluctuation uf/ at the point p'’/(x//,¢t)

can be written as

au// w//
K, 6 - (uf/uf’-nf/nf/y =~ 38" = +vVeuf!

~2€ 0 uf + £ (vl -uf’) (6.3.4),

KN _f,x/1=(x{!,x{,x{') ana

where
o]

2 * 2
xRt T A A
axl aX2 aX3

the equation (6.2.1) by Bfué/ y (6.3.1) by Buéf and

Multiplying
(6.3.4) by'ixyand then adding and taking averages, we have

(Bu 9’u”)+ (6/u1”6uk”)+ (u” UCTIS Y ULTY)
ox . X ax1 ax

___(99/ )+ ——

n

P77007) + [ (VW) +9 V2,1 (807uf)) -2¢ 00, (807u]7)

ax

(6.3.5).

+£(v]7067-u]’0607)
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er usin '
Aft g tensor Notations, equation (6.3.5) can be written as

d J d
___14"e o xt=—F + ad
gt 0.0 x" Gy Fon.0,x ox] Fo,el,k"'*——-axj,, (Fo,0,k5~Hp, 0, k1)

d
- axél pﬂ'ﬁl t‘.)+ {a (wx-'.v;/) +vv‘;//} Fe,e' k-28 mjkb) anO.B,j

=

+£(0p,0,x~ Fo,6,2) (6.3.6),
where,
007/ u]’ =Fy o.x (X, x/,x/, t),0u,0/uf’ =Fyn 0. (X, X/, x/7, t),

B{’h]7007=Hy ¢ \y (X, x/, x!/, t) , P00 =Py g o (x, X/, X"/, t)

and

ee/Vk =Qo,9,k(X:.-x/'x//1 ty .

Now taking '_____6// of equation (6.3.4) and using the continuity

ox &

condition at p”(x“,t), we have
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o 8 I T ot /1 //
ax{’ ox]/ (s’ b’ n )=--627f-—/7—2emmma”1’ g vk (6.3.7).
Ox;’ dx oxy/ -~ axf’
Multiplying (6.3.7) by @8/ang taking averages, we obtain
O 9 (u[’u]’-nl'R])o07-- FP00 _ du;’60/ . dvi'08/
ax}/ ax}’ 4 TTell 28 mik® m 2 77
k 3 Bxk axk axl{ axk
..... (6.3.8)
In tensor notation this equation becomes
a 9 &P oF, a0
~—7 7 (Fo,0,x3~Ha,0, k) =~ 9.8.0 _2e o, — 283, 9.0,k (6.3.9).
axy’ axj R0 ax{/oxt’ el axy’ axy’

Now we use the Fourier transforms of two point correlations that

appear in equation

1
x)$

k, k/, t)=
Vo,0f ) T

/ $ye_d
"Ien'o(klk rt) (21‘)5

i
Vo.01 e K/, £ =

(6.3.3) as

[[Fo0(x.x/, ) .exp i (k. x+k! . x/) ] dxdx’

ffFen,o(x,x/, t) .expli(k.x+k.x’) ] dxdx’/ ?6.3. 10).

/

/

[[Fo 0t %/, £) -exp L1 k. xek/ . x/) ] dxdx
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ccordingl t o .
A gly, the Fourier Inverse transforms of the above relations

are:

/ - )
Foo XX €)= [ [ o (kK ) Loxp (=1 (o ek /sl x17) ] clcit)

/
Fon,0 (X, X7, €) "1ff‘|’en.e(k:k’r t) .exp[~1i(k.x+k’!.x’)1dkdk! ({6.3.11).

FO,Ol (x, x/l‘ t) “"-iff!pg'gl (k; k/' t) .exp[—i (k.x+k/.x’) 1 dkdk/ J

It is to be noted that the investigations in (6.3.10) are performed
over the whole of x,x/ -spaces and their respective volume elements
are dx=dx|dx2dx3

and dx/=dx1/dx2/dx]/.

