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PREFACE 
The thesis entitled "Analytical Investigations in Turbulent and l\1HD 

Turbulent Flow" is being presented for the award of the degree of Doctor of 

Philosophy in Mathematics. It is the outcome of my research conducted in the 

Department of Mathematics, Rajshahi University during the year 1994-1998 under 

the guidance of Dr. M. Shamsul Alam Sarker, Department of :Mathematics, 

Rajshahi University, Rajshahi-6205, Bangladesh. 

The whole tl1esis has been divided into six chapters. The first is an introductory 

chapter and gives the general idea of turbulence, magnetohydrodynamic turbulence 

and its principal concepts. Throughout the work we have considered the flow of 

fluids to be isotropic and homogeneous. The notions generally adopted are those 

used by Batchelor, Chandrasekhar and Deissler in their research papers. Number 

inside brackets [ ] refer to the references which are arranged alphabetical at the end 

of the thesis. 

In the second chapter, we have derived the equation for the rate of change of 

magnetic field covariance in MHD turbulent flow. The result shows that the 

defining scalars of the magnetic field covariance depend on the defining scalar Hof 

two point magnetic field correlation. 

In the third chapter, the decay of turbulence at times before the final period in 

presence of dust particles is studied. Two and three point correlation equation is 

used to obtain a relation for the triple correlations and the equation is made 

detenninate by neglecting the quadruple correlations. Finally, we obtained the 

energy decay law of dusty fluid turbulence before the final period. 

In the fourth chapter, we have studied the decay of dusty fluid MHD turbulence 

before the final period. Three point correlation equation is used to obtain a relation 

for the triple correlations applicable at times before the final period. In this case the 

equation is made detenninate by neglecting the quadruple correlations. Finally, we 

obtain the energy decay law of dusty fluid MHD turbulence at times before the 

final period. 



In the fifth chapter, the decay of temperature fluctuation in a homogeneous MHD 

turbulence before the final period has been studied. We considered the two and 

three point correlation equations and solved them after neglecting the fout1h order 

correlations in comparison with the second and third order correlations. Finally, the 

energy decay law of temperature fluctuation of MHD turbulence has been · 

obtained. 

In the sixth chapter, we have studied the thermal decay process of MHD turbulent 

flow in a rotating system in presence of dust particles. An early period decay 

equation for convective MI-ID turbulent flow in a rotating system at high Reynolds 

and Peclect number is used. The region where the variations of mean temperature, 

mean velocity and mean magnetic field is considered may be neglected because the 

transportation of the thermal energy from place to place is very rapid. 

The following research papers which are extracted :from this thesis have either been 

accepted for publication or communicated in different journals. 

(1) Magnetic field covariance in magnetohydrodynamic turbulent flow.(Accepted 

in the Jour. Rajshahi Univ. Studies (1996)) 

(2) Decay of turbulence before the final period in presence dust particles. (Accepted 

in the Jour, Rajshahi Univ. Studies (1997)) 

(3) Decay of dusty fluid magnetohydrodynamic turbulence before the final period. 

(Communicated for publication) 

( 4) Decay of temperature fluctuations in magnetohydrodyna.mic turbulence before 

the final period.(Communicated for publication) 

Department of Mathematics 
Rajshahi University 
Rajshahi-6205 
BANGLADESH 

Mo\ -~~~ koJiman 
(Md.Lutfor ~an) 
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CHAPTER.-1 

INTRODUCTION 

1.1 TURBULENCE AND ITS BACKGROUND 

The not ion of t urbu 1 ence is genera 11 y accepted nowadays, and, 

broadly speaking, its meaning is understood, at least by technical 

people. Yet it is curious to note that the meaning of the word 

"turbulent" to characterize a certain type .of flow, namely the 

counter part of stream line motion. According to webster's "New 

international Dictionary"turbulence means : agitation, commotion, 

disturbance ....... In 1883 the first systematic experimental 

investigations of t urbu 1 ent flow were made by Osborne Reyno 1 ds 

[51]. In his classical experiments, Reynolds used glass tube with 

flowing water from a reservoir and observed the flow pattern by 

injecting a thin stream of dye into the main stream. If the 

velocity of the water is sufficiently low, the coloured filament of 

dye remains straight and parallel to the walls of the tube which 

indicates that the flow is steady. Again if the velocity is 

increased beyond a certain value, the coloured filament begins to 

oscillate and finally loses i .ts identity and diffuses through the 

tube. The first type of flow is clearly laminar and the second type 

of flow is called turbulent. The essential characteristic of 

turbulent flow is that the turbulent fluctuations are random in 
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nature. In 1937, Taylor and Von Karman [62] gave the following 

definition "Turbulence is an irregular motion which in general 

makes its appearance in fluids, gaseous or liquid, when they flow 

past solid surfaces or even when neighbouring streams of the same 

fluid flow past or over one another". According to this definition, 

the flow has satisfy the condition of irregularity. Indeed, this 

irregularity is a very important feature. Because of irregularity 

it is impossible to describe the motion in all details as a 

function of time and space co-ordinates. But, fortunately, 

turbulent motion is irregular in the sense that it is possible to 

describe it by laws of probability. It appears possible to indicate 

distinct average values of various quantities, such as velocity, 

pressure, temperature etc., and this is very important. Therefore 

it is not sufficient just to say that turbulence is an irregular 

motion. Yet we don't have a clearcut definition of turbulence. This 

is rather difficult. In his book "Turbulence" Hinze [24] suggests 

"Turbulent fluid motion is an irregular condition of flow in which 

variation with time and space coordinates, so that statistically 

distinct average values can be discerned". The addition "with time 

and space coordinates " is necessary ; it is not sufficient to 

define turbulent motion as irregular in time alone. According to 

the definition suggested by Taylor and Von Karman [62], turbulence 

can be generated by fluid flow past solid surfaces or by the flow 

of layers of fluids at different velocities past or over one 

another. 
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The definition above indicates that there are two distinct types of 

turbulence : 

(i) Turbulence generated by the viscous effect due to the presence 

of a solid wall is designated by wall turbulence ; (2) Turbulence, 

in the absence of a wall,generated by the flow of layers of fluids 

at different velocities is called free turbulence. Turbulent flow 

through conduits and past bodies are examples of wall turbulence, 

and turbulent jet mixing regions and wakes fall into the category 

of free turbulence. In the previous discussion we have mentioned 

that Reynolds used a dye experiment to investigate the 

circumstances of the transition from laminar to turbulent flow. 

Based on his experime~tal results Reynolds concluded that 

transition from laminar to turbulent flow in pipes always occurred 

at nearly the same Reynolds number. The approximate value of the 

critical Reynolds number, Rcr at which the laminar regime breaks 

down was established to be the order of 2xl03. Later, with 

Reynolds, apparatus, Ekman was able to maintain laminar flow up to 

a critical Reynolds number of 4xl04 when the testing conditions 

were made extremely free from disturbances. This suggested that the 

upper limit of the critical Reynolds number depends very strongly 

on the initial disturbance as it increase with the decrease of the 

disturbance in the flow. In spite of the uncertainty of the upper 

limit of the critical Reynolds number, there exists a lower limit 

for a critical Reynolds number below which the flow always remains 

laminar. For flow through a circular pipe with smooth walls this 

lower critical Renolds number is established as being approximately 
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2xl03. This led one to believe that laminar flow was stable for an 

infinitesimal disturbance, and transition occurred as a result of 

an external disturbance of finite magnitude. The critical Reynolds 

number which we · have just discussed has considerable practical 

significance in connection with the origin of turbulence. The 

origin of the idea of statistical approach to the problem of 

turbulence may be traced back to Taylor's paper of 1921 (60] in 

which he has advanced the concept of the lagrangian correlation 

coefficient that provides a theoretical basis for turbulent 

diffusion. The most important work done by Taylor (61] is that he 

gave up the old theories of turbulence based on the Kinetic theory 

of gases and introduces the idea that the velocity of the fluid in 

turbulent motion is a random continuous function of position and 

time. He introduced the concept of correlation between the 

velocities at two points. To make the turbulent motion amenable to 

mathematical treatment, he assumed the turbulent fluid to be 

homogeneous and i sot ropi c. In its support, he des er i bed the 

measurements showing that the turbulence generated down stream from 

a regular array of rods in a wind tunnel is approximately 

homogeneous and isotropic. Inspite of the fact that the turbulence 

in nature is not always exactly homogeneous and isotropic, it is 

essential to study homogeneous and isotropic turbulence as a first 

step to understand the more complicated phenomenon of non­

homogeneous turbulence. 
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In the following, instead of giving a detailed account of the 

historical development of the subject, we shall confine to mere 

concepts and method of turbulence together with a few theories of 

turbulence which have been used in the subsequent chapters . 

1.2 METHOD OF TAKING AVERAGES 

To describe a turbulent motion quantitativel'i1,it is necessary to 

introduce the motion of scale of turbulence; a certain scale in 

time and a certain scale in space. In the mathematical description 

of turbulent flow it is convenient to consider an instantaneous 

velocity component ui is generally written as 

(1.2.1), 

where u1 is the ith component of the total fluid velocity, u1 is 

the i th mean velocity component and u{ is the i th component of 

fluctuating velocity. In taking the average of a turbulent 

quantity, the result depends not only on the scale used but also on 

the method of averaging. In practice, four different methods of 

averaging [47] have been used to obtain the mean value of a 

turbulent quantity (such as velocity, density etc). 

If the turbulent flow field is quasi-steady or stationary random, 

averaging with respect to time can be used. In the case of 

homogeneous turbulence flow field, averaging with respect to space 
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can be considered. If the flow field is steady and homogeneous, 

space-time average is used. Lastly, if the flow field is neither 

steady nor homogeneous, we assume that an average is taken over a 

large number of experiments that have the same initial and boundary 

conditions. We then speak of an ensemble average. 

The methods of averaging are: 

1.2(a): Time average in which we~ take the average at a fixed point 

in space over a long ~period of time, i.e. 

' 
[ u (x, t)] t=lim~.__!_f Tu (x, s) ds 

2T -T 
(1.2.2). 

In practice, the value of the period 2T is determined by the scale 

used in the averaging process. 

1 . 2(b): Space average in which we take the average over all the 

space at given time, i.e., 

(1.2.3). 

In practice the volume of space v8 is determined by the scale used 

in averaging process. 

1.2(c): Space-time average in which we take the average over a long 

period of time and over the space, i.e., 

. 1 LT( [ u (x, t) ] s, t=LimT-v--• 
2 

TV: J, u ( s, y) dsdy 
B -T Va 

(1.2.4). 
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In practice both the values of T and of v8 are determined by the 

scale used. 

1.2(d}: Statistical average in which we take the average over the 

whole collection of sample turbulent functions for a fixed point 

space and at a fixed time, i.e., 

Over the whole Q -space of (a) , the random parameter. The measure 

is 

(1.2.6). 

Some ex p l an at i on s are neg 1 e c t e d for t ·he s t a t i s t i ca 1 ave rage . The 

essential characteristic of the turbulent motion is that the 

turbulent fluctuations are random in nature. A turbulent velocity 

field can be regarded as a random vector field of a set of vectors 

in space and time. Any random vector field can be regarded as a 

field consisting of three random scalar fields as its components. 

