dc.description.abstract |
Heat transfer in enclosure in which the influence of free (natural) and forced
convection (mixed convection) are of comparable magnitude occurs frequently in
engineering situations. The applications include the heat transfer improvement in
heat exchanger devices, design of solar collectors, thermal design of building, air
conditioning, cooling of electronic circuit boards, lubrication technologies, chemical
processing equipment etc. Convection in ventilated enclosures containing obstruction
has gained recent research significance as a means of heat transfer enhancement. The
mathematical model of the present problem is governed by the couple equations of
conservation of mass, momentum and energy. Discretization of the governing
equations is achieved using a finite element scheme based on the Galerkin weighted
residuals method. Then Newton–Raphson iterative algorithm is used to obtain the
solutions of the obtained algebraic equations. Comparisons with previously
established on particular cases of the problem are performed and the results show
excellent agreement.
Firstly, for mixed convection flow the effect of inlet and outlet position of a square
ventilated enclosure with a centered heat generating solid body has been investigated.
The bottom wall of the enclosure is kept at a uniform constant temperature, while the
rest three walls of the enclosure are assumed adiabatic. A transverse uniform
magnetic field is imposed in the horizontal direction normal to the right vertical wall.
An external flow enters the cavity through an inlet opening whereas it exits via
another outlet opening.
After that, the effect of pertinent parameters in the considered flow problem in this
thesis was analyzed for three different types of internal cavity solid body (heat
generating, heat conducting, adiabatic) for a selected BT (bottom inlet and top outlet)
configuration.
Obtained results from the present study are presented in the form of streamlines,
isotherms, average Nusselt number along the bottom heated surface and average fluid
temperature in the cavity for each of four configurations as well as three different
confined blocks for the pertinent parameters namely Reynolds number, Prandtl
number, Hartmann number, solid-fluid thermal conductivity ratio, solid block
diameter at the three values of Richardson number, varying from 0.1 to 10.
The computational findings of this thesis reveals that both the flow and the thermal
fields strongly depend on the parameters Reynolds number Re, Prandtl number Pr,
Hartmann number Ha at the three convective regimes (Ri = 0.1, 1, 10). The centered
solid body of the enclosure influences the steamlines pattern slightly for the smaller
dimension of the block D whereas it has a considerable disparity in temperature
distribution inside the enclosure. It is also observed that the solid-fluid thermal
conductivity ratio K have insignificant effect on the flow fields and have significant
effect on the thermal fields at the three convective regimes. |
en_US |