Obviously the integrations in {(6.3.11) are performed over the whole
of k,k/—spaces and their respective volume elements are
dk=dkldk2dk3

and _

dK/=dk lak,/ak,/.

Similarly, the Fourier transforms of three-point correlations that

appear in (6.3.6) can be written as

i !l by . P (ko xr k! . x!
‘l’o.o,k(k'k,’k,”'t)= (2u)9fffF°'°""(x'x X1, E) expli(k.xekd. x

+k/! %!y ] dxdx/dx!’ (6.3.12),
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(k,k/, k!, ¢)=
‘I’enﬁk t) —(—m;fff enﬁk(x:xl x// t) . exp[l(k x+k/ X/

Ty /
+k// . x/7) 1 dxdx/ dx!/ (6.3.13),

/ k!, ¢y=__1
‘l’e,el,k(k’k rk ,t) “Wffff’e'ol'k(x'x/'x//' t).exp[i(k'x+k/.x/

+k/! . x!7Y] dxdx! dx/! (6.3.14),

Vo, 0,k (K. K/, K/ t) = fff Foo.x (X, x/ , 2/, ¢t) .expi(k.x+k! . x/

(2n)’

+k/! . x!1) 1 dxdx! dx!/ (6.3.15),

! kM g) =2 ! %!ty . explilk.xvk!.x!
b0,k (k. K ,kl,t) (211:)9ff H o,y (%, %7 , X/, t) exp [i(k.x+k! . x

+k//.x’/)]dxdx/dx” (6.3.16),

Re.0,u (K, k! K/, £) = [[[Pon.0t5x:x X", £) cexD Ui Ue.xvk!

2)9
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(k, k!, k!, ty=__1 _ |
Po.o.s _ ) (Zu)9fffoo,e,k(xax’:xﬂ.t)-eXP[i(k-J‘“k’-x/

7y ! dse!!
+k/! . x/) 1 dxdx/dx (6.3.18),

where the integrations appearing in (6.3.12) to (6.3.17) are

performed over the whole of X,X/,X”,-spaces, and their respective

volume elements are dx;dx,dx, dxlldxz‘/dxj/, dxi//dxzﬁdlel.

The Fourier inverse transform of the above relations are

Fp,o,x (e X! 3!y == [ [Wo,0.x Uk, K/ K/, £) cexp [-1 (K. xekc/ . x!

+k/! . x!!) ] dkdk/dk’/ _ (6.3.19),

Fono,x (%, X/ %/, €)= [ [ [Won,0,x (K, K/, K/} . exp [~ (k.x+k! . x/

+k!! . %!y ] dikdk/ dk’/ (6.3.20),

Fo,01,x(X, x/ , %!/, £) =fff‘]’e,91,t(k'k/'k”' £) .exp [~ (k. xek/ . x/

+k”.x’/)]dkdk/dk” (6.3.21),
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—y
Fy 0.5 (XX, X!, £) =fff%,a, J Uk k! K, b expl-i(k, x+k/ . x!
+k//-X//)]dkdk/dk// (6.3 22)
/
Hy,0,x3 (X, X/, %'/, t) “fff¢o,o,t;(k. K/, k!, t) .expl-i(k.x+k/.x/
+k/! . x/1) ] dkdk/di!’ (6.3.23),
Po0,0 (X X! 2/, £) = [[[mg g, (e, K/ k1!, £) cexp -1 (k. x4k .5/
+k/! . x'!) ] dkdk/dk’! (6.3.24),
and
Os,0,x (x, x/, x//, £) =fffﬁ8,0.k(k'k/'k”' t)expl-1(k.x+k/.x/
+k/! %!’y dkdk/dk!! (6.3.25).