A random scalar function u(x,t, <a> )is a function of the spatial co-

ordinates x and time t, which depends on a parameter (a). The 

parameter (a) is chosen at random according to some probability law 
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in a space. In the experimental investigation we use time averages 

almost exclusively, space averages seldom and never statistical 

averages. In the theory, we use almost exclusively the statistical 

averages. 

1.3 REYNOLD'S RULES OF AVERAGE 

Osborne Reynolds [51] was the first to introduce elementary 

statistical motions into the consideration of turbulent flow. In 

the theoretical investigations of turbulence, he assumed that the 

instantaneous fluid velocity satisfies the Navier-Stokes equations 

motion for a viscous incompressible fluid and that the 

instantaneous velocity may be separated into a mean velocity and a 

turbulent fluctuating velocity. Thus, the physical quantities 

characterizing the flow field are written as 

(1.3.1). 

Here the quantities with bar denote the mean values and those with 

primes are fluctuations. Furthermore 

In order to develop the rule of averaging, consider three arbitrary 

statistically dependent physical quantities, A, B and C, each 

consisting of a mean and a fluctuating part, i.e., 

A=A+A1, B=B+B1, e=c+c1 (1.3.2). 
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Then 

(1.3.3). 

In the above relations we used the properties that the average of 

the sum is equal to the sum of the averages and the average of a 

constant times Bis equal to the constant times the average of B. 

Next 

AB=AB+A7B 7 (1.3.4). 

Consequently 

AB=A.B=A.B (1.3.5). 

Note that the average of a product is not equal to the product of 

the averages, terms such as A/Bl are called "correlation". 

For the product of three quantities, we have 

(1.3.6). 

Also, it can be shown that 

(1.3 . 7) 

and 

(1.3.8). 
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1.4 REYNOLD'S EQUATIONS AND REYNOLD'S STRESS 

It is assumed here that the fluids show Newtonian behaviour and 

that their flows are solutions of the equation of conservation of 

mass and of the Navier-Stokes equations of motion, satisfying 

prescribed boundary and initial conditions. The turbulent flows 

from a special class of such solutions, in which the dependent 

variables such as velocity, pressure and density are not unique 

functions of the space and time co-ordinates but must be described 

by probability laws {randomness of the motion). In turbulent flow, 

we usually assume that instantaneous velocity components satisfy 

the Navier-Stokes equations, 

au 1 -a+ (U. V) U=F--Vp+vV2U 
t p 

{1 . 4.1). 

In tensor form the equation {1.4.1) can be written as 

{1.4 . 2). 

Substituting the expressions for the instantaneous velocity 

components u1~u1+u{ into the Navier-Stokes equation (1.4.2) for an 

incompressible fluid after neglecting the body forces and taking 

the mean values of these equations according to Reynolds rule of 

averag ing {1 . 3.1)-(1.3.5), we have the following Reynolds equation 

of motion for the turbulent flow of an incompressible fluid: 
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where i and j run from 1 to 3 and Einstein's summation convection 

is used. The bar represents the mean value and the prime represents 

the turbulent fluctuation. Additional terms over the 

~ Navier-Stokes equations are due to Reynolds stress are -pu1 and the 

''c·J) eddy stresses are -pu1 uj l.~ , where J is the density of the 

fluid. These stresses represent the rate of transfer of momentum 

across the corresponding surfaces because of turbulent velocity 

fluctuations. 

The solutions of Reynolds equation will be represents properly the 

turbulent flow. In general the Reynolds equations are not 

sufficient to determine the unknown variables ui' uj (i,j=l,2,3),p 

and Reynold stresses. This is one of the main difficulties in the 

theoretical investigation of turbulent flow. 

In similar way, Reynolds equation of motion for the turbulent flow 

of a compressible fluid may be obtained . But the expressions for 

the eddy stresses (Reynold stresses)of compressible fluid are much 

more complicated because the fluctuations of density should be 

considered. 

Rajshahi University Libr;11r)· 
Oocurnt'111 ; t1<111 5e..:1i1)n 

n~),:u; ;;:.: ,:1 Nu ... l.:./JJ4 
D .. t e .. .. . I.I.:./.~: .. <).') ..• , 
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As in the case of the Navier-Stokes equations, it is not at the 

present time possible to solve the Reynolds equations for any 

pra~tical flow problem. Addition assumptions and hypothesis are 

necessary to simplify these equations, in order to obtain some 

approximate solutions for important practical cases. 

1.5 CORRELATION FUNCTION 

In 1935, in a most important series of papers, G. I.Taylor (61] 

introduced new notions into the study of the statistical theory of 

turbulence. Taylor successfully developed a statistical theory of 

turbulence which is applicable to continuous movements and which 

satisfies the equation of motion . 

The first important new notion was that of studying the 

correlation, or coefficient of correlation between two fluctuating 

quantities in turbulent flow. In his theory, Taylor makes much use 

of the correlation between the components of the fluctuations at 

neighbouring points. Denote the components of the fluctuating 

velocity at one point P by ul'u2 ,u3 and at another point pl 

by u{,u{,uf. The correlation function between any of the ui and u/ 

where i,j=l,2 or 3, defined as 

(1.5.1), 

where the bar denotes the average by certain process. 
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Sometimes it is convenient to use the correlation coefficient such 

as 

By Cauchy inequality, we have 

hence 

1-<R,, <1 - IJ-

(1.5.2). 

(1.5.3), 

(1.5.4). 

If we consider u1u1 as the velocity components in a flow field, the 

correlation of equation (1.5.1) is a tensor of rank two. By a 

different process of averaging we obtain different kinds of 

correlation functions. If we consider u1 and uj as the velocity 

components at a given point in space, u1 and uj are functions of 

time; hence, we should take the time average in equation (1.5.1) to 

get the correlation function p 1j. 

If we consider u1 and u1 as the velocity components at a given time, 

u1 and uj are functions of space co-ordinates x(x1 ,x2 ,x3 ) ; hence, 

we should take the space average in equation to get the correlation 

function. 
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More generally if we consider u, and u, as functions of both time 
I J 

t and spatial co-ordinates x(x1 ,x2 ,x3 ) , we obtain take a space-time 

average in equation (1.5.1) to get the correlation function. 

The correlation function between the components of the fluctuating 

velocity at the same time at two different points of the fluid, 

first introduced by G. I. Taylor (61], has been investigated 

extensively in the isotropic turbulence. 

The correlation function between two the fluctuating velocity 

components at the same point and at the same time gives the 

Reynolds stress. The correlation function between two fluctuating 

quantities may also be defined in a manner similar to above. 

1.6 ISOTROPIC AND HOMOGENEOUS TURBULENCE 

Isotropic turbulence is the simplest type of turbulence,since no 

preference for any specific direction and a minimum number of 

quantities and relation are required to describe its structure and 

behaviour. However, it is also a hypothetical type of turbulence, 

because no actual turbulent flow shows true isotropy, though 

conditions may be made such that isotropy is more or less closely 

approached. 

From theoretical considerations and experimental evidence it is 

known that the fine structure of most actual non-isotropic 

turbulent flows is nearly isotropic (local isotropy). Hence many 

features of isotropic turbulence may apply to phenomena in actual 

turbulence that are determined mainly by the fine-scale structure, 

where local isotropy prevails. 
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In isotropic turbulence the mean value of any function of the 

velocity components and their space derivatives is unaltered by any 

rotation or reflection of the axes of references. Thus, in 

particular, u2 =v2 =w3 and uv=uw=vw=O . 

Isotropy introduces a great simplicity into the calculations. The 

study of isotropic turbulence may also be of practical importance, 

since far from solid boundaries it has been observed that 

-2 7 7 
U 1 , u2 , u3 tend to become equal to one another, e.g. in the 

natural winds at a sufficient height above the ground and in a pipe 

flow near the axis. 

Another simple type of turbulence is homogeneous turbulence. It is 

defined as the turbulence having quantitatively the same structure 

in all parts of the flow. field. In a homogeneous turbulent flow 

field the statistical characteristics are invariant for any 

translation in the space occupied by the fluid. 

The conception of homogeneous turbulence is idealized, in that 

there is no known method of realizing such a motion exactly. The 

various methods of producing turbulent motion in a laboratory or in 

nature all involve discrimination between different parts of the 

fluid, so that the average properties of the motion depend on 

position. However, in certain circumstances this departure from 

exact independence of position can be made very small, and it is 

possible to get a close approximation to homogeneous turbulence. 
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Most of the t heore ti ca 1 works in t urbu 1 ence and MHD turbulence 

concern homogeneous and isotropic field in an incompressible flu i d 

at rest. 

1.7 SPECTRAL REPRESENTATION OF THE TURBULENCE 

Theoretical treatment of the turbulence is merely related to the 

solutions of the Navier-Stokes equations. These equations, however, 

contain more unknowns than the number of equations and therefore 

additional assumptions must be made. This is known as the ''closure 

problem" . An alternative approach is based on the spectral form of 

the dynamic Navier-Stokes equation. The spectral form of the 

turbulence is still under-determined, but it has a simple physical 

interpretation and is more convenient. The spectral approach is, 

however, almost exclusively used for the description of 

homogeneous turbulence [45, 46]. The principal concepts of spectral 

representation in the study of turbulence are described below: 

If we neglect the body · forces from the Navier-stokes equation 

(1.4 . 1) and multiply the xi-component of Navier-stokes equation 

written for the point p by u/, adding and taking the ensemble 

average we get 

(1.7.1). 
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Since in the homogeneous turbulence, the statistical quantities are 

independent of position in space and considering the points p and 

p1separated by a distance vector rand applying the laws of spatial 

covariance, a simplified form of equation (1.7.1) is obtained as 

(1.7.2). 

The not suitable for direct analysis of 

quantitative estimate of the turbulent flows and it is better to 

use the three dimensional Fourier transforms of u1u§ with respect 

tor. The variable that corresponds tor in the three dimensional 

wave-number space is vector k= (k1 ,k2 ,k3 ) • We define the wave-number 

spectral density as 

4>1j(k)= 1 fu 1uJexp(-ik.z)dz 
(21t)3 . 
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It can be shown that if u1uj has a continuous range of wave-length, 

tij(k) has a continuous distribution in wave number space. We can 

the contribution of the 

elementary volume dk1dk2dk3 (centred at wave-number k and therefore 

representing a wave-number of length 21t in the 
1kf 

direction of the 

vector k ) to the value of U1.uf hence the name "spectral density". 

This is consistent with the behaviour of the inverse transform 

(1.7.4). 

The one dimensional wave-number spectrum of u1.uJ for a wave-number 

component in the x 1 direction is 

(1.7.5), 

whose inverse is 

(1.7.6). 
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The equation (1.7.2) for unstrained homogeneous turbulence becomes 

on Fourier transforming 

:t =r J.j (k) +niJ (k) -2vkJcf> iJ (k) , 

where rand n transforms of the triple product and pressure terms 

respectively. 

1.8 FOURIER TRANSFORMATION OF THE NAVIER-STOKES EQUATIONS 

The pr inc i pa 1 reason for using Fourier transforms is that they 

convert differential operators into multipliers. The equations are 

so complicated in configuration (or co-ordinate) space that very 

little can be done with them and the transformation to wave-number 

(or Fourier) space simplifies them very considerably. 