The integrationé appearing in (6.3.19) to (6.3.25) are taken over

the whole of k,k’,k”-spaces.
Using the relation (6.3.11) in the equation (6.3.3) we have

3 0.0tk K/, £) =K, on 0 L K/ 1 ) +k{ W 01 (K, K, £)

~a (k2+k/*) Y1 o (K, K/, t) (6.3.26).
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similarly,with. the help of equations (6.3.19) to (6.3.25),

equations (6.3.6) and (6.3.9) can be written as

d
—a—Ewﬁ.o,k(k' k/’ 'k//l t) +kn'l’0n,ﬂ,k(kr k/rk//; t) +k-{¢0,01,k(k' k/, k//, t)

+k;/¢0,0,kj (kl k/lk//l t) _k_4/¢0,0,kj (k, k,,k//, t) +k£/’t0,0,6(k' k/,k/l, t)
= - {u (k2+k/2) +Vk/,z}¢0,0,k(k' k/, k//, t) +2¢ .Uk(l)m"eloj (k, k/: k”r t)

~fPBq,0.x(k, K/, k!, t) + g o (K, k!, k!, t) (6.3.27)

and

k//k//k//
—-—-}(—/7————(‘!’9 8, ki ~®q, 0, kj) (k, k/ k!, k) '-'k//!to 0.0 (K, k/, k', t)

k//k k//k
-2€ 0, Tﬁz""l’ﬁj(k k!, k!, )+ f

Bo.ox(k k', K/, t) (6.3.28).

Substituting (6.3.28) in (6.3.27), we get

_("?Ewe-ﬂ,k(k'k/'k”' t) +Kk,Wep,0,x (k. K/ K/, £) +k1/¢o,01,k(k.k/,k//. t)

// // ki/k”k”
+kj 110','”(1(,1(/,1(”, £) -kj d)o',',d(k,k/,k//, o -——I-c—/r——- (% 0.1
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~be,0,15) (K K/, K/, £) =- (& (K24 k") +vk/I"} g, x (K, K/, k!, t)
k/’k
o kil
~fBo,0,xtf A —=—Po,0.x (k. K/, K/, £) (6.3.29).

Now, consider the case when both Reynolds and Peclect numbers are

very high, so that the molecular effects are very negligible. From

this consideration, we can put a =v=0 in the equation (6.3.26) and

(6.3.27) and they reduced respectively to the forms:

_aa_t.zp,,e(k,k/, £) =K, Won.0 (k. K/, £) +kWg o1 (K, K/, t) (6.3.30)

and

—éqt?q’e,o,k(k-k/-k”' t) =-K,¥ap,0,x (k. K/, kI, £) kit o1, x (ke K/, K/, £)

k k//k//

—k_;/qlﬂ,ﬂ,k_‘l(k' k/l k//r t) +k_‘{/¢ﬂ.0;kj (k'k/' k//' £)+ k// (‘po 8. x4
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' 1317
~bo,68,75) (K, K/ K/ t) +2€ ik oe,0,5 (ki K/ K/ £) -28 0, k;/—'::__
k. k! k! k!/k{’
-Vo,0,5(k, k7, k1, t) +f(T/Z__-1) Po.o.x (k. k7, k!, )
+fg.9,x (k. K/ K/, t) (6.3.31).

The triple correlation B,B’uk;;=Fe,9'k(x,x/,x//,t) formed of the two

temperature fluctuations relating to the points p and p"and one

velocity component relating to the point p”, and its Fourier

transform g4 , (k,k/,k”,t)is being considered as follows:

when the point p”coincides with the point p or in the alternative
way p coincides with the point p//,_we respectively obtain the

relations

f‘l'e.o,k(krk’rk”' £} =Woy,o (k. k7, £) (6.3.32a)

and

f""ﬂ,o,k(k'k/'k//' t) =V, 0x (K, K/, t) (6.3.32b).
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Let us consider thé

oI (1]

velocity component “l/ at a fourth point

yt) and form the quadruple correlation

i .
00 u,'u, —Fo,o,kll(X.x/,x”,x/”, t).