Another and more mathematical argument shows that these transforms 

are right method of treating a homogeneous problem. 

Associated with any correlation function cl>(x,xl) is a sequence of 

eigen functions cl>(n,x) and their associated eigen-values l(n). 

These quantities satisfy the eigen-value equation 

(1.8.1) 
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and the ortho-normalization relation 

=1 if m=n 

=O otherwise 

These equations imply that 4> is a vector. Actually it is a tensor 

of order two, but this complicates the argument without introducing 

anything essentially new. The index n , is in general, a complex 

variable and w• denotes the complex conjugate of 1J (strictly, 

w• is the adjoint of 11J, but since 4> is real and symmetric the 

adjoint is simply the complex conjugate). The integrations in 

equations (1.8.1) and (1.8.2) are over all space, which may be 

finite or infinite . If the space is finite, n is usually an 

infinite but countable sequence, while if space is infinite , n 

will be a continuous all have real eigen-values. It follows from 

(1.8.1) and (1.8.2) that 

4> (x, xi) =L 1 (n) 1iJ (n, x) •• (n, xi) 
n 

(1.8.3) 

and this is the diagonal representation of the correlation function 

in terms of its eigenfunctions.Evidently these functions are only 

defined "within a phase" that is ;- a factor exp (iY) can be added 

to ... (.n,x) without alt~ring 4>(x,x1) provided Y is real and 
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independent of x. For a homogeneous field,~ is a function of x-x/ 

only, and the problem is to find eigen functions which are also 

homogeneous within a phase, in the sense that 

V (n, x) =exp ( i Y) v (n, x+a) . 

The equation is satisfied by the Fourier function, 

with Y=-n,a. In this instance,therefore, "the index" n is a wave­

number equation (1.8.3) becomes, 

~ (x, xi)= LA. (n) exp {in (x-xl)} 

so that l(n) may be identified with $(n), the Fourier transform of 

correlation function. 

Si nee we are considering homogeneous i sot rop i c t urbu 1 ence, the 

tu r bu 1 enc e f i e 1 d mus t be inf in i t e in extent. This produces 

mathematical difficulties which can only be resolved by using 

functional calculus. This difficulty is avoided by supposing that 

the turbulence is confined to the inside of a large box with 

sides (a
1
,a2 ,a3 ) and that it obeys cyclic boundary conditions on the 

sides of this box. The a 1 are allowed to tend to infinity at an 

appropriate point in the analysis. Thus the Fourier transform is 
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(1.8.4). 

Here, k is linlited to wave vectors of the form 

2n11t 2n21t 2n31t 
,--,--

al a2 a3 

where the ni are integers while the ai are, as before, the sides of 

the elementary box. As these sides become infinitely large, 

equation (1.8.4) goes over into the standard form, 

(1.8.5). 

The inverse of (1.8.5) is 

(1.8.6). 

The Fourier transforms of the Navier-Stokes equation may be written 

as 

(1.8.7), 

where Eis a short notation for the integral operator in 



where 6k'ptr is the kronekar delta symbol which is zero unless 

k=p+r 

Here, Mijm is a symple algebraic operator. We have 

where, 

and 

pij(k)is the Fourier transforms of Pjj ( V )but pijm(k)is not 

the transforms of Pjjml V ) . 
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As it stands, equation (1.8.7) can not describe stationary 

turbulence. Since it contains no input of energy to balance the 

dissipative effect of viscosity. In real life this input is 

provided by effects, such as the interaction of the Reynolds 

stress, which are incomparable with the ideas of homogeneity and 
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isotropy. To avoid this difficulty, we introduce into the right -

hand side of equation (1.8.7} a hypothetical homogeneous isotropic 

stirring force fi. The equation then reads, 

1.9 MAGNETOHYDRODYNAMIC TURBULENCE 

The study of magnetohydrodynamic turbulence, i.e. the study of the 

interaction between a magnetic field and the turbulent motions of 

an electrically-conducting fluid, was first undertaken in 

connection with the implied existence of an interstellar magnetic 

field. The interaction between the velocity and magnetic fields 

results in a transfer of energy between the kinetic and magnetic 

spectra, and it is thought that the interstellar magnetic field is 

maintained by a "dynamo" action from turbulence in the interstellar 

gas. 

Modern applications of magnetohydrodynamics in the field of 

propulsion, nuclear fission, and electrical power generation make 

the problem of magnetohydrodynamic turbulence one of considerable 

interest to engineers, since turbulence phenomena seem to be 

inherent in almost all types of flow problems. 

It is generally supposed that in a medium of high electrical 

conductivity turbulence will give rise to a spontaneous generatio~ 

of magnetic fields; that in the course of time these fields will be 

amplified; and that in an eventual equilibrium state the energy per 

unit volume in the magnetic field and in the velocity field will 

approach equality. 
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In drawing these conclusions one argues qualitatively interms of 

a picture, first extensively used by Alfven, that in a medium of 

high electrical conductivity the lines of magnetic force tend to be 

attached to the matter. They will, therefore, be dragged about in 

all directions by the random turbulent motions. In this manner an 

initial stray magnetic field will be amplified. This process of 

amplification will be checked when the prevailing magnetic field 

has increased to a certain strength; for, if the magnetic field is 

sufficiently strong it will prevent its further increase by 

suppressing the turbulent motions . In an equilibrium state, the 

amplification of the magnetic field by the turbulent motions and 

the suppression of the motions by the magnetic field will balance 

each other and one may expect that an equipartition between the two 

forms of energy will result. It is on such a picture that Fermi 

[18] postulated intestillar magnetic fields as a basis for his 

theory of the origin of the cosmic rays. But so far this picture 

has never been incorporated in a quantitative theory of 

hydromagnetic t urbu 1 ence-even a heuristic theory of the type of 

Heisenberg's [22, 23] in ordinary hydrodynamics. 

Here the theory of turbulence in an incompressible, viscous and 

electrically conducting fluid is formulated probabilistically 

through the use of the joint characteristics functional and the 

calculus. The use of the joint characteristics functional approach 

relies upon the fact that velocity and magnetic fields are both 

solenoidal, and, hence, in the probabilistic sense, are jointly 

distributed over the phase space consisting of the set of all 
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solenoidal vector fields. The formulation of the problem in phase 

space is completely carried out. The full space time functional 

formulation of the problem as developed by Lewis and Kraichnan (40] 

for "ordinary" t urbu 1 ence is ext ended to magne tohydrodynami c 

turbulence. This approach enables us to generate space time 

correlations between the velocity and magnetic field components 

rather than merely spatial correlations as were used in the 

original Hopf [25] Presentation. Dynamical equation for various 

order space-time correlation between velocity and magnetic field 

component are derived from the joint characteristic functional by 

its expansion in a Taylor series. 

The concept of kolomogroff's (31] equilibrium hypothesis for 

ordinary turbulence are extended to magneto-hydrodynamic 

turbulence. The problem of predicting the form of the energy 

spectrum in the equilibrium range is taken up. 

The fundamental equation of magnetohydrodynamics 

incompressible fluid are 

aou + ( u. V) u=-..!. Vp+ p 9 E+J! jxH+vV2u+F 
t p p p 

V. u=O 

k aE V 4 • --= xH- TtJ 
Cot 

for an 

(1.9.1), 

(1.9.2), 

(1.9.3), 



~ aH =-VxE 
Cat 

V.H=O 

J=o (cE+µ 6 UXH) +p e~ 
C 

27 · 

(1.9.4), 

(1.9.5), 

(1.9.6), 

where u is the velocity vector; F is the body force; P, the 

pressure; 1, the fluid density; p
6 

, electric charge; E, the 

electric field strength; µ, the magnetic permeability; J, the 

electric current density; H, the magnetic field strength; v, the 

kinematic viscosity; k, the di-electric constant; c, the velocity 

of light; cr, the electrical conductivity; V, 
operator, and t is the time. 

the gradient 

When conductivity cr of the fluid tends to infinity the electric 

field strength E, at each point must tend to the value 11 uxH, 
C 

otherwise the current j given by equation (1.9.6) will become very 

large even when the slightest mass motions are present.Hence when 

cr is large we may assume that, 

E=-µ uxH 
C 

a rotation which will be increasingly valid as 6-®. 

(1.9.7), 
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An important consequence of re lat ion ( 1. 9. 7) is that under the 

circumstances in which this is a good approximation the energy in 

the electric field is of the order of _@f of the energy in the 
c2 

magnetic field and can therefore be neglected. Consequently in this 

approximation which is known as the approximation of magneto-

hydrodynamics. We have to consider only the interaction between the 

two fields u and IL In the magneto-hydrodynamics approximation, 

Maxwell equation (1.9.3) becomes, 

1 J=-VxH 
4n 

(1.9.8). 

In the frame work of the approximations (1.9.7) and (1.9.8), the 

Navier-Stokes equations are modified to take into account the 

electromagnetic body force (assuming that there is no body 

force F) and equation (1 . 9.1) becomes 

~u + (u. V) u=___l!_ (VxH) xH-~Vp+vV2u 
vt 4np p 

(1.9.9). 

Again, in the approximation (1.9.7), Maxwell equation (1.9.4) 

becomes 

oH -=Vx(uxH) at (1.9.10). 

In a higher approximation in which the loss of energy by joule heat 

is allowed for equation (1.9.10) is modified to [3] . 

~~ =Vx ( uxH) +A V2H ( 1 • 9 . 1 1 ) , 

where l= (4ttµo) -1 • 
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The magnetic field intensity His a solenoidal vector; and in an 

incompressible fluid .the velocity u is also a solenoidal vector, 

when we use this property of u and II, equations {1.9.9) and 

(1.9.11) can be written in the forms [2] as 

(1.9.12) 

and 

{1.9.13). 

Equation (1.9.12) and (1.9.13) from the basis of Batchelor's 

discussion [3]. Chandrasekhar [7] extended the invariant theory of 

turbulence to the case of magneto-hydrodynamics. He introduced the 

new variable h=~ µ H 
41tp 

for II which has the dimensions of a 

velocity known as Alfven velocity. Interms of h, equations 

(1.9.12) and (1.9.13) can be 

written as 

or 

(1.9.14) 



and 

or 

where, 
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(1.9.15), 

P = P +..! 1h1 2 is the tot al MHD pressure and l= (4ttµo) - 1 is the 
n p 2 

magnetic diffusivity. 

Chandrasekhar [10,11] in his theory, consider the correlations 

between u and h at two points p and p1in the field of isotropic 

turbulence in the same manner as in ordinary turbulence. Here, we 

have the double correlations, u1u],h1h],u1h{ and triple correlations 

where the subscripts refer to the components of the vectors 

i , j , k= 1 , 2 , 3 . 

Each of these double and triple correl~tions depends on one scalar 

function in the case of isotr~pic turbulence because the divergence 

of both u and his zero. 

Equations (1.9.14) and (1.9.15) are derived by coupling Maxwell's 

equations for the electromagnetic field and the Navier-Stokes 

equations for the velocity field. The Maxwell equations are 

modified to include the induced electric field due to the fluid 

motion,and the Navier-Stokes equations are modified to include the 



31 

Lorentz force on fluid elements due to the magnetic field. The so­

cal led "Magnetohydrodynamic approximation" is made, in which 

displacement currents are neglected in Maxwell' equations. This 

approximation is well-founded provided we are not dealing with very 

rapid oscillations of the electromagnetic field quantities, as is 

the case in the propagation of electromagnetic waves. Under this 

approximation, the energy in the electric field is of the order 

of 1 times the energy in the magnetic field, where c is the speed 
c2 

of light and hence may be neglected. Therefore, we have only to 

consider the interaction between the velocity field u and the 

magnetic field h. 

1. 10 DECAY OF TURBULENCE BEFORE THE FINAL PERIOD 

The energy spectrum at very small wave numbers suffers very little 

modulation during the whole of the decay process. On the other 

hand, the energy in higher wave-numbers of the spectrum is being 

rapidly dissipated by viscosity, and it follows that ultimately the 

big eddies wi 11 supply most of the remaining energy of the 

turbulence. If we choose the current time t as any instant after 

this ultimate state has been reached, we have the opportunity of 

formulating a decay problem in which the initial form of the 

spectrum (or, rather, the relevant part of it) can be prescribed 

This would not by itself make a tractable problem, but the 

assumption already made, that the decay is in an advanced stage, 

suggests that we might suppose with consistency that the turbulent 
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velocities are so small as to make inertia forces negligible. On 

this basis the dynamical equation is linear, and we are able to get 

a complete solution of the decay of the turbulence at very large 

times after its formation. It happens that this final period of 

decay occurs at decay times which are within the reach of 

measurements in a wind-tunnel stream, and it has been possible to 

obtain valuable information about what, in the initial stages of 

decay, were the biggest eddies. 

In the final period the inertia terms (triple correlations) in the 

two-point correlation equation obtained from the momentum and 

continuity equations can be neglected because the Renolds number of 

the eddies is small, and a solution can be obtained. However, at 

earlier times the inertia terms in the two-point correlation 

equation can not be neglected, so that in order to obtain a 

solution, an intuitive assumption is generally introduced to relate 

the triple correlations to the double correlations. The situation 

in homogeneous turbulence is therefore analogous to that in 

turbulent shear flow where intuitive assumptions have been 

introduced to relate the Reynolds stress or the eddy diffusivity to 

the mean f 1 ow; alt hough one case of homogeneous t urbu 1 ence, the 

turbulence in the final period, has been solved without 

introducing intuitive hypotheses where as those analysis aided 

greatly in unifying much of the information on turbulent flow and 

in clarifying some of the physical aspects of turbulence, they do 

not, of course, constitute deductive theories based on the momentum 

and continuity equations. 

It should be possible to predict the turbulent decay at times 

before the final period from the momentum and continuity equations. 

If the initial distribution of velocities and pressures is known, 
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the momentum and continuity equations could be used numerically to 

predict the distributions a short time later. However it appears 

that because of the small size in the calculations would have to be 

extremely small. 

A better plan may be to construct, from the momentum and continuity 

equations, equations involving correlations between velocities and 

pressures at more than two points. Then, for instance, in the 

three-point correlation equation, one neglects the quadruple 

correlations and obtain's an equation for the triple correlations 

which should be applicable before the final period . In the final 

period the triple correlations are of course negligible.Using the 

expressions for the triple correlations so obtained, the two-point 

equation can be solved and the various quantities describing the 

turbulence at times before the final period can be obtained. Higher 

order approximations, valid at still earlier times, can be obtained 

in the same way by constructing four or five point correlations. 

Each time the set of equations is made determinate by neglecting 

the highest order correlation. 



CHAPrrER- 2 

MAGNETIC FIELD COVARIANCE 

TURBULENT FLO-W 

2.1 INTRODUCTION 

IN MI-ID 

The main characteristic of the turbulent flow is that turbulent 

fluctuations are random in nature and the statistical property of 

a random variable may be described by the correlation function.It 

is generally supposed that in a medium of high electrical 

conductivity turbulence will give rise to a spontaneous generation 

of magnetic fields ; that in the course of time these fields will 

be amplified; and that in an eventual equilibrium state the energy 

per unit volume in the magnetic field. Taylor [61) studied the 

correlation or coefficient of correlation between two fluctuating 

quantities in · turbulent flow. Batchelor [4] determined an 

expression for acceleration covariance of the two particles at two 

different points x and x1 provided that turbulence is isotropic and 

homogeneous. Jain [28) derived expression for pressure fluctuation 

and acceleration covariance by using Chandrasekhar's (11] theory of 

turbulence in turbulent medium which is isotropic homogeneous in 

space and stationary in time. Kishore and Sinha (33) studied the 

rate of change of vorticity covariance in ordinary turbulence. 

Kishore and Sarker (35] also studied the rate of change of 

vorticity covariance in MHD turbulence. 
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The main purpose of this chapter is to derive an equation for the 

rate of change of magnetic field covariance in MHD turbulent flow. 

Finally, we have shown the analogy between vorticity covariance in 

ordinary turbulent flow with the magnetic field covariance in MHD 

turbulent flow. 

2.2 MATHEMATICAL MODEL OF THE PROBLEM 

The induction equation of MHD turbulent flow is 

where 

l=(41tµo)-I =magnetic diffusivity 

ui(x,t)=component of turbulent velocity 

hi(x,t)=component of magnetic field 

µ=magnetic permeability 

cr=electric conductivity 

(2.2.1), 

The equation (2 . 2 . 1) is the ith component of the induction equation 

for MHD turbulent flow. Now, a similar equation for the jth 

component is 

(2.2.2). 
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Multiplying equation (2.2.1) by h/ and equation (2.2 . 2) by hi' we 

get 

( 2 . 2 . 3 ) 

and 

(2.2.4). 

Adding equations (2.2.3) and (2 . 2.4), we obtain 

(2.2.5). 

For an incompressible fluid, we have 

(2.2.6). 

Using equation (2.2.6) in equation (2.2.5), we get 

(2.2.7) . 
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Taking ensemble average in equation (2.2 . 7), we have 

(2.2.8). 

For condition of homogeneity (J.O. Hinze [24] ), we use 

and 

in equation (2.2.8), we have 

(2 . 2.9) . 

Putting the following correlation tensors as (Chandrasekhar [11] ) 

(2.2 . 10) 

and substituting in equation (2.2.9), we get 



38 

or 

or 

(2.2.11). 

The tensor Hij are clearly symmetrical and solenoidal in their 

indices. Therefore, it can be expressed as [8] 

(2 . 2.12), 

where, 

r=l~.1cl and H(r,t) is the defining scaler of the tensor Hij• In 

equation (2 . 2.12) primes attached to scaler function such as H 

denote the differentiation with respect tor. Therefore, 

(2.2 . 13). 

Substituting equation (2.2.13) in equation (2.2.11), we have 

(2.2.14). 

Since hihj being an isotropic tensor of the second order depending 

on rand t, therefore, it can be expressed as 

(2 . 2.15), 
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which implies that 

(2. 2.16). 

Now comparing equations (2.2.16) and (2.2.14) the expressions 

for ;tu(r,t) and JtJ.Hr,t) are found as 

(2.2.17), 

(2.2.18). 

Thus with the help of the above two independent scaler equations 

(2.2.17) and (2.2.18), the rate of change of magnetic field 

covariance for MHD turbulent flow can be determined from the 

equation (2.2.16). 

2.3 CONCLUSION 

According to Ferraro and Plumpton [19) we know that the 

vorticity of a fluid is analogous to the magnetic field H. Kishore 

and Sinha [33) studied the vorticity covariance for ordinary 

turbulent flow and they obtained the equations 

a olll oll ol 
-U (r, t) =2Y (--+4--4-) ot I r 2 r 3 

(2.3.1) 
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and 

a 0 1 -P (r, t) =-2v (r()lll+6Qll+4-) ot I 
(2.3.2), 

where, Q(r,t) is the defining scaler of the tensor 01j=6> 16>~. Thus 

we observed that the equation (2.2.17) and (2.2.18) for magnetic 

field covariance are analogous to the equations (2.3.1) and (2.3.2) 

of the vorticity covariance for turbulent flow obtained earlier by 

Kishore and Sinha (33]. 



CHAPTER.-.3 

DECAY OF TURBULENCE BEFORE "1..'HE 

FINAL PERIOD IN PRESENCE OF DUST 

PARTICLES 

.3 - 1 INTRODUCTION 

In the final period of decay, the inertia terms (triple 

correlations) in the two~point correlation equation obtained from 

the momentum and the continuity equations can be neglected because 

the Reynolds number of the turbulent motion is low enough. 

Batchelor and Townsend [1] studied the decay of turbulence in the 

final period and they neglected the inertia terms(three point 

correlation) from the equation of motion. Deissler [15] developed 

a theory "Decay of homogeneous turbulence for times before the 

final period". In his paper, he considered two and three point 

correlation terms and neglecting fourth and higher order 

correlation terms. Using Deissler's theory Kumar and Patel [36] 

studied the first order reactant in homogeneous turbulence before 

the final period for the case of multipoint and single time 

correlation. Saffman [52] derived an equation that describe the 

motion of a fluid containing small dust particles. 

In this chapter, we have studied the decay of turbulence in 

presence of dust particles at times before the final period. 



3.2 CORRELATION AND SPECTRAL EQUATIONS 

The equations of motion of turbulent flow in presence of dust 

particles for the points p and pl separated by the vector rare 
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(3.2.1) 

and 

where, 

ui(x,t) =component of turbulent velocity 

p(x,t)=hydrodynamic pressure 

xi=space co-ordinate 

v=kinematic viscosity 

(3.2 . 2), 

vi=component of the fluctuating velocity of dust particles 

N=number density of dust particles 

f=density of the fluid 

K=stock resistance. 

Multiplying equation (3.2.1) by u/ and equation (3 . 2 . 2) by ui, we 

respectively have 

I au I o ( u u ) Uj/ iJip / a2u1 / 
u --1 +u 1 Jc • - ---+vu ......... __,.----+fu (v -u ) 

j at j axk p OX1 j OXJrPXk j 1 1 ( 3 • 2 . 3 ) 
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and 

(3.2.4), 

where, 

f=KN/f has the dimension of the frequency. 

Adding (3.2.3) and (3 . 2.4) and taking the space or time averages, 

we get 

(3.2.5) . 

By use of 

equation (3.2.5) can be written as 

(3.2.6). 

Now we write equation (3.2 . 6) in spectral form in order to reduce 

it to an ordinary differential equation because of the physical 

significance of the spectral quantities. For this, we use 
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three- dimensional Fourier transforms defined as ~ollows: 

(3 . 2.7), 

(3.2 . 8), 

(3.2.9), 

and 

(3.2.10), 

where k is known as a wave number vector and dk=dk1 dk2 dk3. 

From equation (3.2.8), we have 

Interchanging the subscripts i and j and then interchanging the 

points P and pl give 

(3.2.Sa) 

similarly, 

u pl (r) =pu
1 
(-r) =f-.A.v11 (-k) exp (ik.r) dk 

i --
(3.2.9a) 

and 

(3.2.l0a). 



Substituting equat· ( ions 3.2.7), (3.2.8), (3.2.8a), 

<3 · 2 · 9a), (3.2.10) and (3.2.l0a) into (3.2.6) we get 

45 

(3.2.9), 

(3.2.11). 