The Fourier transform of Fp,a , ,(x,x/,x//,x///,t) in wave-number is

usually denoted by 0,0,k,1(k,k/,k’/,k///, £} . The quasi-normality

hypothesis as required may be expressed in wave-number space by the

relation

Vo,0.x.2 Kk k/ K/ K/, ) =g g(k, k!, €)Wy ,(K// K/, E) +q (K, K/ E)

Vo, (K, K7, €) 4, (ke k17, £) g (K7, K/, E) _ (6.3.33).

When p”/coincides with p, the equation (6.3.33) can be written as
Voz,0.x (K, K/, k//, £) =f‘|’e,e(k‘k/”:k/: EY 4y, (K77, K/, £) dk
+fq’0,k(k—k///'k//' t) ve,z(k/-k/”: £) dk/”*"’o,k(k/:k//: £) W, (K, £)

(6.3.34).
Similarly, we obtain

Vo.01.x (k. K/ k!, E) =f"’e,o(k'k/"k”' )W, (k7 k11, €) dk/!

+f¢°,l(k,k///, £) oW, (k7 -K/1/ K/, t) dk/ T 4y 4 (K, K7/, E) g 5 (K7, £)

..... (6.3.35)
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and
Vo.0,k2 (k) K/, K/, £) =f‘l'e.k(k:k”—k”/. E) o,y (K7, K1, £) dic/!!
+f¢9'1(k,k///, £) e x(k,k// -k, t) dk///+¢o,o(k,k/, £) ¢, (K7, t)
..... (6.3.36).

Again when p”/coincides with p and p”also coincides with p/, the

equation (6.3.33) becomes

Vorox (k. k/, £) =[ [We o (k=K/11  K/-K!!, £) ¥, (K1 Kt/ , &) dlic! k! !

+ff%,k(k—k”/,k//, £) 9o 4 (kI-K/ k11, £) dk// k! +pg, (K, £) Yoy (K/ , £)

..... (6.3.37)
Now, taking 6/6t of equation (6.3.30), we have
P o ok, k7, £) =k O o ok k!, £) 4k -2 W o, (K, K, £) (6.3.38).
atz .0 ’ ! nat 6én, 0 ’ r 1 at 9,01 4 !

Now, we have from the relations (6.3.31) to (6.3.37)

';E""’“"’(k'k/' £) =~k1/”[w,,,,(k//—k///,k/—k//, £y e, (k! K/, £)

+¥y (k, k', t) ve'n(k_k///,k//, t) dk//dk///—kl/llrﬂ‘n(k, k1, ) Yo, (k/, £)
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[k [f"’e-O_F’i:k”'k’v E) W, o (k77 K17, ) A/ [y Kk-K// K/, )
Vo, (K K £) dic! ! vpg (K, K17 €) g, (K, €)1 ! - [ [ ¢ (k, K, )
Ay (K17, 6) + g, o (ko K=K/ €) g, 5 (K, K/, £) dic! 14 [ 4 (K, K17, )

W, (k! K/ -k!7, £) dk/!] dk/’+fkj [dp.0 (k. K/, )&y (K//, £)

+ [, e, /=K1 £) g5 (K, K/, £) Ak + [y, s U, K7 )

k//k//k//

.o, n K/, K/ —k!1 | £)dk!!) dk”f o

[¥o,0(k, K/, YU 4K/, )

+f||'a,r(k,k//-k/”, t) ¥y, 4 (k, k77, t) dk//ufq,” (k, k', t)

k//k/k /

o, (K/ K=K/, £) dk!!!] dk”f 7

g0tk k7, )b (K, £)
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+ o, ke, K71/, £) | (K, 111, ) dk/!1+ [ 5 ke, K/17, 1)

b, ¢ (K, K/ -k ) d/ 1] dk! 42600 aPay,0(K, K/, £)

k{'k}

Vay,0 (K, K/, £) +£{RBy, o (k, k/, ) 414y, ok, k/, £)} (6.3.39),

where,

ki kek!
K/?