The tensor equat1·on (3 2 11) b 1 t' b . . ecomes a sea er equa 1On y 

contraction of the indices i and j 

(3.2.12). 

The pressure terms drop out of equation (3.2.12) because of the 

continuity relation 

OU.1 auf 
--=--=O 
OX.1 axf 

The first term on the right hand side of equation (3.2.12) is 

called energy transfer term and the second term comes out for dusty 

fluid. In the present investigation it is proposed to obtain an 

expression for the transfer term applicable at times before the 

final period in presence of dust particles from the three point 

correlation. To obtain the three- point equation, we consider the 

equation of motion of turbulent flow in presence of dust particles 

at points P, pl, and p// as 
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( 3 . 2. 1 2a) , 

(3.2.12b) 

and 

(3 . 2 . 13). 

Multiplying (3.2.12a) by ufuf, (3.2.12b) by u1uf and (3.2.13) 

the three equations and taking space or time 

averages, we obtain 

(3 . 2.14). 

Using the transformations 
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and 

into equation (3.2.14), we get 

_E_u ulu71- ;j I 77 a I 77 o 7 77 I o I 77 /. iJt 1 j Jc OI U1UjUJc Ui---1 U1UjUJc u1+-
0 

U1UjUJc U1+--
1 

U1 UjUJc U1 
l OI1 I1 OI1 

(3.2.15). 

In order to convert equation (3.2.15) to spectral form, we can 

define the following six dimensional Fourier transforms: 

. . . . . ( 3 . 2 . 1 7 ) , 

puJ {r) uf/ (rf) = J_J:«P~ (k) P1 (k1). exp [i (k. r+k1 . r 1 ) J dk. dJcf (3.2.18) 
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and 

By using the method used in obtaining equation (3.2.8a), the 

following relations result from equations (3.2 . 17), {3.2.18) and 

(3.2.19): 

.exp[i(k.r+klxl)]dkdkl {3.2.17a), 

{3.2.17b), 

where the points P and p/ are interchanged to obtain equation 

{ 3 . 2 . 1 7 a ) . For obtain in g . { 3 . 2 . 1 7 b ) P is rep 1 aced by pl , pl i s 

replaced by pl/, and pl/ is replaced by P. 

Similarly, 

{3.2.18a), 
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(J.2.19a), 

(J.2.19b), 

(3.2.19c). 

Substituting the preceding relations into equation (3.2.15), we get 

d A pl All 2 (k2 k kl k/2) A Af All [ • (k k'> A A Al A77 dt t' 1 jt' k + V + 1 1 + t' it' jt' Jc= .l 1+ 1 t' it' lt' jt' k . 

( 3 • 2. 20) . 

The tensor equation (J.2.20) can be converted to a scaler equation 

by contraction of the indexes i and j and inner multiplication by 
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(3.2.21). 

To obtain a relation between the terms on the right hand side of 

equation {3.2.21) derived from the quadruple correlation terms, 

pressure terms and the dust particle term in equation {3.2.15), 

take the divergence of the equation of motion and combine with the 

continuity equation to give 

(3.2.22). 

Multiplying the equation {3.2.22) by u/u/1, taking space or time 

averages and writing the resulting equation in terms of the 

independent variables rand r 1, give 
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-f(_E_+_E._) (v1u ul'-u u1ull) ar !l / i "' i 1 k 
i uI1 

(3.2.23). 

The Fourier transform of equation (3.2.23) is 

- 'f (k k') ( n.7 nil p pl pll) 1. 1+ i Y it" it-' k - i i k 

-l:.cxp 
1
p'f = (k1k1+k{k1+k1kj_+k{k{) P 1P 1P71P1-if(k1+k{) (y 1P71P'i-P 1P71P1: 

P k 2+2k1k{+kl2 

(3.2.24). 

Equation (3.2.24) can be used to eliminate the quantities 

nl pll nl ( k kl) nil t at"i .t,«t"i - - t"k , e c., from equation (3.2.21). 

3.3 SOLUTION FOR TIMES BEFORE THE FINAL PERIOD. 

To obtain the equation for final period of decay the third order 

correlation terms are neglected compared to the second order 
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correlation terms. Analogously, it would be possible to obtain a 

solution for times before the final period of decay by neglecting 

the fourth order correlation terms in comparison with third order 

correlation terms. If this assumption is made, all the fourth order 

correlation terms in the right side of equation (3.2.24) should be 

neglected. Thus from (3.2.21) and (3.2.24) we obtain 

(3.3.1), 

where, 

and 

also M, Rand Sare arbitrary constants. 

Integrating the equation (3.3.1) between t
0 

and t to give 

(3.3.2), 

where 9 is the angle between k and~-

Now, by letting r/=o in equation (3.2.16) and comparing with 

equations (3.2.8) and (3.2.8a) we obtains 
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(3.3.3), 

Substituting the equations (3.3,2), (3.3.3) and (3.3.4) in equation 

(3.2.12) we have 

(3.3.5), 

where dk=dk/dk/dk/ is written interms of k/ and 8 (cf. Deissler 

[15])as dk1=-21tk/2d(cos8)dk/ ..... (3.3.6). 

In order to find the solution completely and following Loeffler and 

Deissler [3], we assume that 

(3.3.7), 

where p
0 

is a constant determined by the initial conditions. 

Substituting the equation (3.3.7) in equation (3.3.S) and 

completing the integration with respect to cos8, we have 

:t (21tk2"11"171) +2vk2 (21tk2"11"171) =- 2v (~~to) fo• (ksk/7 -k1 kls) 

( 3 . 3 . 8 ) 
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or 

( 3 . 3 . 9 ) , 

where, E=21tk2 1J, 11J,11 is the energy spectrum function and Wis the 

energy transfer term given by 

( 3. 3. 10). 

Integrating equation (3.3.10) with respect to kl, we get 

W=-~ 1t ~exp [- 3 +Mf( t-t0 )] • [105 k
6 

+45 k
5 

2 256 2vk2 ( t- t
0

) 9 7 
( t- to) 2 ( t- to) 2 

k10 k12 
-19-----3----1 

5 3 
( 3 . 3 . 1 1 ) . 

(t-to) 2 (t-to) 2 

The series of equation (3.3.11) contains only even power of k. 

It is interesting to note that 

(3.3.12). 

This indicates that the conditions of continuity and homogeneity 

are maintained. 
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The linear equation (3.3.9) can be solved to give 

E=exp [-2vk2 
( t- t 0 )] f exp [2vk2 ( t- t

0
)] Wdt+c(k) exp [-2vk2 ( t- t 0 )] 

...... (3.,3.13), 

\"here C(k) -- (jok') · d b b t . d ~ 1s a constant of integration an can e o a1ne 
31t 

following corrsin [12]. 

Substituting the values of W from equation (3.3.11) in equation 

(3.3.13) and integrating with respect tot, we get 

. k' v'i"P 
E=l....E__exp [-2vk2 ( t-t

0
)] - 1t O exp [- 3 +Mf( t-t

0
)] 

31t 256v 2vk2v ( t- t
0

) 

. [ ___ 15_{'£~2_k_6_ 

7 7 

V 2 ( t- to) 2 

12&k8 7.f?:k10 
--~----+---'----+ 5 5 3 3 

v 2 (t-t0 ) 2 3v 2 (t-t0 ) 2 

16gk12 - 32k13 F((A)) J 
1 1 3 

3V 2 (t-t0 ) 2 

• • • • . ( 3 • 3 • 1 4 ) , 

where , 

By setting r=O, j=i, dk=-2~k2d(cos8)dk and 

in equation (3.2.7). We get energy decay as 

(3.3.15). 
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SubS t ituting equation (3.3.14) into (3.3.15) and after integration, 
we have the energy decay law 

--7~ -~ 5 
U1U1 j 0v 2 ( t-t) - 2 
-2- = r,r;-;-o +exp (Mf ( t- t

0
)} xO. 2296 p 

0
v 8 ( t- t

0
) - 7 • 

32y.c.7t 

Thus, the energy decay law of velocity fluctuation before the final 

period in presence of dust particle may be written as 

5 

u2=A ( t- t 0 ) -
2 +B ( t- t

0
) - 7 exp {Mf ( t- t

0
) } (3.3.16), 

where u 2 is the mean square of the velocity fluctuation, t is the 

time, and t 0 are constants determined 

by the initial conditions. 

3.4 CONCLUSION 

By neglecting the fourth order correlation terms in the three point 

correlation equations, results applicable to the turbulence in 

presence of dust particles before the final period of decay were 

obtained.For clean fluid, i.e. in absence of dust particles we put 

f=O, the equation (3 . 3.16) becomes 

5 

u2 =A(t-t
0
)- 2 +B(t-t0 )-7 , 

which was obtained earlier by Deissler [15]. -At large time the 

results reduced to those for the final period. 



CHAPTER-4 

DECAY OF DUSTY FLUID MHD 

TURBULENCE BEFORE THE FINAL 

PERIOD 

4.1 INTRODUCTION 

Saffman [52] observed the effect of dust partitles on the stability 

of the laminar flow of an incompressible fluid with constant mass 

concentration of dust particles and gave an equation which 

described the motion of a fluid containing small dust particles. It 

is a great interest of the behavior of dust particles in turbulent 

flow to many branches of science and technology, particularly if 

there is a substantial difference in density between the particles 

and the fluid. The behavior of dust particles in turbulent flow 

depends on the concentration of the particles and the size of the 

particles with respect to the scale of turbulent flow. Deissler 

[15] developed a theory "Decay of homogeneous turbulence for times 

before the final period". In his paper, he considered two and three 

point correlation equations and neglecting fourth and higher order 

correlation terms. Using Deissler's theory Kumar and Patel (36] 

studied the" first order reactants in homogeneous turbulent flow 

before the final period" for the case of multipoint and single time 

correlation. Loeffler and Deissler (39] studied the decay of 

temperature fluctuation in homogeneous turbulence before the final 
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period . In their approach they considered the two and three point 

correlation equations and solved these equations after neglecting 

the fourth and higher order correlation terms. Following Deissler's 

approach Sarker and Kishore [54] also studied the decay of MHD 

turbulence before the final period. 

In this chapter, we studied the decay of dusty fluid magneto­

hydrodynamic turbulence before the final period. This is the 

extension work of Sarker and Kishore [54]. The energy decay law for 

magnetic field fluctuation of dusty fluid MHD turbulence before the 

3 
final period is in the form h2-A(t-t

0
)-2 +B(t-t

0
)-5 .exp{Rf(t-t

0
)} , 

where 1h2 1 denotes the total energy, t is the time, A,B,t0 and Rare 

constants and f=KN/' has the dimension of frequency. 

4.2 TWO POINT CORRELATION AND SPECTRAL EQUATIONS. 

The induction equation of a magnetic field at the point P and 

P1separated by the vector rare 

(4.2.1) 

and 

(4.2.2), 



where, 

u1(x,t)=turbulent velocity, 

hi(x,t)=magnetic field fluctuation, 

V l =magnetic pr and t 1 number, 

v =kinematic viscosity, 

1 =magnetic diffusivity. 
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Multiplying equation (4.2.1) by h/and (4.2.2) by hi, adding and 

taking ensemble average, we get 

=....!.. ( a2~ + ;p~) 
p N OX },;OX Jc OXiOXk 

Using the transformations, 

and the relations (cf.Chandrasekhar[B]) 

h hi h /hi u,_. .. 1 1 •- 1Uk j 

and 

(4.2.3). 
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(4.2.4). 