and

'
2 Vo 01 (K, K, £) ==Ky [ e 0 (k=K1 , k=K1, €)@, , (K K, )

+¥g. (k-k/!!,kk!/, t) . 'I’o,n(k“k//'k///' t)] dk”dk///—knlllo,n(k,k”, £)

oy (el €)= [KL U [Wo,0 (K, e/ =K/, ) (K K11 £ /!4 [y, (K, K177, )

e o (k-k/! K/, £y dk/! sy (K, k7, ) g (K7, £)] dk”-fk,{’we,e(k.k’, t)
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(K, E) +f!lle,1(k.k’/—k”’, t) ¥, , (k, k!, £) dk///+f¢o Lk, K/, £)
o, 1 (K, K-k, £) dk!!/] dk//+ fk;’ [do,0 (K, K/, )& ,, (K, t)

+ [0, 1 Ue k1K1, £) g o U, K111, £ di!11 s [$y, (K, kI, )

{/kf/ kg

k
b0, 1 (e, K~k £) i/} k! + [ = [[Wo,. (k. K//-K!!1, £) ¥, (K, K/, 1)

+ f Vo o (K, k1, t) Yy (K, k! -k, ) dk/!+§q o (K, K/, E) Y (k' t) ] dk//

348 4 74

o [b,0 (K K/, €) & o (k' £) + [, (o k/1-K/11 , £) g (K, k1, £) b

+[ 0,0 e, K/, €) b, , (e, Kl =K/, £) AR AR =28 110 e 00 (K K )

k! Ky’ .
“E 2 Yo 0s(kik’, €) +E{RPg gy (k. K/ )+ o) (K, k7, )} (6.3.40).

-2e ©
mal m k,/:
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Weih the help of equations (6.3.39) and (6.3.40), equation (6.3.38)

can be written as

&
—a"t:_'i"l’ﬂ.ﬁ(k, k/, t) =-2knk_{ff[\rela(k_k///'k/_k//’ £) ¢, n, 1 (k! , k!, £)

Vo, 1 (k=K1 K1, €)Wy, o k! k1 £) 1 dic! i -2k Jel g, e, K/ /4 £) oy (K

"fknk:[f'l’o,e(k“k//rk/' t) "’n,c(k'k/”r t) dk///
+[Wo,a (k=K1 K/, E) ¥q, K/, K1, £ dk/1/ 4414, (K, K/, €) g, (K7, £) 1 dlic!/

_fk{kg [f%,e.(k, K/-k!, ey, K ) dk+f\l!a,s(k.k’”: £)

Yo 1 (k-k/!, k7. E) dk/'l/”l'o,l (k/, K/, t) Wos(k/r t)1dk//

/!
/"

‘fknkj//{am" } [f‘l’e,z(k' K/ -k, t) -'l'e,j(kr_k/”l t) dk’///

+f‘p0,j(k:k///l t) we‘z(k: k//"k///r t) dk///'*we'e(k, k/l t)‘l’.rj (k//p t) ] dk

+ £k, (RPoy o (ki k7, £) +¥g, o (K, k!, £) } +k{ Ry o1 (K, k7, £) +¥g o1 (K, K/, £) } ]

..... (6.3.41).
This is the required early period decay -equation {for the

temperature spectrum te'a(k,k’,t) in presence of dust particles in

a rotating system.



6.4 CONCLUSION

The last term of the right hand side of the equation (6.3.41)

occurs only for the dust particles in the thermal decay process of
MHD turbulence. The nineth and tenth terms of the ~ - .. right side

of equation (6.3.41) occur only for the rotation in the thermal

decay process of MHD turbulence. These two terms display the effect

of coriolis force on the thermal decay process. The sixth and eighth
terms of right hand side of the equation show the effect of

magnetic field. If the dust particles is absent the derived result

is reduced to that obtained early by sarker [55].

If the system is non rotating, the coriolis force will be absent

and derived result is reduced to that obtained by Sinha [57].
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