Now, we write equation (4.2.4) in spectral form by use of the three 

dimensional Fourier transforms 

(4.2.5), 

(4.2.6). 

Interchanging the subscripts i and j and then interchanging the 

points P and pf, we have 

(4.2.7). 

Putting (4.2.5), (4.2.6) and (4.2.7) into equation (4.2.4), we get 

(4.2.8) . 

The tensor equation (4.2 . 8) becomes a scaler equation by 

contraction of the indices i and j 

(4.2.9). 

The term on the right side of equation (4.2.9) is called energy 

transfer term while the second term on the left hand side is the 

dissipation term. 
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4.3 THREE POINT CORRELATION AND EQUATIONS 

The momentum equation of MHD turbulence in presence of dust 

particles at the point P and the induction equations of magnetic 

field fluctuation at p/ and p II as 

and 

where, 

W= P+..!lnl2 =total MHD pressure, 
p 2 

p(x,t)=hydrodynamic pressure, 

,=fluid density, 

K =stock resistance, 

N =number density 0 f dust particles. 

(4.3.1), 

(4.3.2) 

(4.3.3), 

Of t he fluctuating velocity of dust particles. v=component 



Multiplying the equation (4.3.1) by h
1
hJ', h i/ (4.3.2) by U1 J 
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,and 

(4.3.3) by u1hi , adding three equations and taking space or time 

averages, we obtain 

< h h i/ . hJhll) + f v1 1 J - u 1 1 J 

where, 

f=KN/f has the dimension of the frequency. 

Substituting the relations 

and 

(4.3.4). 
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into equation (4. 3 .. 4 ), we get 

+ _a_
1 

_(_u_1_u~f-r-h-iT""h-i.,.,l-) + ::la -(-wh-
1 
..... 7 l-1§-7-) + _E__-(-wh---i h-i-77-) 

axle vI1 ari 

(4.3.5). 

Now, we write equation (4.3.5) in spectral form in order to reduce 

it to an ordinary differential equation and because of the physical 

significance of spectral quantities. For this, we use six 

dimensional Fourier transforms: 

. . . . . ( 4 . 3 . 6 ) , 

u ul(r)hi(r)hj7(rl)=f•r•, 1,~(k)P~(k)PJ'(k1) .exp[i(k.r+k1 .r1)]dkdk 1 le _.J __ 

. . . . . ( 4 . 3 . 7 ) , 
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..... (4.3.8), 

Whi (r) h/ (rl) =f_j_:YP11 (k) pj (kl) . exp [i (k. r+kl. zl)) dkdkl ( 4. 3. 9), 

(4.3.11) 

and 

Interchanging of points p/and pl/ along with the indices i and j, 

result in the relations 

U U 77h/lhl -u ulhlhll 1 k j 1- 1 k 1 j 

and 

By use of these facts and relations (4.3.6)-(4.3 . 12), we can write 

equation (4.3.5) in the form 

d -~-rY . ;2 , 1r irl] .._ pl pll _.._ nl nll +...!- [ (l+P ) k 2+ (l+P11) k +2Pr,.~k .., 1 1 j 
dt 'f' it' 1P 1 P,, JI 

(4.3.13). 



65 

The tensor equation (4 3 
·· ,13) can be converted to the scaler 

equation by contraction of the b su scripts i and j 

( 4. 3. 14). 

If we take the derivative with respect to xi of the momentum 

equation (4.3.1) at P, we obtain 

(4.3.15). 

Multiplying equation (4.3.15) by h/h/1, taking time averages and 

writing the equation in terms of the independent variables rand r1 

we get, 

( 4 . 3 . 1 6 ) . 
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Taking the Fourier transfo f . rms o equation (4.3.16), we get 

(4.3.17). 

Equation (4.3;17) can be used to eliminate yfJ/1 p7J from equation 

( 4 . 3 . 1 3 ) . 

4.4 SOLUTION FOR TIMES BEFORE THE FINAL PERIOD 

To study the decay of MHD dusty fluid turbulence for times before 

the final per.iod, the three point correlation are considered and 

the quadruple correlation are neglected. If this is happened then 

equation (4.3.17) shows that the term yp~p7J associated with the 

pressure correlations,should also be neglected. Thus we have from 

the equation (4.3.14) 

_!i._.,. Af n.11 + [_!_ { (l+p ) (k2 +kl
2

) +2p..,kk1}-Rf] cl> 1P11P'f =O 
dt't'iP1P1 PH II 

(4.4.1), 

where, 

and 
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also Rand Sare arbitrary constants. 

Integrating the equ t · ( a ton 4.4 . 1) be tween t
0 

and t with inner 

mul t ipl icat ion by kk and gives 

(4.4.2), 

where 8 is the angle between k and kl. Now letting r'=o in equation 

(4.3.6) and comparing (4 . 2.6) and (4.2.7), we have 

,.,7 (k) -f_-,1,. Af AlldJcf 
«iVk'f'1 - _,.'+'1P1P1 (4.4.3) 

and 

(4 . 4 . 4). 

substituting equations (4 . 4.2), (4.4.3) and (4.4.4) in equation 

(4.2.9), we get 

• exp [ { _ _!_ [ ( l +p") (k2+k/2
) +2pJcklcos6] +Rf} ( t- t 0 )]dk1 

P11 

(4.4 . 5) . 
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Now, dk1 =dl:f dkl dkl b / 1 2 3 can e expressed in terms of k and 8 (cf .Deiss I er 

[ 15]) as 

(4.4.6) . 

Substituting (4.4.6) to equation (4.4.5) to give 

. . . . . ( 4 . 4 . 7 ) • 

In order to find the solution completely and following Loeffler and 

deissler [3], we assume that 

(4.4.8), 

where ~o is a constant depending on the initial conditions.Putting 

(4.4.8) in equation (4.4.7) and completing the integration with 

respect to cos8, we get 
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(4.4.9). 

Multiplying both sides by k2, we have 

(4.4.10), 

where H=2nk 3 t 1.~(k) is the magnetic energy spectrum function and 

G is the energy transfer term given by 

( 4 • 4 . 1 1 ) . 

equatl· on (4.4.11) with respect to k1, we obtain Integrating 
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5 

J .fit"~~pJ s exp [ {- vk2 { 1+2pH) +Rf} { t-to) 1 
v 1' ( t-to) 2 (l+pH) 1' PH l+p,., 

(4.4.12). 

The series of equation (4.4.12) contains only even power of k. 

It is interesting to note that 

The linear equation (4.4.10) can be solved to give 

+J(k) exp [- 2vk
2 

( t- t 0 ) ] 

P11 

(4.4.13). 

(4.4.14), 

where J(k)=Nok
2 

is a constant of integration and can be obtained 
ff 
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as by Corrsin [12]. Substituting the values of G from equation 

(4.4.12) in equation (4.4.14) and integrating with respect to t,we 

get 

s 

.fit~oPJ exp [ {- vk2 ( 1+2pN) +Rf} ( t-to>] 
1. 1. PN l+pN 

V 2 (l+pH) 2 

+~ (3ptt-2p11+3)
1

kg F(c.))] 
3 s _ 

(l+pH) 2 Pii 
(4.4.15), 

where, 

and 

By setting r=0,dk=21tk2d(cos8)dk and H=21tk2t 11>'
1
1 in equation (4.2.5), 

we get energy decay as 

(4.4.16). 
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substituting equation (4.4.15) into the equation (4.4.16) and after 

integration, we can obtain 

(4 . 4.17), 

where, 

1tp! [ _2__ + Sp11(7 p 11-6) _ 35 p 11(3p;,-2p11+3) 

~ 16 16 (1+2p11) 8 (1+2p11) 2 

(l+pll) (1+2p") 

o= + ••••• ] . 

Thus, the decay law for magnetic energy fluctuat i on before the 

final period in presence of dust particle may be written as 

3 

p,.,A ( t-t0 ) - 2 +B ( t-t0 ) - 5exp {Rf ( t- t
0
)} ( 4. 4. 18), 

where, Ii2 is the mean square of the magnetic field fluctuation, t 

3 3 
NoP 2v -2 

A= H , B=~ ov-6 

8./2 7t 0 
is the time, and t 0 are constants determined by 

the initial conditions . 

4.5 CONCLUSION 

The results of the present study, obtained by neglecting the 

quadruple correlations in the three point correlation equation, 

appear to represent the MHD dusty fluid turbulence for times before 

the final period.For clean fluid, i.e. in absence of dust 
particles, we put f=O, the equation (4.4.18) becomes 

which was obtained earlier by Sarker and Kishore [54]. For large 
times, the last term in the equation becomes negligible,giving the 

-3/2 power decay law for the final period. 



CHAPTER-5 

DECAY OF TEMPERATURE FLUCTUATIONS 

IN MHD TURBULENCE BEFORE THE 

FINAL PERIOD 

5.1 INTRODUCTION 

The problem of the decay of temperature fluctuations in homogeneous 

turbulence would appear to be one of the initial steps required 

for understanding the important process of heat transfer in shear 

turbulence.As pointed out in [12], such a study would also be 

applicable to concentration fluctuations during the mixing of 

equidense fluids, for the case of constant mutual diffusion 

coefficient and no interfacial tension. Deissler [15], the decay of 

homogeneous turbulence before the final period was analyzed by 

utilizing correlation equations for fluctuating quantities at two 

and three points in the fluid. The set of equations was made 

determinate by neglecting the quadruple correlations in the three 

point equation. Corrsin [12,13] has already made an analytical 

attempt on the problem of turbulent temperature fluctuations using 

the approaches employed in the statistical theory of turbulence. 

Loeffler and Deissler [39] presented a theory "Decay of temperature 

fluctuation in homogeneous turbulence before the final period".In 

their approach they considered fourth-order correlation terms are 

n 1 . ·bl d to the third order correlation terms. eg 1g1 e compare 
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Jn this chapter, we also studied the decay of temperature 

fluctuations in magneto hydrodynamics turbulence before the final 

period. Finally energy decay law for temperature field fluctuation 

of MHD turbulence before the final period is obtained. 

5.2 CORRELATION AND SPECTRAL EQUATIONS 

The induction equation of a magnetic field at the point Pis 

and the energy equation at the point pfis 

where, 

u1 =component of turbulent velocity, 

h1 =component of magnetic field, 

PK =v/l=magnetic prandtl number, 

pr=v / y =pr and t 1 number, 

v =kinematic viscosity, 
l =(41tµo)-I= magnetic diffusivity, 

y = k =thermal diffusivity , 
pep 

c =heat capacity at constant pressure, 
p 

xt =space co- ordinate. 

(5.2.1) 

(5.2.2), 
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Mu 1 t i P 1 Y i n g e qua t i on ( 5 . 2 . 1 ) by TJ and ( 5 . 2 . 2 ) by h 1 , add i n g and 

taking ensemble average, we get 

(5.2.3). 

The continuity equation is 

(5.2.4). 

Substituting equation (5.2.4) 
in to equation (S.2.3) yields 

(5.2.5). 
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using the transformation 

and relations (cf. Chandrasekhar [8]) 

equation (5.2.5) becomes 

(5.2.6). 

It is convenient to write this equation in spectral form by use of 

the following three dimensional Fourier transforms 

(S.2.7), 

(5.2.8) 

and since it is obvious by interchanging p and p/that 

(5.2.9). 

Substituting of equation (5.2.7) to (5.2.9) in to equations (5.2.6) 

leads to the spectral equation 
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(5.2.10). 

• . ecomes a sea ar equation y The tensor equation (5 2 10) b 1 · b 

contraction of the indices i and j 

(5 . 2.11). 

5.3 THREE POINT CORRELATION AND EQUATION 

The moment um equation of MHD t urbu 1 ence 
at the point P, the 

induction equation at the point pl and the energy equation at pllas 

(5.3.1), 

(5.3.2) 



and 

arf 11 ar? (. v <Pr" 
-+U,c --= -) j 
at oxf/ Pr oxf/oxf/ 

where, 

W= p +..!. lnl 2 =total MHD pressure and 
p 2 

p(x,t)=hydrodynamic pressure. 

78 

( 5 . 3 . 3 ) , 

Multiplying equation (5.3.1) by h/T/1, (5.3.2)by uiT/1, and {5.3.3) 

by uihi/' adding the equation and taking space or time averages, we 

obtain 

(S.3.4). 

Substituting the relations 
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and 

into equation (5.3.4), we get 

(5.J . 5). 

Six-dimensionil Fourier transforms for quantities in this equation 

may be defined as 
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( 5 . 3 . 7 ) , 

(5.3.8), 

( 5 . 3 . 9 ) , 

( 5 . 3 . 1 1 ) . 

Interchange of points p/ and pl/ along with the indices i and j, 

result in the relations 

By use of these facts and equations (5.3.6) to (5.3 . 11), equation 

(5.3.5) may be transformed to 

. . • • . ( 5 . 3 . 1 2 ) . 
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The tensor equation (5.3.12) can be converted to scalar equation by 
contraction of the indices f and j 

a ... RI 6n) c 1 1 · -a ('l'jtJ'j J. +v (l+-)k2+(1+-)k/2+2k,,.,J ... Rell 
t p 11 Pr k"'k 'I' 1P 1 i 

'k ... .... 1 RI 6n . Ck k1> RI 611 + 1 k'f' .t'I' 1 P k 1 + .1 k + k Y P i i ( 5 . 3 . 1 3 ) . 

If the derivative with respect to xiis taken of the momentum 

equation (5.3.1) for point P, the equation multiplied through 

by h1Tj1 and time average taken, the resulting equation 

(5.3.14) 

or, interms of the displacement vector rand r1 this becomes 

Taking the Fourier transforms of equation (5.3.15), 

Ck k +ki kk+k1kt+k{kt> <♦ A> kr,~e'l-P 1P «P1
18'f) 

-rP118'l= 1 
k 1 1 1 k1k 1+2k1k 1+k1k1 

(5.3 . 15). 

(5.3.16). 

Equation (5.3.16) can be used to eliminate yp~e7] from equation 

(5.3.12). 
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5.4 SOLUTION FOR TIMES BEFORE THE FINAL PERIOD 

It is known that the equation for final period decay is obtained 

by considering the two point correlation terms after neglecting the 

third order correlations. Analogously, . it would be anticipated that 

for times before the final period the fourth-order correlation 

terms should be negligible in comparison with the third order 

terms. If this assumption is made then equation (5.3.16) shows that 

term yp~e'l associated with the pressure fluctuations, should also 

be neglected. Thus, neglecting all the terms on the right hand side 

of equation (5.3.13), we get 

(5.4.1). 

Integrating the equation (5.4.1) between t
0
and t with inner 

multiplication by kkand gives 

I where 8 is the angle between k and k • 

Letting r/=o in equation (5.3.6) and comparing 

(5.2.8) and (5.2.9) we get 

• 1lk-c'1 (k) = i:• 1P'18'f dJcl 

• . . . . ( 5 . 4 . 2 ) , 

with equations 

( 5 • 4 . 3 ) 

(5.4.4). 



substituting equation 

(5.2,11) we get 

( 5 • 4 . 2) , ( 5 . 4. 3) and ( 5 . 4. 4) 
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in equation 

(S.4.5). 

Now dk.1(=dk{dk{dk{) can be expressed interms of k/ and 8(cf.Deissler 

( 15 ] ) as 

dk'=-21tk12d(cos8)dk/ . 

Putting equation (S.4.6) in equation (S.4.5) yields 

+2kklcos8])d{cos8)]dk1 

(S.4.6). 

(5.4 .7 ). 

In order to find the solution completely and following Loeffler and 

Deissler [3], we assume that 

(5.4.8), 

where Po is a constant depending on the initial condition. 
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substituting equation (S.4.8) in equation (S.4.7) and completing 

the integration with respect to cos9, we get 

+ {1+_!_) k 12 +2kk1])] dk1 

Pr 

Multiplying both sides by k2, we have 

where 

and 

( S . 4 . 9 ) . 

(S . 4.10), 

(S.4.11) 

(S.4.12). 
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Integrating equation (5.4.12) with respect to kl, we have 

F=-

. . . . . ( 5 . 4 . 1 3 ) . 

The series of equation (5.4.13) contains only even powers of k and 

start with k4 and the equation represents the transfer function 

arising owing to consideration of magnetic field at three points at 

a ti me. 

It is interesting to note that 

(5.4.14), 

this indicates that the conditions of continuity and homogeneity 

are maintained. Physically, it was to be expected, since F is a 

measure of transfer of energy and the total energy transferred to 

all wave number must be zero. 

The linear equation (5.4.10) can be solved to give 

+C(k)exp[-vk2 (...!..+...!..) (t-to>l 
P11 Pr 

(5.4.15), 
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where C(k)=(N0k
2
)/n is a constant of integration and can be obtained 

as by Corrsin [ISJ. Substituting the values of F from equation 

(S.4.13) in equation (5.4.15) and integrating with respect tot, we 

get 

5 

Q(k, t) = NJc
2 

exp {-vk2 ( ....!..+....!_) ( t- t ) } + v'itP J}/ 
1t PH Pr O 1. 1. 

2v 2 (l+pr) a 

(5.4.16), 

where, 

been calculated numerically and tabulated in The function F(~) has 

set equal to zero and use is made of the [S]. If in equation r is 

Of Q as g iven by equation (5.4.11)~ definition 
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The result is 

-r T T
1 f• _!_= 1 i = O(k)dk 

2 2 0 
(5.4.17). 

substituting equations (5.4.16) in to (5.4.17) and after 

integration, we get 

35p;(3p;-2pr+3) 8pi(3p:-2pr+3) L• 1.3.5 ..... (2n+9) } 

- Spr (l+pr+pH) 2 + 3. 26p: (l+pr+p.N') l • n•o ln (2n+l) 22n(l+pr) n 

or 

( 5. 4. 18), 

where, 

'ltP}Pj 9 + 5pH(7pr-6) _ 35p;(3p:-2pr+3) + •••••••• ] 
5,,,. 5 (16 16 (l+Pr+pN) Bpr (l+pr+pN) 2 

2 (l+pr) (l+pr+p.,,) 
2 
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Thus the energy decay 1 aw for temperature field fluctuation of 

turbulent flow in presence of magnetic field before the final 

period may be written as 

(5.4.19), 

where, 

For large times, the last terms in the equation becomes negligible, 

leaving the -3/2 power de~ay law for the final period. 

5.5 CONCLUSION 

By neglecting the quadruple correlations in the three point 

correlation equation, the results (5.4.19) applicable to the 

temperature fluctuation in MHD turbulence before the final period 

were obtained . If the equation (5.4.10) is integrated with respect 

to k from zero to infinity and use is made of equations (5.4.14) 

and (5.4.17), the resulting equation is 

a T2 1 1 r· 2~'1/ ---=v(-+-)J~ k ~. at 2 PK Pr 0 

This equation points out the interesting fact that for a given 

viscosity and temperature fluctuation spectrum the decay rate is 
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inversely proportional to the Prandtl number. The results of this 

analysis however are not comparable on this basis since the manner 

in which the initial conditions were imposed (equation(5.4 . 8)) 

precludes comparing two different Prandtl number fluids with the 

same spectral curve. However, the results of this analysis do show 

that the decay rate decreases relative to the final period rate 

with increasing Prandtl numbers. Corrsin [12] has previously 

pointed out that for the final period, as well as for self­

preserving and initial spectrums at very large Reynold number, 

temperature fluctuations die out more slowly than velocity 

fluctuations. This analysis indicates that the same is true for 

times before the final period, as can be seen by comparison of 

e q u at i on ( 5 . 4 . 1 9 ) for T" i s an a 1 o go us to t he e qua t i on for u 2 

(equation (38) of (15]). 

In absence of a magnetic field, magnetic prandtl number coincides 

w i t h t he pr and t 1 number ( i . e . pr= pN ) , t hen t he e qua t i on becomes 

which was obtained earlier by Loeffler and Deissler (15]. 



C:i"IAPTER- 6 

'1:-'1-IERMAL DEC AV PROCESS OF MHD 
TURBULEI'•I........ FLOW I 

.IL NA ROTATING 
SYSTEM 

6.1 INTRODUCTION 

IN PRESENCE OF DUST 

PARTICLES 

Turbulent flows are always discipative in nature. Deformation 

occurs as a result of viscous shear stress. This deformation 

increases the thermal energy of the fluid at the cost of kinetic 

energy of turbulence. To compensate for these viscous losses 

turbulence requires a continuous supply of energy. If there is no 

supply of energy turbulence decays rapidly. Saffman (52] observed 

the effect of dust particles on the stability of the laminar flow 

of an incompressible fluid with constant mass concentration of dust 

particles and gave an equation which described the motion of a 

fluid containing small dust particles. Corrsin (13] considered the 

problem of temperature fluctuation is isotropic turbulence. Jain 

(28] studied the temperature fluctuation in turbulence and the 

results so obtained have been compared with those obtained by 

corrsin (12]. By using Millionschikov's hypothesis [43] of 

quasinormality in the fluctuating components of velocities. Ghosh 

(21] obtained a dynamical equation for the early period decay of 

turbulence. Mazumder [42] derived the early-period decay equations 



for genera 1 type of 
turbulence by superimposing a scalar 
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field 

(i,e, temperature) on an incompressible velocity field. The 

approach is phenomenological · th 1n e sense that he has considered 

the region where the vari ti f a ons o the mean temperature and mean 

velocity may be neglected because the transportation of the thermal 

energy from place to place is very rapid. Sinha [57] obtained an 

early-period decay equation for MHD turbulent flow. sarker [55) 

also derived an equation for MHD turbulent flow in a rotating 

system. 

In this chapter we have considered the convective MHD turbulent 

flow in a rotating system in presence of dust particles. The 

coriolis force due to rotation plays an important role in a 

rotating system of turbulent flow. The main object of this chapter 

is to derive an early-period decay equation for MHD turbulent flow 

in presence of dust particles in a rotating system at high Reynolds 

and Peclect numbers. We have considered the region where the 

variations of mean temperature, mean velocity and mean magnetic 

field may be neglected because the transportation of the thermal 

energy from place to place is very rapid. 

6.2 FUNDAMENTAMENTAL EQUATION 

The temperature diffusion equation and the equations of motion and 

continuity for viscous, incompressible and conducting fluids for 

MHD turbulent flow in a rotating system are 

(6.2a), 
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(6.2b), 

(6.2c), 

and 

( 6. 2d) , 

where 

9=temperature field fluctuation, 

K «=-T- =thermal diffusivity, 
pep 

p•=P+_!lhl2 +l<a>xxl2 =generalised pressure inclusive of potential of 
p 2 

centrifugal force, 

ui(x,t)=fluctuating velocity component, 

hi(x,t)=fluctuation of magnetic field. 

<a>m =the component of constant angular velocity of uniform 

rotation, 



E i.:::al ternat ing tensor-
• I ' 

~:::kinematic viscosity, 

~:::magnetic diffusivity, 

~:::thermal conductivity, 
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cp:::specific heat at constant pressure, 

':::fluid density. 

for MHD turbulent flow f d o a usty incompressible fluid, equations 

(2) can be written as 

ae +u o8 =«~8 at n OX X n 

(6.2.1), 

{6.2.2), 

{6.2.3), 

with 

where viis the ith component of the fluctuating velocity of dust 

particles, K is the stock resistance coefficient, N is the number 

density of the dust particles, x={xl'xl'x3)and 
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The thi rd term on the right side of equation (6.2.2) represents the 

coriolis force and fourth term is due to the presence of dust 

particles. 

6.3 DYNAMICAL EQUATION 

To derive the. dynamical equation, we can write an equation, for 

temperature fluctuation 9/ at the point p/(xl,t) similar to (6 . 2.1) 

as 

(6.3.1), 

where, 

and 

Multiplying the equation (4.2.1) by 8' and (6 . 3.1) by 8 , 

adding and taking average we obtain 

then 

If we put the following correlation tensors, 

ee'=Fu,e<x,xl, t) ,8un87=Fen,e<x,x', t) 

and 

(6 . 3.2) . 
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in the equation (6.3; 2 ), we have 

aF. oF. oF. 
~ + 8n,9 + 8,81 -« (~ +'if'Z at oxn oxf - x xi) Fe,e (6.3.3). 

The equation for the veloci'ty fl // // // uctuation uk at the point p (x ,t) 

can be written as 

(6.3.4), 

where X:=f,xll=(x{1,x(l,xf1> and 

Multiplying the equation (6.2.1) by 81uf, (6.3.1) by 8uf and 

(6.3.4) by e&'and then adding and taking averages, we have 

(6.3.5). 
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After using tensor notations 

, equation (6.3 . 5) can be written as 

+ f (Oe, e,1c-Fe,e, .t> (6.3.6), 

where, 

h llh/1601 - ( / II t) P*861 " ( 1 11 t) 1c j - He,&,kj X, X , X , , ece,9,tt X, X , X , 

and 

88/ 77 _ ( / // t) V.t -Oe,e . .t x, x , x , • 

Now taking a 
ax{/ 

of equation (6.3.4) and using the continuity 

condition at pl/ (xii, t), we have 
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_£_ _a_ ( uP u17 -h17 h77) cJ2 p•" au11 av11 
ax11 ox11 j k j =- II - 2 e (A) j +f Jc 

k j oxk O'XJcl/ mjk 111-a II --n 
XJc . OX1c 

(6.3.7). 

Multiplying (6 3 7) b on.I · · Y 'O'U and t ak 1· ng b · averages, we o ta1n 

..... (6.3.8). 

In tensor notation this equation becomes 

_a ___ o_ (F. -U- ) __ cJ2Pe,e,w 2 , (A) oFe,e,j +f oOe,e,1 
a II a II 8,9,kj '-'-6,9, kj - f) Ila II - mjk m a II a II 

XJc X j X1c 'XJc 'XJc 'XJc 
(6.3.9). 

Now we use the Fourier transforms of two point correlations that 

appear in equation (6.3.3) as 

,tr8 8 (k, kl, t) == 1 /JFe 8 (x,xl, t) . exp [i (k.x+k1 .x1)] dxdx' 
' (21t)6 , 

Ven,e<k,kl, t)== i f/Fe 8 (x,x1, t) .exp[i(k.x+k.x1)]dxdxl 6.3.10) . 
(21t)6 n, 

th (k kl t)== i JJFe u<x,xl, t) .exp[i(k.x+kl.xl)]dxdxl 
't'8,81 • , (21t) 6 , 
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Accordingly, the Fourier· 

inverse transforms of the above relations 
are: 

Fen,e (x, xi' t) a-i J J Wen,e (k, k 1, t) . exp [-i'(k.x+kl. xi)] dkdkl 6.3.11). 

It is to be noted that the investigations in (6.3.10) are performed 

over the whole of x,xl -spaces and their respective volume elements 

are dx=dx1dx2 dx3 

and dx/=dx/ctx/dx/. 

Obviously the integrations in (6.3.11) are performed over the whole 

of k,k/-spaces and their respective volume elements are 

and 

dk1=ctk/dk/ctk/. 

Similarly, the Fourier transforms of three-point correlations that 

appear in (6.3.6) can be written as 

.a, (k kl kl/ t)= i fffFee1c<x,x1,xll,t) .exp[i(k.x+kl.xl 
'r8,8,k I , . , (27t)9 , , 

(6.3.12), 
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(6.3.13), 

We,81,k(k,kl,kll,t)=- 1 fffF. ( / // t) ["(k kl I {2n)9 8,81,.l: x,x ,x , .exp .1. .x+ .x 

( 6 . 3 • 1 4 ) , 

(6 . 3.15), 

(6.3 . 16), 

.,. (k kl kl/ t)~ l fffP.88 ~(x,x1,x11,t).exp[i(k.x+kl.xl 
"8,8,1& , , , (27t)9 , , 

(6.3.17), 
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~e,8,k(k,kl,kll,t)= i fffn ( I II kl I (2 1t)g we,e,k x,x ,x , t) .exp[i(k.x+ .x 

( 6 . 3 . 1 8 ) , 

where the integrations appearing in (6.3.12) to (6.3.17) are 

performed over the whole of x,xl,x//,-spaces, and their respective 

volume elements are dx 1dx2dx3' ax/ax/ax/, ax/lax/'ax/1 

The Fourier inverse transform of the above relations are 

( 6 . 3 . 1 9 ) , 

F. (x xi xii t>=fff•"e 8 L(k,kl,k11 ) .exp[-i(k.x+k1.x1 
8n,8,k ' ' ' 'f n, •" 

(6.3.20), 

r:t ( I II t)=ffJ•1r (k,kl,kll,t).exp[-i(k,x+k1.x1 
re,ei,1: X, X , X , 'f8,81,1: 

(6.3.21), 
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(6.3.22), 

(6.3.23), 

(6.3.24), 

and 

06 • 8, 1c, ( x, x 1, xi I, t) .,. J J J Pe, 9 • 1c ( k, k I, k I I, t) exp [ - i ( k. x+ k I • xi 

{6.3.25). 

The integrations appearing in (6.3.19) to (6.3.25) are taken over 

the whole of k,kl,k//_spaces. 

Using the relation (6.3.11) in the equation (6.3.3) we have 

(6.3.26). 
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similarly,with · the help of equations (6.3.19) to (6.3.25), 

equations (6.3.6) and (6.3.9) can be written as 

(6.3.27) 

and 

k llkllkll · r Jc i ( I I I ) kl I (k kl kl I t) 
kl/2 <te,e,JcJ-cf>e,e,.tJ> k, k , k , t =- r 7te,e,,., , , , 

II II kl/kl/ 
kr kJ: I II f r Jc A (k kl kl/ ) 

-2~ :J .. c.> m--=--'--•e 8 i (k, k , k , t) + 2 .,8 8 k , , , t 
m .... k112 ,, kl/ , , 

(6.3.28). 

Substituting (6.3.28) in (6.3.27), we get 
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(6.3.29). 

Now, consider the case when both Reynolds and Peclect numbers are 

very high, so that the molecular effects are very negligible. From 

this consideration, we can put u =v=o in the equation (6.3 . 26) and 

(6.3.27) and they reduced respectively to the forms: 

(6.3.30) 

and 
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The triple correlation 8,8luJ/=Fe,e,1c<x,xl,xll, t) formed of the two 

temperature fluctuations relating to the points p and p1and one 

velocity component relating to the point pl/, and its Fourier 

transform te.e,k (k,k/,k//,t)is being considered as follows: 

when the point pl/coincides with the point p or in the alternative 

way p coincides with the point pl/, . we respectively obtain the 

relations 

(6.3.32a) 

and 

(6.3.32b). 



Let us consider the velocity component ul at 
I 

Ill Ill 
p (x ,t) and form the quadruple correlation 

08/u llu 17==-F. (x xi xii xiii t) Jc l 8,8,k, l , , , , ■ 
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a fourth point 

The Fourier transform of Fe,e,1:,i(x,xl,xll,xlll,t) in wave-number is 

usually denoted by 8,8,k,l(k,kl,kll,klll,t) . The quasi-normality 

hypothesis as required may be expressed in wave-number space by the 

relation 

(6.3.33). 

When p///coincides with p, the equation (6.3.33) can be written as 

(6.3.34). 

Similarly, we obtain 

. .... ( 6. 3. 35) 
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and 

.. . .. ( 6 . 3. 36) . 

Again when p///coincides with p and pl/also coincides with pl, the 

equation (6.3 . 33) becomes 

. . . . . ( 6 . 3 . 3 7 ) . 

Now, taking 6/6t of equation (6 . 3.30), we have 

(6.3.38). 

Now , we have from the relations (6.3.31) to (6 : 3.37) 

+ttt,l (k, kl/I, t) t&,n (k-klll I kll I t) dJcll dJclll _k/'i'e,n (k, kl/I, t) 'i'ei (kl, t) 
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. •nJ (kll, t) + J 1"e,n (k, kll-klll, t) te,J (k, kl/I' t) dk_//1 + f te,J (k, kl/I, t) 
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where, 

and 
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Wtih the help of equations (6.3.39) and (6.3.40), equation (6.3.38) 

can be written as 

+ J We,j (k, klll, t) We,r (k, kll-klll, t) dJclll +te,e (k, kl, t) V ri (kll, t)] dk 

. . . . . ( 6 . 3 . 4 1 ) . 

This is the required early period decay equation for the 

temperature spectrum ♦9, 9 (k,kl,t) in presence of dust particles in 

a rotating system. 
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6.4 CONCLUSION 

The last term of the right hand side of the equation (6.3.41) 

occurs only for the dust particles in the thermal decay process of 

MHD turbulence. The nineth and tenth terms of the · ___ ., right side 

of equation (6.3.41) occur only for the rotation in the thermal 

decay process of MHD turbulence. These two terms display the effect 

of coriolis force on the thermal decay process. The sixth and eighth 

terms of right hand side of the equation show the effect of 

magnetic field. If the dust particles is absent the derived result 

is reduced to that obtained early by sarker [55] . 

If the system is non rotating, the coriolis force will be absent 

and derived result is reduced to that obtained by Sinha [57]. 
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